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A B S T R A C T 

We consider a distributed voting problem with a set of agents that are partitioned into disjoint groups and a set of obnoxious alternatives. Agents and alternatives are 
represented by points in a metric space. The goal is to compute the alternative that maximizes the total distance from all agents using a two-step mechanism which, 
given some information about the distances between agents and alternatives, first chooses a representative alternative for each group of agents, and then declares 
one of them as the overall winner. Due to the restricted nature of the mechanism and the potentially limited information it has to make its decision, it might not be 
always possible to choose the optimal alternative. We show tight bounds on the distortion of different mechanisms depending on the amount of the information they 
have access to; in particular, we study full-information and ordinal mechanisms.

1. Introduction

Inspired by worst-case analysis, the distortion framework was intro

duced more than 15 years ago as a means of evaluating decision-making 
mechanisms for social choice problems (such as voting) where limited 
information (typically of ordinal nature) is available about the prefer

ences of the agents over the alternative outcomes [6]. With only a few 
exceptions, the vast majority of this literature has focused on settings 
in which the alternatives are considered desirable, and thus the goal is 
to choose one that either maximizes the total utility of the agents or 
minimizes their total cost. However, there are many important applica

tions where the alternatives are obnoxious. For example, the alternatives 
might correspond to different locations for building a factory, in which 
case the agents would prefer the factory to be built as far away from 
their houses as possible. Consequently, this implies an underlying op

timization problem where the goal is to maximize the total distance of 
the agents from the chosen location (rather than minimizing it). Such 
obnoxious facility location models have been studied through the lens 
of approximation algorithms [28], operations research [16], as well as 
mechanism design [14].

In this paper, we consider a more general obnoxious voting setting 
through the lens of the distortion framework. In our model, there are 
agents that have obnoxious metric preferences over alternatives and are 
partitioned into disjoint groups. Based on some available information 
about the preferences of the group members, each group proposes an 
alternative as a possible winner, and then one of them is chosen to 
be the final winner. Such distributed models have been considered in 
the past for the case of desirable alternatives [7,20] aiming to capture 
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district-based elections and other scenarios in which it might be logis

tically difficult to collect the preferences of the agents in a single pool. 
In the case of obnoxious alternatives that we focus in this work, such a 
model naturally captures problems where the goal is to locate obnox

ious facilities in a metric space like in the example discussed above. We 
formalize the setting in the following.

1.1. Our model

We consider a metric voting problem with a set 𝑁 of 𝑛 agents and a 
set 𝐴 of 𝑚 obnoxious alternatives. Agents and alternatives lie in a metric 
space 𝑑, that is, the distances between them satisfy the triangle inequality: 
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for any 𝑥, 𝑦, 𝑧 ∈ 𝑁 ∪ 𝐴. Following a recent 
stream of works within the distortion literature [7,20], we focus on a 
distributed setting in the sense that the agents are partitioned into a set 
𝐺 of 𝑘 fixed groups; we denote by 𝑛𝑔 the size of group 𝑔 ∈𝐺.

The social welfare of an alternative 𝑥 is the total distance of the agents 
from 𝑥:

SW(𝑥) =
∑
𝑖∈𝑁

𝑑(𝑖, 𝑥) =
∑
𝑔∈𝐺

∑
𝑖∈𝑔

𝑑(𝑖, 𝑥).

Our goal is to choose the alternative with maximum social welfare. This 
decision is made by a mechanism 𝑀 that works generally by imple

menting the following two steps:

(1) For every group 𝑔, given some information about the distances be

tween the agents in 𝑔 and the alternatives, 𝑀 chooses an alternative 
𝑟𝑔 as the representative of 𝑔.
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(2) Given the set 𝑅 =
⋃

𝑔{𝑟𝑔} of group representatives, 𝑀 chooses the 
final winner 𝑤(𝑀) ∈𝑅.

Clearly, when there is a single group of agents (𝑘 = 1), the setting is 
centralized, and the representative of all the agents is the winner. When 
there are more groups, these two-step mechanisms essentially imple

ment the idea that first each group proposes an alternative (the represen

tative) as a possible winner based on the preferences of its members, and 
then one of these alternatives is chosen as the final winner. We should 
also emphasize that any such two-step mechanism satifies an important 
locality property according to which the representative of a group must 
be the same no matter the composition of the other groups; in other 
words, the representative of a group only depends on the information 
available for the agents therein and there is no way of distinguishing 
similar groups based on the whole instance.

We consider two classes of mechanisms depending on the type of 
information they use to make decisions:

• A full-information mechanism has access to the exact distances be

tween agents and alternatives, that is, the mechanism knows the 
distance 𝑑(𝑖, 𝑥) for any 𝑖 ∈𝑁 and 𝑥 ∈𝐴.

• An ordinal mechanism has access to the ordinal preferences of the 
agents over the alternatives, that is, the mechanism knows a ranking 
≻𝑖 for every agent 𝑖 such that 𝑥 ≻𝑖 𝑦 implies that 𝑑(𝑖, 𝑥) ≥ 𝑑(𝑖, 𝑦).

Due to the restricted nature of the mechanisms we consider (either 
due to their two-step decision making process, or due to having access 
to limited information about the metric space), the chosen alternative 
might not be the one that maximizes the social welfare. To capture this 
inefficiency, we adopt the notion of distortion, which is dfined as the 
worst-case ratio (over all instances with 𝑛 agents, 𝑚 alternatives, and 
𝑘 groups) between the maximum possible social welfare and the social 
welfare achieved by the mechanism:

sup 
(𝑁,𝐴,𝑑,𝐺)

max𝑥∈𝐴 SW(𝑥)
SW(𝑤(𝑀)) 

.

The distortion is by definition at least 1. Our objective is to identify the 
best-possible mechanisms with an as small distortion as possible, for 
each type of information.

