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Abstract.
Objective. Race driving is a complex motor task that involves multiple concurrent cognitive

processes in different brain regions coordinated to maintain and optimize speed and control.
Delineating the neuroplasticity accompanying the acquisition of complex and fine motor skills
such as racing is crucial to elucidate how these are gradually encoded in the brain and inform
new training regimes. This study aims, first, to identify the neural correlates of learning to
drive a racing car using non-invasive electroencephalography (EEG) imaging and longitudinal
monitoring. Second, we gather evidence on the potential role of transcranial Direct Current
Stimulation (tDCS) in enhancing the training outcome of race drivers. Approach. We collected
and analyzed multimodal experimental data, including drivers’ EEG and telemetry from a
driving simulator to identify neuromarkers of race driving proficiency and assess the potential
to improve training through anodal tDCS. Main Results. Our findings indicate that theta-
band EEG rhythms and alpha-band effective functional connectivity between frontocentral and
occipital cortical areas are significant neuromarkers for acquiring racing skills. We also observed
signs of a potential tDCS effect in accelerating the learning process. Significance These results
provide a foundation for future research to develop innovative race-driving training protocols
using neurotechnology.

Keywords: race driving, electroencephalography, learning, brain plasticity, functional
connectivity, neuromarkers, neurotechnology, transcranial Direct Current Stimulation
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1. Introduction

Motor skill learning [1] is a fundamental aspect of
human development [2], as well as of professional [3]
and everyday life function. However, the mechanisms
underlying the acquisition of complex motor skills,
such as race driving, remain poorly understood.
Complex motor learning involves two major aspects:
the acquisition of motor skills, substantiated by
performance improvements, and their consolidation,
as the ability to retain these skills long-term and
after long pauses. Recent studies consistently point
to the pivotal role played by the cerebellum and the
primary motor cortex (M1) in both the acquisition
and retention of complex motor capabilities [4, 5]. A
great body of neuroimaging literature has nowadays
established well that brain plasticity plays a pivotal
role in learning [6], influencing everything from the
learning of new motor skills to recovery from brain
injuries [7, 8]. Gaining a comprehensive understanding
of the neuroplasticity mechanisms involved in building
up complex motor repertoires can lead to the
development of tools and strategies to enhance or
accelerate learning in healthy individuals and to aid
recovery in patients with central nervous system
injuries, thus constituting a goal with significant
scientific, translational and technological implications.

One of the main questions related to human brain
plasticity revolves around understanding how sensory,
motor, and cognitive functions undergo adaptation
throughout a longitudinal process of skill acquisition
potentially spanning many days, months, or even
years [8]. Recently, there has been a surge of interest
in identifying the distinct functional and structural
characteristics inherent to the brains of athletes.
Achieving professional performance in many fields like
sports, arts, or music, is tied to the augmentation
of sensorimotor and cognitive capacities, and can be
investigated to give rise to new training approaches
able to push to the very limits of human potential.
A particular focus of numerous studies has been
to address the question of whether the acquisition
of expertise, obtained through adequate, domain-
specific training, leaves discernible traces of experience-
dependent plasticity within specific, localized neural
circuits [8, 9].

Research over the last 30 years has demonstrated
that motor skill acquisition is accompanied by plastic
changes in the brain which can be revealed and studied,
among others, with non-invasive electrophysiological
(e.g., EEG) or metabolic (e.g., functional Magnetic
Resonance Imaging (fMRI)) neuroimaging techniques.
Several works have taken advantage of brain imaging
to understand how domain-specific expertise builds
up, especially for different sports [10, 11]. A recent
study [12] has provided preliminary evidence that

neuroimaging can be used to assess proficiency in
complex motor skills such as race driving. Specifically,
changes in the cerebellum have been identified through
fMRI imaging after driving training. Functional
differences have also been found between skilled
and novice drivers, with many studies focusing
on EEG alpha and beta rhythms to link expert
performance to changes in neural activity [10, 13].
Research indicates that expert athletes exhibit distinct
patterns in these rhythms, with increased alpha
activity associated with focused, calm states and
stronger beta activity linked to active engagement [14,
13] This ”cortical quieting” in skilled individuals
reflects reduced cognitive interference, supporting
efficient motor and visual processing compared to
novices. Identifying these relevant neuromarkers
offers the possibility of enhancing motor performance
by incorporating neurofeedback training into regular
sports training regimens [14], allowing individuals to
learn to regulate their EEG activity and potentially
accelerate skill acquisition. This understanding
supports the application of alpha and beta rhythms as
tools for both assessment and intervention, aiming to
optimize performance and facilitate the development
of skilled motor abilities.

Recently, non-invasive brain stimulation ap-
proaches have become popular and have been applied
to focally change neuronal activation [15, 16]. One
such promising approach involves non-invasive neuro-
modulation through tDCS, where DC currents are de-
livered to the brain tissue through electrodes placed
on the user’s scalp, increasing or suppressing cortical
excitability depending on the mode of stimulation (an-
odal vs cathodal) [15, 16]. A potential role of tDCS
in motor learning is reasonable, as it modulates corti-
cospinal excitability leading to the induction of long-
term potentiation, a fundamental mechanism underly-
ing learning. The polarity-dependent effects of tDCS
play an important role, with the anode electrode over
the primary motor cortex (M1) resulting in a relative
increase in corticospinal excitability [17, 18, 19]. It
is hypothesized that anodal tDCS paired with prac-
tice can further enhance motor skill learning. tDCS
holds promise as a potential enhancer of motor skill
learning in diverse populations, including neurotypical
individuals and those with neurological disorders like
after stroke [20]. Meta-analysis evidence [21] suggests
that individuals who undergo tDCS to the motor cor-
tex during motor skill practice exhibit superior perfor-
mance compared to those receiving sham tDCS. Stud-
ies across various motor tasks support this hypothesis,
showing that anodal tDCS to M1 during task practice
improves motor performance more significantly than
practice with sham tDCS [22, 23]. However, further ev-
idence is required to establish the effects of tDCS, while
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it remains unclear what type of motor tasks could be
positively affected. The identification of neuromark-
ers associated with complex motor learning, such as
race driving, raises the question of whether the under-
lying mechanisms of brain plasticity can be manipu-
lated to enhance the effectiveness of race driver train-
ing through tDCS.

Race driving is a complex motor task which
engages multiple cognitive processes in different regions
of the human brain to maintain and optimize speed
and control throughout the racing track. In particular,
racing demands high-level, domain-specific motor skills
acquisition to effectively and efficiently command a
multi-dimensional vehicle control system (i.e., steering
wheel, brakes, throttle and other controls). The
functional and structural plasticity promoted by a
race driver’s rigorous, longitudinal practice begs the
question of whether it can be manipulated to give rise
to faster and more effective motor training approaches.
Highly skilled race drivers, particularly those at the
top levels of formula racing car competitions, undergo
extensive psychophysical training and face extreme
competitive conditions. The need for heightened
concentration and precise sensory-motor control places
a substantial demand on both their bodies and brains.
Many of these drivers have engaged in high-speed
activities, such as go-karting or motor racing, from
a very young age, a period when brain plasticity is
at its peak [12]. Consequently, it is anticipated that
visuospatial and motor processing in highly skilled
individuals involves significantly more efficient use
of brain activity compared to a matched group of
untrained näıve drivers.

A few articles [12, 24, 25] have used fMRI
to measure brain activity during motor reaction
tasks and visuospatial tasks, examining the brain
functional correlates associated with extreme training
and competitive conditions faced by high-speed car
racing drivers. Bernardi et al. [12, 24] conducted a
comparison between skilled race drivers and regular
car drivers, indicating that racing drivers exhibited
more consistent recruitment of brain areas dedicated to
motor control and spatial navigation compared to their
regular counterparts. This finding suggests a distinct
neurological pattern associated with the expertise of
race drivers. A similar perspective presented in a
different research study [25], hypothesizes that the
observed differences in brain activity between racing
drivers and regular drivers may be attributed to the
task familiarity of the former. This viewpoint suggests
that the variance in neural activation could be a result
of the specialized cognitive demands and extensive
practice associated with racing. Notably, the study
in [26] involving a Formula E Champion driving under
extreme conditions demonstrated a relation between

brain activity in the delta, alpha, and beta frequency
bands and hand movements. This article showcases
the feasibility of using mobile brain and body imaging
even in extreme conditions, such as race car driving,
to explore sensory inputs, motor outputs, and brain
states characterizing complex human skills.

Only a limited body of literature has been
dedicated to the perceptual and cognitive skills of
race drivers. According to some published studies [9,
27, 28] a large amount of deliberate, specialized
practice is required to obtain professional-level skills in
sports. On the contrary, a meta-analysis [29] suggested
that practice contributes insignificant improvement
to sports performance, emphasizing the need to
consider findings from cognitive science, personality
psychology, behavioural genetics, and sports sciences
to comprehend the determinants of expertise. While
many studies have explored the effects of visual
stimuli on steering control [30], very few have directly
compared the brain activity of experienced racing
drivers with that of normal drivers. One study
indicated that exceptional driving abilities may involve
the acquisition of a specific motor repertoire distinct
from that of everyday driving [24]. Another study
aimed to highlight the behavioural differences between
racing drivers and näıve drivers, revealing superior
driving performance in terms of faster lap times and
fewer crashes [31].

While various studies have provided insights into
how racing drivers can excel in the driving task,
making their reactions and decisions vastly different
from those of normal road car drivers [31], there
remains a gap in understanding how this knowledge
can be leveraged to extract even more performance
on the track. The ability to measure brain activity
using EEG is poised to become the next frontier in
performance for race teams, elucidating how a driver’s
brain reacts to inputs on the track. This avenue
holds significant promise for extracting additional
performance from drivers. Additionally, exploring the
role of tDCS in race training may clarify whether
and how electrical stimulation can boost the brain’s
capacity to learn and consolidate new skills. Notably,
there is a lack of studies clearly indicating differences
between professional drivers and normal road car users,
incorporating both neuromarkers and behavioural
analysis during driving and linking with one another.
In conclusion, the identification of neuromarkers of
race-driving proficiency and the exploration of tDCS to
enhance race-driving training demand further research.

