
Ecology and Evolution. 2024;14:e70135.	 ﻿	   | 1 of 13
https://doi.org/10.1002/ece3.70135

www.ecolevol.org

1  |  INTRODUC TION

In the debate regarding global biodiversity decline, urban areas can 
both be a filter and enhancer of biodiversity, with different fac-
tors and context determining the outcomes (Cardinale et al., 2018; 
Lepczyk et  al.,  2023; Uchida et  al.,  2021). Fragments of artificial 
spaces such as parks, gardens and other green areas may provide 
a diverse plant composition and fulfil ecosystem functions needed 

to maintain urban wildlife (Swan et  al.,  2021; Townsend,  2008), 
but they also host ornamental or non-native plants which may 
fail to support native wildlife (but see Harrison & Winfree,  2015; 
Padovani et al., 2020). Urban habitats place stronger environmen-
tal constraints on plant and animal communities than rural habitats 
(e.g. air pollution, noise and artificial light; Isaksson, 2015) and may 
disrupt ecological interactions between plants and pollinators via 
habitat fragmentation (Hennig & Ghazoul, 2011). Impacts on species 
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Abstract
Urbanisation has reduced the abundance and diversity of many taxonomic groups, 
and the effects may be more pronounced on islands, which have a smaller regional 
species pool to compensate. Green spaces within urban environments may help to 
safeguard wildlife assemblages, and the associated habitat heterogeneity can even 
increase species diversity. Here, total abundance and species diversity of butterflies, 
birds, and vegetation at nine rural and nine urban locations were quantified on Lipsi 
Island, Greece. Sites were assessed using Pollard walks for butterflies, point-count 
surveys for birds, and quadrats for vegetation. There was no significant difference in 
the abundance or species diversity of butterflies or vegetation among rural and urban 
locations, which could pertain to the low building density within urbanised areas and 
the minimal extent of urbanisation on the island. However, urban areas hosted a sig-
nificantly greater abundance, richness, and diversity of birds compared to rural sites. 
The community composition of butterflies, birds, and vegetation also differed signifi-
cantly between urban and rural locations, highlighting the impact of urbanisation on 
species across a broad range of trophic groups. This study contributes to ecological 
knowledge on the impacts of urbanisation across multiple trophic levels in island eco-
systems, with comparisons across a gradient of island size and urbanisation intensity 
needed in future research.
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richness in urban areas are dependent on the specific taxonomic 
group, the spatial scale of analysis and the intensity of urbanisation 
(Fournier et al., 2020; McKinney, 2008; Theodorou et al., 2020). A 
greater species richness in urban areas may be due to the increased 
number of both native and non-native species, due to the larger spe-
cies pools that urban areas maintain (Dolan et al., 2011), particularly 
when there are sufficient corridors of green space to allow colonisa-
tion from the regional species pool (Rega-Brodsky et al., 2022). This 
could also be underpinned by the mosaic of habitat patches in urban 
ecosystems, and the associated heterogeneity of plant communi-
ties that could support biodiversity at higher trophic levels (Swan 
et  al.,  2021). Effects of urbanisation on top-down control (e.g. al-
tering predation by birds) or bottom-up control (e.g. altering vege-
tation structure) could also lead to indirect effects on abundance, 
species diversity or community composition throughout the food 
web (Theodorou, 2022).

Urban areas can be characterised as a spatial assemblage of 
people whose lives are structured around non-agricultural activi-
ties, with rural areas defined as any place that is not classified as 
urban (Weeks, 2010). The European Commission's classification sys-
tem categorises areas along an urban–rural continuum, combining 
population size and density criteria to define cities, towns, semi-
dense regions and rural areas (Eurostat, 2019). Rapid urban devel-
opment and expansion in recent years have altered many wildlife 
assemblages, especially invertebrates (Van Swaay & Warren, 1999). 
Perhaps the most well-studied group is butterflies, as they are pop-
ular, easy to identify, and have been used as model insects for many 
years (Warren et al., 2021). But butterflies are also in decline due to 
severe habitat loss and climate change (Zografou et al., 2009). More 
generally, butterflies are important indicators of ecosystem health 
due to their susceptibility and sensitivity to changes in the environ-
ment (Ghazanfar et al., 2016). Butterflies have a high reproductive 
rate and occupy low trophic levels; thus, they respond quickly to 
environmental stressors and could be utilised as a proxy for general 
reductions in wildlife (Ghazanfar et al., 2016). Here, we focus on but-
terflies as indicator taxa, whilst considering the impact of urbanisa-
tion on their potential predators and resources.

