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Abstract—This paper presents the design and implementation of Software-Defined Floating-Point (SDF) number formats for
high-speed implementation of the Belief Propagation (BP) algorithm. SDF formats are designed specifically to meet the numeric needs
of the computation and are more compact representations of the data. They reduce memory footprint and memory bandwidth
requirements without sacrificing accuracy, given that BP for loopy graphs inherently involves algorithmic errors. This paper designs
several SDF formats for sum-product BP applications by careful analysis of the computation. Our theoretical analysis leads to the
design of 16-bit (half-precision) and 8-bit (mini-precision) widths. We moreover present highly efficient software implementation of the
proposed SDF formats which is centered around conversion to hardware-supported single-precision arithmetic hardware. Our solution
demonstrates negligible conversion overhead on commercially available CPUs. For Ising grids with sizes from 100×100 to 500×500,
the 16- and 8-bit SDF formats along with our conversion module produce equivalent accuracy to double-precision floating-point format
but with 2.86× speedups on average on an Intel Xeon processor. Particularly, increasing the grid size results in higher speed-up. For
example, the proposed half-precision format with 3-bit exponent and 13-bit mantissa achieved the minimum and maximum speedups of
1.30× and 1.39× over single-precision, and 2.55× and 3.40× over double-precision, by increasing grid size from 100×100 to
500×500.

Index Terms—Reduced-Precision Floating-Point Number Format, Belief Propagation, Transprecise Computing, Software-Defined
Number Format.

F

1 INTRODUCTION

B ELIEF Propagation (BP) [1] is a probabilistic inference
algorithm on graphs that has been widely used in

communications [2], [3], machine learning [4], [5], cooper-
ative localization [6] and mobile robots navigation [7]. The
exact inference for large-scale graphs is computationally
intractable in practice, requiring efficient implementation
of BP for such large-scale applications [8], [9]. Two main
paths have been considered for improving the efficiency
of BP implementations, namely, message scheduling and
parallel processing. For example, asynchronous message
scheduling techniques such as residual BP (RBP) [10] and
parallel implementation on GPUs [11] have been widely
used. However, these methods are still limited for real-
time applications on resource-constrained devices [9] as
well as large graphs, since BP requires considerable data
movements from and to memory.

The number of bits required for hardware floating-point
(FP) formats (e.g. 64 and 32 bits for double- and single-
precision, respectively [12]) has a direct effect on the capable
amount of data transfer for BP applications, given memory
bandwidth budget. Since BP is an iterative approximate
algorithm for loopy graphs, high-precision arithmetic such
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as single- or double-precision is often not needed. We notice
that (i) no research has been done on the use of reduced-
precision FP formats for BP so far and (ii) the computational
speed for BP mainly depends on the memory traffic since BP
is a memory-bound kernel [13]. Therefore, identifying the
minimal bit-width number format that maintains sufficient
application accuracy is the key consideration to accelerate
BP.

Reduced-precision FP formats such as BFloat [14],
DLFloat [15], Flexpoint [16], TFP [17], and Flytes [18] were
mostly proposed for deep learning applications to achieve
high speed and energy efficiency for training and inference
tasks. However, there are limited works on the use of cus-
tomized FP formats for graph processing algorithms. In this
regard, [19] explored customized half-precision FP formats
for the PageRank [19]. The motivation of [19] was to reduce
memory traffic, given a prescribed accuracy. [20] proposed
a customized precision mantissa segmentation approach for
PageRank to accelerate access to memory by using smaller
number of bits for data. Moreover, [21] explored the feasi-
bility of using reduced-precision graph processing on GPU
tensor cores.

This paper, for the first time, seeks FP formats cus-
tomized to the sum-product BP algorithm to accelerate its
applications by improving the data traffic efficiency. Our
proposed Software-Defined Floating-Point (SDF) number
formats designed in 8- and 16-bit frames are used for memory
storage of BP normalized messages to improve data commu-
nication efficiency given a memory bandwidth as they are
fetched for the message updates. To maximize the bene-
fits of reduced precision number formats, we implement
highly efficient conversion modules to ease conversions
between single-precision and SDF number formats on off-
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the-shelf processors. In our case study used for Ising grids,
both the proposed half- and the mini-precision formats
achieve equivalent accuracy to the double-precision format.
This work shows that even 8-bit is sufficient for practical
sum-product BP applications, since most BP applications
are approximate, producing higher algorithmic error than
rounding error. In other words, in BP for loopy graphs,
small convergence thresholds and high-precision arithmetic
do not help BP increase its accuracy, as shown in Section 4.1.
The rounding error for 2D sum-product BP over Ising grids
is limited since the maximum edge degree in Ising grids is
four while in other graphs it could be millions.

Therefore, the main contributions of this paper are four-
fold:

• Analysis of required bit width for exponent and man-
tissa for sum-product BP applications based on the
application properties that can produce equivalent
accuracy to double-precision format.

• Application condition of our SDF formats that can
produce equivalent accuracy to double-precision for-
mat (i.e., higher algorithmic error of approximate BP
algorithm than rounding error of our SDF formats).

• Effective implementation to support SDF formats on
off-the-shelf processors,

• Experimental evaluation of SDF formats on the accu-
racy and speed-up on off-the-shelf processors, com-
pared to single- and double-precision.

We discuss a brief introduction to BP and FP arithmetic
in Section 2, the proposed SDF formats in Section 3, the ex-
perimental evaluation of SDF formats on performance and
accuracy in Section 4, and conclude the paper in Section 5.

2 BACKGROUND

2.1 Belief Propagation
Graph G is a pair of (V,L) where V and L are called
node and link (edge) sets, respectively. |V | indicates the
total number of nodes, and Γi means the set of neighbors
of node i. Moreover, Γi\j indicates neighbors set of node i
excluding the node j. Probabilistic graphical models [1] use
a graph-based representation for encoding joint probability
distribution over a set of variables, where nodes are ran-
dom variables and edges are probabilistic relations between
nodes. This probabilistic model can be used in a range of
applications for inference tasks to reach a conclusion about
a phenomenon based on its model. They include two major
classes, Bayesian networks (directed graphs) and Markov
random fields (undirected graphs). A factor graph is often
used as an alternative representation of Markov random
fields to represent probability distributions with factors of
nodes (i.e., a set of functions of the node variables) [22]. For
example, a factor function φi(xi) maps a random variable xi
to a positive real number [23]. Therefore, Markov random
field based factor graphs can represent joint probability
distribution over all nodes, i.e. P (x1, x2, . . . , xn). A practical
application of the inference over factor graphs often requires
to compute the marginal distribution of each node’s random
variable, i.e. P (xi).

BP is an inference algorithm over a factor graph, that
can calculate these marginals through message passing. BP

iteratively exchanges messages between edges and nodes
until convergence, and then marginals, called beliefs, can
be computed. The BP is communication-intensive, and its
performance mainly depends on the message communica-
tion. The Loopy Belief Propagation (LBP) is a synchronous
method which updates every edge in every iteration result-
ing in high latency and slow convergence. On the other
hand, asynchronous methods such as Residual Belief Prop-
agation (RBP) focus on updates of the less-stable graph
regions to speed up convergence [11], [24]. Algorithm 1 and
Table 1 present RBP with complete implementation details
including normalization. In Algorithm 1, Ai indicates a set
of finite alphabet, and its members depend on the appli-
cation. It should be noted that BP messages are normal-
ized (i.e.