This paper aims to explore the neural correlates of
learning to drive a racing car with easy-to-deploy EEG
signals, and to investigate the potential of tDCS as a
tool to enhance race training. To achieve that, we have
collected and analyzed multimodal experimental data
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consisting of drivers’ EEG, telemetry from a driving
simulator and relevant meta-data. We aspire to lay
the foundations for the future design of innovative
race-driving protocols exploiting neurotechnology, a
perspective that will be discussed in the light of
the results extracted here. We found that novice
drivers exhibited significant learning effects in lap
time, optimal racing line, and steering wheel usage.
Professional drivers also showed improvements within
a single session, indicating quick adaptation to the
simulator. Theta-band EEG rhythms power and
alpha-band functional connectivity were identified as
significant neuromarkers for acquiring racing skills.
Last but not least, although the evidence for tDCS
enhancing learning was not definitive, we provide an
analysis suggesting that it may have accelerated the
learning process of novice users who received active
stimulation, compared to those who received sham
tDCS.

2. Materials and Methods

2.1. Experimental setup and data synchronization

Each experimental session entailed EEG and elec-
trooculography (EOG) monitoring during driving in
a racing simulator with active or sham tDCS taking
place before the race driving task. A complete rac-
ing simulator provided by GTA Global/Octane Junkies
was used for the experiments. The simulator, repli-
cating a Formula E car cockpit, included a Playseat
racing seat, Thrustmaster steering wheel and pedals,
and a computer monitor, all mounted on a metallic
base (Fig. 1a). With regard to software, the rFac-
tor2 racing simulator on Steam was used. The race car
model corresponds to that of the e.dams team car of
the 2020-21 Formula E season, made available by GTA
Global and NISSAN. The EEG (uV units) and EOG
(mV) signal was recorded with an ANT Neuro eego
64-channel EEG system (ANT Neuro b.v., Hengelo,
Netherlands) extended with two bipolar EOG channels
(Fig. 1b) at 512 Hz. An anti-static wrist strap with
a ground plug to equalize the body potential to the
system ground and prevent electrical interference with
the EEG from the simulator was worn by all subjects.
The open-source CNBIToolkit Brain-computer Inter-
face (BCI) platform, an implementation of the TOBI
common platform [32], was used for acquiring, storing,
and annotating biosignal data. A custom rFactor2 plu-
gin exported telemetry and delivered hardware triggers
for syncing with the eego amplifier. Neurophysiological
and telemetry data were synchronized using a custom
USB serial hardware trigger box with an Arduino Mi-
cro microcontroller. Brain stimulation was delivered
using a PlatoWork tDCS headset (PlatoScience ApS,
Copenhagen, Denmark) (Fig. 1c). The PlatoApp and

(a)

(b) (c)

Figure 1. Main hardware items of the experimental setup.(a)
Driving simulator (b) ANT neuro eego EEG system (c)
Platoscience Platowork tDCS system.

PlatoLab smartphone applications were used to control
the active and sham tDCS stimulation, respectively.

The biosignal (EEG, EOG) data were saved in
GDF format and telemetry data were saved as a race
log text file. The telemetry variables were recorded
with a sampling rate of 100 Hz and consisted in:
the time elapsed since the previous frame (for sanity
check, diagnosing potential lags and delays), the time
elapsed since the start of the racing session, the
current lap index, the time elapsed since the start of
the current lap, the time elapsed since the last car
impact (with barriers, etc.), the car’s position (x,y,z
meters in world coordinates), angular velocity (x,y,z
radians/sec in local vehicle coordinates), velocity (x,y,z
meters/sec in local vehicle coordinates), acceleration
(x,y,z meters/sec2 in local vehicle coordinates),
angular acceleration (x,y,z radians/sec2 in local vehicle
coordinates), speed (meters/sec). We also recorded the
current gear (of note, since gear change in Formula
E is automatic, this is of little interest), the pushing
of the throttle and brake pedals (in [0, +100]% of
total range, corresponding to no pedal press and full
pedal press, respectively), and the use of the steering
wheel (in [-100, +100]% of total range, corresponding
to full left turn and full right turn, respectively. Middle
steering wheel position corresponds to 0.). The world
coordinate system is left-handed with +y pointing up
the sky. The local vehicle coordinate system is as
follows: +x points out the left side of the car from
the driver’s perspective, +y points to the sky, and
+z points out the rear of the car. Rotations are as
follows: +x pitches up, +y yaws to the right, and +z
rolls to the right. Date and time stamps ensured that
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Table 1. Novice participant information

SubjectID Age Gender
Corrected
Vision Handedness

Driving
Proficiency

tDCS
Group Sessions Laps

TE03ES 32 Male Yes Right Näıve Active 10 195
MA23GI 25 Female Yes Right Näıve Active 8 159
YA25AI 22 Male No Right Näıve Sham 10 190
MA16TE 33 Female Yes Right Proficient Sham 8 170
SA03UR 34 Male Yes Right Näıve Sham 10 207
EF06HE 33 Male No Right Näıve Active 10 198
LO30KI 37 Male Yes Right Proficient Sham 10 193
NI28LD 18 Male No Left Proficient Active 9 179
JA07NA 30 Male No Right Näıve Sham 10 200
MA14LY 32 Male Yes Right Proficient Active 10 200
RE03AN 22 Male No Right Proficient Active 10 196

the correspondence between the racing log file and the
EEG GDF file of each racing run could be established
after the experiment.

2.2. rFactor2 racing environment and settings

The racing task is accomplished with the rFactor2
simulator platform. All experimental racing runs
were executed with the same settings (including
the professional driver sessions) to exclude those as
confounding factors. All racing runs were implemented
as rFactor2 ”Practice sessions”. There are no
opponents on the track, the driver is racing on
their own so that no overtaking skills are to be
learned and evaluated. Importantly, although all
driving aids are disabled (traction control, automatic
brake/throttle/steering assistance, etc.), the tyre wear
and the car vulnerability were also disabled. Overall,
the learning task only involves learning to minimise lap
time and impacts by improving the coordinated use
of steering, braking and throttling (i.e., no tyre wear
management or other skills related to actual racing are
evaluated). The demanding 21-turn Diriyah track of
the Saudi Arabia Formula E e-Prix was selected for
the experiment.

2.3. Experimental protocol

The study comprised two separate legs: a randomized,
controlled, and longitudinal training study of novice
race drivers, and a uncontrolled, single-session evalua-
tion of professional/experienced race drivers.

In the first leg, each novice participant was asked
to undergo 10 experimental race-driving sessions. All
participants finished their training sessions within
two weeks so that the maximum logistically possible
training intensity was achieved. An experimental
session comprised, first, 20’ of (active or sham)
tDCS stimulation with PlatoWork, followed by
approximately 45’ of simulated race driving. 11 novice

participants were randomly assigned to one of two
tDCS groups (6 active, 5 sham). The active tDCS
group received anodal stimulation with PlatoWork’s
fixed electrode positioning designed and parameterized
to assist learning by increasing neural excitability
over prefrontal brain regions associated with learning.
The second group received “active sham” stimulation
(i.e., stimulation that generates similar feelings without
giving rise to cortical excitability). Novice subjects
remained blind to their group allocation. Active
tDCS was achieved with the PlatoApp of PlatoScience
running on an Android smartphone and operating in
”Learning” mode. Sham stimulation was accomplished
with the PlatoLab app in the appropriate mode as
instructed by our PlatoScience collaborators.

The driving task targeted 20 laps per session.
Participants were asked to complete the racing tasks
in 5 blocks of 4 laps each. These blocks are defined
here as “racing runs”. Each racing run has a race
log file and a biosignal GDF file associated with it,
as described above. The instructions given to the
subjects were simple and focused on three objectives:
participants should try, to the best of their ability,
to i) minimize lap time (visual feedback on lap time
was delivered at the end of each lap by enabling
the corresponding rFactor2 setting), ii) minimize the
number of crashes (i.e., impact with barriers) and iii)
avoid, as much as possible, movements and actions
that generate EEG artifacts (speaking, excess blinking,
intense neck movements).

In the second leg, three professional race drivers
were recruited on two separate days. The two
professional drivers of the e.dams Formula E team
2021-22, Sebastian Buemi and Maximilian Günther,
executed a single session identical to those of the novice
participants (i.e. 5 racing runs of 4 laps each while
wearing the eego EEG system). The sessions of the
two professional drivers were executed consecutively
and included no tDCS. The racing sessions were
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Figure 2. Extraction of brake, throttle and steering wheel events for the best lap of Max Günther. (a) Identification of events in
the signal input streams. As colour coded in the legends, the black lines illustrate the corresponding input signal reading from the
simulator’s telemetry over time (Top: brake, Middle: throttle, Bottom: steering wheel) in % of the respective input’s total range
([0, 100]% for brake and throttle, [-100,+100]% for steering wheel). The magenta line shows the time segments where the car went
through turning points in the track. From top to bottom, red asterisks denote the timing of detection of brake pedal push, throttle
pedal push and right steering wheel turning, respectively, while blue asterisks equivalently visualize brake pedal release, throttle
pedal release and left steering wheel turning. Green asterisks in the steering wheel input graph (bottom) indicate the onset of time
segments where there is no, or extremely slow, use of the steering wheel. (b) Position of events on the car’s trajectory. As shown
in the legend, the green line shows the outline of the race track in world coordinates (meters), as the trajectory of Max Günther’s
car in their best lap. Red and black asterisks denote brake pedal push and release events, respectively. Magenta and yellow circles
specify throttle pedal push and release, respectively. Ciel circles visualize the entrances of the 21 turns of the Diriyah race track.
(c) Steering events color-coded on the car trajectory. Full right turn (+100 steering wheel input) in ciel, full left turn (-100 steering
wheel input) in yellow, and no turning (0 steering wheel input) in white circles. In panels (b) and (c), the two axes represent 2D
real-world coordinates in meters.

implemented with the same specifications as for the
novice drivers so that the EEG data acquired can
be used for comparisons to neurophysiological data.
Furthermore, an extra session was done with a 12-year-
old male volunteer who has won several junior national
karting competitions and was at the time the reigning
champion in their category.