1.2. Our contribution

We show tight bounds on the best possible distortion of deterministic

full-information and ordinal mechanisms. We start with the class of full

information mechanisms in Section 2 for which we show an upper bound 
of 2min{𝑚,𝑘} − 1 via a mechanism that chooses the representative of 
each group to be the optimal alternative for the agents therein, and the 
final winner to be the alternative that represents the most agents. We 
show a matching lower bound for mechanisms that satisfy a natural 
assumption that resembles unanimity. While this distortion guarantee 
grows linearly with min{𝑚,𝑘} in general, it reduces to just 3 for the im

portant special case of a line metric since all alternatives besides just two 
can be eliminated by exploiting the geometry of the line. We comple

ment this result with an unconditional lower bound of 3 on the distortion 
of full-information mechanisms, thus completely resolving this funda

mental case.

We next turn our attention to the class of ordinal mechanisms in Sec

tion 3 and first consider the centralized setting with a single group of 
agents. We show a tight bound of 3, which follows by the same mecha

nisms that achieve the best possible distortion of 3 for the classic setting 
with desirable alternatives [23,25]. For general distributed instances 
with multiple groups of agents, we show a tight bound of 4min{𝑚,𝑘}−1
via a mechanism that chooses the representative of each group using the 
best-possible centralized mechanism (of distortion 3), and the final win

ner to be the alternative that represents the most agents. We finally show 

a rfined tight bound of 7 for the line metric using similar techniques as 
in the case of full-information mechanisms.

1.3. Related work

Since its introduction by Procaccia and Rosenschein [27], the distor

tion has been studied for many different versions of fundamental social 
choice problems, including single-winner voting [5,10,15,17,23,25], 
multi-winner voting [12,13,24], participatory budgeting [9], facility 
location [18], matching [1--3,19,26], and other optimization prob

lems [4,11].

The distributed voting model, in which the agents are partitioned 
into disjoint groups and decisions are made by two-step mechanisms, 
was first considered by Filos-Ratsikas et al. [20] for utilitarian voting 
with agents that have normalized values for desirable alternatives. More 
related to our work here are the papers of Anshelevich et al. [7] and 
Voudouris [29] who studied the problem for agents with metric prefer

ences, but again for desirable alternatives. The authors showed an array 
of small constant bounds on the distortion of full-information and ordi

nal mechanisms for various social objectives. With the notable exception 
of the line metric, the distortion in our obnoxious model turns out to be a 
function of the number of alternatives and the number of groups, even 
when full information is available within the groups. The distributed 
model has also been considered for strategyproof facility location on a 
line [21]. The distortion of obnoxious metric voting has also been stud

ied before by Fotakis and Gourvès [22] for the centralized setting and 
particular metric spaces with aligned alternatives. In contrast, we here 
consider a more general distributed setting (which includes the central

ized one as a special case) and show bounds even for general metrics.

2. Full-information mechanisms

In this section we will show bounds on the distortion of full

information mechanisms which are given access to the distances be

tween agents and alternatives in the metric space.

2.1. Upper bounds

Given this type of information, we can identify the alternative that 
maximizes the total distance from the agents within each group (and 
thus achieve distortion 1 when 𝑘 = 1). Using this, for instances with 
𝑘 ≥ 2 groups, we consider the Max-Weight-of-Optimal mechanism, 
which works as follows: The representative of each group is the optimal 
alternative for the agents in the group. The final winner is the alternative 
that represents the most agents (i.e., an alternative that maximizes the 
total size of the groups it represents). See Mechanism 1 for a description 
of the mechanism using pseudocode.

Mechanism 1: Max-Weight-of-Optimal.

Input: Distances 𝑑(𝑖, 𝑥) for every 𝑖 ∈𝑁 and 𝑥∈𝐴; 
Output: Winner 𝑤; 
for each 𝑥∈𝐴 do

𝐺𝑥 ←∅; 
for each group 𝑔 ∈𝐺 do

𝑟𝑔 ← argmax𝑦∈𝐴
∑

𝑖∈𝑔 𝑑(𝑖, 𝑦); 
𝐺𝑟𝑔

←𝐺𝑟𝑔
∪ {𝑔}; 

𝑤← argmax𝑥∈𝐴
∑

𝑔∈𝐺𝑥
𝑛𝑔 ; 

Theorem 2.1. The distortion of Max-Weight-of-Optimal is at most 
2min{𝑚,𝑘} − 1.

Proof. Let 𝑤 be the alternative chosen as the winner by the mecha

nism, and 𝑜 an optimal alternative. Let 𝑅 be the set of representatives, 
and denote by 𝐺𝑥 the set of groups that 𝑥 ∈ 𝑅 represents; note that 
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|𝑅| ≤ min{𝑘,𝑚}. Since the representative 𝑟𝑔 of group 𝑔 is the optimal 
alternative for the agents in 𝑔, we have

∀𝑥 ∈𝐴 ∶
∑
𝑖∈𝑔

𝑑(𝑖, 𝑥) ≤
∑
𝑖∈𝑔

𝑑(𝑖, 𝑟𝑔). (1)

Also, by the definition of the mechanism, 𝑤 maximizes the total size of 
the groups it represents, and thus 

∑
𝑔∈𝐺𝑤

𝑛𝑔 ≥
∑

𝑔∈𝐺𝑥
𝑛𝑔 for every 𝑥 ∈𝑅. 