Urbanisation has been shown to degrade bird communities 
through species decline and functional homogenisation (Tzortzakaki 
et  al.,  2018). The main factors affecting bird species assemblages 
are green space availability, noise pollution, interspecific com-
petition and habitat heterogeneity (Chiron et  al.,  2024; Martin & 
Bonier,  2018; Rodrigues et  al., 2018). Collisions with buildings in 
urban areas also heavily affects bird populations, including species 
of conservation concern (Hager et  al.,  2017). Vincze et  al.  (2017) 
found that in urbanised areas there was an increase in predation of 
bird nests by urban exploiters such as crows (Corvus spp.), magpies 
(Pica pica L., 1758) and cats (Felis silvestris catus L., 1758). However, it 
is also suggested that prey populations of birds thrive in urban areas 
as these habitats are low in abundance of larger predators (Vincze 
et al., 2017). Cities and towns have variability in terms of the activity 
or usage of areas, thus bird species distribution in urban areas is re-
lated to the degree of urbanisation and habitat features such as tree 

and shrub cover and the density of buildings (Rodrigues et al., 2018). 
Moreover, human landscape characteristics favour species that can 
exploit novel resources and adapt to new habitats, such as hooded 
crows (Corvus cornix L., 1758), house sparrows (Passer domesticus L., 
1758) and pigeons (Columbidae spp.; Kark et al., 2007).

The high abundance of adaptive birds in urban environments 
could thus have negative impacts on invertebrates, specifically but-
terfly populations compared to rural habitats. For example, birds 
often achieve higher population densities in urban environments due 
to the lack of natural predators and abundance of food, which could 
lead to greater top-down control on butterflies (Shochat et al., 2010). 
However, butterflies have developed various defensive traits against 
birds, such as chemical cues and aposematic or cryptic colouration, 
that is, bright colours in conspicuous patterns on the wings (Paladini 
et al., 2018). Additionally, many butterflies have adopted fast, unpre-
dictable flight and weak, fragile wings that allow escape by tearing 
when pecked by birds (Pinheiro & Cintra, 2017). Brighter colouration 
signals are commonly associated with potent defence and greater 
reproductive success, as predators are naturally deterred, within-
species rivals are more cautious and potential mates are more inter-
ested (Yeager & Barnett, 2021). Due to the high frequency of beak 
marks on the wings of butterflies, birds are likely their most signifi-
cant predator (Pinheiro & Cintra, 2017). Nonetheless, small mammals, 
toads and lizards also feed on adult butterflies, and there may be sig-
nificant predation by a variety of invertebrates (Londt, 1999).

Changes in the patterns of vegetation composition and structure 
in urban areas, can lead to a reduction of bird species richness and 
selection for omnivores, carnivores, and species which nest in cav-
ities (de Toledo et al., 2012). But native vegetation diversity within 
green spaces can strengthen the abundance and richness of spe-
cialist and insectivorous bird species (Silva et al., 2021). Plant bio-
diversity often increases in urban areas through the introduction of 
exotic (non-native) species (Peng & Liu, 2007), but this is strongly 
dependent on the influence of human preferences and manage-
ment activities (Avolio et al., 2021). The introduction of non-native 
plant species in urban areas degrades habitats and shifts community 
composition, however, often with huge turnover of species across 
urban habitats, which can influence ecosystem services and habitat 
resilience (Dolen et al., 2011; Swan et al., 2021). Urbanisation also 
alters the timing of important reoccurring plant phenology events, 
such as flowering and leaf-out, leading to cascading consequences 
on the species within a community and disturbing important inter-
actions such as pollination and herbivory (Dale & Frank,  2018; Li 
et al., 2019). The gross primary productivity of vegetation also de-
creases with increasing levels of urbanisation from loss of green land 
and changing macro-environment (Chen et al., 2022). While habitat 
enhancements of exotic species may increase ecosystem resilience 
and integrity, restoration of native communities in urban areas may 
increase connectivity to surrounding rural landscapes and support 
native ecosystems (de Carvalho et al., 2022).

There is a mutual and historical co-evolution in operation 
between plants and invertebrates (Ghazanfar et  al.,  2016). Co-
evolutionary traits include adaptive radiation of plants that evolved 
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to have chemical protection from herbivores, followed by adaptive 
radiation in herbivores who developed characteristics to counter 
this defence (Feeny,  1975). For example, the butterfly proboscis 
attachment has adapted to reach the nectar at the base of long-
tubed flowers (Ghazanfar et al., 2016). Alternatively, some skippers 
(Hesperiidae) are only capable of utilising shallow blossoms, such 
as flowers in the myrtle family (Myrtaceae; Ghazanfar et al., 2016). 
Increasing urbanisation results in fewer plant species visited, indi-
cating lower resource use or availability for pollinators in urban en-
vironments (Ellis et al., 2023). Smaller plant patches found in urban 
environments tend to receive fewer pollinator visits and suffer 
pollen limitation (Barker, 2018). This reduces genetic exchange and 
flowering plant diversity, and consequently, supports fewer polli-
nator species. Yet, low building density and the presence of green 
space within urban areas, may drive pollinator movement and thus 
gene flow between patches (Hennig & Ghazoul, 2011).