2.4. Participants

Eleven (11) participants with no known neurological
conditions were recruited. The subject IDs are derived
through a standard data anonymization method.
Table 1 illustrates the demographics, tDCS group
allocation and driving proficiency of all novice drivers
recruited. Frane’s allocation algorithm [33] was used
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Figure 3. Extraction of racing line deviation. For both panels, the black lines show the trajectory of Max Günther’s car in their
best lap. The red lines show the trajectory of the car at (a) the first lap lap of Max Günther and (b) the first lap of EF06CH.
In both panels, the area between the first-lap and best-lap trajectories is highlighted in red and illustrates the deviation from a
near-optimal racing line. The two axes represent 2D real-world coordinates in meters. The most salient turning point where Max
Günther consistently follows an optimal path, but novice user EF06CH deviates substantially from it is annotated with text.

to ensure that the two groups were balanced across
a number of identified possible confounding factors
(age, gender, prior driving proficiency and corrected
vision). Of these confounding factors, age and
gender were controlled due to their known influence
on brain activity in neuroscience, neuroimaging,
neuropsychology, and BCI studies. Driving proficiency
and visual acuity were also identified as potentially
important confounds given the study’s focus on
learning to race. Prior driving proficiency was
assessed taking into account whether a subject had
any significant previous driving and, especially, racing
experience (karting, sim-race video games etc.). This
work considered subjects with a driving license but no
recent and regular driving experience as Näıve.

The study was approved by the ethical committee
of the University of Essex (UoE) (number ETH2021-
1785 and amendment ETH2122-0411 for inclusion of
a minor participant). All participants were informed
about the tasks to be accomplished prior to the
experiments, the protocol, the evaluation methods, the
use of their data and any rare potential annoyances
(e.g., obtrusive tDCS sensation, itching from EEG
placement, headaches). All subjects were explicitly
made aware of the possibility to withdraw from the
study at any moment without a need to provide a
reason. The experimental protocol fully complied with
the Declaration of Helsinki.

2.5. Evaluation methods

2.5.1. Data collection: Data collection has ap-
proached the maximum of the set targets. As shown
in Table 1, 8 out of 11 participants completed all (des-
ignated maximum of) 10 sessions. Two subjects com-
pleted 8 sessions and one 9. Participants completed
on average 187±14 laps (out of the maximum target of
200). The table shows that all subjects almost always
completed 20 laps/session, as desired, with a few laps
missing in most cases due to wrong counting (4 laps
per run were planned).

2.5.2. Balance of confounds: One major goal of
the study has been the investigation of any tDCS
effects on race-driving learning. It is thus critical to
eliminate the influence of any other factors that may
affect performance and learning. Elimination is done
by balancing suspected confounding factors between
the two tDCS groups with Frane’s methodology [33]
at recruitment. Frane’s method is an adaptive
minimization method for randomized allocation which
monitors the statistical differences of each confounding
factor for each possible allocation and selects the one
that minimizes the greatest current imbalance across
all confounds. The confounding factors considered
were: Age, Gender, Driving proficiency/experience and
Corrected Vision. It must be noted that all recruits
but one (NI28LD) were right-handed. For numerical
confounds (e.g. Age) we report averages and standard
deviations between the two groups and the p-value of
an unpaired, two-sided Wilcoxon Ranksum test. For
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categorical variables, the p-value of a chi-squared test
for proportions is provided.

This investigation further checks whether any of
these confounds explain the gains in terms of lap time
exhibited by subjects. Lap time is computed as the
difference of the average lap time between the first
two and the last two sessions. For Age, we correlate
the lap time gain to each participant’s age and seek
for significant correlation. For categorical variables
(Gender, Driving Proficiency, Corrected Vision) we
calculate the average gain per category (e.g., Male vs
Female for Gender) and perform an unpaired, two-
sided Wilcoxon ranksum test.

2.5.3. Behavioural driving proficiency metrics: It is
critical for the study’s goals to identify metrics of race-
driving proficiency upon which the concept of “learning
to race” can be grounded (as the optimization of these
metrics over time). The obvious learning outcome used
throughout the study is the lap time (i.e., the time
needed to complete one lap). As a secondary measure
of proficiency, we also count the number of impacts
per lap, since the ability to avoid crashes also reflects
driving proficiency and there was explicit instruction to
subjects to avoid impacts to the extent possible (even
though the car’s vulnerability was disabled to avoid
large numbers of runs that would have to be restarted
because of fatal crashes). This study further defines a
“penalized lap time” metric which attempts to combine
both aspects of racing (i.e., both fast and “accident-
free”) by augmenting the actually achieved lap time
with 250ms for each impact. All these metrics are
straightforward to compute based on the information
stored in the race-log files.

With respect to behavioural metrics, we further
analyzed the use of the throttle, brake, and steering
wheel, based on the assumption that learning to race
could probably lead to the milder, smoother and more
precise use of some or all of these inputs. To do so,
the number of brake and throttle push/release and
turning left/right events per lap must be extracted.
This is made possible through suitable processing of
the corresponding time-series extracted by the race log
files. Specifically, for brake and throttle press/release
events, the raw input is first filtered with a Savitzky-
Golay smoothing filter [34]. The position and number
of major peaks/sinks are then found by thresholding
the derivative of the signal and merging events that are
too close in time (less than 0.5 s difference) together.
The identification of the peaks of these signals is done
using the MATLAB function “peakfinder” available in
MATLAB Central which finds minima and maxima of
an arbitrary signal.

For each event, we computed its slope/derivative
as |Smin/max−Sonset|/(tmin/max−tonset), where Sonset

is the signal’s value at the onset of the event, Smin/max

represents the minimum or maximum signal value after
onset, tonset is the time of event onset, and tmin/max is
the time at which the minimum or maximum signal
value occurs. Therefore, events corresponding to
abrupt/clear movements can be distinguished from
those that are smoother and less clear to distinguish
from the general activity. Finally, left/right turns
are identified by using, again, peakfinder to locate
the time points with maximum left/right steering
wheel turning, signifying the offset of a left/right
turn movement. The corresponding onset is found
either as the offset of the immediately previous turning
movement (e.g., for the cases where a left/right
turn succeeds a right/left one, respectively), or, by
extracting the offset of the latest period of inactivity
(zero-derivative of steering wheel signal), whichever
happens last. The slope of steering events is then
found in the same manner as for braking/accelerating.
We segment and store periods of complete inactivity
(with no brake/throttle/steering movements at all) in
the lap, to be used as “control” (e.g., for the Motor-
related Cortical Potentials (MRCP) analysis). Based
on the extraction of braking, accelerating and steering
events in this fashion, the amount of extracted events
can serve as an index of race driving proficiency as
hypothesized. Fig. 2 illustrates this process for the
best lap of Max Günther.

Similarly, we assume that proficient racing also
prerequisites knowledge and ability to follow the ideal
racing line. This aspect is evaluated by computing
the deviation of each lap from an optimal trajectory.
The best lap of Max Günther (achieved at his 17th/20
lap), which is also the best lap overall in the study,
is taken as a reference. The racing line deviation
is then calculated as the area between the curves
of a given lap and the optimal lap trajectory. The
area between the curve is ideally computed as the
integral |

∫ xmax

xmin
f(x) − g(x)|, where f(x), g(x) the

curves of the optimal and the current lap trajectory.
Since the track defines closed trajectories, for any
given interval along the horizontal axis the integral is
evaluated separately for the upper and lower parts of
the trajectory. Furthermore, the integral is not exactly
computed, but only approximated by sampling evenly
the x-axis with a step of 0.5m and computing the
average of the differences of the two trajectories on
each of the N x-points: 1

N

∑
xi
|f(xi) − g(xi)|. Fig. 3

illustrates by example this metric (area between the
curves highlighted in red). It is clear that the first lap
of Max Günther (when he was still getting accustomed
to the track and the virtual car) has only marginal
deviations from the racing line of his best lap, which is
not surprising given his professional racing skills. On
the contrary, the deviation of the first lap of subject
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EF06CH from the optimal racing line is substantial.
This investigation assumes that eventual improvements
across time on this metric suggest that part of the
learning process entails learning to follow an optimal
trajectory (aka, the ideal racing line).

2.5.4. Behavioural results analysis criteria to establish
learning effect: Searching for neural correlates of
learning and the effects of tDCS on the learning process
is pointless if the learning effects themselves are not
established first. To quantify and visualize learning in
any of the aforementioned behavioural metrics related
to race driving, we extract and and report:

• Individual learning curves per lap, with linear and
exponential fits (to examine whether a learning
curve reaches the consolidation/convergence stage
by the training offset)

• Learning curves averaged within sessions either
with mean or with median (to attenuate the effects
of outliers) for each subject and grand-averaged
across all subjects.

• Pre-training vs post-training comparisons with
statistical testing (unpaired, two-sided Wilcoxon
ranksum tests). For novice users, the first two
sessions are compared to the last two. For
professional users, the first 6 laps are compared
to the last 6.

• Grand averages of lap times within each session
with linear fits and Pearson correlation. This is to
evaluate learning taking place within each session
(20 laps) at the different stages of training.

• For Novice users that underwent active or sham
tDCS, we also show the average and standard
deviation within each group and overall with
statistical significance.

