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A B S T R A C T 

We consider a social choice setting in which agents and alternatives are represented by points in a metric space, and the cost of an agent for an 
alternative is the distance between the corresponding points in the space. The goal is to choose a single alternative to (approximately) minimize the 
social cost (cost of all agents) or the maximum cost of any agent, when only limited information about the preferences of the agents is given. Previous 
work has shown that the best possible distortion one can hope to achieve is 3 when access to the ordinal preferences of the agents is given, even 
when the distances between alternatives in the metric space are known. We improve upon this bound of 3 by designing deterministic mechanisms 
that exploit a bit of cardinal information. We show that it is possible to achieve distortion 1 +

√
2 by using the ordinal preferences of the agents, 

the distances between alternatives, and a threshold approval set per agent that contains all alternatives that are at distance from the agent within 
an appropriately chosen factor of the minimum distance of the agents from any alternative. We show that this bound is the best possible for any 
deterministic mechanism in general metric spaces, and also provide improved bounds for the fundamental case of a line metric.

1. Introduction

Social choice theory is concerned with aggregating the heterogeneous preferences of individuals over a set of outcomes into a single 
decision [17]. Besides its many applications in traditional domains, such as political elections or voting for policy issues, social choice 
theory has also been at the epicenter of areas such as multi-agent systems [29], recommendation systems [37], search engines [26], and 
crowdsourcing applications [48]. Aggregation methods inspired from social choice theory have also been used in relation to machine 
learning, such as for regression and estimation tasks [18,24,25,41], as well as virtual democracy [40,50,51].

A central theme underpinning many of these applications is the interplay between the amount of available information and the 
efficiency of the implemented decisions [5,16,46,56,57]. Indeed, it is often the case that access to the preferences of the participants 
(or agents) is restricted due to lack of enough statistical data, or due to computational or cognitive limitations in the elicitation process. 
This leads to the natural question of whether we can design aggregation rules (or mechanisms) that achieve high efficiency even when 
presented with informational restrictions.

This is the main question studied in the literature of distortion [12,53], which measures the deterioration of an aggregate social 
objective due to limited information about the preferences of the agents. In its original setup (e.g., see [16]), limited information is 
interpreted as having access only to the ordinal preference rankings over the possible outcomes, instead of a complete cardinal utility

structure that fully captures the intensity of the preferences. Over the years, the notion of distortion has been refined to capture 
different kinds of informational limitations, including restricted ordinal information [39,42], communication complexity [46,47], 
and query complexity [3,5].
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Table 1
An overview of our distortion bounds for deterministic mechanisms that use different types 
of information. ORD is used to refer to the ordinal preferences of the agents, DIST is used 
the distances between alternatives, and TAS is used for 𝛼-threshold approval sets.

TAS ∧ ORD ∧ DIST TAS ∧ ORD TAS ∧ DIST TAS

Social cost
General [2,1 +

√
2] [1 +

√
2,3] 1 +

√
2 Θ(𝑛)

Line 2
√
2 − 1 2

√
2 − 1 2

Max cost
General 1 +

√
2 [1 +

√
2,3] 3

Line 1 +
√
2

The literature on metric distortion considers scenarios where the agents and the outcomes exist in a (possibly high-dimensional) 
metric space, and the costs (rather than utilities) are given by distances that satisfy the triangle inequality. The economic interpre-

tation of these distances is typically in terms of the proximity for political or ideological issues along different axes (e.g., liberal to 
conservative, or libertarian to authoritarian). The metric distortion of social choice mechanisms, firstly studied in the works of An-

shelevich et al. [11] and Anshelevich and Postl [6], is one of the most well-studied settings in the context of this literature, with many 
variants of the main setting being considered in recent years (see Section 3 of the survey of Anshelevich et al. [12] for an overview). 
Since its inception in 2015 (the conference version of [11]), the “holy grail” of this literature was a mechanism with a metric distor-

tion of 3 for the social cost objective (i.e., the sum of costs of all agents), which would match the corresponding lower bound shown by 
Anshelevich et al. [11]. The upper bound was finally established by Gkatzelis et al. [38] via the Plurality Matching mechanism, 
and then later also by Kizilkaya and Kempe [43] via the much simpler Plurality Veto mechanism; see also [44,52]. For the other 
most natural objective, that of minimizing the maximum cost of any agent, the best possible bound can also easily be seen to be 3; 
this bound can be achieved by the aforementioned mechanisms, and many other simpler ones (see Section 4).

Crucially, these tight bounds of 3 are achieved by mechanisms without access to any information of a cardinal nature, i.e., they 
work by using only the ordinal preference rankings of the agents. It can also be observed (e.g., see [10]) that 3 is still the best bound 
one can hope for even if one also assumes access to the distances between the outcomes in the metric space, a natural assumption 
when, for example, the outcomes correspond to alternative locations where a public facility can be built or to alternative opinions 
(across multiple dimensions) expressed by election candidates. At the same time, a growing recent literature advocates to take the 
natural next step, and study the distortion when a small amount of cardinal information about the preferences is also available, which, 
in many cases, is reasonable to elicit [2–5,14,15]. This motivates the following question:

Is it possible to beat the barrier of 3 on the metric distortion if we also have access to limited information of a cardinal nature?

1.1. Our contribution

We consider a setting in which a set 𝑁 of agents and a set 𝐴 of alternatives are positioned on a metric space, and the preferences 
of the agents are captured by the distances between their positions and that of the different alternatives. We are interested in the 
distortion of deterministic mechanisms in terms of the social cost and the maximum cost objectives, i.e., the ratio of the cost of the 
alternative chosen by the mechanism over the smallest possible cost over all alternatives, taken over all possible instances. Note that 
with full cardinal information, achieving an optimal distortion of 1 is trivial.

We answer the main question posed above in the affirmative, by assuming access to the ordinal preferences, the distances between 
the alternatives in the metric space, and some additional limited cardinal information about the costs of the agents. In particular, for 
each agent 𝑖 ∈𝑁 , we have access to an 𝛼-threshold approval set (𝛼-TAS) 𝐴𝑖, which contains all the alternatives for which the agent 
has cost at most a factor 𝛼 times the cost for her1 most-preferred alternative, with 𝛼 ≥ 1 being a value that can in general be chosen 
by the mechanism designer. Such threshold approval information has been used before in the distortion literature for other problems 
(see the related work discussion below for more details) and can be thought of as asking the agents to partition the alternatives into 
“buckets” of different importance (that is determined by their distance to them relative to the minimum distance over all alternatives). 
For example, information of this type is implicitly elicited in conference bidding systems and in other systems for rating hotels or 
restaurants.

For general metric spaces, we design mechanisms that achieve a distortion of 1+
√
2 in terms of the social cost and the maximum 

cost objectives, thus beating the aforementioned barrier of 3. We complement these results with lower bounds on the distortion that 
any deterministic mechanism can achieve when using this amount of information. For the fundamental special case of a line metric, 
we provide refined tight bounds on the distortion for both objectives, showing an even larger separation from the bound of 3 that 
holds in the absence of any cardinal information and even when the metric is a line. More generally, we fine-tune our analysis to 
the presence/absence of all three types of information (i.e., only 𝛼-TAS, 𝛼-TAS + ordinal preferences, 𝛼-TAS + known alternative 
distances, or 𝛼-TAS + ordinal preferences + known alternative distances) and show that, in most cases, the best possible distortion 
bounds can be obtained even when only using two types of information. Our results are summarized in Table 1.

1 For clarity, we will use female pronouns for agents and male pronouns for alternatives whenever necessary.
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1.2. Related work and discussion

The distortion literature is rather extensive, focusing primarily on the utilitarian normalized setting (e.g., see [14–16,19,21,23, 
27,32,34,46,47]) or the metric setting that we consider in this paper (e.g., see [1,2,6–11,13,20,22,30,31,33,35,36,38,43,49,55]). For 
more details, we refer the reader to the recent survey of Anshelevich et al. [12]. Below we discuss the works that are mostly relevant 
to the setting that we study here.

The term “approval threshold” (in fact, “approval threshold vote”) was introduced in the conference version of the paper of Benade 
et al. [14] was used in the context of participatory budgeting to refer to an elicitation device which returns a set of alternatives that 
an agent values higher than a given threshold; it was later also used by Bhaskar et al. [15] for truthful multiwinner voting, and by 
Latifian and Voudouris [45] for one-sided matching. Amanatidis et al. [3] introduced a setting where limited cardinal information 
is elicited via a set of value or comparison queries; an agent is asked to provide her value for a given alternative, or indicate whether 
she prefers one alternative over another by more than a given factor. An approval threshold in their setting can be constructed by a 
single value query (for the agent’s most-preferred alternative), and then a number of comparison queries that is logarithmic in the 
number of alternatives.

The 𝛼-TAS that we consider are closely related to the comparison query model of Amanatidis et al. [3], in that they do not encode 
information about any absolute value for the cost of the agents, but rather only information that is relative to their cost for their 
most-preferred alternatives. In this sense, these sets are relative, and can be viewed as the outcomes of a single relative threshold 
query, or, equivalently, the outcome of logarithmically-many comparison queries. From a cognitive standpoint, this is an even more 
conceivable elicitation device since the agents are only asked to perform (cardinal) comparisons rather than to come up with absolute 
cost numbers. Such comparisons are motivated by and rooted in the ideas of the Von Neumann-Morgenstern utility theory [54]; see 
also [3].

A common characteristic of all aforementioned works is that they do not consider the distortion in the metric setting. Abramowitz 
et al. [2] studied the metric distortion of mechanisms that use limited cardinal information, namely information about whether the 
ratio between the costs of an agent for any two candidates is larger or smaller than a chosen threshold 𝜏 . Their elicitation method is 
different from ours, and requires information about the relative costs for all pairs of alternatives. In contrast, our 𝛼-TAS only require 
aggregate information about the set 𝐴𝑖 of alternatives. The two settings coincide only in the case where there are just 2 alternatives 
overall, which allows us to obtain a lower bound of 2

√
2 − 1 ≈ 1.83 for the social cost for the line metric from their work, for which 

we also show a matching upper bound.

2. Preliminaries

We consider a single-winner social choice setting with a set 𝑁 of 𝑛 agents and a set 𝐴 of 𝑚 alternatives. Agents and alternatives 
are represented by points in a metric space. For any 𝑥, 𝑦 ∈𝑁 ∪ 𝐴, let 𝑑(𝑥, 𝑦) denote the distance between the points representing 
𝑥 and 𝑦. The distances satisfy the standard conditions for metric spaces, namely that 𝑑(𝑥, 𝑦) = 𝑑(𝑦,𝑥), 𝑑(𝑥, 𝑦) = 0 if 𝑥 = 𝑦, and 
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦); the last condition is called the triangle inequality. We will use the tuple 𝐼 = (𝑁,𝐴,𝑑) to denote an instance

of our setting, and will use  to denote the set of all instances. When the instance is clear from context in our proofs, we will simplify 
our notation by omitting it.