By adding these inequalities, we have

(|𝑅|− 1)
∑
𝑔∈𝐺𝑤

𝑛𝑔 ≥
∑
𝑔∉𝐺𝑤

𝑛𝑔. (2)

Let 𝑟 ∈ argmax𝑦∈𝑅 𝑑(𝑤,𝑦) be a most-distant group representative from 
𝑤. Using (1) with 𝑥 = 𝑜, and the triangle inequality, we can upper-bound 
the optimal social welfare:

SW(𝑜) =
∑
𝑔

∑
𝑖∈𝑁𝑔

𝑑(𝑖, 𝑜) ≤
∑
𝑔∈𝐺

∑
𝑖∈𝑁𝑔

𝑑(𝑖, 𝑟𝑔)

≤

∑
𝑔∈𝐺

∑
𝑖∈𝑁𝑔

(
𝑑(𝑖,𝑤) + 𝑑(𝑤,𝑟𝑔)

)

≤ SW(𝑤) + 𝑑(𝑤,𝑟) ⋅
∑
𝑔∉𝐺𝑤

𝑛𝑔.

We now bound the second term using (2), the triangle inequality, and 
(1) with 𝑥 = 𝑟:

𝑑(𝑤,𝑟) ⋅
∑
𝑔∉𝐺𝑤

𝑛𝑔 ≤ 𝑑(𝑤,𝑟) ⋅ (|𝑅|− 1)
∑
𝑔∈𝐺𝑤

𝑛𝑔

= (|𝑅|− 1)
∑
𝑔∈𝐺𝑤

∑
𝑖∈𝑔

𝑑(𝑤,𝑟)

≤ (|𝑅|− 1)
∑
𝑔∈𝐺𝑤

∑
𝑖∈𝑔

(
𝑑(𝑖,𝑤) + 𝑑(𝑖, 𝑟)

)

≤ (|𝑅|− 1)
(

SW(𝑤) +
∑
𝑔∈𝐺𝑤

∑
𝑖∈𝑔

𝑑(𝑖,𝑤)
)

= 2(|𝑅|− 1) ⋅ SW(𝑤).

Putting everything together, we have

SW(𝑜) ≤
(
1 + 2(|𝑅|− 1)

)
⋅ SW(𝑤) = (2|𝑅|− 1) ⋅ SW(𝑤).

The theorem follows since |𝑅| ≤min{𝑚,𝑘}. □

By Theorem 2.1, we obtain distortion upper bounds for several cases, 
such as when the number of alternatives 𝑚 or the number of groups 𝑘 is 
small. The case 𝑚 = 2 is particularly interesting since it also implies an 
upper bound of 3 for the line metric. By the geometry of the line, it is 
not hard to observe that the optimal alternative, which maximizes the 
total distance from the agents, is either the leftmost or the rightmost al

ternative. Hence, all other alternatives can be eliminated, and an upper 
bound of 3 is directly obtained by setting 𝑚 = 2.

Corollary 2.2. When there are only two alternatives or when the metric 
space is a line, the distortion of Max-Weight-of-Optimal is at most 3.

2.2. Lower bounds

We now show lower bounds on the distortion of full-information 
mechanisms. For general metrics, we show a lower bound of 2min{𝑚,𝑘} 
− 1 for the class of group-unanimous mechanisms that satisfy the fol

lowing property: For any group in which all agents are co-located, the 
representative of the group is chosen to be the alternative that is farthest 
from the agents. This property is satified by most natural mechanisms, 
including Max-Weight-of-Optimal, but is not true in general.

Theorem 2.3. The distortion of any full-information group-unanimous 
mechanism is at least 2min{𝑚,𝑘} − 1.

Proof. We consider instances with 𝑚 = 𝑘 alternatives {𝑥1,… , 𝑥𝑘} that 
are located in the metric space so that they are all at distance 1 from 
each other. Given that the symmetry between the alternatives, for any 
instance consisting of groups that are of the same size 𝜆 and are repre

sented by different alternatives (in particular, group 𝑔𝑗 is represented by 
alternative 𝑥𝑗 for any 𝑗 ∈ [𝑘]), we can assume without loss of general

ity that the winner is the representative of the last group. Now consider 
a specific instance with the following groups:

• For 𝑗 ∈ [𝑘 − 1], group 𝑔𝑗 consists of 𝜆 agents that are located near 
alternative 𝑥𝑘 such that 𝑥𝑗 is uniquely the farthest alternative.

• Group 𝑔𝑘 consists of 𝜆 agents that are located at distance nearly 1∕2
from all alternatives, such that 𝑥𝑘 is the farthest alternative.

Due to the structure of the groups and group-unanimity, the represen

tative of group 𝑔𝑗 is 𝑥𝑗 for any 𝑗 ∈ [𝑘], and thus the overall winner is 
𝑥𝑘. Since SW(𝑥𝑘) ≈ 𝜆∕2 and SW(𝑥𝑗 ) ≈ (𝑘−1)𝜆+ 𝜆∕2, we obtain a lower 
bound of 2𝑘− 1. □

Remark 2.1. The proof of Theorem 2.3 relies on an instance with 𝑚 = 𝑘

and leads to a lower bound of 2𝑘− 1. It is not hard to observe that the 
lower bound holds for any 𝑚 ≥ 𝑘 by extending the instance to include 
extra dummy alternatives that are not used. To obtain a lower bound for 
𝑚 < 𝑘, we can focus on the case where 𝑘 is a multiple of 𝑚 and modify 
the instance in the proof of Theorem 2.3 so that there are 𝑘∕𝑚 groups 
(rather than just one) represented by alternative 𝑥𝑗 , for any 𝑗 ∈ [𝑚]; this 
leads to a bound of 2𝑚− 1. □

We next show an unconditional tight lower bound of 3 on the dis

tortion of mechanisms for when there are only two alternatives and the 
metric is a line.

Theorem 2.4. The distortion of any full-information mechanism is at least 
3, even when the metric space is a line and there are only two alternatives.