Whilst anthropogenic disturbances are fostering negative 
impacts on butterfly species, human practices have created ag-
ricultural and woodland management systems such as hay mead-
ows and coppicing that assist the growth of butterfly populations 
(Dover & Settele, 2009). The Mediterranean is one of the world's 
25 biodiversity hotspots, mainly due to the abundance of endemic 
species within this area (Lopez-Villalta, 2010). The Aegean Sea is 
located within the Mediterranean where butterfly species vary be-
tween the islands. In this area, Haahtela et al. (2019) recorded the 
highest levels of diversity on Samos Island (64 species) and Lesbos 
Island (63 species; Haahtela et al., 2019). The evolution, extinction 
and species migration of animals and plant species over archipel-
ago islands are reflected in the pattern of species diversity (Dennis 
et al., 2000). Therefore, a distinct and endemic species assemblage 
of butterflies may be present across the Aegean islands. This high-
lights the importance of green space within Mediterranean urban 
areas and a demand to assess the butterfly species within this 
environment. The study of butterflies within the Aegean region 
is severely lacking and mainly focuses on biogeographical stud-
ies (e.g. Dennis et  al.,  2000; Hammoud et  al.,  2021; Hausdorf & 
Hennig, 2005), thus, the specific habitat types that butterflies uti-
lise is not known. When studying Tuz Lake in Turkey, Seven (2017) 
compared habitat preferences of butterflies and observed the 
highest species diversity within the steppe habitat (defined as 
semi-arid grassland) and the lowest diversity in poorly vegetated 
areas dominated by rocks, indicating that species may prefer vege-
tated and shaded areas. Due to the global decline of butterflies, the 
exploration of urban green space as a possible diversity hotspot is 
crucial and contributes to current research.

Increasing urbanisation due to ongoing development of islands 
in the Aegean region makes it essential to study the impacts of even 
low-intensity urbanisation on butterfly communities and their po-
tential predators and resources. This is particularly relevant given 
the paucity of research on butterfly ecology within the Aegean. 
Thus, a key novel contribution of this study is to compare the eco-
logical communities found in rural areas and urban green spaces on 
Lipsi Island, Greece. It is hypothesised that total abundance, species 

richness and Shannon diversity of (1) butterflies, (2) birds, and (3) 
vegetation will be higher in rural compared to urban sites and that 
(4) urbanisation will have an impact on community composition of 
each trophic group.

2  |  METHODOLOGY

2.1  |  Study sites

The study was conducted during the months of May and June 2021 
on Lipsi Island, Greece (approximate area: 17 km2), which is located 
within the eastern Aegean Sea (37°17′44.7″ N, 26°46′45.5″ E) and 
used as a model small island ecosystem. The town centre of Lipsi 
Island, with approximately 700 inhabitants in a 1 km2 area, falls 
within the scope of an intermediate density area, and can be re-
ferred to as a town or small urban zone (Eurostat, 2019). Thus, the 
island experiences low-intensity urbanisation on a global scale 
(building density = 15–20% in urban areas) and so the ecological 
impacts of urbanisation on Lipsi should be distinguished from the 
typical literature on large urban areas. Nevertheless, the impacts 
of urban development on the natural landscape of small island eco-
systems can be comparatively greater than in built-up areas and 
warrant investigation (Fernandes & Pinho, 2017). Sampling over an 
entire year was not logistically feasible, so we chose this timescale 
because previous studies in Mediterranean regions indicated that 
peak butterfly activity and abundance should occur in May and June 
(Fileccia et al., 2015; Hantson & Baz, 2013). The lower abundance 
and richness observed in early spring and late summer is mainly due 
to a reduction in flower diversity and, thus nectar sources for pol-
linators (Hantson & Baz, 2013).

Nine urban and nine rural sites with clear separation were se-
lected (Figure 1). The minimum distance between study sites in urban 
areas was 75.3 m, which limited the double counting of individuals. 
Due to the lack of trees, shade is restricted on Lipsi Island, thus, lo-
cations with high light intensity and low shade were utilised to give 
an accurate representation of the urban and rural habitats used by 
butterfly species. Sites were chosen to represent the predominant 
land-use types utilised by butterflies during one or several stages 
of their life cycle (Grill & Cleary, 2003). The chosen rural habitats 
were shrubland, olive groves and meadows, while the urban habitats 
included agricultural meadows, abandoned land, parks, roadsides 
and olive groves. The sites were similar in size to keep the sampling 
effort consistent and included some shade to account for butterfly 
preference for shelter from the sun.

