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Abstract 

Most BCI spellers based on visual stimulus presentation rely on the oddball effect, which causes 

the brain to respond with a P300 ERP to a rare random stimulus of interest (e.g., the flashing of 

the letter the participants intends to input). Naturally the information transfer rate (ITR) of a 

speller depends on how many such relevant stimuli one can react to in a given time. So, fairly 

short SOAs are commonly used, resulting in a reduced amplitude of P300s, very big 

deformations w.r.t. to its text-book shape, and the contamination from near targets (where a 

P300 like ERP may be elicited). All of which, hampers classification accuracy and 

correspondingly limits ITRs. 

 In previous research on a BCI for mouse cursor control, a sequential non-oddball-based 

stimulation protocol was developed where 8 stimuli (representing different directions of desired 

movement) were arranged in a circle and were flashed sequentially. The colour of the flashes 

was randomly chosen and participants were asked to mentally name the colour of the attended 

stimulus. This produced better recognisable P300s and, so, significant improvements of AUC 

and ITR. 

 In this thesis we apply this idea to a BCI speller, where 36 letters are organised around 

a circle and they are highlighted sequentially in either green or red and users need to mentally 

name the colour of the target letter. Each revolution required 2 seconds in one experiment and 

3 seconds in another experiment. We compared this speller against a traditional 6 × 6 matrix 

speller where all letters are highlighted twice (row and column) also within 2 seconds or 3 

seconds. All participants used both protocols in counterbalanced order. Results show that our 

sequential speller produces much bigger and cleaner P300s and, in the 2 second condition, this 

leads to a significantly higher classification accuracy and approximately doubles the ITR w.r.t. 

the Donchin’s speller. 
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Chapter 1 

1 Introduction 

Certain individuals may develop Motor Neurone Disease (MND), either at birth or in later 

stages of life, that results in a decrease or complete restriction of their motor functions. Locked-

in Syndrome (LIS), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), and 

Cerebral Palsy (CP) are motor-neurone diseases that impair motor function and result in a 

dependent life for the patient. For affected individuals, who face physical limitations and 

challenging living circumstances, it is crucial to retain communication with their surroundings 

for psychological well-being and to fulfil their fundamental needs. Efforts are underway to 

develop devices, software, and concepts that facilitate communication between individuals with 

disabilities (or other limitations) and their surroundings. 

 BCIs, as in the field of MND, have proved to be distinctly advantageous and valued due 

to the ability to provide interaction, enabling a patient to fully communicate and interact with 

their surroundings using only their brain signals. The most common forms of BCIs in MND are 

spelling tools and systems to interact with or move in the user’s surroundings. These systems 

utilize state-of-the-art machine learning algorithms to analyse different patterns of brain 

electrical activity such as P300 Event-Related Potential (ERP), seen between 300ms and 600ms 

milliseconds after receiving relevant stimuli in the brain. As MND worsens, these BCIs can be 

adjusted to meet the patient’s changing demands, ensuring an  interaction channel is maintained 

even in the later stages of the disease. Recent studies have shown  that BCIs both contribute 

functional assistance while boosting the patient’s sense of autonomy, mental well-being, and 

reduced sense of isolation [1]. BCIs are an essential technological innovation in the control and 

care of MND patients. There is the possibility of more extensive enhancements as new 

technology and an enhanced understanding of neural processes are established. It is feasible to 
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apply BCI technologies in various health areas, including Assistive Technology for Disabled, 

Neurofeedback and Mental Health, Medical Rehabilitation, Research and Cognitive 

Neuroscience. Moreover, is feasible to apply BCI systems in the areas of Education [2], Gaming 

and Virtual Reality [3], [4], Military and Defense [5], [6], and Consumer Electronics [7], [8], 

thanks to continued technological advancements. 

 Depending on whether BCIs are invasive, semi-invasive, or non-invasive, they exhibit 

various levels of performance and risk. Invasive BCIs, such as involving the implant of 

electrodes directly into the brain, provide high quality signals that allow for accurate control of 

assistive technologies, which is vital for patients with severe MND [9]. However, there are 

considerable risks; these include the risks of infection and of inflicting neurological harm [8]. 

Semi-invasive BCIs require the insertion of electrodes under the skull, but not inside the brain 

tissue. Such an approach offers a better noise-to-signal ratio than non-invasive BCIs at the same 

time reducing health risks due to the lack of the direct contact with a brain tissue [11]. The 

safest and most easily accessible BCIs are non-invasive BCIs, including EEG-based ones. They 

do not require surgery and pose the fewest health risks. Nevertheless, the quality of their signals 

is significantly lower, which may limit their ability to properly understand patient intentions, 

especially in complicated tasks [12]. The balance choice for each approach depends mainly on 

the severity of the patient’s disease, the target application, and the risk the patient is willing to 

take. 

 The three most common non-invasive BCI approaches are based on: SSVEP, MI, and 

P300. SSVEP BCIs are a kind of BCI that utilizes the brain’s strong oscillatory reaction to visual 

stimulation at specific frequencies to create high-speed communication systems or interfaces. 

A MI-based BCI is a method that uses electrodes positioned on the scalp in proximity of motor 

regions of the brain  and measure specific neural patterns when a subject imagines physical 

activities such as hand or foot movements. It is mostly applied in prosthetic control and 
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rehabilitative techniques. On the other hand, P300-based BCIs rely on a prominent event-

related potential component resulting from the brain’s response to infrequent (attended) stimuli. 

A P300-based BCI is an excellent choice for a control and communication  because of their 

relatively information bandwidth. BCI technology using the P300 response enables a very 

isolated individual, such as someone with extreme disabilities, to manage the environment or 

control a computer (e.g., for spelling and mouse control) in real-time.  

 SSVEP BCI spellers can achieve reliable brain signals by providing continuous stimuli 

at particular frequencies, resulting in accurate classification results. Hybrid BCI spellers 

achieve both high ITR and classificationaccuracy via the combination of multiple BCI 

paradigms, such as SSVEP, MI, and P300-based (both visual and auditory).  

 Because of the various disadvantages of other paradigms and the relative advantages of 

P300-based spellers, which are discussed in detail in Section 2, P300-based spellers were the 

focus of this thesis. P300-based spellers vary according to the interfaces they use, some 

interfaces providing easier usability and better results. In addition to the Row/Column 

paradigm, which was the first of these P300-based interfaces and which we refer to as the 

Donchin method in this thesis, there are various other paradigms such as Single Character, 

Region-based, Face Flashing, T9, 3D and Virtual Reality. Based on the strengths and 

weaknesses of these methods, in this thesis we will propose a new paradigm that offers good 

performance and may create a new area of future BCI-spelling research. 

1.1 Motivation and Objectives 

Despite epidemiological studies on MND in the United States of America and Europe, its 

indices, prevalence and burdens are not well known because the disease is rare. Nonetheless, 

there are various rates obtained from the studies [13], [14], [15]. The incidence in relation to 

age is notably high in high-income regions such as Europe, Australasia, and North America, 
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with the exception of the Asia-Pacific region [16]. The peak occurrence of ALS, which can 

differ based depends on factors such as age, sex, and geography, is often around the age of 70. 

The rate of new cases of ALS is 1.7 per 100,000 person-years, while the number of people 

already living with ALS is 4.5 per 100,000 individuals [17], [18]. In addition, based on the 2016 

Global Burden of Diseases (GBD) estimates, the overall incidence rate of MND for all age 

groups is 0.78 per 100,000 person-years [16]. Affected individuals experience significant 

communication limitations with their surroundings as a result of impairments in their 

musculoskeletal and neural systems, leading to various challenges. [13], [14], [15], [16], [17], 

[18] 

 Researchers working on BCI systems have focused on hardware/software instruments, 

neuro imaging techniques, signal processing, classification, and interface designs. In our study, 

we focused primarily on the interface design, the acquisition and effect of the signal by the user. 

The questions that are the starting point of the method we have developed are listed below: 

Q1- What are the advantages and disadvantages of existing P300-based BCI paradigms? How 

can the difficulties faced by users be mitigated when designing a new interface model? What 

are the cognitive processes that need to be considered for an interface that can produce a 

distinctive ERP? What are the cognitive processes that should be considered for an interface 

that can produce a significant ERP?  

Q2- Which points/features are most critical for the effective implementation of P300-based 

BCIs? How can their interaction (e.g. stimulus design, timing, interface layout) be optimised to 

improve user performance, comfort and accuracy? 

Q3- How do variations in Stimulus Onset Asynchrony (SOA) and Target-Target Interval (TTI) 

affect P300 amplitude and classification accuracy? What adjustments can be made to maximise 

both signal quality and user experience? 
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Q4- What suggestions can be made for a sequential paradigm using a variety of stimulus 

presentations (e.g. colour combinations) tested in previous studies to address the problems of 

adjacency, crowding and fatigue associated with the classical Row/Column paradigm?  

Q5- Can signal processing (e.g. band filter, PCA), classification methods (e.g. LDA, SVM), 

which are frequently used in current studies, provide a good alternative for the sequential speller 

paradigm? How can the possible negative effects of imbalanced dataset be minimised in the 

classification stage? 

1.2 Contributions 

This study builds upon the BCI Mouse paradigm created over a decade ago by the members of 

the Essex BCI (M. Salvaris, C. Cinel, R. Poli, L. Citi, and F. Sepulveda) [19]. However, spelling 

represents a more difficult task as it requires expanding the command set from the original 8 

possible directions of movement of the BCI mouse to the 36 letters and numbers of a BCI 

speller. Our primary goal was to design a system that is stable, efficient, has a promising ITR 

and produces classification accuracies in line with current studies.  

 This has been achieved to a very significant degree. While there are some missing 

elements in the system (as mentioned in Chapter 6), the system presented in the thesis has been 

shown to perform better than Donchin paradigm, and in the future might become competitive 

with some more recent improvements presented in the literature. 

 The appropriate techniques from Neuroimaging and signal processing methods were 

identified, and the characteristics of these methodologies that are compatible and incompatible 

with our system were elucidated. This will provide guidance for neuroimaging and signal 

acquisition techniques that can be employed in future investigations with similar paradigms. 
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 The results obtained by testing the signal processing, feature selection/extraction and 

classification techniques used in P300-based BCI systems provide ideas for future similar 

studies. In particular, the suitability of the classification techniques for sequential systems was 

tested and the differences from the classification of signals generated by traditional random 

stimulation approach were determined. We have also investigated techniques to address 

potential problems in imbalanced datasets, such as Resampling or SMOTE, which can also 

work effectively in P300-based BCI systems. 

 The subjects' fatigue levels, concentration, and focus areas on the screen were 

determined while and after using the paradigm. Based on the verbal feedback, the extent to 

which these problems could be solved compared to previous research was assessed and possible 

alternatives for improving the speller were identified. 

 Our study  has revealed that extended periods of time between stimuli, known as inter-

stimulus intervals (ISIs), do not consistently yield improved outcomes. In fact, in certain 

instances, they can hinder the success of classification due to the negative effects of fatigue and 

decreased concentration. The effects of ISI durations were not investigated for the first time in 

this study. However, it was observed that longer ISI duration did not produce higher 

accuracy/ITR for the Circular speller than shorter ISI duration.  

1.3 Thesis Structure 

The thesis has the following structure: 

 Chapter 2 provides the relevant background. In Section 2.1, firstly, the working 

principles of the current BCI paradigm types are illustrated by providing examples. After giving 

examples of SSVEP, MI, Hybrid, detailed examples of P300-based BCI systems are presented 

and their history and contributions to the field are indicated. Individual figures showing 



7 

 

   

 

different P300-based BCI paradigms are presented and a comparison between the interfaces is 

provided. This is followed by a brief overview of BCI systems and their history.  

 Chapter 3 provides information on BCI methods, including signal acquisition, signal 

processing and classification techniques. The methods used in the field of BCI are described in 

general terms and more details are provided for the preprocessing, feature extraction and 

classification methods we have chosen to use in our study. The experimental protocol is 

introduced and detailed information about the processes of the interface used is presented. 

 In Chapter 4, from the preliminary stages to the evaluation results, our three-second 

experiment is comprehensively described in detail. It is explained how the features required for 

classification were determined. The results are analysed in detail and the factors affecting the 

ERP amplitudes, AUCs and character classification of the Circular method are discussed. After 

analysing the results, the Circular and Donchin methods were compared.  The advantages and 

weaknesses of our proposed new method (Circular) and the Donchin method were identified 

and the findings were used to guide the next study. 

 In Chapter 5 we describe our second study. Based on the results of the 3-second 

experiment, we reduced the duration of the experiment to 2 seconds to allow the subjects to 

focus better and be less tireed. Every step of the 2-second experiment was executed as for the 

3-second experiment described in Chapter 3. The results of the performance increase in the 

Circular method are listed and the reasons are analysed. 

 Chapter 6 is the concluding chapter. Within it, the results obtained in Chapter 4 are 

shown to be promising, and that the stage is set for publishing them. However, the results of 

the proposed study show that the paradigm has some shortcomings and aspects that are open to 

improvement, and these findings are explained in detail in Chapter 5. Based on the acquired 
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results and feedback from the participants, further investigations and proposed improvements 

are also discussed in the chapter. 

1.4 Ethical Matters 

Since BCI systems obtain, use, interpret and produce results from the brain signals of the 

subjects, they need to be user-approved and user-friendly. Ethical approval and follow-up of all 

processes from the acquisition of signals to the publication of the test results obtained should 

be carried out and possible risks should be prevented. For example, unauthorised and misuse of 

data, experiement that may harm the subject, or failure to take precautions against health 

problems such as allergies and panic. These procedures must be implemented for the protection 

of personal data security. 

In this study, the EEG device, other hardware instruments and laboratory environment were 

provided by the BCIs-Neural Engineering laboratory at the University of Essex and all 

experiments were conducted in accordance with the guidelines of the University of Essex Ethics 

Committee. The study was approved by the Ethics Committee of the University of Essex on 

18th of January, 2019. The Ethical Approval form for Experiment 1 in Appendix A was 

changed due to Covid and a different Ethics Approval form for Experiment 2 was created on 

November 16, 2021. 

 

 

 

 

 



9 

 

   

 

Chapter 2 

2 Background and Literature Review 

This chapter provides an overview of previous and current research in the topic of BCI spellers, 

including their categorization and the entire BCI process, from data collection to feedback. 

These processes are commonly summarised as data collection, signal processing, feature 

selection/extraction and classification. 

2.1 Brain Computer Interface 

A brain-computer interface (BCI) is a system that translates brain activity into (in almost real 

time) functionally useful outputs. It is a system that modifies, restores, enhances, complements 

and/or improves brain normal outputs, accordingly manipulating the sequence of interactivity 

between the brain with its outside or internal environments. It can thus adjust brain activity 

using precisely trained stimulus action to induce functionality related signals to the brain [20]. 

 BCI is a interdisciplinary field involving mathematics, statistics, computer science, 

bioengineering, neurology, physiology, neuroscience, and electronics engineering, and is 

evolving every day with the discovery of the mystery of the brain. Despite the rapid advances 

in this field, due to the complex nature of the brain, it also contains various challenges that 

require solutions and further exploration.  Section 2.1.1 introduces the basic concept of BCI 

systems and provides an overview of their first studies. Section 2.1.2 provides a comprehensive 

and organised overview of the objectives, approaches, and rates of success of current studies. 

2.1.1 Development of BCI 

Following Hans Berger's discovery of electroencephalography (EEG) in the 1920s [21] , there 

was an increased focus on studying the functions, operations, and neurological illnesses of the 

brain with more detail.  The BCI research initiated by Professor Jacques J. Vidal in the early 
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1970s [22] , funded by DARPA, the US military research agency, and conducted under the roof 

of the University of California, can be considered as the first studies in this field. It has been 

shown that a computer-generated visual stimulus can elicit a certain response from individuals, 

potentially creating a means of communication between a human and a computer.  

2.2 Types of Brain-Computer Interface 

Brain-computer interface (BCI) systems can be categorised based on type of signals, the 

methods of signal acquisition. 

 

Figure 2-1 Taxonomy of BCI systems according to mode of operation,  neuroimaging 

techniques, and dependability [23] . 

 Diverse methodologies exist for categorising BCI types. Figure 2.16 shows the BCI 

structure classified according to mode of operation, neuroimaging techniques, and motor-

control-dependence [24]. The subsequent sections provide an overview of various types of BCIs 

and elucidate the rationale behind the selection of specific types. 
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2.2.1 Dependent and Independent 

Dependent brain-computer interfaces necessitate the user to possess a certain degree of 

influence over their muscle activity or respond to an external stimulus in order to function. 

These systems are frequently utilised in rehabilitation environments to improve or recover 

motor function in individuals with impairments. A dependent BCI system is using visual evoked 

potentials of a user reaction to a visual stimulus to enable a user to control a computer cursor. 

Since the user needs to detect the external stimulus of operation and to respond to it, as a result, 

it is classified as dependent  [12]. 

 In contrast, an independent BCI system is a device able to operate without a user 

commanding it with muscle control or needing to respond to an external stimulus. Such a system 

is especially beneficial for people with serious motor disorders, such as those diagnosed with 

ALS or LiS, since it allows them to communicate and control a machine independently of their 

physical capabilities. This type of BCI is based on “motor imagery,” meaning that the user 

imagines moving a body part, and the BCI system detects these intentions and uses them to 

control an external equipment [25], [26].  

 Dependent and independent BCIs both have their own strengths and weaknesses, and 

the decision between them is based on the user's particular requirements and capabilities. 

Dependent BCIs may be more accessible for certain persons, but their effectiveness is 

constrained by the user's capacity to detect stimuli or control muscular activity. Independent 

BCIs provide increased autonomy but may necessitate additional instruction and focus to 

operate efficiently. 

 The proposed Circular speller method represents a dependent BCI, similar to many 

existing spellers, in the context of developing a new speller paradigm. This also helps in the 

comparison with Donchin's speller, which is dependent. We can always say that in the future 
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we hope to be able to turn it into an independent speller (e.g., using auditory stimuli, like a 

voice that repeatedly reads aloud the alphabet but where each letter is pronounced either by a 

female or a male voice and the task is to mentally name male/female). 

2.2.2 Asynchronous and Synchronous 

Asynchronous BCIs allow users, especially those with significant physical limitations, to 

communicate with computers and assistive devices instantly, without being limited by 

previously determined triggers or sequences. These interfaces analyse the user's brain impulses 

in real-time to detect intentions to begin instructions, enabling a more natural and intuitive 

connection. Asynchronous BCIs require complex signal processing and machine learning 

methods to effectively interpret signals as precise commands, while reducing false positives 

and assuring reliable communication [27].  

 The main issue with asynchronous BCI technology is that it relies on intricate 

algorithms to distinguish arranged actions from continuous brain signals. Advanced signal 

processing is required to accurately extract features from EEG data, as well as robust machine 

learning models that can learn from and adjust to the user’s individual brain patterns. In order 

to overcome these difficulties, much research has been done in this field to enhance the 

accuracy, speed, and user-friendliness of BCIs and extend their use to a more general population 

[28].  

 Synchronous BCIs are implemented in an orderly environment, and the user 

communicates with the device within specific time sequences. BCIs are in charge of timing 

events and responses, and how the system determines the purpose of the user is competently 

controlled. This implementation of the system’s operations is helpful in research and recovery 

environments, which need a high degree of time control over actions [12].  
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 Synchronous BCI is carried out in a particular process, whereby a target or trigger is 

presented to the user. The system then waits for the user’s brain to respond, after which the 

resulting activity is evaluated during a limited timeline to determine the user interface’s aim. 