2.1. Input information

A (deterministic) mechanism 𝑀 takes as input some information related to the distances between agents and alternatives, and 
outputs a single alternative as the winner. We will consider combinations of the following three types of information:

• ORD: The ordinal preferences
(
≻𝑖
)
𝑖∈𝑁 of the agents which are induced by the distances, where ≻𝑖 is a complete ordering over the 

elements of 𝐴, and 𝑥 ≻𝑖 𝑦 implies that 𝑑(𝑖, 𝑥) ≤ 𝑑(𝑖, 𝑦) for any 𝑖 ∈𝑁 and 𝑥, 𝑦 ∈𝐴. 
• DIST: The distances 𝑑(𝑥, 𝑦) between any pair of alternatives 𝑥, 𝑦 ∈𝐴. 
• TAS: A set of 𝛼-threshold approval sets (𝛼-TAS) (𝐴𝑖)𝑖∈𝑁 such that 𝑑(𝑖, 𝑥) ≤ 𝛼 ⋅ 𝑑(𝑖, 𝑜𝑖) for any 𝑥 ∈ 𝐴𝑖, where 𝛼 ≥ 1 and 𝑜𝑖 is the 

most-preferred alternative of agent 𝑖 (i.e., 𝑜𝑖 ≻𝑖 𝑦 for any 𝑦∈𝐴). We will say that agent 𝑖 approves alternative 𝑥 in case 𝑥 ∈𝐴𝑖. 

Clearly, all types of information can be inferred from an instance 𝐼 . We will use the term Inf(𝐼) to denote the information that is 
available to a mechanism for instance 𝐼 , which can be any combination of ORD, DIST and TAS. We will use the logical AND (∧) to 
indicate the types of information that a mechanism has access to.

As we already explained in the Introduction, the bulk of the metric distortion literature considers mechanisms that have access to 
ORD, which results in a best-possible distortion of 3 [11,38,43] (see below for the formal definition). For mechanisms with access to 
ORD ∧ DIST, the best possible distortion is still 3 [10]. Our main results are for the case of having access to all types of information 
(ORD ∧ DIST ∧ TAS), but we also provide results for ORD ∧ TAS and DIST ∧ TAS independently, as well as for TAS in isolation.

2.2. Objectives and distortion

We consider two well-known minimization objectives, the social cost (SC) and the maximum cost (MC). Given an instance 𝐼 , the 
social cost of an alternative 𝑥 is
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Mechanism 1: 𝛼-Minisum-TAS-Distance.

Input: Distances between alternatives, 𝛼-TAS; 
Output: Winner 𝑤; 
𝑤 ∈ argmin𝑥∈𝐴

{∑
𝑖∈𝑁 min𝑗∈𝐴𝑖 𝑑(𝑗, 𝑥)

}
; 

SC(𝑥|𝐼) = ∑
𝑖∈𝑁

𝑑(𝑖, 𝑥),

and the maximum cost of 𝑥 is

MC(𝑥|𝐼) = max
𝑖∈𝑁

𝑑(𝑖, 𝑥).

Given an objective F ∈ {SC,MC}, the distortion of a mechanism 𝑀 for F is defined as

sup 
𝐼∈

F(𝑀(Inf(𝐼))|𝐼)
min𝑗∈𝐴 F(𝑗|𝐼) ,

where 𝑀(Inf(𝐼)) denotes the alternative chosen by the mechanism when given as input the information Inf(𝐼) for instance 𝐼 . Clearly, 
the distortion is at least 1 for any mechanism, and our goal is to determine the best possible distortion when given combinations of 
Section 2.1.

3. Social cost

In this section, we show bounds on the distortion for the social cost objective for mechanisms that have access to ORD∧DIST∧TAS. 
Our main result is a mechanism, coined (1+

√
2)-Minisum-TAS-Distance, which achieves a distortion of 1+

√
2 ≈ 2.42, thus breaking 

the barrier of 3, which is the best possible without access to the 𝛼-TAS. In fact, this mechanism does not require access to the ordinal 
preferences of the agents, it only uses DIST ∧ TAS. We complement this result with a lower bound of 2 on the distortion of any 
deterministic mechanism with access to ORD ∧DIST ∧ TAS.

For mechanisms that use ORD ∧ TAS and DIST ∧ TAS, we provide stronger lower bounds of 1 +
√
2; this establishes that (1 +√

2)-Minisum-TAS-Distance is the best possible among mechanisms with access to DIST∧ TAS. We also prove that the distortion of 
any mechanism with access to TAS is bound to be bad, namely Θ(𝑛). For the special case of the line metric, we provide more refined 
tight bounds depending on the amount of information available in the input.

3.1. Results for general metric spaces

We start by showing an upper bound of 1+
√
2 for general metric spaces using a mechanism to which we refer as 𝛼-Minisum-TAS-

Distance. This mechanism is quite intuitive and does not require any information about the ordinal preferences. The mechanism 
chooses as the winner an alternative that minimizes the sum of distances from the 𝛼-TAS of the agents, where the distance between 
an alternative 𝑥 and a set 𝐴𝑖 is defined as the distance of 𝑥 from its closest alternative in 𝐴𝑖. See Mechanism 1 for a description using 
pseudocode.

Theorem 3.1. In general metric spaces, the distortion of 𝛼-Minisum-TAS-Distance for the social cost objective is at most max
{
𝛼,2 + 1 

𝛼

}
.

Proof. Recall that 𝑜𝑖 is the most-preferred alternative of agent 𝑖; hence, 𝑑(𝑖, 𝑗) ≤ 𝛼 ⋅ 𝑑(𝑖, 𝑜𝑖) for any 𝑗 ∈ 𝐴𝑖. Let 𝑜 be the optimal 
alternative (i.e., the alternative with the smallest social cost) and let 𝑤 be the alternative chosen by the mechanism. For any agent 𝑖, 
denote by 𝑥𝑖 ∈ 𝐴𝑖 the alternative that is closest to 𝑤 among those approved by 𝑖, and by 𝑦𝑖 ∈ 𝐴𝑖 the alternative that is closest to 𝑜. 
By the definition of 𝑤, we have that 

∑
𝑖∈𝑁 𝑑(𝑥𝑖,𝑤) ≤

∑
𝑖∈𝑁 𝑑(𝑦𝑖, 𝑜). Using the triangle inequality, we now have:

SC(𝑤) =
∑
𝑖∈𝑁

𝑑(𝑖,𝑤) ≤
∑
𝑖∈𝑁

𝑑(𝑖, 𝑥𝑖) +
∑
𝑖∈𝑁

𝑑(𝑥𝑖,𝑤)

≤
∑
𝑖∈𝑁

𝑑(𝑖, 𝑥𝑖) +
∑
𝑖∈𝑁

𝑑(𝑦𝑖, 𝑜).

We make the following observations:

• For every agent 𝑖 such that 𝑜 ∈𝐴𝑖, 𝑦𝑖 = 𝑜, and thus 𝑑(𝑦𝑖, 𝑜) = 0, as well as 𝑑(𝑖, 𝑜𝑖) ≤ 𝑑(𝑖, 𝑜).
• For every agent 𝑖 such that 𝑜 ∉𝐴𝑖, 𝑑(𝑦𝑖, 𝑜) ≤ 𝑑(𝑜𝑖, 𝑜) and 𝑑(𝑖, 𝑜𝑖) <

1 
𝛼
⋅ 𝑑(𝑖, 𝑜).

Combining the above with the fact that 𝑑(𝑖, 𝑥𝑖) ≤ 𝛼 ⋅ 𝑑(𝑖, 𝑜𝑖) and using the triangle inequality, we obtain

SC(𝑤) ≤
∑
𝑖∈𝑁

𝑑(𝑖, 𝑥𝑖) +
∑
𝑖∈𝑁

𝑑(𝑦𝑖, 𝑜)
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𝑎1

⋮

𝑎𝑗−1

𝑎𝑗

⋮

𝑎𝑛

1 𝑗 ≥ 2

1

1

1

1

𝛼

𝛼

1

1

Fig. 1. An example of the metric space used in the proof of Lemma 3.3 with 𝑖 = 1 to show a lower bound of 𝛼, assuming that 𝛼 ≤ 3. Agents are represented by 
rectangles, and alternatives by circles.

=
∑
𝑖∶𝑜∈𝐴𝑖

(
𝑑(𝑖, 𝑥𝑖) + 𝑑(𝑦𝑖, 𝑜)

)
+

∑
𝑖∶𝑜∉𝐴𝑖

(
𝑑(𝑖, 𝑥𝑖) + 𝑑(𝑦𝑖, 𝑜)

)

≤
∑
𝑖∶𝑜∈𝐴𝑖

𝑑(𝑖, 𝑥𝑖) +
∑
𝑖∶𝑜∉𝐴𝑖

(
𝑑(𝑖, 𝑥𝑖) + 𝑑(𝑜𝑖, 𝑜)

)

≤ 𝛼 ⋅
∑
𝑖∶𝑜∈𝐴𝑖

𝑑(𝑖, 𝑜𝑖) +
∑
𝑖∶𝑜∉𝐴𝑖

(
𝛼 ⋅ 𝑑(𝑖, 𝑜𝑖) + 𝑑(𝑖, 𝑜𝑖) + 𝑑(𝑖, 𝑜)

)

≤ 𝛼 ⋅
∑
𝑖∶𝑜∈𝐴𝑖

𝑑(𝑖, 𝑜) +
(
2 + 1 

𝛼

)
⋅
∑
𝑖∶𝑜∉𝐴𝑖

𝑑(𝑖, 𝑜)

≤max
{
𝛼,2 + 1 

𝛼

}
⋅ SC(𝑜).

Consequently, the distortion is at most max
{
𝛼,2 + 1 

𝛼

}
. □

By optimizing over 𝛼, we obtain the following corollary.

Corollary 3.2. In general metric spaces, the distortion of (1+
√
2)-Minisum-TAS-Distance for the social cost objective is at most 1+

√
2.

We complement the upper bound of 1 +
√
2 by a nearly tight lower bound of 2 for mechanisms that use all three types of 

information. We first show a lower bound of min{3, 𝛼} on the distortion of such mechanisms; the following lemma will be used in 
several lower bound proofs, and also suggests that to beat the bound of 3, a mechanism must use 𝛼 < 3.

Lemma 3.3. For the social cost objective, the distortion of any mechanism 𝑀 with access to ORD ∧ DIST ∧ TAS is at least min{3, 𝛼}, for 
any 𝛼 ≥ 1.

Proof. We consider an instance with 𝑛 agents and 𝑛 alternatives 𝐴 = {𝑎1,… , 𝑎𝑛}. The distance between any two alternatives is 2. 
The agents have cyclic ordinal preferences over the alternatives such that for agent 𝑖:

𝑎𝑖 ≻𝑖 … ≻𝑖 𝑎𝑛 ≻𝑖 𝑎1 ≻… ≻𝑖 𝑎𝑖−1.

In addition, all agents approve all alternatives, that is, 𝑎 ∈𝐴𝑖 for every 𝑎 ∈𝐴 and every agent 𝑖. Suppose that the mechanism chooses 
alternative 𝑎𝑖 for some 𝑖 ∈ [𝑛] as the winner when given as input this information about the instance.

Observe that, besides agent 𝑖, all other 𝑛− 1 agents prefer 𝑎𝑖−1 to 𝑎𝑖, interpreting 𝑎0 as 𝑎𝑛. Given this, we aim to define a metric 
space that is consistent with the distances between the alternatives, as well as with the ordinal preferences of the agents, so as to 
maximize the social cost of 𝑎𝑖 while minimizing the social cost of 𝑎𝑖−1 . In particular, we have the following metric space (see Fig. 1
for an example with 𝑖 = 1):

• Agent 𝑖 is at distance 1 from all alternatives.
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• Agent 𝑗 < 𝑖 is at distance 1 from all alternatives in {𝑎𝑗 … , 𝑎𝑖−1} and at distance min{3, 𝛼} from the remaining alternatives in 
{𝑎𝑖,… , 𝑎𝑛, 𝑎1… , 𝑎𝑗−1}.

