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Theta-phase dependent neuronal coding during
sequence learning in human single neurons
Leila Reddy 1,2,3,9✉, Matthew W. Self 4,9, Benedikt Zoefel1,2, Marlène Poncet 1,2, Jessy K. Possel 4,

Judith C. Peters 4,5, Johannes C. Baayen6, Sander Idema6, Rufin VanRullen 1,2,3 & Pieter R. Roelfsema 4,7,8

The ability to maintain a sequence of items in memory is a fundamental cognitive function. In

the rodent hippocampus, the representation of sequentially organized spatial locations is

reflected by the phase of action potentials relative to the theta oscillation (phase precession).

We investigated whether the timing of neuronal activity relative to the theta brain oscillation

also reflects sequence order in the medial temporal lobe of humans. We used a task in which

human participants learned a fixed sequence of pictures and recorded single neuron and local

field potential activity with implanted electrodes. We report that spikes for three consecutive

items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately

preceding and following it) were phase-locked at distinct phases of the theta oscillation.

Consistent with phase precession, spikes were fired at progressively earlier phases as the

sequence advanced. These findings generalize previous findings in the rodent hippocampus

to the human temporal lobe and suggest that encoding stimulus information at distinct

oscillatory phases may play a role in maintaining sequential order in memory.
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Learning to memorize and maintain a sequence of items in
memory is fundamental for successful behavior. At the
cellular level, this process is linked to sustained firing of

individual neurons during the delay period after a stimulus1–5, as
well as by anticipatory activity before the onset of an expected
stimulus6. Short-term memory processes have also been linked to
brain rhythms7,8, and there is converging evidence that neuronal
firing activity during short-term memory can be timed (or phase-
locked) to theta oscillations. In humans, the strength of theta
phase locking is predictive of human memory strength9 and
navigational goals10. In rodents, spiking activity of place cells11 is
locked to specific phases of the theta rhythm during spatial
navigation. As a rat runs through a sequence of spatial positions,
place cells that represent each of these locations fire at distinct
phases of the underlying theta rhythm, and their spikes occur at
increasingly early phases as the rat traverses the neuron’s place
field. This process has been called phase-precession and has been
proposed to play a role in the learning of a sequence of spatial
positions in the rodent brain12. It is unknown, however, if phase
precession of action potentials occurs in humans13.

Here we asked whether a theta phase-dependent coding
scheme occurs when human subjects learn a sequence. Because
humans are more visual creatures than rodents, we assumed that
learning a sequence of visual objects could be analogous to
learning a sequence of spatial positions in rodents. We hypo-
thesized that theta phase could be observed during stimulus
encoding, and that the phase at which a given cell fires would vary
with stimulus identity and order. In other words, while partici-
pants are involved in learning a stimulus sequence, each item in
the sequence might be represented by neuronal activity that is
locked to a different theta phase. Will medial temporal lobe
(MTL) neurons in human participants that navigate a “con-
ceptual” space defined by a sequence of visual stimuli exhibit the
same form of phase precession that has been observed in rodents
during spatial navigation? Do MTL neurons also fire at increas-
ingly early phases when the participant approaches the concept
that best activates the cells?

Results
To create an analogy with the navigation of spatial positions in
rodents, we designed a conceptual space that consisted of a
sequence of images (Fig. 1A, B). In this conceptual space, images
were displayed on the rim of a rotating “wheel” that moved in the
clockwise direction. The wheel moved forward smoothly during
the inter-stimulus interval (ISI; 0.5 s), during which period a gray
placeholder covered all the images. At the end of the ISI period,
the wheel stopped for 1.5 s, and the placeholder at the topmost
position of the wheel was replaced by the next image in the
sequence. We incentivized the participants to learn the sequences
by including probe trials (20% of trials). On probe trials we did
not present the next stimulus, but showed two choice stimuli
instead, and the observers had to indicate which stimulus was
next in the sequence. In our previous work with the same
paradigm6, we showed that human MTL neurons that initially
responded to a particular (“preferred”) image on the wheel started
firing in anticipation of this preferred image as a result of
sequence learning, during the immediately preceding stimulus
and the intervening ISI (Fig. 1D). This finding is reminiscent of
rodent place cells that show anticipatory activity in sequentially
ordered spatial environments14. In the current study, we ask
whether theta-phase precession observed in rodent place cells also
occurs when humans navigate this conceptual space. In other
words, are different stimuli in the sequence assigned a particular
theta phase for firing, and is the order of theta phases similar to
that observed in rodent phase precession?