The setup stimulus generation waits for the user’s response output, and then the system is 

analysed after a consistent period from which the outcomes guide the sequence. This BCI 

organization becomes more useful, and the action of the user identifies the interface outcomes. 

It is beneficial in such activities as spelling systems, where the matrix highlights different letters 

and characters [9]. 

2.2.3 Invasive and Non-invasive 

Invasive BCIs are a method in neurotechnology that allows direct connection between the 

human brain and external devices. Thus, even though these systems still require interaction with 

the human skull and scalp, invasive BCIs have succeeded in obtaining detailed signals by 

introducing neurosensing devices into the patient’s brain and, as a result, ensures adequate 

practices with apparatus in a connected chain. Since the invasive BCI activity is based on 

precise and direct connection to the brain's neural signals, this connection technique enables 

better brain signalling. This enables the improvement of motor functions in individuals with 

severe physical disabilities and enables a variety of sophisticated methods of communication in 

addition to sensory input. [9], [29].  

 It should be noted that invasive BCIs are promising, but they carry some further 

activities and issues, mainly associated with the surgical installation procedures and long-term 

biocompatibility. These devices are invasive and must take into account all ethical, safety, and 

longevity considerations. In addition, the continued and improved development of these 

technologies will require interdisciplinary investigation, with the expertise from neurology, 

engineering, and medicine combined to improve the capacity and protection of these systems. 
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Studies are also looking at incorporating sensory input into BCIs to create a two-way interface 

that can read brain signals and provide sensory input to the individual [9], [30].  

 Non-invasive BCIs are of great interest in the neurotechnology field because they make 

it easier to establish direct contact between the brain and external devices without the need for 

surgery. Non-invasive BCI-based devices that use methods such as Electroencephalography 

(EEG), Magnetoencephalography (MEG), and Functional Near-Infrared Spectroscopy (fNIRS) 

are capable of registering cortical activity from the surface of the scalp. These interfaces have 

made a significant contribution to the development of applications for assistive technologies, 

where people with severe physical restrictions have to control prosthetic limbs, computer 

cursors, and other equipment exclusively through neural commands. Noninvasive BCIs are 

appealing due to their safety and higher acceptability for more extensive audiences, including 

patient groups who require rehabilitation and support in communication [27], [31].  

 Despite the many advantages and opportunities, non-invasive BCIs are encumbered by 

relatively low signal resolution and precision levels as compared to the invasive alternatives, 

side-effects of interference from the scalp, skull, and non-neural tissues. The future 

development of these interfaces will concentrate on further enhancing the existing signal 

processing technologies and machine learning algorithms to boost the precision and reliability 

of brain signal interpretation. Notable research efforts are being made to make it easier for the 

user and simpler to set up, as well as to enhance the system’s capability to identify, accurately 

interpret, and adjust according to the specific needs and characteristics of each user [32], [33]. 

Eventually, modern BCI systems should be hands-off, reliable and user-friendly, making it 

better suited for real-world usage, including at homes and workplaces and accompanied by day-

to-day tasks.  
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2.3 Brain Imaging Techniques 

Brain imaging techniques are crucial for BCIs as they can establish the connection between the 

human brain and external hardware. These methods, therefore, enable the interpretation of 

neural signs reflecting the user's intentions, which can then be transformed into commands used 

to manipulate a computer, a prosthetic arm, or any other useful system. The choice of method 

of brain imaging greatly determines a BCI’s framework, features, and use. Indeed, each of these 

instruments has some benefit as well as a special drawback.  

 Magnetoencephalography (MEG) and Functional Magnetic Resonance Imaging (fMRI) 

are usually included in BCIs due to their superior spatial resolution relative to EEG. Since 

alterations in blood oxygen amounts and circulation brought on by cerebral activity may be 

utilized to create a practical map of the brain, fMRI allows for a highly accurate image of brain 

function. Nonetheless, due to their moderate temporal resolution, and the need for significant, 

expensive gadgets, this approach is currently quite useful for real-time BCIs with use-fMRI. 

MEG, on the other hand, establishes a proper spatial and temporal resolution since it identifies 

magnetic fields generated by brain activity. However, it is similarly intricate and costly, limiting 

its wide use [34].  

 Near-Infrared Spectroscopy is a non-invasive new brain imaging technology, relying on 

variations in blood oxygenation in the cortex and measuring the scalp’s visible light absorption. 

NIRS is portable and less restrictive compared to fMRI and MEG and is more convenient for 

BCI in real-time. NIRS becomes widespread for portable wearable BCI systems, but the 

technology has low spatial resolution and is very susceptible to superficial scalp signals [35] .  

At present, EEG is the most widely used non-invasive brain imaging method in BCI due to its 

excellent temporal resolution, user acceptability, and low cost. EEG measures the brain’s 

voltage using electrodes on the scalp. It is suitable for detecting signals when a cognitive task, 

movement objective, or sensory processing are elicited. For dynamic BCI applications, the 
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benefit of EEG is its high-speed interpretation of user intention despite low spatial resolution 

[27].  

Table 2.1 Advantages and disadvantages of brain imaging techniques 

Brain Imaging Technique Advantages Disadvantages 

EEG 

(Electroencephalography) 

-Non-invasive 

-Portable and affordable 

-Good temporal resolution 

-Realtime signal recording 

- Limited spatial resolution 

- Sensitive to artefacts caused 

by muscular movements and 

external electrical interference 

 

MEG 

(Magnetoencephalography) 

- Non-invasive 

-The spatial and temporal 

resolution are well 

balanced. 

- Expensive 

- Requires facilities that are 

specialised 

- More limited in availability 

compared to other techniques 

fMRI (Functional 

Magnetic Resonance 

Imaging) 

- Non-invasive 

-High spatial resolution 

- Capable of identifying 

certain brain areas 

responsible for tasks 

 

- Costly and heavy hardware 

- Needs an regulated 

environment 

- Slow temporal resolution 

NIRS (Near-Infrared 

Spectroscopy) 

- Non-invasive 

- Appropriate for use in 

wearable devices 

- Portable and affordable 

- Poor spatial resolution 

compared to other techniques 

- Restricted depth of 

penetration (ideal solely for 

cortical imaging) 
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As shown in Table 2.1, we used the EEG device in our study because it is portable, affordable 

and offers good temporal resolution. 

2.4 Brain-Computer Interface Paradigms 

BCI methods are classified according to the type of brain activity they use: Motor Imagery 

(MI), Steady-state Visual Evoked Potentials (SSVEPs), and Event-related Potentials (ERPs). 

ERPs are physiological brain responses to single internal or external sensory or cognitive 

stimuli. The P300 ERP is commonly used in BCI applications because of its high amplitude, 

duration, and repeatability [35]. SSVEPs are brain responses to periodic visual stimuli of 

specific frequencies and are relevant to BCIs due to the fast reaction and minimum traning [37]. 

MI involves the subjects imagining the movement of different body parts, which elicits 

characteristic rhythm patterns, which are then recognized by BCIs to control receivers or for 

assistance in rehabilitation [38]. The subsequent information presents an inclusive description 

of several of the prevalent BCIs paradigms to support the work plan or refer to scholarly 

sources.  

2.4.1 Motor Imagery-based BCI 

MI-based BCIs take advantage of the fact that the brain can generate distinct neural patterns 

associated with movement imagination or intention without any real performance. This 

capability is exploited by recording the brain’s electrical activity using EEG sensors during 

imagining movements [39]. The performance of the primary motor cortex is planning, 

regulating, and executing voluntary muscle movements. However, even when no real 

movement occurs, the primary motor cortex exhibits unique patterns of activity. MI BCIs can 

recognize and interpret these patterns and use them to control external devices or software 

programs, making it a potential option for people with severe motor impairments to 

communicate or interact with their peers. MI BCIs process signals using methods such as 
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common spatial patterns (CSP) for feature extraction and classifiеrs such as support vector 

machines (SVM), and linear discriminant analysis (LDA) to distinguish between different 

motor tasks [38], [40]. 

 BCIs have a wide range of uses. In particular, they have demonstrated their promising 

potential in neurorehabilitation and in enhancing the virtual reality experience. MI have 

presented an innovative path for users to collaborate with their environments by granting those 

users with disorders such as a spinal cord injury, stroke, amputees, and others who might have 

been incapable to handle a robotic limb, walk or even computer work to enhance their flexibility 

and real-life operation. In addition, the use of MI throughout recovery has presented a lot of 

possibilities for improving neural plasticity and assisting brain function rectification. Ongoing 

increases in the field of MI BCIs attempt to enhance their movement (portability) restrictions, 

usability, and availability. Therefore, the occurrences of this technology represent an important 

part of the advancement in neurotechnology, human-computer integration, and control 

frameworks [41].  

2.4.2 Steady State Visually Evoked Potential-based BCI 

Steady-State Visual Evoked Potential (SSVEP)-based BCIs make use of the brain’s natural 

response to visual stimuli that flicker at particular frequencies. Particularly, when an individual 

looks at a visual stimulus oscillating at a certain frequency, the brain will generate electrical 

activity at that frequency and its multiples, which can be quantified via EEG. SSVEP-based 

BCIs boast the fastest information transfer rates and the shortest user training periods of the 

BCI modalities and, as a result, are the most viable options for applications requiring quick and 

dependable user input. An EEG dataset is analysed to identify SSVEP signals by examining 

frequency components in the EEG that match the frequencies of visual stimuli. This simple 

approach works because SSVEP has a very strong and easily recognizable nature which is able 
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to retain even in the presence of noise in the EEG. Canonical Correlation Analysis (CCA) and 

Fast Fourier Transform (FFT) are two commonly used processing methods to increase SSVEP 

detection [37], [42]. It can be particularly useful for users with severe physical impairments to 

provide a non-muscular means of communication and control, but requires the capacity to 

twitch in response to stable frequency vibrating stimuli.  

 SSVEP BCIs have been utilised for creating spelling devices, controlling wheelchairs, 

and engaging with virtual and augmented reality environments. SSVEP-based systems offer a 

significant benefit due to their minimum training needs and consistent performance across many 

sessions and users. Ongoing research is focused on problems including visual fatigue and the 

restricted range of flashing frequencies that can be utilised without producing pain or epileptic 

seizures in vulnerable individuals. Advancements in stimulus design, signal processing 

techniques, and user interface design are always being sought to improve the usability and 

efficiency of SSVEP BCIs [43], [44].  

2.4.3 P300-Based BCI 

P300-based BCIs operate by detecting a distinct event-related potential known as the P300. 

This neurophysiological response is elicited when an individual identifies a single stimulus 

within a given set of stimuli. Individuals direct their attention towards a specific stimulus, and 

the BCI system identifies the corresponding P300 response, enabling communication or control 

[45], [46]. is potential is due to a positive electrical response in the brain which typically 

manifests from about 300 milliseconds subsequent to the introduction of a meaning-making 

stimulus to an individual. Several studies have shown that P300-based BCIs perform efficiently 

in various applications requiring a user to choose any alternatives present such as virtual 

keyboard systems and typing devices [45].  
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2.4.3.1 Structure of BCIs based on P300 Evoked Potential 

The following is an outline of the fundamental framework of BCIs that rely on the use of P300 

evoked potentials. 

The presentation of stimuli: The manner in which stimuli are presented is another critical 

aspect that significantly influences the efficacy and accuracy of P300-based BCIs. In the case 

of a speller application, stimuli traditionally refer to characters that appear on a computer 

screen, initially organized into several rows and columns in a matrix format. The system 

subsequently highlights individual characters in rows and columns sequentially while the user 

focuses their attention to the target character. Effective display of stimuli is critical in 

optimizing user engagement and BCI accuracy. The primary determinants in this case include 

the duration of stimulus presentation, inter-stimulus interval, and the level of randomness in the 

selection of rows and column for highlighting. These values must be carefully calibrated to 

maximize the P300 response and minimize user strain and fatigue.  

The process of acquiring EEG signals: The acquisition procedure of EEG signals includes a 

range of vital steps that are ideally planned to record the exact electrical activity of the brain 

with a minimum threshold of external noise. The ‘placing’ of the electrodes on the scalp during 

the first phase is done using recognised techniques such as the International 10- 20 system.  

Amplification is a crucial stage in the process, as the EEG signals typically fall within the 

microvolt (µV) range and necessitate amplification for precise analysis and interpretation. After 

amplification, signals are digitized: this moment converts analog signals into a computer form 

[47]. 

 Obtaining high-quality EEG signals is crucial to ensure the reliability of subsequent analysis 

and consideration. Notably, the field of EEG technology has made solid progress in wireless 

recording and dry-electrode systems. It significantly improves the level of comfort and 
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convenience for participants, thus expanding the possibility of using EEG in a clinical and 

research environment [48]. 

Signal processing:  The vast majority of raw data acquired by the electrodes is contaminated 

by undesired interference known as artefacts that can be either endogenous, originating from 

muscle movements (EMG), eye blinks (EOG), or exogenous electrical noise. The artefact 

removal along with preprocessing methods such as filtering and post-amplification are 

subsequently used to reveal the actual brain activity [49]. Filtering, artifact removal, and 

baseline correction can be applied to remove noise sources, artifacts, and unimportant frequency 

components from raw EEG data. Signal processing algorithms are used to obtain features 

related to the P300 response [CC]. A prevalent signal processing technique for P300 signals 

involves averaging multiple ERP recordings obtained from several repetitions of the same 

stimulus [50]. 

Feature Extraction: Feature extraction is a critical component of BCIs since it facilitates the 

translation of a user’s intention from brain signals, usually EEG, using important characteristics 

that distinguish different mental states or responses. The time -domain method includes 

measuring point features such as wave form amplitude and latency. Frequency-domain methods 

focused on the power spectral density quantify power distribution over different frequency 

bands. Other spatial filtering methods, such as Common Spatial Patterns , alleviate the signal-

to-noise ratio problem for motor imagery by increasing variance for one logic class while 

reducing it for the other [49], [51], [52]. Advanced methods include utilising machine learning 

algorithms like support Deep Learning to automatically detect and extract important 

characteristics from unprocessed EEG data These techniques are essential for enhancing the 

precision and dependability of BCIs, allowing users to communicate and control more 

efficiently [53]. In our study, we used the PCA method.   



22 

 

   

 

Classification: EEG classification is the process of examining and classifying patterns of 

cerebral activity caught by EEG sensors. Algorithms acquire knowledge about patterns and 

relationships between input variables or features and class labels. This learning is done through 

supervised learning, with labelled training samples fed to the model. The knowledge obtained 

is then applied to predict data or novel observations. These algorithms primarily use this learned 

knowledge to create predictions, or classifications, on previously unobserved data and are 

applied to novel data [14]. When the BCI system recognizes the target stimulus, it activates the 

associated activity, such as the selection of a target letter, on the controlled application so that 

the desired action is taken [54].  

Feedback: Users have the ability to get feedback in the form of visual or audible cues, which 

serve to validate their selections or signal that the system is prepared for the subsequent pick. 

Calibration: Calibration precedes the use of a BCI, and it implies the adjustment of the 

algorithm to the specific user’s characteristics. For the first part of the process, the device should 

collect and record the user’s brain responses to a set of stimuli, so the classification algorithm 

becomes trained.. Some BCI systems utilize adaptive algorithms. They regularly modify the 

classification algorithms used for exacting P300 detection, which rely on varying the user’s 

brain signals over extended periods to confirm their distinctive and sporadic usage [55].  

Familiarisation: The majority of users attend training sessions to become familiar with the 

BCI system and to develop a conscious control over their brain activity [9].  

2.4.3.2 Stimulus Source & Format 

The P300 is an endogenous ERP characterised by a latency of 300 to 600 ms, triggered by 

infrequent and/or meaningful stimuli, contingent upon the individual's attention to these stimuli 

[56], [57], [58] . P300s are researched using the oddball paradigm [59], [60], [61] , which entails 

the presentation of a sequence of stimuli, including a rare stimulus scattered among normal 

stimuli. P300 speller protocols make use of characters, symbols, or pictures or letters of visual 
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stimuli presented on a screen in various different formats. An alternate option has been 

examined by some researchers to be the seatality of auditory or tactile sensations to support the 

population with visual impairments or enhance the speller effectiveness in the different 

environment [62], [63].  

 The amplitude and latency of the P300 are impacted by various factors [58]. The amplitude 

of P300 increases as the probability of the target decreases [64]. The P300 amplitude shows a 

positive correlation with the Inter-Stimulus Interval (ISI), defined as the time interval between 

the conclusion of one stimulus and the initiation of the subsequent stimulus, as well as with 

Stimulus Onset Asynchrony (SOA), which refers to the time interval between the onset of two 

consecutive stimuli [65], [66], [67]. A positive correlation exists between P300 amplitude and 

the quantity of non-target stimuli that precede a target [68], [69]. Some studies indicate that the 

Target-to-Target Interval (TTI) is the fundamental factor influencing the variations in P300 

amplitude that are ascribed to target probability, inter-stimulus interval (ISI), stimulus onset 

asynchrony (SOA), and the number of previous non-targets [70], [71]. 

 P300 spellers commonly use a matrix structure for visual stimulus, with characters organised 

in rows and columns. The Row-Column Speller (RCS) is a prominent illustration where rows 

and columns flash in succession, prompting the user to concentrate on the desired character for 

selection. The point where the row and column connect and provide the most pronounced P300 

response signifies the selected character, as stated by Farwell and Donchin in 1988 [45]. 

Another approach utilises single-character display, highlighting characters individually instead 

of in groups. This method may provide higher accuracy but requires more time for choosing 

[72]. Auditory spellers may distinguish between target and non-target stimuli by presenting 

stimuli through various spatial locations or modulated tones [73].  Research has explored using 

dynamic and engaging stimuli, like moving or interactive elements, and adjusting stimulus 
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parameters, such as colour, size, and frequency, to improve P300 elicitation and decrease user 

fatigue [74]. 

 Donchin's spellers indicate a significant issue that the TTI varies considerably, adversely 

impacting P300 amplitudes due to the random flashing of rows and columns. The Donchin 

method presents high variability in the P300s elicited by target row/column flashes. Despite the 

development of methods that reduce this issue, it inherently compromises the performance of 

classification algorithms [23]. Another issue with this type of speller involves perceptual errors, 

including attention blink [75] and repetition blindness [76]. Rapidly presented stimuli are less 

easily recognised, resulting in insufficient triggering of P300s [77], [78], which, when triggered, 

typically exhibit small amplitudes.  

 A common feature of the ERP-based spelling approaches examined is randomness in the 

order of presentation of letters, which, as discussed earlier, is typically considered critical for 

triggering larger P300 ERPs. However, we question whether such randomness is necessary in 

the Circular method. In fact, Farwell and Donchin mentioned in the results of [45] the 

possibility of abandoning the oddball paradigm to further improve performance. However, to 

the best of our knowledge, no research has been done on spellers using a regular (hence 

periodic) flash sequence. 

