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Let R be a commutative ring and g(t) ∈ R[t] a monic 
polynomial. The commutative ring of polynomials f(Cg) in 
the companion matrix Cg of g(t), where f(t) ∈ R[t], is called 
the Companion Ring of g(t). Special instances include the 
rings of circulant matrices, skew-circulant matrices, pseudo-
circulant matrices, or lower triangular Toeplitz matrices. 
When R is an Elementary Divisor Domain, we develop new 
tools for computing the Smith forms of matrices in Companion 
Rings. In particular, we obtain a formula for the second last 
non-zero determinantal divisor, we provide an f(Cg) ↔ g(Cf )
swap theorem, and a composition theorem. When R is a 
principal ideal domain we also obtain a formula for the number 
of non-unit invariant factors. By applying these to families of 
circulant matrices that arise as relation matrices of cyclically 
presented groups, in many cases we compute the groups’ 
abelianizations. When the group is the fundamental group of a 
three dimensional manifold, this provides the homology of the 
manifold. In other cases we obtain lower bounds for the rank 
of the abelianization and record consequences for finiteness 
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Abelianization
Homology

or solvability of the group, or for the Heegaard genus of a 
corresponding manifold.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Companion Rings were introduced and studied in [39]. These are rings of matrices 
f(Cg), whose entries are elements of a commutative ring R, and where f(t), g(t) are 
polynomials in R[t], where g(t) is monic with companion matrix Cg. They include, as 
special cases, the rings of circulant, skew-circulant, pseudo-circulant, and lower triangular 
Toeplitz matrices. (Formal definitions will be given in Section 2.) The Smith form of a 
matrix over an Elementary Divisor Domain (EDD) R [17] is a diagonal matrix whose 
diagonal entries are elements of R that form a divisor chain; the Smith form of a matrix 
can be expressed in terms either of the invariant factors or of the determinantal divisors 
of the matrix. In [39] properties of Smith forms of matrices in Companion Rings were 
obtained. This includes formulae for the number of non-zero determinantal divisors, for 
the first determinantal divisor, and the last non-zero determinantal divisor, as well as 
theorems concerning factorizations of f(t) and g(t). The results obtained were designed 
for the primary application sought in that article, namely, the computation of the first 
integral homology of 3-dimensional Brieskorn manifolds.

In this article we extend [39] by developing further tools, with a wider range of ap-
plications, for calculating the Smith form of a matrix f(Cg) in a Companion Ring. In 
particular, we obtain formulae for the second last non-zero determinantal divisor (The-
orem 3.8), a “swap theorem” that allows us to interchange between f(Cg) and g(Cf ) for 
monic polynomials f(t) and g(t) (Theorem 3.11), and a composition theorem concerning 
matrices of the form (f ◦ h)(Cg◦h) where h(t) is a monic polynomial in R[t] (Theo-
rem 3.13). In the case when R is a Principal Ideal Domain (PID), we obtain a formula 
for the number of non-unit invariant factors of f(Cg) (Theorem 3.15), recovering, as a 
particular instance, a result of Johnson and Odoni [22].

We apply our results to families of circulant matrices. While, in principle, they could 
be applied to any situation in which circulant matrices play a role, our applications 
focus on circulant matrices that arise as relation matrices of various classes of cyclically 
presented groups. These are groups defined in terms of a group presentation with an equal 
number of generators and relators that admits a cyclic symmetry. The relation matrix 
– a matrix whose Smith form provides the abelianization of the group – is a circulant 
matrix. These applications are in a similar spirit to [40] which used the results of [39] 
to identify classes of cyclically presented groups with free abelianization. Here, we go 
further, by calculating completely the abelianization (which in certain cases provides the 
homology of a corresponding 3-dimensional manifold), or by obtaining a lower bound for 
the number of generators of the abelianization. In turn, this has consequences concerning 
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the finiteness or solvability of the group, or provides an application to low-dimensional 
topology by delivering a lower bound for the Heegaard genus of the manifold.

Specifically, our applications are as follows. In Section 4.1 we give a new, short, proof of 
the (already known) Smith form of the adjacency matrix of the Cocktail party graphs. In 
Section 4.2 we obtain explicit formulae for the abelianization of the fractional Fibonacci 
groups; this result has been previously stated (without proof) for particular choices of the 
defining parameters, but the general case is new. In Section 4.3 we obtain the Smith form 
of the circulant matrix whose rows are cyclic permutations of the vector [a, . . . , a, b, . . . , b], 
where the number of b’s is coprime to the order of the matrix; in particular, we recover 
the special case where each row contains exactly one b which was stated (without proof) 
in [46] and provides the homology of the periodic generalized Neuwirth manifolds. The 
remaining applications are all completely new results. In Section 4.4 we obtain formulae 
for the abelianizations of generalized Fibonacci groups H(r, n, s) under certain conditions 
on the parameters. In Section 4.5 we consider certain cyclically presented groups whose 
relators are positive words of length three, and we prove two results conjectured in [30]: 
we show that the abelianizations of two classes of such groups are isomorphic, and we 
compute the rank of the abelianization of groups in one such family. In Section 4.6 we 
obtain a sharp lower bound for the minimum number of generators of an 8-parameter 
class of cyclically presented group that encompasses many classes of groups that arise in 
topological settings. This result has implications for the finiteness and solvability of the 
groups, and for the Heegaard genus of a corresponding manifold.

2. Preliminaries

2.1. The Smith Theorem

Given a commutative ring R, a unimodular matrix [34, p. 12] is a square matrix 
U ∈ Rn×n such that detU is a unit of R. Unimodular matrices are precisely the units 
of Rn×n, that is, matrices whose inverse exists in Rn×n. The Smith Theorem, proved by 
Smith in [45] for the case R = Z, and later by Kaplansky [24] for EDDs, is stated as 
Theorem 2.1 below. See, for example, [17, Theorem 1.14.1] for a proof.

Theorem 2.1 (Smith Theorem). Let R be an EDD and M ∈ Rm×n. Then there exist 
unimodular matrices U ∈ Rn×n, V ∈ Rm×m such that UMV = S where S is diagonal 
and satisfies Si,i | Si+1,i+1 for all i = 1, . . . ,min(m,n)− 1. Further, let γ0(M) = 1 ∈ R, 
and for i = 1, . . . ,min(m,n) define the i-th determinantal divisor γi(M) to be the greatest 
common divisor (GCD) of all minors of M of order i. Then

Si,i = γi(M) 
γi−1(M) =: si(M),

where the diagonal elements si(M), i = 1, . . . ,min(m,n), are called the invariant factors 
of M . The matrix S is called the Smith form of M .
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When the matrix M in question is clear from the context we will simply write γi or 
si rather than γi(M) or si(M).

Remark 2.2. 

(a) The GCDs of subsets of a ring R are defined up to multiplication by units of R, 
and so the invariant factors, determinantal divisors, and Smith form of a matrix are 
defined up to multiplication by units (although often a convention is set such as, 
in the case R = Z, that GCDs are positive integers, to impose uniqueness). When 
we refer to these objects, we will implicitly mean that they are taken up to units of 
the ring. Similarly, when we refer to resultants, we use the symbol Res(f(t), g(t)) to 
mean any associate of the resultant of f(t) and g(t).

(b) We stress that, in this paper, we find it convenient to define an invariant factor to 
be any, and possibly zero, diagonal element of the Smith form. This is in contrast 
with the, common in the literature (see e.g. [34, p. 28]), convention to call invariant 
factors only the non-zero diagonal elements in the Smith form.

Two matrices M,N ∈ Rm×n are said to be equivalent (over R), denoted M ∼ N , if 
there exist unimodular matrices U ∈ Rm×m, V ∈ Rn×n such that UMV = N , and they 
are said to be similar (over R), denoted M ∼S N , if there exists a unimodular matrix 
U such that UMU−1 = N . It follows from the Smith Theorem that any pair of m × n

matrices with entries R, where R is an EDD, are equivalent if and only if they have the 
same invariant factors and that, since rank is preserved by multiplication by invertible 
matrices, M has rank r if and only if its invariant factors satisfy si(M) = 0 precisely 
when i > r.

We conclude this subsection by recalling the definition and some properties of the 
adjugate (sometimes called adjoint) of a square matrix M ∈ Rn×n where R is an inte-
gral domain; see [20, Section 0.8.2] for more details. The adjugate of M is the matrix 
adj(M) ∈ Rn×n whose (i, j) entry is (−1)i+jMij where Mij ∈ R is the determinant 
of the (n − 1) × (n − 1) matrix obtained by removing the i-th row and the j-th col-
umn of M . It follows from the definition that γn−1(M) = γ1(adj(M)) is the GCD of 
the entries of adj(M); another useful property that we will freely use in the paper is 
adj(M)M = M adj(M) = det(M)In.

2.2. Polynomial division in R[t]

The following theorem (see for example [21, pp. 128–129]) concerns division in the 
polynomial ring R[t], where R is a commutative ring with unity. We adopt the conven-
tion deg 0 := −∞. With this convention one has deg a(t)b(t) = deg a(t) + deg b(t) and 
deg(a(t) + b(t)) ≤ max{deg a(t),deg b(t)} (with exact equality if the maximum is only 
attained once).
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Theorem 2.3 (Polynomial division). Let R be a commutative ring with unity and suppose 
that g(t) ∈ R[t] is such that the leading coefficient of g(t) is a unit of R. Then, polynomial 
division by g(t) is well defined in R[t], that is, for every f(t) ∈ R[t] there exist unique 
polynomials q(t), r(t) (called, resp., the quotient and remainder of the division of f(t)
by g(t)) such that f(t) = g(t)q(t) + r(t) and deg r(t) < deg g(t).

If R is a GCD domain, the content of a non-zero polynomial f(t) =
∑m

i=0 fit
i ∈ R[t]

is the GCD of the coefficients of f(t), i.e., cont(f(t)) = gcd(f0, . . . , fm); the content of 
the zero polynomial is defined to be cont(0) = 0.