The rest of this section is dedicated to proving this theorem. Our 
methodology is based on induction and is similar to the methodology of 
Anshelevich et al. [7] for showing lower bounds for the line metric in 
the desirable setting. Throughout the proof, we consider instances with 
two alternatives located at 0 and 1 on the line of real numbers. Without 
loss of generality, we assume that, if there are just two groups and each 
of them has a different representative (that is, one is represented by 
alternative 0 while the other is represented by alternative 1), then the 
winner is 0. We will now argue that any low-distortion mechanism must 
choose a particular representative for the group 𝑔𝑥 in which all agents 
are located at 𝑥 ∈ [0,1]. To simplify our calculations in the following, 
we assume that there is just one agent in such groups (where all agents 
are co-located).

Lemma 2.5. Any full-information mechanism with distortion strictly smaller 
than 3 must choose the representative of group 𝑔𝑥 to be alternative 0 for 
𝑥 ∈ [3∕4,1] and alternative 1 for 𝑥 ∈ [0,1∕4].

Proof. Let 𝑥 ∈ [3∕4,1]; the case 𝑥 ∈ [0,1∕4] is symmetric. Suppose oth

erwise that the representative of 𝑔𝑥 is 1 instead of 0. Then, in any 
instance consisting of copies of 𝑔𝑥 (which means that all agents are 
located at 𝑥), 1 is the only representative, and thus the overall win

ner. Since SW(0) = 𝑛𝑥 and SW(1) = 𝑛(1 − 𝑥), the distortion is at least 
𝑥∕(1 − 𝑥) ≥ 3, a contradiction. □

Lemma 2.6. Suppose a full-information mechanism with distortion strictly 
smaller than 3 which chooses alternative 1 as the winner when there are 
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2𝓁 + 1 groups such that 𝓁 of them are represented by 0 while the remaining 
𝓁+1 are represented by 1, for any 𝓁 ≥ 1. Then, the mechanism must choose 
alternative 0 as the representative of group 𝑔(2𝓁+3)∕(4𝓁+4).

Proof. Suppose otherwise that 1 is chosen as the representative of 
group 𝑔(2𝓁+3)∕(4𝓁+4). Then, consider an instance consisting of 2𝓁 +
1 groups such that there are 𝓁 copies of 𝑔1 and 𝓁 + 1 copies of 
𝑔(2𝓁+3)∕(4𝓁+4). By Lemma 2.5, the representative of 𝑔1 must be 0, while 
the representative of 𝑔(2𝓁+3)∕(4𝓁+4) is 1 by assumption. Hence, we have 
an instance in which there are 𝓁 groups represented by 0 and 𝓁+1 rep

resented by 1, leading to 1 being chosen as the winner by the mechanism 
due to the assumption of the statement. However,

SW(1) = (𝓁 + 1)
(
1 − 2𝓁 + 3

4𝓁 + 4

)
= 2𝓁 + 1

4 
,

whereas

SW(0) = 𝓁 + (𝓁 + 1) ⋅ 2𝓁 + 3
4𝓁 + 4

= 6𝓁 + 3
4 

,

leading to a distortion of 3, a contradiction. □

Using Lemmas 2.5 and 2.6, we can now argue that the assumption 
of Lemma 2.6 is true for any low-distortion mechanism.

Lemma 2.7. Any full-information mechanism with distortion strictly smaller 
than 3 must choose alternative 1 as the winner when there are 2𝓁+1 groups 
such that 𝓁 of them are represented by 0 while the remaining 𝓁 + 1 are 
represented by 1, for any 𝓁 ≥ 1.

Proof. We will prove the statement by induction using Lemmas 2.5

and 2.6 repeatedly.

Base case: 𝓁 = 1. Suppose otherwise that the mechanism chooses 0 as 
the winner when there are 3 groups such that one of them is represented 
by 0 while the other two are represented by 1. Consider an instance 
consisting of 𝑔3∕4 and two copies of 𝑔0. By Lemma 2.5, the representative 
of 𝑔3∕4 must be 0 (using 𝑥 = 3∕4), while the representative of 𝑔0 must be 
1 (using 𝑥 = 0). Hence, the overall winner is 0. However, SW(0) = 3∕4
and SW(1) = 1∕4+2 = 9∕4, leading to a distortion of 3, a contradiction.

Hypothesis: We assume that the statement is true for 𝓁 −1, that is, the 
winner is 1 when there are 2(𝓁 − 1) + 1 = 2𝓁 − 1 groups such that 𝓁 − 1
of them are represented by 0 while the remaining 𝓁 are represented by 
1. Hence, by Lemma 2.6, the mechanism must choose 0 as the represen

tative of group 𝑔(2(𝓁−1)+3)∕(4(𝓁−1)+4) = 𝑔(2𝓁+1)∕(4𝓁).

Induction step: Suppose otherwise that the mechanism chooses 0 as 
the winner when there are 2𝓁 + 1 groups such that 𝓁 of them are rep

resented by 0 while the remaining 𝓁 + 1 are represented by 1. Consider 
an instance consisting of 𝓁 copies of 𝑔(2𝓁+1)∕(4𝓁) which are represented 
by 0 due to our induction hypothesis, and 𝓁 + 1 copies of 𝑔0 which are 
represented by 1 by Lemma 2.5. Since

SW(0) = 𝓁 ⋅
2𝓁 + 1
4𝓁

= 2𝓁 + 1
4 

and

SW(1) = 𝓁 ⋅
(
1 − 2𝓁 + 1

4𝓁

)
+ 𝓁 + 1 = 6𝓁 + 3

4 
,

the distortion is at least 3, a contradiction. □

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. By Lemma 2.7 and Lemma 2.6, we have that 
any mechanism with distortion strictly smaller than 3 must choose 0
as the representative of group 𝑔(2𝓁+3)∕(4𝓁+4) for any 𝓁 ≥ 1. Taking 𝓁 to 
ifinity, we have that the mechanism chooses 0 as the representative of 
group 𝑔1∕2+𝜀 for some ifinitesimal 𝜀 > 0.