2.5.5. EEG signal pre-processing: Pre-processing
operations were applied to the raw EEG signal
including linear detrending of each channel, to remove
slow signal drifts (as the eego amplifier does not apply
any hardware filters) and DC removal. Common
Average Reference (CAR) spatial filtering was also
applied to remove common noise sources. We further
applied, Surface Laplacian (for Power Spectral Density
(PSD) and effective connectivity analysis) or anti-
Laplacian (for MRCP analysis) spatial filtering. The
available four cross neighbours were used. Anti-
Laplacian refers to adding, rather than subtracting,
the potential average of a channel’s neighbours, thus
enhancing, rather than removing, the local EEG
activity. Artifact removal has been done by using
FORCe [35]. For all EEG-based analysis, channels
M1, M2 (mastoids) and peripheral channels PO5, PO6
are excluded from the analysis as they are particularly

susceptible to noise interference. Depending on
the particular analysis domain, we further limit the
investigation to specific cortical regions and channels,
as specified below.

2.5.6. EEG rhythms: We attempted to identify
changes across time in various neurophysiological
variables, which could thus suggest (or even subserve)
cortical plasticity related to learning to race, as well
as to correlate these with the learning outcome (i.e.,
race-driving performance). A first such candidate
regards EEG rhythms. Oscillatory cortical activity
has been associated with numerous cognitive processes,
especially in the theta and alpha bands, including
learning in general, and learning of motor skills,
specifically [13, 36, 37]. Hence, we aimed to explore
whether any combinations of frequency bands and
regions of cortical EEG exhibit such modulation over
time and correlation to behavioural outcomes. EEG
PSD is extracted for each channel with the Welch
method [38] for each lap (i.e., the whole EEG segment
corresponding to a lap is fed to the corresponding
function). This analysis employs 2 s internal Welch
windows with 125ms overlapping resulting in 0.5Hz
PSD resolution on 59 EEG channels. We then average
the lap’s PSD within 5 broad bands: delta [1,4] Hz,
theta [4,8] Hz, alpha [8,12]Hz, beta [13,30]Hz and
(low) gamma [30,40]Hz and 9 Regions of Interest
(ROIs): Frontocentral Left (F1, F3, F5, FC1, FC3,
FC5, AF3), Frontocentral Medial (Fz, FCz, note
that AFz is unavailable as it is the ground channel),
Frontocentral Right (F2, F4, F6, FC2, FC4, FC6,
AF4), Central Left (C1, C3, C5), Central Medial (Cz),
Central Right (C2, C4, C6), Centro-parieto-occipital
Left (P1, P3, P5, CP1, CP3, CP5, PO3), Parieto-
occipital Medial (Pz, POz, note that CPz is unavailable
as it is used as a reference channel) and Centro-parieto-
occipital Right (P2, P4, P6, CP2, CP4, CP6, PO4).

Hence, we focus on 5 bands × 9 ROIs = 45
candidate spatiospectral EEG rhythms that must be
investigated for involvement in learning to race. The
following criteria are imposed to accept any of these
candidates as an index of functional brain plasticity:

(i) The rhythm in question must correlate signifi-
cantly with lap time.

(ii) It must also correlate significantly with the
chronological lap index (i.e., consistently change
over time).

(iii) The correlation with the lap index must be
negative (i.e., the bandpower must decrease over
time, as reported in relevant literature [36, 39]).

(iv) The correlation with lap time must be positive
(since decreasing power should be associated with
decreasing lap time–better performance thanks to
learning).



3 RESULTS 10

(v) It must differ significantly when comparing the
onset of training (first two sessions) and the
learned outcome (last two sessions).

Importantly, given the exploratory (rather than
hypothesis-driven) nature of this analysis leading
to many comparisons, this investigation employs
everywhere strict Bonferroni correction to avoid false
positives. Statistical testing for correlations is
performed with the Student’s corresponding test based
on the chi distribution. For pre- vs post-training
comparisons, non-parametric, Wilcoxon, unpaired,
two-sided tests are used. For novice users, all 10
sessions (i.e., approximately 200 laps) are included in
the analysis. For professional users that executed a
single session (20 laps), the same criteria apply, but
the pre- vs post-training comparison involves the first
and the last 2 laps.

2.5.7. Effective functional connectivity: Functional
plasticity with respect to brain connectivity has also
been implicated with learning [40]. Here, Directed
Transfer Function (DTF) effective connectivity is
employed, which provides information not only for
the strength of the association between two brain
regions but also for the direction of this association
(i.e., relies on Granger causality). We make use
of the DTF algorithm implementation from the
eConnectome toolbox [41], with order 10 for the
embedded autoregressive model. DTF connectivity is
computed for all pairs of channels (in both directions)
and for each lap with 1Hz frequency band resolution
and is then averaged within the same bands as for the
PSD analysis and within 3 wider regions Frontocentral
(F1, F3, F5, F7, FC1, FC3, FC5, Fz, FCz, F2, F4, F6,
F8, FC2, FC4, FC6, AF3, AF4, AF7, AF8, FT7, FT8),
Central (C1, C3, C5, Cz, C2, C4, C6, T7, T8) and
Centro-parieto-occipital (P1, P3, P5, P7, CP1, CP3,
CP5, PZ, P2, P4, P6, P8, CP2, CP4, CP6, POz, PO3,
PO4, PO7, PO8, O1, O2, Oz, TP7, TP8). There are
thus 5×3×3 = 45 candidate connectivity features that
are examined in the same manner as the EEG rhythms
described above.

2.5.8. Regular and anticipatory Motor-related Cortical
Potentials: For regular MRCPs, the Contingent Neg-
ative Variation (CNV) signals are time-locked to the
onset of the actual execution of driving actions (e.g.,
braking, turning, etc.) and are analyzed with respect
to their amplitude, timing, and slope. In contrast, we
define as “anticipatory” MRCPs the CNV signals that
are taken to be time-locked to the “ideal” action posi-
tions, where the reference of optimality is the best lap
in the dataset. These waveforms are meant to reflect
the driver’s ability to anticipate and align with optimal
timing of brake, speeding and steering actions. We aim

to determine whether novice drivers’ placement of con-
trol input actions improves over time, enhancing lap
times, and whether these improvements are detectable
in the brain through anticipatory MRCPs. This work
further hypothesizes that the regular MRCP CNV sig-
nals associated with real race-driving actions (braking,
accelerating, steering) may also provide information on
plastic changes accompanying race-driving learning.

MRCPs are bandpass filtered (Infinite Impulse
Response (IIR) filter with pass-band in [0.4, 3] Hz)
and spatially filtered with a cross-neighbor anti-
Laplacian spatial filter. The interval [-1, 1] s around
each brake/throttle push/release and turning left/right
event is considered, where t = 0 is the event onset.
The filtered signals are then averaged separately for
each event type within each session to output a final
MRCP curve per channel. For regular MRCPs, we
investigate whether the amplitude of the negativity
peak, its time gap from the movement onset and the
slope of the negativity seem to relate to the learning
outcomes. For anticipatory MRCPs, we extract the
same kind of curves for each participant’s lap on the
ideal action positions, using Max Günther’s best lap
as reference. In other words, the existence of MRCPs
around the onsets of ideal events is examined, as shown
in Fig. 2b.

3. Results

3.1. Balance of confounds

Table 2 shows that all confounding factors were
appropriately balanced, as no p-value is significant.
It is also shown that none of these confounds seems
to explain the learning outcome (in terms of lap time
gain). It has to be noted, though, that, as elaborated
later in this analysis, the tDCS treatment does not
seem to significantly influence the overall lap time
gain either. Still, as will be argued, further analysis
demonstrates that, in fact, tDCS does seem to have
an effect on the learning process, in contrast to any of
these other variables.

3.2. Behavioural results on learning to race

Fig. 4, 5, 7 and 8 establish the existence of
clear learning effects across the racing proficiency
metrics outlined in Section 2.5.4. For novice users
and each behavioural metric, an one-way repeated
measures ANOVA (α = 0.05) is reported with the
single factor “session” (time) to substantiate the
significance of learning with regard to the variable in
question. Furthermore, we perform the corresponding
mixed-design ANOVAs with within-subject factor
session/time and between-subject factor tDCS, and
search for a significant session × tDCS interaction
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Figure 4. Lap time performance analysis across sessions for novice users. Panels (a1-a11) display individual lap time data for each
participant, plotted against the lap index in chronological order. Each subplot includes the lap times (black dots), session medians
(blue circles), session means (red ’x’), the exponential fit (solid red line), linear fit (dashed red line), and the fastest lap for each
participant (magenta circle). Panel (b) compares the mean and standard deviation of lap times for the first two sessions and the last
two sessions across novice participants, highlighting performance improvements over time, with statistically significant differences
marked by asterisks (*); * indicates significance with α = 0.05, ** with α = 0.01 and *** with α = 0.001. No asterisk denotes no
statistical significance at the 95% confidence interval (α > 0.05). Panels (c) and (d) illustrate the mean and median lap time per
session, respectively, showing the overall trend of lap time reduction across sessions for all novice participants. Each line represents
an individual participant as shown in the legend, the grand average across subjects is shown in thick, black line. Panel (e) shows
the average lap time differences across all novice participants and separately for the active tDCS and sham groups, with error bars
representing standard deviation. Panel (f) presents the grand average lap time per lap index within each session, emphasizing the
consistent improvement in lap times across the ten-session training period. The correlation coefficient between lap time and lap
index within each session and its p-value is provided at the top of each session segment, indicating the sessions where intense learning
took place.

Table 2. Balance of confounding factors and statistical comparison of their influence on lap time gain. Proportions are presented
with respect to Males in Gender, Proficient in Driving Proficiency, and Yes in Corrected Vision.