 In the Circular method, instead of highlighting more than one character at a time to produce 

a BCI speller with periodic stimulation (like the rows and colours of Donchin's speller), we 

highlighted them one at a time. As this produced identical and longer TTIs, it was expected that 

the resulting P300s would be bigger and clearer than in other spellers and therefore 

classification would be better. In addition, as suggested by Farwell and Donchin, this would 

reveal CNVs that could further help classification. 
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2.4.3.3 Limitation of P300-based BCI  

P300-based BCIs exhibit potential in several applications; yet, they are not without limits, 

which necessitate ongoing efforts by researchers to overcome. The following are several 

prevalent constraints associated with P300-based BCIs, along with references to pertinent 

scholarly investigations addressing these issues: 

 P300-based BCIs frequently encounter challenges associated with poor ITR, hence 

restricting the rate at which users may effectively communicate or engage with the 

device [79].  

 The P300 response exhibits variability among individuals and even within the same 

individual at different time points, posing challenges in establishing a universally 

applicable framework [80]. 

 The achievement of sufficient accuracy in P300-based BCIs generally necessitates the 

undertaking of time-consuming calibration sessions and substantial user training 

[81].The achievement of sufficient accuracy in P300-based BCIs generally necessitates 

the undertaking of time-consuming calibration sessions and substantial user training 

[81]. 

 The reliability of P300-based BCIs can be considerably influenced by external 

conditions, such as noise and distractions [82].The reliability of P300-based BCIs can 

be considerably influenced by external conditions, such as noise and distractions [82]. 

 The discomfort associated with electrode placement and the need for cap can impose 

limitations on the accessibility and user-friendliness of P300-based BCIs [83].The 

discomfort associated with electrode placement and the need for cap can impose 

limitations on the accessibility and user-friendliness of P300-based BCIs [83]. 
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 P300-based BCIs are commonly employed for discrete selection purposes and are less 

well-suited for activities requiring continuous control [84] albeit some BCIs for mouse 

and robotic control have been built. 

2.5 Potential applications of BCI and Literature Review 

This section provides a description of the paradigms employed in P300 spellers, along with 

illustrative examples. We describe the purpose of our proposed paradigm by explaining the 

process of existing paradigms and their advantages and disadvantages. The methods/paradigms 

developed throughout the process have solved some problems and sometimes encountered 

different problems. The problems that the proposed paradigm aims to solve and the problems it 

faces are presented by comparing it with previous paradigms. In this section, we particularly 

focused on the P300 spellers. The reason for this is that P300 spellers, which we regard as more 

efficient, constitute the primary element of our current paradigm.  Paradigms such as 

audio/tactile P300 spellers, SSVEP, MI, and hybrid methods are not included as examples in 

this section. 

 Various modifications and enhancements to Donchin's speller have been suggested over 

time. Variations include the use of flashing pseudo-random patterns of letters rather than 

traditional rows and columns  [54], [85], substituting characters with familiar faces instead of 

highlighting them [86], [87], employing modifications to letters beyond flashing [88], flashing 

small squares at the edges of rows or columns instead of entire rows/columns [89], assigning 

colours to each character instead of utilising flashing and modulation [90], modifying the size 

and spacing of symbols [91], [92], among others. 
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Figure 2-2 Row-coloum paradigms. Classic matrix speller (left) and speller using own face as 

stimulus (right) 

 Shown in Figure 2.2(left), the study developed by Krusienski et al. [93], the 

enhancement of the P300 feature space by stepwise linear discriminant analysis (SWLDA) and 

the inclusion of posterior electrode locations resulted in enhanced classification accuracy, with 

ideal configurations comprising central-posterior electrodes, 12 and 60 features. The online 

results confirmed a minimum accuracy rate of 60%, while this rate exceeded 90% in some 

subjects. Thus, it has shown significant improvements in BCI performance using both 

methodologies. Lu et al. [94] showed two principal techniques to improve P300-speller BCI 

efficacy. The self-face paradigm , shown in Figure 2.2(right), considerably higher ERP 

amplitudes in the parietal (340–480 ms, 480–600 ms) and fronto-central (700–800 ms) areas, 

resulting in improved classification accuracy and a peak ITR of 31.4 bits/min (P < 0.05). 

 Treder and Blankertz [95]  investigated the effect of overt and covert attention and 

proposed innovative spelling designs to improve performance in ERP-based BCIs. They 

showed that explicit attention results in significantly higher accuracy, larger ERP amplitudes 

(P1, N1, P2, N2 and P3) and better classification performance than covert attention. The Hex-

o-Spell speller in Figure 2.3 (top) showed superior performance compared to the standard  
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Figure 2-3 The Hex-o-Spell speller (top) and Gaze Independent Block Speller (GIBS) speller 

(bottom) 

matrix speller by effectively reducing peripheral vision constraints, especially in covert 

attention scenarios. The Gaze Independent Block Speller (GIBS) developed by Pires et al. [96] 

demonstrated an average accuracy of 96.02% and a practical bit rate (PBR) of 16.67 bits/min 

during online experiments involving healthy participants. This performance surpassed that of 

the standard row-column (RC) speller, which achieved 85.5% accuracy and an ITR of 14.89 

bits/min. The GIBS method, shown in Figure 2.3 (bottom), achieved better results with inter-

block switching and demonstrated its applicability for individuals with severe motor 

impairment. 

 The GeoSpell for covert attention developed by Aloise et al. [97], shown in Figure 2.4 

(left), provided a valid ITR (1.86 Symbols/min) and user satisfaction, but showed a slightly 

lower average accuracy of 77.8% compared to the standard P300 speller, which reached 

96.17%. A gaze-independent speller designed by Liu et al. [98] used covert visual search tasks  
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Figure 2-4 Geospell (right), GIBs with covert visual search tasks (right top) and Region-based 

(RB) (right bottom) spellers  

in which users maintained central fixation while identifying targets through covert attentional 

shifts. The study in Figure 2.4 (right top)  evaluated random position (RP) and fixed position 

(FP) presentation modes, achieving 94.4% and 96.3% accuracy, respectively. The fact that fixed 

position produced better results suggests that fixed motion should also be investigated. The 

highest symbol rate was 1.38 per minute and the results confirmed independence from eye 

movements. A region-based P300 spellerby Reza Fazel-Rezai and Kamyar Abhari  [99] divided 

the display into seven regions and applied a two-level selection process to minimise perceptual 

errors due to adjacent flashes (see Figure 2.4 (right bottom)). This study shows that target 

stimulus adjacency negatively affects the accuracy rate. This method reduced the error rate from 

36.7% to 18.3%, increased the character choices to 49, and improved P300 amplitudes and 

spelling speed. 
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Figure 2-5 Region-based speller based on multisensory (audio) stimuli 

 Oralhan [100] improved performance over traditional visual or auditory-only paradigms 

with its first approach combining auditory and visual stimuli for region-based spellers shown 

in Figure 2.5. The audiovisual P300 speller showed an increase of 15.69% and 66.99% 

compared to visual and auditory-only spellers, respectively, and achieved a classification 

accuracy of 90.31%. Furthermore, the information transfer rate increased by 29.11% compared 

to the visual-only mode. These results indicate that multi-modal stimulation can increase user 

attention, but the amount of cognitive load needs to be further investigated. 

 Townsend et al. [101] present a novel P300-based Checkerboard Paradigm (CBP ) as 

an alternative to the traditional Row/Column Paradigm ( RCP ).  In the CBP, matrix elements 

used the checkerboard pattern shown in Figure 2.6 to minimise errors due to spatial contiguity 

(contiguity-dispersion errors) and to reduce overlapping target stimuli (double flash errors). 

Using an 8*9 matrix of 18 healthy participants, the results showed significantly higher average  
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Figure 2-6 Checkboard (CB/CBP ) paradigm speller 

online accuracy for CBP (92%) compared to RCP (77%) and a higher average bit rate of 23 

bit/min compared to 17 bit/min for RCP. The practical bit rate accounting for error correction 

was also significantly higher for CBP (22.59 bits/min) compared to RCP (16.61 bits/min). 

Preliminary tests with participants with ALS also showed an average improvement of  24.6% 

in classification accuracy after switching from RCP to CBP. These results suggest that CBP 

reduces errors, increases accuracy and improves BCI usability, especially for users with severe 

motor impairments. 

 In Shi et al.'s [102] study, the Sub-Matrix Based Paradigm (SBP) divided a 6×6 matrix 

into smaller sub-matrices, reducing errors such as adjacency distraction and double blinking, 

thereby increasing accuracy and ITR. The method, whose display design is shown in Figure 2.7 

(left), achieves 99.7 accuracy and 28.8 bit/min ITR, offering scalability for larger target sets. 

The 3D Column-Only Paradigm proposed by Korkmaz et al. [103] significantly improves  
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Figure 2-7 Sub-matrix based (SB) (left) and 3d row-column (right) spellers 

classification accuracy with fewer electrodes (reducing computational cost) by using dynamic 

3D animations and column-only flashes. Focusing on 3D flashing of columns, as shown in 

Figure 2.7 (right), the system was tested with a two-layer neural network, achieving  up to 

99.81% accuracy with fifteen flashes and a single-electrode improvement of  9.69% for one 

flash, demonstrating efficiency and practicality for real-world applications. Participants found 

the new paradigm more user-friendly, demonstrating its potential for the next generation of BCI 

systems due to its efficiency and reduced user workload. 

Akram et al. [104] developed a system that integrates a modified P300-based T9 interface with 

a random forest classifier for efficient word typing and communication.  It allows users to type 

initial characters through a 3×3 matrix, shown in Figure 2.8 (left), and a custom dictionary to 

suggest full words, reducing typing time by 51.87%. Experiments with 10 subjects showed that 

the average typing time per word, which was 3.47 minutes with traditional methods, decreased 

by 1.67 minutes and increased the speed of information transfer and usability for people with 

disabilities. Ron-Angevin et al. [105] also tested a T9-like speller with the 4×3 matrix in Figure  
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Figure 2-8 T9 spellers based on word possibilities to increase ITR  

2.8 (right) with a locked-in ALS patient and 11 healthy participants, enabling the ALS patient 

to spell words 1.6 times faster than conventional 7×6 spellers while maintaining accuracy. 

These results highlight the potential for smaller matrices and improved classifiers to improve 

communication speed and practicality for severely disabled users, but further work with larger 

populations is recommended. 

 

Figure 2-9 RB Easy Screen speller using a 7x7 visual stimulus matrix 
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 Easy Screen P300, developed by Aygün and Kavsaoglu [106], improved word typing 

speed and accuracy by better detecting P300 ERPs in EEG signals using a 7x7 visual stimulus 

matrix. As shown in Figure 2.9, the interface includes alphabetic characters as well as 20 

shortcut items that allow words to be displayed quickly. The system performed testing with 30 

participants, demonstrating an increase in character detection accuracy and output characters 

per minute relative to traditional P300 spellers. The Easy Screen P300 Speller decreases the 

average time needed to display a word from 4.53 minutes to 1.31 minutes, enhancing its 

efficiency as a communication tool, particularly for individuals with disabilities. The 

integration of the visual stimulus matrix and the word list on a single screen enhances user 

experience by eliminating the necessity for supplementary interfaces. 

 

Figure 2-10 The hybrid QWERTY speller 

 The hybrid QWERTY speller developed by Katyal and Singla [107], which uses a 

combination of P300 and SSVEP signals and achieves high ITR values, is shown in Figure 

2.10. The speller used five flickering frequencies to represent 36 characters and achieved an 

average classification accuracy of 96.42% with an ITR of 131.0 bits per minute, increasing 

classification accuracy and ITR compared to conventional P300 and SSVEP spellers. The 

hybrid approach provided a promising advance for BCI spellers by significantly outperforming 
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in terms of speed and accuracy, offering the potential to expand to more characters while 

maintaining high efficiency. However, it causes usability difficulties as subjects are exposed to 

more stimuli and need to concentrate higher. 

 

 

 

Figure 2-11 Three-dimensional (3D) visual stimuli speller 

 The study by Du et al. [108] comparing the effects of three-dimensional (3D) visual 

stimuli on P300-speller performance in virtual reality (VR) compared to conventional two-

dimensional (2D) paradigms is shown in Figure 2.11. Four presentation paradigms were 

evaluated, three of which were 3D paradigms, consisting of Different depth information Array 

Character Flash (DACF), Same depth information Array Character Flight (SACFO) and Same 

depth information Array Character Jump (SACJ), and one 2D paradigm. The results show that 

3D paradigms, especially DACF and SACJ, improve EEG class discriminative features and 

achieve higher accuracies, with average accuracies exceeding 85% and reaching approximately 

95% with more rounds. The results suggest that 3D stimuli improve ERP features and authoring 

performance, provide a more immersive experience, and advance BCI applications in VR. 
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Figure 2-12 Rapid serial visual presentation (RSVP) spellers 

 Acqualagna and Blankertz [109] developed a Gaze-independent BCI speller using rapid 

serial visual presentation (RSVP) to facilitate communication for individuals with 

neurodegenerative diseases. This method enables users to select symbols by concentrating on 

target letters within a visual stimulus stream, eliminating the necessity for eye movements. 

Testing three conditions with different stimulus onset asynchronies (SOAs) and colour 

characteristics, the study achieved an average symbol selection accuracy of 94.8% and a 

spelling rate of 1.43 symbols per minute in the best condition. The RSVP speller, shown in 

Figure 2.12 (left), exploits non-spatial visual attention, making it suitable for patients with 

oculo-motor control disorders.  

 Won et al. [110] compared rapid serial visual presentation (RSVP) and P300 spelling 

paradigms collected from 55 participants.  In the RSVP task, whose interface is shown in Figure 

2.12 (right), participants achieved an average target detection accuracy of  91.85% (range: 77.5-

100%), with ERPs around 315 ms for target events. For P300 spelling, an average letter 

detection accuracy of  91.49% (range: 46.43-100%) was observed, reaching  85% accuracy with 

9 repetitions, and consistent P300 ERP features were seen around 262 ms during target events. 
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Figure 2-13 Goal-oriented single character spelling 

 Edlinger et al. [111] integrated a P300-based BCI for goal-oriented control with virtual 

environments for navigation and control tasks (see Figure 2.13). The system was able to train 

more than 80% of the participants after only five minutes of training. In a single-character study, 

55% of the 38 subjects achieved 100% accuracy immediately and 76% made only one error. In 

a virtual smart home study, subjects controlled various functions with accuracy ranging from 

83 to 100%. The information transfer rate (ITR) was satisfactory, reaching up to 84 bits/sec for 

single character spelling. It has proven to show significant potential for applications such as 

smart home management and wheelchair control, which require minimal training. 

 Pires et al. [112] compared a novel lateral single character (LSC) P300-based speller, 

shown in Figure 2.14 (left), with a conventional row-column (RC) speller for use by individuals 

with severe motor disabilities. The LSC speller, designed to exploit hemispheric asymmetries 

in visual perception, performed very well with an average ITR of 26.11 bit/min and 89.90% 

accuracy, compared to 21.91 bit/min and 88.36% accuracy of the RC speller. Involving 

participants with conditions such as ALS and cerebral palsy, the speller not only improved 

accuracy and speed, but also reduced the visual discomfort/fatigue common to hybrid and other 

spellers. Guan et al. [113] propose a new P300 speller paradigm called SD-Speller which  
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Figure 2-14 Lateral single character (LSC) (left) and Single Display Paradigm (SD)(right) 

Speller 

displays each character randomly instead of intensifying rows and columns of a character 

matrix like the existing Farwell-Donchin (FD) speller. Online experiments with 6 subjects 

showed the SD-speller significantly improved character classification accuracy over the FD-

speller, reducing error rates by up to 80%. Various signal processing methods were optimized 

for the FD-speller which reduced error rates by 23%. Comparison experiments found the SD-

speller doubled information transfer rate and reduced time needed to achieve certain accuracy 

levels compared to the FD-speller. Higher P300 signal amplitudes were observed with the SD-

speller which could explain the improved performance. 
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Chapter 3 

3 Research Methodology 

The previous chapter provided comprehensive information regarding the fundamental 

components of BCI, with a particular focus on P300-based BCI systems. The foundational 

aspects of our method, including its underlying logic and theoretical principles, are outlined. 

The following chapter provides a comprehensive overview of the practical, hardware, and 

software processes involved in BCI interfaces, from the initial stage to the final stage.  

 

Figure 3-1 Standard BCI processing pipeline including signal acquisition, signal preprocessing, 

feature selection, feature extraction, classification and interface. 

  

 The fundamental tasks and procedures of BCI include signal acquisition, signal 

processing, feature selection, feature extraction, classification, and evaluation criteria, as 

illustrated in Figure 15. The theoretical description of the BCI processes is given in this section 

and the implementation and results are discussed in the following sections. 
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3.1 Data Acquisition 

The first experiment (Exp3seconds) was conducted with 8 subjects with an average age of 29.9 

(±3.6) and the second experiment (Exp2seconds) was conducted with 10 subjects with an 

average age of 31.1 (±5.0).  The participants had no physical health issues and had normal or 

corrected-to-normal vision. One participant in the second experiment participated in part in the 

first experiment.  

  Following the provision of detailed instructions, the system was deployed across all 

participants for subsequent testing. Participants were seated on a comfortable chair 

approximately 70 cm from an LCD screen measuring 52.5 cm in width and 30 cm in height, 

with a resolution of 1920×1080 pixels. Brain signal acquisition was conducted using a Biosemi 

ActiveTwo EEG system equipped with 64 channels. The conductivity and signal quality were 

improved by using a small amount of conductive gel on the BioSemi 64-channel (10/20 

international system) EEG cap electrodes, and the impedance of the electrodes was kept below 

20 k. 

Table 3.1 Binary classification AUC scores according to downsample rates 

 32  64 128 256 

SVM LDA SVM LDA SVM LDA SVM LDA 

Sub1 0.620 0.677 0.616 0.671 0.615 0.671 0.615 0.672 

Sub2 0.868 0.896 0.867 0.895 0.867 0.895 0.868 0.895 

Sub3 0.637 0.638 0.637 0.646 0.637 0.646 0.637 0.646 

Sub4 0.862 0.865 0.862 0.864 0.862 0.864 0.862 0.863 

Sub5 0.660 0.740 0.659 0.733 0.659 0.733 0.659 0.733 

Sub6 0.884 0.900 0.884 0.899 0.884 0.900 0.884 0.899 

Sub7 0.713 0.772 0.713 0.774 0.713 0.774 0.712 0.773 

Sub8 0.491 0.496 0.481 0.485 0.477 0.484 0.476 0.484 

mean  0.717 0.748 0.715 0.746 0.714 0.746 0.714 0.746 

 In this thesis, the EEG data originally sampled at a high rate of 2048 samples per second 

was subjected to a rigorous downsampling process, aimed at reducing the temporal resolution 

to 32 samples per second to better manage data volume and focus on lower frequency 
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components. Each 1 second epoch normally contains 1 KHz (2048 sampling rate), by reducing 

this to 32 we reduced the computational cost by changing our dataset from 11124 (309 

repetitions*36 epochs)*2048 to 11124*32. Such averaging effectively reduces the dataset size 

and computational load while also smoothing out high-frequency fluctuations, thereby 

enhancing the clarity and interpretability of the underlying neurophysiological signals. 

Downsampling such as this is common in ERP studies where lower frequency dynamics and 

ERPs (such as the P300) are of primary interest, enabling more efficient data handling and 

analysis without sacrificing essential signal information. As seen in Table 2, a sampling rate of 

32 does not reduce the overall representation ratio and represents the entire data set well because 

it reduces fluctuations caused by noise. 