∑
xi
mk→i(xi) = 1) for numerical stability and

preventing overflow/underflow after each message update
[25], [26]. Similarly, marginals should be normalized by 1/Z
coefficient where Z is the total sum of total intermediate
marginals of xi. The coefficient Z is usually called the
partition function. More details about Belief Propagation
and its various message scheduling methods can be found
in [1], [27].

It should be noted that in practice, Algorithm 1 will be
implemented using floating-point arithmetic in computing
systems since messages, node and edge factors are fractional
numbers. Generally, the order of operations is important
due to rounding errors in floating-point arithmetic. How-
ever, in the context of BP for loopy graphs, the order is
arbitrary since it is of negligible significance due to the
substantial algorithmic error in comparison to rounding
errors.

2.2 Floating-Point Number Format
The IEEE 754-2019 standard FP system is defined by a radix
b (2 or 10), an exponent range [emin, emax] and a precision p.
In this system, a number representation is defined by a sign
bit s, an exponent e and a significand m where 0 ≤ m < b.
The corresponding value is equal to [40]:

X = (−1)s × be ×m (1)

The significand is a number represented by a digit string
of the form d0 · d1d2...dp−1 where di is an integer digit
0 ≤ di < b, and p is the number of digits in the significand (
[40]). The limits on the exponent and significand determine
the dynamic range and precision of the format. The IEEE
754-2019 standard includes double-precision (64-bit), single-
precision (32-bit) and half-precision (16-bit) formats. The
double- and single-precision formats have been used widely
in computing systems [28], [29]. The IEEE 754 standard re-
quires correct rounding for the four floating-point arithmetic
operations such as addition, subtraction, multiplication, and
division. In other words, the floating-point arithmetic result
should be identical to the one obtained from the final
rounding after the exact calculation [12].

3 SOFTWARE-DEFINED NUMBER FORMAT FOR BP
This section presents our approach for designing cus-
tomized 16- and 8-bit floating-point formats for BP mes-
sages. We seek the minimum bit-width of the exponent
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Algorithm 1: Residual Belief Propagation [10], [11]

Input: Graph: G = (V,L), |V | = n
Random Variables: x1, x2, . . . , xn (xi ∈ Ai)
Node Factors: φi : Ai → R+|i ∈ V
Edge Factors: ψi,j : Ai ×Aj → R+|(i, j) ∈ L
Convergence threshold: ε
Output: Marginal Distribution: P (xi)

1 Begin
2 for (i, j) ∈ L do
3 for xj ∈ Aj do
4 mi→j(xj) = 1

|Aj |

5 rpq=priority queue(L, default residual) while
top residual > ε do

6 (i, j) = rpq.top()
7 for xj ∈ Aj do
8 mtemp

i→j (xj) =∑
xi∈Ai

ψi,j(xi, xj)φi(xi)
∏
k∈Γi\j

mk→i(xi)

9 sum =
∑
xj∈Aj

mtemp
i→j (xj)

10 for xj ∈ Aj do

11 mi→j(xj) =
mtemp

i→j (xj)

sum

12 for (j, h) ∈ {outgoing edges from node j} do
13 sum = 0
14 for xh ∈ Ah do
15 mtemp

j→h (xh) =
16

∑
xj∈Aj

ψj,h(xj , xh)φj(xj)

17
∏
k∈Γj\h

mk→j(xj)

18 sum = sum+mtemp
j→h (xh)

19 for xh ∈ Ah do

20 mtemp
j→h (xh) =

mtemp
j→h (xh)

sum

21 sum = 0
22 for xh ∈ Ah do
23 sum = sum+ (mtemp

j→h (xh)−mj→h(xh))

24 rpq(j, h).residual = sum

25 top residual = rpq.top().residual

26 for i ∈ V do
27 sum = 0
28 for xi ∈ Ai do
29 P (xi) = φi(xi)

∏
k∈Γi

mk→i(xi)
sum = sum+ P (xi)

30 for xi ∈ Ai do
31 P (xi) = P (xi)

sum

32 End

TABLE 1
Comments on Algorithm 1 (RBP details)

Lines Description
2-4 Initializing all messages to the uniform distribution (as-

signing the same probability to each message according to
the size of its random variable category)

5 Creating a priority queue to store message’s residual with
the same default residual value for all elements. The resid-
uals will be updated during the while loop, and will be
used for selecting which message to be updated next

7 Selecting the message with top residual from priority
queue to update

8-9 Updating mi→j by considering incoming messages to
node i

10-12 Normalizing mi→j(xj) for all xj ∈ Aj

13-20 Computing normalized messages which are affected by
mi→j (i.e. outgoing messages from node j) to achieve their
updated residuals

21-24 Computing residuals of affected messages and updating
them in priority queue

25 The top residual will be used in while condition to check
the convergence by comparing it with ε

26-31 Computing normalized marginals for all nodes

that allows representing the entire dynamic range of the
algorithm.

3.1 Application Specifications
We consider Ising grids since they are standard datasets
for evaluating BP algorithms [10], [11]. Ising grids are used
in statistical physics for modelling the interaction between
atoms in a physical system [1]. Considering n graph nodes
x1, x2, . . . , xn, a binary random variable xi ∈ {0, 1} defines
the atom’s spin which is associated with each atom [1].
Then, each node can take in isolation a node potential (i.e.
node factor) that works as a label for that node. Besides,
edge potentials (i.e. edge factors) are employed to model the
interaction between neighboring nodes. The messages can
be calculated based on node and edge factors. The goal is to
calculate nodes’ marginals (i.e. P (xi)) that can be achieved
based on final converged messages. There are many types
of node and edge factors that can be used to model Ising
grids. Here, we consider the parameters presented in [10],
[11]. In this model, each random variable takes a binary
value xi ∈ {0, 1}, and node factors are randomly sampled
as follows:

φi(xi) =

{
pi xi = 0

1− pi xi = 1,
(2)

where pi ∈ (0, 1]. Besides, the edge factors between nodes i
and j can be computed as follows:

ψi,j(xi, xj) =

 eλi,jc xi = xj

e−λi,jc xi 6= xj ,
(3)

where λi,j ∈ [−0.5, 0.5], and is randomly generated for each
edge factor (i.e., for each combination of nodes i and j,
a random λi,j will be used to produce the corresponding
edge factor). Moreover, c ∈ {2, 3} determines the difficulty
of the inference task and is the same for all edge factors
in (3). These ranges have typically been considered for the
evaluation of Ising grids [10], [11]. The λi,jc’s are called



4

the energy functions since the probability of a physical
state in statistical physics depends inversely on the energy
[1]. Therefore, randomly selected node and edge factors
according to (2) and (3) form the dataset. In other words,
for a n × n model, we have n2 nodes, and for each node,
there are two node factors (one for xi = 0 and the other
for xi = 1). For the internal nodes, each has four edges,
and for each edge, there are four possible edge factors since
xi, xj ∈ {0, 1} but with only two possible values as given
by (3).