Age Gender (Male/Female)
Driving Proficiency
(Proficient/Näıve)

Corrected Vision
(Yes/No)

Active Sham p Active Sham p Active Sham p Active Sham p
Balance 27.0±6.3 31.2±5.7 0.23 5/6 4/5 0.85 3/6 2/5 0.78 3/6 3/5 0.78

Correlation Male Female p Proficient Näıve p Yes No p
Lap time gain r = 0.61, p = 0.78 12.0±5.7 10.1±1.0 0.63 9.9±6.2 12.8±3.4 0.25 12.6±5.6 10.2±3.9 0.54

to test whether the tDCS treatment significantly
influences learning. Prior to performing ANOVA
analyses, we confirmed the normality of our data for
all metrics involved through one-sample Kolmogorov-
Smirnov (K-S) tests at the 95% confidence interval
(α = 0.05).

The final, highest-level goal in racing under the

specified conditions is to minimize the lap time.
The other, complementary metrics introduced evaluate
different, specific facets of the overall racing skill,
but the latter is best (necessarily and sufficiently)
evaluated overall through lap time. Hence, learning
in terms of lap time is of the utmost interest. Fig. 4
and Fig. 5 illustrate the concentrated results for this
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Figure 5. Lap time performance analysis for professional drivers over a single session of 20 laps. Panels (a1-a3) display individual
lap time data for each professional driver (PL01MC, PL02SB, and PL03JO), plotted against the chronological lap index. Each
subplot includes the lap times (black dots), session medians (dashed blue lines), session means (dashed red lines), the exponential
fit (solid red line), the linear fit (dotted red line), and the fastest lap achieved in the session (magenta circle). Panel (b) compares
the mean and standard deviation of lap times for the first six laps and the last six laps across professional drivers, highlighting
significant improvements over the course of the session, with statistically significant differences marked by asterisks (*). * indicates
significance with α = 0.05, ** with α = 0.01 and *** with α = 0.001. No asterisk denotes no statistical significance at the 95%
confidence interval (α > 0.05).

metric for novice and professional users, respectively.
For Novice users, a significant group learning

effect is found through repeated measures ANOVA
with single factor time/session (F = 19.81, p <
10−13). This is not surprising, as the ability of
all subjects to gradually minimise the lap time is
ubiquitous. Specifically, it is evident by the individual
subject learning curves (Fig. 4a1-a11), the statistically
significant (for all subjects) pre- vs post-training lap
time comparison (Fig. 4b), the mean and median
subject grand averages per session (Fig. 4c-d), the
group’s distribution of lap time gain (shown also
separately for the two tDCS groups, Fig. 4), as well
as the respective grand average per lap index within
sessions (Fig. 4f).

Professional drivers (including the 12-year-old
local champion in this group) also show significant
group learning effects within the single session
executed, illustrated again by both the individual
learning curves (Fig. 5a1-a3) and by the pre- vs post-
evaluation comparison (Fig. 5b), although these results
should reflect the familiarization process with the

simulator, the virtual car and the track, rather than
”learning to race”. Specifically, a repeated measures
ANOVA shows a significant effect of time on lap time
(F = 2.4, p = 0.01).

The comparison between novice and professional
users in Fig. 6 shows that pro drivers converged
towards 73-75 s best lap time (Fig. 6a), with the 12-
year old “professional” driver achieving 78-79 s. Novice
drivers converged on average to 81-82 s. Interestingly,
one novice subject (NI28LD) performed markedly
better than the others, with the fastest lap at 77.2 s
and the best session average at 78.9 s, Fig. 6b. This
performance is very close to those of the professional
drivers, well ahead of the second-best novice driver
(EF06CH with 80.3 s fastest lap and best session
average of 82.2 s) and also surpasses the achievements
of the 12-year-old experienced race driver (fastest lap
78.6 s and session average 81.2 s; of course, it has to
be taken into account that the young professional only
trained for a single session). Overall, it can be deduced
that there is room for further improvement for all
novice users, which could potentially benefit from novel
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Figure 6. Lap time comparison between novice and professional
drivers. (a) Fastest single lap for each user. (b) Best session
average of lap time for each user with standard deviation.

training protocols.
Novice users show no group learning effect with

regard to the number of impacts (repeated measures
ANOVA F = 1.27, p = 0.27). This is indicated
by mostly flat grand averages in Fig. 7a1-a4 and
insignificant pre- vs post-training differences in that
respect (Fig. 7a5). In terms of racing line improvement,
novice users (Fig. 7b1-b5) do show a significant group
learning effect (repeated measures ANOVA F =
4.37, p = 0.0002).

We have further assumed that learning to race
should also be related to reduced ”redundancy” in
driving actions (braking, accelerating, turning); in
other words, reaching a state where all these actions
only happen at specific, optimal positions on the
track, with no (or only a few) corrections needed.
If this is correct, learning should also show with the
reduced number of these events, as described above.
However, this assumption is only partially supported
by the data. No significant group effect is found when
considering the sum of all types of events (ANOVA
F = 0.52, p = 0.85), although most novice drivers
do show significant improvements, evident in pre- vs
post-training bar graphs, individual learning curves
and grand averages (not shown here). It thus seems
that, although not a significant and generic effect, in
principle, most subjects tend not to overuse the brake,
throttle and steering wheel.

It must be underlined that, as steering events
are much higher in number than brake and throttle
push/release, the total event metric mostly reflects
the steering performance. The brake and throttle use
learning curves and pre vs post-tests (not shown here)
are erratic and do not really resemble learning curves
at all. There exist irregular fluctuations for many
users, and pre- vs post-training performance is not
consistent across the population. Consequently, the
ANOVA result for brake use may be significant (ADD
F/p here), but this only shows that session means are
not equal, not that they are converging to a consistent
learning outcome. This is evident by the corresponding
grand averages (not shown here), which are flat, and
the individual subject curves which are irregular. The
same holds for throttle use, except for the first two
sessions where there seems to be a fairly consistent
reduction across the sample.

Hence, it turns out that the overall assumption
is fully verified only with regard to the use of the
steering wheel. As shown in Fig. 7c1-c5, all subjects,
but two, reduced their use of steering wheel turning,
and most of these significantly; so that, on average, the
pre- vs post-training reduction is significant (although
the ANOVA main effect is not: F = 1.45, p = 0.19).
The absence of ANOVA significance at the session level
must be attributed to the fact that this effect takes
place within the first two sessions only, as shown by the
per-session grand average plot (Fig. 7c4). Improved,
smoother use of steering is consistent with the racing
line improvement found before.

Professional drivers had no significant effect on
impact reduction either (ANOVA is degenerate due
to too few points, no pre- vs post-training differences
found, Fig. 8a). This driver category also improved in
terms of racing line consistency, but not significantly
(repeated measures ANOVA F = 1.7, p = 0.13, no pre-
vs post-training significance in Fig. 8b). Reduction
trends with no statistical significance are denoted for
steering wheel use, too (Fig. 8c). These phenomena
should be very likely attributed to a ceiling effect.
In other words, professional drivers are already able
to almost eliminate the chance of impacts, closely
follow the optimal racing line and make the best
use of steering at the beginning of the session, so
that there is no room for learning in that respect.
The insignificant improvements observed in Fig. 8 can
be explained through slight optimizations reflecting
the acclimatisation of pro drivers to the particular
conditions of the experiment (simulator, car settings,
etc.).

3.3. tDCS effect on learning

The novice driver study has been designed specifically
to investigate the potential role of tDCS in learning to
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Figure 7. Performance analysis of three facets of driving proficiency across sessions for novice users: number of impacts, racing
line deviation, and number of steering events. Panels (a1), (b1), and (c1) display comparisons of average performance for each
participant in the first two versus the last two sessions for impact learning, race line learning, and steering learning, respectively,
with statistically significant differences marked by asterisks (*); * indicates significance with α = 0.05, ** with α = 0.01 and ***
with α = 0.001. No asterisk denotes no statistical significance at the 95% confidence interval (α > 0.05). Panels (a2-a3), (b2-b3),
and (c2-c3) show the mean and median values across sessions, respectively, for each of these three metrics. Each line represents an
individual participant as shown in the legend, the grand average across subjects is shown in thick, black line. Panels (a4), (b4), and
(c4) present the grand average impact number, race line, and steering event count, respectively, per lap index within each session,
capturing the overall learning trends across the training period. Panels (a5), (b5), and (c5) show the average differences for each
learning metric across all novice participants and separately for the active tDCS and sham groups, with error bars representing
standard deviation.

race. The first conclusion is that there does not seem
to be a strong, clear effect of tDCS on the learning
outcome. This has been evaluated by means of mixed-
design ANOVAs, where the response variable is the

gains on the corresponding behavioural metric (as the
average of the last two sessions subtracted from that
of the first two sessions), the between-subject factor is
the tDCS treatment (with levels active and sham), and
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(a) (c)(b)

Figure 8. Performance analysis of three facets of driving proficiency in a single session spanning 20 laps for professional drivers:
(a) number of impacts, (b) racing line deviation, and (c) number of steering events. All panels display comparisons of average
performance for each driver in the first six (black bars) versus the last six laps (blue bars). No asterisk denotes that no statistical
significance at the 95% confidence interval has been found for any of these metrics and drivers (α > 0.05).

(b)(a) (c)

Figure 9. Average and standard deviation of pooled lap time per session compared between two groups across different factors as
colour-coded in the legends: (a) tDCS: active vs sham (b) Prior proficiency: Proficient vs Näıve (c) Eyesight (Corrected Vision):
Good eyesight vs Corrected Vision, with statistically significant differences marked by asterisks (*). * indicates significance with
α = 0.05, ** with α = 0.01 and *** with α = 0.001. No asterisk denotes no statistical significance at the 95% confidence interval
(α > 0.05).

the within-subject factor is time (in sessions, with 10
levels S1-S10). Our analysis also checks the average,
standard deviation and significance with unpaired,
two-sided Wilcoxon ranksum tests of the gains in the
two groups for each metric.