• Agent 𝑗 > 𝑖 is at distance 1 from the alternatives in {𝑎𝑗 ,… , 𝑎𝑛} and at distance min{3, 𝛼} from the remaining alternatives in 
{𝑎1,… , 𝑎𝑗−1}; note that 𝑎𝑖 belong to the latter set of alternatives in this case.

• The distance between two alternatives is determined by the length of the minimum path that connects them; hence, it is exactly 
2 (due to the distance 1 of agent 𝑖 from all alternatives).

Since all agents, beside 𝑖, are at distance 1 from 𝑎𝑖−1 and at distance 𝑚𝑖𝑛{3, 𝛼} from 𝑎𝑖, we have

SC(𝑎𝑖) 
SC(𝑎𝑖−1)

= 1 + (𝑛− 1) ⋅min{3, 𝛼}
𝑛 

.

As 𝑛 becomes arbitrarily large, we obtain a lower bound of min{3, 𝛼} on the distortion. □

We are now ready to show the lower bound of 2 on the distortion of any mechanism that uses all three types of information.

Theorem 3.4. For the social cost objective, the distortion of any mechanism 𝑀 with access to ORD ∧ DIST ∧ TAS is at least 2.

Proof. By Lemma 3.3, the distortion of any deterministic mechanism is at least min{3, 𝛼}, even when the ordinal preferences of the 
agents are given and the distances between alternatives are fixed. This implies that the distortion is at least 2 if 𝛼 ≥ 2.

For the case 𝛼 < 2, let 𝛿 > 0 be an infinitesimal and consider the following instance with 𝑛 agents and 2𝑛 alternatives 𝐴 =
{𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑛}. Any pair of 𝑎-type alternatives are at distance 1+2𝛼, any pair of 𝑏-type alternatives are at distance 2𝛼, and any 
pair of alternatives consisting of one 𝑎-type and one 𝑏-type are at distance 1+ 𝛼. Let [𝑋] be an arbitrary permutation of the elements 
of 𝑋. Each agent 𝑖 ∈ [𝑛] has the ordinal preference

𝑎𝑖 ≻𝑖 𝑏𝑖 ≻𝑖 … ≻𝑖 𝑏𝑛 ≻𝑖 𝑏1 ≻… ≻𝑖 𝑏𝑖−1 ≻ [{𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑖}].

In addition, agent 𝑖 reports that she only approves alternative 𝑎𝑖 , that is, 𝐴𝑖 = {𝑎𝑖}. Now, suppose that, for some 𝑖 ∈ [𝑛], the mechanism 
chooses 𝑎𝑖 or 𝑏𝑖 as the winner. We consider the following metric space:

• Agent 𝑖 is at distance 1 from alternative 𝑎𝑖, at distance 𝛼 + 𝛿 from each alternative in {𝑏1,… , 𝑏𝑛}, and at distance 1 + 2𝛼 + 2𝛿
from the remaining alternatives in {𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑖}.

• Agent 𝑗 < 𝑖 is at distance 1 from alternative 𝑎𝑗 , at distance 𝛼 + 𝛿 from every alternative in {𝑏𝑗 ,… , 𝑏𝑖−1}, and at distance 2 + 𝛼
from every alternative in {𝑏𝑖… , 𝑏𝑛,… , 𝑏𝑗−1, 𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑗}.

• Agent 𝑗 > 𝑖 is at distance 1 from alternative 𝑎𝑗 , at distance 𝛼+ 𝛿 from every alternative in {𝑏𝑗 ,… , 𝑏𝑛}, and at distance 2+ 𝛼 from 
every alternative in {𝑏1,… , 𝑏𝑗−1, 𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑗}.

Clearly, the specified distances are consistent with the ordinal preferences of the agents (with ties broken as required). It is also 
not hard to verify that these distances, together with the fixed distances between alternatives, satisfy the triangle inequality; for an 
example of the metric space for the case 𝑖 = 1 see Fig. 2. By interpreting 𝑏0 as 𝑏𝑛, observe that every agent 𝑗 ≠ 𝑖 is at distance 𝛼 + 𝛿
from 𝑏𝑖−1, and distance 1 + 2𝛼 from 𝑏𝑖 and 𝑎𝑖, and thus

SC(𝑎𝑖) = 1 + (𝑛− 1)(2 + 𝛼),

SC(𝑏𝑖) = 𝛼 + 𝛿 + (𝑛− 1)(2 + 𝛼),

and

SC(𝑏𝑖−1) = 𝑛(𝛼 + 𝛿).

As 𝑛 becomes arbitrarily large and 𝛿 becomes arbitrarily small, since 𝛼 < 2, the distortion is at least 1 + 2∕𝛼 > 2. □

3.2. Refined lower bounds for general metric spaces

As we mentioned earlier, 𝛼-Minisum-TAS-Distance achieves a distortion of 1 +
√
2 without having access to the ordinal prefer-

ences of the agents. This begs the natural question of whether this is the best possible among all mechanisms with this information 
available in their inputs. We prove that this is indeed the case in the following theorem.

Theorem 3.5. For the social cost objective, the distortion of any mechanism 𝑀 with access to DIST ∧ TAS is at least 1 +
√
2.

Proof. By Lemma 3.3, any mechanism has distortion at least min{3, 𝛼}, even when the distances between alternatives are known. 
This implies that the distortion is at least 1 +

√
2 if 𝛼 ≥ 1 +

√
2.
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𝑏1

⋮

𝑏𝑗−1

𝑏𝑗

⋮

𝑏𝑛

1𝑎1 𝑗 ≥ 2 𝑎𝑗1 1

𝛼+

𝛼+

𝛼+

𝛼+

2 + 𝛼

2 + 𝛼

𝛼+

𝛼+

Fig. 2. An example of the metric space used in the proof of Theorem 3.4 to show a lower bound of 1+2∕𝛼 for 𝑖= 1. Distances between alternatives are not shown, but 
are assumed to be fixed. Agents are represented by rectangles, and alternatives by circles. The notation 𝛼+ is used to represent a value slight larger than 𝛼 (instead of 
𝛼 + 𝛿). It is not hard to verify that the specified distances satisfy the triangle inequality; for example, the distance of the edge between agent 𝑗 and alternative 𝑏1 is 
2 + 𝛼, whereas the length of a path from 𝑗 to 𝑏1 via any other 𝑏-type alternative is 2𝛼 + 𝛼+ , and the length of the path via 𝑎𝑗 is 1 + 1 + 𝛼 = 2 + 𝛼.

𝑤

𝑥1 𝑧1

𝑥2 𝑧2

𝑥𝑛 𝑧𝑛

𝑦

⋮

𝛼+

1 𝛼 − 1 1

𝛼+

𝛼+
1 𝛼 − 1 1

𝛼+

𝛼+

1 𝛼 − 1 1

𝛼+

Fig. 3. The metric space used in the proof of Theorem 3.5. The notation 𝛼+ is used to represent a value slight larger than 𝛼 (essentially 𝛼 plus an infinitesimal). The 
red and green squares are potential agent positions, depending on the decision made by the mechanism when given that the 𝛼-TAS of each agent 𝑖 is 𝐴𝑖 = {𝑥𝑖, 𝑧𝑖}. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

For the case 𝛼 < 1 +
√
2, we consider instances with 𝑛 agents and 𝑚 = 2𝑛 + 2 alternatives {𝑥1, ..., 𝑥𝑛, 𝑧1, ..., 𝑧𝑛, 𝑦,𝑤}. The 𝛼-TAS 

of agent 𝑖 is 𝐴𝑖 = {𝑥𝑖, 𝑧𝑖}. The metric space is presented in Fig. 3; in the figure, 𝛼+ is used to denote 𝛼 plus some infinitesimal. 
Without loss of generality, we assume that the mechanism chooses one of {𝑥1 , ..., 𝑥𝑛,𝑤}; the case where the mechanism chooses one 
of {𝑧1, ..., 𝑧𝑛, 𝑦} is symmetric.

We place the agents at the red nodes in Fig. 3; for the case where the mechanism chooses the winner from the set {𝑧1, ..., 𝑧𝑛, 𝑦}, we 
would place the agents at the green nodes in Fig. 3. Agent 𝑖 is at distance 1 from 𝑧𝑖, at distance 1+ 𝛼 −1 = 𝛼 from 𝑥𝑖, and at distance 
strictly larger than 𝛼 from any other alternative; so, this placement of the agents is consistent with the 𝛼-TAS. Since the distance of 
agent 𝑖 is essentially 𝛼 from 𝑦, at least 1 + 2𝛼 from 𝑤, and 3𝛼 from any alternative 𝑥𝑗 with 𝑗 ≠ 𝑖, we have

SC(𝑥𝑖) = 𝛼 + 3(𝑛− 1)𝛼 = (3𝑛− 2)𝛼,

SC(𝑤) = 𝑛(1 + 2𝛼),

and

SC(𝑦) = 𝑛𝛼.

So, the distortion is at least 3 − 2∕𝑛 if any alternative 𝑥𝑖 is chosen, and at least 2 + 1∕𝛼 if 𝑤 is chosen. Since 𝛼 < 1 +
√
2, this leads to 

a lower bound of 2 + 1∕𝛼 > 1 +
√
2. □

We also show the same distortion lower bound of 1+
√
2 for mechanisms that have access to the 𝛼-TAS and the ordinal preferences 

of the agents, but not the distances between alternatives.
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𝑏1

⋮

𝑏𝑗−1

𝑏𝑗

⋮

𝑏𝑛

1𝑎1 𝑗 ≥ 2 𝑎𝑗1 1

𝛼+

𝛼+

𝛼+

𝛼+

1 + 2𝛼

1 + 2𝛼

𝛼+

𝛼+

Fig. 4. An example of the metric space used in the proof of Theorem 3.6 to show a lower bound of 2 + 1∕𝛼 for 𝑖 = 1. Agents are represented by rectangles, and 
alternatives by circles. The notation 𝛼+ is used to represent a value slightly larger than 𝛼 (instead of 𝛼 + 𝛿).

Theorem 3.6. For the social cost objective, the distortion of any mechanism 𝑀 with access to ORD ∧ TAS is at least 1 +
√
2.

Proof. By Lemma 3.3, the distortion of any deterministic mechanism is at least min{3, 𝛼}, even when the ordinal preferences of the 
agents are given. This implies that the distortion is at least 1 +

√
2 if 𝛼 ≥ 1 +

√
2.

For the case 𝛼 < 1 +
√
2, we consider an instance similar to the one used in the proof of Theorem 3.4 without the requirement to 

have fixed distances between alternatives (as this information is not used by the mechanism). There are 𝑛 agents and 2𝑛 alternatives 
𝐴 = {𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑛}. Let [𝑋] be an arbitrary permutation of the elements of 𝑋. Each agent 𝑖 ∈ [𝑛] has the ordinal preference

𝑎𝑖 ≻𝑖 𝑏𝑖 ≻𝑖 … ≻𝑖 𝑏𝑛 ≻𝑖 𝑏1 ≻… ≻𝑖 𝑏𝑖−1 ≻ [{𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑖}].