3.2 Analysis of the Exponent Range
The BP requires special data structures for handling node
factors, edge factors, messages and marginals [1]. The node
and edge factors will be extracted from the dataset, and they
are constant while the program is running. The marginals
will be computed once at the final stage after all messages
are successfully converged. Therefore, we consider the mes-
sage communications only to derive the required bit-width
for exponent and mantissa, since they are the main cause of
high memory traffic. Updated BP messages in each iteration
are stored in memory and re-fetched from memory at the
next iteration for calculating new messages.

3.2.1 Theoretical Study
This work focuses on sum-product RBP over pairwise
Markov random fields based on Ising grid datasets with the
same assumptions on initial values as used in [11]. All of the
arithmetic operations considered in this section are rounded
floating-point operations. In this regard, the intermediate
messages mtemp

i→j in Algorithm 1 are computed as follows
[11]:

mtemp
i→j (xj) =

∑
xi∈Ai

ψi,j(xi, xj)φi(xi)
∏

k∈Γi\j

mk→i(xi). (4)

Then, the computed intermediate messages are normal-
ized. The normalization will be done after each message
update to have

∑
xi
mk→i(xi) = 1, which results in im-

proving numerical stability and preventing overflow/un-
derflow in the next iterations [25], [26]. The normalized
messages’ values should be transferred between BP itera-
tions until convergence. The main BP formula that calculates
the normalized messages for binary pairwise models, i.e.
xj ∈ {0, 1}, is as follows [11] (its calculation is indicated on
lines 10-12 in Algorithm 1):

mi→j(xj) =
mtemp
i→j (xj)

mtemp
i→j (xj) +mtemp

i→j (1− xj)
. (5)

Then, the max norm based on normalized messages
and the previous iteration messages can be computed to
check the convergence with convergence threshold ε [10],
[11]. Finally, after program convergence, the final marginals
(a.k.a. beliefs) can be calculated as follows [11]:

P (xi) ∝ φi(xi)
∏
k∈Γi

mk→i(xi). (6)

It should be noted that similar to messages, the normal-
ization can also be applied on marginals as shown in last
loops of Algorithm 1. Now, the aim is to determine the lower
and upper bounds of the exponent range for the normalized

message, mi→j(xj), in (5) as follows. First, we assume that
the operations in (5) are computed exactly (i.e. ignoring
rounding errors), and then we study the effect of rounding
errors on it. In this regard, (5) and (4) can be rewritten as
follows:

mi→j(xj) =
1

1 +
mtemp

i→j (1−xj)

mtemp
i→j (xj)

, (7)

mtemp
i→j (xj) =

∑
xi∈Ai

ψi,j(xi, xj)Fi,j(xi), (8)

where
Fi,j(xi) = φi(xi)

∏
k∈Γi\j

mk→i(xi). (9)

Now, we can get bounds on mtemp
i→j (xj) and mtemp

i→j (1 −
xj) based on (8) as follows:

mtemp
i→j (x̂) = ψi,j(0, x̂)Fi,j(0) + ψi,j(1, x̂)Fi,j(1) (10)

where x̂ = xj or 1− xj . From (3) we know that:

e−λi,jc ≤ ψi,j(xi, xj) ≤ eλi,jc. (11)

Therefore, we can get bounds on (10) considering the
minimum and maximum values of λi,j as follows:

e−0.5c(F (0) + F (1)) ≤ mtemp
i→j (x̂) ≤ e0.5c(F (0) + F (1)).

(12)
(12) implies:

e−c ≤
mtemp
i→j (1− xj)
mtemp
i→j (xj)

≤ ec (13)

therefore,

1

1 + ec
≤ 1

1 +
mtemp

i→j (1−xj)

mtemp
i→j (xj)

≤ 1

1 + e−c
. (14)

It can be seen that the values of F (0) and F (1) do not af-
fect the deduction of (13) from (12), as these terms are elim-
inated in the division since their sum is positive. Therefore,
for the purpose of analyzing rounding errors, F (0) and F (1)
can be considered as exact values. Moreover, ψi,j(xi, xj)
can be affected by rounding errors. Even though λi,jc in
(3) may be affected by a rounding error for c = 3, ±c/2
is a valid bound for the computed value of ±λi,jc since
±0.5 is exactly representable and the division by 2 is exact.
Additionally, the computation of the exponential function
in (3) introduces rounding errors that can be expressed as
(1+ε)v where v ≥ 1. Therefore, when considering rounding
errors based on Higham error analysis [32], there will be an
error factor

• (1 + ε)(2+v) for both mtemp
i→j (xj) and mtemp

i→j (1− xj),
• (1 + ε)(3+v) for mtemp

i→j (xj) +mtemp
i→j (1− xj),

• (1 + ε)(6+2v) for the normalized message given by
(5),

where ε depends on the variable and is bounded by the
arithmetic machine epsilon [32]. For c = 2 and 3, the values
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of 1
1+ec and 1

1+e−c are far enough from powers of 2 so that
the factor (1 + ε)6 will not change the exponent. It should
be noted that if p in (2) is tiny, the ψi,j(0, x̂)Fi,j(0) term in
(10) may underflow. But in this case, this term is so small
compared to ψi,j(1, x̂)Fi,j(1) that it can be regarded as part
of a (1 + ε) error factor. Thus, the (1 + ε)6 is still valid.

It is clear that for c = 2, 1
1+ec ≈ 0.119 and 1

1+e−c ≈ 0.88,
and for c = 3, 1

1+ec ≈ 0.047 and 1
1+e−c ≈ 0.95. Therefore,

according to (14), we have:{
0.119 ≤ mi→j(xj) ≤ 0.89 c = 2

0.047 ≤ mi→j(xj) ≤ 0.96 c = 3
. (15)

It should be noted that due to the small ε value, the
(1 + ε)(6+2v) factor is included in the outward rounding
considered in (15). This implies:

E(mi→j(xj)) ∈
{
{−4,−3,−2,−1} c = 2

{−5,−4,−3,−2,−1} c = 3
, (16)

where E(expr) is the unbiased exponent of the expression
expr, computed in floating-point arithmetic. Therefore, it
can be seen that the exponents of normalized BP messages
are independent of the graph sizes but dependent on the
parameters that determine the edge factors.

3.2.2 Experimental Evaluation
We experimentally analyzed the BP messages based on
some Ising grids datasets in order to check the matching
between theoretical findings and experimental results. We
considered Ising grids with sizes from 10× 10 to 500× 500
with node and edge factors as indicated in (2) and (3) where
λ ∈ [−0.5, 0.5] and c ∈ {2, 3}. The exponent range of
normalized messages during all algorithm’s iterations is as
follows:

EExperimental(mi→j(xj))∈
{
{−4,−3,−2,−1} c = 2

{−5,−4,−3,−2,−1} c = 3
.