Almost all ANOVAs for the metrics considered do
not result in significant tDCS× session interaction that
is the prerequisite for a significant role of tDCS on
learning outcomes. Specifically, for each metric, the
result is as follows:

• Lap time: F = 0.63, p = 0.76

• Penalized lap time: F = 0.34, p = 0.96

• Impact number: F = 1.81, p = 0.09

• Racing line: F = 0.65, p = 0.74

• Total events: F = 2.25, p = 0.04

• Brake events: F = 0.69, p = 0.71

• Throttle events: F = 2.22, p = 0.04

• Steering events: F = 2.05, p = 0.06

Therefore, only the throttle and total events show
a (marginally) significant interaction, while for steering
events the equivalent result is only marginally non-
significant at the 95% confidence interval. Even in the
significant cases, the trends are either not particularly
important in magnitude or even opposite to what was

hoped (e.g., active tDCS novice drivers improved far
less than sham for throttle, steering and overall events).
Hence, a clear, strong and undeniable effect of tDCS
on performance gains at the session level cannot be
established for any of the behavioural metrics defined
to assess driving proficiency.

However, further analysis reveals that pulling all
the lap times of all participants in the active tDCS
group together and comparing it to the equivalent
sham group, allows significantly better performance for
the active group to emerge: 89.4±9.5 vs 92.0±10.5,
p < 10−17, i.e., active tDCS subjects performed on
average better than the sham tDCS subjects by almost
3 s throughout the training regime. Fig. 9a shows that
the active tDCS group did not perform better than the
sham group in the first session, which was anticipated
since this study deliberately balanced the prior driving
proficiency between the two groups so as to acquire
approximately equal performance between them at
training onset. The slight, non-significant difference
in favour of the active group may be attributed to
increased learning effects taking place in this group
within the 20 laps of the first session. The difference in
favour of active tDCS becomes significant in session 2,
and also later on in sessions 5-10 (especially strong in
sessions 5 and 8). These intervals largely coincide with
the cohort’s two main learning breakthroughs (Sessions
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Figure 10. Modulation of the power of EEG theta rhythms by race training for all novice users as indicated by the panel titles.
For each participant, the panel on the left shows that theta PSD in the [4-8] Hz frequency band positively correlates with lap time.
The respective panel on the right shows that theta-band PSD also negatively correlates with the chronological lap index. The
corresponding correlation coefficients and p-values are provided in each panel. The dashed red lines represent the linear fits. Blue
(left) and black (right) asterisks illustrate the individual PSD value - lap time/index pairs, respectively. The panel titles state the
cortical region where this effect has been located in each case.

1-4 and Sessions 7-8) as seen in the per session grand
averages of Fig. 4f).

To contrast with a potential tDCS effect, we
examined the respective influence of two other factors
considered to be important confounds of lap time
performance (and, thus, balanced between the tDCS
groups): prior proficiency and eyesight sharpness.
Figure 9b presents lap time comparisons across sessions
for novice participants with different levels of prior
driving proficiency (proficient vs. näıve), while
Figure 9c compares lap times for novice participants
with good eyesight versus those with corrected vision.
It can be seen that subjects with prior proficiency and
corrected eyesight maintained a statistically significant
advantage. This got smaller as both the respective
groups learned, but remained significant throughout
the training in both cases. Most importantly, the
advantage in these cases has been present at training
onset, as it is logical. Conversely, any advantage
of the active tDCS group over sham is absent at
training onset (further proving the successful balance

of confounds as argued above) and only develops
gradually during training, weakly implying a potential
role of tDCS in learning to race.

3.4. Relation between EEG rhythms and learning to
race

Only for the theta EEG band, following the analysis
and criteria outlined in Section 2.5.6 there exist
ROIs that satisfy all conditions for 7 out of 11
subjects. Relaxing the definition of ROIs this
work can also identify single or smaller groups of
channels that also satisfy the criteria (always with
Bonferroni correction). In more detail, to control for
multiple comparisons, a strict Bonferroni correction
was applied, setting the significance threshold to α =
0.05
59×5 ≈ 0.00017. This adjustment maintains a family-
wise error rate of 0.05 across all 295 comparisons,
ensuring that the findings are robust against Type I
errors. Effectively, apart from novice driver LO30KI,
there exist cortical areas with significantly lower theta
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Figure 11. Modulation of the power of EEG theta rhythms during a single training session for all three professional drivers
as indicated by the panel titles. For each driver, the panel on the left shows that theta PSD in the [4-8] Hz frequency band
positively correlates with lap time. The respective panel on the right shows that theta-band PSD also negatively correlates with the
chronological lap index. The corresponding correlation coefficients and p-values are provided in each panel. The dashed red lines
represent the linear fits. Blue (right) and black (left) asterisks illustrate the individual PSD value - lap time/index pairs, respectively.
The panel titles state the cortical region where this effect has been located in each case.

PSD as training progresses (Fig. 10), which also
positively and significantly correlates with lap time.
The same holds for the single session of all three
experienced drivers (Fig. 11).

3.5. Relation between functional connectivity and
learning to race

Similarly to the theta EEG rhythms, this work was able
to find significantly increasing DTF effective alpha-
band connectivity pre- vs post-training for all but 3
novice drivers (MA16TE, MA23GI, SA03UR) and all
professional drivers (Fig. 12). Of note, in this case,
connectivity is computed and tested for significance
for each channel pair with Bonferroni correction. For
novice users, who have a larger dataset, the threshold
for significance was adjusted to α/(59× 59× 5), where
59 represents the number of channels, resulting in a
corrected threshold that maintains a family-wise error

rate of 0.05. Afterwards, the connectivity of significant
channel pairs is selected for each subject and averaged
to produce final connectivity index in the broadest
region possible for each participant.

Novice drivers displayed notable increases in effec-
tive connectivity between frontocentral and occipital
regions, as well as in the reverse direction, as their
training progressed. These increases in alpha-band
connectivity were observed consistently for the major-
ity of novice drivers, indicating a trend toward greater
functional coordination between motor planning and
visual processing areas as they adapted to the racing
task. However, it’s important to note that three novice
drivers (MA16TE, MA23GI, SA03UR) did not exhibit
significant changes in connectivity, which may reflect
individual differences in the rate or manner of neural
adaptation.

For professional drivers, significant alpha-band
connectivity increases were observed within a single
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Figure 12. DTF effective connectivity from frontocentral to occipital regions (first row) and vice versa (second row) for novice (first
column) and professional (second column) drivers. Red/blue bars illustrate the first/last two sessions for novice participants and
the first/last ten laps for professional drivers. Statistically significant differences are marked by asterisks (*); * indicates significance
with α = 0.05, ** with α = 0.01 and *** with α = 0.001. No asterisk denotes no statistical significance at the 95% confidence
interval (α > 0.05).

Figure 13. MRCP signals recorded from novice driver NI28LD during the brake push movement across ten sessions. Each line
represents the grand average MRCP of an individual session as shown in the legend. Each panel illustrates the MRCPs in a particular
EEG channel as indicated by the panel’s label. The MRCP waveforms are shown for 1 s before and after the brake push movement
onset (t = 0).
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Figure 14. MRCP signals recorded from professional driver Max Günther (PL01MC) during the brake push movement within a
single training session. Each panel illustrates the MRCPs in a particular EEG channel as indicated by the panel’s label. The MRCP
waveforms are shown for 1 s before and after the brake push movement onset (t = 0).

Figure 15. Anticipatory MRCP signals recorded from novice driver NI28LD during the brake push movement across ten sessions.
Each line represents the grand average anticipatory MRCP of an individual session as shown in the legend. Each panel illustrates
the corresponding MRCPs in a particular EEG channel as indicated by the panel’s label. The MRCP waveforms are shown for 1 s
before and after the time points corresponding to the track positions where professional driver Max Günther performed brake push
movements in his best lap (t = 0).

session, specifically when comparing the first 10 laps
to the last 10 laps. This pattern suggests that even
experienced drivers continue to refine their functional

connectivity during task performance, potentially
enhancing coordination between frontocentral and
occipital areas as they adjust to the specific demands
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Figure 16. Anticipatory MRCP signals recorded from professional driver Max Günther (PL01MC) during the brake push movement
within a single training session. Each panel illustrates the corresponding anticipatory MRCPs in a particular EEG channel as
indicated by the panel’s label. The MRCP waveforms are shown for 1 s before and after the time points corresponding to the track
positions where Max Günther performed brake push movements in his best lap (t = 0).

of the session.
The observed connectivity changes in both groups

underscore the importance of frontocentral-occipital
network dynamics in tasks requiring visuomotor
coordination and rapid decision-making. Overall, these
results highlight the potential of DTF alpha-band
connectivity as an indicator of both learning and
familiazation in race driving tasks.

3.6. Regular and anticipatory MRCPs during racing

MRCPs can be identified for both novice and
professional drivers (single-subject examples in Fig. 13
and Fig. 14, respectively), but are only prominent for
the brake push movement. It is noted that, in most
cases, the MRCPs seem to be ”smaller” (i.e., with
shallower maximum negativity) than what is reported
in the literature: The negative peak is around -2.5 to
-4 uV, while down to -10 or -15 uV has been previously
reported. Every other aspect of the grand average
MRCP extracted resembles a textbook case: the shape,
the timing of the negativity, the rebound, etc.

The extracted results do not appear to show clear
MRCPs for the steering wheel turning and for the
throttle push/release actions (no examples are shown
here). A possible reason is that these movements
are not as ”clear-cut” as the brake action (especially
the brake push). They are usually smoother and
less abrupt, which makes a precise “onset” of these

actions hard to define and identify, thus likely having a
negative impact on the associated MRCPs. There are
still visible CNVs for these movements, but they are
not as consistent as those for the brake push action.

Very importantly, even for the clearly identifiable
MRCPs of the brake push movements, none of the
MRCP waveform’s features tested (maximum CNV
depth, its latency, and the slope of the linear fit to
the CNV signal) significantly correlated to lap time or
any other of the facet’s of racing proficiency. It seems
that regular MRCPs do not constitute a meaningful
EEG correlate of learning to race.