Now consider an instance that consists of 𝑔1∕2+𝜀 and 𝑔0. Since the 
former is represented by 0 and the latter is represented by 1 (due to 
Lemma 2.5), the winner is 0. However, since SW(0) ≈ 1∕2 and SW(1) ≈
3∕2, the distortion is at least 3. □

3. Ordinal mechanisms

We now turn our attention to ordinal mechanisms which are given 
access to the ordinal preferences of the agents over the alternatives.

3.1. Upper bounds

We start with the centralized setting, in which there is a single group 
of agents, and show that it is possible to achieve a tight bound of 3. As 
in the classic setting where the alternatives are desirable (rather than 
obnoxious), the bound is achieved by choosing any alternative whose 
domination graph attains a perfect matching. Formally, the domina

tion graph of an alternative 𝑥 is a bipartite graph such that each side 
consists of the set of agents and a directed edge from agent 𝑖 to agent 
𝑗 exists if and only if 𝑖 prefers 𝑥 over the favorite alternative top(𝑗)
of 𝑗. There are several centralized mechanisms that, given the ordinal 
preferences of the agents, output an alternative with this ordinal prop

erty, for example, Plurality-Matching [23] and the much simpler

Plurality-Veto [25]. In the obnoxious setting that we consider, since 
alternatives are ordered in decreasing distance, the existence of a per

fect matching 𝜇 in the domination graph of an alternative 𝑥 implies that 
𝑑(𝑖, 𝑥) ≥ 𝑑(𝑖, top(𝜇(𝑖))) for every agent 𝑖.

Theorem 3.1. For 𝑘 = 1, the distortion of any ordinal mechanism that 
chooses an alternative whose domination graph attains a perfect matching 
is at most 3, and this is tight over all ordinal mechanisms.

Proof. Let 𝑤 be the alternative chosen as the winner by the mechanism, 
and 𝑜 an optimal alternative. Since the domination graph of 𝑤 attains a 
perfect matching 𝜇, we have that 𝑑(𝑖,𝑤) ≥ 𝑑(𝑖, top(𝜇(𝑖))) for every agent 
𝑖. Also, 𝑑(𝑖, top(𝑖)) ≥ 𝑑(𝑖, 𝑜) by definition. Using these properties and by 
applying the triangle inequality, we obtain

SW(𝑜) ≤
∑
𝑖∈𝑁

𝑑(𝜇(𝑖), top(𝜇(𝑖)))

≤

∑
𝑖∈𝑁

(
𝑑(𝜇(𝑖),𝑤) + 𝑑(𝑖,𝑤) + 𝑑(𝑖, top(𝜇(𝑖)))

)

≤

∑
𝑖∈𝑁

(
𝑑(𝜇(𝑖),𝑤) + 2 ⋅ 𝑑(𝑖,𝑤)

)

= 3 ⋅ SW(𝑤).

For the lower bound, consider an instance with two alternatives 𝑎
and 𝑏. Half of the agents prefer 𝑎 and the other half prefer 𝑏. Given 
these ordinal preferences, any of the two alternatives can be chosen as 
the winner, say 𝑎. Consider now the following consistent positions of 
alternatives and agents on the line of real numbers: 𝑎 is at 0, 𝑏 is at 
2, the agents that prefer 𝑎 are at 1, and the agents that prefer 𝑏 are at 
0. Hence, SW(𝑎) = 𝑛∕2 and SW(𝑏) = 3𝑛∕2, leading to a distortion lower 
bound of 3 on the distortion of any ordinal mechanism. □

For instances with 𝑘 ≥ 2 groups, we consider the Max-Weight-of

Domination mechanism that works as follows: The representative of 
each group is chosen to be any alternative whose domination graph 
attains a perfect matching (given the preferences of the agents in the 
group), and then the final winner is the alternative that represents the 
most agents. See Mechanism 2.

Theorem 3.2. The distortion of Max-Weight-of-Domination is at most 
4min{𝑚,𝑘} − 1.
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Mechanism 2: Max-Weight-of-Domination.

Input: Ordinal preference ≻𝑖 of every agent 𝑖∈𝑁 ; 
Output: Winner 𝑤; 
for each 𝑥∈𝐴 do

𝐺𝑥 ←∅; 
for each group 𝑔 ∈𝐺 do

𝑟𝑔 ← Plurality-Veto({≻𝑖}𝑖∈𝑔); 
𝐺𝑟𝑔

←𝐺𝑟𝑔
∪ {𝑔}; 

𝑤← argmax𝑥∈𝐴
∑

𝑔∈𝐺𝑥
𝑛𝑔 ; 

Proof. Let 𝑤 be the alternative chosen by the mechanism, and 𝑜 an 
optimal alternative. Let 𝑅 be the set of alternatives that represent some 
group, and denote by 𝐺𝑥 the set of group that 𝑥 ∈ 𝑅 represents; note 
that |𝑅| ≤min{𝑚,𝑘}. Since the domination graph of the representative 
𝑟𝑔 of group 𝑔 attains a perfect matching 𝜇𝑔 for the agents in 𝑔, we have

∀𝑔 ∈𝐺, 𝑖 ∈ 𝑔 ∶ 𝑑(𝑖, top(𝜇𝑔(𝑖)) ≤ 𝑑(𝑖, 𝑟𝑔). (3)

By Theorem 3.1, we also have that

∀𝑔 ∈𝐺,∀𝑥 ∈𝐴 ∶
∑
𝑖∈𝑔

𝑑(𝑖, 𝑥) ≤ 3 ⋅
∑
𝑖∈𝑔

𝑑(𝑖, 𝑟𝑔). (4)

Also, since 𝑤 maximizes the total size of the groups it represents, ∑
𝑔∈𝐺𝑤

𝑛𝑔 ≥
∑

𝑔∈𝐺𝑥
𝑛𝑔 for every 𝑥 ∈𝑅, and thus

(|𝑅|− 1)
∑
𝑔∈𝐺𝑤

𝑛𝑔 ≥
∑
𝑔∉𝐺𝑤

𝑛𝑔. (5)

