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Abstract
We consider a truthful facility location game in which there is a set of agents with
private locations on the line of real numbers, and the goal is to place a number of facil-
ities at different locations chosen from the set of those reported by the agents. Given
a feasible solution, each agent suffers an individual cost that is either its total dis-
tance to all facilities (sum-variant) or its distance to the farthest facility (max-variant).
For both variants, we show tight bounds on the approximation ratio of strategyproof
mechanisms in terms of the social cost, the total individual cost of the agents.

Keywords Mechanism design · Facility location · Approximation ratio

1 Introduction

Suppose you are the mayor of a small town and your task is to decide where to build
a park and a library on a very busy street to accommodate the needs of the citizens.
One way to make this decision is to simply place the facilities arbitrarily. Even though
this is easy to implement, the chosen locations might not be very accessible and the
citizens most probably will end up complaining and not vote for you in the next
election. Instead, you could ask the citizens to suggest the possible locations where
the facilities could be built and choose one that collectively satisfies them. While this
now seems sufficient enough to get you re-elected, you also need to make sure that the
citizens are incentivized to truthfully suggest their real ideal locations and not lie in
order to minimize the distance they have to walk. This is known as the truthful facility
location game.

A preliminary version of this paper will appear in the Proceedings of the 17th International Symposium
on Algorithmic Game Theory (SAGT), 2024.
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Since the seminal work of Procaccia and Tennenholtz (2013) on approximate mech-
anism design without money, many different variants of the game have been studied
under assumptions about the number of facilities to be placed, the preferences of the
agents for the facilities, and the feasible locations where the facilities can be built; we
refer the reader to the survey of Chan et al. (2021) for an overview, and to our dis-
cussion of related work below. In this work we consider a previously unexplored, yet
fundamental model where the facilities can be built at locations that are dynamically
proposed by the agents, in contrast to previously studied models where the facilities
could be placed either at any location on the line or only at a predetermined set of
fixed candidate locations.

1.1 Our model

We consider the following agent-constrained truthful facility location game. An
instance I consists of a set of n ≥ 2 agents with private locations on the line of
real numbers, and k ≥ 2 facilities that can be placed at different locations chosen from
the (multi-)set of locations reported by the agents. Given a feasible solution x which
determines the agent locations where the k facilities are placed, each agent i suffers
an individual cost. We consider two different models that differ on the cost function
of the agents. In the sum-variant, the cost of i in instance I is its total distance from
the facilities:

costsumi (x|I ) =
∑

x∈x
d(i, x),

where d(i, x) = |i − x | is the distance between the location of agent i and point x on
the line. In the max-variant, the cost of i in instance I is its distance to the farthest
facility:

costmax
i (x|I ) = max

x∈x {d(i, x)}.

Whenever the variant we study is clear from context, we will drop the sum and max
from notation, and simply write costi (x|I ) for the individual cost of i when solution
x is chosen; similarly, we will drop I from notation when the instance is clear from
context and write costi (x). We are interested in choosing solutions that have a small
effect in the overall cost of the agents, which is captured by the social cost objective
function, defined as:

SC(x|I ) =
∑

i

costi (x|I ).

A solution can also be randomized in the sense that it is a probability distribution
p = (px)x over all feasible solutions; the expected social cost of such a randomized
solution is defined appropriately as
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Table 1 An overview of the tight
bounds on the approximation
ratio of deterministic and
randomized strategyproof
mechanisms for the sum- and
max-variants when k = 2

Deterministic Randomized

Sum-variant 3/2 1.0557

Max-variant 3 2

E[SC(p|I )] =
∑

x

px · SC(x|I ).

The solution is decided by a mechanism based on the locations reported by the
agents; let M(I ) be the solution computed by a mechanism M when given as input an
instance I . A mechanism M is said to be strategyproof if no agent i can misreport its
true location and decrease its individual cost; that is,

costi (M(I )|I ) ≤ costi (M(J )|I )

for every pair of instances I and J that differ only on the location reported by agent i .
In case the mechanism is randomized, then it is said to be strategyproof-in-expectation
if no agent i cannot misreport its true location and decrease its expected individual
cost.

The approximation ratio of a mechanism is the worst-case ratio (over all possible
instances) of the (expected) social cost of the chosen solution over the minimum
possible social cost:

sup
I

E[SC(M(I )|I )]
minx SC(x|I ) .

Our goal is to design mechanisms that are strategyproof and achieve an as small
approximation ratio as possible.

1.2 Our contribution

For both individual cost variants, we show tight bounds on the best possible approxi-
mation ratio that can be achieved by strategyproof mechanisms. We start with the case
of k = 2 facilities for whichwe study both deterministic and randomizedmechanisms.
For the sum-variant, in Sect. 2, we show a tight bound of 3/2 for deterministic mecha-
nisms and a bound of 10− 4

√
5 ≈ 1.0557 for randomized ones. For the max-variant,

in Sect. 3, we show bounds of 3 and 2 on the approximation ratio of deterministic and
randomized mechanisms, respectively. An overview of our bounds for k = 2 is given
in Table 1. In Sect. 4, we switch to the general case of k facilities and focus exclusively
on deterministic mechanisms. For the sum-variant, we show that the approximation
ratio is between 2 − 1/k and 2, while for the max-variant, we show a tight bound of
k + 1.

Our upper bounds follow by appropriately defined statistic-type mechanisms that
choose the agent locations where the facilities will be placed according to the ordering
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of the agents on the line from left to right. In particular, for k = 2, our mechanisms
locate one facility at the median agent m and the other either at the agent � that
is directly to the left of m or the agent r that is directly to the right of m. To be
even more specific, our deterministic mechanism always chooses the solution (m, r),
while our randomized mechanisms choose the solutions (�,m) and (m, r) according
to some probability distribution. Interestingly, for the sum-variant, it turns out that
the probabilities are functions of the distances d(�,m) and d(m, r); to the best of
our knowledge, this is one of few settings in which the best possible randomized
strategyproof mechanism is not required to assign fixed, constant probabilities. For
the general case of k facilities, our (deterministic) upper bounds for both variants follow
by a mechanism that is a natural generalization of the one for k = 2; in particular, the
mechanism places the facilities around the median agent(s) within a radius of about
k/2.