2.2  |  Butterfly sampling

The sampling technique implemented was the butterfly census 
method, which is widely used by the UK Butterfly Monitoring 
Scheme (UKBMS). Developed in 1973 by Ernest Pollard (Sevilleja 
et  al.,  2019), this method uses W- or M-shaped transects to 
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cover heterogeneity within the sampling area. The key variables 
to standardise with this method are the transect length, walk-
ing speed, time of day and weather (Wheater et  al., 2011). The 
implemented method was adapted from Zografou et  al.  (2009). 
The four corners of each site were located using QGIS to cre-
ate a square shaped plot for one Pollard transect, ranging from 
40 to 70 m. The average site size for both urban and rural plots 
was 583.2 ± 55.1 m2 (mean ± SE). Butterflies observed 5 m in front 
and on either side of the transect were recorded and identified. 
According to Wheater et  al. (2011), butterfly surveys should be 
performed between 10:00 and 16:00, but preliminary surveys in-
dicated that butterflies on Lipsi were very sensitive to changes 
in temperature during these hours and the highest abundance of 
butterflies was found before 10:00. Therefore, butterfly surveys 
were undertaken between 7:00 and 10:00 with temperatures 
<27°C and wind conditions <25 km/h. The ‘Butterflies of Britain 
and Europe: A photographic guide’ was used for species identifica-
tion (Haahtela et al., 2019). One transect was conducted at each 
site in both May and June for a total sample size of n = 36, which 
was sufficient to characterise >80% of the butterfly community 
at both rural and urban sites (Figure 2a,b). The incomplete nature 
of sampling indicates that butterfly results should be interpreted 
with some caution.

2.3  |  Bird sampling

Point-counts were also implemented to quantify the degree to 
which birds affect butterfly populations in urban and rural habitats 
(Huff et al., 2000). Using binoculars, two people recorded species 
and number of individuals in point-count surveys for 5 min in each 
compass direction, starting with North, and rotating through East, 
South and West. The total survey time was 20 min, whereby 5 min 
in each direction within a small sampling site helps to avoid count-
ing the same individuals twice (Lee & Marsden, 2008). The start 
and end times were recorded, as well as the species and number 
of individuals. Bird distance to the habitat was also estimated and 
assigned one of the four categories: (1) 0–50 m from the station 
centre point: birds up to top of vegetation or canopy; (2) >50 m 
from the station centre point: birds up to top of vegetation or can-
opy; (3) Fly-over associated with the habitat: birds above the top 
of the canopy and (4) Fly-over independent of the habitats: birds 
above the top of the canopy, which do not seem to be interacting 
with the environment (Huff et al., 2000). Observations took place 
between 5:30 and 10:00 with wind <30 km/h and when there was 
no rain or fog. The ‘Birds of Greece’ was used for species identi-
fication (Nason,  2020). This sampling method was conducted at 
each site in May and June for a total sample size of n = 36, which 

F I G U R E  1 Study location. Map of Lipsi Island, Greece. The red square in the inst indicates the location of Lipsi Island in the Aegean Sea. 
Yellow dots indicate the nine urban sites and red dots indicate the nine rural sites (created in QGIS, satellite imagery from ESRI, 2011).
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    |  5 of 13HAWKINS et al.

was sufficient to characterise >98% of the bird community at both 
rural and urban sites (Figure 2c,d).

2.4  |  Vegetation sampling

On the first visit to each site, the percentage cover of shrubs and 
bare ground were recorded using the same quadrats for percent-
age cover of plants, and the percentage cover of trees was later re-
corded using Google Maps. Plant surveys were conducted following 
Tzortzakaki et al.  (2019), with the app ‘PictureThis’ used alongside 
local taxonomic expertise for species identification (Glority Global 
Group Limited,  2020). Four 0.5 m2 quadrats were established at 
even distances along the butterfly transects, with the small quad-
rat size chosen due to the limited spatial extent of the sites. The 

percentage cover of each plant species was recorded for each quad-
rat, with vegetation surveys conducted at each site in May and June 
for a total sample size of n = 144. Despite the increased sample size 
compared to the butterflies and birds, species accumulation curves 
suggested that we only described 76% of the vegetation community 
in each habitat type (Figure 2e,f), thus vegetation results should be 
interpreted with caution.

2.5  |  Data analysis

The abundance, species richness, and species diversity of vegetation, 
butterflies and birds found at each site were quantified as the number 
of individuals, number of unique species and Shannon index respec-
tively. Linear mixed effects models were performed on all response 
variables with a random intercept for sampling time point to account 
for the non-independence of repeated sampling at the same location. 
No spatial structure was included in the models because there was no 
clear evidence for spatial correlation in the data using Moran's I tests. 
Non-metric multidimensional scaling (NMDS) was used to explore the 
differences in community composition between rural and urban sites, 
with significant differences tested using PERMANOVA. All analyses 
were performed using R 4.0.2 (R Core Team, 2021). Data were organ-
ised using the ‘tidyr’ package (Wickham et al., 2019), graphs were cre-
ated using ‘ggplot2’ (Wickham et al., 2019), ‘cowplot’ (Wilke, 2019) and 
‘gridExtra’ (Auguie, 2017), and diversity and ordination analysis were 
performed with the ‘vegan’ package (Oksanen et al., 2019). Species ac-
cumulation curves were constructed using the ‘specaccum’ function 
with ‘method = “exact”’, while the predicted number of species per hab-
itat type was estimated using the ‘fitspecaccum’ function and AIC se-
lection among the nine possible non-linear regression models available 
within the function in the ‘vegan’ package. Rank-abundance plots were 
constructed using the ‘rankabundance’ and ‘rankabunplot’ functions in 
the ‘BiodiversityR’ package. Statistical analyses were conducted using 
the ‘lme’ function in the ‘nlme’ package and the ‘adonis2’ function in 
the ‘vegan’ package.