2.3. Matrices in Companion Rings

Let R be a commutative ring (with unity) other than {0}, and fix the monic polynomial 
g(t) = tn +

∑n−1
i=0 git

i ∈ R[t]. The ideal 〈g(t)〉 ⊂ R[t] is the set of polynomials that are 
multiples of g(t). Moreover, we write a(t) ≡ b(t) mod g(t) if a(t) − b(t) ∈ 〈g(t)〉; this 
notation extends elementwise to matrices, i.e., we write A(t) ≡ B(t) mod g(t) if every 
entry of A(t) −B(t) is divisible by g(t). The quotient ring Q := R[t]/〈g(t)〉 is the set of 
equivalence classes with respect to the above defined equivalence mod g(t): namely, an 
element of Q has the form [f(t)] = {a(t) ∈ R[t] : a(t) ≡ f(t) mod g(t)}. Furthermore, by 
Theorem 2.3 and since g(t) has leading coefficient 1, polynomial division by g(t) uniquely 
defines a quotient and a remainder. In particular, this means that each equivalence class 
in Q has a unique representative having degree strictly less than n. It follows that Q is 
a module over R; a (canonical) basis of Q is the monomial basis {[1], [t], . . . , [tn−1]}. Let 
us consider the linear endomorphism

M[t] : Q → Q, [a(t)] �→ [ta(t)].

The representation of M[t] in the canonical basis is denoted by Cg and it is called the 
companion matrix of the polynomial g(t). Explicitly,

Cg =

⎡
⎢⎢⎣
−gn−1 . . . −g1 −g0

1
. . .

1

⎤
⎥⎥⎦ ∈ Rn×n, (2.1)

where entries not explicitly displayed are understood to be 0. For any integer k ≥ 1
define

Λk(t) =
[
tk−1 tk−2 . . . t 1

]T
. (2.2)

Then it can be readily verified that

CgΛn(t) = tΛn(t) − g(t) [1 0 . . . 0]T ,
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thus showing that Cg represents M[t] in the monomial basis of Q. Indeed, Cg is de-
fined uniquely by the property CgΛ(t) ≡ tΛ(t) mod g(t) (taking into account that the 
monomial basis has been chosen to represent elements of Q).

Let us now consider the (commutative!) subring of Rn×n consisting of matrices of the 
form f(Cg) =

∑
i fiC

i
g where f(t) =

∑
i fit

i ∈ R[t] is a polynomial with coefficients in R; 
following [39], we call this ring the Companion Ring of g(t). It follows from the form of 
Cg that for each 0 ≤ k < n the bottom row of Ck

g is eTn−k. Hence, if f(t) =
∑n−1

i=0 fit
i has 

degree strictly less than n, then the bottom row of f(Cg) is [fn−1, . . . , f1, f0]. In addition, 
the defining property CgΛ(t) ≡ tΛ(t) mod g(t) extends to polynomial functions of Cg: 
indeed, it is a consequence of the third isomorphism theorem for rings that Q, Rn, and 
the Companion Ring of g(t) are all isomorphic. Generally, for any f(t) ∈ R[t] the map 
M[f(t)] : [a(t)] �→ [a(t)f(t)] is represented (in the monomial basis) by the matrix f(Cg). 
Thus, by the observations above, f(Cg) is the unique element of Rn×n that satisfies 
f(Cg)Λ(t) ≡ f(t)Λ(t) mod g(t). We state this property formally below, as we use it 
frequently throughout the paper:

Proposition 2.4. Let R be a commutative ring with unit and such that 0 �= 1, let 
g(t) = tn +

∑n−1
i=0 git

i ∈ R[t] be monic, Λn(t) be as in (2.2) and let Cg ∈ Rn×n be 
the companion matrix of g(t) as in (2.1). For any polynomial f(t) ∈ R[t], if X ∈ Rn×n

satisfies XΛn(t) ≡ f(t)Λn(t) mod g(t), then X = f(Cg).

Remark 2.5. Note that, by the Cayley-Hamilton theorem and for all f(t) ∈ R[t], f(Cg) =
φ(Cg) where φ(t) is the remainder in the polynomial division of f(t) by g(t) (and hence, 
degφ(t) < n). This is coherent with Proposition 2.4, because f(t) ≡ φ(t) mod g(t) and 
hence

f(Cg)Λn(t) = φ(Cg)Λn(t) ≡ φ(t)Λn(t) mod g(t) ≡ f(t)Λn(t) mod g(t).

For some special choices of g(t), Companion Rings are known, and have been studied, 
by other names. For example, if g(t) = tn − 1, the Companion Ring of g(t) is the ring 
of circulant matrices [12]; if g(t) = tn + 1, we obtain skew-circulant matrices [12]; if 
g(t) = tn − k (k ∈ R), we get the ring of pseudo-circulant matrices [48]; and if g(t) = tn, 
the Companion Ring corresponds to lower triangular Toeplitz matrices [2].

When R is a field, and for any choice of the monic polynomial g(t), the theory of 
companion matrices has been deeply studied and its relation to quotient rings is well 
known: see for example [1,14,26] for both the general theory and the role of companion 
matrices (when R is a subfield of C) in numerical analysis, and [31,38] for the link to 
quotient rings, as well as the references cited in these papers. The more general case 
where R is a commutative ring, as in this article, was studied in [39], where particular 
attention was given to the case where R is an EDD.
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2.4. Cyclically presented groups

Any finitely generated abelian group A is isomorphic to a group of the form A0 ⊕Zβ

where A0 is a finite abelian group and the Betti number (or torsion-free rank) β ≥ 0. 
Given a group presentation P = 〈x0, . . . , xn−1 | r0, . . . , rm−1〉 (n,m ≥ 1), defining a 
group G, the relation matrix of P is the m × n integer matrix M whose (i, j) entry 
(1 ≤ i ≤ m, 1 ≤ j ≤ n) is the exponent sum of generator xj−1 in relator ri−1. If the rank 
of M is r and the non-zero invariant factors of the Smith Form of M are s1, . . . , sr then 
the abelianization of G is

Gab ∼ = Zs1 ⊕ · · · ⊕ Zsr ⊕ Zn−r.

(See, for example, [29, pp. 146–149, Theorem 3.6].) Thus β(Gab) = n − r and if Gab =
A0 ⊕ Zβ then the group order |A0| = γr(M). When it is clear from the context what 
presentation of a group is being considered, we may abuse terminology and refer to the 
relation matrix of a group.

The deficiency of a group presentation is equal to the number of its generators minus 
the number of its relators. The deficiency of a presentation defining a group G is bounded 
above by β(Gab), and so we define the deficiency of a group G to be the maximum of the 
deficiencies of all presentations defining G. Deficiency zero groups play an important role 
both in group theory and in low dimensional topology. Groups of positive deficiency are 
infinite, whereas deficiency zero groups may be either finite or infinite. The fundamental 
group of every closed, connected, bounded 3-dimensional manifold has a deficiency zero 
presentation. Cyclic presentations and cyclically presented groups provide an important 
subclass of presentations and groups of deficiency zero that admit a cyclic symmetry. 
Specifically, a cyclic presentation is a group presentation of the form

Pn(w) = 〈x0, . . . , xn−1 | w(xi, xi+1, . . . , xi+n−1) (0 ≤ i < n)〉

where w = w(x0, x1, . . . , xn−1) is some fixed element of the free group with basis 
{x0, . . . , xn−1} and the subscripts are taken mod n, and the group Gn(w) it defines 
is called a cyclically presented group. If, for each 0 ≤ i < n, the exponent sum of xi in 
w(x0, . . . , xn−1) is ai then, setting R = Z, the relation matrix of Pn(w) is the integer 
circulant matrix M = f(Cg)T where g(t) = tn − 1 and f(t) =

∑n−1
i=0 ait

i (and so the 
Smith forms of M and f(Cg) are equal).

Example 2.6. Consider the group G defined by the cyclic presentation

P4(x0x
3
1x

−2
2 ) = 〈x0, x1, x2, x3 | x0x

3
1x

−2
2 , x1x

3
2x

−2
3 , x2x

3
3x

−2
0 , x3x

3
0x

−2
1 〉.

Letting f(t) = 1+3t−2t2 and g(t) = t4−1, then the relation matrix of this presentation 
is M = f(Cg)T , where
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f(Cg) =

⎡
⎢⎣

1 0 −2 3
3 1 0 −2
−2 3 1 0
0 −2 3 1

⎤
⎥⎦ , and Cg =

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ .

The invariant factors of f(Cg) are 1, 1, 3, 48, of which 3, 48 are the non-units, and hence 
Gab ∼ = Z3 ⊕ Z48.

Thus, results concerning the Smith forms of such matrices f(Cg) provide information 
about the cyclically presented group Gn(w). Not least, this can be used for testing non-
isomorphism of groups: if Gn(w)ab, Gn′(w′)ab are not isomorphic then Gn(w), Gn′(w′)
are not isomorphic.

For a 3-manifold M , the first integral homology H1(M) is isomorphic to the abelian-
ization of its fundamental group (see, for example, [18, Theorem 2A.1]). Thus, given 
a 3-manifold whose fundamental group has a cyclic presentation Pn(w) with circulant 
relation matrix f(Cg)T (g(t) = tn − 1), the Smith form of f(Cg) provides the homology 
of M . Many such families of groups and manifolds are described in [6].

Moreover, partial information, in the form of lower bounds for the number of non-unit 
invariant factors of the relation matrix, can yield structural results concerning finiteness 
and solvability of the groups and lower bounds for the Heegaard genus of the manifolds. 
Following [54], we write d(G) to denote the rank, or minimum number of generators, of a 
group G. The number of non-unit invariant factors of a relation matrix of a presentation 
of a group G is equal to d(Gab), and so (since Gab is a quotient of G) provides a lower 
bound for d(G).

If G is a finite group of deficiency zero then d(Gab) ≤ 3 [23, Theorem 9(ii)]. A 
related result concerns solvable groups. These are groups that can be described in terms 
of abelian groups, through group extensions [29, p. 293]. If G is a solvable group of 
deficiency zero then d(Gab) ≤ 4 [52] (see [53, Corollary 1.2]). Thus lower bounds for 
d(Gab) can provide an effective tool for proving that groups of deficiency zero, such as 
cyclically presented groups, are infinite or non-solvable.

The Heegaard genus, g(M) of a closed, connected, orientable 3-manifold is the mini-
mum g for which M admits a Heegaard splitting of genus g [3]; it is bounded below by 
the minimum number of generators d(G) of the fundamental group G = π1(M), which 
in turn is bounded below by d(Gab).

3. Smith forms of matrices in Companion Rings

3.1. Prior results

Theorem 3.1 (Non-zero invariant factors [39, Theorem A]). Let g(t) ∈ R[t] be monic 
of degree n, and let f(t) ∈ R[t] where R is an EDD. Suppose that g(t) = G(t)z(t), 
f(t) = F (t)z(t) where z(t) is a monic common divisor of f(t) and g(t). Then f(Cg) ∼
F (CG)⊕0m×m, where m = deg z(t). In particular, F (CG) has invariant factors s1, . . . , sr
if and only if f(Cg) has invariant factors s1, . . . , sr and 0, . . . , 0 (m times).
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The following determinant formula is well known [39, equation (1.1)]:

det f(Cg) =
∏

θ:g(θ)=0

f(θ) =: Res(f, g). (3.1)

The immediate corollary of Theorem 3.1 below expresses the last non-zero determinantal 
divisor as the resultant of F (t) and G(t). This therefore generalizes the expression (3.1)
to the case of singular matrices f(Cg).