In addition, agent 𝑖 reports that she only approves of alternative 𝑎𝑖, that is, 𝐴𝑖 = {𝑎𝑖}. Let 𝛿 > 0 be an infinitesimal. Now, suppose 
that, for some 𝑖 ∈ [𝑛], the mechanism chooses 𝑎𝑖 or 𝑏𝑖 as the winner. We consider the following metric space:

• Agent 𝑖 is at distance 1 from alternative 𝑎𝑖, at distance 𝛼 + 𝛿 from each alternative in {𝑏1,… , 𝑏𝑛}, and at distance 1 + 2(𝛼 + 𝛿)
from the remaining alternatives in {𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑖}.

• Agent 𝑗 < 𝑖 is at distance 1 from alternative 𝑎𝑗 , at distance 𝛼 + 𝛿 from every alternative in {𝑏𝑗 ,… , 𝑏𝑖−1}, at distance 1 + 2𝛼 from 
every alternative in {𝑏𝑖,… , 𝑏𝑛,… , 𝑏𝑗−1}, and at distance 1 + 2(𝛼 + 𝛿) from every alternative in {𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑗}.

• Agent 𝑗 > 𝑖 is at distance 1 from alternative 𝑎𝑗 , at distance 𝛼 + 𝛿 from every alternative in {𝑏𝑗 ,… , 𝑏𝑛}, at distance 1 + 2𝛼 from 
every alternative in {𝑏1,… , 𝑏𝑗−1}, and at distance 1 + 2(𝛼 + 𝛿) from every alternative in 𝑎1,… , 𝑎𝑛} ⧵ {𝑎𝑗}.

An example of the metric space for the case 𝑖 = 1 is given in Fig. 4. Interpreting 𝑏0 as 𝑏𝑛, we can observe that every agent 𝑗 ≠ 𝑖 has 
value 𝛼 + 𝛿 for 𝑏𝑖−1, and value 1 + 2𝛼 for 𝑏𝑖 and 𝑎𝑖, and thus

SC(𝑎𝑖) = 1 + (𝑛− 1)(1 + 2𝛼 + 2𝛿),

SC(𝑏𝑖) = 𝛼 + 𝛿 + (𝑛− 1)(1 + 2𝛼),

and

SC(𝑏𝑖−1) = 𝑛(𝛼 + 𝛿).

As 𝑛 becomes arbitrarily large and 𝛿 becomes arbitrarily small, since 𝛼 < 1+
√
2, we obtain a lower bound of 2+1∕𝛼 ≥ 2+1∕(1+

√
2) =

1 +
√
2. □

It is an interesting open problem whether there exists a mechanism that inputs only the 𝛼-TAS and the ordinal preferences and 
achieves a distortion of 1 +

√
2 in general metric spaces. In the next subsection, we will show that, for the line metric, there is a 

mechanism with these informational inputs that achieves the best possible distortion, even among mechanisms that use all three types 
of information.

Before we do that however, we show that any mechanism that uses only the 𝛼-TAS (i.e., without having access to the distances 
between alternatives or the ordinal preferences) is bound to have a very high distortion.
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Theorem 3.7. For the social cost objective, the distortion of mechanisms with access to TAS is Θ(𝑛).

Proof. Clearly, if we choose 𝛼 = 1, the 𝛼-TAS of each agent consists of her most-preferred alternative (or most-preferred alternatives 
in case there are more than one at equal minimum distance from the agent). To obtain an asymptotically linear upper bound, it 
suffices to consider the very simple mechanism that uses 𝛼 = 1, and outputs the most-preferred alternative 𝑜𝑖 of an arbitrary agent 𝑖
as the winner 𝑤. Denoting by 𝑜 an optimal alternative, and using the triangle inequality, we have

SC(𝑤) =
∑
𝑗∈𝑁

𝑑(𝑗, 𝑜𝑖)

≤
∑
𝑗∈𝑁

(
𝑑(𝑗, 𝑜) + 𝑑(𝑖, 𝑜) + 𝑑(𝑖, 𝑜𝑖)

)

≤
∑
𝑗∈𝑁

(
𝑑(𝑗, 𝑜) + 2𝑑(𝑖, 𝑜)

)

≤ (1 + 2𝑛) ⋅ SC(𝑜),

and thus the distortion is Θ(𝑛) when we only have access to the 𝛼-TAS.

For the lower bound, consider an arbitrary deterministic mechanism that has access only to the 𝛼-TAS, and the following instance 
with 𝑛 agents and 𝑛 alternatives {𝑎1,… , 𝑎𝑛}. Each agent 𝑖 approves only alternative 𝑎𝑖, that is, 𝐴𝑖 = {𝑎𝑖}. Since the given information 
is symmetric, the mechanism can choose any of the alternatives as the winner, say 𝑎1 . Let 𝜀 > 0 be an infinitesimal. We define the 
following metric space:

• Agent 1 and alternative 𝑎1 are both located at 1 of the line of real numbers.

• Agent 𝑖 ∈ {2,… , 𝑛− 1} and alternative 𝑎𝑖 are located at a unique point within the 𝜀-neighborhood of 0, but not at 0.

• Agent 𝑛 and alternative 𝑎𝑛 are located at 0.

Since every agent 𝑖 is located exactly where their most-preferred alternative 𝑎𝑖 is located, this metric space is consistent with the 
𝛼-TAS given as input, for any 𝛼. As 𝜀 tends to 0, we have that SC(𝑎1) = 𝑛 − 1, whereas SC(𝑎𝑛) = 1, leading to a lower bound of 
𝑛− 1. □

3.3. Refined results for the line metric

When the metric space is a line, we will show refined tight bounds for mechanisms that use different types of information. The 
best possible distortion achievable here is 2

√
2 − 1 ≈ 1.83. The lower bound follows from the work of Abramowitz et al. [2], via a 

connection between their setting and ours, when there are only two alternatives; we provide a proof below using our terminology for 
completeness. More interestingly, by combining properties shown in previous work, we propose a mechanism, coined 𝛼-Elimination-

Weighted-Majority, that achieves the distortion of 2
√
2 − 1 ≈ 1.83 as an upper bound for 𝛼 =

√
2 − 1, and is thus best possible. In 

fact, our mechanism does not need to have access to the distances between alternatives, only to the 𝛼-TAS and the ordinal preferences 
of the agents.

Since the metric space is a line, using the ordinal preferences of the agents, we can determine an ordering of the agents on the line 
(which is unique up to permutations of identical agents and reversal) and the unique ordering of the alternatives that are between the 
most-preferred alternatives of the leftmost and rightmost agents [28]. Using this, Anshelevich and Postl [6] showed that the optimal 
alternative is either the most-preferred alternative of the median agent or one of the alternatives directly to the left or right of that. 
Our mechanism exploits this property to eliminate all but two alternatives, and then runs a weighted majority over these alternatives 
to determine the winner. In particular, our mechanism works in the following two steps:

• Elimination step: It identifies the most-preferred alternative 𝑥 of the median agent, the alternative 𝓁 that is directly the left of 𝑥, 
and the alternative 𝑟 that is directly to the right of 𝑥. It then eliminates one of 𝓁 and 𝑟 by comparing the number 𝑛(𝓁, 𝑥) of agents 
that prefer 𝓁 to 𝑥 and the number 𝑛(𝑟, 𝑥) of agents that prefer 𝑟 to 𝑥 as in the work of Anshelevich and Postl [6]. In particular, 
if 𝑛(𝓁, 𝑥) ≤ 𝑛(𝑟, 𝑥), then it eliminates 𝓁, otherwise it eliminates 𝑟, and stores the non-eliminated alternative as 𝑦.

• Weighted-majority step: Afterwards, the mechanism runs a weighted majority between 𝑥 and 𝑦 by assigning a weight of 1 to each 
agent 𝑖 such that 𝑥, 𝑦 ∈ 𝐴𝑖, and a weight of 𝛼+1

𝛼−1 to every other agent. This step will be shown to be equivalent to the algorithm 

used by Abramowitz et al. [2] to show a bound of 2
√
2 − 1 ≈ 1.83 in their setting when there are two alternatives.

See Mechanism 2 for a description using pseudocode.

Theorem 3.8. When the metric space is a line, for the social cost objective, the distortion of 𝛼-Elimination-Weighted-Majority is at 
most max{ 3𝛼−1

𝛼+1 ,1 +
2 
𝛼
}.
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Mechanism 2: 𝛼-Elimination-Weighted-Majority.

Input: Ordinal preferences, 𝛼-TAS; 
Output: Winner 𝑤; 
𝑥← most-preferred alternative of median agent; 
𝓁← alternative directly to the left of 𝑥; 
𝑟← alternative directly to the right of 𝑥; 
// Elimination step

𝑛(𝓁, 𝑥)← |{𝑖 ∈𝑁 ∶ 𝓁 ≻𝑖 𝑥}|; 
𝑛(𝑟, 𝑥)← |{𝑖 ∈𝑁 ∶ 𝑟 ≻𝑖 𝑥}|; 
if 𝑛(𝑟, 𝑥)≥ 𝑛(𝓁, 𝑥) then

𝑦← 𝑟; 
else

𝑦← 𝓁; 
for 𝑖 ∈𝑁 do

if 𝑥, 𝑦 ∈𝐴𝑖 then

𝑤𝑖 ← 1; 
else

𝑤𝑖 ←
𝛼+1
𝛼−1

; 

// Weighted-majority step

𝑣𝑥 ←
∑
𝑖∶𝑥≻𝑖𝑦

𝑤𝑖 ; 
𝑣𝑦 ←

∑
𝑖∶𝑥≻𝑖𝑦

𝑤𝑖 ; 
if 𝑣𝑥 ≥ 𝑣𝑦 then

𝑤← 𝑥; 
else

𝑤← 𝑦; 

Proof. Anshelevich and Postl [6] first showed that one of the alternatives in {𝑥,𝓁, 𝑟} must be the optimal alternative. In addition, 
they showed that 𝓁 cannot be better than 𝑥 in terms of social cost in case 𝑛(𝓁, 𝑥) ≤ 𝑛(𝑟, 𝑥), and 𝑟 cannot be better than 𝑥 in case if 
𝑛(𝓁, 𝑥) > 𝑛(𝑟, 𝑥). Hence, by appropriately eliminating one of 𝓁 or 𝑟 depending on whether 𝑛(𝓁, 𝑥) ≤ 𝑛(𝑟, 𝑥) or not, we have that the 
optimal alternative is one of 𝑥 or 𝑦 (the non-eliminated alternative among 𝓁 and 𝑟). Without loss of generality, we assume that 𝑦 = 𝑟, 
and thus 𝑦 is at the right of 𝑥 on the line. We also assume that the mechanism chooses 𝑥 as the winner, in which case, to have a 
distortion larger than 1, 𝑦 must be the optimal alternative; clearly, the case in which the mechanism chooses 𝑦 as the winner and 𝑥
is the optimal alternative can be handled with similar arguments.