3  |  RESULTS

A total of 156 butterfly individuals (85 rural and 71 urban) from 
14 species, 1668 bird individuals (511 rural and 1157 urban) from 
12 species and a 15 ± 0.9 (mean ± SE) percentage cover of plants 
from 115 species (220 rural and 189 urban) were recorded across 
the 18 study sites. The three most abundant butterfly species in 
rural sites were Freyer's grayling (Hipparchia fatua Freyer, 1844; 
42 in rural, 7 in urban), meadow brown (Maniola jurtina L., 1758; 
15 in rural, 2 in urban) and the large jewel blue (Plebejidea loewii 
Zelter, 1847; 12 in rural; 3 in urban; Figure  3a). The three most 
abundant butterfly species in urban sites were the mallow skip-
per (Carcharodus alceae Esper, 1780; 21 in urban; 0 in rural), scarce 
swallowtail (Iphiclides podalirius L., 1758; 20 in urban, 1 in rural) and 
geranium bronze (Cacyreus marshalli Butler, 1898; 8 in urban; 0 in 

F I G U R E  2 Species accumulation curves for documenting 
completeness of sampling. (a) Butterflies in rural habitats, (b) 
butterflies in urban habitats, (c) birds in rural habitats, (d) birds in 
urban habitats, (e) vegetation in rural habitats and (f) vegetation 
in urban habitats. The thick black line is the species accumulation 
curve estimated using the Mao Tao method with 95% confidence 
intervals shaded in grey. The number of species identified is shown, 
along with the number of species predicted for twice the number 
samples collected, and percentage completion of sampling.
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6 of 13  |     HAWKINS et al.

rural; Figure 3b). The most abundant bird species in rural sites was 
the hooded crow (Corvus cornix L., 1758; 243 in rural, 152 in urban; 
Figure 3c), the most abundant bird species in urban sites was the 
house sparrow (Passer domesticus L., 1758; 559 in urban, 29 in rural; 
Figure 3d), while the yellow-legged gull was also dominant in both 
habitat types (Larus michahellis Naumann, 1840; 277 in urban, 152 
in rural; Figure 3c,d). The most abundant vegetation species in rural 
sites was desert saltgrass (Distichlis spicata Greene, 1887; covering 
23.6% in rural sites; 1.0% in urban; Figure 3e), the most abundant 
vegetation species in urban sites was barley (Hordeum vulgare L., 
1753; covering 10.6% in urban sites; 0.9% in rural; Figure 3f), while 
mastic shrub (Pistacia lentiscus L., 1753; covering 14.3% in rural 
sites; 6.0% in urban) and slender wild oat (Avena barbata Link, 1799; 
covering 8.1% in rural sites; 9.7% in urban) were also dominant in 
both habitat types (Figure 3e,f).

3.1  |  Butterflies

The abundance of butterflies was greater at rural (2.43 ± 0.44; 
mean ± SE) compared to urban sites (2.09 ± 0.31), but there was no 
significant difference between the two locations (Linear mixed ef-
fects model: t = −0.71, p = .480; Figure  4a). The species richness of 
butterflies was greater at urban (2.83 ± 0.44) compared to rural sites 
(1.94 ± 0.27), but there was no significant difference between loca-
tions (Linear mixed effects model: t = 1.81, p = .081; Figure 4b). The 
Shannon diversity of butterflies was also greater at urban (0.74 ± 0.15) 
compared to rural sites (0.45 ± 0.11), however the two locations did 
not differ significantly (Linear mixed effects model: t = 1.54, p = .135; 
Figure 4c). These results do not support our first hypothesis.

3.2  |  Birds

The abundance of birds was greater at urban (6.06 ± 0.56; 
mean ± SE) compared to rural sites (4.56 ± 0.55), and there was a 
significant difference between the two locations (Linear mixed ef-
fects model: t = 2.98, p = .003; Figure  5a). The species richness of 
birds was greater at urban (2.85 ± 0.18) compared to rural sites 
(2.19 ± 0.18), and both locations differed significantly (Linear mixed 
effects model: t = 2.88, p = .007; Figure  5b). The species diversity 
of birds was greater at urban (0.67 ± 0.06) compared to rural sites 
(0.51 ± 0.07), and there was a significant difference between the two 
locations (Linear mixed effects model: t = 2.07, p = .046; Figure 5c). 
These results are directly opposite to our second hypothesis, with 
evidence for a greater abundance, species richness, and diversity of 
birds in urban, not rural habitats.