Corollary 3.2 (Last non-zero determinantal divisor [39, Corollary B]). In the notation of 
Theorem 3.1, suppose that z(t) is the monic greatest common divisor of f(t) = z(t)F (t)
and g(t) = z(t)G(t). Then the last non-zero determinantal divisor of f(Cg) is

γr =
∏

θ:G(θ)=0

F (θ) = Res(F,G).

On the other hand, the first determinantal divisor is given by the next result:

Theorem 3.3 (First determinantal divisor [39, Lemma 7.1]). Let f(t), g(t) ∈ R[t] where 
R is an EDD and suppose f(t) ≡ h(t) mod g(t) with deg(h(t)) < deg(g(t)). Then 
γ1(f(Cg)) = cont(h). In particular, γ1(f(Cg)) = 1 if and only if h(t) is primitive.

The following results concern factorizations of f(t) or g(t):

Theorem 3.4 (Factorizing f(t) [39, Theorem 6.1]). Let f(t), g(t) ∈ R[t] where R is an 
EDD. Let f(t) = f1(t)f2(t) and suppose that Res(f1, g) and Res(f2, g) are coprime. 
Denote by S, S1, S2 the Smith forms of, respectively, f(Cg), f1(Cg), f2(Cg). Then S =
S1S2.

Corollary 3.5 ([39, Corollary 6.2]). Let f(t), g(t) ∈ R[t] where R is an EDD. Let f(t) =
f1(t)f2(t) and suppose that Res(f2, g) is a unit of R. Then f1(Cg) ∼ f(Cg).

Theorem 3.6 (Factorizing g(t) [39, Theorem 6.3]). Let f(t), g(t) ∈ R[t] where R is an 
EDD. Let g(t) = g1(t)g2(t) and suppose that Res(f, g1) and Res(f, g2) are coprime. Then 
f(Cg) ∼ f(Cg1) ⊕ f(Cg2).

Corollary 3.7 ([39, Corollary 6.4]). Let f(t), g(t) ∈ R[t] where R is an EDD. Let g(t) =
g1(t)g2(t) and suppose that Res(f, g2) is a unit of R. Then f(Cg) ∼ Ideg g2(t) ⊕ f(Cg1).

3.2. Second last determinantal divisor

If R is an integral domain and f(t), g(t) ∈ R[t] then there exist u(t), v(t) ∈ R[t] such 
that f(t)u(t) + g(t)v(t) = Res(f, g) (see, for example, [15, Lemma 7(1)]). If, in addi-
tion, g(t) is monic and f(t) is coprime with g(t), then f(Cg)u(Cg) = Res(f, g)Ideg g(t), 
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so u(Cg) = Res(f, g)(f(Cg))−1 = adj(f(Cg)), and hence adj(f(Cg)) = u(Cg) is an el-
ement of the Companion Ring of g(t). Moreover, still assuming that g(t) is monic, by 
Theorem 2.3 there exists a unique q(t) ∈ R[t] of degree less than deg g(t) such that 
f(t)q(t) ≡ Res(f, g) mod g(t).

Theorem 3.8 (Second last determinantal divisor). Let R be an EDD and let f(t), g(t) ∈
R[t] be coprime integer polynomials, with g(t) monic. Let q(t) ∈ R[t] be the unique 
polynomial of degree less than n = deg g(t) such that f(t)q(t) ≡ Res(f, g) mod g(t). 
Then, γn−1(f(Cg)) = cont(q(t)). In particular, γn−1(f(Cg)) = 1 if and only if q(t) is 
primitive.

Proof. By definition γn−1 is the GCD of the minors of f(Cg) of order n−1. Such minors 
are the elements of adj(f(Cg)) = q(Cg). Denote q(t) =

∑n−1
k=0 qkt

k. Now, as noted in 
Section 2.3, since Cg is a companion matrix, for each 0 ≤ k < n, the bottom row of Ck

g

is equal to eTn−k and so the bottom row of q(Cg) is [qn−1, . . . , q1, q0]. Thus γn−1 divides 
gcd(q0, q1, . . . , qn−1) = cont(q). Moreover, the (i, j)-th entry of q(Cg) is given by

(q(Cg))ij =
n−1∑
k=0 

qk(Ck
g )ij ,

which is a linear combination, over R, of q0, . . . , qn−1. Thus each (q(Cg))ij is divisible by 
gcd(q0, . . . , qn−1) = cont(q), and so γn−1 is divisible by cont(q). Hence γn−1 = cont(q), 
and the proof is complete. �
Remark 3.9. As observed in the proof of Theorem 3.8, if q(t) =

∑n−1
k=0 qkt

k then the 
bottom row, xT , say of q(Cg) is equal to [qn−1, . . . , q1, q0]. That is, xT = eTn q(Cg) =
eTn adj(f(Cg)) = eTn Res(f, g)(f(Cg))−1, or

xT f(Cg) = eTn Res(f, g). (3.2)

Thus computing q(t) amounts to solving the linear system (3.2).

Combining Theorem 3.8 with Theorem 3.1 yields the following expression for the 
second last non-zero determinantal divisor of f(Cg), in the more general setting where 
f(t) and g(t) are not coprime.

Corollary 3.10. Let f(t) = z(t)F (t) and g(t) = z(t)G(t) be integer polynomials, where 
g(t) is monic and z(t) is the monic GCD of f(t) and g(t). Let Q(t) be the unique 
polynomial of degree less than r = degG(t) such that

Q(t)F (t) ≡ Res(F,G) mod G(t).

Then γr−1(f(Cg)) = cont(Q(t)). In particular, γr−1(f(Cg)) = 1 if and only if Q(t) is 
primitive.



382 V. Noferini, G. Williams / Linear Algebra and its Applications 708 (2025) 372–404 

3.3. Swap theorem

Our main result in this section is Theorem 3.11 which, for monic polynomials f(t), g(t), 
allows us to translate between f(Cg) and g(Cf ). For this, we recall the concept of Horner 
shifts [13,41]. Let h(t) =

∑m
i=0 hit

i ∈ R[t] be a polynomial of degree m. The Horner shift 
of degree 0 ≤ k < m of the polynomial h(t) is defined as

σk(h(t)) =
h(t) −

∑m−k−1
i=0 hit

i

tm−k
.

For example, if h(t) = t3−2t+1 ∈ Z[t], the associated Horner shifts are σ2(h(t)) = t2−2, 
σ1(h(t)) = t, and σ0(h(t)) = 1.

Theorem 3.11 (Swap Theorem). Let R be an EDD and let f(t), g(t) ∈ R[t] be monic 
polynomials of degrees m,n, respectively, where n ≥ m. Then f(Cg) ∼ In−m ⊕ g(Cf ).

We require the following technical result.

Lemma 3.12. Let R be an EDD and let g(t), f(t) ∈ R[t], where g(t) is monic of degree n. 
Let φ(t) be the unique polynomial of degree m, 0 ≤ m < n, and such that φ(t) ≡ f(t) mod
g(t). Let q(t), r(t) ∈ R[t] be the unique polynomials such that tn−1φ(t) = q(t)g(t) + r(t), 
deg q(t) = m− 1 if m > 0 (or q(t) = 0 if m = 0), and deg r(t) < n. Moreover, let

Ψ(q(t)) = [q(t) σm−2(q(t)) · · · σ1(q(t)) σ0(q(t)) 0 · · · 0]T .

(If q(t) = 0, then Ψ(q(t)) = 0.) Then

f(Cg)Λn(t) = φ(t)Λn(t) − g(t)Ψ(q(t)).

Proof. Note first that f(Cg) = φ(Cg). Moreover, by Theorem 2.3, the polynomials 
q(t), r(t) ∈ R[t] defined in the statement are indeed unique, and it suffices to show

φ(Cg)Λn(t) = φ(t)Λn(t) − g(t)Ψ(q(t)). (3.3)

By Proposition 2.4, φ(Cg) is the unique element of Rn×n such that φ(Cg)Λn(t) ≡
φ(t)Λn(t) mod g(t); hence, using also Theorem 2.3, the (n − k)th component of 
φ(Cg)Λn(t) is the remainder in the polynomial division of φ(t)tk by g(t), for all 
k = 0, . . . , n − 1. This immediately establishes the top row of (3.3) where q(t) is the 
quotient in the same polynomial division (for k = n − 1). Moreover, again by Theo-
rem 2.3, for all k = n− 1, n− 2, . . . , 1, there exist unique a(t), b(t), c(t), d(t) ∈ R[t] with 
deg b(t),deg d(t) < n such that

tkφ(t) = g(t)a(t) + b(t), (3.4)

tk−1φ(t) = g(t)c(t) + d(t). (3.5)
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We claim that c(t) = (a(t)− a(0))/t; by definition of Horner’s shift, this proves (3.3) by 
finite induction. To prove the claim, observe that (3.4), (3.5) imply

g(t)a(t) + b(t)
t 

= g(t)c(t) + d(t)

and so

g(t)a(t) − a(0)
t 

+ a(0)g(t) + b(t)
t 

= g(t)c(t) + d(t). �
Proof of Theorem 3.11. Suppose first n > m.

For any 1 ≤ k ≤ m the matrix Ck
g is of the form 

[
∗ ∗

In−k 0

]
, and hence we may 

partition f(Cg) =
[
A B
X C

]
where B ∈ Rm×m and X is a unit upper triangular Toeplitz 

matrix. Now [
0 X−1

I −AX−1

] [
A B
X C

] [
I −XC−1

0 I

]
=

[
I 0
0 B −AX−1C

]

and so f(Cg) ∼ In−m ⊕ (B − AX−1C). Hence, it suffices to show that g(Cf ) ∼ (B −
AX−1C).

By Lemma 3.12, there exists a monic polynomial q(t) = tm−1 +
∑m−2

i=0 qit
i such that

AtmΛn−m(t) + BΛm(t) = f(t)tn−mΛm(t) − g(t)Ξ(t),

XtmΛn−m(t) + CΛm(t) = f(t)Λn−m(t),

where

Ξ(t) = [q(t) σm−2(q(t)) · · · σ1(q(t)) σ0(q(t))]T .

Then

(
AX−1C −B

)
Λm(t) ≡ g(t)Ξ(t) mod f(t).