Fig. 15 and 16 demonstrate that only the
professional drivers and the novice driver NI28LD
who achieved near-professional performance exhibit
MRCPs at ideal positions (for which we have
coined the term “anticipatory” MRCPs), verifying
the assumption made in Section 2.5.8. Specifically,
for the brake push action, clear anticipatory MRCPs
were observed among professional drivers, with distinct
negative deflections occurring near the optimal timing
point. These MRCPs showed consistent alignment
across sessions, indicating precise motor preparation
before reaching the ideal brake point on the track.
In contrast, novice drivers displayed varying patterns.
The novice driver NI28LD, who achieved near-
professional performance, demonstrated also well-
aligned anticipatory MRCPs for the brake push, similar
in form to those seen in professional drivers. Although,
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MRCPs could be observed in single trials for the
remaining novice drivers, these were less consistent in
terms of timing with the ideal brake point and thus
failed to emerge on grand averages. However, again,
the features of anticipatory MRCPs did not correlate
with lap time for these 4 participants (3 professional
drivers and NI28LD novice user).

4. Discussion

4.1. Behavioural results on learning to race

The study aimed to investigate the neural correlates of
learning and the effects of transcranial direct current
stimulation (tDCS) on the learning process, contingent
upon establishing clear learning effects. Our findings
reveal significant learning effects among novice users
(Fig. 4). These are apparent both in the individual
subject curves and the overall grand averages. All users
have significant pre- (first two sessions) vs post-training
(last two sessions) improvement, and the difference is
also significant at the group level (i.e., comparing the
eleven pre-training averages to the equivalent post-
training ones). More than 10 s gain in lap time
completion is found on average. Most novice users
exhibit exponential learning curves (i.e., there is an
intense learning period followed by consolidation of
the racing skill to a certain level). A few novice
drivers seem to have further improvement potential
(linear curves). Specifically, 6 out of 11 subjects
show significantly smaller root mean square error of
residuals of the exponential compared to the linear
fit. Within-session learning takes place, especially in
Sessions 1-3, followed by another breakthrough around
sessions 5-8 (on average), as shown on the per-session
grand averages of lap time (with a significant, negative
correlation of lap time vs lap index, Fig. 4f). Overall
the existence of strong group learning effects in terms
of lap time is beyond any doubt; the effect is found for
all subjects individually and not only on average.

Professional drivers also demonstrated significant
learning effects (Fig. 5). The observed improvements
within a single session highlight the professionals’ abil-
ity to quickly adapt to new conditions. The individual
subject curves and grand average corroborate that pro-
fessional drivers were able to minimize their lap time
throughout the session. All professional users exhibit
significant pre- (first six laps) vs post-training (last six
laps) improvement, the gain in lap time approaching
on average 3 s. Individual curves seem to be rather
a line, meaning that professional drivers could proba-
bly further improve with time, although further gains
in this case should be in the range of tens or hun-
dreds of a second. The comparison between novice and
professional users (Fig. 6) revealed that professional
drivers achieved faster lap times, with novices showing

a broader range of performance. Notably, one novice
user performed exceptionally well, achieving lap times
comparable to those of professional drivers. This out-
lier underscores the variability in individual learning
rates and the potential for novices to reach high levels
of performance. Nevertheless, the considerable remain-
ing gap between the average learned outcome of novice
participants and the average performance of profes-
sional drivers shows that there is room for improve-
ment in quickly training novice drivers to race, which
should be the target of future training paradigms.

Interestingly, novice users did not exhibit a
significant group learning effect in terms of the number
of impacts (Fig. 7a1-a5). Inspecting the individual
subject curves and pre- vs post-training comparison,
it is noted that there seem to be different/adversary
driving styles. Some (about half) users followed the
instructions and reduced impacts significantly over
time (although even these drivers increased a bit in
the end, probably a sign of their effort to further
push down lap times). Other users, though, constantly
increased their impact throughout. It seems that some
subjects, overriding the instructions, ignored impacts
by exploiting the invulnerability of the virtual car
in order to push the lap times down as much as
possible. Here, the fact that there was only end-of-
lap feedback on lap time and not on the number of
impacts sustained, may have been crucial for “biasing”
some users towards this undesired behaviour, although
drivers did of course perceive impacts per se through
the simulator. Still, inspecting the per session grand
averages, there is a significant reduction on average in
the first two sessions (significant, large correlation lap
index vs impact). It seems that the subjects that do
improve, mostly do it in the first two sessions. Of note,
given the absence of group learning effects in terms of
impacts the composite penalized lap time metric we
have come up with is only driven by lap time, and thus
has no extra value compared to it.

In terms of racing line improvement, novice users
showed significant progress (Fig. 7b1-b5), with the
majority of them learning to follow the optimal racing
line better over time. The individual subject curves,
grand averages and pre- vs post-training comparisons
show that all, but one, novice driver learned to better
follow the optimal racing line over time, and 9 out of
11 novice drivers significantly so. There exist users
with exponential and others with linear learning in this
aspect. This indicates that while lap time is a critical
metric, adherence to the racing line also plays a vital
role in the overall skill development of novice drivers.

The study shows that parsimonious use of brake,
throttle and steering (Fig. 7c1-c5) is essential; however,
it seems that novice users follow different driving styles,
so, it is not always the case that frequent use improves
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more parsimonious one during training, as we have
initially hypothesized. On the contrary, comparing for
example the average braking events between novice and
professional drivers and the individual pre- vs post-
training bars, it looks like many novice drivers started
with very low use of brakes and converged closer to
the optimal number of brake push/release. These are
the subjects that initially did not use the brake at all,
and tried to decelerate by merely releasing the throttle.
Hence, it must be noted that a different metric
reflecting better the fitness of using brake/throttle (e.g,
deviation from the optimal number, which could be
taken from the fastest lap of a professional user, similar
to the racing line metric) may have shown clearer
signs of learning. Such metrics can be attempted in
future analysis. The absence of significant learning
effects in terms of impacts and other driving actions
for professional drivers (Fig. 8) is likely attributable
to a ceiling effect. These drivers already exhibited
high-performance levels at the training onset, leaving
little room for further improvement in these specific
aspects. It is somewhat surprising that professional
drivers did show some improvement in following racing
lines, however, this improvement was less pronounced
compared to novice drivers. Clearly, professional
drivers already possess the skill of following the correct
racing line and only need to quickly adapt to and
memorize the specific track.

4.2. tDCS effect on learning

Although a mixed-design ANOVA showed no signifi-
cant effect of tDCS on lap time gain (F = 0.63, p =
0.76), session-wise lap time comparisons (Fig. 9a) be-
tween the two groups suggest that tDCS may indeed
influence learning to race. On average, subjects receiv-
ing active tDCS performed significantly better in the
final session, improving by almost 3 seconds compared
to the sham group. While performance was balanced
in the first session, the advantage for the active tDCS
group became more pronounced over subsequent ses-
sions and was statistically significant from session 2
through sessions 5-10. Of course, this does not nec-
essarily imply a role of tDCS on learning; this dif-
ference could be attributed to inherently better, more
”talented” drivers and/or better learners recruited by
chance in the active tDCS group. However, it moti-
vates the analysis to examine this comparison per ses-
sion, as well as with other variables that are reasonable
to assume may be implicated with racing performance,
but for which the analysis has no reason to believe that
is associated with learning: prior proficiency and eye-
sight.

In sessions 3 and 4, there is no significant
difference and the two groups are also very close
to each other. In other words, it seems that the

active tDCS group demonstrates better outcomes only
during and after the training stages where intense
learning takes place, while in the beginning, the two
groups are balanced, as desired. On the contrary,
both of the other two factors examined, the prior
proficiency and the eyesight sharpness, although both
seem to affect performance, do so in a uniform
manner that seems irrelevant to learning. Specifically,
prior driving and/or racing experience indeed affects
the initial performance (this is precisely why we
balanced this factor across the two tDCS groups)
where, predictably, experienced drivers do better than
näıve ones. The effect persists throughout the training
sessions, although it diminishes with time (which is
also reasonable: poorly-performing drivers at onset
tend to “catch up” as time goes by, since their
margin of improvement through training is probably
larger). Regarding the two groups with respect to
eyesight (people with/without lenses or glasses), we
observe that novice drivers with corrected vision did
significantly better throughout; the conclusion that can
be drawn from this is not, of course, that glasses help
one to race faster, but, rather, that this factor did not
affect learning and performance in any way: it simply
happened that better drivers in this study were, on
average, those with the need of corrected vision (since
prior proficiency was balanced for the tDCS factor, not
for the corrected vision factor). Hence, tDCS seems to
be the only factor that is balanced at training onset
and seems to gives an advantage to the active group
progressively during training. It can thus be claimed
that tDCS may have had a positive effect on race
driving learning, but not so strong as to appear also in
the per session ANOVA analysis, or at least not with
the limited sample of 11 users available in our study.

Therefore, the observed group difference is likely
attributable to the tDCS effect, making it a strong
candidate for further exploration. It is reasonable to
assume that a larger sample size might have provided
sufficient power to reliably establish the role of tDCS
at the level of the mixed-design ANOVA. The positive
trends observed in session-wise comparisons underscore
the need for further investigation.

4.3. Relation between EEG rhythms and learning to
race

Our study, as all investigations conducted with low-
resolution EEG imaging, cannot possibly offer insights
into the neural mechanisms subserving skill acquisition
at the cellular level. We have thus focused on
the macroscopic “systems” level, studying potential
connections of the brain networks’ connectivity and
ensemble oscillatory activity with the evolution of
racing proficiency. In that respect, we have established
a relation between theta-band EEG rhythms and
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alpha-band connectivity offering intriguing insights
into the neural mechanisms underpinning race-driving
learning. In addition to this, we have searched for
supporting evidence from the literature [26, 42, 43, 44]
linking the same phenomena to the acquisition of other
complex skills. Put together, the general mechanistic
principle giving rise to these correlations seems to
regard functional plasticity processes that enable
more efficient cognitive processing and visuomotor
coordination during driving.