1.3 Related work

Truthful facility location games have a long historywithin the literature of approximate
mechanism design without money, starting with the paper of Procaccia and Tennen-
holtz (2013). Various different models have been studied depending on parameters
such as the number of facilities whose location needs to be determined (Procaccia and
Tennenholtz 2013; Lu et al. 2010; Fotakis and Tzamos 2014), whether the facilities
are obnoxious (Cheng et al. 2013), whether the agents have different types of pref-
erences over the facilities (for example, optional (Chen et al. 2020; Kanellopoulos
et al. 2023; Li et al. 2020; Serafino and Ventre 2016), fractional (Fong et al. 2018), or
hybrid (Feigenbaum and Sethuraman 2015)), and whether there are other limitations
or features (for example, the facilities might only be possible to be built at specific
fixed locations (Feldman et al. 2016; Gai et al. 2024; Kanellopoulos et al. 2025; Xu
et al. 2021), there might be limited resources that can be used to build some of the
available facilities rather than all (Deligkas et al. 2023), there might be limited avail-
able information during the decision process (Chan et al. 2023; Filos-Ratsikas et al.
2024), or there might be even more information in the form of predictions about the
optimal facility locations which can be leveraged (Agrawal et al. 2022; Xu and Lu
2022)). We refer the reader to the survey of Chan et al. (2021) for more details on the
different dimensions along which truthful facility location games have been studied
over the years.

When there are multiple facilities to locate, the typical assumption about the indi-
vidual behavior of the agents is that they aim to minimize their distance to the closest
facility (Procaccia and Tennenholtz 2013; Lu et al. 2010; Fotakis and Tzamos 2014;
Tang et al. 2020; Xu and Lu 2022); such a cost model essentially assumes that the
facilities are homogeneous (in the sense that they offer the same service) and thus each
agent is satisfied if it is close enough to one of them. In contrast, both variants (sum
and max) we consider here model different cases in which the facilities are heteroge-
neous (in the sense that they offer different services) and each agent aims to minimize
either the total or the maximum distance to the facilities. These variants have also
been considered in previous works under different assumptions than us; in particular,
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the sum-variant has been studied by Serafino and Ventre (2016); Kanellopoulos et al.
(2025); Gai et al. (2024) and Xu et al. (2021), while the max-variant has been studied
by Chen et al. (2020); Zhao et al. (2023) and Lotfi and Voudouris (2024).

The main differences between our work and the aforementioned ones are the fol-
lowing: Inmost of these papers, the agents have optional preferences over the facilities;
that is, some agents approve one facility and are indifferent to the other, while some
agents approve both facilities. Here, we focus exclusively on the fundamental case
where all agents approve both facilities. In addition, some of these papers study a con-
strained model according to which the facilities can only be built at different locations
chosen from a set of fixed, predetermined candidate ones. In our model, the facilities
can also only be built at different locations, which, however, are chosen from the set
of locations that are reported by the agents; this is a more dynamic setting in the
sense that the candidate locations could change if agents misreport.1 We remark that,
in continuous facility location settings (where the facilities can be placed anywhere
on the line) such as those studied in the original paper of Procaccia and Tennenholtz
(2013) and follow-up work, the class of strategyproof mechanisms consists of mech-
anisms that place the facilities at agent locations (according to their ordering) and
mechanisms that place the facilities at fixed locations disregarding the agent input.
However, to the best of our knowledge, there has not been any previous work that has
studied the model where the candidate locations are restricted to the ones reported by
the agents and feasible solutions are those where the facilities are placed at different
agent locations, an assumption that crucially affects the social cost value of the optimal
solution.

2 Sum-variant for two facilities

We start the presentation of our technical results with the case of k = 2 facilities
and the sum-variant. Recall that in this variant the individual cost of any agent is its
distance from both facilities. We will first argue about the structure of the optimal
solution; this will be extremely helpful in bounding the approximation ratio of our
strategyproof mechanisms later on. We start with the case where the number of agents
n is an even number, for which the optimal solution is well-defined and actually leads
to an optimal strategyproof mechanism.

Lemma 2.1 For any even n ≥ 2, an optimal solution is to place the facilities at the
two median agents.

Proof Let m1 and m2 be two median agents. Suppose that there is an optimal solution
(o1, o2) with o1 ≤ o2. Since any point x ∈ [m1,m2] minimizes the total distance of
all agents from any other point of the line, we have

1 We highlight that that the two models are different in terms of the results as well. For example, in the
sum-variant, we here have shown a tight bound of 3/2 for the case of two facilities, while previous work
has shown a lower bound of 1 + √

2 ≈ 2.42 on the approximation ratio of deterministic strategyproof
mechanisms for the candidate location model Kanellopoulos et al. (2025).
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SC(m1,m2) =
∑

i

d(i,m1) +
∑

i

d(i,m2)

≤
∑

i

d(i, o1) +
∑

i

d(i, o2) = SC(o1, o2),

and thus (m1,m2) is also an optimal solution. ��
Before we continue, we remark that the Two- Medians mechanism, which is

implied by Lemma 2.1, is indeed strategyproof: To change the solution of the mech-
anism, an agent i would have to report a location x > m1 in case i ≤ m1 or
a location x < m2 in case i ≥ m2; such a misreport leads to an individual
cost of at least min{d(i, x), d(i,m2)} + d(i,m2) in the first case and of at least
d(i,m1) + min{d(i, x), d(i,m1)} in the second case, which is at least the true indi-
vidual cost d(i,m1) + d(i,m2) of i . Hence, agent i has no incentive to deviate and
the mechanism is strategyproof.

For the case where the number of agents n ≥ 3 is an odd number, it will be useful
to calculate the social cost of the solutions (�,m) and (m, r), where � and r are the
agents directly to the left and right of the median agent m, respectively.

Lemma 2.2 For any x ∈ {�, r}, the social cost of the solution (x,m) is

SC(x,m) = 2 ·
∑

i

d(i,m) + d(m, x).

Proof By the definition of m and since there is an odd number of agents, we have
|{i ≤ �}| = |{i ≥ r}|. Thus, we can match each agent i ≤ � to a unique agent
μ(i) ≥ r . Since i ≤ � ≤ m ≤ r ≤ μ(i), we have that

d(i, �) + d(μ(i), �) = d(i, r) + d(μ(i), r) = d(i,m) + d(μ(i),m).

Hence, for any x ∈ {�, r},

SC(x,m) =
∑

i

(
d(i,m) + d(i, x)

)

=
∑

i

d(i,m) +
∑

i≤�

(
d(i, x) + d(μ(i), x)

)
+ d(m, x)

=
∑

i

d(i,m) +
∑

i≤�

(
d(i,m) + d(μ(i),m)

)
+ d(m, x)

= 2 ·
∑

i

d(i,m) + d(m, x).

This completes the proof. ��
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Using the above lemma, we can argue about the structure of the optimal solution.

Lemma 2.3 For any odd n ≥ 3, an optimal solution is to place the facilities at the
median agent and the agent that is closest to it.