We partition the agents in the following sets:

• 𝑁𝑥𝑦 = {𝑖 ∶ 𝑥, 𝑦 ∈𝐴𝑖} is the set of agents that approve both 𝑥 and 𝑦;
• 𝑁𝑥𝑦 = {𝑖 ∶ 𝑥 ∈𝐴𝑖, 𝑦 ∉𝐴𝑖} is the set of agents that approve only 𝑥;

• 𝑁𝑥𝑦 = {𝑖 ∶ 𝑥 ∉𝐴𝑖, 𝑦 ∈𝐴𝑖} is the set of agents that approve only 𝑦;
• 𝑁𝑥≻𝑦 = {𝑖 ∶ 𝑥, 𝑦 ∉𝐴𝑖, 𝑥 ≻𝑖 𝑦} is the set of agents that approve none of 𝑥 and 𝑦, but prefer 𝑥 over 𝑦.
• 𝑁𝑦≻𝑥 = {𝑖 ∶ 𝑥, 𝑦 ∉𝐴𝑖, 𝑦 ≻𝑖 𝑥} is the set of agents that approve none of 𝑥 and 𝑦, but prefer 𝑦 over 𝑥.

Observe that the most-preferred alternative of any agent 𝑖 ∈𝑁𝑥≻𝑦 must be at the left of 𝑥, and thus agent 𝑖 must also be at the left of 
𝑥. Similarly, any agent 𝑖 ∈𝑁𝑦≻𝑥 must be at the right of 𝑦. We argue that, in a worst-case instance, all agents lie in the interval [𝑥, 𝑦], 
and thus 𝑁𝑥≻𝑦 =𝑁𝑦≻𝑥 = ∅. Let 𝑖 be an agent that is positioned at the left of 𝑥; clearly, agent 𝑖 ∈𝑁𝑥𝑦 ∪𝑁𝑥𝑦 ∪𝑁𝑥≻𝑦. The distortion 
can be written as

SC(𝑥)
SC(𝑦) 

=
∑
𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑥) + 𝑑(𝑖, 𝑥)∑
𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑦) + 𝑑(𝑖, 𝑦) 

.

Since each agent 𝑖 is at the left of 𝑥, 𝑑(𝑖, 𝑦) = 𝑑(𝑖, 𝑥) + 𝑑(𝑥, 𝑦), and thus

SC(𝑥)
SC(𝑦) 

=
∑
𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑥) + 𝑑(𝑖, 𝑥) ∑

𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑦) + 𝑑(𝑖, 𝑥) + 𝑑(𝑥, 𝑦)
≤

∑
𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑥) ∑

𝑗∈𝑁⧵{𝑖} 𝑑(𝑗, 𝑦) + 𝑑(𝑥, 𝑦)
,

where the inequality follows since 𝑑(𝑖, 𝑥) appears in the numerator and the denominator of the ratio, and the distortion is, by definition, 
at least 1. Hence, we can obtain a worse instance in terms of the distortion by moving any potential agent that are positioned at the 
left of 𝑥 to 𝑥; in this new instance, such agents can only approve 𝑥, and are thus all moved to the set 𝑁𝑥𝑦 , leaving 𝑁𝑥≻𝑦 empty. A 
similar argument can be used to show that, in a worst-case instance, there are no agents at the right of 𝑦, and thus 𝑁𝑦≻𝑥 =∅.

Now, the distortion bound of 2
√
2− 1 follows by the corresponding bound shown by Abramowitz et al. [2]. In their model, when 

there are two alternatives 𝑎 and 𝑏, an agent 𝑖 that prefers alternative 𝑎 over 𝑏 is said to have a preference strength of 𝑑(𝑖,𝑏) 
𝑑(𝑖,𝑎) . Abramowitz

et al. considered a weighted majority mechanism that assigns weight 1 to all agents with preference strength at most 𝜏 and weight 
𝜏+1
𝜏−1 to all other agents (with preference strength strictly larger than 𝜏), for some 𝜏 ≥ 1, and showed that this mechanism achieves a 
distortion of at most max{ 3𝜏−1

𝜏+1 ,1 +
2 
𝜏
}.
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In the worst-case instance of our mechanism, since all agents are positioned in the interval [𝑥, 𝑦], we have:

• For any agent 𝑖 ∈𝑁𝑥𝑦, the preference strength of 𝑖 is at most 𝛼. In particular, if 𝑖 prefers 𝑥 over 𝑦,

𝑑(𝑖, 𝑦) ≤ 𝛼𝑑(𝑖, 𝑥)⇔ 𝑑(𝑖, 𝑦) 
𝑑(𝑖, 𝑥)

≤ 𝛼.

Otherwise,

𝑑(𝑖, 𝑥) ≤ 𝛼𝑑(𝑖, 𝑦)⇔ 𝑑(𝑖, 𝑥)
𝑑(𝑖, 𝑦) 

≤ 𝛼.

• For any agent 𝑖 ∈𝑁𝑥𝑦, the preference strength of 𝑖 is strictly larger than 𝛼 since

𝑑(𝑖, 𝑦) > 𝛼𝑑(𝑖, 𝑥)⇔ 𝑑(𝑖, 𝑦) 
𝑑(𝑖, 𝑥)

> 𝛼.

• For any agent 𝑖 ∈𝑁𝑥𝑦, the preference strength of 𝑖 is strictly larger than 𝛼 since

𝑑(𝑖, 𝑥) > 𝛼𝑑(𝑖, 𝑦)⇔ 𝑑(𝑖, 𝑥)
𝑑(𝑖, 𝑦) 

> 𝛼.

Consequently, in the worst-case instance, the weighted majority that our mechanism runs in Step 3 (which assigns a weight of 1 to 
each agent in 𝑁𝑥𝑦 and a weight of 𝛼+1

𝛼−1 to any other agent) is exactly the same as the weighted majority mechanism of Abramowitz 
et al. [2] with 𝜏 = 𝛼, and thus the distortion is at most max{ 3𝛼−1

𝛼+1 ,1 +
2 
𝛼
}. □

By optimizing over 𝛼, we obtain the following corollary.

Corollary 3.9. When the metric space is a line, for the social cost objective, the distortion of (1+
√
2)-Elimination-Weighted-Majority 

is at most 2
√
2 − 1 ≈ 1.83.

Next, we present a matching lower bound of 2
√
2− 1 on the distortion of any mechanism that uses all three types of information, 

which establishes the tightness of the distortion proven above. As mentioned before, this bound already follows by the work of 
Abramowitz et al. [2], whose model coincides with ours when there are only two alternatives.

Theorem 3.10. When the metric space is a line, for the social cost objective, the distortion of any mechanism 𝑀 with access to ORD∧DIST∧
TAS is at least 2

√
2 − 1.

Proof. Let 𝜀 > 0 be an infinitesimal. We consider instances with two alternatives 𝑎 and 𝑏, and two agents 1 and 2. If 𝛼 ≤ 1 +
√
2, 

suppose that 𝐴1 = {𝑎}, 𝑎 ≻1 𝑏, 𝐴2 = {𝑏}, and 𝑏 ≻2 𝑎. Given this information, the mechanism can choose any of the two alternatives 
as the winner, say 𝑎. However, the positions of the agents might be the following ones: The two alternatives are at 0 and 1, and 
the two agents are at 1 

𝛼+1 − 𝜀 and 1; it is not hard to verify that the distances are consistent with the information provided to the 

mechanism. Then, the social cost of 𝑎 is approximately 2+𝛼1+𝛼 , whereas the social cost of 𝑏 is 𝛼

1+𝛼 . Since 𝛼 ≤ 1 +
√
2, the distortion of 

at least 1 + 2 
𝛼
≥ 2

√
2 − 1.

For the case 𝛼 > 1 +
√
2, suppose that 𝐴1 = {𝑎, 𝑏}, 𝑎 ≻1 𝑏, 𝐴2 = {𝑎, 𝑏}, and 𝑏 ≻2 𝑎. Given this information, the mechanism can 

again choose any of the two alternative as the winner, say 𝑎. However, the positions of the agents might be the following ones: The 
two alternatives are at 0 and 1, and the two agents are at 1∕2 − 𝜀 and 𝛼

1+𝛼 ; it is not hard to verify that the distances are consistent 
with the information provided to the mechanism. Then, the social cost of 𝑎 is approximately 3𝛼−1 

2(𝛼−1) , whereas the social cost of 𝑏 is 
1+𝛼

2(𝛼−1) . Since 𝛼 > 1 +
√
2, the distortion is at least 3𝛼−11+𝛼 > 2

√
2 − 1. □

We next consider the case of mechanisms that have access to the 𝛼-TAS and the distances between alternatives, but not the ordinal 
preferences. We prove that the 2-Minisum-TAS-Distance mechanism (recall its definition in Mechanism 1) achieves a distortion of 
2 when the metric is a line, and this is the best possible among all mechanisms that use this type of information.

Theorem 3.11. When the metric space is a line, the distortion of 𝛼-Minisum-TAS-Distance is at most max{𝛼,1 + 2 
𝛼
}.

Proof. Since the metric space is a line, the sets 𝐴𝑖 define contiguous intervals. Let 𝓁𝑖 and 𝑟𝑖 denote the leftmost and rightmost 
alternatives in the 𝛼-TAS 𝐴𝑖 of agent 𝑖, respectively. Let 𝑜 be an optimal alternative, and assume, without loss of generality, that 𝑜 is 
to the right of the alternative 𝑤 chosen by the mechanism.

Consider the set 𝐿 = {𝑖 ∶ 𝑟𝑖 ≤ 𝑤} of all agents for whom 𝐴𝑖 ends before 𝑤 or at 𝑤 itself, and the set 𝑅 = {𝑖 ∶ 𝓁𝑖 > 𝑤} of all 
agents whose intervals 𝐴𝑖 begin after 𝑤. Then, we claim that |𝑅| ≤ |𝐿|. To see this, consider how the quantity 

∑
𝑖∈𝑁 min𝑗∈𝐴𝑖 𝑑(𝑗,𝑤)
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compares to 
∑
𝑖∈𝑁 min𝑗∈𝐴𝑖 𝑑(𝑗,𝑤

′), where 𝑤′ is the alternative directly to the right of 𝑤. When moving from 𝑤 to 𝑤′, this quantity 
decreases by 𝑑(𝑤,𝑤′) for each agent in 𝑅, increases by 𝑑(𝑤,𝑤′) for each agent in 𝐿, and stays the same for any other agent 𝑖 (since 𝑤
and 𝑤′ belong to 𝐴𝑖). Thus, by the definition of the mechanism, it must be that |𝑅| ≤ |𝐿|, as otherwise 𝑤′ would be selected instead 
of 𝑤.

We now proceed to prove the distortion bound. Since |𝑅| ≤ |𝐿|, let 𝑓 ∶𝑅→𝐿 be a one-to-one mapping. We make the following 
observations:

• For every agent 𝑖 ∈𝑅, let 𝑗 = 𝑓 (𝑖) ∈𝐿. If 𝑗 is to the left of 𝑤, then

𝑑(𝑗,𝑤) + 𝑑(𝑖,𝑤) ≤ 𝑑(𝑗,𝑤) + 𝑑(𝑖, 𝑜) + 𝑑(𝑤,𝑜)

= 𝑑(𝑗, 𝑜) + 𝑑(𝑖, 𝑜).

If, instead, 𝑗 is to the right of 𝑤, then it must be that 𝑤 is the closest alternative to 𝑗, by the definition of 𝐿. Therefore, since 
𝑜 ∉𝐴𝑗 , we have that 𝑑(𝑗,𝑤) ≤ 1 

𝛼
𝑑(𝑗, 𝑜). Combining this with the triangle inequality, we obtain

𝑑(𝑗,𝑤) + 𝑑(𝑖,𝑤) ≤ 2𝑑(𝑗,𝑤) + 𝑑(𝑗, 𝑜) + 𝑑(𝑖, 𝑜)

≤

(
1 + 2 

𝛼

)
𝑑(𝑗, 𝑜) + 𝑑(𝑖, 𝑜).