(17)
It can be seen that the experimental study of expo-

nents confirms the validity of theoretical findings. In other
words, the experimental evaluation exponents’ bounds ex-
actly match those from the theoretical study given in (16).

3.3 Accuracy Analysis of SDF Format
We analyze the accuracy without SDF format quantization
first and the accuracy with the quantization later. Our anal-
ysis is focused on one-step update for normalized messages,
given the messages updated in the previous step.

3.3.1 Without SDF Quantization
This section analyzes the rounding error propagation for
the message update processes, (i.e. (4) and (5)). (4) can be
represented as dot-product operations as follows:

mtemp
i→j (xj) =

∑
xi∈Ai

ψi,j(xi, xj)Fi,j(xi). (18)

The computation for Fi,j(xi) follows (9). For the compu-
tation, the number of neighboring nodes is nne and the
number of multiplications is (nne − 1) (i.e., multiplications

between a factor function φi(xi) and the messages from
neighboring nodes except the node j). The rounding error
in calculating Fi,j(xi) is as follows [32].

F̃i,j(xi) ≈ Fi,j(xi)(1 + n̄neεF ), (19)

where |εF | ≤ εar; εar is an arithmetic machine epsilon
value used for computing Fi,j(xi) [12], and n̄ne = nne − 1.
F̃ (·) in (19) represents the perturbed F (·) due to finite
precision arithmetic. We will use the tilde notations for the
variables containing rounding errors due to finite precision
arithmetic from this point forward. The error analysis in
(19) considers the rounding error effects from each message
update procedure, given the previous messages. The error
in the computed quantity F̃i,j(xi) can be represented as:

‖Fi,j(xi)− F̃i,j(xi)‖ . Fi,j(xi)n̄neεar, (20)

The computed m̃temp
i→j (xj) can be represented as follows [41]:

m̃temp
i→j (xj) = (...((ψ̃i,j(xi = s0, xj)F̃i,j(xi)(xi=s0)(1 + εm(0))

+ψ̃i,j(xi = s1, xj)F̃i,j(xi)(xi=s1)

(1 + εm(1)))(1 + εa(0))) + ...)(1 + εa(nst−2))

≈
∑
xi∈Ai

ψ̃i,j(xi, xj)F̃i,j(xi)(1 + θ),

(21)
where nst represents the number of states (i.e., possi-
ble values) in every xi, sk represents the kth state of
xi, F̃i,j(xi)(xi=sk) represents F̃i,j(xi) when xi = sk,
ψ̃i,j(xi, xj) = ψi,j(xi, xj)(1+ ε̄i), where ε̄i is rounding error
in computing ψi,j(xi, xj) and |θ| . nstεar/(1 − nstεar) ≈
nstεar. For example, in the Ising model stated in Section 3.1,
the possible states for xi are: xi ∈ {0, 1} (i.e., s0 = 0 and
s1 = 1). Please note that if the sum is done via a balanced
binary tree, the error bound would be smaller.

Using (19) and ignoring O(ε2) or higher order impact, the
numeric error bound in the computed quantity m̃temp

i→j (xj)
can be found as:

‖mtemp
i→j (xj)− m̃temp

i→j (xj)‖ . mtemp
i→j (xj)× (nst + n̄ne)εar.

(22)
In (22), the rounding error, (nst + n̄ne)εar, is the approxi-
mation of the maximum rounding error; the rounding error
is often smaller than this bound in practice. According to
Algorithm 1, normalized messages are obtained by dividing
the messages computed based on (21) by sum in Algo-
rithm 1. Given the computed intermediate messages, the
sum generates rounding error from the (nst − 1) summa-
tions :

˜sum ≈ sum× (1 + (nst + ñne)εF )(1 + (nst − 1)εF )

≈ sum× (1 + (2nst + ñne − 1)εF ).
(23)

The maximum error of each normalized message occurs
when the ˜sum reaches the minimum caused by rounding er-
ror while the intermediate messages reaches the maximum,
resulting in(24).

‖mi→j(xj)− m̃i→j(xj)‖ .

mi→j(xj)(
1 + (nst + ñne)εar

1− (2nst + ñne − 1)εar
)(1 + εar)−mi→j(xj).

(24)
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3.3.2 With SDF Quantization
In SDF, the computed data are quantized when they are
written to the memory, and two of the quantized data are
fetched for an arithmetic operation with the arithmetic sup-
ported in hardware. Therefore, the SDF quantization does
not affect the high-level description of the algorithm. SDF
quantization is carried out after the messages computed in
(22) are normalized. Unlike SDF quantization, computing
intermediate messages in (22) utilizes quantizations based
on the precision supported by the hardware.

Associated with the quantization error εmq , the numeric
error bound in the computed quantity m̃i→j(xj) can be
represented as:

‖mi→j(xj)− m̃i→j(xj)‖ .

mi→j(xj)(
1 + (nst + ñne)εar

1− (2nst + ñne − 1)εar
)(1 + εar)(1 + εmq)

−mi→j(xj)

≈ mi→j(xj)
1 + (nst + ñne + 1)εar + εmq

1− (2nst + ñne − 1)εar
−mi→j(xj).

(25)
Based on (25), employing SDF formats would not lose

accuracy, compared to (22) if arithmetic machine epsilon
multiplied by (nst + nne+1) is relatively higher than the
quantization machine epsilon. Please note that the equiva-
lent accuracy condition excludes the effects of undermod-
elling noise on the accuracy, which will be discussed in
the following section. For example, if the effects of quan-
tization errors on the accuracy are negligible, compared to
the undermodelling noise, the equivalent accuracy with SDF
quantization can be achieved even if the SDF quantization
error is noticeably higher than rounding errors.

3.4 Guidelines for SDF Design
Based on our analyses of required bits of exponents and the
accuracy depending on the quantization level, we design
SDF formats for our case studies based on the guidelines as
follows.

3.4.1 Use as Many Bits as Possible for Mantissa
(25) implies that it is desirable to provide as many bits as
possible for mantissa for practical applications (i.e., Ising
grids, stereo matching, etc.), since the quantization precision
is the main factor to determine the numeric error. Based on
this guideline, we seek the least sufficient bit-width for the
exponent for our SDF formats, and the rest of bits are used
for the mantissa part, given that the total number of bits is
fixed (e.g. 8 or 16) as the values should be stored in memory
in an efficient way. The details will be given in Section 3.5.1.

3.4.2 Balance between Algorithmic and Rounding/Quanti-
zation Error
BP is an approximate algorithm for loopy graphs. This
implies that using exact arithmetic in BP still results in the
error in the computed solution. We name this as under-
modelling error eu, which is not avoidable for an approx-
imate algorithm even with exact arithmetic. Since BP is
composed of linear operators, linearity properties such as
additivity, f(a + b) = f(a) + f(b), and homogeneity of
degree 1, f(c × a) = c × f(a), should hold. The exact

arithmetic BP algorithm with the input x, fBP (x), produces
the computed beliefs, y. The computed beliefs contain the
under-modelling error, eu. I.e., y = y∗ + eu, where y∗ is
the desirable beliefs. Utilizing the linearity properties and
the rounding error decomposition technique of [33] can
represent the computed beliefs, ỹ, using finite precision
arithmetic BP, f̃BP (x), as:

ỹ = y∗ + eu + eqr, (26)

where eqr is error caused by rounding error after arithmetic
operations with SDF quantization.