Proof Clearly, one of � or r is the closest agent tom, say �; hence, d(�,m) ≤ d(m, r).
To simplify our notation, for any x let f (x) = ∑

i d(i, x) denote the total distance of
all agents from x . It is well-known that f is monotone such that f (i) ≥ f (�) ≥ f (m)

for every i ≤ � ≤ m, and f (i) ≥ f (r) ≥ f (m) for every i ≥ r ≥ m. Consequently,
the optimal solution is either (�,m) or (m, r). By Lemma 2.2 with x = � and x = r ,
we get

SC(�,m) − SC(m, r) = d(�,m) − d(m, r).

Since d(�,m) ≤ d(m, r), we conclude that SC(�,m) ≤ SC(m, r) and the solution
(�,m) is indeed the optimal one. ��

It is not hard to observe that when n is odd, computing the optimal solution is not
strategyproof; the second-closest agent to themedianmight have incentive tomisreport
a location slightly closer to the median to move the second facility there. However,
we do know that one of the solutions (�,m) and (m, r) must be optimal. Based on
this, we consider the following Median- Right mechanism: Place one facility at the
position the median agent m and the other at the position of the agent r directly to the
right of m.2 One can verify that this mechanism is strategyproof using an argument
similar to the one we presented above for the Two- Medians mechanism in the case
of even n. So, we continue by bounding its approximation ratio.

Theorem 2.4 For any odd n ≥ 3, the approximation ratio of the Median- Right

mechanism is at most 3/2.

Proof The solution of the mechanism is w = (m, r). If r is the closest agent to m,
then w is optimal by Lemma 2.3. So, assume that this is not the case and the optimal
solution is o = (�,m). By Lemma 2.2 with x = r , we get

SC(w) = 2 ·
∑

i

d(i,m) + d(m, r).

Similarly, for x = �, we get

SC(o) = 2 ·
∑

i

d(i,m) + d(�,m)

≥ 2 ·
∑

i

d(i,m)

≥ 2 · |{i ≥ r}| · d(m, r) = (n − 1) · d(m, r).

2 Clearly, since we are dealing with the case of odd n, instead of this mechanism, one could also consider
the Median- Left mechanism which places the second facility to the agent � that is directly to the left of
m; both mechanisms are symmetric and achieve the same approximation ratio.
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Using these two lower bounds on the optimal social cost, we can now upper-bound
the social cost of w as follows:

SC(w) ≤
(
1 + 1

n − 1

)
· SC(o) = n

n − 1
· SC(o).

Therefore, the approximation ratio is at most n/(n − 1) ≤ 3/2 for any n ≥ 3. ��
The approximation ratio of 3/2 is in fact the best possible that can be achieved by

any deterministic strategyproof mechanism.

Theorem 2.5 The approximation ratio of any deterministic strategyproof mechanism
is at least 3/2.

Proof Consider anydeterministic strategyproofmechanismand an instancewithn = 3
agents located at 0, 1 and 2. Since there are three possible locations for two facilities,
one facility must be placed at 0 or 2, say 0. Then, the cost of the agent i that is located
at 2 is at least 2 (in particular, the cost of this agent is 3 if the solution is (0, 1) and 2
if the solution is (0, 2)).

Now suppose that i moves to 1 + ε for some infinitesimal ε > 0. Due to strate-
gyproofness, the mechanism must place one of the facilities at 0 in the new instance
as well. Otherwise, agent i would have cost 2 − ε and would prefer to misreport its
position as 1 + ε instead of 2. So, the social cost of any of the two possible solutions
(either (0, 1) or (0, 1+ ε)) that the mechanism can output is approximately 3. In con-
trast, the optimal solution is (1, 1+ ε) with social cost approximately 2, leading to an
approximation ratio of 3/2. ��

Since the optimal solution is either (�,m) or (m, r), it is reasonable to think that
randomizing over these two solutions, rather than blindly choosing one of them, can
lead to an improved approximation ratio. Indeed, we can show a significantly smaller
tight bound of 10 − 4

√
5 ≈ 1.0557 for randomized strategyproof mechanisms when

n ≥ 3 is an odd number; recall that, for even n ≥ 2,we can always compute the optimal
solution. For the upper bound, we consider the following Reverse- Proportional

randomized mechanism:With probability p� = d(m,r)
d(�,r) choose the solution (�,m), and

with probability pr = d(�,m)
d(�,r) choose the solution (m, r).

Theorem 2.6 The Reverse- Proportional mechanism is strategyproof-in-
expectation.

Proof Due to symmetry, it suffices to show that no agent i ≥ m has any profitable
deviation. We first consider agent m, and then any agent i ≥ r .
Agent m. The expected individual cost of m is

costm(�,m, r) = d(m, r)

d(�, r)
· d(�,m) + d(�,m)

d(�, r)
· d(m, r) = 2 · d(�,m) · d(m, r)

d(�, r)
.

Suppose now that m deviates to another location x such that � ≤ x < m ≤ r . In
this new instance, the solution (�, x) is chosen with probability d(x, r)/d(�, r) and
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the solution (x, r) is chosen with probability d(�, x)/d(�, r). The expected cost of m
becomes

costm (�, x, r) = d(x, r)

d(�, r)
·
(
d(�,m) + d(x,m)

)
+ d(�, x)

d(�, r)
·
(
d(x,m) + d(m, r)

)

= d(x, r)

d(�, r)
· d(�,m) + d(�, x)

d(�, r)
· d(m, r) + d(x,m)

= d(x,m) + d(m, r)

d(�, r)
· d(�,m) + d(�,m) − d(x,m)

d(�, r)
· d(m, r) + d(x,m)

= costm (�,m, r) + d(x,m)

d(�, r)
· d(�,m) − d(x,m)

d(�, r)
· d(m, r) + d(x,m)

= costm (�,m, r) + d(x,m)

d(�, r)
·
(
d(�, r) + d(�,m) − d(m, r)

)

= costm (�,m, r) + d(x,m)

d(�, r)
· 2d(�,m),

and thus m has no incentive to deviate to such a location x .
Next, suppose that m deviates to a location x such that x < � ≤ m ≤ r . In this new

instance, the solution (x, �) is chosen with probability d(�, r)/d(x, r) and the solution
(�, r) is chosen with probability d(x, �)/d(x, r). The expected cost of m becomes

costm (x, �, r) = d(�, r)

d(x, r)
·
(
d(x,m) + d(�,m)

)
+ d(x, �)

d(x, r)
·
(
d(�,m) + d(m, r)

)

= d(�,m) + d(�, r)

d(x, r)
· d(x,m) + d(x, �)

d(x, r)
· d(m, r)

= d(�,m) + d(�, r)

d(x, �) + d(�, r)
·
(
d(x, �) + d(�,m)

)
+ d(x, �)

d(x, r)
· d(m, r).