3.2 EEG Signal Pre-Processing 

BCI signal processing is a general term used to describe an extensive array of techniques that 

are utilized to interpret brain signals to enable the control of external devices or communication 

systems. The first step involves the acquisition of brain signals, with EEG being common due 

to its non-invasive nature and ability to capture high temporal information. To enable the quality 

and interpret-ability of the acquired signals, preprocessing techniques are utilized to enhance 

the signal. Preprocessing includes, among other techniques, applying spatial filters, removing 

artefacts, and signal enhancement. In feature extraction, the relevant signal properties are 

isolated using tools such as time, frequency, and spatial domain analysis to reveal features that 

correlate activity to a mental state or intention. Finally, the user intention is deciphered through 

classification, involving either machine learning or statistical approaches to distinguish between 

different user intentions using the acquired data. The transformation of brain data into a control 

signal in BCI is a critical multi-step procedure, with possible research always improving each 

step. BCI signals have come a long way, with research in machine learning algorithms 
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improving classification accuracy and developing new preprocessing techniques to reduce 

signal noise and artefacts [12], [114].  

3.2.1 Referencing 

The referencing of the BCI signal is of critical significance with respect to EEG data 

preprocessing for BCI. The essential goal of it is to increase the quality of the signal, rendering 

it more interpretable while also due to noise reduction and maximization of the ratio of signal 

to noise. This is achieved by referring each electrode to a reference electrode or to a reference 

method, that is used in comparison, through which the potential of the remaining electrodes is 

conferred. A reference method of types is widely utilised throughout scientific literature. One 

method, for example, employs a single electrode placed in the neutral area, such as the mastoid 

or ear lobes or the earlobes which average their recordings. The method of averaging is an 

average reference that uses the average signal of all electrodes as a singular reference. Laplacian 

montage computation is a further example where the variance between each electrode and the 

weighted average of the nearest electrodes is calculated. The type of reference chosen 

significantly influences the EEG signals recognised and may impact the outcome of BCI 

applications. There is evidence suggesting that the accurate reference is essential for the correct 

localisation of electrical brain activity and influences the efficiency of BCIs, particularly 

needing specific signal attributes like ERPs. In addition, a study by Teplan [115] draws more 

attention to the importance of considering the impact of reference electrodes and reference 

techniques on the EEG signal analysis quality. This establishes the requirement for careful 

selection and usage of automated referencing techniques for standardised BCI systems. 

 In this EEG study, an electrode was strategically placed in each earlobe, referred to as 

EXG1 and EXG2, to serve as reference channels. This configuration, known as linked ears 

reference, is critical for establishing a stable and uniform baseline across the scalp's electrical 
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activity. By referencing each EEG channel to the average of the potentials measured at the left 

(EXG1) and right (EXG2) ears, we aimed to minimize the influence of common extracerebral 

noise and improve the specificity of localizing cerebral sources. This referencing method is 

particularly effective in reducing the effects of lateralized artifacts, such as those induced by 

muscle tension or eye movements, thereby enhancing the accuracy and reliability of the EEG 

data interpretation. The choice of a linked ears reference is crucial in studies where comparative 

lateral brain function is assessed, providing a balanced view of hemispheric differences in 

neural dynamics. 

3.2.2 Frequency Band Filtering 

Frequency band filtering is a fundamental technique utilized in signal processing. This method 

involves the ability to obtain specific frequency components of a given signal, simultaneously 

diminishing or completely eliminating completely unrequired frequencies. Band filtering is 

widely used in almost all fields of application, from audio processing to telecommunication and 

analysis of biomedical signals [116]. Frequency band filtering can be done using a variety of 

procedures, such as digital filter design, Fourier transformation, wavelet analysis, among 

others. Some of the Digital filters such as low-pass filter, high-pass filter, bandpass filter, band-

stop filter can be utilized in the area of digital signal processing (DSP) to accomplish the 

frequency band filtering by passing accurate frequency bands and attenuating the frequencies 

that are beyond the frequency bands [117].  

 In the preprocessing phase of this EEG analysis, The EEG data were band-pass filtered 

(Butterworth filter, order 4) at a range of 0.15-30 Hz. This filtering approach is instrumental in 

isolating the frequency bands most relevant to cognitive and neurophysiological studies, 

effectively attenuating unwanted high-frequency noise and low-frequency drifts that could 

obscure meaningful brain activity. The lower cut off of 0.15 Hz is specifically chosen to 
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minimize the impact of slow-wave artifacts, such as those due to perspiration or breathing, 

while the upper limit of 30 Hz encompasses the delta, theta, alpha, and beta frequency bands, 

which are critically involved in various brain functions including sleep, relaxation, and 

cognitive processes. By confining the EEG signals to this frequency range, the filtered data 

more accurately reflects the underlying neural oscillations relevant to the study's objectives, 

thereby enhancing the reliability of subsequent analyses and interpretations. 

3.3 Artefact Removal 

The removal of artefacts is another fundamental step involved in the preprocessing of BCI. 

Artefacts refer to non-brain activity signals that could significantly compromise and deform the 

EEG data since they arise from various origins. Indeed, several vital artefacts include eye 

blinks, muscle movements, including those generating eye movements, ECG heartbeats, 

external electrical noise, and many more. These artefacts are dangerous because they can 

obscure the ground truth brain signals being analyzed. Therefore, effective methods of 

eliminating artefacts are critical for improving the specific accuracy and reliability of BCI 

systems. Specifically employed methods include ICA, which is a method used to unmix mixed 

signals into independent sources and wavelet transformation that uses time-frequency analysis 

to identify artefact components to be eliminated. Furthermore, adaptive filtering, and signal 

space projection are methods used to suppress the artefacts. The area of artefact removal 

strategies and methods research remain very hot, as indicated by Urigüen and Garcia-Zapirain 

[118]. While these authors stress the importance of artefact processing of BCIs, others such as 

Fatourechi et al. [119] draw attention to the continued challenge of balancing artefact removal 

and preservation of essential brain signal components. This further underscores the importance 

of the preprocessing phase of implementing BCI technologies. 
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3.3.1 Independent Component Analysis (ICA) 

Independent Component Analysis is a reliable computational technique used in BCI systems to 

remove artefacts due to its capability to decompose complex multivariate statistical signals into 

independent components. ICA has proven highly successful in artefact decomposition and 

removal from EEG signals, such as eye blinks, head movements, and electrical noises. In 

essence, it decomposes the recorded signals into naturally independent sources based on 

statistical independence. As mentioned earlier, ICA theory assumes that EEG signals are linear 

combinations of independent source signals to be estimated from the recorded independent 

signals. Following the above assertion, ICA can differentiate between the signals of interest, 

the noise, and artefacts. Eliminating the separated non-interest signals has significantly 

enhanced the EEG signal and, as such, enhanced BCI applications by achieving a notable and 

more excellent efficiency. The study by Makeig et al. [49] has provided sufficient evidence to 

about the appropriateness of ICA in EEG data analysis by applying it to analyse artefacts and 

detect their role in EEG. Delorme and Makeig [120] have performed an effective analysis of 

ICA and provided detailed procedures in utilising ICA. Their observation was based on the 

improved signal interpretations and enhanced BCI data analysis.  

3.3.2 Ocular Artifact Removal 

The ocular artefact removal technique developed by Croft and Barry [121] is a regression-based 

method that initially captures physiological noise during a short calibration period, then 

deriving channel-specific regression coefficients that measure the extent of contamination of 

each EEG channel by these noise signals. These coefficients are used to subtract the estimated 

contribution of ocular activity from the EEG, significantly reducing blink and saccade artefacts 

while preserving true brain activity. It is simpler to implement and computationally faster than 

more advanced approaches such as ICA, provided the calibration is accurate. Because of these 
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advantages, which make it a popular choice for both research and clinical EEG applications, 

and its satisfactory performance in our methodology, we preferred it to ICA. 

EEG signals were obtained for each subject divided into 1000 ms epochs starting with each 

stimulus pre-presentation. We applied an artefact rejection procedure to these epochs, which 

involved calculating the first Q1(T) and third Q3(T) quarters of voltages at each time step across 

all epochs. The following procedure was then applied to remove periods where the signal was 

outside the range of samples in a period: 

r = [𝑄1(𝑡) − (1.5𝑄3(𝑡) − 𝑄1(𝑡)), 𝑄1(𝑡) + (1.5𝑄3(𝑡) + 𝑄1(𝑡))]                (3.1) 

This method was applied to all channels (19 channels, parietal and occipital lobes) to 

maximize the use of valid information. 

3.4 Feature Selection 

The selection of features in BCI process is one of the most critical aspects during their 

development. The primary purpose of the procedure is to select the most relevant features from 

the EEG signals. This is aimed at increasing the classification accuracy, and ultimately, the 

performance of the system. In this procedure, the feature space is reduced to a reduced group 

of features that carry the most information about the relevant work. This results in a more 

efficient and accurate system for the BCI since it simplifies will computation, complexity and 

possibly increases the classification speed and accuracy. Particularly, efficient feature selection 

prevents overfitting, and this enhances the model generalization and deepens the researchers’ 

understanding of the characteristics of the BCI event under consideration. BCIs incorporate 

various feature selection techniques using statistical and machine learning approaches such as 

mutual information, Fisher’s discriminant ratio, and wrapper methods which assess subgroups 

feature subsets based on their value in a specific outcome prediction. Lan et al. [122]. have 

demonstrated the importance of feature selection in an s-BCI. Their work indicates the potential 

of the feature selection process in boosting classifier performance by selecting only relevant 
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features. Lotte et al. [123] examined the feature selection in the BCI field and stressed the 

importance of critical feature selection in improving the BCI application reliability and 

efficiency. In addition to standard statistical approaches, the current approaches to BCI feature 

selection include deep learning-based methods. These methods enable the automatic feature 

extraction and selection of relevant features using hierarchical learning models. They show the 

power of capturing intricate or non-linear relationships in high-dimensional data and can 

perform well compared to conventional methods. However, their challenges remain in terms of 

model feature interpretability, and model computation complexity. Arvaneh et al. [124]. 

explored the use of constraint-based. 

3.4.1 Channel Selection  

Channel selection is directly related to classification success; thus, identifying the optimal 

channel set is essential. Therefore, a number of channel sets listed below were tested and the 

most suitable set was determined. Channel selection employs various methods, including 

Manual, Embedded, Filtering, Wrapper, and Hybrid approaches [125]. In certain studies 

involving manual channel selection, sufficient results were observed [126], [127].  

 First, we performed a statistical analysis on the 64-channel BioSemi data using the 

correlation matrix method to reduce the number of channels used. In order to investigate an 

experimental method, we first determined the midline of the brain as the centre line. The 

electrodes [O1, O2, Oz, POz, Pz, CPz, Cz, Fz], which are all on or close to the central line, were 

chosen as references to determine which other channels to include. The Pearson correlation 

coefficient was applied to identify the most correlated data among 64 channels collected from 

the Biosemi EEG device and mentioned above 8 channels. For each of the 8 channels, the 20 

channels with the highest correlation were identified separately. This resulted in a list of 160 (8 

channels*20 highest correlated channels) candidates.  
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Figure 3-2 Correlation Matrix of Target Stimulus of 25 Channels 

From these, the 25 channels with the highest frequency in the list were finally selected. 

Specifically, we focused on a feature that was generated by averaging only the target stimulus. 

In Figure 3.2 we report correlations and we can see the selected 25 channels and their statistical 

similarity with each other, and we thought that we could use it for possible channel matching 

and feature selection. Since the choice of 25 channels was a predetermined number, it could 

have been further reduced by removing irrelevant channels. Based on the results obtained from 

preliminary analyses, we decided to use direct channel selection instead of this method.  

 ERP-based spellers mainly utilise P300 components; therefore, for classification, we 

focused on 19 specific channels located in the central, parietal, and occipital regions: Cz, CPz, 

Pz, POz, Oz, P1, P2, P3, P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, O1, and O2. Table 3 shows 

the AUC scores of both SVM and LDA binary classification for 4 different channel sets. The 

19 manually selected channels give the best result in binary classifications by a small margin. 

This success is more evident in the character selection classification. Although 3 channels  
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Table 3.2 AUC scores of channel selection and classification methods 

 19ch  25ch 64ch 3ch (Fz,Cz,Pz) 

SVM LDA SVM LDA SVM LDA SVM LDA 

Sub1 0.620 0.677 0.646 0.678 0.648 0.690 0.665 0.711 

Sub2 0.868 0.896 0.852 0.919 0.851 0.919 0.853 0.922 

Sub3 0.637 0.638 0.637 0.632 0.644 0.639 0.659 0.657 

Sub4 0.862 0.865 0.878 0.849 0.888 0.845 0.877 0.854 

Sub5 0.660 0.740 0.732 0.735 0.753 0.741 0.698 0.719 

Sub6 0.884 0.900 0.851 0.849 0.840 0.834 0.826 0.843 

Sub7 0.713 0.772 0.707 0.726 0.700 0.722 0.705 0.749 

Sub8 0.491 0.496 0.549 0.513 0.554 0.516 0.568 0.510 

mean  0.717 0.748 0.731 0.738 0.735 0.738 0.731 0.746 

 

(Fz, Cz, Pz) can provide both sufficient binary classification results and reduce the 

computational cost more, it was not preferred because it would be more affected by possible 

signal noise in character classification. 

 As seen in Table 3.2, SVM classification obtained lower accuracy rates than LDA 

classification in preliminary tests. As a result, LDA was selected as the preferred classification 

technique for the subsequent stages of the research. The LDA algorithm demonstrates superior 

performance in binary classification tasks while maintaining a modest computational load. 

According to the data shown in Table 3.2 and 3.3, it can be observed that the Circular technique 

exhibits superior performance to Donchin’s speller in AUC scores. However, it is imperative 

to note that the current strategy for character categorization has not been finally optimised, thus 

necessitating additional study into alternative classification approaches.  

3.4.2 Time Window Selection 

A sliding time-window was tried to achieve faster classification and reduce computational 

costs. The ranges were determined based on the data obtained from the ERP average of the 

target signals.  
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Table 3.3 Protocol Time Windows and Epoch Durations AUC score - 3 seconds experiment 

Epoch Time (ms) Circular AUC Donchin AUC 

0 – 1000 0.75 0.67 

160 - 780 0.73 0.63 

270 - 700 0.73 0.68 

310 - 780 0.72 0.65 

470 - 780 0.69 0.63 

550 - 700 0.67 0.59 

 

 Each 1000ms epoch is segmented into shorter epochs to study where the most important 

ERPs might be located. Table 3.3 shows the AUC performance of the Circular method at 

various time windows. Despite the fact that limiting the time frame decreases the computational 

expense and enhances the speed of our system, using smaller epochs was not employed in the 

final classifications due to its negative impact on the classification success rate. 

3.5 Feature Extraction 

The feature extraction process in BCIs is one of the critical stages of the signal processing 

pipeline. As mentioned earlier, its main goal is to obtain relevant information from the raw 

brain signals that could be related to specific cognitive processes or reveal user intentions. In 

other words, this process converts the high-dimensional noise EEG data to a more manageable 

set of features, which accurately represent the underlying brain activity. A set of common BCI 

feature extraction techniques include time-domain analysis, frequency-domain analysis, and 

spatial filtering [128]. When used in BCI research, these techniques are implemented to 

emphasize specific characteristics of the EEG data, such as power spectral densities or ERPs. 

In most cases, more advanced techniques, such as wavelet transform and machine learning 



51 

 

   

 

algorithms, have been adopted to capture both temporal and spectral information 

simultaneously, thus presenting a more holistic view of the EEG signal. Moreover, the choice 

of feature extraction technique has a considerable impact on the BCI system integration, as it 

influences the system’s ability to distinguish between different cognitive tasks or user 

commands. Through the work of researchers such as Kundu and Ari [129] and Bashashati et al. 

[119] substantial progress has been made in this field. These studies have contributed critical 

insights into the efficiency of different feature extraction methods in the context of BCI and 

suggested potential sites of improvement for BCI performance. These data demonstrate the 

ongoing evolution of BCI systems that continue to be optimized to provide a more accurate and 

efficient means of user interaction. 

3.5.1 Resampling 

Synthetic Minority Oversampling Technique (SMOTE) is one of the most common techniques 

in machine learning for tackling class imbalance situation of a dataset, especially in 

classification tasks where the minority class detector is under-represented. The SMOTE 

algorithm generates synthetic samples using the linear interpolation between existing minority 

class instances and their nearest neighbours, which increases instances for the minority class 

and helps to avoid overfitting from duplication [131]. SMOTE is a method which creates new 

synthetic data points instead of merely duplicating existing points as in random oversampling, 

which helps with the generalization of the model and introduces better classification 

performance for imbalanced datasets [132]. It has been shown effective in a range of areas that 

feature class imbalance as a significant hurdle, such as fraud detection, medical diagnosis, and 

bioinformatics [133]. Nonetheless, SMOTE is not without its drawbacks, including 

susceptibility to noise and the generation of overlapping regions between classes, which 

requires careful consideration in its application and may be complemented with other 

techniques, such as ensemble methods or more sophisticated oversampling strategies [134]. 
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Figure 3-3 Imbalanced Data Processing. AUC scores of the Resampling and SMOTE methods 

of the 2-second experiment 

 Resampling via duplication is used in BCI research to mitigate class imbalance in 

datasets, which is prevalent in ERP analysis, including P300 detection. This technique consists 

of duplicating samples from the minority class to guarantee an unbiased representation during 

model training, preventing a classifier class note[307] from leaning toward the majority class. 

Although duplication-based resampling improves the sensitivity towards underrepresented 
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classes, it is prone to overfitting, because it reuses the same samples in multiple training epochs, 

which reduces the model’s generalization ability on unseen data. Studies utilizing this paradigm 

for BCI systems, specifically to counter imbalanced data events and to enhance classification 

accuracy of minority-class events, report higher accuracy in the presence of imbalanced data, 

which is a common occurrence in ERP driven signals ([135], [136]). Nevertheless, advanced 

resampling methods, including synthetic oversampling or adaptive augmentation, are being 

advocated to counter the overfitting danger and achieve more robust systems. 

 One of the most important possible problems in BCI speller systems is that the number 

of target stimuli is low, but the number of non-target stimuli can be tens of times higher. The 

Donchin method presents a ratio of 1 to 5, whereas the Circular method exhibits a ratio of 1 to 

35 (Target / Non-Target), indicating a significant challenge in classification. To solve this 

problem, we could take 2 approaches; either reduce the non-target data or increase the target 

data. The decision was made to increase the Target data, as reducing it could lead to potential 

classification issues caused by the small amount of data available. 

 There are also 2 methods for increasing the target data; SMOTE and resampling 

respectively. Figure 3.3 shows that the AUC scores of SMOTE and resampling methods are 

close. In order not to manipulate the classification method, duplication of the experiment's 

original samples was preferred to artificial sampling in the SMOTE method. The classification 

success was improved without causing overfitting. 