Introducing now the unit upper triangular Toeplitz matrix

U =

⎡
⎢⎢⎢⎢⎣

1 qm−2 . . . q1 q0
1 qm−2 . . . q1

. . . . . .
...

1 qm−2
1

⎤
⎥⎥⎥⎥⎦ ,

we have UΛm(t) = Ξ(t) and so
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U−1 (AX−1C −B
)
Λm(t) ≡ g(t)Λm(t) mod f(t).

By Proposition 2.4, this implies U−1 (AX−1C −B
)

= g(Cf ), and hence g(Cf ) ∼
Ug(Cf ) = AX−1C −B, which concludes the proof for the case n > m.

If m = n, then note that A,C,X are empty matrices while B = f(Cg). Moreover, in 
this case, f(t) = g(t)+φ(t) for some φ(t) such that degφ(t) := M < n. By Lemma 3.12, 
we then get

−φ(Cg)Λn(t) ≡ g(t)[Λn(t) + Ψ(q(t))] mod f(t)

(where Ψ(q(t)) is as defined in the lemma). Now let V ∈ Rn×n be defined by V Λn(t) =
Λn(t) + Ψ(q(t)), and observe that V must be unit upper triangular1, and hence uni-
modular, because both Λn(t) and Λn(t) + Ψ(q(t)) are degree-graded vectors with monic 
components (see [31,32] for more details). Using also Proposition 2.4, it follows that

−V −1φ(Cg)Λn(t) ≡ g(t)Λn(t) mod f(t),

implying f(Cg) = φ(Cg) = −V g(Cf ); this implies the statement for the case m = n. �
3.4. Composition theorem

For f(t), g(t), h(t) ∈ R[t], with g(t), h(t) monic, the next result expresses the compo-
sition (f ◦h)(Cg◦h) in terms of f(Cg) and deg h(t). For this we recall that the Kronecker 
product of M and N , denoted M ⊗ N , is the block matrix whose (i, j) block entry is 
MijN [19]. Note, in particular, that Ik ⊗N is equal to the direct sum of k copies of N . 
For any pair of square matrices M,N (possibly of different sizes) the Kronecker products 
M ⊗ N,N ⊗ M are permutation similar. This is stated assuming that R is (a subring 
of) a field in [19, Corollary 4.3.10], but since permutation matrices only contain 0 or 
1 as their elements and have determinant ±1, the same proof is in fact valid for any 
commutative ring R.

Theorem 3.13 (Composition Theorem). Let R be an EDD and let f(t), g(t), h(t) ∈ R[t]
where g(t), h(t) are monic. Then,

(f ◦ h)(Cg◦h) ∼S f(Cg) ⊗ Idegh(t) ∼S Idegh(t) ⊗ f(Cg) = f(Cg) ⊕ · · · ⊕ f(Cg)︸ ︷︷ ︸
degh(t) 

.

For the proof of Theorem 3.13 we need the following:

Lemma 3.14. Let R be an EDD and let g(t), h(t) ∈ R[t] be monic. Then h(Cg◦h) ∼S

Cg ⊗ Idegh(t).

1 In addition, one can prove that V is also Toeplitz by the properties of Ψq(t).
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Proof. Let n = deg g(t),m = deg h(t) and write h(t) = tm +
∑m−1

i=0 hit
i. For notational 

simplicity set H = h(Cg◦h) and C = Cg ⊗ Im and let

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 hm−1 . . . h1

1 hm−1
...

. . . . . .
. . . hm−1

1

⎤
⎥⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

h0
h1 h0

. . .
...

. . . . . .
hm−1 h1 h0

⎤
⎥⎥⎥⎥⎥⎦ ∈ Rm×m,

Vk =

⎡
⎢⎢⎢⎢⎣
A B

A B
. . . . . .

A B
A

⎤
⎥⎥⎥⎥⎦ ∈ Rmk×mk,

Uk = Vk ⊕ Inm−mk (1 ≤ k ≤ n), U = U1U2 · · ·Un.

Since each Vk is unit upper triangular we have det(U) = 1 and thus it suffices to show 
that UH = CU . For each 1 ≤ k ≤ n let

Θk(t) =

⎡
⎢⎢⎣

(A−1(tI −B))k−1A−1

...
A−1(tI −B)A−1

A−1

⎤
⎥⎥⎦ .

Then VkΘk =
[
tΘk−1
Im

]
, and so UnΘn = VnΘn =

[
tΘn−1
Im

]
. Premultiplying by 

Un−1, . . . , U1 in turn gives UΘn =
[
tn−1Im tn−2Im · · · tIm Im

]T , or equivalently

Θn(t) = U−1(Λn(t) ⊗ Im). (3.6)

Letting S = RIm, the companion matrix of g(t)Im ∈ S[t] is Cg ⊗ Im = C. Hence, C
satisfies the elementwise (over S) congruence

C(Λn(t) ⊗ Im) ≡ t(Λn(t) ⊗ Im) mod g(t)Im,

(see [31,32,37] and the references therein). This implies, in particular, the elementwise 
(over R) congruence

C(Λn(t) ⊗ Im) ≡ t(Λn(t) ⊗ Im) mod g(t),

and hence, by (3.6), we have

CUΘn(t) ≡ tUΘn(t) mod g(t).
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Pre-multiplying by U−1 and setting X := U−1CU gives XΘn(t) ≡ tΘn(t) mod g(t); 
then replacing t by h(t) gives

XΘn(h(t)) ≡ h(t)Θn(h(t)) mod (g ◦ h)(t). (3.7)

Now let

σ(h(t)) = [σm−1(h(t)) · · · σ0(h(t))]T .

By the definition of Horner shifts

AΛm(t) = σ(h(t)) (3.8)

and it follows directly from the definition of B that

(h(t)I −B)Λm(t) = tmσ(h(t)). (3.9)

Then

Θn(h(t))σ(h(t)) =

⎡
⎢⎢⎣

(A−1(h(t)I −B))n−1Λm(t)
...

A−1(h(t)I −B)Λm(t)
Λm(t)

⎤
⎥⎥⎦ by (3.8)

=

⎡
⎢⎢⎣
t(n−1)mΛm(t)

...
tmΛm(t)
Λm(t)

⎤
⎥⎥⎦ using (3.8), (3.9)

= Λnm(t).

Post-multiplying (3.7) by σ(h(t)) therefore gives

XΛnm(t) ≡ h(t)Λnm(t) mod (g ◦ h)(t)

and so Proposition 2.4 implies X = H, as required. �
Proof of Theorem 3.13. It suffices to prove the first similarity in the statement. Let 
f(t) =

∑
i fit

i. By Lemma 3.14 there exists a unimodular matrix V such that h(Cg◦h) =
V −1(Cg ⊗ Idegh(t))V . It follows that

(f ◦ h)(Cg◦h) =
∑
i 

fiV
−1(Cg ⊗ Idegh(t))iV = V −1(f(Cg) ⊗ Idegh(t))V

so (f ◦ h)(Cg◦h) ∼S f(Cg) ⊗ Idegh(t), as required. �
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3.5. The number of non-unit invariant factors

Now let R be a PID and for a fixed prime p ∈ R we consider the quotient ring R/〈p〉
of R by the prime ideal generated by p. Note that R/〈p〉 is a field and so the Smith form 
of a matrix over R/〈p〉 has elements in {0, 1}. (In particular, if R = Z, then R/〈p〉 is the 
finite field with p elements, Fp.) For f(t) ∈ R[t] let fp(t) := [f(t) mod 〈p〉] denote the 
polynomial in (R/〈p〉)[t] such that f(t) ≡ fp(t) mod 〈p〉. In this setting, the following 
theorem gives an expression for the number of non-unit invariant factors of f(Cg), when 
g(t) is monic.

Theorem 3.15 (Number of non-unit invariant factors). Let R be a PID and let f(t), g(t) ∈
R[t] with g(t) monic. Then f(Cg) has precisely maxp|γr

deg(gcd(fp, gp)) non-unit in-
variant factors, where γr is the last non-zero determinantal divisor of f(Cg) and the 
maximum is taken over all primes p ∈ R dividing γr.

Proof. Let p ∈ R be a prime and, for A ∈ Rn×n, define Ā ∈ (R/〈p〉)n×n such that 
A ≡ Ā mod R/〈p〉. Fix an arbitrary minor μ in A and the corresponding minor μ̄ in Ā; 
then μ ≡ μ̄ mod 〈p〉. Let the k-th determinantal divisors of A, Ā be γk, γ̄k, respectively. 
Then γ̄k = 1 if p ∤ γk and γ̄k = 0 if p | γk. Clearly Cg ≡ Cgp mod 〈p〉, and hence f(Cg) ≡
fp(Cg) ≡ fp(Cgp) mod 〈p〉. Using Theorem 3.1, we conclude that deg(gcd(fp, gp)) = �p
if and only if fp(Cgp) ∼ In−�p ⊕ 0 if and only if p | γn−�p+1(f(Cg)) and p ∤ γn−�p(f(Cg)). 
The statement follows because p is arbitrary.

Finally, we note that it suffices to restrict to the set of primes that divide γr, for if 
p ∤ γr then γ̄k = 1 for all k ≤ r. �
Remark 3.16. Even more generally, Theorem 3.15 can be stated for certain EDDs that 
are not PIDs. One example is when R = A(Ω) is the ring of functions that are analytic 
over a connected open set Ω. The crucial property that is needed in the proof is that, 
for all x ∈ R, x is not a unit if and only if there is a prime that divides x. Note that this 
is not true of every EDD; for example, if R = A is the ring of algebraic integers, then 
2 ∈ A is not a unit but there is no prime that divides 2. In fact, A contains no prime at 
all; see [36, Remark 17].

We conclude this subsection by stating two corollaries of Theorem 3.15, the second of 
which recovers a result of Johnson and Odoni [22]:

Corollary 3.17. Let R be a PID and let f(t), g(t) ∈ R[t] with g(t) monic. Then, for all 
primes p ∈ R, f(Cg) has at least deg(gcd(fp, gp)) non-unit invariant factors.

Corollary 3.18 ([22, Proposition 4.1(ii)]). Let f(t) ∈ Z[t], g(t) = tn − 1 and suppose 
ρ = Res(f, g) �= 0. Then γn−1(f(Cg)) = 1 if and only if gcd(fp, gp) is linear for every 
prime p dividing |ρ|.
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Remark 3.19. In Corollary 3.18, the ring Z can be replaced by any PID. Combining this 
with Theorem 3.8 we obtain the following observation, which may be of independent 
interest: when R is a PID, the polynomial q of Theorem 3.8 is primitive if and only if 
gcd(fp, gp) in R/〈p〉 is linear for every prime dividing |ρ|.