Nine human participants learned the order of a fixed number
of stimuli (5−7) presented in a pre-defined sequence, while we
recorded spiking and LFP activity from 551 neurons in the hip-
pocampus and temporal cortex. Participants rapidly learned the
sequence order (>90% performance on probe trials within
6 sequence presentations6), and consequently all trials except the
probe trials were included in the analyses. For each neuron we
identified a preferred stimulus, and the stimuli before and after
the preferred stimulus in the sequence were labeled as the pre-
ceding and following stimuli, respectively (Fig. 1B). We then
compared the theta-phase of firing for the preceding, preferred
and following stimuli, and determined whether neuronal
responses elicited by these stimuli are encoded at distinct theta
phases, reflecting the order in which the sequence unfolds.

Typically, in the human hippocampus, a relatively small subset
of “strongly-tuned” neurons (<20% of recorded neurons) shows
strong and sparse visual selectivity for particular stimuli15, and
the remaining neurons are frequently omitted from further ana-
lysis. However, recent work shows that such weakly-tuned neu-
rons can participate in a reliable ensemble neural code16,17. In the
current study, we also included these neurons. For each cell, we
identified the preferred stimulus as the stimulus in the sequence
that elicited the largest number of spikes (i.e., the “hot spot” in the
sequence, Fig. 1C). The reliability of each neuron’s stimulus
preference was verified with a cross-validation analysis (see
Methods); only cells that showed a consistent stimulus preference
were included for further analyses (N= 452). Of these, 102
(~22.5%) were “strongly-tuned” (i.e., their response covaried
significantly with stimulus identity as determined by an ANOVA,
p < 0.05), and we refer to the rest as “weakly-tuned”. This
approach for neuron selection allowed us to retain a large number
of cells in our population (~80%). Supplementary Figs. 3–8 shows
examples of individual cells, and Supplementary Fig. 13 shows
that the main results were replicated across “strongly-tuned” and
“weakly-tuned” cells.

In accordance with previous studies9,10,18,19, we observed
prominent oscillatory activity in the LFP power and the spike-
triggered power (STP) across all recording electrodes in the theta
(4−8 Hz) and beta (10−18 Hz) bands (Fig. 2 A, B, Supplementary
Fig. 1). Neuronal spiking activity was significantly phase-locked
(Rayleigh test, p < 0.0005) in both frequency bands (Fig. 2C), with
a preferred firing phase around the trough of the oscillation (pi
radians).

We next determined whether the neurons encoded the pre-
ceding, preferred, and following stimuli at different phases of the
theta and beta cycles. The neurons fired at distinct phases for
these stimuli in the theta band (Fig. 3A, B; Supplementary Fig. 2,
Supplementary Figs. 3−8 for individual cell examples). In con-
trast, the phase of spikes relative to beta oscillations (Fig. 3C, D)
was relatively constant during the sequence despite a strong beta
band oscillatory component. The pair-wise difference in phase
preferences in the theta band for the different stimulus types was
significant across cells (F(1,903)= 37.2; p < 0.0001 for preferred
vs. preceding; F(1,903)= 16.4; p < 0.0001 for preferred vs. fol-
lowing; and F(1,903)= 74.8; p < 0.0001 for preceding vs. follow-
ing; Watson−William test significant with Bonferroni-correction
for three comparisons).