For higher algorithmic error case, (26) implies that the
mantissa width can be adjusted according to the algorithmic
error eu. For example, the mantissa bit width can be reduced
without compromising the accuracy if eu is relatively high,
since eu is independently additive to eqr [33]. The eu in BP
highly depends on the strength of potentials [34] - lower
potential, lower eu. Therefore, the required mantissa bit
width is in proportion to reciprocal of potential strength to
keep equivalent accuracy to the one with a higher precision
format. In our experiments, Tables 4 and 5 demonstrate that
a weaker potential (c = 2) requires a larger convergence
threshold, compared to a stronger potential (c = 3). The
higher algorithmic error case is highly probable for Ising
grids since nne is relatively small, resulting in small error
using quantization data based on (25).

For higher rounding error case, we recommend users to
increase the mantissa bit width (i.e., quantization error) to
reduce εmq in (25).

In our case studies using nst = 2, εar = 2−24 (i.e., single
precision), and εmq= 2−k, k ∈ 14, 13, 12, the effect of round-
ing error to the accuracy is negligible while the quantization
error is dominant factor to determine the accuracy. Our case
studies demonstrate that the accuracy is not compromised
in practice since the quantization error is lower than the
algorithmic error for our case studies thanks to a small nne.

3.5 SDF Format Design and Implementation
This section describes two important aspects of software-
defined number formats. The first one is the structure of the
SDF number format including its total size as well as each
field size. The second is the implementation method.

3.5.1 Number Format
An IEEE 754 standard binary FP format includes a sign bit,
biased exponent and normalized mantissa. However, the BP
messages are unsigned probabilities, and therefore sign bit
is unnecessary for representing them. Therefore, the sign
bit can be removed from the messages’ coding format. This
results in one additional bit for the mantissa to have higher
precision. On the other hand, both theoretical (i.e. (16)) and
experimental studies (i.e. (17)) of BP normalized messages’
exponents showed that exponents are restricted in a limited
range which depends on edge factors, and are independent
from dataset size.

The theoretical and experimental studies (i.e. (16) and
(17)) both suggest that maximally 3 bits are sufficient to
represent the exponents of normalized BP messages for
c = 3, and 2 bits for c = 2. Then, after determining the
exponent’s field size, the remaining bits can be dedicated
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to the mantissa. To have efficient read and/or write, a
multiple of bytes should be considered for the SDF formats.
Therefore, we select 16- and 8-bit frames for the proposed FP
number formats as shown in Fig. 1 where EXP ∈ {2, 3, 4}
and M ∈ {8, 16}. It should be noted that the SDF format
with a 4-bit exponent (Half(4,12)) is proposed to assess the
impact of one fewer mantissa bit in half-precision formats on
accuracy and performance. However, in reality, 3 exponent
bits are sufficient to cover all the required exponents without
any compromise in dynamic range, as indicated by the
theoretical and experimental analyses (i.e. (16) and (17)).
Due to this, Half (3,13) and Mini (3,5) are suggested. Finally,
the Mini (2,6) and Half (2,14) formats are suggested only for
the case of c = 2, where two bits in the exponent field are
adequate according to (16) and (17).

Fig. 1. The Proposed Software-Defined FP formats for BP.

3.5.2 Implementation
There are two main options for implementing customized
number formats. The first one is to design new circuits
and systems to support arithmetic using the new num-
ber format. This method includes high time-to-market and
changing several layers of computing stack. It is not prac-
tical to design new hardware for every application-specific
number format. The second method is implementing the
new number formats using general-purpose commercial
processors such as CPUs and GPUs using emulation. This
method relies on fast time-to-market and easy implementa-
tion since only the application/system-software level of the
computing stack needs to be changed. However, emulation
of FP arithmetic using integer instructions can lead to high
latency implementations due to exceptional cases handling
including under/overflow. In other words, the overhead
due to inefficient conversion to/from the conventional num-
ber format to the customized number format can offset the
speed gain that can be achieved by less data communication.

To fix these problems, we developed a fast emulation
method for implementing our software-defined number
formats on off-the-shelf processors. The key elements of the
proposed technique are as follows:

• SDF format is used for storage and communication of
normalized messages whilst single-precision format
is selected for performing arithmetic operations on

messages on general-purpose processors. This FP-to-
FP conversion prevents inefficient emulation of FP
arithmetic using integer instructions.

• SDF format is not applied to all parts of the BP
algorithm to substitute double(single)-precision for-
mats. Table 2 shows the required data structures to
implement BP, and where the proposed formats are
used. The communication-intensive structure is for
normalized message storage since it is updated per
iteration and then retrieved in the next iterations.
Due to this, the SDF formats are only applied to
the normalized messages to minimize the number of
conversions while reducing the normalized message
size to reduce data communication between memory
hierarchy levels.

• SDF uses a novel truncation-based exponent’s cod-
ing which has resulted in extremely lightweight
conversion mechanisms between SDF formats and
single(double)-precision formats. Table 3 shows how
exponent values which are identified by (16) and (17)
can be translated from double(single)-precision to
SDF formats that showed in Fig. 1. It can be seen that
for the conversions to/from SDF formats with 3 or 4
bits exponents only truncation is needed. However,
subtraction (addition) of single-precision exponent
by 3 is required to achieve equivalent exponents for
SDF formats with 2-bit exponent. Fig. 2(a) shows
details of conversion between one of the proposed
16-bit SDF formats (i.e. Half (4,12)) and the IEEE
single-precision format. It should be noted that the
conversion mechanism for Half(3,13) is the same as
Half(4,12) but with truncating only 3 bits of single-
precision exponent for forward conversion, and then
embedding 01111 to the top bits for backward con-
version. Furthermore, Fig. 2(b) elaborates exponent
conversion from 8- to 2-bit, and vice versa as required
for the Mini(2,6) and Half(2,14) formats. Moreover,
the conversion mechanism for the Mini(3,5) format
is similar to Half(3,13) with the exception of 5-bit
mantissa truncation rather than 13.

• SDF leverages exponent coding of Table 3, to derive
high-speed software-based conversion routines to
enable read(write) from(to) normalized messages as
shown in Algorithm 2. The Encode routine converts
single-precision data to the SDF format, and vice
versa for the Decode routine. It should be noted
that truncation can also be used for the encoding
of single-precision exponents to SDF formats with 2-
bit exponents. However, during decoding, ”if-else”
instructions are needed to put 0 in the 3rd exponent
position for the case of 11, and 1 for other cases.
The use of if-else instructions decreases the efficiency
of the processor pipeline, rather than a simple in-
teger addition instruction. Therefore, to minimize
the conversion overhead, we used minus 3 instead
of truncation for encoding, and plus 3 instead of
”if-else” for the decoding of exponents of the SDF
formats with 2-bit exponents.