4. Applications

In this section, we apply the results of Section 3 to various problems in group theory 
and low-dimensional topology.

4.1. The cocktail party graphs

In the language of matrices in Companion Rings, [50, Theorem 6.3] can be stated as 
Theorem 4.1, below. As described in [50] this provides the Smith form of the adjacency 
matrix of the cocktail party graph on 2n vertices (or hyperoctahedral graph or (2n, n)-
Turán graph). Theorem 4.1 was proved in [50] using Tietze transformations on cyclic 
presentations of groups. We now reprove it using the techniques developed in Section 3.

Theorem 4.1 ([50, Theorem 6.3]). Let m ≥ 1, f(t) = (tm + 1)
∑m−2

i=0 ti, g(t) = t2m − 1. 
Then the invariant factors of f(Cg) are 1 (m−1 times), m−1 (1 time) and 0 (m times).

Proof. Let z(t) = gcd(f(t), g(t)), F (t) = f(t)/z(t), and G(t) = g(t)/z(t). Then z(t) =
tm+1, F (t) = H(t)−tm−1, G(t) = (t−1)H(t) where H(t) =

∑m−1
i=0 ti. Let Q(t) = H(t)−

(m− 1)t. Working mod G(t) we have tH(t) ≡ H(t), so H(t)2 =
∑m−1

i=0 tiH(t) ≡ mH(t), 
and hence

F (t)Q(t) ≡ H(t)2 − tm−1H(t) − (m− 1)tH(t) + (m− 1)tm

≡ mH(t) −H(t) − (m− 1)H(t) + (m− 1)

≡ m− 1 = Res(F,G).

Moreover, since Q(t) is primitive, Corollary 3.10 implies that the second last determi-
nantal divisor of F (CG) is trivial. The result then follows from Corollary 3.2. �
4.2. Fractional Fibonacci groups

The fractional Fibonacci groups F (k)(n) (k, n ≥ 1), introduced in [27], are the cycli-
cally presented groups Gn(x0x

k
1x

−1
2 ), and they generalize Conway’s Fibonacci groups 

F(n) = F (1)(n) [11]. For even n = 2m they are fundamental groups of closed, con-
nected, orientable 3-dimensional fractional Fibonacci manifolds M̄(k,m) [27,28] and so 
F (k)(2m)ab provides the first integral homology of M̄(k,m). The contrasting case, n
odd, is investigated in [10].
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The relation matrix of F (k)(n) is the circulant matrix f(Cg)T where g(t) = tn − 1
and f(t) = t2 − kt− 1, which has roots λ± = (k ±

√
k2 + 4)/2. As in [27], we define the 

fractional Fibonacci numbers

F k
0 = 0, F k

1 = 1, F k
j+2 = kF k

j+1 + F k
j (j ≥ 0) (4.1)

(which are the classical Fibonacci numbers Fj in the case k = 1) and it follows that

F k
n =

λn
+ − λn

−
λ+ − λ−

. (4.2)

Maclachlan [27, Section 3] observed that

|F (k)(n)ab| = F k
n+1 + F k

n−1 − 1 − (−1)n. (4.3)

In Theorem 4.2 we give a formula for the structure of F (k)(n)ab that involves GCDs 
of expressions in the numbers F k

j . By simplifying these GCDs we obtain an alternative 
formula for F (k)(n)ab in Corollary 4.3. In the case k = 1 this coincides with the formula 
for F(n)ab given in [25], and in the case n even it coincides with [28, Lemma 1], which 
was stated without proof. One may infer insights about F (k)(n) from Corollary 4.3 that 
are not evident from Theorem 4.2. For example, an expectation implicit in [10, Theorem 
6.2(a)], that if k is odd and n ≡ 3 mod 6 then F (k)(n)ab ∼ = (Q8 × Z(Fk

n+1+Fk
n−1)/4)

ab, 
where Q8 denotes the quaternion group.

Theorem 4.2. Let n, k ≥ 1. Then F (k)(n)ab ∼ = Zα ⊕ Zβ, where

α = gcd(F k
n , F

k
n−1 − 1) and β =

F k
n+1 + F k

n−1 − 1 − (−1)n

α
.

Proof. As noted above, the relation matrix of F (k)(n) is f(Cg)T where f(t) = t2−kt−1, 
g(t) = tn−1. By Theorem 3.11 we have f(Cg) ∼ I⊕g(Cf ), so it suffices to consider g(Cf ). 
Define h(t) = F k

n t + (F k
n−1 − 1). We claim g(t) ≡ h(t) mod f(t) for all n ≥ 1. The case 

n = 1 is immediate. With the inductive hypothesis tn − 1 ≡ F k
n t+ (F k

n−1 − 1) mod f(t), 
and working modf(t), we have

tn+1 − 1 ≡ t(tn − 1) + (t− 1)

≡ F k
n t

2 + (F k
n−1 − 1)t + (t− 1)

≡ F k
n (kt + 1) + F k

n−1t− 1

≡ (kF k
n + F k

n−1)t + F k
n − 1

≡ F k
n+1t + (F k

n − 1),

proving the claim.
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By Theorem 3.3 γ1(g(Cf )) = cont(h) = gcd(F k
n , F

k
n−1 − 1) and, by (4.3), γ2(g(Cf )) =

Res(f, g) = F k
n+1 + F k

n−1 − 1 − (−1)n. The result follows. �
Corollary 4.3. Let n, k ≥ 1. Then

F (k)(n)ab ∼ = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ZFk
n+1+Fk

n−1
if n ≡ 1, 5, 7, 11 mod 12,

Zgcd(k+1,2) ⊕ ZFk
n+1+Fk

n−1
gcd(k+1,2) 

if n ≡ 3, 9 mod 12,

ZFk
n/2+1+Fk

n/2−1
⊕ ZFk

n/2+1+Fk
n/2−1

if n ≡ 2, 6, 10 mod 12,

Zgcd(k,2)Fk
n/2

⊕ Z (k2+4)Fk
n/2

gcd(k,2) 
if n ≡ 0, 4, 8 mod 12.

Sketch proof. Let α, β be as given in Theorem 4.2. An inductive argument, involving 
recurrence relations, the definition (4.1) and the formula (4.2), shows that for all odd j, 
1 ≤ j ≤ n/2

α = gcd(F k
n−j − F k

j , F
k
n−(j+1) + F k

j+1). (4.4)

Suppose first that n is odd. If (n−1)/2 is odd (resp. (n−1)/2 is even) then substituting 
j = (n − 1)/2 (resp. (n + 1)/2) into (4.4) and simplifying gives α = gcd(F k

(n+1)/2 −
F k

(n−1)/2, 2F k
(n+1)/2). We claim that F k

(n+1)/2 − F k
(n−1)/2 is even if and only if k is odd 

and n ≡ 3 mod 6, in which case α = 2; otherwise α = 1. To prove the claim, observe 
that if k is odd we may assume without loss of generality k = 1, and it follows from 
classical results on Pisano periods of Fibonacci numbers that F(n+1)/2−F(n−1)/2 is even 
if and only if n ≡ 3 mod 6. If instead k is even, then F k

m ≡ m mod 2 for all m, and hence 
F k

(n+1)/2 − F k
(n−1)/2 must be odd. Therefore, if n ≡ 1, 5, 7, 11 mod 12 then α = 1 and if 

n ≡ 3, 9 mod 12 then α = gcd(k + 1, 2), and the result follows.
Consider now the case n even. If n ≡ 2 mod 4 then substituting j = n/2 into (4.4) gives 

α = F k
n/2−1 + F k

n/2+1, and if n ≡ 0 mod 4 then substituting j = n/2 − 1 into (4.4) and 

using (4.1) gives α = gcd(k, 2)F k
n/2. The following identity can be confirmed by expressing 

each term F k
j according to the formula (4.2), and simplifying using λ+λ− = −1 to show 

that each side is equal to λn
+ + λn

− − 2:

F k
n+1 + F k

n−1 − 2 =
{

(F k
n/2−1 + F k

n/2+1)2 if n ≡ 2 mod 4,
(k2 + 4)(F k

n/2)2 if n ≡ 0 mod 4,

and the value of β follows. �
4.3. Periodic generalized Neuwirth groups

Let n ≥ 1 and let α, β be coprime integers with α ≥ 2β, and let l ≥ 1. The periodic 
generalized Neuwirth groups are the groups
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Γn((α, β); �) = Gn((xβ
0x

β
1 . . . xβ

n−1)�x
−α
n−1)

and they are fundamental groups of closed, connected, orientable, 3-manifolds periodic 
generalized Neuwirth manifolds Mn((α, β); �) [46, Section 3]. They form a subclass of 
the generalized Neuwirth groups Γ((α1, β1), . . . , (αn, βn); �) defined in [46]. The groups 
Γn((k+1, 1); 1) are the cyclically presented groups Gn(x0x1 . . . xn−2x

−k
n−1) considered in 

[47] and the groups F(n− 1, n− 1, k, n) of [22]; in the case k = 1 they coincide with the 
Neuwirth groups considered in [33] and the generalized Fibonacci groups H(n− 1, n, 1)
of [5]. The first integral homology of Mn((α, β); �) is stated without proof in [46, Lemma 
3.2]. In Corollary 4.6 we prove this fact as an immediate corollary of the main result of 
this section, Theorem 4.5.

The relation matrix for Γn((α, β); �) is of the form f(Cg)T where g(t) = tn − 1 and

f(t) = b
s−1 ∑
i=0 

ti + a
n−1∑
i=s 

ti = a
tn − 1
t− 1 

+ (b− a) t
s − 1
t− 1 

.

For the above choices of f(t) and g(t), these matrices f(Cg) have received some attention 
in the literature. For example, [12, Exercise 27, p. 81] asks to obtain their determinant. 
In the case a = 0, b = 1, the Smith form of f(Cg) was obtained in [42, p. 184] and 
[50, Section 3], and was shown to be non-singular if and only if gcd(n, s) = 1, in [4, 
Theorem 1]. In Theorem 4.5 we calculate the Smith form of f(Cg) when gcd(n, s) = 1. 
Lemma 4.4, which may be of independent interest, calculates the inverse of f(Cg) when 
a = 0, b = 1. Hence, the inverse in the general case may be readily computed (as in the 
proof of Theorem 4.5).