3.3  |  Vegetation

The percentage cover of bare ground was greater at urban 
(53.6 ± 20.0; mean ± SE) compared to rural (41.3 ± 26.6) sites, 

and there was a significant difference between the two locations 
(Linear mixed effects model: t = 2.18, p = .032; Figure 6a). The per-
centage cover of shrubs was lower at urban (5.28 ± 7.41) compared 
to rural (15.1 ± 14.2) sites, and both locations differed signifi-
cantly (Linear mixed effects model: t = −2.76, p = .007; Figure 6b). 
The percentage cover of trees was greater in urban (23.9 ± 22.0) 
compared to rural sites (14.4 ± 21.7), but the two locations were 
not significantly different (Linear mixed effects model: t = 0.916, 
p = .374; Figure 6c). The percentage cover of plants was greater at 
rural (17.5 ± 1.31) compared to urban (15.9 ± 1.24) sites, but there 
was no significant difference between the two locations (Linear 
mixed effects model: t = −0.365, p = .716; Figure 6d). The species 
richness of vegetation was greater at rural (3.10 ± 0.19) compared 
to urban sites (3.00 ± 0.18), but there was no significant differ-
ence between locations (Linear mixed effects model: t = −0.365, 
p = .716; Figure  6e). The Shannon diversity of vegetation was 
greater at urban (0.81 ± 0.06) compared to rural sites (0.77 ± 0.06), 
but the two locations were not significantly different (Linear mixed 

F I G U R E  3 Rank-abundance plots showing the three most 
dominant species from each trophic group in each habitat type. 
(a) Butterflies in rural habitats, (b) butterflies in urban habitats, (c) 
birds in rural habitats, (d) birds in urban habitats, (e) vegetation in 
rural habitats and (f) vegetation in urban habitats.
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    |  7 of 13HAWKINS et al.

effects model: t = 0.420, p = .675; Figure 6f). These results do not 
support our third hypothesis.

3.4  |  Community composition

There was a significant effect of urbanisation on butterfly commu-
nity composition (PERMANOVA: F1,28 = 3.34; p < .001), with a clear 

separation between urban and rural sites in NMDS space (Figure 7a). 
There was also a significant effect of urbanisation on bird commu-
nity composition (PERMANOVA: F1,34 = 15.57, p < .001), with a clear 
separation between rural and urban sites in NMDS space (Figure 7b). 
Finally, there was a significant effect of urbanisation on vegetation 
community composition (PERMANOVA: F1,132 = 4.81, p < .001), with 
a clear separation between urban and rural sites in NMDS space 
(Figure 7c). These results conclusively support our fourth hypothesis.

F I G U R E  4 Effects of urbanisation on butterflies. (a) Abundance, (b) species richness and (c) Shannon diversity of butterflies at nine urban 
and nine rural sites. The black boxplots illustrate the median (bold black line), interquartile range (box margins), 1.5 × interquartile range 
(whiskers) and outliers (black data points), whilst the mean ± SE are represented by the green diamond and whiskers.

F I G U R E  5 Effects of urbanisation on birds. (a) Abundance, (b) species richness and (c) Shannon diversity of birds at nine urban and nine 
rural sites. The black boxplots illustrate the median (bold black line), interquartile range (box margins), 1.5 × interquartile range (whiskers) and 
outliers (black data points), whilst the mean ± SE are represented by the green diamond and whiskers.
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4  |  DISCUSSION

4.1  |  Butterflies

Surprisingly, urbanisation had no effect on the abundance, richness or 
diversity of butterfly species on Lipsi Island (Figure 4). Habitat con-
nectivity may be amplified due to the small spatial extent of the is-
land, enabling butterflies to utilise both rural and urban habitats. The 
low building density and development of ecological corridors on Lipsi 
may also increase movement between urban and rural areas (Hennig 
& Ghazoul, 2011). Alternatively, the lack of response could be due to 
incomplete sampling of butterflies, with species accumulation curves 
indicating that 80–88% of potential butterfly species were captured. 
Sample sizes were also low with nine sites in each habitat type, which 
may have inflated the possibility of Type 2 errors, that is, false nega-
tives. Limiting our sampling to 2 months in the summertime may also 
have reduced our scope to detect potential effects of urbanisation on 
butterfly abundance and diversity. It would be intriguing to monitor 
seasonal patterns of butterflies over the course of an entire year, but 

financial and logistical constraints meant we chose to conduct this 
study during peak butterfly activity in May and June 2021. Whilst this 
likely means we did not characterise the entire communities that can 
be found throughout the year, it gave us an indication of their abun-
dance, diversity, and community composition in the peak season.