3.5.3 Rounding and Special Cases
Fig. 2 describes the data format conversion to write the
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Fig. 2. The proposed conversion mechanisms from/to (a) Half(4,12) (b) Mini (2,6) to IEEE single precision format and vice versa.

TABLE 2
Floating-Point Data Structures needed for different implementations of

BP with various precisions

Component Double
Precision

Single
Precision

Half
Precision

Mini
Precision

Marginals Double Single Single Single
Normalized

Messages
(Edges)

Double Single 16-bit
SDF

8-bit
SDF

Temporary
Messages

(Workspace)
Double Single Single Single

Edge Factors Double Single Single Single
Node Factors Double Single Single Single

arithmetic results into storage (i.e., conversion from IEEE
single precision to SDF) and to perform arithmetic oper-
ations using SDF operands (i.e., conversion from SDF to
IEEE single precision). Rounding towards zero is considered
for the conversion from single precision to an SDF. We
take this rounding mode, since it only truncates the least
significant bits of the mantissa as shown in Fig. 2, realizing
fast conversion.

Since the SDFs are converted back to IEEE single preci-
sion format for performing IEEE single arithmetic, special
cases regarding the results from the arithmetic operations
follow IEEE 754 standard guidelines [40]. None of the spe-
cial cases, including Not a Number (NaN), infinity, denor-
mals and zero, occur for our use cases using normalized
BP messages. For example, the theoretical and experimental
study on normalized messages’ exponents (i.e., (39) and
(40)) confirm that the exponents of the result from the mes-
sage passing range from 1013 to 1023 in double-precision
biased form (as shown in Table 3), which belong to none
of special cases of NaN, infinity, zero, and denormalized
numbers (i.e., the exponent value is neither 2047 nor zero)
[29]. Therefore, we do not consider special cases for our data
conversion to an SDF.

3.6 Generalization
The target of the SDF approach is to use numerical analysis
at the algorithm level to determine the real number range
that is needed for the most frequently used data array,
and then develop a suitable compact number format for
it to reduce the data communication and memory traffic.

Although this work only reports the approach for the BP
use case, it is also possible to use this design method for
other applications, especially iterative algorithms where a
large amount of data transfer between iterations is needed.

Fig. 3 shows a guideline for using the SDF design ap-
proach in different applications. The first step is to analyze
the target algorithm to determine the big critical arrays
(BCAs). Then, theoretical and experimental studies on num-
bers stored in BCAs should be done to find the required
range of numbers. Moreover, some specific behaviours and
correlations of exponent and mantissa numbers can be
found at this stage to further simplify and shorten the
number format. Finally, conversion routines should be de-
veloped with the minimum overhead followed by accuracy
and performance analysis.

4 EVALUATION

This section evaluates the accuracy and performance aspects
of the proposed SDF formats against the conventional IEEE
double- and single-precision formats which exist in off-the-
shelf commercial processors.

4.1 Accuracy Analysis
The target of BP inference algorithm is calculating node
marginals based on final converged messages as shown in
lines 28-33 of Algorithm 5. Therefore, accuracy comparison
of various BP algorithms is done using quality of marginals
evaluation. The BP is an approximate algorithm when ap-
plied on graphs with loops such as Ising grids. Therefore,
its accuracy evaluation should be performed against exact
methods such as variable elimination (VE) [1].

Exact inference is computationally infeasible for large
grid sizes, and only tractable for small grids. Due to this,
previous BP implementations [10], [11], [30] only reported
exact marginals for Ising grids from 7 × 7 up to 13 × 13.
However, we also achieved the exact marginals for grid
sizes up to 17 × 17 with both c = 2 and c = 3 based on
VE algorithm which is developed in [31]. Fig. 4 shows the
runtime for both exact (VE) and approximate programs (BP
with double-precision messages) for grids with c=2 based on
a machine with an Intel Xeon Gold 6126 CPU. It can be seen
that the runtime of the exact method significantly increases
with the grid size, while the approximate method runtime
remains minimal.
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TABLE 3
Exponent Conversion between different FP formats

Exponents Double-Precision (64-bit) Single-Precision (32-bit) The Proposed Exponent Coding

unbiased Decimal Binary
(11 bits) Decimal Binary

(8 bits) Decimal Binary
(4 bits) Decimal Binary

(3 bits) Decimal Binary
(2 bits)

0 1023 01111111 111 127 01111 111 15 1111 7 111 - -
-1 1022 01111111 110 126 01111 110 14 1110 6 110 3 11
-2 1021 01111111 101 125 01111 101 13 1101 5 101 2 10
-3 1020 01111111 100 124 01111 100 12 1100 4 100 1 01
-4 1019 01111111 011 123 01111 011 11 1011 3 011 0 00
-5 1018 01111111 010 122 01111 010 10 1010 2 010 - -
-6 1017 01111111 001 121 01111 001 9 1001 1 001 - -
-7 1016 01111111 000 120 01111 000 8 1000 0 000 - -
-8 1015 01111110 111 119 01110 111 7 0111 - - - -
-9 1014 01111110 110 118 01110 110 6 0110 - - - -
-10 1013 01111110 101 117 01110 101 5 0101 - - - -

Then, similar to previous works [10], [30], mean square
error (MSE) metric is used to calculate the error of approx-
imate marginals based on BP against exact marginals as
follows [30]:

MSE =
1

N

N∑
i=1

∑
xi∈Ai

|PBP (xi)− PExact(xi)|2 (27)

where PBP (xi) is approximate marginal that is achieved
from BP using different FP formats including double, single,
half and mini. Besides, PExact(xi) denotes exact marginals
that are computed using the VE algorithm ( [1], [31]). More-
over, N is the total number of nodes.

Tables 4 and 5 present MSE results for BP implementa-
tion based on configurations described in Table 2. It should
be noted we calculated MSE results for various convergence
thresholds (ε) to find what is the optimum value of ε to
achieve the best accuracy. Note that smaller ε leads to higher
iterations and consequently higher runtime. It can be seen
that the best MSE for grids with c = 2 is achieved when
ε = 0.1, and in this point the proposed SDF formats have
almost the same accuracy as double- or single-precision.
Moreover, for grids with c = 3, the optimum point is
ε = 0.01 for 10× 10, and only the Half (3,13) can reach this
point. However, for 15× 15 grid, a very small improvement
in MSE can be achieved when ε = 0.001. Finally, for 17× 17
grid with c = 3, the optimum threshold is ε = 0.1 since all
of the formats except Mini(3,5) achieved their best MSE.

Note that as long as the messages have converged with
the same convergence threshold, the marginals are equiv-
alent to each other regardless of different number formats
as can be seen from MSEs in Tables 4 and 5. Therefore,
we assume that the accuracy of computed beliefs using
each number format is equivalent as long as the messages
have successfully converged under the same convergence
threshold. A higher convergence threshold results in fewer
iterations to converge, and consequently higher speed-up,
but at the expense of reduced accuracy. In other words,
the least significant bits of double- or single-precision mes-
sages based on a high threshold do not essentially include
accurate message digits. Moreover, BP for Ising grids is
approximate either with double- or single-precision for-
mats. Therefore, rounding messages towards zero does not
necessarily reduce their precision. For example, the min-
imum experimental error of BP relative to exact results,

as shown in Table 4, is 2.31556 × 10−4. This error mag-
nitude is significantly larger than the precision limits of
both double-precision (2−53 ≈ 1.11 × 10−16) and single-
precision (2−24 ≈ 5.96 × 10−8). This suggests that the
predominant source of error in BP for loopy graphs is the
algorithmic error, rather than the precision of the numerical
representation.