• For every agent 𝑖 with 𝑤 ∈𝐴𝑖, we have that

𝑑(𝑖,𝑤) ≤ 𝛼𝑑(𝑖, 𝑜𝑖) ≤ 𝛼𝑑(𝑖, 𝑜).

Notice that this must be true for every agent 𝑖 ∉𝑅 ∪𝐿.

Combing the above, we obtain

SC(𝑤) =
∑
𝑖∈𝐿 

𝑑(𝑖,𝑤) +
∑
𝑖∈𝑅

𝑑(𝑖,𝑤) +
∑
𝑖∉𝑅∪𝐿

𝑑(𝑖,𝑤)

≤

(
1 + 2 

𝛼

)∑
𝑖∈𝐿 

𝑑(𝑖, 𝑜) +
∑
𝑖∈𝑅

𝑑(𝑖, 𝑜) + 𝛼
∑
𝑖∉𝑅∪𝐿

𝑑(𝑖, 𝑜)

≤max
{
𝛼,1 + 2 

𝛼

}
⋅ SC(𝑜).

Consequently, the distortion is at most max
{
𝛼,1 + 2 

𝛼

}
. □

By optimizing over 𝛼, we obtain an upper bound of 2.

Corollary 3.12. When the metric space is a line, the distortion of 2-Minisum-TAS-Distance is at most 2.

Below we prove the lower bound that establishes that 2-Minisum-TAS-Distance is best possible.

Theorem 3.13. When the metric space is a line, for the social cost objective, the distortion of any mechanism 𝑀 with access to DIST∧ TAS

is at least 2.

Proof. We consider instances with alternative locations 0 and 1 + 𝛼. If 𝛼 ≥ 2, consider an instance where all agents include both 
alternatives in their 𝛼-approval sets. As there is no way of distinguishing the two alternatives, the mechanism can choose any of them 
as the winner. If it chooses the one at 0, then the agents may be located at 𝛼, leading to a distortion of 𝛼. If the mechanism chooses the 
alternative at 1 + 𝛼, then the agents may be located at 1, leading again to a distortion of 𝛼. Overall, the distortion of the mechanism 
is at least 𝛼 ≥ 2.

For the case 𝛼 < 2, consider an instance with two agents that have 𝐴1 = {0} and 𝐴2 = {1 + 𝛼}. Consider the following two cases 
depending on the decision made by the mechanism:

• The winner is the alternative at 0: The first agent is located at 1 − 𝜀 (so that the distance from 0 is 1 − 𝜀 while the distance from 
1+ 𝛼 is 𝛼 + 𝜀, leading to the alternative at 0 being the only one in 𝐴1) and the second agent is located at 1+ 𝛼. Hence, the social 
cost of 0 is approximately 1+ 1+ 𝛼 = 2+ 𝛼, whereas the social cost of 1+ 𝛼 is approximately 𝛼, leading to a distortion of at least 
1 + 2∕𝛼.

• The winner is the alternative at 1+ 𝛼: The first agent is located at 0, and the second agent is located at 𝛼 + 𝜀 (so that the distance 
from 0 is 𝛼 + 𝜀 while the distance from 1 + 𝛼 is 1 − 𝜀, leading to the alternative at 1 + 𝛼 being the one in 𝐴2). Hence, the social 
cost of 0 is approximately 𝛼, whereas the social cost of 1+ 𝛼 is approximately 1+ 𝛼 +1 = 2+ 𝛼, leading to a distortion of at least 
1 + 2∕𝛼.
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Overall, the distortion of the mechanism is least 1 + 2∕𝛼 > 2. □

Finally, we remark that the proof of Theorem 3.7 already uses an instance that is on the line metric, so we have the following 
straightforward corollary.

Corollary 3.14. For the line metric, for the social cost objective, the distortion of any mechanism 𝑀 with access to TAS is Θ(𝑛).

4. Maximum cost

In this section we consider the other most natural objective, i.e., to minimize the maximum cost of any agent, abbreviated as MC. 
For mechanisms that have access to ORD ∧DIST ∧ TAS we show a tight bound of 1 +

√
2. In the real line metric, we show that there 

in fact exist mechanisms with access to either ORD∧TAS or DIST∧TAS that achieve the 1+
√
2 distortion guarantee, without having 

access to the third type of information. We also show that the best distortion achievable by any mechanism with access to TAS is 3.

4.1. Results for general metric spaces

We start by proving an upper bound of 1 +
√
2 for general metric spaces. This is achieved by a novel mechanism with access to 

ORD∧DIST∧TAS, which we refer to as 𝛼-Most-Compact-Set, for 𝛼 = 1+
√
2. In fact, the mechanism requires a bit less information, 

as it only uses the most-preferred alternatives of the agents, rather than their complete ordinal preferences.

Before we define the mechanism, we will prove the following useful lemma relating the choices of any mechanism with the 
distortion for the maximum cost objective. To differentiate between alternatives that lie at minimum distance from an agent 𝑖 and 
alternatives that appear first in the preference ranking of the agent (which might be different due to ties), we will refer to the former 
as agent 𝑖’s min-distance alternative (rather than agent 𝑖’s most-preferred alternative). In other words, a min-distance alternative for 
agent 𝑖 is an alternative 𝑥 for which 𝑑(𝑖, 𝑥) ≤ 𝑑(𝑖, 𝑥′) for any 𝑥′ ∈𝐴.

Lemma 4.1. Consider a mechanism 𝑀 that chooses the winner to be an alternative 𝑤 that satisfies at least one of the following two conditions:

1. 𝑤 ∈𝐴𝑗 for all 𝑗 ∈𝑁 .

2. 𝑤 is a min-distance alternative for some agent 𝑖∈𝑁 , and 𝑜∉𝐴𝑖, where 𝑜 is an alternative that minimizes the maximum cost.

Then, for the maximum cost objective, the distortion of 𝑀 is at most max{𝛼,2 + 1 
𝛼
}.

Proof. For the first condition, if 𝑤 ∈𝐴𝑗 for all 𝑗 ∈𝑁 , then 𝑑(𝑗,𝑤) ≤ 𝛼 ⋅𝑑(𝑗, 𝑜𝑗 ) ≤ 𝛼 ⋅𝑑(𝑗, 𝑜), where 𝑜𝑗 is the most-preferred alternative 
of agent 𝑗. This implies that MC(𝑤) ≤ 𝛼 ⋅MC(𝑜). For the second condition, let 𝑡 be an agent that is at maximum distance from 𝑤. We 
have that

MC(𝑤) = 𝑑(𝑡,𝑤) ≤ 𝑑(𝑡, 𝑜) + 𝑑(𝑜, 𝑖) + 𝑑(𝑖,𝑤)

< 𝑑(𝑡, 𝑜) + 𝑑(𝑖, 𝑜) + 1 
𝛼
⋅ 𝑑(𝑖, 𝑜)

≤

(
2 + 1 

𝛼

)
MC(𝑜),

where the first inequality is due to the triangle inequality, and the second inequality follows from the fact that 𝑜 ∉𝐴𝑖. □

Now, our mechanism, coined 𝛼-Most-Compact-Set, works as follows: It first checks if there exists some alternative 𝑥 that is 
approved by all agents, and, if this is indeed the case, it then chooses 𝑥 as the winner 𝑤. Otherwise, for each agent 𝑖, it computes 
the maximum distance 𝜌𝑖 of the most-preferred alternative 𝑜𝑖 of 𝑖 to any other alternative in 𝐴𝑖; then it chooses the most-preferred 
alternative 𝑜𝑖 of the agent 𝑖 with minimum 𝜌𝑖. Essentially, in the otherwise case, the mechanism aims to choose the most-preferred 
alternative of an agent in order to minimize the radius to all other alternatives approved by the agent. See Mechanism 3 for a 
description using pseudocode.

Theorem 4.2. In general metric spaces, for the max cost objective, the distortion of 𝛼-Most-Compact-Set is at most max{𝛼,2 + 1 
𝛼
}.

Proof. If there is an alternative 𝑤 such that 𝑤 ∈ 𝐴𝑗 for all 𝑗 ∈ 𝑁 , the mechanism chooses it as the winner 𝑤. In that case, by 
Lemma 4.1, the distortion of 𝛼-Most-Compact-Set is at most max{𝛼,2+ 1 

𝛼
}. If such an alternative does not exist, then the mechanism 

chooses the most-preferred alternative of some agent 𝑖, in particular the agent with the smallest 𝜌𝑖 , i.e., the smallest maximum 
distance from any of her approved alternatives to her most-preferred alternative 𝑜𝑖 . If 𝑜 ∉ 𝐴𝑖, then by Lemma 4.1, the distortion of 
the mechanism is again at most max{𝛼,2+ 1 

𝛼
}. Therefore we will consider the case when 𝑜 ∈𝐴𝑖. By definition of 𝜌𝑖, this implies that 

𝑑(𝑜, 𝑜𝑖) ≤ 𝜌𝑖.
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Mechanism 3: 𝛼-Most-Compact-Set.

Input: Most-preferred alternatives of agents, distances between alternatives, 𝛼-TAS; 
Output: Winner 𝑤; 
if ∃𝑥 ∈𝐴𝑖,∀𝑖 ∈𝑁 then

𝑤← 𝑥; 
else

for 𝑖 ∈𝑁 do

𝜌𝑖 ←max𝑥∈𝐴𝑖 𝑑(𝑥, 𝑜𝑖); 
𝑤∈ argmin𝑖∈𝑁 𝜌𝑖 ; 

Since there is no alternative 𝑥 such that 𝑥 ∈𝐴𝑖 for all 𝑖 ∈𝑁 , there must exist at least one agent 𝑗 such that 𝑜 ∉𝐴𝑗 . Also, let 𝑡 be 
the agent that has the maximum distance from 𝑤. We have that

MC(𝑤) = 𝑑(𝑡, 𝑜𝑖) ≤ 𝑑(𝑡, 𝑜) + 𝑑(𝑜, 𝑜𝑖) ≤ MC(𝑜) + 𝜌𝑖 ≤ MC(𝑜) + 𝜌𝑗 .

where the last inequality follows from that fact that 𝑖 was chosen to be an agent that minimizes 𝜌𝑘 =max𝑥∈𝐴𝑘 𝑑(𝑥, 𝑜𝑘) by the mecha-

nism. Let 𝑦 be an alternative in 𝐴𝑗 with maximum distance from 𝑜𝑗 . Then,

𝜌𝑗 = 𝑑(𝑦, 𝑜𝑗 ) ≤ 𝑑(𝑗, 𝑜𝑗 ) + 𝑑(𝑗, 𝑦) ≤
(
1 + 1 

𝛼

)
MC(𝑜),

where the first inequality is due to the triangle inequality, and the second one follows since 𝑑(𝑗, 𝑜𝑗 ) ≤ 𝑑(𝑗, 𝑜) ≤ MC(𝑜), and since 𝑜 ∉𝐴𝑗
means that 𝑑(𝑗, 𝑜𝑗 ) <

1 
𝛼
𝑑(𝑗, 𝑜) ≤ 1 

𝛼
MC(𝑜). Putting everything together, we obtain

MC(𝑤) ≤
(
2 + 1 

𝛼

)
MC(𝑜).