3.5.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is essential in BCI systems, particularly in feature 

extraction. Specifically, PCA is used to eliminate dimensions in EEG data, and therefore it 

simplifies the complexity of the signal without much loss of the data information. This is 

achieved by converting the original variables, which may be somehow correlated, into another  
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Figure 3-4 Circular 1-19 PCA components AUC results  

new set of variables called principal components. The arrangement of the new components is 

such that the few initial components retain almost all the variations observed in the original 

data. As a result, BCI systems use such basic elements instead of the raw EEG; thus, this allows 

the system to reduce the noise and enhance the exact pattern relevant for discrimination and 

characterization features. Additionally, PCA also reduces the computational burden, thus 

making real-time BCI systems more practical and effective.  

 The study by Bashashati et al. [119] provides an excellent review of PCA concerning 

other signal processing methods in BCIs. This study emphasized the improvement in feature 

acquisition brought about by PCA in BCI and the overall improvement in the BCI system. The  

importance of distinct recognition of different commands or mental stimuli is crucial in BCIs 

for actual effective communication and control.  This was recognised by McLoughlin et al. 

[130] describe how PCA identifies relevant features in data to make BCI systems more effective 

and adaptive.  

In this comprehensive EEG analysis, we initially implemented PCA on a dataset comprising 64 

EEG channels to evaluate the effectiveness of varying the number of components from 1 to 19 
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in terms of variance captured. The objective of this method was to determine the smallest 

possible number of components that may be representative of our data, which is captured by 19 

channels, through the analysis of variances. This exploratory stage was crucial for determining 

the optimal complexity of our model, balancing between information retention and 

computational efficiency. The results are reported in Figure 3.4. These indicate that the first 5 

components captured a substantial portion of the variance within the data in Circular. Although 

additional components gradually increased the variance explained, the marginal gains were not 

significant enough to justify a higher model complexity, leading us to select 5 principal 

components that captured the majority of the variance (approximately 98%). This decision was 

grounded in the desire to maintain a parsimonious model that avoids overfitting while still 

capturing the essential dynamics of the EEG data. 

 Subsequently, we applied PCA to a refined subset of 19 EEG channels, again retaining 

only the first 5 components. This second phase was targeted at a more focused dataset, where 

the primary objective was to extract meaningful features that are most representative of the 

underlying neural processes. PCA determination was performed on the train segment of the 

data separated as train-test in the classification phase to avoid overfitting.  By applying the same 

dimensionality reduction approach, we ensured consistency in our data treatment, facilitating a 

coherent interpretation of the neural signatures across different subsets of channels. The 

reduction to five principal components in this smaller set further emphasized the robustness of 

these components in encapsulating key information across varied configurations of EEG 

channel arrays, thereby validating our analytical approach in the context of neurophysiological 

research. This methodology not only enhances the interpretability of the EEG data but also 

streamlines the analytical pipeline for subsequent cognitive and clinical investigations. 
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3.6 Classification 

The classification of BCI systems is a critical step that includes taking the elements derived 

from EEG signals and analyzing them to ascertain the user’s intentions. This process uses 

different machine learning and statistical algorithms to classify the characteristics into pre-

determined categories that correspond to specific commands or mental states. Linear 

discriminant analysis (LDA), support vector machines (SVM), neural networks (NN), and other 

deep learning models are some of the algorithms that are used in EEG data analysis due to their 

effectiveness in handling the complex and multidimensional nature of this kind of data. For BCI 

applications, classifier selection and calibration are critical to achieving optimal accuracy and 

reliability, which ultimately determines the performance of the system and the user comfort and 

happiness. Recent studies have focused on improving the classification technique through the 

implementation of adaptive algorithms that can accommodate user-specific variability to 

improve the usability and effectiveness of the BCI. These studies aimed to demonstrate the 

importance of the algorithm selection, feature compatibility, and system adaptability in 

optimizing the BCI performance. For example, studies by Lotte et al. [123] and Lantz et al. 

[137], have made significant contributions to logic-based algorithms, which shows the 

continuous improvements in BCI technology that aim to make the devices more adaptive and 

user-friendly. 

3.6.1 Linear Discriminant Analysis (LDA) 

This classification method is frequently used in BCI systems due to its simplicity, efficacy, and 

high computing performance. LDA is based on the basic concept which consists in finding a 

linear combination of features that separates two or more classes of objects or events. In the 

case of BCIs, LDA is used to separate various mental states of the user or the intentions of a 

user by projecting complex EEG signal features into a space where these classes are the easiest 
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distinguished. The rationale behind this is to maximize the ratio of between-class variance to 

within-class variance in a given data set in order to maximize the distinction between classes. 

The application of LDA in BCIs is made much more attractive due to its simplicity and strong 

performance in cases when the basic assumptions of normality and equality of covariance of 

the classes are relatively followed. LDA works well in this case study due to its capability of 

finding the linear boundary that maximizes the separation between target and non-target 

responses within the feature space. When the number of dimensions of the EEG data is very 

high, LDA components will project the data in such a way that the variance between classes 

will be maximized in comparison to the variance within each class as described in Equation 3.1.  

𝐽(𝑤) =
𝑤𝑡𝑠𝑏𝑤

𝑤𝑡𝑠𝑤𝑤
                                                            (3.1) 

The study of Krusienski et al. [138] has shown that using LDA combined with the right feature 

extraction algorithms enables an improved accuracy of the P300-based BCIs. This makes the 

method a reliable tool for transforming EEG data into accurate commands or selections. 

Additionally, the study made by Blankertz et al. [139] highlights the importance of 

preprocessing and feature extraction in increasing the performance of LDA classification. This 

shows the interdependence of these processes in maximizing the potential of P300-based BCI 

systems. The efficiency of this method regarding P300-based BCIs is great, especially when a 

strong preprocessing step enhances the signal-to-noise ratio of EEG signals.  

 

Figure 3-5 Linear combination of features that separates or characterizes two or more classes  
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 The leading classification method for P300-based BCI spellers is LDA [140]. In the 

preliminary binary classification test results of our study, LDA was partially better than SVM. 

The test method and results are described in detail in the following sections. Overall, as can be 

seen in Figure 3.5, it is divided into 2 groups (target/non-target). Since the few target stimuli 

caused difficulties in both LDA and other classification methods, additional methods 

(resampling) were tried to increase the classification accuracy without causing overfitting. 

3.6.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM), is a machinery learning classification technique that offers a 

reliable and efficient method to analyze EEG signals. SVM operation is primarily defined by 

the essential concept of choosing the best hyperplane that can efficiently separate the suitable 

data region, enclosed by distinct classes in the element space. This aspect makes SVM 

particularly appropriate for BCIs as a precise determination of mental stages or commands is 

crucial in most applications. Due to its multidimensionality, efficient results with little data and 

robustness to noise, SVM can be particularly useful in BCIs. SVM is facilitated with kernel 

function that transforms data to a higher dimension; thus, the data clues can be divided. SVMs 

can excellently maintain complexity due to these elements and can identify behaviors that bear 

dual rational connections.  

 Various studies have been undertaken to explore the methodology of SVM in BCIs, 

indicating suitable accomplishments in numerous paradigms, encompassing both MI and P300 

speller and SSVEP. SVMs have been used in Lotte et al.’s study [123] to classify MI and P300 

speller-based BCIs. Studies have shown that SVM has been effective in various BCI designs 

which are attributed to their potential to break overfitting block and get fair weights for 

distinctive categories.  Rakotomamonjy and Guigue [141] have also done a study to show SVM 

efficiency in an increase in classification for the P300 speller BCI. SVM has also been proven 

to tackle stacking belief and regularised backend uses in various features of our signals, 
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although few efforts have been accumulated around their use in EEG indicators. SVMs have be 

underscored with deep focus by Gerson et al [142] that one should always use SVMs with 

proper features extractions and preprocessors to get close to the determinants results. Schölkopf 

and Smola [143] have given a comprehensive review of SVM in machine learning. SVM's 

ability to accurately classify data, even with non-linear signals, and its flexibility to be used 

with different BCI types, signals and methods, has led to a significant increase in user 

preference.  

3.7 Performance Metrics 

A wide variety of performance criteria is used to measure the efficacy and efficiency of BCIs 

in the decoding and translation of brain signals into actions. Accuracy, information transfer rate, 

and latency are some crucial ones among them. Accuracy is pivotal for ensuring the possibility 

and efficiency of reliable communication between the system and the user. It is measured as 

the portion of correctly detected intentions or command attempts [27]. Information transfer rate, 

usually measured in bits per minute, is the combination of all such possibilities. In essence, ITR 

quantifies how much information a user can communicate to the device by the product of the 

user’s probability of transmitting information and the system’s speed and accuracy to recognize 

commands and intentions. Lower ITR means that users will be unable to communicate rapidly 

or efficiently [144]. The latency denotes the duration it takes the system to respond to the user’s 

action or intention. It is crucial for the real-time application because it has a vital impact on user 

satisfaction when there are time-sensitive tasks. The shorter the period, the better, as lengthy 

durations would irritate users and hinder their capacity to control the system [93]. 

 Additionally, the consideration of user-centered criteria, such as usability, comfort, and 

cognitive load is essential for guarantee the continuing acceptance and efficiency of BCI 

technology. Usability is the ease with which users may interact with the system and its level of 
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intuitiveness. Comfort is the physical and psychological benefits with which the user may wear 

or use the tool for extended periods of time. Cognitive load is the amount of mental effort 

needed by the operator to handle the BCI. Lower cognitive load is preferable to eliminate 

operator fatigue and ensure the engagement of BCI over the long term [145]. The 

aforementioned measures demonstrate the importance of developing BCIs that combine 

computational effectiveness with usability in order to ensure a seamless integration of the 

technology into users’ daily lives and routines. Thus, the current BCI performance measures 

research is implemented to enhance not only the technical criteria but also to create the user 

experience for the wider adoption of the technology. 

3.7.1 Confusion Matrix 

The confusion matrix is an essential measure of the performance of BCI systems. It gives a 

detailed summary of the classification accuracy by comparing the expected commands or 

intentions with the actual user intentions. In BCI, the matrix is highly utilized since it is essential 

in ensuring the system’s functioning capability, as it can robustly distinguish between different 

mental states or commands. The conceptual framework, which requires binary classification as 

in the Circular method, has four primary elements: true positives, true negatives, false positives 

and false negatives. According to Tharwat, [146] , true positives and true negatives indicate the 

number of correct recognized targets and non-targets, respectively. Additionally, false positives 

and false negatives are the errors that occur when actions are wrongly classified as intentions 

or unrealized commands. The confusion matrix also allows for the calculation of other metrics, 

such as precision, as the ratio of true positives over true positives plus false positives, recall, 

that is the ratio of true positive over true positives and false negatives, and the F1 score, which 

is the harmonic mean of precision and recall. The F1 score is particularly important as it 

provides a combined measure to assess the balance between precision and recall [147].  
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 While the basic elements of the confusion matrix are vital in understanding the model, 

the matrix can also help in identifying unique challenges of a BCI system such as the ability to 

differentiate between comparable cognitive cues or more subtle user intentions. Analysis of the 

matrix is beneficial to identify commands are more prone to misinterpretation, giving directions 

for further system refinement [148]. For instance, numerous false positive cases for a specific 

command may indicate the need for more robust feature extraction or band negativity for this 

class. However, the confusion matrix also provides a detailed summary of classification 

performance, making it essential for comparing different algorithms, feature sets, classifiers. 

Thus, these tools help in advancing BCI research by revealing areas of strength and 

opportunities [149].  

3.7.2 Mutual Information & Information Transfer Rate (ITR) 

The most commonly used measure to evaluate BCI systems is the ITR, which is a essential 

parameter that defines how effective it is to transmit information from one entity to another 

using BCI. Information Transfer Rate is the quantity of information transferred within a certain 

time frame. It is comprised of two main factors: the percentage of the intention displayed 

accurately in the reading of the BCI and the percentage of the intention demonstrated used as 

an order [27]. Among such a wide range of areas, there are situations where fast and accurate 

communication is required, the same assistive devices designed specifically for people with 

severe motor impairments. 

 The computation of the ITR factors several quantities, indicating the number of unique 

instructions the BCI can identify, the accuracy of command identification, and the amount of 

time the user requires producing a command signal including inevitable system delays [144].  

A BCI system with a higher ITR will be more efficient and able to communicate with a user 

more rapidly and accurately. Nevertheless, it is difficult to achieve a high ITR because of the 

tradeoffs involved in speed, accuracy, and number of instructions. For instance, increasing the 
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number of detectable instructions may decrease the overall precision or require extended signal 

generation times. As a result, the ITR is affected. Optimal ITR can be achieved by carefully 

balancing these factors to meet the unique requirements and skills of each user. 

 Beyond measuring the performance, the importance of the ITR also refers to designing 

a framework to advance and improve BCI technology. It is important to note that developers 

and researchers focus on enhancing the ITR to design interfaces that are more effective and 

easier to use. The end goal is better communication and control for BCI-reliant patients. Within 

the framework, recent research studies are devoted to developing new signal-processing 

algorithms, machine learning, and training the users. The purpose is to improve the accuracy 

and overall effectiveness of BCIs, and, consequently, ITR and usability [149].  

3.8 Experimental Protocols 

The P300 ERP refers to the alteration in amplitude that is observed within the time window of 

approximately 300ms to 700ms subsequent to the subject's attention being directed towards the 

target stimulus [150]. The phenomenon under consideration is noted to arise from a range of 

sensory responses, including but not limited to visual, tactile, and auditory stimuli [9], [79]. The 

endogenous component is generated through internal cognitive events [80]. 

 The Oddball paradigm is a frequently employed approach for studying the P300 

component. The operational mechanism of the paradigm is predicated upon the differentiation 

between stimuli directed at irregular intervals towards targets and non-targets. First and 

foremost, target stimuli are discerned from other stimuli within the Oddball paradigm. The 

stimuli exhibit periodicity, while the target stimuli within each period are presented randomly. 

 The circular method involves the sequential stimulation of flashing stimuli in 

accordance with specific instructions. In contrast to the traditional Oddball paradigm, the targets 

in this study are not presented in a random manner, but rather in a sequential order. Previous 
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research has indicated that when there is a lack of variability in the flashing targets, the P300 

amplitude does not manifest adequately [54], [55]. In the proposed methodology, the targets 

are presented in a sequential flashing manner, leading to a limited ability to elicit a significant 

P300 amplitude. This is primarily due to the predictable nature of the target presentation and 

the absence of any deliberate effort to track the frequency of flashes. In contrast to the repetitive 

tasks outlined in the study, it was found that cognitive tasks elicited a robust P300 signal in 

response to exogenous auditory, visual, and sensory stimuli. Increasing the level of attention 

within the protocol has the potential to induce a greater magnitude of changes within the system. 

By employing this approach, it becomes possible to adjust the temporal gap between the 

operational framework of the system and the stimuli. 

 Two distinct systems have been devised for the purpose of comparing the Donchin 

paradigm, a classical Oddball paradigm and the Circular paradigm employed in the present 

chapter. Two experiments were conducted within our system. The Circular and Donchin 

paradigms are two experimental designs used in cognitive research. The Circular paradigm 

involves the presentation of 36 circular stimuli, which include both alphabets and numbers 

ranging from 0 to 9. On the other hand, the Donchin paradigm is characterised by a matrix 

structure consisting of a 6 by 6 grid. The script employed in this context shares the same set of 

characters as the Circular script, yet it deviates from the circular form and instead adopts a 

square organisation of the stimuli. The circular sequential paradigm comprises stimuli arranged 

at a 10-degree angle along a hypothetical circle located at the centre of the screen. The system, 

comprised of grey stimuli against a black backdrop, elicits a colour change in active stimuli, 

rendering them either green or red. Nevertheless, the system can be categorised into two distinct 

groups based on the order in which the stimuli are presented: sequential and random. Our 

experiments were conducted using a sequential training approach. 
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   (a)      (b) 

Figure 3-6 Interface of the proposed method and classic method (a) Donchin’s matrix speller 

and (b) circular sequential speller. 

 As shown in Figure 3.6, the colour of the background is black and the letters begin as 

grey. The study developed by Salvaris et al. [151] for mouse control, which includes 8 

directions, is the basis of this design. In both paradigms, subjects engage in cognitive processes 

that involve directing their attention towards changes in colour in certain targets. In the Donchin 

protocol, a modification in targets is observed when the target stimulus transitions from a grey 

with RGB=(100,100,100) color to white pure white with RGB=(255,255,255). Conversely, in 

the Circular procedure, the target stimulus undergoes random alternations between green with 

RGB=(0,255,0) and red with RGB=(255,0,0) colours. In the Donchin protocol, the subjects are 

tasked with counting the number of target flashes. Conversely, in the Circular protocol, the 

subjects are required to identify the colour of the target flash and to remember the colour of the 

last flash. In the experiments, half of the participants first tested the Circular protocol followed 

by the Donchin protocol, while the other half tested the Donchin protocol first and then the 
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Circular protocol. Hence, the two protocols were counterbalance, effectively mitigating the 

potential negative impact of fatigue and attention on the assessment of performance. 

 The experimental procedure commences with an initial practise session, during which 

the participant familiarises themselves with the protocols and examines their functioning. The 

commencement of each session is characterised by the appearance of a dark screen, followed 

by the presentation of stimuli. During the course of practise sessions, it is seen that no targets 

are presented, and instead, the system merely exhibits flashing cycles. Following the 

demonstration session, the participant is presented with the task instructions displayed on the 

screen. Subsequently, a brief interval of 2 seconds is provided before the commencement of the 

initial protocol, consisting of 20 blocks. After the completion of each block, the protocol 

remains in a state of pause, awaiting the input from the subject regarding the number of times 

the target flashes in the case of Donchin's experiment, and the final colour of the target in the 

case of Circular's experiment. This input is expected to be provided by the subject using the 

mouse scroll wheel. This is a colour selection consisting of Red and Green. During the 

experimental sessions consisting of 20 randomly selected targets, it was possible to use all 36 

characters as targets. However, it is anticipated that this limitation will be addressed in future 

investigations. 

 The experimental design comprises a total of 20 blocks, with each block asking the user 

to focus on a distinct target character. The experiment initially starts with the demonstration 

stage. In the beginning, the experimental procedure is once more explained to the participant, 

followed by one simulation of the real repetitions of the experiment. Initially it flashes blue so 

that the subject recognises the target character and focuses on how many times it flashes or 

which colour it flashes according to the task. Examples of questions asked at the end of a block 

include "Colour of last target flash?" and "Target flash number?" The participant is instructed 

to direct their attention towards the target stimulus by inquiring about the number of flashes 
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and the final colour exhibited by the target stimulus. Enhanced P300 amplitudes can be 

achieved when the subject is alert and attentive to the experiment. Each block is comprised of 

a series of repetitions, with the number of repetitions falling within the range of 13 to 17. Each 

repetition signifies the occurrence of all characters flashing at least once. 