Nonetheless, there was a significant change in butterfly com-
munity composition between urban and rural habitats (Figure  7a), 
as found in several other locations (Numa et al., 2016; Stefanescu 
et al., 2004; Tzortzakaki et al., 2019). For example, Freyer's grayling 
(H. fatua) was the dominant butterfly in rural areas but was compar-
atively rare in urban settings (Figure 2a,b), reflecting its preference 
for meadows and thus a lack of suitable habitat in urban areas (Grill 
& Cleary, 2003). In contrast, the scarce swallowtail (I. podalirius) was 
mainly found in urban environments (Figure 2a,b), reflecting its ten-
dency to feed exclusively on rose plants, which are more likely to be 
found in urban gardens (Stefanescu et al., 2006). Butterfly species 
respond differently to the environmental constraints encountered 
along an urbanisation gradient due to variation in tolerance levels 
associated with life history and distribution (Pignataro et al., 2020). 

F I G U R E  6 Effects of urbanisation on vegetation. Percentage cover of (a) bare ground, (b) shrubs, (c) trees and (d) plants, (e) plant species 
richness and (f) Shannon diversity of plants at nine urban and nine rural sites. The black boxplots illustrate the median (bold black line), 
interquartile range (box margins), 1.5 × interquartile range (whiskers) and outliers (black data points), whilst the mean ± SE are represented by 
the green diamond and whiskers.
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For example, a study in Patras city, Greece, showed that specialist 
butterfly species with specific feeding requirements were often 
absent from urban environments, whereas generalists exhibited a 
greater abundance in urban areas (Tzortzakaki et al., 2019). Habitat 
fragmentation and reduced connectivity due to urbanisation may 
lead to a decline in specialist species within these areas (Brückmann 
et al., 2010; Kuussaari et al., 2021), however, the geranium bronze 
(C. marshalli) and mallow skipper (C. alceae) were more abundant 
in urban areas on Lipsi, despite being specialists. Geranium bronze 
is highly associated with cultivated geranium plants (Pelargonium) 
found in gardens and parks, whilst the mallow skipper caterpillar 
feeds on mallow plants (Malvaceae) which are weeds found in urban 
waste ground, roadsides and gardens (Tzortzakaki et  al.,  2019). 
Therefore, the presence of cultivated plants within urban locations 
could mitigate the loss of natural vegetation and support certain 
specialist species (Chong et al., 2014), whilst generalist or opportu-
nistic butterflies may be able to exploit the resources found in both 
urban and rural locations (Pignataro et al., 2020).

4.2  |  Birds

Urban sites had a greater abundance and species richness of birds 
compared to rural sites (Figure 5), which could be attributed to the 
addition of species accustomed to urban environments, termed 
‘urban exploiters’ (Crooks et  al.,  2004). For example, rock doves 
(Columba livia Gmelin, 1789) and house sparrows (P. domesticus) are 
dexterous at exploiting discarded food, utilising human made nest-
ing sites (roofs) and other resources in urban environments, and con-
sequently achieving higher densities in developed areas (Blair, 1996). 
Indeed, sparrows were abundant in urban locations in our study (559 

individuals) and were much less common in rural areas (29 individu-
als), echoing the finding of Belinsky et al. (2019). This dominance of 
adaptable bird species in urban locations underpinned the disparity 
in community composition compared to rural habitats (Figure  7b), 
with urban areas usually supporting fewer species from ecologi-
cally sensitive groups, for example, ground nesters, migratory birds 
and dietary specialists (Blair,  1996; Dale,  2018). Our findings dif-
fer from prior research suggesting that species richness is lower in 
urban areas due to the prevalence of buildings over vegetation (Kark 
et  al.,  2007; Tzortzakaki et  al.,  2018). Several studies have found 
that species richness peaks with intermediate levels of urbanisation 
which resonates with the low-intensity urbanisation found on Lipsi 
Island (Blair,  1996; Crooks et  al.,  2004). Indeed, eight of our nine 
urban sites are naturally vegetated and underdeveloped, consistent 
with the findings from White et al. (2005), showing that underdevel-
oped areas had a greater abundance and species richness of birds 
compared to recently developed locations.

Nevertheless, the greater abundance and species richness of 
birds in urban areas did not seem to elevate the predation pressure 
on butterflies, which had similar abundance and diversity in urban 
and rural environments. This could be due to increased dominance 
of non-predatory functional groups of birds, with Nason et al. (2021) 
finding a greater abundance of granivorous and omnivorous birds 
rather than insectivores in urban areas, perhaps due to the abun-
dance of discarded food available there, causing a decline in overall 
bird attacks on animal prey. Indeed, urban dominance by omnivo-
rous house sparrows, hooded crows and yellow-legged gulls on Lipsi 
may have reduced predation pressure on butterflies in urban areas. 
However, the insectivorous barn swallows and common house mar-
tins were more abundant in urban (93 individuals) compared to rural 
(32 individuals) sites, suggesting complex effects of urbanisation 

F I G U R E  7 Effects of urbanisation on community composition. Non-metric multidimensional scaling of (a) butterfly, (b) bird and (c) 
vegetation community composition. The black circles represent the sites, the red crosses indicate the species, and ellipses indicate the 
standard deviation of urban (blue) and rural (red) sites. The stress indicates the reliability of the points in two dimensions (lower values of 
stress equate to higher confidence).
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on food web interactions that would require dietary studies to 
disentangle.