As a function of d(�, x) > 0, costm(x, �, r) is a non-decreasing function and thus

costm(x, �, r) > 2 · d(�,m) ≥ 2 · d(�,m) · d(m, r)

d(�, r)
= costm(�,m, r),

where the second inequality follows since d(m, r)/d(�, r) ≤ 1. So, m again has no
incentive to deviate to such a location x .
Agent i ≥ r . The expected individual cost of i is

costi (�,m, r) = d(m, r)

d(�, r)
·
(
d(�, i) + d(m, i)

)
+ d(�,m)

d(�, r)
·
(
d(m, i) + d(r , i)

)

= d(m, i) + d(m, r)

d(�, r)
·
(
d(�, r) + d(r , i)

)
+ d(�,m)

d(�, r)
· d(r , i)

= d(m, i) + d(m, r) + d(r , i)

= 2 · d(m, i).

First consider a deviation of i to a location that retains the order of � andm but changes
the location of the agent directly to the right of m to x ≥ m. That is, the three middle
agents have locations �, m, and x . In this new instance, the solution (�,m) is chosen
with probability d(m, x)/d(�, x) and the solution (m, x) is chosen with probability
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d(�,m)/d(�, x). Hence, the expected individual cost of i is

costi (�,m, x) = d(m, x)

d(�, x)
·
(
d(�, i) + d(m, i)

)
+ d(�,m)

d(�, x)

(
d(m, i) + d(x, i)

)

= d(m, i) + d(m, x)

d(�, x)
· d(�, i) + d(�,m)

d(�, x)
· d(x, i).

We now consider the following two cases depending on the relative positions of r and
x .

• Ifm ≤ x ≤ r ≤ i , then since d(�, i) = d(�, x)+d(x, i) and d(m, i) = d(m, x)+
d(x, i), we have

costr (�,m, x) = d(m, i) + d(m, x)

d(�, x)
·
(
d(�, x) + d(x, i)

)
+ d(�,m)

d(�, x)
· d(x, i)

= d(m, i) + d(m, x) + d(x, i)

= 2 · d(m, i),

and thus i does not decrease its cost.
• If m ≤ r < x , then it must be the case that i = r since no agent i > r can
deviate to location x > r and be closer to m than r . Since d(x, r) > 0, d(m, x) =
d(m, r) + d(x, r), d(�, r) ≥ d(m, r) and d(�, r) + d(x, r) = d(�, x), we have

costr (�,m, x) > d(m, r) + d(m, r) + d(x, r)

d(�, x)
· d(�, r)

= d(m, r) + d(m, r)

d(�, x)
· d(�, r) + d(�, r)

d(�, x)
· d(x, r)

≥ d(m, r) + d(m, r)

d(�, x)
· d(�, r) + d(m, r)

d(�, x)
· d(x, r)

= d(m, r) + d(m, r)

d(�, x)
·
(
d(�, r) + d(x, r)

)

= 2 · d(m, r).

Hence, again r does not decrease its cost.

Finally, consider the case where agent i ≥ r deviates to a location at the left of m
such that the three middle agents have locations x ≤ �, y ≤ m and z ≤ m instead
of �, m and r . In this new instance, the solutions (x, y) and (y, z) are chosen with
positive probability. Since x, y, z ≤ m, the individual cost of i for the solution (x, y)
is d(x, i)+d(y, i) ≥ 2 ·d(m, i) and, similarly, the individual cost of i for the solution
(y, z) is d(y, i)+ d(z, i) ≥ 2 · d(m, i). Consequently, the expected cost of i is at least
2 · d(m, i) = di (�,m, r) for any probability distribution over the solutions (x, y) and
(y, z), which means that i has no incentive to deviate. ��
Theorem 2.7 For any odd n ≥ 3, the approximation ratio of the Reverse-

Proportional mechanism is at most 10 − 4
√
5 ≈ 1.0557.
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Proof Without loss of generality, suppose that d(�,m) ≤ d(m, r) and thus the optimal
solution is o = (�,m). By the definition of the mechanism, the solutions d(�,m) and
d(m, r) are chosen with probability p� = d(m, r)/d(�, r) and pr = d(�,m)/d(�, r),
respectively; observe that p� ≥ pr . By Lemma 2.2 with x = � and using the fact
that that d(�,m) + d(m, r) = d(�, r), we can lower-bound the optimal social cost as
follows:

SC(o) = 2 ·
∑

i

d(i,m) + d(�,m) ≥ 2 · d(�, r) + d(�,m).

Again using Lemma 2.2 with x = � and x = r , as well as the fact that p� = 1 − pr ,
we can write the expected social cost of the randomized solution w chosen by the
mechanism as

E[SC(w)] = p� ·
(
2 ·

∑

i

d(i,m) + d(�,m)

)
+ pr ·

(
2 ·

∑

i

d(i,m) + d(m, r)

)

= 2 ·
∑

i

d(i,m) + (1 − pr ) · d(�,m) + pr · d(m, r)

= 2 ·
∑

i

d(i,m) + d(�,m) + pr ·
(
d(m, r) − d(�,m)

)

= SC(o) + pr ·
(
d(m, r) − d(�,m)

)
.

Consequently, the approximation ratio is

E[SC(w)]
SC(o)

≤ 1 + pr · d(m, r) − d(�,m)

2 · d(�, r) + d(�,m)

= 1 + pr ·
d(m,r)
d(�,r) − d(�,m)

d(�,r)

2 + d(�,m)
d(�,r)

= 1 + pr · p� − pr
2 + pr

Using the fact that p� = 1 − pr , we finally have that

E[SC(w)]
SC(o)

≤ 1 + pr · 1 − 2 · pr
2 + pr

.

The last expression attains itsmaximumvalue of 10−4
√
5 ≈ 1.0557 for pr = √

5−2.
��

Next, we will argue that theReverse- Proportionalmechanism is the best possi-
ble by showing a matching lower bound on the approximation ratio of any randomized
strategyproof-in-expectation mechanism. To do this, we will use instances with three
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agents for which we first show the following technical lemma that reduces the class
of mechanisms to consider.

Lemma 2.8 Consider any instance with three agents located at x < y < z. For any
randomized mechanism M that assigns positive probability to the solution (x, z),
there exists a randomized mechanism M0 that assigns 0 probability to that solution
and achieves at most as much expected social cost as M.