Lemma 4.4. Let n > s > 1 where gcd(n, s) = 1 and let L = f(Cg) where f(t) =
∑s−1

i=0 ti

and g(t) = tn−1. Moreover, let v satisfy 0 ≤ v < s and vn ≡ 1 mod s, and let 0 ≤ r < s

satisfy r ≡ n mod s. Then L−1 = q(Cg), with q(t) =
∑n−1

i=0 qit
i and where, for 0 ≤ i < s, 

the values of qi are as follows:

qrj mod s =
{
v/s− 1 1 ≤ j ≤ v,

v/s v + 1 ≤ j ≤ s,

and, for s ≤ i < n, qi = qi mod s.

Proof. Since L is a circulant matrix, so is its inverse. That is, L−1 = q(Cg), where q(t) =∑n−1
i=0 qit

i for some q0, . . . , qn−1, which has first column L−1e1 = [q0, . . . , qn−1 ]T =: q, 
say. Then Lq = e1, which corresponds to n equations in the n variables q0, . . . , qn−1. The 
first such equation is

q0 + qn−1 + · · · + qn−(s−1) = 1.
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In addition, for each 2 ≤ j ≤ n, subtracting the j-th equation from the (j−1)-th equation 
yields the (n− 1) equations

−q1 + qn−s+1 = 1,

−qj + qn−s+j = 0 (2 ≤ j < s), (4.5)

−qj + qj−s = 0 (s ≤ j < n). (4.6)

Substituting j = n − s, . . . , n − 1 into (4.5) and (4.6) implies that for 0 ≤ i, j < n, 
if i ≡ j mod s then qi = qj . Thus we may eliminate qs, . . . , qn−1 to leave s variables 
q0, . . . , qs−1 and s equations:

q0 − qr +
s−1 ∑
i=0 

qi = 1, (4.7)

−q1 + qr+1 = 1, (4.8)

qj = qr+j (2 ≤ j ≤ s− 1). (4.9)

For each 0 ≤ j < s define now pj := qrj mod s. Then, since vr ≡ 1 mod s, for each 
0 ≤ j < s we have qj = pvj mod s. In particular q0 = p0, q1 = pv, qr = p1, qr+1 = pv+1. 
For each 0 ≤ j < s, define t = vj mod s, 0 ≤ t < s. Then equations (4.7), (4.8), (4.9)
become

p0 − p1 +
s−1 ∑
i=0 

pi = 1, (4.10)

−pv + pv+1 = 1, (4.11)

pt = pt+1 (0 ≤ t ≤ s− 1, t �= 0, v).

Therefore p1 = p2 = · · · = pv, pv+1 = pv+2 = · · · = ps−1 = p0 and so equations 
(4.10), (4.11) become

(v − 1)p1 + (s− v + 1)p0 = 1,

−p1 + p0 = 1.

Solving gives p0 = v/s, p1 = v/s− 1. Therefore qrj mod s = pj = v/s− 1 if 1 ≤ j ≤ v and 
qrj mod s = pj = v/s if v + 1 ≤ j ≤ s. �
Theorem 4.5. Let n > s ≥ 1, g(t) = tn − 1,

f(t) = b

s−1 ∑
i=0 

ti + a

n−1∑
i=s 

ti,
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where a, b ∈ Z, and gcd(n, s) = 1. Define k := |a(n−s)+sb|
gcd(a,b) . Then the invariant factors of 

f(Cg) are

gcd(a, b), |a− b|, . . . , |a− b|︸ ︷︷ ︸
n−2 times

, k · |a− b|.

Proof. If a = b then f(Cg) = aeeT , and the statement is readily obtained, so assume 
a �= b. If gcd(a, b) > 1 then, letting h(t) = f(t) 

gcd(a,b) , we have f(Cg) = gcd(a, b)h(Cg), and 
thus the invariant factors of f(Cg) are equal to those of h(Cg) times gcd(a, b). Thus we 
may assume gcd(a, b) = 1.

Therefore k = f(1) = a(n − s) + bs and by Theorem 3.3, γ1(f(Cg)) = 1. Now, γ2 is 

the GCD of all minors of order 2. The 2×2 submatrices of f(Cg) are of the form 
[
x y
z t

]
where x, y, z, t ∈ {a, b} and so have determinant 0,±(a2 − b2),±a(a − b),±b(a − b) (all 
of which do arise), and so γ2 = |a− b|(0, a, b + a) = |a− b|.

We have

γn = Res(f, g) = f(1) · Res
(

(b− a)
s−1 ∑
i=0 

ti + a

n−1∑
i=0 

ti,

n−1∑
i=0 

ti

)

= k · Res
(

(b− a)
s−1 ∑
i=0 

ti,

n−1∑
i=0 

ti

)
= k · |a− b|n−1.

We now consider γn−1. Assume first k = 0. Then n− s divides b and

1 = gcd(a, b) = gcd
(
−s

b 
n− s

, b

)
= |b| 

n− s
gcd(s, n− s)

and so |b| = n− s, |a| = s and |a− b| = n. Then f(1) = k = 0 so t− 1 divides f(t), g(t)
and Theorem 3.1 implies

γn−1 = Res
(

f(t) 
t− 1 ,

g(t) 
t− 1

)
= |a− b|n−1

n 
Res

(
ts − 1
t− 1 

,
tn − 1
t− 1 

)
= |a− b|n−1

n 
= |a−b|n−2.

If instead k �= 0, then f(Cg) is invertible over Q. Let L = θ(Cg), where θ(t) =
∑s−1

i=0 ti. 
Then f(Cg) = (b− a)L + aeeT . Using the Sherman-Morrison formula [43], we have

f(Cg)−1 = L−1

b− a
− aL−1eeTL−1

(b− a)(b− a + aeTL−1e)

= L−1

b− a
− aeeT

ks(b− a) .

Therefore
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adj(f(Cg) = det(f(Cg))f(Cg)−1

= (b− a)n−2
(
kL−1 − a

s 
eeT

)
.

If s = 1, then L = L−1 = I; otherwise, L−1 is given by Lemma 4.4. In either case, 
(b − a)2−n adj(f(Cg) has precisely two distinct elements. If s = 1 then these elements 
are k − a and −a (which are coprime). If s �= 1 then they are equal to N = (kv − a)/s
and N − k, where v is as defined in Lemma 4.4. Now

gcd(Ns, k) = gcd(kv − a, k) = gcd(a, k) = gcd(a, a(n− s), b) = gcd(a, b) = 1

so gcd(N,N−k) = gcd(N, k) = 1. Thus the GCD of the entries of adj(f(Cg) is (b−a)n−2

and so again γn−1 = |a− b|n−2.
Now let si denote the i-th invariant factor of f(Cg). Then: s1 = γ1 = 1; sn =

γn/γn−1 = k|a − b|; γ2 = |a − b| divides s2, and hence for all 2 ≤ i ≤ n, we have 
si = μi|a − b| for some positive integers μi. But s1 . . . sn−1 = γn−1 = |a − b|n−2 so 
μ2 = · · · = μn−1 = 1, or equivalently s2 = · · · = sn−1 = |a− b|, as required. �
Corollary 4.6 ([46, Lemma 3.2]). Let n ≥ 2, l, α, β ≥ 1 where (α, β) = 1. Then the first 
integral homology of the manifold Mn((α, β); �) is isomorphic to Zn−2

α ⊕ Zα|nlβ−α|.

4.4. Generalized Fibonacci groups

The generalized Fibonacci groups H(r, n, s) (r, s, n ≥ 1), introduced in [5], are the 
cyclically presented groups Gn(w) where

w = x0x1 . . . xr−1(xrxr+1 . . . xr+s−1)−1.

They generalize the Fibonacci groups F(n) = H(2, n, 1) ∼ = H(1, n, 2). Without loss of 
generality we may assume s ≥ r. The relation matrix of H(r, n, s) is the circulant matrix 
fr,s(Cg)T where g(t) = tn − 1 and

fr,s(t) = 1 + t + · · · + tr−1 − tr(1 + t + · · · + ts−1).

Let d = gcd(r, n, s), R = r/d,N = n/d, S = s/d. The groups H(r, n, s) with triv-
ial abelianization were classified in [8, Theorem A]. In [40, Corollary 3.2], Corol-
lary 3.2 was used to show that if s > r then H(r, n, s)ab ∼ = A0 ⊕ Zd−1 where 
|A0| = |H(R,N, S)ab|d/|S − R|d−1 and that if s = r then H(r, n, s)ab ∼ = A0 ⊕ Zd where 
|A0| = Nd−1. In Theorem 4.7, for the case S − R = 1, we express H(r, n, s)ab in terms 
of H(R,N, S)ab, and in Theorem 4.8 we calculate the structure of H(r, n, r)ab.

Theorem 4.7. Let n ≥ 2, s > r ≥ 1, d = gcd(r, n, s), R = r/d,N = n/d, S = s/d, and 
suppose S −R = 1. Then
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H(r, n, s)ab ∼ = 
(
H(R,N, S)ab

)d ⊕ Zd−1.

Proof. As described above, the relation matrix of H(r, n, s) is f(Cg)T , where f(t) =
fr,s(t) and g(t) = tn − 1. Let z(t) = gcd(f(t), g(t)), F (t) = f(t)/z(t), and G(t) =
g(t)/z(t). Then if h(t) = td, k(n)(t) =

∑n−1
i=0 ti we have g(t) = (t − 1)k(n)(t) and (as 

shown in [40, Proof of Theorem 3.1(a)], [51, Proof of Theorem C]), z(t) =
∑d−1

i=0 ti, 
F (t) = (fR,S ◦ h)(t), G(t) = (t− 1)(k(N) ◦ h)(t).

By Theorem 3.1 the invariant factors of f(Cg) are the invariant factors of F (CG)
together with 0 (d− 1 times). Now F (1) = R− S = −1 so

gcd
(
Res(F (t), t− 1),Res(F (t), k(N)(t) ◦ h(t))

)
= 1

and by Theorem 3.6 F (CG) ∼ F (Ck(N)◦h) ⊕ F (Ct−1) = F (Ck(N)◦h) ⊕ 1. Theorem 3.13
implies

F (Ck(N)◦h) = (fR,S ◦ h)(Ck(N)◦h) ∼ Ideg(h) ⊗ fR,S(Ck(N))

= fR,S(Ck(N)) ⊕ · · · ⊕ fR,S(Ck(N))︸ ︷︷ ︸
d times

.

On the other hand, by Corollary 3.7, fR,S(CtN−1) ∼ 1 ⊕ fR,S(Ck(N)). Since 
fR,S(CtN−1)T is the relation matrix of H(R,N, S), the result follows. �
Theorem 4.8. Let n ≥ 2, r ≥ 1 and let d = gcd(n, r), N = n/d. Then H(r, n, r)ab ∼ = 
Zd−1

N ⊕ Zd.