Importantly, similar to the phenomenon of phase precession in
the rodent hippocampus, phases advanced to earlier values as the
sequence progressed (mean angle ± standard deviation across
cells = 233 ± 35° (preceding), 181 ± 16° (preferred), and 117 ± 9°
(following). This corresponds to an average phase difference
between consecutive stimuli of −58 degrees/stimulus. This phase
lag, measured at the individual cell level rather than the popu-
lation level, remains significantly negative (−19.3 degrees/sti-
mulus, circular median test against 0, p= 0.01; Supplementary
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Fig. 2). Phase precession implies that the cycle of action potentials
is slightly shorter than the theta band cycle in the LFP. It predicts
a slightly higher frequency in spiking compared to the LFP theta
oscillation20 and this is indeed what we observed (Supplementary
Fig. 9). To examine how the preferred phase evolved at a finer
time scale as the sequence progressed from one stimulus to the
next, we plotted the mean phase across cells as a function of time
(Fig. 4, Supplementary Figs. 3−8 for individual examples). We
observed a change in the phase during successive stimuli. The
phase difference between the two extreme stimuli (preceding vs.
following) was significant in the theta band (60°/stimulus,
Watson-William test, F(1,903)= 48.3, p < 0.001), and just sig-
nificant in the beta band (12°/stimulus, Watson−William test, F
(1,903)= 5.5, p < 0.05).

The phase precession observed for the preceding, preferred and
following stimuli was not observed for the remaining stimuli in
the sequence, indicating that the phase selectivity did not extend
to stimuli that were far away from their preferred stimuli in the
sequence (Supplementary Fig. 2A). This decrease in phase locking
is not unexpected if the preferred stimulus reappears every 5
−7 stimuli, because items that follow the preferred stimulus will,
at some point, be perceived to precede its next presentation,
causing a breakdown of phase coding.

We carried out a number of control analyses to rule out the
possibility that the phase differences were caused by (1) differ-
ences in firing rates, (2) differences in LFP power, (3) a phase

reset around stimulus onset, or (4) differences in theta power.
First, we considered the possibility that a difference in the
number of spikes fired for each stimulus was responsible for the
phase differences (Supplementary Fig. 2 and Supplementary
Fig. 10). However, the largest phase difference was observed
between the preceding and following stimuli (p < 0.0001), even
though the firing rates were not significantly different from each
other (Supplementary Fig. 2A; p= 0.8). Furthermore, the pre-
ferred stimuli elicited a significantly higher firing rate than both
preceding and following stimuli, yet their spike phase was
intermediate. It is thus unlikely that a difference in firing rates
could explain the phase precession effect. We also matched the
spike count of individual trials between preceding and following
stimuli, only including the subset of trials for the preceding and
following stimuli in which the difference was <=1 spike (Sup-
plementary Fig. 10), and observed that phase differences were
maintained (F(1,842) = 36.2; p < 0.0001; Watson−William test).
We can therefore be confident that the difference in phase is a
robust finding that is not caused by differences in the firing rate
elicited by successive stimuli. Phase precession was also not
caused by differences in LFP power, because LFP power was
similar across the stimuli (Supplementary Fig. 2). We also con-
trolled for the possibility of a phase reset evoked by stimulus
onset that could differentially affect spike-phase locking for the
different stimuli (Supplementary Fig. 11). The absence of an
influence of phase-reset was confirmed with a control analysis in