Changes in predation pressure are further complicated by re-
sponses of non-avian predators to urbanisation. For example, rob-
ber flies (Asilidae spp), which are important predators of butterflies 
(Lehr et al., 2007; Londt, 1999), were seen in almost every shrubland 
site, but rarely in urban areas. Aposematism defence (use of vibrant 
colours) acts as a warning for predators (Pinheiro & Cintra, 2017), 
and butterflies with intricate camouflage such as meadow brown 
and graylings were observed to be more abundant in rural habitats 
(63 individuals) compared to urban locations (13 individuals). This 
may point to the greater predation pressure experienced by butter-
flies in rural areas and could help to explain the surprising similarity 
in abundance and diversity of butterflies in rural compared to urban 
environments.

4.3  |  Vegetation

The lack of significant differences in the abundance, richness and di-
versity of plants between urban and rural sites (Figure 6d–f) could be 
due to incomplete sampling, with just 76% of potential plant species 
identified. Nevertheless, our species accumulation curves exhibited 
long tails of rare plants, suggesting that any missed species would 
have contributed very little to the overall percentage cover of the 
plant communities. Indeed, two of the top three plants by percent-
age cover in both rural and urban environments were mastic shrub 
(P. lentiscus) and slender wild oat (A. barbata), highlighting the preva-
lence of native, unmanaged vegetation within urban green spaces on 
Lipsi. Whilst rural areas had significantly more shrubs and less bare 
ground than urban sites, there was no difference in the cover of trees, 
which are scarce on Lipsi, negating the possibility for greater tree 
cover to promote butterfly species richness (Kurylo et al., 2020). The 
lack of a marked difference in vegetation structure between urban 
and rural areas could thus be a key factor in explaining the similarity 
in butterfly abundance and diversity across habitats. A prevalence of 
non-native plant species in urban areas may prevent larval develop-
ment of butterflies (Dylewski et al., 2019), but exotic species were 
only present at three urban sites and in low abundance, limiting their 
potentially negative effects on butterflies. Furthermore, butterfly 
abundance responds negatively to non-native plants in late spring 
and positively by mid-summer (Kurylo et al., 2020), highlighting the 
importance of greater temporal resolution of sampling to character-
ise vegetation effects on butterflies.

Urbanisation altered vegetation community composition 
(Figure 7c), with cultivated species such as barley (H. vulgare), castor 
bean (Ricinus communis L., 1753) and scutch grass (Cynodon dactylon 
Persoon, 1805) prevalent in urban environments, while natural des-
ert saltgrass (D. spicata) dominated in rural environments. This may 
have contributed to the observed differences in butterfly commu-
nity composition, with cultivated patches hosting different butter-
fly assemblages than natural forests and scrub (Chong et al., 2014). 
As noted above, the dominant butterflies in urban environments 

(geranium bronze, scarce swallowtail, and mallow skipper) are highly 
associated with cultivated plants, which were prevalent in urban 
areas (Stefanescu et al., 2006; Tzortzakaki et al., 2019). In contrast, 
the dominant butterflies in rural environments (Freyer's grayling and 
meadow brown) depend on meadows and grasslands, which were 
largely absent from urban areas (Grill & Cleary, 2003; Merckx & Van 
Dyck,  2002). Thus, whilst we did not detect any effect of urbani-
sation on the abundance or diversity of the vegetation and butter-
fly assemblages, the observed changes in dominance patterns and 
species composition between rural and urban environments could 
have major implications for ecosystem functioning, which should be 
quantified in future studies.

5  |  CONCLUSION

There remains a pressing concern of global declining butterfly popula-
tions, mainly due to anthropogenic pressure from urban development 
(Van Swaay & Warren,  1999). Green spaces within urban locations 
may help to maintain total abundance and species diversity (Hennig 
& Ghazoul,  2011), but habitat fragmentation and smaller size and 
quality of habitat patches will alter community composition (Belinsky 
et al., 2019). The structural similarities between urban and rural habi-
tats and the very low intensity of urbanisation on Lipsi Island com-
pared to many other urbanisation studies may have driven the overlap 
in abundance and diversity of butterflies and vegetation, whilst the 
greater habitat heterogeneity and discarded food in urban environ-
ments could have promoted the abundance and species richness of 
generalist and opportunistic birds. Thus, metrics other than simple 
counts of individuals and species are needed to characterise the 
impacts of urbanisation on community composition across multiple 
trophic levels. Future research should aim to characterise changes 
in community structure along a gradient of urban development and 
island size and the implications for ecosystem functioning. Whilst 
butterflies were considered as important indicator species here, 
follow-up studies should quantify effects of urbanisation on other 
pollinators and arthropod assemblages for a more complete under-
standing of changes throughout the food web. Finally, dietary charac-
terisation is required to quantify changes in the strength and diversity 
of ecological interactions, which could help elucidate impacts of ur-
banisation on the flow of energy through ecological networks.
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