Proof Let pxy , pyz and pxz be the probabilities assigned to the three possible solutions
(x, y), (y, z) and (x, z), with pxz > 0. The social cost of each solution is

SC(x, y) = d(x, y) + d(x, y) + d(x, z) + d(y, z) = 3 · d(x, y) + 2 · d(y, z),

SC(y, z) = d(x, y) + d(x, z) + d(y, z) + d(y, z) = 2 · d(x, y) + 3 · d(y, z),

SC(x, z) = d(x, z) + d(x, y) + d(y, z) + d(x, z) = 3 · d(x, y) + 3 · d(y, z).

So, the expected social cost of the randomized solution p = (pxy, pyz, pxz) computed
is

E[SC(p)] =
(
3pxy + 2pyz + 3pxz

)
· d(x, y) +

(
2pxy + 3pyz + 3pxz

)
· d(y, z)

= 2 ·
(
d(x, y)+d(y, z)

)
+

(
pxy+ pxz

)
· d(x, y)+

(
pyz+ pxz

)
· d(y, z).

Clearly, for any λ ∈ (0, 1),

E[SC(p)] ≥ 2 ·
(
d(x, y) + d(y, z)

)
+

(
pxy + λ · pxz

)
· d(x, y)

+
(
pyz + (1 − λ)pxz

)
· d(y, z).

The last expression is exactly equal to the expected social cost of the randomized
solution q that assigns probabilities qxy = pxy + λ · pxz , qyz = pyz + (1 − λ)pxz ,
and qxz = 0, thus showing the claim that E[SC(p)] ≥ E[SC(q)]. ��

Using the above lemma, we can now show the desired lower bound.

Theorem 2.9 For the sum-variant, the approximation ratio of any randomized
strategyproof-in-expectation mechanism is at least 10 − 4

√
5 ≈ 1.0557.

Proof Consider any randomized strategyproof mechanism and an instance I with
three agents located at 0, 1 and 2. Let p0(I ) and p1(I ) be the probabilities assigned to
solutions (0, 1) and (1, 2), respectively. By Lemma 2.8, we can assume that p0(I ) +
p1(I ) = 1, and thus suppose that p0(I ) ≥ 1/2without loss of generality. The expected
individual cost of the agent i that is located at 2 is then

3 · p0(I ) + 1 · p1(I ) · 1 = 3 · p0(I ) + 1 − p0(I ) = 2 · p0(I ) + 1 ≥ 2.
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Now consider an instance J with three agents located at 0, 1 and x = 1/q ∈ (1, 2),
where q = 3 − √

5 ≈ 0.764; hence, the only different between I and J is that agent
i is now located at x rather than 2. Let p0(J ) and px (J ) be the probabilities assigned
to solutions (0, 1) and (1, x), respectively. Again, using Lemma 2.8 we can assume
that p0(J ) + px (J ) = 1; any other case would achieve worse approximation ratio.
Suppose that px (J ) > q. Then, the expected cost of agent i when misreporting its
position as 1/q rather than 2 would be

3 · p0(J ) +
(
1 + 2 − 1

q

)
· px (J ) = 3 ·

(
1 − px (J )

)
+

(
3 − 1

q

)
· px (J )

= 3 − 1

q
· px (J ) < 2

and agent i would manipulate the mechanism. Therefore, for the mechanism to be
strategyproof, it has to be the case that px (J ) ≤ q, and thus p0(J ) ≥ 1 − q.

In instance J , the optimal solution is (1, x)with social cost 1+1/q+2(1/q−1) =
3/q − 1. Since the social cost of the solution (0, 1) is 2+ 1/q + 1/q − 1 = 2/q + 1,
the approximation ratio is

p0(J ) · SC(0, 1) + px (J ) · SC(1, x)

SC(1, x)
= px (J ) + p0(J ) · 2/q + 1

3/q − 1

= 1 − p0(J ) + p0(J ) · 2 + q

3 − q

= 1 + p0(J ) · 2q − 1

3 − q

≥ 1 + (1 − q) · 1 − 2(1 − q)

2 + (1 − q)
= 10 − 4

√
5.

Hence, the approximation ratio is at least 10 − 4
√
5 ≈ 1.0557. ��

3 Max-variant for two facilities

We now turn our attention to the max-variant in which the individual cost of any agent
is its distance from the farthest facility. One might be tempted to assume that the
optimal solution has the same structure as in the sum-variant, which trivially holds
for the case of n = 2 agents. However, this is not true as the following example
demonstrates: Consider an instance with n = 4 agents with locations −1/2, 0, 1, and
2. The optimal solution is (−1/2, 0) with a social cost of 5; note that the two-medians
solution (0, 1), which is optimal for the sum-variant according to Lemma 2.1, has
social cost 11/2.

In spite of this, we do not require the exact structure of the optimal solution to
identify the best possible strategyproof mechanisms. For the class of deterministic
mechanisms, we once again consider theMedian- Rightmechanism; recall that this
mechanism places one facility at the (leftmost) median agentm and the other at agent r
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that is directly to the right of m. This mechanism is strategyproof for the max-variant
as well: The true individual cost of any agent i ≥ r is d(i,m), and any misreport
x ≥ m of does not change it, while any misreport x < m can only lead to a larger
cost; the case of i < m is similar. We next show that this mechanism always achieves
an approximation ratio of at most 3, and it can achieve an improved approximation
ratio of at most 2 when the number of agents is even.3

Theorem 3.1 The approximation ratio of theMedian- Right mechanism is at most 2
for any even n ≥ 4 and at most 3 for any odd n ≥ 3.

Proof Let w = (m, r) be the solution chosen by the mechanism, and denote by o an
optimal solution. Observe that costi (w) = d(i, r) for every i ≤ m and costi (w) =
d(i,m) for every i ≥ r . Hence,

SC(w) =
∑

i≤m

d(i, r) +
∑

i≥r

d(i,m) =
∑

i

d(i,m) + |{i ≤ m}| · d(m, r).

For the optimal solution o, since the location of the median agent is the point that
minimizes the total distance from all agents, we have that

SC(o) ≥
∑

i

d(i,m).

In addition, since there are two facilities to be placed, in o one facility must be placed
at the position of some agent o ≤ m or o ≥ r . In the former case, we have that

∀i ≥ r : costi (o) ≥ d(i, o) = d(i, r) + d(m, r) + d(m, o) ≥ d(m, r).

In the latter case, we have that

∀i ≤ m : costi (o) ≥ d(i, o) = d(i,m) + d(m, r) + d(r , o) ≥ d(m, r).

Since |{i ≤ m}| ≥ |{i ≥ r}| by the definition of m and r , we have established that, in
any case,

SC(o) ≥ |{i ≥ r}| · d(m, r).

Using these two lower bounds on the optimal social cost, we can upper-bound the
social cost of w as follows:

SC(w) ≤
(
1 + |{i ≤ m}|

|{i ≥ r}|
)

· SC(o).