 In both spellers, the character participants were instructed to focus on during a segment 

of the experiment was highlighted in blue with RGB=(0,0,255) for two seconds prior to the the 

start of the flashing. The characters were initially selected in a pseudo-random order and applied 

in the same order in each experiment/participant. In the Circular method  (Y, 4, 6, E, D, H, 5, _, 

3, C, X, L, O, W, _, 9, H, Z, A, Q) and the Donchin method (Z, U, _, T, 9, W, K, 6, S, Z, J, 7, Y, 

M, E, B, B, I, 3, W) the characters are shown in order. Despite inherent randomness, it is seen 

that some characters are repeated. In this way, we had the opportunity to compare character-

based classification results and test whether the method works stably. If the same character 

shows very variable classification results, it can be concluded that the system is strongly 

influenced by the user's current mood. This indicates that the system is not stable and shows 

classification difficulties. As will be seen in the following sections, it is seen that the same 

characters in the Circular method obtain similar results on average.  
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Chapter 4  

 

4 Sequential Speller with a 3-Second Revolution 

In this chapter, the design and stimulus-presentation duration of the Donchin and Circular 

spellers are firstly explained. In one repetition of the flashing cycle, that in this chapter lasts 3 

seconds, Donchin’s speller highlights 12 stimuli (6 rows and 6 columns) and while the Circular 

speller highlights 36 stimuli/characters. The grand average ERP amplitudes of the target and 

nontarget stimuli produced by the protocols were compared. Following the discovery that the 

Circular method produced higher ERPs than Donchin’s method, a statistical comparison of the 

ERP mean values for target and non-target stimuli across the 19 channels was conducted 

separately. Initially, general information was obtained by presenting the subject AUC scores in 

a detailed table. Subsequently, they were analysed separately on a subject-based and character-

based basis. The overall accuracy of the subjects and the AUCs of the analysed characters were 

evaluated for their potential to be alterative to existing studies. In the classification phase, 

predict_proba in the sklearn.lda.LDA library was used to generate probability scores 

for each epoch separately. In each repetition, 12 proba scores were generated for Donchin and 

36 for Circular. We grouped the repetitions to reduce the noise effect and increase the 

classification performance. The factors contributing to the inferior performance of the Circular 

method compared to the Donchin method during the classification phase, despite the 

significantly bigger ERPs generated by the proposed method, were examined.   

4.1 Introduction 

The BCI system primarily serves as a communication conduit for individuals experiencing 

motor disabilities, including spinal cord injuries and amyotrophic lateral sclerosis (ALS), and 

challenges faced by the elderly. Additionally, its application extends beyond healthcare, 

encompassing multimedia devices, gaming systems, and military technologies [12]. 
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 Diverse stimuli can induce specific waveforms of evoked potentials, among which the 

P300 event-related potential stands out for its unique response to particular stimuli. 

Characterized as an evoked potential, the P300 is distinguished by its positive peak and its 

typical emergence around 300 milliseconds after stimulus presentation. This phenomenon was 

first documented by Sutton et al. [59]. The elicitation of the P300 event-related potential 

necessitates participants' focused attention on a series of randomly presented stimuli, where 

task-relevant stimuli are rare compared to the more frequent task-irrelevant ones. In our 

research, we employed non-invasive evoked EEG signals to develop a speller, leveraging the 

P300 potential for its operational mechanism. 

4.2 Methodology 

The Oddball paradigm is a widely utilized protocol in BCI technology for eliciting P300-based 

event-related potentials. However, this method faces challenges related to speed and 

performance efficiency, impacting its overall functionality. Initially, our research did not 

achieve the same level of accuracy and information transfer rates as the standard Oddball 

paradigm used in the Doncin speller. However, it did yield several enhancements. The 

improvement observed can primarily be attributed to the innovative geometric arrangement of 

the stimuli and the specific visual stimuli used within our experimental protocol. Unlike the 

Oddball paradigm, our methodology emphasizes a strategic sequence in stimulus presentation, 

aiming to optimize subject engagement and concentration levels. By adopting a systematic 

approach to the timing and sequence of stimuli, we enhance the ability for participants to discern 

the target stimulus amidst distractors, thereby augmenting the efficacy of P300 signal detection.  

 In the study conducted with the 8 participants, participants used both a Donchin speller 

and the new Circular speller. With the former one repetition was executed over the course of 

12 epochs, while in the latter one repetition was carried out over 36 epochs. In the experiment  
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Figure 4-1 Timeline of the experimental protocols used in this study. 

reported in this chapter, in the Circular speller all stimuli within one repetition were presented 

in a rapid succession within a time frame of 3 seconds. In this manner, it can be observed that 

the duration of each flash in the Circular paradigm (ISI=SOA=3/36 seconds=83.3ms) is 

comparatively shorter than the duration of each epoch in the Donchin paradigm (ISI = SOA = 

3/12seconds = 250ms). 

 Figure 4.1 shows the timeline of the whole cycle. Although the duration of the Circular 

stimuli is shorter, since it shows stimuli sequentially, it is easier for the subjects to detect the 

stimulus and the P300 amplitude produced is higher. Nevertheless, the system was primarily 

engineered with the objective of achieving the same cycle time in both speller. While the 

average number of repeat occurrences remained consistent, it was hypothesised that the new 

approach would exhibit greater efficacy when assessed using ITR-based measurement. 

 According to the findings presented in Figures 4.2, 4.3 and 4.4, a notable and largely 

statistically significant positive ERP in the parietal and occipital lobes of the brain can be 

observed in target epochs (which is not present in non-targets) which is most likely a P300 ERP. 

Initially, a total of 64 channels were chosen for the purpose of classification. However, later 

only 19 channels were retained as using 64 channels diminished generalisation and had a 

substantial computing burden. The observed ERPs in the parietal and occipital lobes of the brain 
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suggest that EEG channels and samples could be used directly as features for classification. 

However, there exist many approaches to feature extraction that attain improved outcomes 

while using a reduced number of channels/features. The unbalance in both datasets was 

balanced as described in Section 3.5.2 and the target/non-target data were equalised. Then, 5 

components were extracted from the 19 channel data using PCA as described in Section 3.5.1. 

For classification, scores were generated using predict_proba in the 

sklearn.lda.LDA library, and the highest values of these scores were used to select target 

characters.  

4.3 Results  

In this section, we analyse and compare the average ERPs for the 3-second Dochin and Circular 

protocols performed with 8 participants. Then, we interpret the subject/character AUC scores, 

and finally, the character classification results are presented and discussed.  

Figure 4.2 presents the ERP grand averages for target and non-target stimuli across channels 

Fz, Cz, and Pz for both Donchin’s and our Circular speller, in Experiments 3s. For improved 

visualisation of finer elements, a higher sampling rate of 128Hz was employed in the figure, as 

opposed to the 32Hz used for classification. 

 Figure 4.2 illustrates that within the Circular method, the target stimuli elicit a higher 

amplitude response in comparison to the non-target stimuli. This amplitude must be 

significantly different in order to discriminate between target stimuli and non-target stimuli. 

The Figure 4.2, showing the ERP fluctuations in the 1 second between the start and end of the 

epoch, shows that the ERPs produced by our proposed method for targets are significantly 

different from the average of the non-targets. The Donchin approach is characterised by the 

occurrence of the target stimulus within a brief time frame in an indeterminate time span from 

a previous target. This means that the row and the column of the target stimulus can flash  
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Figure 4-2 Circular and Donchin grand average ERPs  

consecutively or with very little temporal delay, which hinders the generation of a distinct P300 

signal in response to the target stimulus, resulting in less favourable classification outcomes. 

As can be seen in Figure 4.2, in the Donchin method, the P300 ERP is deformed by the usual 

ripples at the inter-stimulus presentation frequency in the 1000ms epochs due to the succession 

of target stimuli, possibly influencing the classification rate. 

 Figures 4.3 and 4.4 present ERP waveforms recorded from 19 EEG channels: central 

(Cz, CPz, Pz, POz, Oz), parietal-occipital (PO3, PO7, PO4, PO8), occipital (O1, O2) and 

parietal (P1, P3, P5, P7, P2, P4, P6, P8). This representation of ERP waveforms allows a 

comprehensive analysis of spatial (electrode-specific) and temporal (time-dependent) neural 

dynamics in different brain regions. The graph of each channel, for targets (solid line) and non-

targets (dashed line), shows the electrical activity of the brain in response to these two stimulus 

types. The x-axis represents time in up to 1200ms after stimulus onset, while the y-axis shows 

ERP amplitude in microvolts (μV), capturing the positive and negative deviations that 

characterise the ERP. Notable ERP components such as the P300 (a positive deflection typically 

occurring between 300 ms and 600 ms post-stimulus) are evident in target responses for several 

channels, particularly in parietal and central regions (e.g. Pz, CPz). Larger ERP amplitudes for 

target stimuli in the time windows highlighted by grey shaded regions are statistically  
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Figure 4-3 ERP grand-averages of the targets (blue lines) and non-targets (red lines) for 19 

EEG channels for the Donchin speller in Experiment 3 seconds. Shaded areas in each plot 

represent statistically significant differences. 



73 

 

   

 

 

Figure 4-4 ERP grand-averages of the targets (blue lines) and non-targets (red lines) for 19 

EEG channels for the Circular speller in Experiment 3 seconds. Shaded areas in each plot 

represent statistically significant differences.  

significant (Wilcoxon ranked test, pvalue<0.05) difference between target and non-target 

stimuli. In the Donchin method (Figure 4.3), analysing channels in occipital regions (e.g. O1, 

O2) showed more modest ERP differences reflecting visual/cognitive recognition. Parietal-

occipital channels (e.g. PO3, PO4) and parietal channels (e.g. P3, P4) showed marked 
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differences between conditions in terms of their involvement in task-related cognitive 

processes. 

 As shown in Figure 4.4, for the Circular method, central and parietal channels (e.g. Cz, 

CPz, Pz) present strong positive deflections for target stimuli compared to non-targets, 

especially within grey highlighted windows, highlighting their involvement in decision-making 

and attentional processes. Parietal-occipital channels (e.g. PO3, PO4) show moderate amplitude 

responses to the cognitive task, while occipital channels (e.g. O1, O2) exhibit smaller amplitude 

differences in cognitive processing. Parietal channels (e.g. P3, P4) showed strong amplitude 

changes, further supporting their involvement in higher-order cognitive functions such as target 

detection and categorisation. 

 We utilised the Area Under the Curve (AUC) score to assess the performance of our 

target/non-target classifiers.  The AUC is the area beneath the Receiver Operating 

Characteristic (ROC) curve. The ROC curve is the result of plotting the true positive rate vs the 

false positive rate obtained by a classifier for all possible values of the classifier’s threshold. 

Therefore, the accuracy of identifying targets and non-targets is assessed by AUC. The binary 

classification accuracy is insufficient and provides little information due to the imbalance 

between the number of non-target stimuli and the number of target stimuli. Examining the AUC 

parameter and ROC graph yields more significant outcomes. Figure 4.5 demonstrates that the 

Circular technique (with a 3s revolution time) is no more effective in differentiating between 

target and non-target than the Matrix speller. A long TTI most likely resulted in a more 

pronounced P300 signal, but there weren’t AUC differences between the two techniques. The 

Wilcoxon Signed Rank Test was utilised to statistically analyse the measurement results, 

yielding a p-value greater than 0.05. 
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                                    (a) 

 

                                     (b) 

Figure 4-5 Receiver operating characteristic (ROC) curves - 3 seconds experiment  (a) 

Circular’s speller ROC curve, (b) Donchin’s speller ROC curve 

 At this point, there exists an imbalance between the target and non-target stimuli in the 

Circular method, with a ratio of 1 to 35. The issue of imbalanced data was addressed by 

duplicating the target stimuli in both the Circular technique and the Donchin approach. In both 

experimental trials, a subset of fatigued individuals exhibited diminished levels of concentration 

during the course of the experiment, thus leading to categorization outcomes that fell well below 

the average. Tables 4.1 and 4.2 show the AUC scores of each subject for the 20 blocks 

(characters) spelled with each method. According to the average AUCs (both AUC=0.82) 

presented in Figures 4.6 and 4.7, all subjects except for subject 8 in the Circular method and all 

subjects except for subject 7 in the Donchin method achieved acceptable results. The observed 

poor results in subject 8 (Circular) and subject 7 (Donchin) were found to be related to the 

lower/inadequate level of concentration. Considering that these outliers were only a tiny 

fraction of the participants and that fatigue was not noted among the other participants, it can 

be concluded that these outliers do not indicate any problems with the proposed methodology. 
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Table 4.1 Circular Subject AUC scores for each character - 3 seconds experiment 

 

Table 4.2 Donchin Subject AUC scores for each character - 3 seconds experiment 

 

 The heatmap in Table 4.1 shows the AUC scores of eight subjects across 20 

blocks/characters in the Circular Blocks methodology. Higher AUC values, shown in red, 
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indicate better model performance, while lower values, shown in blue, indicate poorer 

performance. The results reflect a generally robust performance, although there is some 

variability between subjects, with some subjects such as subject 6 achieving consistently high 

AUC scores (above 0.9 for most blocks) as opposed to subjects such as subject 8 achieving low 

AUC scores. In the heatmap in Table 4.2, subjects such as subject 3 and 6 exhibit consistently 

high AUC scores in most blocks, indicating strong and reliable model performance. Subjects 2 

and 4 also show occasional low scores in certain blocks, indicating variability in performance 

depending on block characteristics. This variability between subjects and blocks is explored in 

more detail in the following steps in order to take into account individual differences and block-

specific characteristics in model optimisation. The overall distribution suggests that although 

the methodology is effective for many subjects, further improvements may be required to 

increase generalisability and consistency of performance. 

 Upon analysing the AUC scores of the subjects in Figure 4.6, it was observed that 

subject 8 exhibited random performance in the Circular technique. In Figure 4.7, subject 7 

showed low success in the Donchin method. During the post-experiment discussions, it was 

concluded that the acquired results were attributed to the subjects' mental and physical fatigue 

rather than the instructions or procedures of the experiment. The outliers in the Donchin method 

are in a larger spectrum compared to the Circular method, which shows that the Circular method 

gives better results.  

 In the Circular approach (Figure 4.6), subject 6 achieved the highest median AUC 0.99 

and very narrow interquartile range (IQR), indicating very consistent performance with no 

outliers. Subjects 3 and 5 also performed very well with median AUCs of around 0.94 and 

0.93, respectively, but the IQRs is a little wider. This suggests a moderate degree of volatility. 

Subject 8 results are the worst — median AUC around 0.55, and IQR between 0.48 and 0.62,  
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Figure 4-6 Circular Subject mean AUC score boxplot - 3 seconds experiment 

 

Figure 4-7  Donchin Subject mean AUC score boxplot  - 3 seconds experiment 

with one outlier below 0.4. Subject 7 does is the worst for the Donchin’s speller (Figure 4.7) 

with a median around 0.7, and give an outlier. Also with Donchin, subject 6 excels, with a 

median of nearly 0.93, and a narrow IQR indicating a good overall performance. Subject 3 

performs comparably well with a median around 0.92, but with a little more spread. This shows 

that Sub8 in the Circular method and Sub7 in the Donchin method achieve a poor result with 

lower averages and higher volatility. There are also outliers, a few of which are around 0.6. 

Subject 6s in both methodologies show great performance. 
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Figure 4-8 Circular - Mean AUC scores boxplot of each character - 3 seconds experiment 

 

Figure 4-9 Donchin -  Mean AUC scores boxplot of each character - 3 seconds experiment 

 The present study additionally examines the character-by-character AUCs for the two 

spelling methodologies. Figures 4.8 and 4.9 illustrate the variability of such AUC scores. As 

depicted in the picture, the Circular technique demonstrates a higher accuracy rate and more 

stability in the character based AUCs. The Circular protocol effectiveness in recognising target 

and non-target stimuli is believed to be minimally influenced by variations in character shape 

and position. However, the wide spectrum of outliers negatively affects the final character-
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based LDA/group classification results. The high AUC results did not work as well as desired 

in character selection due to outliers. 

 Finally, various methods were used for character classification and the results are listed 

in Table 4.3. The EEG data of 19 channels were applied to PCA after the filtering and artefact 

removal processes mentioned in section 3. Five components were identified through the PCA 

method, capturing approximately 98% of the variance. In each repetition we had 1 to 35 

target/non-target epochs for circular and 1 to 5 target/non-target epochs for Donchin, and a 

dataset consisting of 5 components of each epoch. To overcome this imbalance, the Resampling 

method described in section 3.5.2 was applied and the target stimuli were duplicated until they 

were equal to the non-targets. For each epoch, probability scores were generated using ‘proba’ 

from the sklearn.lda.LDA library. Character classification was made by applying the 

following formula: 

                                      𝑐𝑏,𝑖 =  𝑎𝑟𝑔 max
𝑐∈{1,…,36}

(𝑃𝑟𝑜𝑏𝐴𝑏,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑐))                                    (4.1) 

 We assume there are 20 blocks in total. Each block be labelled by b∈{1,2,…,20}. Each 

block b contains i repetitions. This number can vary between 13 and 17. Each repetition consists 

of 36 characters, labelled c∈{1,2,…,36}.  

 In the Table 4.3, ‘Repetitions’ indicates how many repetitions of trials were grouped 

before classification, i.e. for ‘Repetition 3’ the classification is the average of three stimulus 

presentations. It shows the success of character categorization and the ITR in the current 

experiment based on the number of repeats and highest prediction scores. The results indicate 

that the accuracy rate tends to rise with an increase in the number of repeats, as expected. There 

is a notable rise observed when shifting from 1 to 2 repetitions. A linear improvement in the 

results is observed and an acceptable success rate is reached after 6 repetitions. According to 

the average accuracy and ITR average, the Donchin method is generally performed better. 
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Table 4.3 Accuracy and ITR as a function of the number of trials averaged before making a 

selection for the circular sequential speller and Donchin’s speller - 3 seconds experiment 

  Repetitions 

1 2 3 4 5 6 7 8 9 10 11 12 13 

C
ir

c
u

la
r 

Accuracy (%) 0.30 0.43 0.54 0.59 0.50 0.70 0.71 0.71 0.74 0.77 0.79 0.81 0.82 

ITR (bits/min) 13.96 12.60 12.10 10.45 6.42 9.17 8.04 7.03 6.69 6.42 6.09 5.82 5.49 

D
o

n
c
h

in
 

Accuracy (%) 0.35 0.51 0.66 0.73 0.83 0.84 0.87 0.95 0.93 0.97 0.97 0.97 0.97 

ITR 18.04 16.57 16.67 14.72 14.56 12.38 11.27 11.57 9.88 9.64 8.77 8.04 7.42 

 In the Circular paradigm, accuracy starts at about 30% with 1 repetition and increases 

to 82% with 13 repetitions, while the corresponding ITR starts at about 13.96 bits/minute and 

decreases to 5.49 bits/minute by the 13th repetition. In contrast, the Donchin paradigm starts 

with 35% accuracy with 1 repetition, climbs to 97% by repetition 10, but its ITR also drops 

from 18.04 bit/min at 1 repetition to roughly 7.42 bit/min by repetition 13. In particular, 

Donchin tends to provide higher accuracy and also shows a higher initial ITR compared to 

Circular (e.g. 16.57-16.67 bits/min around 2-3 repetitions), but both paradigms show a trend 

where more repetitions provide more accuracy but ITR decreases. 

4.4 Discussion 

In this chapter, we designed an interface to the existing random flashing matrix as an alternative 

to a P300-based BCI paradigm with a repetition duration of 3 seconds and each repetition 

consisting of sequential flashes of 36 characters. Previous research has shown that sequential 

systems can also be used with spellers, although limited to 8 directions. The results of this study 

provide a comparative analysis of Circular and Donchin spellers, focusing on ERP grand 

averages, classification performance and cognitive processing dynamics. Based on these data, 

the performance of the Circular method, which is a P300-based BCI system, is analysed. 
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4.4.1 ERP Averages and Cognitive Tasks 

ERP grand averages showed different patterns between the Circular and Donchin methods. In 

the circular speller, we observe that target stimuli elicit higher amplitude responses than non-

target stimuli in areas associated with decision-making and attentional processes, such as the 

central (Cz) and parietal (Pz) areas. However, the Donchin speller exhibited fluctuations in the 

P300 signal due to overlapping target flashes and fluctuations between target stimuli. 