Since by definition 𝑑(𝑖, top(𝑖)) ≥ 𝑑(𝑖, 𝑜) for any agent 𝑖, using the triangle 
inequality, we can bound the optimal social welfare as follows:

SW(𝑜) =
∑
𝑔

∑
𝑖∈𝑔

𝑑(𝑖, 𝑜)

≤

∑
𝑔∈𝐺

∑
𝑖∈𝑔

𝑑(𝜇𝑔(𝑖), top(𝜇𝑔(𝑖)))

≤

∑
𝑔𝑖𝑛𝐺

∑
𝑖∈𝑔

(
𝑑(𝜇𝑔(𝑖),𝑤) + 𝑑(𝑖,𝑤) + 𝑑(𝑖, top(𝜇𝑔(𝑖)))

)

= 2 ⋅ SW(𝑤) +
∑
𝑔∈𝐺

∑
𝑖∈𝑔

𝑑(𝑖, top(𝜇𝑔(𝑖))).

We now bound the second term. Let 𝑟 ∈ argmax𝑦∈𝑅 𝑑(𝑤,𝑦) be a most

distant group representative from 𝑤. Using (3), the triangle inequality, 
the definition of 𝑟, (5), the triangle inequality again, and finally (4) with 
𝑥 = 𝑟, we obtain:∑
𝑔∈𝐺

∑
𝑖∈𝑔

𝑑(𝑖, top(𝑀𝑔(𝑖))) ≤
∑
𝑔∈𝐺

∑
𝑖∈𝑔

𝑑(𝑖, 𝑟𝑔)

≤

∑
𝑔∈𝐺

∑
𝑖∈𝑔

(
𝑑(𝑖,𝑤) + 𝑑(𝑤,𝑟𝑔)

)

= SW(𝑤) +
∑
𝑔

∑
𝑖∈𝑔

𝑑(𝑤,𝑟𝑔)

≤ SW(𝑤) + 𝑑(𝑤,𝑟) ⋅
∑
𝑔∉𝐺𝑤

𝑛𝑔

≤ SW(𝑤) + 𝑑(𝑤,𝑟) ⋅ (|𝑅|− 1)
∑
𝑔∈𝐺𝑤

𝑛𝑔

= SW(𝑤) + (|𝑅|− 1)
∑
𝑔∈𝐺𝑤

∑
𝑖∈𝑁𝑔

𝑑(𝑤,𝑟)

≤ SW(𝑤) + (|𝑅|− 1) 
∑
𝑔∈𝐺𝑤

∑
𝑖∈𝑁𝑔

(
𝑑(𝑖,𝑤) + 𝑑(𝑖, 𝑟)

)

≤ SW(𝑤) + 4 ⋅ (|𝑅|− 1) ⋅ SW(𝑤)

= (4|𝑅|− 3) ⋅ SW(𝑤).

Putting everything together, we have

SW(𝑜) ≤ (4|𝑅|− 1) ⋅ SW(𝑤),

and the bound follows by the fact that |𝑅| ≤min{𝑚,𝑘}. □

As in the case of full-information mechanisms, when the metric is a 
line, if we are also given ordinal information about the alternatives, we 
can eliminate all alternatives besides the leftmost and rightmost ones, 
one of which is the optimal. Hence, we immediately obtain an upper 
bound 7 by running Max-Weight-of-Domination on the remaining 
two alternatives.

Corollary 3.3. When there are only two alternatives or when the metric 
space is a line, the distortion of Max-Weight-of-Domination is at most 
7.

3.2. Lower bounds

Next, we show a tight lower bound on the distortion of ordinal 
mechanisms. We first need the following lemma to argue about the al

ternatives that can be selected as the representative of a group based on 
the top preferences of the agents in the group.

Lemma 3.4. Any ordinal distributed mechanism with finite distortion must 
choose as the representative of a group one of the alternatives that is top

ranked by some agent in the group.

Proof. Suppose towards a contradiction that there is an ordinal mecha

nism with finite distortion which chooses alternative 𝑦 ∉
⋃

𝑖∈𝑔 top(𝑖) as 
the representative of a group 𝑔. So, in any instance consisting of only 
copies of this group, the only representative alternative, and thus the 
winner, is 𝑦. Now consider the following line metric that is consistent 
with the top preferences of the agents:

• Every alternative 𝑥 ∈
⋃

𝑖 top(𝑖) is at 0;

• All the remaining alternatives as well as all agents are at 1.

Hence, SW(𝑦) = 0 while SW(𝑥) = 𝑛 for any 𝑥 ∈
⋃

𝑖∈𝑔 top(𝑖), leading to 
ifinite distortion. □

Using this lemma, we can show a lower bound of 4min{𝑚,𝑘} − 1, 
which holds even when the distances between alternatives are known. 
This further shows that Max-Weight-of-Domination is the best pos

sible ordinal mechanism for general instances.

Theorem 3.5. For any 𝑚≥ 3, the distortion of any ordinal distributed mech

anism is 4min{𝑚,𝑘} − 1, even when the locations of the alternatives are 
known.

Proof. We consider an instance with 𝑚 = 𝑘+ 1 alternatives 𝑎, 𝑏, 𝑥1,… , 
𝑥𝑘−1 that are located in the metric space so that they are all at dis

tance 1 from each other.1 Given that all alternatives are symmetric, 
for any instance such that the groups are of the same size 𝜆 ≥ 1 and 
are represented by different alternatives, we can assume without loss of 
generality that the winner is the representative of the last group.