3 We remark that since Median- Right is a strategyproof mechanism for both the sum- and the max-
variant, the upper bound of 3 on its approximation ratio for the max-variant follows directly from the upper
bound of 3/2 on its approximation ratio for the sum-variant; this is due to the sum and max individual cost
functions being within a factor of 2 of each other (see (Lotfi and Voudouris 2024)). The bound can also be
derived by setting k = 2 to the more general bound of k + 1 that we show for the case of multiple facilities
in Sect. 4.2. Nevertheless, we include a full proof for completeness (and to also capture the case of even n
which will be useful later in the analysis of our randomized mechanism).
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When n ≥ 4 is even, by the definition of m and r , we have that |{i ≤ m}| = |{i ≥
r}| = n/2, leading to an approximation ratio of at most 2. When n ≥ 3 is odd, we
have that |{i ≤ m}| = (n+1)/2 and |{i ≥ r}| = (n−1)/2, leading to an upper bound
of 1 + |{i ≤ m}|/|{i ≥ r}| ≤ 2n/(n − 1) ≤ 3. ��

We now show that the Median- Right mechanism is the best possible by show-
ing a matching lower bound of 3 on the worst-case (over all possible instances)
approximation ratio of any deterministic strategyproof mechanism.

Theorem 3.2 The approximation ratio of any deterministic strategyproof mechanism
is at least 3.

Proof Consider an instance with n = 3 agents positioned at 0, 1, and 2. Since there
are three possible locations for two facilities, one facility must be placed at 0 or 2, say
0. Then, the cost of the agent at position 2 is at most 2. Now consider a new instance
in which this agent moves to 1. Due to strategyproofness, one of the facilities must
still be placed at 0 since, otherwise, the agent that moved from 2 to 1 would decrease
her cost from 2 to at most 1. Hence, the social cost of the solution computed by the
mechanism is 3. On the other hand, placing the two facilities at 1 leads to social cost
1, and the approximation ratio is at least 3. ��

While no deterministic strategyproof mechanism can achieve an approximation
ratio better than 3 in general, as we have already seen in Theorem 3.1, the Median-

Right mechanism actually has an approximation ratio of at most 2 when n is an
even number. We next show that when the number of agents n ≥ 3 is odd (which is
the worst class of instances for deterministic mechanisms), it is possible to design a
randomized strategyproof mechanism with improved approximation ratio of at most
2. In particular, we consider the followingUniformmechanism:With probability 1/2
choose the solution (�,m), and with probability 1/2 choose the solution (m, r). This
mechanism is clearly strategyproof-in-expectation as it is defines a constant probability
distribution over two deterministic strategyproof mechanisms (theMedian- Left and
theMedian- Right).

Theorem 3.3 For any odd n ≥ 3, the approximation ratio of theUniformmechanism
is at most 2.

Proof Since there is an odd number n ≥ 3 of agents, by the definition of m, we have
that |{i ≥ m}| = |{i ≤ m}| = (n+ 1)/2. Hence, we can write the expected social cost
of the randomized solution w chosen by the mechanism as follows:

E[SC(w)] = 1

2

( ∑

i≤�

d(i,m) +
∑

i≥m

d(i, �)

)
+ 1

2

( ∑

i≤m

d(i, r) +
∑

i≥r

d(i,m)

)

=
∑

i

d(i,m) + 1

2
|{i ≥ m}| · d(�,m) + 1

2
|{i ≤ m}| · d(m, r)

=
∑

i

d(i,m) + 1

2
· n + 1

2
· d(�, r).
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For the optimal solution o, since the position of the median agent is the point that
minimizes the total distance from all agents, we have that

SC(o) ≥
∑

i

d(i,m).

Since there are two facilities to be placed, in o one facility must be placed at the
position of some agent o ≤ � or o ≥ r . In the former case, we have that

∀i ≥ r : costi (o) ≥ d(i, o) = d(i, r) + d(r ,m) + d(m, �) + d(�, o) ≥ d(�, r).

In the latter case, we have that

∀i ≤ � : costi (o) ≥ d(i, o) = d(i, �) + d(�,m) + d(m, r) + d(r , o) ≥ d(�, r).

Since |{i ≥ r}| = |{i ≤ �}| = (n − 1)/2 by the definition of � and r , we have
established that

SC(o) ≥ n − 1

2
· d(�, r).

Using these two lower bounds on the optimal social cost, we can upper-bound the
social cost of w as follows:

E[SC(w)] ≤
(
1 + 1

2
· n + 1

2
· 2

n − 1

)
· SC(o) = 3n − 1

2n − 2
· SC(o).

Hence, the approximation ratio is at most (3n − 1)/(2n − 2) ≤ 2 for n ≥ 3. ��
Finally, we show 2 is the best possible approximation ratio for any randomized

strategyproof-in-expectation mechanism.

Theorem 3.4 The approximation ratio of any randomized strategyproof-in-
expectation mechanism is at least 2.

Proof We consider the same instance I as in the proof of Theorem 3.2. So, there are
three agents with locations 0, 1, and 2. Since there are three possible locations for two
facilities, there is probability p ≥ 1/2 that one of the facilities will be placed at 0 or 2,
say 0. Then, the expected cost of the agent at position 2 is equal to 2p+1− p = p+1.

Now consider the instance J in which this agent moves to 1. If there is probabil-
ity q < p that a facility is placed at 0 in J , then the agent would have decreased
her expected cost from p + 1 to q + 1, which contradicts that the mechanism is
strategyproof-in-expectation. Hence, one facility must be placed at 0 with probability
at least p ≥ 1/2 in J , which means that the expected social cost is

p · SC(0, 1) + (1 − p) · SC(1, 1) = 3p + 1 − p = 2p + 1 ≥ 2.

However, the optimal social cost is SC(1, 1) = 1, leading to an approximation ratio
of at least 2. ��

123



Journal of Combinatorial Optimization (2025) 49 :24 Page 17 of 24 24

4 Deterministic mechanisms for multiple facilities

Having completely resolved the case of k = 2 facilities in the previous two sections,
we now consider the general case of k facilities for which we present (asymptotically)
tight bounds on the approximation ratio of deterministic strategyproof mechanisms.

4.1 Sum-variant

We again start with the sum-variant and first argue about the structure of the optimal
solution when there are k facilities to be placed.

Lemma 4.1 For the sum-variant, an optimal solution is to place the facilities at a set
of consecutive agents that includes the median agent(s).