4.2 Performance Evaluation

We used the BP message scheduling library of [31], and
then applied various data formats on it to derive RBP
implementations with different precisions. In this regard, a
server machine which includes an Intel(R) Xeon(R) E5-2683-
v4 CPU, and GCC v10.2.1, is used to analyze the runtime
of BP implementations with different message precisions1.
The experimental results in terms of runtime (seconds) and
speedup (against single precision) are presented in Tables
6 and 7. Note that the runtime results in Table 6 are based
on the average of 5 runs, and speedups are calculated as
follows:

Speedup =

(
RuntimeDouble/Single − RuntimeSDF

RuntimeDouble/Single

)
× 100

(28)
It can be seen from Tables 6 and 7 that SDF formats

have significantly improved latency. The best speedups are
achieved by Mini (2,6), which is a byte-sized format. Specif-
ically, for the largest grid (500 × 500), the proposed 8- and
16-bit formats achieved speedups of 73.77% and 70.59%
over double-precision, respectively. Compared to the single-
precision format, the Mini format achieved a maximum
speedup of 40.35% for a grid size of 400 × 400, while for
500 × 500, the speedup decreased to 31.41%. In general,
the speedup depends on the overall size of the working set
relative to the cache size. Therefore, increasing the number
of graph nodes results in more data transfer between the
last level cache and main memory, leading to a higher total
runtime for formats with larger sizes. However, when the
working set is very large, the working set size for reduced-
precision formats may still be substantially larger than the
cache size, implying limited performance gains. This effect
has also been observed and described in [35].

1. https://github.com/DIPSA-QUB/LowPrecisionBP
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Algorithm 2: The Proposed RBP implementation
with Software-Defined FP format for messages

Input: Graph: G = (V,L), |V | = n
Random Variables: x1, x2, . . . , xn (xi ∈ Ai)
Node Factors: φi : Ai → R+|i ∈ V
Edge Factors: ψi,j : Ai ×Aj → R+|(i, j) ∈ L
Convergence threshold: ε
Output: Marginal Distribution: P (xi)

1 Begin
2 for (i, j) ∈ L do
3 for xj ∈ Aj do
4 mi→j(xj) = Encode( 1

|Aj | )

5 rpq=priority queue(L, default residual)
6 while top residual > ε do
7 (i, j) = rpq.top()
8 for xj ∈ Aj do
9 mtemp

i→j (xj) =
∑
xi∈Ai

ψi,j(xi, xj)φi(xi)
10

∏
k∈Γi\j

Decode(mk→i(xi))

11 sum =
∑
xj∈Aj

mtemp
i→j (xj)

12 for xj ∈ Aj do

13 mi→j(xj) = Encode(
mtemp

i→j (xj)

sum )

14 for (j, h) ∈ {outgoing edges from node j} do
15 sum = 0
16 for xh ∈ Ah do
17 mtemp

j→h (xh) =

18
∑
xj∈Aj

ψj,h(xj , xh)φj(xj)
∏
k∈Γj\h

Decode(mk→j(xj))

19 sum = sum+mtemp
j→h (xh)

20 for xh ∈ Ah do

21 mtemp
j→h (xh) =

mtemp
j→h (xh)

sum

22 sum = 0
23 for xh ∈ Ah do
24 sum = sum+

25 (mtemp
j→h (xh)−Decode(mj→h(xh)))

26 rpq(j, h).residual = sum

27 top residual = rpq.top().residual

28 for i ∈ V do
29 sum = 0
30 for xi ∈ Ai do
31 P (xi) = φi(xi)

∏
k∈Γi

Decode(mk→i(xi))
sum = sum+ P (xi)

32 for xi ∈ Ai do
33 P (xi) = P (xi)

sum

34 End

Fig. 3. A general method to use the SDF approach for various data-
intensive applications.

5 RELATED WORKS

Prior research on reduced-precision floating-point for
memory-traffic and data transfer reduction can be catego-
rized in two main categories: i) low-precision floating-point
formats, and ii) general floating-point compression algo-
rithms. The main difference between the proposed software-
defined formats with all of these methods is designing
formats based on deep theoretical and numerical analysis of
the applications. In other words, in the proposed approach,
based on algorithm-level numerical analysis, the designer
exactly knows that in which situations which formats are
accurate and can cover the required number range.

5.1 Low-Precision FP Formats

There are a variety of low-precision FP formats designed in
either general or specific forms. Some formats such as IEEE
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TABLE 4
Accuracy analysis based on MSE for approximate versus exact marginals for Ising grids with c = 2

Grid Data Convergence threshold (ε)
Size Type 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001
10×10 Double 0.00822912 0.00426939 0.00179014 0.000421159 0.000231556 0.000239182 0.000239257 0.000239256

Single 0.00822912 0.0042694 0.00179013 0.000421158 0.000231556 0.000239182 0.000239257
Half(2,14) 0.00822872 0.00426917 0.00179 0.000421086 0.000231575 0.000239332
Half(3,13) 0.00822833 0.00426881 0.00178991 0.000420984 0.00023151 0.000239229
Half(4,12) 0.00822805 0.00426834 0.00178974 0.000421302 0.000231721
Mini(2,6) 0.0128525 0.00619731 0.00238194 0.000416036 0.000219834
Mini(3,5) 0.0117685 0.00558941 0.00174523 0.000462102

15×15 Double 0.0181336 0.00748778 0.00243625 0.00150177 0.000265028 0.000295168 0.000295135 0.000295131
Single 0.0181336 0.00748778 0.00243625 0.00150177 0.000265028 0.000295173 0.000295135
Half(2,14) 0.0181335 0.0074877 0.00243623 0.00150187 0.000265108 0.000295284
Half(3,13) 0.0181336 0.00748772 0.00243631 0.000294865 0.000265235 0.000294865
Half(4,12) 0.0157979 0.00748723 0.00240956 0.00150127 0.00026476
Mini(2,6) 0.0166339 0.00751996 0.0036612 0.00105801 0.000295038
Mini(3,5) 0.0140129 0.00687104 0.00324215 0.000595435

17×17 Double 0.00939097 0.00560023 0.00220594 0.000807271 0.000544534 0.000645984 0.000645742 0.000645735
Single 0.00939097 0.00560023 0.00220593 0.00080727 0.000544532 0.000645984 0.000645736
Half(2,14) 0.00939087 0.00560026 0.00220599 0.000807355 0.000544615 0.000645714
Half(3,13) 0.00939073 0.00560015 0.00220611 0.000807237 0.00054384 0.000646047
Half(4,12) 0.00939003 0.0056003 0.00220587 0.00080554 0.000558197
Mini(2,6) 0.00978629 0.0051275 0.00227594 0.000920818 0.000718533
Mini(3,5) 0.0088269 0.00468414 0.00276699 0.00113778