Consider now the following instance in which, for 𝑗 ∈ [𝑘−1], group 
𝑔𝑗 consists of only agents whose favorite alternative is 𝑥𝑗 , while in group 
𝑔𝑘 the top preference of half the agents is 𝑎 and the top preference of 
the remaining half is 𝑏. By Lemma 3.4, 𝑥𝑗 must be the representative of 
group 𝑔𝑗 , 𝑗 ∈ [𝑘 − 1], while either 𝑎 or 𝑏 must be the representative of 

1 As discussed in Remark 2.1 for the proof of Theorem 2.3, we could also have 
more alternatives in this proof as well without any change in the arguments. 
We could also design an instance with some 𝑚 < 𝑘 by having multiple groups 
represented by the same alternative.

Information Processing Letters 189 (2025) 106559 

5 



A.A. Voudouris 

group 𝑔𝑘, say 𝑎. So, by assumption, 𝑎 is also the overall winner. Consider 
the following consistent distances of the agents from the alternatives:

• All agents in the first 𝑘−1 groups are on 𝑎 and report rankings con

sistent to the above structure (that is, the agents of group 𝑔𝑗 rank 𝑥𝑗
first even though they are at distance 1 from all other alternatives);

• In group 𝑔𝑘, the 𝜆∕2 agents that prefer 𝑎 are at distance 1∕2 from 
all alternatives while the 𝜆∕2 agents that prefer 𝑏 are on 𝑎.

Hence,

SW(𝑎) = 𝜆

4 
.

whereas, for any 𝑗 ∈ [𝑘− 1],

SW(𝑥𝑗 ) = (𝑘− 1)𝜆 ⋅ 1 + 𝜆

2 
⋅
1
2
+ 𝜆

2 
⋅ 1 = (𝑘− 1)𝜆+ 3𝜆

4 
.

The distortion is thus at least 4𝑘− 1. □

The construction in the proof of Theorem 3.5 requires at least 3 al

ternatives so that it is possible to have 𝑚 = 𝑘+1 when 𝑘 ≥ 2. Also, since 
these alternatives are equidistant, the underlying metric space cannot be 
a line. Nevertheless, we can show a tight lower bound of 7 even when 
the metric space is a line and there are just two alternatives with known 
locations.

Theorem 3.6. The distortion of any ordinal mechanism is at least 7, even 
when the metric space is a line and there are only two alternatives.

To prove Theorem 3.6, we follow the same methodology as we did 
for showing the corresponding lower bound of 3 for full-information 
mechanisms. Essentially, the same structural lemmas from the previ

ous section hold here as well but the ordinal information allows for the 
agents to be located at different points on the line, which in turn allows 
us to show a larger lower bound of 7.

In all instances in the following construction, there will be two al

ternatives located at 0 and 1 on the line of real numbers. Without loss 
of generality, we again assume that, if there are just two groups and 
each of them has a different representative (that is, one is represented 
by alternative 0 while the other is represented by alternative 1), then 
the winner is 0. Since there are only two alternatives, any group can 
be characterized by the number of agents that prefer alternative 0; for 
any 𝑥 ∈ [0,1], let 𝑔𝑥 be the group in which an 𝑥-fraction of the agents 
prefers alternative 0. All groups will have the same size of 1 (which is 
partitioned into a fraction that prefers alternative 0 and a fraction that 
prefers alternative 1), which allows us to simplify our calculations.

Lemma 3.7. Any ordinal mechanism with distortion strictly smaller than 7
must choose the representative of group 𝑔𝑥 to be alternative 0 for 𝑥 ∈ [3∕4,1]
and alternative 1 for 𝑥 ∈ [0,1∕4].

Proof. Let 𝑥 ∈ [3∕4,1]; the case 𝑥 ∈ [0,1∕4] is symmetric. Suppose 
otherwise that the representative of 𝑔𝑥 is 1 instead of 0. Then, in any in

stance consisting of copies of 𝑔𝑥 (which means that all agents are located 
at 𝑥), 1 is the only representative, and thus the overall winner. Now con

sider the case where the agents of 𝑔𝑥 are located such that the 𝑥-fraction 
of agents that prefer 0 are at 1 and the remaining (1 − 𝑥)-fraction of 
agents that prefer 1 are at 1∕2. Hence, SW(0) = 𝑥+(1−𝑥)∕2 = (1+𝑥)∕2
and SW(1) = (1− 𝑥)∕2, leading to a distortion of at least (1+ 𝑥)∕(1−𝑥), 
which is a non-decreasing function of 𝑥 ≥ 3∕4, and is thus at least 7. □

Lemma 3.8. Suppose an ordinal mechanism with distortion strictly smaller 
than 7 which chooses alternative 1 as the winner when there are 2𝓁 + 1
groups such that 𝓁 of them are represented by 0 while the remaining 𝓁+1 are 
represented by 1, for any 𝓁 ≥ 1. Then, the mechanism must choose alternative 
0 as the representative of group 𝑔(2𝓁+3)∕(4𝓁+4).

Proof. Suppose otherwise that 1 is chosen as the representative of 
group 𝑔(2𝓁+3)∕(4𝓁+4). Then, consider an instance consisting of 2𝓁 +
1 groups such that there are 𝓁 copies of 𝑔1 and 𝓁 + 1 copies of 
𝑔(2𝓁+3)∕(4𝓁+4). By Lemma 3.7, the representative of 𝑔1 must be 0, while 
the representative of 𝑔(2𝓁+3)∕(4𝓁+4) is 1 by assumption. Hence, we have 
an instance in which there are 𝓁 groups represented by 0 and 𝓁+1 rep

resented by 1, leading to 1 being chosen as the winner by the mechanism 
due to the assumption of the statement.