Proof Let m by a median agent (note that there might be two in case the number of
agents is even). The lemma follows directly by the fact that the social cost is the sum
of the distances of the agents from all facility locations and the monotonicity property
of the total distance function f (x) = ∑

i d(i, x) that f (x) ≥ f (y) ≥ f (m) for every
x ≤ y ≤ m or m ≤ y ≤ x . ��

We now show our upper bound by considering a generalization of the Median-

Right mechanism that we used for k = 2. If k ≥ 2 is even, our mechanism places
the facilities at the (leftmost) median agent m, at the k/2 − 1 agents at the left of m,
and at the k/2 agents at the right of m (which might include the second median agent
in case of an even overall number of agents). If k ≥ 3 is odd, the mechanism places
the facilities at the (leftmost) median agent m, at the (k − 1)/2 agents at the left of
m, and at the (k − 1)/2 agents at the right of m. We will refer to this mechanism as
Median- Ball (given that it places the facilities around the median agent within a
radius of about k/2 in each direction).

Since themechanismbases its decision only on the ordering of the agents on the line,
it is clearly strategyproof for the same reason that Median- Right is strategyproof
when k = 2, so in the following we focus on bounding its approximation ratio.

Theorem 4.2 For the sum-variant, the approximation ratio of the Median- Ball

mechanism is at most 2.

Proof We present the proof for an odd number k ≥ 3 of facilities; the proof is similar
for even k. Let w = (x(k−1)/2, . . . , x1,m, y1, . . . , y(k−1)/2) be the solution computed
by the mechanism. To compute the social cost of w, we first consider the agents that
are not part of the solution. Let S< and S> be the sets of agents that are to the left
of agent x(k−1)/2 and to the right of agent y(k−1)/2, respectively. Also, let X be the
indicator variable that is 1 if n is even and 0 otherwise. By definition, we have that
|S<| = |S>|− 1 if X = 1, and |S<| = |S>| otherwise. In any case, since |S<| ≤ |S>|,
we can match every agent i ∈ S< to an agent μ(i) ∈ S> and observe that, for any
w ∈ w,

d(i, w) + d(μ(i), w) = d(i,m) + d(μ(i),m).
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Clearly, if the number of agents is even, there will be an agent R ∈ S> that is left
unmatched4; for this agent R, if it exists, we use the fact that d(x�, R) = d(x�, y�) +
d(y�, R). Given this, we have

∑

i /∈w
costi (w) =

∑

i∈S<

(
costi (w) + costμ(i)(w)

)
+ X · costR(w)

=
∑

i∈S<

∑

w∈w

(
d(i,m) + d(μ(i),m)

)
+ X ·

∑

w∈w
d(R, w)

= k ·
∑

i /∈w∪{R}
d(i,m)

+ X ·
( (k−1)/2∑

�=1

d(x�, y�) + 2
(k−1)/2∑

�=1

d(R, y�) + d(R,m)

)
.

Next, we consider the agents that are part of the solution w and the distances between
them. Consider any two agents x, y ∈ w between which there are t different agents.
For each such agent i ∈ (x, y), we need to take into account the distance of x to i , the
distance of i to x , the distance of y to i , and the distance of i to y. All together, these
distances are exactly

2 (d(x, i) + d(i, y)) = 2 · d(x, y).

Accounting for the agents x and y aswell, we have that the contribution of the distances
of all agents in [x, y] to the social cost is

(2t + 2) · d(x, y).

We can now use this observation for all pairs of agents (x�, y�) for � ∈ [(k − 1)/2]
(note that by doing this we will have calculated the distances of all agents in w from
all agents in w, including m). Since there are 2� − 1 agents between x� and y�, the
distance d(x�, y�) has a coefficient of 4� in the social cost.5 Hence,

∑

i∈w
costi (w) =

(k−1)/2∑

�=1

4� · d(x�, y�) ≤ 2(k − 1)
(k−1)/2∑

�=1

d(x�, y�).

Putting everything together, we have

4 Note that, if k is even, there might be an agent in S< that is left unmatched instead of an agent in S>.
5 If k is even, for any (x�, y�) for � ∈ [k/2] with x1 = m, there are 2� − 2 agents between x� and y�,
leading to a coefficient of 4� − 2 for the distance d(x�, y�).
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SC(w) ≤ k ·
∑

i /∈w∪{R}
d(i,m) + X ·

(
2

(k−1)/2∑

�=1

d(R, y�) + d(R,m)

)

+ (2k − 2 + X) ·
(k−1)/2∑

�=1

d(x�, y�). (1)

We now focus on bounding the optimal social cost. By Lemma 4.1, the optimal
solution o can be thought of as a shift of w towards the left or the right. We will only
consider the case where the shift is towards the right; the other case can be handled
similarly and is simpler since the agent R, if it exists, will have larger cost in the optimal
solution, thus leading to a smaller bound on the approximation ratio. We again start
by considering the agents that are not part of the solution w. As before, consider the
same matching μ of the agents in S< to the agents in S>. Let o ∈ o be some agent that
is part of the optimal solution. For any agent i ∈ S< such that o ≤ μ(i), we have that

d(i, o) + d(μ(i), o) = d(i,m) + d(μ(i),m).

On the other hand, for any agent i ∈ S< such that μ(i) < o,

d(i, o) = d(i, μ(i)) + d(μ(i), o) ≥ d(i,m) + d(μ(i),m).

Therefore,

∑

i /∈w
costi (o) =

∑

i∈S<

(
costi (o) + costμ(i)(o)

)
+ X · costR(o)

=
∑

i∈S<

∑

o∈o

(
d(i,m) + d(μ(i),m)

)
+ X ·

∑

o∈o
d(R, o)

≥ k ·
∑

i /∈w∪{R}
d(i,m) + X ·

( (k−1)/2∑

�=1

d(R, y�) + d(R,m)

)
.

Next, consider agent x� for � ∈ [(k − 1)/2] and let o ∈ o. If o ≤ y�, then

d(x�, o) + d(o, y�) = d(x�, y�),

Otherwise, if o > y�, then

d(x�, o) = d(x�, y�) + d(y�, o) > d(x�, y�).

Hence, we overall have that

∑

i∈w
costi (o) ≥

(k−1)/2∑

�=1

∑

o∈o

(
d(x�, o) + d(y�, o)

)
≥ k ·

(k−1)/2∑

�=1

d(x�, y�).
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Putting everything together, we have

SC(o)≥k ·
∑

i /∈w∪{R}
d(i,m)+X ·

( (k−1)/2∑

�=1

d(R, y�)+d(R,m)

)
+k ·

(k−1)/2∑

�=1

d(x�, y�)

≥ X ·
(k−1)/2∑

�=1

d(R, y�) + k ·
(k−1)/2∑

�=1

d(x�, y�).