The findings from the analysis of the theta
EEG band provide significant insights into the
neural mechanisms underlying the learning process.
Distributed cortical PSD in the theta band was
notably correlated with improvements in performance,
as evidenced by the reduction in lap times. This
decrease in theta rhythms may suggest a shift
towards more efficient cognitive processing as drivers
learn to perform the task, potentially reflecting
the diminishing need for high-level cognitive control
as skills become more automated. This pattern
was observed consistently across both novice and
experienced drivers, highlighting a potential neural
marker for learning and performance enhancement.
Decreasing theta power, observed in a majority of
subjects, aligns with existing literature [26, 42, 44] that
associates theta rhythms with cognitive and motor task
learning. In the context of motor learning, lower theta
activity is associated with efficient neural resource use
and cognitive engagement in well-practiced tasks [42].
This theta-band neuromarker could become the target
of neurofeedback training protocols aiming at faster
learning and/or adaptation to a new track by race
drivers.

4.4. Relation between functional connectivity and
learning to race

The relation between functional connectivity and
learning to race further elucidates the neural adap-
tations associated with skill acquisition. This study
identified a significant increase in DTF effective alpha-
band connectivity occurring between the initial and
final training periods for most novice and all profes-
sional drivers. The increase in alpha-band connectivity
was observed across multiple channel pairs, with signif-
icance tested and corrected for multiple comparisons.
Consistent with our findings, increased functional con-
nectivity in the alpha band has previously been associ-
ated with motor learning [43]. Furthermore, enhanced
alpha connectivity is often linked to improved neural
communication and coordination [43], which are cru-
cial for acquiring and refining motor skills. Similarly
to the aforementioned EEG rhythms plasticity, these
results imply that alpha-band connectivity could also
serve as a neural marker of the learning progress, as

well as the modulation target of neurofeedback train-
ing towards improved racing performance.

4.5. MRCP and anticipatory MRCP associated with
racing proficiency

Regular MRCP, where “time t=0” with respect to
which the anticipatory behaviour is examined is taken
to be the behavioural onset of a movement (e.g., an
abrupt brake pedal push as extracted by telemetry),
are studied to investigate whether any feature of
the CNV (peak amplitude, latency, slope) is affected
by learning. The study identified MRCPs in both
novice and professional drivers, particularly during
brake push movements. As reported in Section 3.6
of the Results, regular MRCP were found to be
barely identifiable for all movements other than brake
push. The MRCP exhibited smaller negative peaks
compared to the relevant literature [45]. A first
reasonable explanation for the swallow depth is that
the realistic scenario followed here creates greater
misalignment, imposes great cognitive workload and,
importantly, creates overlapping MRCPs due to
movements happening too close in time to one another,
resulting in lower average depths (which, anyway are
not far off the -5uV amplitude reported elsewhere [45]
for break push movements in a less realistic protocol).
In addition to this, the MRCPs extracted here are
filtered in the band [0.4 3 Hz] instead of the ideal [0.01
1] or [0.1 1]Hz pass-band, in order to avoid instability
(given the comparatively low sampling rate used here).
Rejecting the high-energy 0-0.4 Hz band may explain
the small depths of the MRCPs. Lastly, it must be
underlined that in certain cases (e.g., novice driver
JA07NA) the MRCP depth reaches the range of -10
uV.

Despite successfully extracting MRCP signals, it
has not been possible to relate features of these like
their depth, or the timing of the negative peak to
the learning and performance metrics at the session
level. There are no significant correlations with the
lap time or with the lap index (i.e., there is no
chronological improvement), neither for the depth nor
for the time gap to the movement onset. A per-lap
analysis, as done here for the PSD and connectivity
results, may reveal significant associations to learning;
however, the quality of lap-wise MRCP averages may
be compromised because, within a lap, one only gets
a small amount of each MRCP type. Furthermore, no
correlation between other facets of driving proficiency
and the peak amplitude, timing or slope of the
MRCP could be established for this type of movement.
Effectively, it seems that the hypothesis that MRCP
features reflect driving proficiency must be rejected.

Anticipatory MRCPs are defined here for the
brake push actions by taking t=0 to be the time
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points in a lap where a driver passes from the exact
same points where professional driver M. Günther
pushed the brake pedal in his best lap. The research
question asked here is whether subjects show the
expected anticipatory behaviour to produce well-timed
braking in order to optimize their lap time. Our
results in Section 3.6 show that the professional
drivers exhibit clear anticipatory MRCPs, as also the
best-performing driver NI28LD (not surprisingly, the
only one that significantly approached the professional
driver performances). Other novice users did not
show clear anticipatory MRCPs, which is logically
related to the fact that their braking actions were not
well aligned with the optimal braking timing. The
implications of these results are, first, that anticipatory
MRCPs are a good index of reaching peak racing
performance, as they emerge only when the use of the
brake pedal is optimized both in terms of braking style
and timing. While it can be argued that the same
type of information can be retrieved by analysis of
the car telemetry alone, an EEG metric provides a
useful alternative. Similarly, this index may have some
use in a closed-loop training protocol, where the CNV
negativity is used to assess on-the-fly whether drivers
will be able to proceed with the next needed action in
a timely fashion. Furthermore, anticipatory MRCPs
have unique characteristics that open revolutionary
future avenues of pilot-car confluence. For example,
as the CNV appears around 0.5 s earlier than the
actual brake onset (as proven by our own results, too,
see Fig. 15 and Fig. 16, future “collaborative racing”
could involve the car sensing the driver’s intention to
brake through their EEG and implementing it semi-
autonomously in an optimal way.

4.6. Embedding neurofeedback protocols into race
training

The findings of this study could be leveraged to pro-
mote the integration of neurofeedback protocols into
race training by employing real-time EEG monitor-
ing to extract the key neuromarkers identified here
(e.g., central theta-band rhythms, frontocentral-to-
occipital alpha-band connectivity) while participants
drive. Real-time feedback on these markers could be
projected onto the dashboard, allowing drivers to ac-
tively modulate their brain activity on-the-fly. For in-
stance, participants could be trained to optimize spe-
cific EEG frequency bands linked to optimal learning
using visual cues akin to the brake and throttle in-
dicators on their dashboard. This kind of feedback
aims to enhance the neural states conducive to learn-
ing. Future implementations could incorporate wear-
able devices, such as the Google Glass, to deliver vi-
sual feedback directly within the participant’s field of
view. This approach would be especially useful for

unobtrusive, continuous feedback during simulated or
real-world driving tasks, supporting neural state modu-
lation. Training could occur in both simulated and real
driving environments, providing neurofeedback to help
participants refine the neural states associated with
peak performance. Ultimately, this approach aims to
accelerate skill acquisition by fostering optimal neural
modulation during race training.

The primary mode of technology transfer of our
findings into race training regimes, as envisioned at
this stage, is the embedding of neurofeedback into
simulated or real driving. Additionally, we find that
the identified metrics, particularly the anticipatory
MRCPs, can also be used to evaluate learning profi-
ciency, either as standalone measures or in conjunction
with traditional metrics, offering an additional dimen-
sion. Lastly, although currently beyond the regulations
and standards of professional racing, our results pave
the way for deeper integration between humans and
machines, where semi-autonomous racing cars inter-
face with the driver’s brain to accomplish the driving
task optimally.

While these findings present exciting possibilities
for race training and human-machine integration, it is
important to acknowledge the limitations of the study
that may have influenced the results and their broader
applicability. The main limitation of this study is
the small sample size (N=11 novice participants and
N=3 professional drivers). The limited number of
subjects may have impacted the observed effects or
concealed their actual magnitude, including the ability
of tDCS to support race-driving learning. It must
be highlighted that, due to the study’s longitudinal
nature, the implemented recruitment yielded a very
high total amount of sessions executed (109 sessions,
with 4 sessions discarded due to technical issues).
Logistical constraints limited our ability to proceed
with additional recruitment. In the inherent trade-
off between the size of the study and the length of
training, we prioritized the latter to better capture the
dynamics of race-driving learning over time. Hence,
while we did consider recruiting more participants with
fewer sessions, this approach was turned down because
it would have hindered our ability to thoroughly
investigate the full scale of the long-term learning
effects of race driving, which was the primary
objective of this study. The limitations imposed by
the small sample size extend to the reliability of
findings regarding the neural correlates of learning
to race, particularly given the presence of exceptions
(participants that deviated from the identified trends)
in both EEG rhythms and effective connectivity.
Thus, validation through larger-scale future studies is
necessary to confirm these results.

Another limitation that will be addressed in
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future work regards the collection of questionnaires to
assess motivation, anxiety, mental workload and other
psychometric variables that could have also confounded
our results. Nevertheless, we believe that the highly
engaging, competitive and entertaining sim-racing task
in this study, together with subject compensation
for participation (not dependent on performance) and
the experimental design that prevented fatigue have
adequately ensured that these factors have probably
not affected our findings and conclusions. Last but
not least, although substantial effort has been devoted
to including behavioural metrics that evaluate and
quantify the main aspects of driving proficiency, we
acknowledge that additional and/or improved metrics
may need to be employed in future work to fully
capture the racing task’s great complexity.

5. Conclusion

This work assessed the neurobehavioural signatures
and brain plasticity effects during learning to race. At
the same time, we proceeded with a first assessment of
the potential role of tDCS in enhancing this learning
process. The results show clear changes in the power
of theta-band EEG rhythms of broad central networks
that correlated with lap time for both professional
and novice participants. Alpha-band, frontocentral-
to-occipital functional connectivity also seems to be a
neuromarker of learning to race. We further conclude
that tDCS may be able to support faster learning
of race driving by novice users, although the effect
was not strong and would require replication in future
studies. Future work will seek to delineate and
confirm these effects in experimentation with larger
populations.
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review of neuroscience 40 479–498

[8] Diedrichsen J and Kornysheva K 2015 Trends in cognitive
sciences 19 227–233

[9] Ericsson K A, Krampe R T and Tesch-Römer C 1993
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