Now consider the following consistent positions for the agents on 
the line: All the agents of 𝑔1 are located at 1, the (2𝓁 + 3)∕(4𝓁 + 4)
fraction of 𝑔(2𝓁+3)∕(4𝓁+4) that prefer 0 are located at 1, and the remaining 
(2𝓁 + 1)∕(4𝓁 + 4)-fraction of 𝑔(2𝓁+3)∕(4𝓁+4) that prefer 1 are located at 
1∕2. Hence,

SW(1) = (𝓁 + 1) ⋅ 2𝓁 + 1
4𝓁 + 4

⋅
1
2
= 2𝓁 + 1

8 
whereas

SW(0) = 𝓁 + (𝓁 + 1) ⋅ 2𝓁 + 3
4𝓁 + 4

+ (𝓁 + 1) ⋅ 2𝓁 + 1
4𝓁 + 4

⋅
1
2
= 14𝓁 + 7

8 
,

leading to a distortion of 7, a contradiction. □

Using Lemmas 3.7 and 3.8, we can now argue that the assumption 
of Lemma 3.8 is true for any low-distortion mechanism.

Lemma 3.9. Any ordinal mechanism with distortion strictly smaller than 7
must choose alternative 1 as the winner when there are 2𝓁 + 1 groups such 
that 𝓁 of them are represented by 0 while the remaining 𝓁+1 are represented 
by 1, for any 𝓁 ≥ 1.

Proof. We will prove the statement by induction using Lemmas 3.7

and 3.8 repeatedly.

Base case: 𝓁 = 1. Suppose otherwise that the mechanism chooses 0 as 
the winner when there are 3 groups such that one of them is represented 
by 0 while the other two are represented by 1. Consider an instance 
consisting of 𝑔3∕4 and two copies of 𝑔0. By Lemma 3.7, the representative 
of 𝑔3∕4 must be 0 (using 𝑥 = 3∕4), while the representative of 𝑔0 must be 
1 (using 𝑥 = 0). Hence, the overall winner is 0. Consider the following 
consistent metric: The 3∕4-fraction in 𝑔3∕4 that prefers 0 is at 1∕2, while 
the remaining 1∕4-fraction in 𝑔1∕4 that prefers 1 as well as all the agents 
in the copies of 𝑔0 are at 0. So, SW(0) = 3

4 ⋅
1
2 = 3∕8 and SW(1) = 3

4 ⋅
1
2 +

1
4 + 2 = 21∕8, leading to a distortion of 7, a contradiction.

Hypothesis: We assume that the statement is true for 𝓁 −1, that is, the 
winner is 1 when there are 2(𝓁 − 1) + 1 = 2𝓁 − 1 groups such that 𝓁 − 1
of them are represented by 0 while the remaining 𝓁 are represented by 
1. Hence, by Lemma 3.8, the mechanism must choose 0 as the represen

tative of group 𝑔(2(𝓁−1)+3)∕(4(𝓁−1)+4) = 𝑔(2𝓁+1)∕(4𝓁).

Induction step: Suppose otherwise that the mechanism chooses 0 as 
the winner when there are 2𝓁 + 1 groups such that 𝓁 of them are rep

resented by 0 while the remaining 𝓁 + 1 are represented by 1. Consider 
an instance consisting of 𝓁 copies of 𝑔(2𝓁+1)∕(4𝓁) which are represented 
by 0 due to our induction hypothesis, and 𝓁 + 1 copies of 𝑔0 which are 
represented by 1 by Lemma 3.7. The metric space is the following: The 
(2𝓁+1)∕(4𝓁)-fraction of each copy of 𝑔(2𝓁+1)∕(4𝓁) that prefers 0 is at 1∕2, 
while the remaining (2𝓁 − 1)∕(4𝓁)-fraction of each copy of 𝑔(2𝓁+1)∕(4𝓁)
that prefers 1 as well as all the agents in the copies of 𝑔0 are at 0. So,

SW(0) = 𝓁 ⋅
2𝓁 + 1
4𝓁

⋅
1
2
= 2𝓁 + 1

8 
and

SW(1) = 𝓁 ⋅
2𝓁 + 1
4𝓁

⋅
1
2
+ 𝓁 ⋅

2𝓁 − 1
4𝓁

+ 𝓁 + 1 = 14𝓁 + 7
4 

,

which means that the distortion is at least 7, a contradiction. □
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We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. By Lemma 3.9 and Lemma 3.8, we have that 
any ordinal mechanism with distortion strictly smaller than 7 must 
choose 0 as the representative of group 𝑔(2𝓁+3)∕(4𝓁+4) for any 𝓁 ≥ 1. 
Taking 𝓁 to ifinity, we have that the mechanism chooses 0 as the rep

resentative of group 𝑔1∕2+𝜀 for some ifinitesimal 𝜀 > 0.

Now consider an instance that consists of 𝑔1∕2+𝜀 and 𝑔0. Since the 
former is represented by 0 and the latter is represented by 1 (due to 
Lemma 3.7), the winner is 0. However, the metric space might be such 
that the (1∕2 + 𝜀)-fraction of 𝑔1∕2+𝜀 that prefers 0 is at 1∕2, while the 
remaining (1∕2 − 𝜀)-fraction of 𝑔1∕2+𝜀 that prefers 1 as well as all the 
agents in 𝑔0 is at 0. Hence, SW(0) ≈ 1∕4 and SW(1) ≈ 1∕4 + 1∕2 + 1 =
7∕4, the distortion is at least 7. □

4. Conclusion

We studied an obnoxious distributed metric voting model and 
showed tight bounds on the distortion of full-information and ordinal 
mechanisms that operate in two steps by first choosing representatives 
for the groups of agents and then choose one of the representatives as 
the overall winner. There are many interesting directions for future re

search. In terms of our model, one could investigate whether improved 
bounds are possible for particular value combinations for 𝑚 (the number 
of alternatives) and 𝑘 (the number of groups), or focus on mechanisms 
that have access to different types of information (e.g., threshold ap

provals [8]), as well as randomized mechanisms. Going beyond our work, 
it would be interesting to study the distortion of obnoxious versions of 
other social choice problems, such as multi-winner voting and partici

patory budgeting.
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