It is now not hard to observe that (1) implies

SC(w) ≤ SC(o) + X ·
(k−1)/2∑

�=1

d(R, y�) + (k − 2 + X) ·
(k−1)/2∑

�=1

d(x�, y�)

≤ SC(o) + X ·
(k−1)/2∑

�=1

d(R, y�) + k ·
(k−1)/2∑

�=1

d(x�, y�)

≤ 2 · SC(o).

This completes the proof. ��
Wenext provide an asymptotically tight lower bound of 2−1/k using a construction

that is a generalization of the one in the proof of Theorem 2.5 for k = 2, where instead
of having just 3 agents, we now have k + 1.

Theorem 4.3 For the sum-variant, when there are k facilities to locate, the approxi-
mation ratio of any deterministic strategyproof mechanism is at least 2 − 1/k.

Proof Consider an instance with n = k + 1 agents with one agent at 0, k − 1 agents
at 1 (or very close to 1) and one agent at 2. Since not all facilities can be placed at 1,
at least one of them has to be placed 0 or 2, say 0. Then, the cost of the agent i that is
located 2 is at least k (in particular, the cost of i is 2 + k − 1 = k + 1 if no facility is
placed at 2, and 2 + k − 2 = k if a facility is placed at 2).

Now consider a new instance in which i has moved to 1+ ε for some infinitesimal
ε > 0. Due to strategyproofness, the mechanism must place one of the facilities at
0 as well. Otherwise, agent i would have cost k − ε according to its position in the
original instance, and would thus prefer to misreport its position as 1 + ε instead of
2. So, in the new instance, the social cost of any possible solution that is restricted to
having a facility at 0 is approximately k − 1 + k = 2k − 1, while the social cost of
the remaining solution is only k, leading to an approximation ratio of 2 − 1/k. ��

4.2 Max-variant

For the max-variant, we will show a tight bound of k + 1 on the approximation ratio
of deterministic strategyproof mechanisms. The upper bound again follows by the
Median- Ball mechanism; note the upper bound of 2 on the approximation ratio of
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Median- Ball for the sum-variant immediately implies an upper bound of 2k for the
max-variant, which however is not the best possible we can show.

Theorem 4.4 For the max-variant, the approximation ratio of the Median- Ball

mechanism is at most k + 1.

Proof Let � and r be the leftmost and rightmost agents in the solution w computed by
the mechanism. By the definition of w, we have that ||{i ≤ �}|− |{i ≥ r}|| ≤ 1. Since
the individual cost of any agent i is the distance to its farthest facility, we have

costi (w) =

⎧
⎪⎨

⎪⎩

d(i, r) if i ≤ �

max{d(i, �), d(i, r)} if i ∈ w \ {�, r}
d(i, �) if i ≥ r .

Given this, and using the fact that d(i, x) ≤ d(i,m) + d(m, x) for any x ∈ {�, r}, we
can bound the social cost of w as

SC(w) =
∑

i≤�

d(i, r) +
∑

i∈w\{�,r}
max{d(i, �), d(i, r)} +

∑

i≥r

d(i, �)

≤
∑

i

d(i,m) + |{i ≤ �}| · d(m, r) + (k − 2) · max{d(�,m), d(m, r)}

+ |{i ≥ r}| · d(�,m)

≤
∑

i

d(i,m) +
(
max

{|{i ≤ �}|, |{i ≥ r}|} + k − 2

)
· d(�, r).

We now bound the social cost of an optimal solution o. Since the location of the
median agentm minimizes the total distance of all agents, if we were allowed to place
the facilities at the same location, we would place all k facilities at m to minimize the
social cost. Since this is not allowed in our model, the optimal social cost is larger
than that, and we obtain

SC(o) ≥
∑

i

d(i,m).

In addition, since w is not optimal (as otherwise the approximation ratio would be
1), at least one facility must be placed at an agent o that is weakly to the left of � or
weakly to right of r . Let S be the set of agents that are not part of the solution w and
are on the opposite side of o; that is, S = {i ≥ r} if o ≤ � and S = {r ≤ �} if o ≥ r .
For each agent i ∈ S, we have that

costi (o) ≥ d(i, o) ≥ d(�, r),

which implies

SC(o) ≥ |S| · d(�, r) ≥ min
{|{i ≤ �}|, |{i ≥ r}|} · d(�, r).
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Putting everything together, we have that

SC(w) ≤
(
1 + max

{|{i ≤ �}|, |{i ≥ r}|} + k − 2

min
{|{i ≤ �}|, |{i ≥ r}|}

)
· SC(o).

Since max
{|{i ≤ �}|, |{i ≥ r}|} ≤ min

{|{i ≤ �}|, |{i ≥ r}|} + 1 and min
{|{i ≤

�}|, |{i ≥ r}|} ≥ 1, we obtain an upper bound of k + 1 on the approximation ratio. ��
We conclude the presentation of our technical results with a matching lower bound

of k + 1 on the approximation ratio of deterministic mechanisms for the max-variant,
thus completely resolving this setting.

Theorem 4.5 For the max-variant, when there are k facilities to locate, the approxi-
mation ratio of any deterministic strategyproof mechanism is at least k + 1.

Proof Consider an instance with n = k + 1 agents with one agent at 0, k − 1 agents
at 1 (or very close to 1) and one agent at 2. Since not all facilities can be placed at 1,
at least one of them has to be placed 0 or 2, say 0. Then, the cost of the agent i that is
located 2 is 2.

Now consider a new instance in which i has moved to 1. Due to strategyproofness,
the mechanism must place one of the facilities at 0 as well. Otherwise, if all facilities
are placed at 1, agent i would have cost 1 according to its position in the original
instance, and would thus prefer to misreport its position as 1 instead of 2. So, in
the new instance, the social cost of the solution chosen by the mechanism is k + 1,
while the social cost of solution that places all facilities at 1 is just 1, leading to an
approximation ratio of k + 1. ��

5 Conclusion and open problems

In this work, we showed tight bounds on the best possible approximation ratio of
deterministic and randomized strategyproof mechanisms for the heterogeneous two-
facility location game where the facilities can be placed at the reported agent locations
and the individual cost of an agent is either its distance from both facilities or its
distance to the farthest facility. We believe there are many directions for future work.
In terms of our results, it would be interesting to close the gap between 2 − 1/k and
2 for the sum-variant and multiple facilities, consider randomized mechanisms, as
well as refine our approximation ratio bounds as functions of the number n of agents.
One can also consider the alternative model of homogeneous facilities where the cost
of agent is its distance from its closest facility. Furthermore, one can generalize the
agent-constrained model in multiple dimensions, for example, by considering agents
that might have different preferences over the facilities (such as optional or fractional
preferences), and the efficiency of mechanisms is measured by objective functions
beyond the social cost (such as the egalitarian cost, or the more general family of
�-centrum objectives).
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