Overall, the distortion of the mechanism is at most max{𝛼,2 + 1 
𝛼
}, as desired. □

By optimizing over 𝛼, we obtain the following corollary.

Corollary 4.3. In general metric spaces, for the max cost objective, the distortion of (1 +
√
2)-Most-Compact-Set is at most 1 +

√
2.

Next, we prove that the bound of 1+
√
2 is the best possible for the maximum cost objective, even when all three types of information 

are available, and even when the metric space is as simple as a line.

Theorem 4.4. For the max cost, the distortion of any mechanism 𝑀 with access to ORD ∧ DIST ∧ TAS is at least 1 +
√
2, even on a line 

metric.

Proof. Consider any mechanism 𝑀 that has access to all three types of information. To show the lower bound, we will consider the 
following two cases depending on the value of 𝛼 that 𝑀 uses.

Case 1: 𝛼 ≤ 1 +
√
2. Consider an instance 𝐼1 with two agents {1,2} and two alternatives {𝑎1, 𝑎2}. We have 𝐴1 = {𝑎1}, 𝐴2 = {𝑎2}, 

𝑎1 ≻1 𝑎2, and 𝑎2 ≻2 𝑎1. The distance between the two alternatives is equal to 1 + 𝛼 + 𝜀, for some infinitesimal 𝜀 > 0. Given this 
information, 𝑀 may choose any of the two alternatives as the winner, say 𝑎1. We define the following line metric (see Fig. 5a):

• Alternative 𝑎1 is at 0;

• Agent 1 is at 1;

• Alternative 𝑎2 is at 1 + 𝛼 + 𝜀;
• Agent 2 is at 1 + 2𝛼 + 𝜀.

It is not hard to verify that these positions of the agents and the alternatives are consistent with the information given to the mechanism 
for any 𝛼 ≤ 1 +

√
2: Agent 2 approves only alternative 𝑎2 as 𝑑(2, 𝑎1) = 1 + 2𝛼 + 𝜀 > 𝛼2 = 𝛼 ⋅ 𝑑(2, 𝑎2); all other information is clearly 

consistent. We have that MC(𝑎1) = 1 + 2𝛼 + 𝜀 and MC(𝑎2) = 𝛼 + 𝜀, thus obtaining a lower bound of 2 + 1∕𝛼 ≥ 1 +
√
2 when 𝜀 tends 

to 0.

Case 2: 𝛼 > 1 +
√
2. Consider an instance 𝐼2 with two agents {1,2} and two alternatives {𝑎1, 𝑎2}. We have 𝐴1 = 𝐴2 = {𝑎1, 𝑎2}, 

𝑎1 ≻1 𝑎2 and 𝑎2 ≻2 𝑎1. The distance between the two alternatives is equal to 1. Given this information, 𝑀 may choose any of the two 
alternatives as the winner, say 𝑎1. We define the following line metric (see Fig. 5b):

• Alternative 𝑎1 is at 0;

• Agent 1 is at 1∕2;
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𝑎1 1 𝑎2 2
1 𝛼+ 𝛼

(a) Instance 𝐼1.

𝑎1 1 𝑎2 2
1∕2 1∕2

1 
𝛼−1

(b) Instance 𝐼2.

Fig. 5. The line metrics used in the proof of Theorem 4.4. Agents are represented by rectangles and alternatives are represented by circles. A value above an edge 
represents the distance between the edge’s endpoints.

• Alternative 𝑎2 is at 1;

• Agent 2 is at min{3∕2, 𝛼

𝛼−1 }.

It is not hard to verify that these positions of the agents and the alternatives are consistent with the information given to the mechanism 
for any 𝛼 > 1 +

√
2: Agent 1 is at distance 1∕2 from both 𝑎1 and 𝑎2. When 𝛼

𝛼−1 ≤ 3∕2⇔ 𝛼 ≤ 3, agent 2 is at distance 𝛼

𝛼−1 − 1 = 1 
𝛼−1

from 𝑎2 and distance 𝛼

𝛼−1 from 𝑎1; clearly, the ratio of these distances is exactly 𝛼. When 𝛼

𝛼−1 > 3∕2⇔ 𝛼 > 3, agent 2 is at distance 
1∕2 from 𝑎2 and distance 3∕2 from 𝑎1; the ratio of these distances is exactly 3, and thus at most 𝛼. Since 1 

𝛼−1 < 1∕2 < 𝛼

𝛼−1 for any 

𝛼 > 1, we have that MC(𝑎1) = min{3∕2, 𝛼

𝛼−1 } and MC(𝑎2) = 1∕2, thus obtaining a lower bound of 3 when 𝛼 > 3 and 2𝛼
𝛼−1 ≥ 𝛼 ≥ 1+

√
2

when 𝛼 ∈ (1 +
√
2,3]. □

We conclude the exposition of our results for general metric spaces by showing that the very simple mechanism Any-Approved

which chooses any alternative in the 𝛼-TAS of some agent achieves a distortion bound of 2+𝛼 in terms of the maximum cost objective. 
By setting 𝛼 = 1, we obtain a distortion bound of 3, which is the best possible for all mechanisms with access to TAS, and also matches 
the bound of 3 that is best possible for any mechanism with access to ORD ∧DIST.

Theorem 4.5. In general metric spaces, for the max cost objective, the distortion of Any-approved is at most 2+ 𝛼.

Proof. Consider an arbitrary instance and let 𝑤 be the alternative chosen by 𝑀 on this instance. By definition, 𝑤 is in the 𝛼-TAS of 
some 𝑖. Let 𝑗 be an agent that has the maximum distance from 𝑤. Let 𝑜 be an optimal alternative, i.e., the one that minimizes the 
maximum cost. Let 𝑜𝑖 be the alternative that is closest to the position of agent 𝑖. We have that

MC(𝑤) = 𝑑(𝑗,𝑤) ≤ 𝑑(𝑗, 𝑜) + 𝑑(𝑖, 𝑜) + 𝑑(𝑖,𝑤)

≤ 2MC(𝑜) + 𝛼 ⋅ 𝑑(𝑖, 𝑜𝑖)

≤ (2 + 𝛼)MC(𝑜),

where the first inequality holds by the triangle inequality, the second inequality follows from the definition of 𝑜 and the fact that 
𝑤 ∈𝐴𝑖, and the last inequality follows since 𝑑(𝑖, 𝑜𝑖) ≤ 𝑑(𝑖, 𝑜) by the definition of 𝑜𝑖. □

The tight lower bound for all mechanisms with access to TAS is given below.

Theorem 4.6. For the max cost objective, the distortion of any mechanism 𝑀 with access to TAS is at least 3, even when the metric space 
is a line.

Proof. Consider an arbitrary mechanism 𝑀 , and an instance with two agents {1,2}, and five alternatives {𝑎1,… , 𝑎5}. That 𝛼-TAS of 
the agents are 𝐴1 = {𝑎1, 𝑎2} and 𝐴2 = {𝑎3, 𝑎4}. Let 𝜀 be an infinitesimal. If 𝑀 chooses alternative 𝑎5 as the winner, then the distortion 
can easily be seen to be unbounded as the metric space might be the following:

• Agent 1 and alternatives 𝑎1, 𝑎2 are at 0;

• Agent 2 and alternatives 𝑎3, 𝑎4 are at 𝜀;
• Alternative 𝑎5 is at 1.

Hence, the optimal max cost is 𝜀, whereas the max cost of the mechanism is 1.

So, suppose that 𝑀 selects one of the alternatives that is approved by one of the agents, say 𝑤 = 𝑎1. We define the following line 
metric (see also Fig. 6):

• Agent 1 is at 𝛼 + 𝜀;
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A
𝑎4 𝑎3 2 𝑎5 1 𝑎2 𝑎1

𝛼 − 1 1 𝛼+ 𝛼 − 11𝛼+

Fig. 6. The line metric used in the proof of Theorem 4.6. 

• Alternative 𝑎2 is at 𝛼 + 1 + 𝜀;
• Alternative 𝑎1 is at 2𝛼 + 𝜀
• Agent 2 is at −𝛼 − 𝜀;
• Alternative 𝑎3 is at −𝛼 − 1 − 𝜀;
• Alternative 𝑎4 is at −2𝛼 − 𝜀;
• Alternative 𝑎5 is at 0.

It is not hard to verify that the positions of the agents and the alternatives on the line are consistent with the 𝛼-TAS: Agent 1 is at 
distance 1 from 𝑎2, 𝛼 from 𝑎1, and strictly larger than 𝛼 from any other alternative. Similarly, agent 2 is at distance 1 from 𝑎3, 𝛼 from 
𝑎4, and strictly larger than 𝛼 from any other alternative. The cost of the mechanism is MC(𝑤) = 𝑑(2, 𝑎1) ≈ 3𝛼, whereas the optimal 
cost if MC(𝑎5) = 𝑑(1, 𝑎5) = 𝑑(2, 𝑎5) ≈ 𝛼, leading to a distortion of at least 3. □

4.2. Refined upper bounds for the line metric

The lower bounds of 1 +
√
2 for mechanisms with access to all three types of information (Theorem 4.4) and 3 for mechanisms 

in with access to only TAS (Theorem 4.6) already apply when the metric space is a line. For both cases, tight upper bounds can be 
achieved for general spaces (Theorem 4.2 and Theorem 4.5). In this section, we show that, when the metric space is a line, the bound 
of 1+

√
2 can be achieved by several mechanisms with access to ORD∧ TAS and DIST∧ TAS (i.e., without having access to the third 

type of information). Whether such mechanisms exist for general metric spaces is an intriguing open problem.

From a technical perspective, these mechanisms, although different in nature, establish the same kind of properties that are needed 
for the distortion guarantees to hold. For this reason, we first present all these mechanisms, and then prove their distortion bounds 
with one, unified proof. Before that, we start with a simple known observation for the maximum cost objective on the line.

Observation 4.7. Any mechanism that always chooses the winner to be an alternative that lies in the interval defined by the leftmost 
and rightmost agents has distortion at most 2.

Proof. Let 𝓁 and 𝑟 be the positions of the leftmost and rightmost agent, respectively. Clearly, the max cost of the mechanism is 
MC(𝑤) ≤ 𝑑(𝓁, 𝑟), whereas the optimal max cost is MC(𝑜) ≥ 1

2 ⋅ 𝑑(𝓁, 𝑟), and thus the distortion is at most 2. □

We now present the mechanisms, starting with one that uses ORD∧TAS, to which we refer as TAS-optimal. The mechanism chooses 
an (arbitrary) alternative that is TAS-optimal, a notion of dominance reminiscent of Pareto dominance, adapted to take the 𝛼-TAS 
into account.

Definition 4.8 (TAS-optimality). An alternative 𝑥 TAS-dominates an alternative 𝑦 if for all agents 𝑖 ∈𝑁 such that {𝑥, 𝑦} ⊈𝐴𝑖, we have 
𝑥 ≻𝑖 𝑦. An alternative 𝑥 that is not TAS-dominated by any other alternative is called TAS-optimal.

In other words, 𝑥 TAS-dominates 𝑦 if 𝑥 is preferred over 𝑦 by all agents that do not consider both of them acceptable. Clearly, a 
TAS-optimal alternative can be found using the 𝛼-TAS and the ordinal preferences of the agents.