TABLE 5
Accuracy analysis based on MSE for approximate versus exact marginals for Ising grids with c = 3

Grid Data Convergence threshold (ε)
Size Type 0.5 0.4 0.3 0.2 0.1 0.01 0.001 0.0001
10×10 Double 0.0126671 0.0056398 0.00354458 0.00340195 0.00325852 0.00313105 0.00313319 0.00313318

Single 0.0126671 0.0056398 0.00354458 0.00340195 0.00325852 0.00313105 0.00313318
Half(3,13) 0.0126675 0.00563994 0.00354479 0.00340203 0.00327099 0.00313403
Half(4,12) 0.0126663 0.00564001 0.00354501 0.0034026 0.00326245
Mini(3,5) 0.0134648 0.00609877 0.00411701 0.00321347

15×15 Double 0.0157558 0.00941784 0.00571443 0.00509169 0.00431023 0.00417454 0.00417396 0.00417396
Single 0.0157558 0.00941784 0.00571443 0.00509168 0.00431023 0.00417454 0.00417398
Half(3,13) 0.0157562 0.00941739 0.00571466 0.00509201 0.0043785 0.0041751
Half(4,12) 0.0157553 0.00941721 0.0057145 0.00507989 0.00441603
Mini(3,5) 0.0159247 0.00944025 0.00575789 0.00480953

17×17 Double 0.030694 0.00913192 0.00586818 0.00375661 0.0019857 0.00221424 0.00221327 0.00221326
Single 0.030694 0.00913191 0.00586818 0.00375661 0.0019857 0.00221424 0.00221326
Half(3,13) 0.0306952 0.00913157 0.00586833 0.00375648 0.00198536 0.00221191
Half(4,12) 0.0405906 0.0231538 0.0053776 0.00279462 0.00213574
Mini(3,5) 0.0400407 0.0121727 0.00580563 0.00279949

TABLE 6
Runtime comparison of different BP implementations for Ising grids with c = 2 and ε = 0.1

Runtime (seconds)
Grid Double Single Half (2,14) Half (3,13) Half (4,12) Mini (2,6)
Size 64-bit 32-bit 16-bit 16-bit 16-bit 8-bit

500×500 4.08× 104 1.56× 104 1.20× 104 1.20× 104 1.20× 104 1.07× 104

400×400 1.31× 104 6.84× 103 4.93× 103 4.93× 103 4.93× 103 4.08× 103

300×300 4.03× 103 2.19× 103 1.57× 103 1.57× 103 1.57× 103 1.40× 103

200×200 8.25× 102 4.20× 102 3.14× 102 3.14× 102 3.14× 102 2.65× 102

100×100 5.50× 10 2.81× 10 2.16× 10 2.16× 10 2.16× 10 1.85× 10

TABLE 7
Speedup comparison of different BP implementations for Ising grids with c = 2 and ε = 0.1

Speed Up (%) over Double Speed Up (%) over Single
Grid Half Half Half Mini Half Half Half Mini
Size (2,14) (3,13) (4,12) (2,6) (2,14) (3,13) (4,12) (2,6)

500×500 70.59 70.59 70.59 73.77 23.08 23.08 23.08 31.41
400×400 62.37 62.37 62.37 68.85 27.92 27.92 27.92 40.35
300×300 61.04 61.04 61.04 65.26 28.31 28.31 28.31 36.07
200×200 61.94 61.94 61.94 67.88 25.24 25.24 25.24 36.90
100×100 60.73 60.73 60.73 66.36 23.13 23.13 23.13 34.16



12

Fig. 4. Runtime of exact and approximate inference for Ising grids based
on VE and BP, respectively.

half-precision and BFloat have hardware support mostly
on GPUs for performing computation, while others have
been designed with the aim of data size and communi-
cation reduction. In this regard, CPMS was an important
work that decouples data format from arithmetic format
[20]. However, the CPMS-based formats are based on a 16-
bit exponent field to enable computations using double-
precision, which makes them inefficient for applications
like BP where a few bits for exponents are enough. [19]
solved this problem and introduced two 16-bit FP formats
with 3- and 8-bit exponent fields customized for PageRank
application through experimentally analyzing FP values
exponents in each iteration. But the large number of random
memory accesses needed in PageRank prevents [19] from
achieving significant speed-up. Furthermore, the number
formats in [19] are only suitable for the PageRank algorithm,
and cannot be used for BP. On the other hand, [35] devel-
oped customized narrow floating-point formats for irregular
graph processing workloads such as accelerated PageRank
and single-source shortest path algorithms. However, the
number formats in [35] have a width of 16 bits, which makes
them less memory-efficient than 8-bit formats. Apart from
these application-specific formats, [18] proposed two cus-
tomized FP formats smaller than single-precision formats
with an 8-bit exponent to simplify the conversion to single-
precision for performing arithmetic. However, in this work,
we showed that it is possible to have exponents with less
than 8-bit size together with having very simple conversion
routines to single-precision.

5.2 FP Compression Algorithms
FP compression methods aim to reduce the storage and
communication requirements by exploring dependencies
between consecutive data in large arrays of FP numbers.
Lossy FP compression methods [36] provide significant size
reduction at the cost of accuracy loss, while, in Lossless FP
compression, the original FP data can be recovered without
accuracy loss [37]. However, compression and decompres-
sion overheads increase latency and reduce the effective
use of bandwidth since predictor, difference calculator, and
residual coder are needed for decoding and encoding [38].
As an example, the double-precision FP compression al-
gorithm introduced in [39] uses a hash-based predictor to

guess the current FP record based on the previous record,
and therefore, hash tables larger than the cache size results
in significant performance degradation. In contrast, in the
proposed SDF approach, the conversion procedures are very
simple. FP compression algorithms experimentally work on
the dataset and try to find similarities on whole data while
SDF first numerically analyses the algorithm and dataset
parameters to determine the optimized format with the best
possible size. Moreover, in an iterative algorithm like RBP
where in each iteration only a few numbers need to be
updated (i.e. messages), FP compression algorithms cannot
be useful since they operate on the whole FP data array.

6 CONCLUSION

This article proposes SDF format design, for the first time,
for sum-product BP applications. We incorporate BP fea-
tures as a first-class SDF design constraint together with the
highly efficient software implementation on top of the off-
the-shelf processors. We show that message-passing algo-
rithms such as BP can leverage reduced-precision number
formats to achieve speedup via memory traffic reduction
even on commercially available CPUs. We theoretically an-
alyze exponents of messages and the accuracy depending
on quantization levels of SDF formats to derive guidelines
for designing SDF formats. Our experimental results show
that an SDF format along with an efficient data conversion
module can achieve up to 1.61× speedup in our case studies
without losing accuracy. The proposed SDF approach can
be extended to other applications particularly GPU-based
implementations to improve computational speed via data
communication optimization.
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