 As can be seen in Figures 4.2 and 4.4, an expected/sequential target produces a more 

distinct P300 amplitude for the user than a random/unexpected target. When we analyse the 

ERP patterns, we see that the circular speller is able to produce a more stable and distinct P300 

signal, which is essential for effective character classification. The importance of ERPs is also 

seen in previous studies emphasising the importance of temporal interval in stimulus 

presentation. However, the 3-second repetition time in the Circular method may have caused 

fatigue, which may have negatively affected the potential of the participants' ability to sustain 

their attention. Therefore, shorter repetition times should be tested. 

4.4.2 AUC and Classification Analysis 

AUCs were used to measure the classification success of subjects across methods. It can be 

seen that both methods achieved an average AUC of 0.82. The Circular method seems to have 

less variability and fewer outliers. Subject 8 in the Circular speller and subject 7 in the Donchin 

speller had lower AUCs. This is thought to be due to mental and physical fatigue during the 

experiment. This also indicates the need for different strategies to mitigate fatigue-related 

performance decrements.  

 When we analysed the heatmaps and graphs, subjects such as subject 6 generally 

achieved high AUCs (median ~0.99) and narrow IQRs, demonstrating the robustness of the 

Circular method. When we analysed the Donchin method, it showed more variability due to 
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wider IQRs and more prominent outliers, especially for some subjects such as subject 7. These 

results also point to the potential for the Circular speller to perform more reliably across 

different users. 

 The accuracy and ITR results in Table 4.3, which indicate the effect of repetitions, show 

that both methods benefit from increasing repetitions. Between 1 and 2 repetitions a significant 

increase in accuracy is observed. The Donchin method generally achieved higher accuracy and 

ITR, particularly with more repetitions. However, the Circular method showed comparable 

performance after six repetitions. Thus, it demonstrated the potential to achieve similar results 

with an optimised protocol. 

4.4.3 Repetitions Impact on Accuracy and ITR 

The analysis of accuracy and ITR as a function of repetitions shows that both methods benefit 

from increasing repetitions. Between 1 and 2 repetitions a significant increase in accuracy is 

observed. The Donchin method generally achieved higher accuracy and ITR, especially with 

more repetitions. However, the Circular method showed comparable performance after six 

repetitions. Thus demonstrating the potential to achieve similar results with a more optimised 

protocol. 

 The balance between accuracy and repetition time is a critical consideration for practical 

BCI applications as it affects ITR. The ITR performance of the Circular method with more 

repetitions may limit its real-time usability. However, its stability and robustness make it a 

promising alternative for applications requiring high reliability. 
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4.4.4 Fatigue and Individual Performance 

Especially for subjects with outliers such as subject 8 (Circular) and subject 7 (Donchin), 

fatigue is an important factor affecting performance.Verbal feedback after the experiment 

indicates that reduced concentration due to mental and physical fatigue resulted in lower AUC 

and character classification. This result highlights the importance of designing experiments and 

protocols (e.g. shorter repetition time) that minimise cognitive load and fatigue. Stimulus 

presentation parameters such as TTI, ISI and repetition time can be increased or decreased 

depending on the individual performance of the subjects. 

4.4.5 BCI Design and Limitations 

Although the circular speller has shown several advantages, its long repetition time (3 seconds) 

may not be ideal for all candidates. Shorter repetition times or adaptive timing techniques could 

be investigated to increase its usability in real-time applications.  In addition, the study had a 

relatively small sample size (8 participants) and some participants did not perform optimally, 

which negatively affected the results. This limits the generalisability of the results. Future 

research should include larger and more diverse groups of participants to confirm the results. 

 The study also highlighted the need for advanced pre-processing techniques to handle 

outliers and variability in ERP signals. Techniques such as adaptive filtering, machine learning-

based artefact removal and individualised calibration can further improve classification 

performance. 

 In contrast to matrix studies, our speller was able to produce high P300 amplitudes by 

asking what colour the stimulus was rather than how many times it flashed. We argue that the 

high amplitude of the target stimulus is not primarily due to the stimulus colour/question 

procedure, but mainly due to the procedure of exposure of the sequential system to the target 

by the subject.  The Circular speller produces statistically distinct and stable P300 signals, 
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making it a promising alternative to traditional matrix-based approaches. The participant and 

character AUCs and the ERPs produced indicate that it can be used for applications requiring 

high stability, such as assistive communication devices for individuals with severe motor 

disorders. However, we need to reorganise the balance between experiment duration and 

participant concentration level. To achieve more user-friendly designs by improving user 

experience and performance, outliers should also be minimised. 

4.5 Conclusion 

This study presented  a first comprehensive comparison of Circular and Donchin spellers, 

highlighting the strengths and limitations of each approach. The Circular method showed 

greater stability and robustness, while the Donchin method achieved higher accuracy and ITR 

with increasing repetitions. Since the amplitude and AUC scores obtained by our proposed 

method showed that it can produce more successful results in a short repetition, we repeated 

our experiment with a 2-second repetition and report results in the next chapter. The findings 

emphasise the importance of balancing accuracy, repetition time and user fatigue in BCI design. 

Future research should focus on optimising these trade-offs and addressing individual 

variability to advance the development of practical and reliable BCIs. 
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Chapter 5 

5  Sequential Speller with 2 seconds revolution  

Farwell and Donchin’s original BCI speller utilised visual stimulus presentation and the oddball 

effect, eliciting a P300 ERP response from the brain to a rare stimulus of interest. Most BCI 

spellers continue to rely on this principle and the original design proposed by Donchin. Several 

issues impact oddball spellers, which have been gradually addressed since the work of Farwell 

and Donchin, resulting in significant yet incremental performance improvements.  

 This study builds on previous research regarding a BCI for mouse cursor control, 

utilising a periodic stimulation protocol. We begin to explore whether a periodic presentation 

pattern could serve as a viable alternative to oddball-based BCI spellers. This study applies the 

concept of periodic stimulation to a BCI speller, wherein 36 letters are arranged in a circular 

format and highlighted in a sequential manner. The performance is compared to that of Farewell 

and Donchin’s speller at two different stimulation rates.  

 Following a similar order as in Chapter 4, first the ERPs are presented, then the subject- 

and character-based AUCs are analysed in tables and figures, and finally the character 

classification results are discussed. The results indicate that our speller generates notably large 

and distinct P300s, as well as comparably clear ERPs, consistent with the hypotheses proposed 

by Farwell and Donchin. At the higher stimulation rate, this results in a markedly improved 

classification accuracy and an approximately doubled information transfer rate compared to 

Donchin's speller. 
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5.1 Introduction 

Target stimuli can be elicied t among the characters because they produce more detectable P300 

signals than non-targets. Since the seminal work by Farwell and Donchin [45] (more on this 

below) based on visual Event Related Potentials (ERPs), a huge variety of BCI spellers have 

been introduced over the last 30+ years, including many based on SSVEPs, different perceptual 

modalities (auditory and tactile), and hybrid systems (e.g., relying on ERPs and SSVEPs, or on 

multimodality, e.g., visual and auditory) [152], [153], [154], [155], [156], [157], [158], [159]. 

Here we focus on BCI spellers based on ERPs. Most ERP based spellers rely on P300 elicited 

via the oddball paradigm [59], [60], [61] where one has to identify a rare and unpredictable 

target stimulus among non-target stimuli. The first speller of this kind was proposed in  [45] 

and is known as the matrix speller [1]. There the letters of the alphabet were organiser in a 

matrix, the rows and columns of which are flashed/highlighted one at a time but in random 

order, and participants need to focus on the letter they want to spell and mentally count the 

number of times the row or column containing such letter are flashed. Target stimuli can be 

elicited among the characters because they produce more detectable P300 signals than non-

targets.  

 Naturally over the years a number of variations and improvements of it have been 

proposed, one issue with it being the variable amplitude associated with P300s elicited by the 

protocol [160] and perceptual errors such as repetition blindness, attentional blink and near 

targets [77], [78]. Some examples of variations include flashing pseudorandom patterns of 

letters instead of rows and columns [85], the use of familiar faces [86], [87], the use of different 

changes to letters other than flashing [88] the use of colour [90], etc.Naturally over the years a 

number of variations and improvements of it have been proposed, one issue with it being the 

variable amplitude associated with P300s elicited by the protocol [160] and perceptual errors 

such as repetition blindness, attentional blink and near targets  [77], [78]. Some examples of 
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variations include flashing pseudorandom patterns of letters instead of rows and columns [85], 

the use of familiar faces [86], [87], the use of different changes to letters other than flashing 

[88], the use of colour [90], etc. 

 In [45] it was argued that their matrix speller would present an advantage over a pure 

odd-ball speller which would just present (or highlight) the letters of the alphabet one at a time 

in random order: it required participants to wait on average a shorter period (a smaller number 

of non-target stimuli) between flashes of the character a participant wanted to spell (the target 

stimulus), while with a pure odd-ball speller participants would have on average to wait until 

all other characters in the alphabet (non-target stimuli) have flashed. However, later research 

indicated that this is actually a viable approach. 

 The reason is that in most spellers the best P300 recognition accuracy would be obtained 

by temporally spacing the stimuli in such a way that their ERPs minimally overlap. However, 

this would lead to poor Information Transfer Rates (ITRs) [161], [162] because each selection 

would take a significant amount of time. To counter this, often spellers use shorter Inter-

Stimulus Intervals (ISIs) and compensate for the reduced accuracy by averaging ERPs over 

multiple repetitions of stimulus presentation. In general, there is a tradeoff between 

deformations/amplitude reductions of the P300 (resulting in lower accuracy) and selection time, 

often the optimal ITR being associated with very short ISIs and a few repetitions of stimulus 

presentations. With such a strategy even a pure odd-ball speller might do well. 

 For instance, in [113] Guan et al. presented a matrix speller (with the usual 6 × 6 

organisation) where characters flashed one at the time with an ISI of 60ms. The stimuli 

sequences were random but avoided neibouring characters flashing immediately after one 

another. Based on reported results and the presentation time of 2160ms for the 36 characters, 

we can compute ITRs, the best being 49.3 bits/min (obtained with 1 repetition), which is 

significantly higher than the 12 bits/min obtained with the original matrix speller [45]. 
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However, a later comparison between this same paradigm and a region-based speller obtained 

significantly lowers ITRs for the former, the best being 26.1 bits/min (obtained with 3 

repetitions) [163]. 

 Guan et al. [113] approach was modified and tested in a recent study [164], where a 4× 

10 matrix of characters was used. Here, however, characters where flashed/highlighted for 

100ms, but flashing a new one every 30ms. So, there were up to than four stimuli on the screen 

at any given time. In addition, this protocol was compared with one where stereo visual stimuli 

and so characters were perceived both as flashing and moving cubes in 3–D space. In either 

protocol, all characters were highlighted within 30×40 = 1200ms. While accuracies and ITRs 

where graphically reported in [164], there appears to be an inconsistency between such data. 

Based our best estimates of accuracies and the presentation time of 1200ms, ITRs should be 

approximately 69 bits/min for Guan’s protocol and 91 bits/min for the proposed 3–D cubes 

version. While these are slightly lower than the reported ones, they are still quite impressive. 

5.2 Methodology 

The Oddball method is one of the widely used brain computer interface protocols for P300-

based ERPs. However, speed and performance issues occur that adversely affects the operation 

of this method. Our method has been observed to have a greater accuracy and information 

transfer rate as an alternative to the existing Oddball method. The key factor that contributes to 

this performance improvement is the task sequence and visual stimuli of the protocol. The key 

point of the method is that, unlike the Oddball method, the stimulus sequence is in a certain 

order and the subjects can be better focused. In this way, the stimuli are shown in a certain order 

and at same intervals, and the subject can more easily distinguish the target between the stimuli. 

Method allows us to create 36 sets of codes since we can define multiple targets. 
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 Unlike Chapter 4, we reduced the Repetition time from 3 seconds to 2 seconds. 

Therefore, the epoch time for the Circular method was 55.56ms (2000/36) and the epoch time 

for the Donchin method was 166.67ms (2000/12). Similar methods were used for data 

acquisition, signal processing and classification.  

5.3 Results 

In this section, the results of 2-second Dochin and Circular experiments conducted with 10 

participants are presented and discussed.  

 The Circular speller (Figur 5.1) shows an obvious P300 ERP for targets at both 

presentation speeds, which correlates with the identification and silent naming of the target 

character's colour, as outlined in the Circular speller protocol. However, is not preceded by the 

typical early, pre-attentive ERPs observed in Donchin’s speller grand average, but rather by a 

significant negative component. This is likely the concluding phase of a Contingent Negative 

Variation (CNV) [165], [166]  as suggested by Farwell and Donchin [45], or potentially a 

Readiness Potential (RP) [167], [168]. Both are characterised as slow, negative-going potentials 

that arise in anticipation of an event or action. Studies have identified CNVs in contexts 

involving fixed foreperiods prior to stimulus presentation and in purely cognitive tasks [166], 

[169]. The readiness potential (RP) is typically linked to the preparation of motor actions [170], 

[171], [172]; however, recent findings indicate its association with the initiation of voluntary 

cognitive tasks [173]. 
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Figure 5-1 Circular and Donchin grand average ERPs - 2 seconds experiment 

 Figures 5.2 and 5.3 present the grand averages of the ERPs generated by the Donchin 

and Circular spellers in Experiment 2s, across all channels analysed, captured over 2s epochs 

to facilitate the examination of CNVs. In the plots, shaded regions indicate statistically 

significant differences, as determined by the Wilcoxon Signed Rank Test, with p-values below 

0.05. The Wilcoxon test was applied to each sample within an epoch, comparing the voltages 

at that specific sample in the individual averages for targets against the individual averages for 

non-targets collected from the 10 participants in the experiment. A sampling rate of 32Hz was 

employed, consistent with that utilised for feature extraction and classification.  

 Figure 5.2 shows that, in Donchin’s speller, statistically significant differences between 

target and non-target epochs primarily occur within the time interval of 300ms to 550ms 

following stimulus onset, aligning with the P300 time window for the relevant electrodes. 

Figure 5.3 shows that, in contrast to Donchin’s speller, the Circular speller exhibits substantial 

differences in ERP amplitudes between target and non-target stimuli. These differences are 

statistically significant for a considerable portion of the initial 1000 ms of the epochs, indicating 

their presence in the majority of individual average ERPs, and are evident across most channels.  

In all 19 channels examined, statistically significant differences in the CNV preceding the P300 

and a 500ms preparation period at the end of the epoch were observed. This indicates that, for 
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the Circular speller, anticipatory potentials are present and assist in the discrimination of targets 

from non-targets, as predicted by Farwell and Donchin.  

 

Figure 5-2 ERP grand-averages of the targets (blue lines) and non-targets (red lines) for 19 

EEG channels for the Donchin speller in Experiment 2s. Shaded areas in each plot represent 

statistically significant differences. 
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Figure 5-3  ERP grand-averages of the targets (blue lines) and non-targets (red lines) for 19 

EEG channels for the Circular speller in Experiment 2s. Shaded areas in each plot represent 

statistically significant differences.  

 As shown in Figure 5.2  when the amplitude of the P300 occurs, a significant change is 

observed in parietal and occipital lobes of the brain. Firstly, all 64 channels were selected for 

classification. However, this method was not used because of its lower accuracy and high 

computational cost. The change in the parietal and occipital lobes of the brain is a sign that the 

channels in this region are suitable for feature selection. However, there are several methods to 
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achieve better results using fewer features. PCA is a statistical approach that is used to reduce 

data dimensionality while maintaining as much information as feasible. It entails converting a 

set of variables into a new set of uncorrelated variables known as principal components, which 

explain the most variance in the data. Initially, PCA was applied using all 64 channels and the 

feature set consisting of 5 components was extracted. Although this method produced 

satisfactory results, PCA was applied with 19 channels consisting of the more active parietal 

and occipital lobes of the brain, as we mentioned above, for better classification and the number 

of components was reduced to 5. 

 However, since SVM classification was observed to reach lower accuracy rates than 

LDA classification, LDA was chosen as the classification technique in the next stage. LDA 

produces better results for binary classification with low computational cost. Table 5.1 and 5.2 

shows that the Circular method performs much better binary classification in LDA 

classification. While the P300 signal typically occurs between 300 and 600 milliseconds, more 

favourable outcomes are achieved when the complete epoch is incorporated in Table 5.1.  

Nevertheless, because this is not an accurate and adequate approach for character classification, 

further research into classification methods is required. 

 Area Under the Curve (AUC) score was used to measure the accuracy of our classifier 

based on the target. AUC is the ratio of the true-positive number to the false-positive number. 

In other words, it represents the area under the Receiver Operating Characteristic (ROC) curve. 

It produces more relevant results against imbalanced classes because it considers both the true 

positive rate and the false positive rate at the same time. Binary classification isn’t an adequate 

measure, as the number of non-target characters is 35 times the number of target stimuli. 

Therefore, looking at the AUC parameter and the ROC graph produces more meaningful 

results. In Figure 5.4, it is seen that the Circular method is more successful in  
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Figure 5-4 Receiver operating characteristic (ROC) curves and AUCs - 2 seconds experiment  

(a) Circular’s speller ROC curve, (b) Donchin’s speller ROC curve 

target/nontarget separation. These results were obtained by obtaining the more pronounced 

P300 signal via the longer TTI as mentioned above. 

 There  is a Target/Non-target stimulus imbalance at this stage, such as 1 to 35 in the 

Circular approach. Target stimuli (minority class) were duplicated and the number of target-

non-target stimuli equalized to adjust the imbalanced data set. The imbalanced data problem 

was solved by resampling/duplicating the target stimuli in both the Circular method and the 

Donchin method. In both experiments, some tired participants did not focus fully on the 

experiment, resulting in below-average classification results. The results shown in Table 5.2 

occurred because participant 8 did not achieve a sufficient level of focus in both experiments. 

Since these outliers did not occur in a large number of subjects and the participant was observed 

to be tired, they do not indicate a problem with our proposed method. 

 

 

 

(a) 

 

(b) 
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Table 5.1 Circular Subject AUC scores for each character - 2 seconds experiment 

 

Table 5.2 Donchin Subject AUC scores for each character - 2 seconds experiment 
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Figure 5-5 Circular - Mean AUC scores boxplot of each character - 2 seconds experiment 

 

Figure 5-6 Donchin - Mean AUC scores boxplot of each character - 2 seconds experiment 

 The Circular method, the character classification of the circular effect is also 

investigated. Figure 5.5 shows whether the location and order of the characters cause problems 

in classification. As can be seen in the figure, in the Circular method, the characters are 

classified with a more stable and higher accuracy rate. In Donchin method, since it is not known 

when and how often the stimulus will flash, it is seen that it causes fluctuations in the character 

classification results. It is observed that the proposed method can successfully distinguish the 

target/non-target stimulus without being affected by the shape, position and order of the 

characters. 
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Table 5.3 Accuracy and ITR as a function of the number of trials averaged before making a 

selection for the Circular sequential speller and Donchin’s speller. 