The next two mechanisms we consider require access to DIST ∧ TAS. The first of them is the 𝛼-Minisum-TAS-Distance that we 
defined and used in Section 3.1, which chooses the winner 𝑤 to minimize the sum of distances from all 𝛼-TAS; recall its definition 
in Mechanism 1. The second one is a mechanism to which we refer as 𝛼-Minimax-TAS-Distance. This mechanism is the natural 
translation of 𝛼-Minisum-TAS-Distance to the maximum cost objective, as it chooses 𝑤 to minimize the maximum distance from 
any 𝛼-TAS. See Mechanism 5 for its description.

Distortion upper bounds

We now present a proof that applies to all the mechanisms defined above at the same time, by establishing a series of claims. For 
brevity, we will refer to the mechanisms as 𝑀1 for TAS-Optimal, 𝑀2 for 𝛼-Minisum-TAS-Distance, and 𝑀3 for 𝛼-Minimax-TAS-

Distance.

Theorem 4.9. When the metric space is a line, for the maximum cost objective, the distortion of any mechanism 𝑀 ∈ {𝑀1,𝑀2,𝑀3} is at 
most max{𝛼,2 + 1 

𝛼
}.

Proof. Assume by contradiction that the distortion of 𝑀 is larger than max{𝛼,2+ 1 
𝛼
}. Consider an arbitrary instance, and let 𝑖1 and 𝑖𝑛

be the positions of the leftmost and rightmost agent on the line respectively (breaking ties arbitrarily). Let 𝑤 be the alternative chosen 
by 𝑀 for the given instance, and let 𝑜 be an optimal alternative that minimizes the maximum cost. Clearly, 𝑤 ≠ 𝑜, as, otherwise, 
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Mechanism 4: TAS-Optimal.

Input: Ordinal preferences, 𝛼-TAS; 
Output: Winner 𝑤; 
𝑤← any TAS-optimal alternative.

Mechanism 5: 𝛼-Minimax-TAS-Distance.

Input: Distances between alternatives, 𝛼-TAS; 
Output: Winner 𝑤; 
𝑤 ∈ argmin𝑥∈𝐴

{
max𝑖∈𝑁 min𝑗∈𝐴𝑖 𝑑(𝑗, 𝑥)

}
; 

the distortion of 𝑀 would be 1. Additionally, 𝑤 ∉ [𝑖1, 𝑖𝑛], as, otherwise, by Observation 4.7 the distortion of 𝑀 would be at most 
2. Without loss of generality, we assume that 𝑤 > 𝑖𝑛, and thus 𝑜 < 𝑤. Finally, there exists some agent 𝑗 ∈𝑁 such that 𝑤 ∉ 𝐴𝑗 , as, 
otherwise, the distortion of 𝑀 would be most max{𝛼,2 + 1 

𝛼
} by Lemma 4.1.

For any alternative 𝑥, let 𝓁(𝑥) denote the alternative directly to the left of 𝑥 on the line, which does not coincide with 𝑥 (breaking 
ties arbitrarily). We state and prove the following useful claim.

Claim 4.10. 𝑤 is a min-distance alternative for agent 𝑖𝑛.

Proof. Assume by contradiction that 𝑤 is not a min-distance alternative for 𝑖𝑛 . Then 𝓁(𝑤) has to be a min-distance alternative for 
agent 𝑖𝑛; note that such an alternative exists since 𝑜 < 𝑤. This implies that 𝓁(𝑤) ≻𝑖𝑛 𝑤, which also implies that 𝓁(𝑤) ≻𝑖 𝑤 for all 𝑖 ∈𝑁 , 
since 𝑖𝑛 is the rightmost agent and 𝑤> 𝑖𝑛. Since there exists some agent 𝑗 ∈𝑁 such that 𝑤 ∉𝐴𝑗 , it follows that 𝓁(𝑤) TAS-dominates 
𝑤. This establishes the proof of the claim for 𝑀 =𝑀1, since it contradicts the choice of 𝑤 as the winner by the mechanism.

Next we prove the claim for 𝑀 ∈ {𝑀2,𝑀3}. Observe that for every agent 𝑖 ≤ 𝑖𝑛 we have that 𝑤 ∈𝐴𝑖 ⇒ 𝓁(𝑤) ∈𝐴𝑖, since 𝑤> 𝓁(𝑤). 
In other words, all agents that find 𝑤 acceptable also find 𝓁(𝑤) acceptable; for those agents we have 𝑑(𝓁(𝑤),𝐴𝑗 ) = 𝑑(𝑤,𝐴𝑗 ) = 0. Now 
consider any agent 𝑗 ∈𝑁 such that 𝑤 ∉𝐴𝑗 and let 𝑆¬𝑤 be the set of those agents. Since 𝑤 is not acceptable for all agents, we have 
that |𝑆¬𝑤| ≥ 1. For any agent 𝑗 ∈ 𝑆¬𝑤, let 𝑥𝑗𝑟 be the rightmost alternative smaller than 𝑤 in 𝐴𝑗 (breaking ties arbitrarily), and observe 
that 𝑥𝑗𝑟 ≤ 𝓁(𝑤). We have that 𝑑(𝑥𝑗𝑟,𝓁(𝑤)) < 𝑑(𝑥

𝑗
𝑟,𝑤). Since this holds for every agent 𝑗 ∈ 𝑆¬𝑤, this means that 𝓁(𝑤) has both a smaller 

total and maximum distance from the 𝛼-TAS, contradicting the choice of 𝑤 by the mechanism. □

Given Claim 4.10, by Lemma 4.1, it suffices to prove that 𝑜 ∉ 𝐴𝑖𝑛 , as, otherwise, the distortion would be upper bounded by 
max{2+ 1 

𝛼
}, leading to a contradiction. This is established by the following claim, the proof of which is similar to that of Claim 4.10.

Claim 4.11. 𝑜 ∉𝐴𝑖𝑛 .

Proof. Assume by contradiction that 𝑜 ∈ 𝐴𝑖𝑛 . Let 𝑆𝑤 be the set of agents for which 𝑤 is a min-cost alternative, and notice that 
𝑖𝑛 ∈ 𝑆𝑤 be Claim 4.10. From the above, it follows that for every agent 𝑖 ∈ 𝑆𝑤, and for any alternative 𝑥 ∈ [𝑜,𝑤] we have that 𝑥 ∈𝐴𝑖; 
in particular, 𝓁(𝑤) ∈ 𝐴𝑖, which implies that {𝓁(𝑤),𝑤} ⊆ 𝐴𝑖 for those agents. For agents 𝑖 ∉ 𝑆𝑤, it holds that 𝑑(𝑖,𝓁(𝑤)) < 𝑑(𝑖,𝑤), as 
(a) either 𝑖 ≥ 𝓁(𝑤) and 𝓁(𝑤) is a min-cost alternative for 𝑖, or (b) 𝑖 < 𝓁(𝑤). This clearly implies that 𝓁(𝑤) ≻𝑖 𝑤 for each agent 𝑖 ∉ 𝑆𝑤. 
Overall, each agent 𝑖 ∈𝑁 either finds both 𝑤 and 𝓁(𝑤) acceptable, or prefers 𝓁(𝑤) to 𝑤 in her preference ranking. Since there exists 
some agent that does not find 𝑤 acceptable, 𝓁(𝑤) TAS-dominates 𝑤. For the case of 𝑀 =𝑀1, this contradicts the choice of 𝑤 as 
the winner by the mechanism. The proof for 𝑀 ∈ {𝑀2,𝑀3} is identical to that of Claim 4.10, as, again, we have that for any agent 
𝑗 ∈𝑁 , 𝑤 ∈𝐴𝑗 ⇒ 𝓁(𝑤) ∈𝐴𝑗 , similarly to Claim 4.10. □

This completes the proof. □

By optimizing over 𝛼, we obtain the following corollary, establishing that all these mechanisms are best possible when the metric 
space is a line.

Corollary 4.12. When the metric space is a line, for the maximum cost objective, the distortion of any mechanism 𝑀 ∈ {𝑀1,𝑀2,𝑀3} using 
𝛼 = 1 +

√
2 is at most 1 +

√
2.

Remark 4.13. One can obtain the distortion bound of Theorem 4.9 using a mechanism with access to DIST ∧ TAS by appropriately 
modifying a mechanism of Anshelevich et al. [13]. Anshelevich et al. considered a different setting, that of distributed metric social 
choice, where the agents are partitioned into districts, and local decisions within districts are then aggregated at a global level. In 
their setting, they define a mechanism called 𝛼-Acceptable-Rightmost-Leftmost (𝛼-ARL), which first selects, for each district, 
the rightmost alternative that the agents therein find “𝛼-acceptable” and then, the leftmost among these alternatives is chosen as 
the winner. If we consider districts of size 1 in their setting, 𝛼-acceptability reduces to acceptability according to the 𝛼-TAS in our 
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setting. Note that their mechanism requires the ordering of the alternatives on the line to be able to identify the rightmost and 
leftmost of them. We can infer this information from the distances between alternatives on the line, and then appropriately modify 
their mechanism. Theorem 4.8 from their work would then yield the upper bound of our Theorem 4.9. Still, we believe that the 
mechanisms that we consider in this section are much more natural for our setting and much easier to describe. □

5. Future directions

The main problem that our work leaves open is that of identifying the best possible distortion bound in terms of the social cost 
for general metric spaces and mechanisms that use all three types of information, for which we showed an upper bound of 1 +

√
2

and a lower bound of 2. Another interesting open question is to show whether 1 +
√
2 can be achieved with a mechanism with 

access to ORD∧ TAS for general metric spaces. For the maximum cost objective, we were able to obtain tight bounds for the general 
class of mechanisms, so the open question is whether these bounds can be achieved by mechanisms with access to ORD ∧ TAS and 
DIST ∧ TAS, as we proved to be the case on the real line. For DIST ∧ TAS, the (1 +

√
2)-Minimax-TAS-Distance mechanism, which 

we showed to achieve the tight bound of 1 +
√
2 on the line, seems like a very natural candidate. Unfortunately, however, we can 

construct counterexamples where the distortion of this mechanism is lower-bounded by 3 in general metric spaces. For ORD ∧ TAS,

TAS-Optimal falls short once considered in general metric spaces, as similar examples to the aforementioned one show a lower bound 
of 3 on its distortion.

More generally, our paper advocates the study of the interplay between information and efficiency in the metric social choice 
setting, building on a growing literature that has recently gained significant momentum. As a next step, one could consider eliciting 
additional cardinal information, for example, by using multiple approval thresholds 𝛼1,… , 𝛼𝑘, in conjunction with the other types 
of information that we use here, and quantify the effect on the distortion. More generally, it would make sense to consider different 
types of information structures and combinations between them; note, for example, that our 𝛼-Most-Compact-Set mechanism for 
the maximum cost uses the distances between alternatives, the 𝛼-TAS, and information about the top-ranked alternative of each 
agent. Finally, another very meaningful avenue could be to consider how randomization might aid in achieving even more improved 
distortion bounds in the presence of the 𝛼-TAS, possibly by building on top of the recent breakthrough result of Charikar et al. [23]

who showed a randomized constant upper bound strictly smaller than 3 for when only ordinal information about the preferences of 
the agents is available.
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