Proof. The relation matrix of H(r, n, r) is f(Cg)T where f(t) = fr,r(t) and g(t) = tn−1. 
Let z(t) = gcd(f(t), g(t)), F (t) = f(t)/z(t), and G(t) = g(t)/z(t). Then by [40, Proof of 
Theorem 3.1(b)] we have z(t) = td − 1, G(t) =

∑N−1
i=0 tid, and F (t) = F0(t)2F1(t) where 

F0(t) =
∑R−1

i=0 tid, F1(t) =
∑d−1

i=0 ti, and, moreover, Res(F0, G) = 1. By Corollary 3.5
and Theorem 3.11 F (CG) ∼ F1(CG) ∼ In−2d+1 ⊕ G(CF1). Using the Cayley-Hamilton 
theorem, we have Cd

F1
= Id−1 so G(CF1) = NId−1. Thus f(Cg) ∼ In−2d+1⊕NId−1⊕0d×d

and so H(r, n, r)ab ∼ = Zd−1
N ⊕ Zd, as required. �

4.5. Cyclically presented groups with length three positive relators

The cyclically presented groups with length three positive relators are the groups 
Gn(x0xkxl) (0 ≤ k, l < n), and have been studied in [7,16,30,9]. In [30, Theorem 9.1], 
the authors identified various pairs of groups Gn(x0xk1xl1), Gn(x0xk2xl2) that may have 
isomorphic abelianizations for all n, and they confirmed computationally that this is the 
case for n ≤ 1000. In Theorem 4.9 we prove that, for the first such pair, the abelianiza-
tions are indeed isomorphic.

Theorem 4.9. If 16|n then Gn(x0x1xn/2)ab ∼ = Gn(x0x1xn/4)ab ∼ = Z2n/2−1.
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Proof. The relation matrices of Gn(x0x1xn/2), Gn(x0x1xn/4) are f1(Cg)T , f2(Cg)T
where g(t) = tn − 1 and f1(t) = 1 + t + tn/2, f2(t) = 1 + t + tn/4, respectively. 
Thus it suffices to show fi(Cg) ∼ In−1 ⊕ (2n/2 − 1) for i = 1, 2. We shall write 
g(t) = g1(t)g2(t) = h1(t)h2(t)g2(t) where g1(t) = tn/2 − 1, g2(t) = tn/2 + 1, 
h1(t) = tn/4 − 1, h2(t) = tn/4 + 1.

Consider first f1. The resultant Res(f1, g2) = 1, so f1(Cg2) ∼ In/2, and hence by 
Corollary 3.7 we have f1(Cg) ∼ In/2 ⊕ f1(Cg1). Moreover, f1(Cg1) = φ(Cg1) where 
φ(t) = 2 + t, so by Theorem 3.11

f1(Cg1) ∼ In/2−1 ⊕ (Cn/2
φ − 1) = In/2−1 ⊕ (2n/2 − 1).

Now consider f2. The resultants Res(f2, h1) = 2n/4 − 1, Res(f2, h2) = 1, Res(f2, g2) =
Res(f2, t

n/4 − i) Res(f2, t
n/4 + i) = 2n/4 +1. These are pairwise coprime, so Theorem 3.6

implies

f2(Cg) ∼ f2(Ch1) ⊕ f2(Ch2) ⊕ f2(Cg2).

Moreover, f2(Ch2) ∼ In/4. We have f2(Ch1) = φ(Ch1) and Cφ = −2, so Theorem 3.11
implies

φ(Ch1) ∼ In/4−1 ⊕ (2n/4 − 1),

and also that f2(Cg2) ∼ In/4 ⊕ g2(Cf ). In addition,

g2(Cf2) = C
n/2
f2

+ In/4 = (Cn/4
f2

)2 + In/4 = (−In/4 − Cf2)2 + In/4 = θ(Cf2)

where θ(t) = 2 + 2t + t2. Theorem 3.11 then implies θ(Cf2) ∼ In/4−2 ⊕ f2(Cθ).
Observe that C4

θ = −4I2. Hence,

f2(Cθ) = (C4
θ )n/16 + Cθ + I = Cθ + (1 + 2n/8)I

and so, by Theorem 3.3, γ1(f2(Cθ)) = cont(t + (1 + 2n/8)) = 1. On the other hand, 
γ2(f2(Cθ)) = Res(f2, θ) = Res(f2, g2) = 2n/4 + 1. Thus

f2(Cg) ∼ In/4 ⊕ In/4−1 ⊕ (2n/4 − 1) ⊕ In/2−1 ⊕ (2n/4 + 1) ∼ In−1 ⊕ (2n/2 − 1). �
The cyclically presented groups Gn(x0x1xn/2−1) (n even), were identified in [16,30] 

as a particularly challenging subfamily of the family of cyclically presented groups 
Gn(x0xkx�) and were proved in [9] to be hyperbolic if and only if n = 2, 4, 6, 12, 18. 
The order and torsion-free rank of their abelianization was calculated in [30, Theorems 
4.1, 4.2], and in the finite abelianization case (that is, in the case gcd(n, 6) = 2), the 
minimum number of generators of the abelianization was conjectured in [30, Conjecture 
4.4]. In Theorem 4.10 we calculate the structure of the abelianization when finite, proving 
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the conjecture in Corollary 4.12. Theorem 4.10 involves the Lucas numbers Lj defined 
by L0 = 2, L1 = 1, Lj = Lj−1 +Lj−2 (j ≥ 2), as well as the classical Fibonacci numbers 
Fj defined in (4.2). In the proof we make frequent use of the identity (see [35, p. 200]):

Ln = |Res(t2 + t− 1, tn − 1)| + 1 + (−1)n.

Theorem 4.10. Suppose gcd(n, 6) = 2, and let G = Gn(x0x1xn/2−1). Then Gab ∼ = Z3Ln/2 , 
ZFn/4 ⊕Z15Fn/4 , Z3 ⊕ZLn/4 ⊕ZLn/4 , ZLn/4 ⊕Z3Ln/4 as gcd(n, 16) = 2, 4, 8, 16, respec-
tively.

For the proof of Theorem 4.10 we need the following lemma:

Lemma 4.11. Suppose gcd(n, 6) = 2 and gcd(n, 16) �= 8. Then

(a) gcd(3, Ln/2 + 1 + (−1)n/2) = 1; and
(b) gcd(Fn/2, 1 + (−1)n/2Fn/2−1) = 1, Fn/4, Ln/4 if gcd(n, 16) = 2, 4, 16, respectively.

Proof. (a) Standard results on the Pisano periods of Fibonacci numbers imply that 3
divides (Ln/2 +1+(−1)n/2) if and only if n/2 ≡ 4 mod 8, or equivalently, gcd(n, 16) = 8, 
contrary to hypothesis.

(b) We calculate d = gcd(Fm, 1 + εFm−1), where ε = (−1)m and m = n/2. Similarly to 
(4.4), an inductive argument shows that for all odd j, 1 ≤ j ≤ m/2,

d = gcd(Fm−j + εFj , Fm−(j+1) − εFj+1). (4.12)

Suppose gcd(n, 16) = 2. Then m is odd and ε = −1. If j = (m − 1)/2 is odd then 
substituting this into (4.12) gives

d = gcd(F(m+1)/2 − F(m−1)/2, F(m−1)/2 + F(m+1)/2 = gcd(F(m−3)/2, F(m+3)/2).

If instead (m− 1)/2 is even then substituting j = (m+ 1)/2 into (4.12) and simplifying 
yields the same formula:

d = gcd(F(m−1)/2 − F(m+1)/2, F(m−3)/2 + F(m+3)/2) = gcd(F(m−3)/2, F(m+3)/2).

Observe now that, since gcd(n, 6) = 2 implies gcd(m, 3) = 1, the subscripts (m − 3)/2
and (m+3)/2, above, are coprime. Using the (standard) property [49, Theorem II, page 
83] gcd(Fa, Fb) = Fgcd(a,b), we conclude that d = 1.

Now suppose gcd(n, 16) = 4. Then m is even, m/2 is odd, and ε = +1. Substituting 
j = m/2 into (4.12) gives

d = gcd(Fm/2 + Fm/2, Fm/2−1 − Fm/2+1) = gcd(2Fm/2, Fm/2) = Fm/2.
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Finally, suppose gcd(n, 16) = 16. Then m is even, m/2 is even, and ε = +1. Substituting 
j = m/2 − 1 into (4.12) gives

d = gcd(Fm/2+1 + Fm/2−1, Fm/2 − Fm/2) = gcd(Fm/2+1 + Fm/2−1, 0) = Ln/4. �
Proof of Theorem 4.10. Suppose first gcd(n, 16) �= 8. The relation matrix of G is f(Cg)T , 
where f(t) = 1 + t + tn/2−1, g(t) = tn − 1 = g1(t)g2(t), where g1(t) = tn/2 − 1, g2(t) =
tn/2 + 1. Now

Res(f, g1) = Res(t(1 + t + tn/2−1), tn/2 − 1) = Res(t + t2 + 1, tn/2 − 1) = 3

(since by hypothesis gcd(n/2, 3) = 1) so the invariant factors of f(Cg1) are 1 (n/2 − 1
times) and 3 (1 time). Observe further that

Res(f, g2) = Res(t2 + t− 1, tn/2 + 1) = Ln/2 + 1 + (−1)n/2.

By Lemma 4.11 we have gcd(3, Ln/2 + 1 + (−1)n/2) = 1 so, by Theorem 3.6, the 
Smith form of f(Cg) is equal to the product of the Smith forms of f(Cg1) and 
f(Cg2). Thus it suffices to show that the invariant factors of f(Cg2) are [s1, s2] =
[1, Ln/2], [Fn/4, 5Fn/4], [Ln/4, Ln/4], as gcd(n, 16) = 2, 4, 16, respectively.

Let h(t) = t2+t−1. Then Res(f, g2) = Res(h, g2). Moreover, h(t) ≡ tf(t) mod g2(t) so 
Cg2f(Cg2) = h(Cg2). Also, g2(0) = 1, so Cg2 is unimodular, and hence f(Cg2) ∼ h(Cg2). 
Thus the Smith forms of f(Cg2) and of h(Cg2) are equal so, in particular, γ2(g2(Ch)) =
Ln/2 + 1 + (−1)n/2.

Now Ch =
[
−1 1
1 0

]
and an inductive argument shows that for any j ≥ 1

Cj
h = (−1)j

[
Fj+1 −Fj

−Fj Fj−1

]
.