  Repetitions 

1 2 3 4 5 6 7 8 9 10 11 12 13 

C
ir

cu
la

r 

Accuracy (%) 44.56 58.44 68.02 72.46 79.11 81.25 84.74 84.14 85.50 87.50 86.00 90.50 89.50 

ITR (bits/min) 40.05 30.88 26.26 21.81 20.15 17.56 16.16 13.97 12.76 11.96 10.55 10.57 9.57 

D
o

n
ch

i

n
 

Accuracy (%) 31.36 47.32 57.14 64.31 69.61 76.75 78.68 82.00 83.33 85.50 86.00 85.00 86.50 

ITR 22.56 22.05 19.86 17.99 16.35 15.98 14.27 13.38 12.22 11.49 10.55 9.48 9.02 

 

 Table 5.3 shows the success of character classification according to the number of 

repetition and maximum estimation scores of the present study. For example, Rep4, the target 

stimulus location was determined by averaging the indices indicated by the highest proba-LDA 

score obtained from 4 repetitions. The results obtained indicate that as the number of repetitions 

in the repetition increases, the accuracy rate in general increases. It is observed that a significant 

increase occurred when passing from 1 to 2 repetitions. It is seen that there is a linear increase 

in the results and a satisfactory success rate is achieved after 6 repetitions. The average ITR 

results, which are used to measure the data transmission rate, show that the Circular method is 

more successful, although it has a negative impact on the mean of Subject 8. 

 The data transfer rate was calculated using the equation below: 

                        ITR =  , 

where N is the number of classes, P is the accuracy of the classifier and T is the selection time 

in seconds. 

 Although each repetition fluctuates greatly within itself, the overall results show an 

increasing success rate. Although there were outliers in each iteration that would adversely 

affect the classification, on average, the Circular method performed more successful 

classification at all stages. 
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 According to these results, the classification success and speed of data transmission of 

the developed system is at a competitive level. It has proven to provide 45% classification 

accuracy in one repetition and successful communication with 40.05 bits/min ITR. 

 The test results indicate that the Circular method produces better results, it should be 

determined whether it is statistically different with the fire Donchin method. Wilcoxon Signed 

Rank Test was used to measure this difference statistically and the p-value of the measurement 

result is below 0.05. 

5.4 Discussion 

This study tests the hypothesis proposed by Farwell and Donchin [45] that periodic highlighting 

of stimuli in a BCI speller may elicit slow preparatory potentials, such as CNVs, alongside P300 

ERPs, potentially enhancing classification performance. We didn't strictly follow to Farewell 

and Donchin’s recommendation to sequentially flash the rows and columns of a matrix speller 

due to the challenges associated with this paradigm, as discussed in previous chapters, which 

subsequent research on RSVP and SD spelling methods aimed to resolve. 

 We didn't strictly follow to Farewell and Donchin’s recommendation to sequentially 

flash the rows and columns of a matrix speller due to the challenges associated with this 

paradigm, as discussed in Chapter 3, which subsequent research on RSVP and SD spelling 

methods aimed to resolve. We implemented the circular shape of the letters, drawing from 

previous research on a sequential BCI mouse [151] and containing a few similarities to the LSC 

speller [112], which featured four neighbouring letters as opposed to the two in our design. We 

presented the letters sequentially, contrasting with [112], where letters were displayed 

randomly, with the only periodicity being the alternation of flashes between the left and right 

sides of the screen.  

 Circular method also utilised colour, particularly in the modification of the letters, which 

distinguishes it from [45]. In contrast to earlier speller protocols that utilised colour solely to 
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enhance stimulus salience (e.g., [90]) while the cognitive task involved counting the highlights 

of the target, our novel approach integrates a mental task that necessitates attention to the colour 

of the highlighted target characters, which were randomly presented in green or red. This may 

appear to be a minor distinction; however, in [151], when stimulation was periodic, the 

cognitive task of counting target flashes did not produce any P300 ERPs, whereas the task of 

mentally naming the colour of targets resulted in the largest P300s. 

 In the colour naming task, Circular speeller successfully elicited significant CNVs and 

P300s when targets were present, confirming our initial predictions in [45]. The P300s elicited 

by the Circular speller were found to be larger and more distinct compared to those elicited by 

Donchin’s speller. This indicates that the high TTI employed in Circular paradigm, along with 

the mental task, sufficiently compensates for the lack of randomness and surprise in the timing 

of the flashes. The unexpected finding was that accuracies and ITRs for the Circular speller 

were higher at the faster presentation rate compared to the slower rate, contradicting 

conventional wisdom regarding P300. 

 A notable degree of smoothness is evident in the grand average ERPs of the Circular 

speller for Experiment 3s. This observation indicates that, across various trials or participants, 

the mental task may not have consistently occurred at the same interval following target 

presentations. This inconsistency could lead to variability in the ERPs of participants or a 

temporal shifting in individual averages. This results in smoother and lower-resolution grand 

averages, as discussed in [174]. The effect is significantly less pronounced in the Circular 

speller’s grand average for Experiment 2s, indicating that jitter or temporal shifts are less 

evident. 

 The observations align with the identified presence of CNVs or RPs in the Circular 

speller, consistent with Farwell and Donchin’s prediction and the existing literature on temporal 

preparedness and the foreperiod effect. These are examined in experiments where a warning 
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stimulus precedes a target stimulus that necessitates a response [175], [176], [177], [178]. The 

warning stimulus improves participant preparation, leading to reduced reaction times and 

increased accuracy. When the temporal difference between warning and target stimuli (the 

foreperiod) remains constant, an increase in the foreperiod correlates with longer reaction times 

to the target stimulus and decreased accuracy. Participants find it easier to estimate elapsed time 

for shorter foreperiods compared to longer ones. The shorter foreperiod results in reduced 

variance in the allocation of attentional resources in preparation for the task. 

 In the Circular speller and its BCI mouse counterpart, the regular interval between 

consecutive target flashes allows the previous target flash to function as a warning stimulus for 

the subsequent target, with the temporal distance between them serving as a constant foreperiod. 

Consequently, as discussed, we should expect increased variability in the timing of mental 

tasks, similar to response times observed in preparedness studies, as well as in the associated 

ERPs, particularly with extended foreperiods, such as in Experiment 3s. This could be an 

explanation for the enhanced smoothing observed in the grand averages for Experiment 3s 

compared to those in Experiment 2s. 

 The Circular speller ERPs for channels Fz, Cz, and Pz are taller, wider, and significantly 

delayed with regard to pointer control, but they have comparably clear and distinct P300s for 

targets when compared to those we described for the circular pointer control protocol in [151]. 

More precisely, the P300 spans roughly 450 ms in pointer control against 650 ms in the speller, 

(2) the peak amplitude is 3–4µV for pointer control versus 4–8µV for the speller, and (3) the 

P300 peaks at approximately 400 ms for pointer control versus approximately 600 ms for the 

speller. Additionally, we observe the same "flat-line" grand averages for non-targets, with only 

a slight ripple brought on by the stimuli's flashing, which in the pointer control ERPs is at 8Hz 

because a 125ms ISI was used. 
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 A significant difference is that in the target ERPs for pointer control, the standard early 

exogenous components are present, whereas the CNV or RP are absent. This is likely 

attributable to the pointer control BCI having a TTI of 800ms, whereas the speller utilised TTIs 

of 2s and 3s. Upon completion of the mental task related to target presentation, associated by 

the corresponding ERPs, there was not enough time for the EEG to return to a resting state, thus 

precluding the observation of any significant CNV, which is characterised as a slow cortical 

potential. 

 As discussed in Section 5.3, the Circular speller produces larger ERPs for targets 

compared to Donchin’s speller; however, at the slower presentation rate, both spellers exhibit 

the same AUC. This result appears counterintuitive; however, it can be explained as follows: 

(1) As discussed in Sections 3.1.2 and 4.2, the Circular speller expects timing jitter in the 

execution of the mental task linked to a target flash, leading to corresponding jitter in the ERPs; 

(2) consequently, a classifier must be capable of identifying jittered versions of the P300 and 

CNV ERPs associated with targets; however, (3) this presents challenges, as epochs near 

targets, particularly those related to non-targets immediately before and after a target, will 

contain slightly shifted versions of these ERPs (the shift being 83.3 ms, or less than 3 samples). 

This makes non-targets almost indistinguishable from jittered versions of the targets. 

 In Experiment 2, smaller P300 amplitudes were observed for both Donchin’s speller 

and the Circular speller, which corresponds with the expected results based on the reduced TTI. 

In Donchin's speller, this results in a reduced ROC and a lower AUC compared to Experiment 

3s. Conversely, the Circular speller exhibits the opposite effect. The observed phenomenon can 

be attributed to the foreperiod effect previously discussed. In Experiment 2s, the shorter 

foreperiod leads to reduced mental task jitter and, subsequently, decreased ERP jitter when 

compared to Experiment 3s. This reduction facilitates the classifier's ability to distinguish 

between targets and non-targets more effectively. 
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 The results for the Circular speller appear to rise more slowly than Donchin's when we 

closely examine the accuracy data shown in Table 5.3. This phenomenon is attributed to the 

mental task jitter in the Circular speller previously discussed. Although reduced at an increased 

presentation rate, it remains evident. Averaging scores across multiple repetitions can mitigate 

EEG noise; however, it does not eliminate the jitter linked to the mental task. Consequently, 

the Circular speller's accuracy increases at a slower pace than Donchin's, and it is probable that 

it will saturate below 100% as the number of repetitions increases. Both the rearrangement of 

stimuli and the further reduction of the TTI may address the issue, as discussed in the 

subsequent section. 

5.5 Conclusions  

This study presents a novel EEG speller that, through a periodic stimulation paradigm, induces 

both P300 event-related potentials and slow cortical potentials. Farwell and Donchin initially 

proposed the potential viability of such a speller in their important 1988 study [45]. 

Nonetheless, no published studies seem to have performed and evaluated this concept, as the 

majority of research has concentrated on incremental modifications of the original row-column 

oddball speller. 

 This study analyses whether a periodic presentation procedure could serve as a feasible 

alternative to oddball-based BCI spellers. We chose a circular arrangement of letters, a single-

display approach for their highlighting, and we highlighted them in colour, following successful 

experience with the development of a BCI mouse [151]. Stimuli were presented in succession 

with brief inter-stimulus intervals of 83 ms and 55 ms. We believe that a significant factor in 

the effectiveness of the strategy was our modification of the mental work from typical target-

flash counting to the silent naming of the colours of target flashes. 
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 The results indicated that our sequential speller generates not only surprisingly 

substantial and distinct P300s but also comparably clear CNVs, as proposed by Farwell and 

Donchin. At the slower stimulation rate, these didn't produce substantial improvements in 

accuracy and information transfer rate compared to Donchin's speller. At an ISI of 55 ms, the 

Circular speller exhibited better classification accuracy and an ITR that was 2 to 3 times greater 

than that of both the Donchin spellers and the slower Circular speller. 

 Significantly more work is required in future study. Initially, we should to evaluate a 

variant of the Donchin speller in which rows and columns are periodically highlighted in colour, 

requiring users to mentally identify the colour of the targets. Based on our findings with the 

Circular speller, this approach is expected to provide better results compared to the original 

Farwell and Donchin speller assessed in this study. Secondly, considering the performance 

improvement noted in the 2s experiment compared to the 3s experiment, together with prior 

research on a BCI mouse where all stimuli were highlighted within 800ms, it is possible that 

faster presentation durations could further enhance the performance of the Circular speller. 

Thirdly, to tackle the accuracy-saturation issue referenced at the conclusion of the preceding 

section, drawing from the methodology in [112], it may be feasible to spatially arrange the 

stimuli (e.g., in two concentric circles) to optimise the distance between successive flashes (e.g., 

highlighting the characters in the inner circle asynchronously with those in the outer circle), 

thereby reducing near target responses. Fourthly, we can use extended epochs that would 

encompass a greater portion of the CNV, potentially enhancing classification efficacy. Fifthly, 

we ought to investigate more advanced feature extraction and categorisation techniques. 

Ultimately, following additional offline improvement efforts to enhance the speller, we should 

start online testing. 
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Chapter 6  

6 Achievements, Conclusions and Future Work 

6.1 Achievements 

In early 1969, Donchin [31]  proposed the first single-trail analysis of  event-related potentials 

based on the difference between the ERP and the average evoked potential. Signal processing 

and classification methods in P300-based BCI methods have advanced since the 1970s, 

alongside the development of different interface designs. It was thought that this method could 

be applied on the Speller with the P300-based Mouse developed by Alvaris et al. [151]. 

 The investigation focused on the design of the 36 characters/stimuli in order to generate 

a distinct P300 signal in the subject while minimising interference with other stimuli due to 

crowding and adjacency of stimuli (which affects most other spellers). As an alternative to 

randomization, a sequential stimulus system was devised to avoid confusion between stimuli. 

The choice of shape and colour was decided on the basis of examples in the literature. Initial 

results, although open to improvement, indicate the possibility of an alternative to the existing 

RC speller paradigm. 

 Despite this being a completely new and untested paradigm, , the Circular method 

outperformed Donchin method, providing a 45% improvement in single-trial character 

classification accuracy (31% vs 45% task accuracy), and 74% improvement in ITR (from 23 vs 

40 bits/minute) . Both paradigms converged to over 90% character-classification accuracy as 

the number of repetitions increased.   

 While the 3-seconds experiment shows that Donchin performs better than Circular, the 

2-seconds experiment shows that, unlike Donchin’s speller,  our proposed method benefits from 

a faster stimulus presentation and thus can produce higher ITRs. We believe that the good 
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results of the Circular method are partly attributable to the speller allowing subjects to reduce 

their attention levels immediately following the mental task, as they know when the next mental 

task is due. While with the longer (3s) stimulus duration this “rest period” increases and so in 

principle the participants would fatigue less. However, longer waiting times between target 

stimulus presentation reduce the ability of participants to accurately predict the time of the next 

mental task, including jitter and reducing classification accuracy. Also, of course, with longer 

inter-target presentation times, there is an associated reduction in ITR. 

 During the signal acquisition process, data were collected by using Biosemi 64 channel 

wired EEG device. Although this system produces high quality data, it causes discomfort in 

users in long-term use because it restricts mobility. This and fatigue/focusing problems are 

important issues that directly affect classification success in BCI systems. Although wireless 

dry EEG devices provide an alternative for mobility, it is still difficult to obtain good 

quality/low noise data. Invasive techniques offer both mobility and high-quality data, but, their 

limited adoption is due to the necessity of a surgical procedure. 

 EEG data were collected with a 2048Hz sampling frequency and 64 channels. Although 

this sampling frequently and the use of all channels provide good data for detailed research, 

they increase the computational cost considerably. Therefore, we had to downsample our data 

to the smallest sampling rate that still ensured the relevant ERPs were still represented well. 

We found that a sampling rate of 32Hz was sufficient. Subsequently, we carefully selected 19 

channels, specifically the occipital and parietal lobes, fromthe initial 64 channels of EEG data, 

following the guidance provided in the literature.  In addition to reducing computational costs, 

minimising the influence of non-relevant brain areas with P300 signals helped us inprove 

classification performance. Still with the aim of attaining optimal performance, while 

minimising data usage, we applied the technique of PCA, finding that our data can be 
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appropriately represented by 5 components. All this resulted in reducing  the input features 

from 642,048=131,072 to 325=160  features per second. 

 There is always  a significant imbalance between target and non-target stimuli in the 

data gathered from BCI spellers, and with Circular in particular. Accurately classifying targets 

in a system with 1 target stimulus among 36 stimuli is highly challenging. Without 

modification, standard classification techniques either resulted in low accuracy or overfitting. 

In order to train our system, we had two options: either to reduce the number of non-target 

stimuli or to increase the number of target stimuli by resampling and to equalise them with non-

target stimuli. Due to the limited number of trials, we decided to increase the number of target 

stimulus epochs through resampling, as the option of reducing non-target stimuli would reduce 

system performance. 

6.2 Future Work 

The study in this thesis provides an alternative to the approach of randomly flashing stimuli in 

BCI paradigms with its corresponding issues, such as adjacency, crowding and fatigue. The 

positive results obtained in this thesis have been discussed previously. In this section, based on 

the lessons learnt and the weaknesses identified in the thesis, the work that needs to be done in 

the future is indicated. 

 The online experiment phase was unable to proceed due to Covid restrictions and 

financing limitations. Given that BCI systems are especially designed for individuals with 

motor-neuron diseases and are meant to be used in daily activities, in the future it is imperative 

to conduct online experiments with the Circular speller. Firstly, the experiments should be 

conducted online using a similar participant group to the one used in the thesis (university 

students), and feedback should be collected. Any necessary modifications or improvements 

should be implemented based on these first online studies. Following these improvements, the 
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next stage should be to conduct experiments specifically including motor-neuron patients, who 

are the primary target users. The results of these online studies will allow for a more accurate 

evaluation of the cognitive processes accuracy rate and the test results of individuals and groups 

with varying physical abilities. 

 During the experiment, the subject was left alone in the room to make the subject feel 

more comfortable and there was no direct communication.  Although the desired goal (feeling 

of comfort) was generally achieved with this experimental environment, some subjects did not 

show sufficient concentration because they were tired (they participated in the experiment after 

working hours). Since this was not recognised and intervened during the experiment, it caused 

some subjects to produce unusually bad results. Throughout future experiments, we may need 

monitor the subjects for any potential issues, lapses in focus, need for rest, or more requests.  

 Currently, there is a continuous development of artificial intelligence, classification 

algorithms, and novel methods. In this thesis, we were able to test a limited number of signal 

processing, feature selection/extraction and classification methods. Methods that are currently 

available but not tested in our thesis and newly developed methods should be studied in future 

research to determine if they produce better results. 

 Upon analysing Chapters 4 and 5 collectively, it was noted that the shorter stimulus time 

produced better results. It is possible that even lower stimulus times, such as 1 second, might 

result in further improved classification results and higher ITRs. Of course, it is also possible 

that the optimum time is in between 2 and 3 seconds. Finally, it is not unlikely that the optimal 

time varies person by person. Therefore, future research should experiments using both shorter 

and longer stimulus durationsboth at the level of groups and person-by-person. 

 

https://www.seslisozluk.net/therefore-nedir-ne-demek/
https://www.seslisozluk.net/therefore-nedir-ne-demek/
https://www.seslisozluk.net/therefore-nedir-ne-demek/
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 Hybrid character selection/classification methods should be tested in the future to 

increase the success rate of classification. For instance, the process of spelling can be executed 

more efficiently combining the Circular design with the T9 approach. Other combinations could 

also be fruitful.  

 In our proposed method, the stimuli were arranged in a circular pattern. To increase the 

distance between the stimuli, they could also be arranged in a square pattern. Also different 

geometric shapes could be tried as stimulus layout (e.g. rectangle, hexagon, star, zigzag,.. etc.).  

The stimuli progress sequentially from A to Z, and then from 0 to 9. This order can also be 

arranged so that the index number increases by 2, first the odd-numbered indexes, then the 

even-numbered indexes. Thus, it can be determined whether the P300 signal is easier to 

discriminate. 
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Appendix A 

1. Experiment Consent Form 
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2.  Sequential Speller Ethical Approval Form (First Page) 
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3. Information sheet given to the participants explaining the experimental details 
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B. Subjects PCA component Variances – 3 second experiment 

  

  

  

  

 