Therefore,

g2(Ch) = C
n/2
h + I =

[
1 + (−1)n/2Fn/2+1 (−1)n/2+1Fn/2

(−1)n/2+1Fn/2 1 + (−1)n/2Fn/2−1

]

and hence γ1(g2(Ch)) = d, where

d = gcd(1 + (−1)n/2Fn/2+1, Fn/2, 1 + (−1)n/2Fn/2−1)

= gcd(1 + (−1)n/2(Fn/2 + Fn/2−1), Fn/2, 1 + (−1)n/2Fn/2−1)

= gcd(Fn/2, 1 + (−1)n/2Fn/2−1).

Then, by Lemma 4.11, the invariant factors s1 = γ1, s2 = γ2/γ1 are given by [s1, s2] =
[1, Ln/2], [Fn/4, (Ln/2 + 2)/Fn/4], [Ln/4, (Ln/2 + 2)/Ln/4], as gcd(n, 16) = 2, 4, 16, re-
spectively. If gcd(n, 16) = 4 then Ln/2 + 2 = 5F 2

n/4 [49, Equation (23)], and if 
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gcd(n, 16) = 16 then Ln/2 + 2 = L2
n/4 [49, Equation (17a)]. Therefore [s1, s2] =

[1, Ln/2], [Fn/4, 5Fn/4], [Ln/4, Ln/4], as gcd(n, 16) = 2, 4, 16, respectively, as required.
Now suppose gcd(n, 16) = 8. Then n ≡ 8 or 40 mod 48, so n/4 ≡ 2 or 6 mod 8

and hence 3 | Ln/4. Observe that, working mod f(t), we have g(t) = (tn/2)2 − 1 ≡
(−(t + t2))2 − 1 = h(t), where h(t) = t4 + 2t3 + t2 − 1 = (t2 + t + 1)(t2 + t − 1). Now, 
applying Theorem 3.11 twice we have

f(Cg) ∼ In/2+1 ⊕ g(Cf ) = In/2+1 ⊕ h(Cf ) ∼ In−4 ⊕ f(Ch)

so it suffices to obtain the Smith form of f(Ch). By [39, Lemma 5.1], this is equivalent 
to computing the Smith form of f(M) where

M =
[
A 0
E B

]
where A =

[
−1 1
1 0

]
, B =

[
0 −1
1 −1

]
, E =

[
0 1
0 0

]

and hence

f(M) =
[
f(A) 0
X f(B)

]

where X satisfies

XA−BX = Ef(A) − f(B)E. (4.13)

For any m ≥ 1, Am = (−1)m
[
Fm+1 −Fm

−Fm Fm−1

]
, and hence (applying the previous formula 

for m = n/2−1 which is odd) we get f(A) =
[

−Fn/2 1 + Fn/2−1
1 + Fn/2−1 1 − Fn/2−2

]
. We claim that 

f(A) = Ln/4U , where

U =
[
−Fn/4 Fn/4−1
Fn/4−1 −Fn/4−2

]
is unimodular with inverse U−1 =

[
Fn/4−2 Fn/4−1
Fn/4−1 Fn/4

]
.

This claim is equivalent to the following Fibonacci and Lucas identities: Fn/2 = Ln/4Fn/4; 
1 + Fn/2−1 = Ln/4Fn/4−1; Fn/2−2 − 1 = Ln/4Fn/4−2; Fn/4Fn/4−2 − F 2

n/4−1 = ε, where 

ε = ±1 (in fact, ε = (−1)n/4−1). These can be easily proved using Binet’s formula 
Fm = (φm− (−φ)−m)/

√
5 and the formula Lm = φm +(−φ)−m where φ = (1+

√
5)/2 is 

the golden ratio. (Indeed, the first statement is [49, Equation (13)] and the last statement 
is Cassini’s identity [49, Equation (29)].) Defining Y = XU−1 and noting that UA = AU , 
we thus get

f(M) ∼
[
γI 0
Y f(B)

]
where, by (4.13), Y A−BY = Eγ − f(B)EU−1.

Taking into account that
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[(AT ⊗ I) − (I ⊗B)]−1 = 1
2

⎡
⎢⎣

0 −1 1 0
1 −1 0 1
1 0 1 −1
0 1 1 0

⎤
⎥⎦ ,

we can explicitly (and uniquely) solve for Y .
We deal with the cases n ≡ 8, 40 mod 48 separately. Suppose first n ≡ 8 mod 48. Since 

B3 = I and n/2 − 1 ≡ 0 mod 3 we have f(B) = 2I + B, which implies

f(B)EU−1 =
[
2Fn/4−1 2Fn/4
Fn/4−1 Fn/4

]
.

We then obtain

Y = 1
2

[
3Fn/4−1 − Fn/4 0
−Fn/4 − Fn/4−1 Fn/4−1 − Fn/4

]
.

Now [
0 1
1 1

]
︸ ︷︷ ︸

:=P

f(B)
[
0 1
1 −1

]
= 1 ⊕ 3︸ ︷︷ ︸

:=S

,

so

f(M) ∼
[
γI 0
PY S

]
.

Moreover, standard results on the Pisano period of Fibonacci numbers imply that

eT2 PY = −1
2 [2Fn/4−2 Fn/4−2 ] ≡ 0 mod 3,

since n/4 − 2 ≡ 0 mod 12, and thus

f(M) ∼
[
γI 0
0 S

]
∼ 1 ⊕ 3 ⊕ γ ⊕ γ.

Now suppose n ≡ 40 mod 48. In this case n/2 − 1 ≡ 1 mod 3 and so f(B) = I + 2B, 
implying

f(B)EU−1 =
[
Fn/4−1 Fn/4
2Fn/4−1 2Fn/4

]
.

Thus

Y = 1
2

[
4Fn/4−1 2Fn/4 + Fn/4−1

Fn/4−1 − 2Fn/4 0

]
.
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Now [
0 1
−1 2

]
︸ ︷︷ ︸

:=Q 

f(B)
[

0 1
−1 2

]
= 1 ⊕ 3︸ ︷︷ ︸

:=S

,

so

f(M) ∼
[
γI 0
QY S

]
.

Moreover, again by looking at Pisano periods,

eT2 QY = −1
2 [2Fn/4+2 Fn/4+2 ] ≡ 0 mod 3,

since n/4 + 2 ≡ 0 mod 12, and again we have f(M) ∼ 1 ⊕ 3 ⊕ γ ⊕ γ. �
Corollary 4.12 ([30, Conjecture 4.4]). Suppose gcd(n, 6) =2, and let G =Gn(x0x1xn/2−1). 
Then

d(Gab) =

⎧⎪⎪⎨
⎪⎪⎩

1 if gcd(n, 16) = 2,
2 if gcd(n, 16) = 4 or 16,
3 if gcd(n, 16) = 8.

4.6. Cavicchioli-Repovš-Spaggiari cyclically presented groups

Cavicchioli, Repovš, Spaggiari [6] introduced the 8-parameter family cyclically pre-
sented groups

Gn(h, k;m, q; r, s; �) = Gn((x0xm . . . xm(r−1))l(xhxh+q . . . xh+(s−1)q)−k)

where n, h, k,m, q, r, s ≥ 1. These form a large class of cyclically presented groups that 
contain many other well-studied families of cyclically presented groups that arise as 
fundamental groups of closed, connected, orientable 3-manifolds [6]. The relation matrix 
of Gn(h, k;m, q; r, s; �) is the circulant matrix f(Cg)T where

f(t) = l(trm − 1)/(tm − 1) − kth(tsq − 1)/(tq − 1),

which is of the form l(trm − 1)/(tm − 1) − kh(t) for some h(t) ∈ Z[t]. In Theorem 4.13
we apply Theorem 3.15 to matrices f(Cg) where f(t) is of this form and g(t) = tn − 1. 
In Corollary 4.14 we obtain a lower bound for d(Gab), the minimum number of gener-
ators of the abelianization of G = Gn(h, k;m, q; r, s; �), and record group theoretic and 
topological consequences.
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Theorem 4.13. Let f(t) = l(trm−1)/(tm−1)−kh(t), g(t) = tn−1, where r, n,m ≥ 1, k ∈
Z with |k| �= 1, h(t) ∈ Z[t]. Then f(Cg) has at least gcd(n,mr) − gcd(n,m) non-unit 
invariant factors.

Proof. Let p be a prime dividing k; at least one such p exists because |k| �= 1. In the 
notation of Theorem 3.15 we have fp(t) = (l mod p) t

rm−1
tm−1 , gp(t) = tn − 1 ∈ Fp[t]. If 

p divides l, then fp(Cgp) = 0 and, by Theorem 3.15, every invariant factor of f(Cg)
is a non-unit, implying the statement since n > gcd(n,mr) − gcd(n,m). Assume now 
l �≡ 0 mod p, and denote

wp(t) = gcd 
Fp[t]

(fp(t), gp(t)) ∈ Fp[t], z(t) = gcd
Z[t] 

(
tmr − 1
tm − 1 

, g(t)
)

∈ Z[t].

Clearly, zp(t) := [z(t) mod p] ∈ Fp[t] divides wp(t), and hence2 degwp(t) ≥ deg zp(t) =
deg z(t). In turn, by standard results on cyclotomic polynomials, deg z(t) =

∑
ϕ(d)

where ϕ is the Euler totient function and the sum is taken over all integers d ≥ 1 that 
divide n and divide mr, but do not divide m. Hence, by Corollary 3.17, the number of 
non-unit invariant factors of f(Cg) is bounded below by

degwp(t) ≥ deg z(t) =
∑

d| gcd(n,mr)

ϕ(d) −
∑

d| gcd(n,m)

ϕ(d) = gcd(n,mr) − gcd(n,m). �

Corollary 4.14. Let n, h, k,m, q, r, s ≥ 1, and let G = Gn(h, k;m, q; r, s; �). Then 
d(Gab) ≥ gcd(n,mr) − gcd(n,m). Hence if G is finite then gcd(n,mr) − gcd(n,m) ≤ 3, 
and if G is solvable then gcd(n,mr) − gcd(n,m) ≤ 4. Moreover, if G is the funda-
mental group of a closed, connected, orientable 3-manifold M then the Heegaard genus 
g(M) ≥ gcd(n,mr) − gcd(n,m).

Remark 4.15. The lower bound for d(Gab) in Corollary 4.14 is the best possible. To see 
this consider, for example, the Sieradski groups S(2, n) = Gn(1, 1; 2, 2; 2, 1; 1) [44]. If 
12|n then S(2, n)ab ∼ = Z2, so d(S(2, n)ab) = 2, which is equal to the lower bound of 
Corollary 4.14.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.
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