Fig. 1 Experimental Design. A In the sequence learning experiment, the participants saw a sequence of 5-7 images in a fixed order. Each image was
presented for 1.5 s followed by an ISI of 0.5 s. During the image presentation period (1.5 s), an image was presented at the center of the screen, flanked by
gray placeholders. During the ISI period, a placeholder replaced the central image, and all the placeholders moved in the clockwise direction. At the end of
the ISI period, the central placeholder was replaced by the next image in the sequence. B An example of a 5-image sequence. The sequence was repeated
60 times in each experimental session. C For each neuron (N = 452) we determined the image that elicited the most spikes. This image was designated as
the preferred image for that neuron. Stimulus preference was verified with a cross-validation analysis (see Methods). The images before and after the
preferred image in the sequence were designated as the preceding and following images, respectively. The preferred image had the highest firing rate; the
responses to the preceding and following images were not significantly different from each other (p= 0.8 paired t-test, two-sided). In the box and whisker
plots, the central mark indicates the median firing rate across cells, the notch reflects the 95% confidence interval for the median, and the box reaches from
the first to the third quartile (interquartile range). D Anticipatory responses observed during sequence learning. The mean firing response across all cells
(N= 452) is plotted as a function of time. Time= 0 is the onset of the preferred stimulus for each cell, time=−2 s is the onset of the preceding stimulus
and time= 2 s is the onset of the following stimulus. The blue, pink and yellow shaded areas correspond to the stimulus periods of the preceding, preferred
and following stimuli. The white regions between stimuli are inter-stimulus intervals. Mean firing activity was corrected by subtracting baseline activity
before the preceding stimulus (−2.5 s to −2 s). Note the anticipatory firing prior to the onset of the preferred stimuli, as a gradual increase of activity
during the preceding stimulus6.
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which we removed precisely stimulus-locked spikes around the
time of maximum phase reset; again, the phase precession effect
remained significant. Next, since theta oscillatory activity in the
primate21 and human hippocampus22,23 is often observed to be
fragmented, with alternating periods of low and high theta power,
we asked whether stimulus-specific phase encoding was influ-
enced by variations in theta power. During periods of both low
and high theta we found the same pattern of results as before for
the preceding and following stimuli: the neurons fired at distinct
theta phases, and the phase values shifted forward during the
sequence (Supplementary Fig. 12). Finally, we examined how
phase precession relates to various factors such as the reliability of
stimulus preferences, strength of phase-locking, electrode loca-
tion, the time course of learning, or the length of the stimulus
sequence; the main finding was robust across variations in these
factors (Supplementary Fig. 13).

Discussion
Influential models of the hippocampus posit that this brain area
structures incoming information by generating sequentially
organized cell assemblies, each for a different input or event. It
has been hypothesized that a sequence of spatial locations (during
navigation), or a sequence of items that has been learned, is
organized at different phases of the theta rhythm, which might
organize cell assemblies into sequences via phase precession12,24.
Our results provide important new insights into phase precession
by showing (1) that phase precession occurs in the human brain
and (2) occurs outside navigation, in a task that required the
learning of a sequence of visual objects. Neuronal firing elicited by
different items in a sequence was phase-locked to the theta

oscillation at distinct phases, and we observed a gradual phase
precession that spanned three items in the sequence, with spikes
fired at successively earlier phases as the sequence progressed.
The phase coding was a robust phenomenon, which was also
observed in numerous control analyses.

Theta oscillations and phase precession are prominent in the
rodent hippocampus during spatial navigation11. Spatial naviga-
tion in virtual environments in humans has revealed that navi-
gational goals are represented in the firing activity of neurons25.
Theta oscillations have also been observed in humans, with fre-
quencies ranging from 3 to 9 Hz10,18,19,26–28. Watrous et al.
(2018)10 recently reported phase locking of action potentials to
lower theta frequencies (3 Hz) during navigation in a virtual
environment. However, unlike our study, that study did not
report a consistent directionality of theta phase coding with
respect to the navigational trajectory of the participant, a differ-
ence that might be due to the different theta frequency range, or
the different task. Here, we created a “conceptual” space, which
consisted of a set of images that were ordered in a sequence and
observed a distinct spike-phase code for successive items in the
sequence.

Recent studies in human and non-human primates have
investigated how a series of items during memory tasks is enco-
ded in different brain regions. At the level of single neurons, it
appears that the last presented item is most reliably encoded in
firing activity2,3, but these studies did not report phase locking to
ongoing oscillations. Other studies have reported spike-phase
coding for higher frequency (32 Hz) oscillations29, or elevated
theta-gamma phase-amplitude coupling30–32. An MEG study by
Heusser et al.30, is perhaps most relevant to the current study.
They asked participants to learn and recall the order of a

Fig. 2 LFP power and theta and beta phase-locking of neurons. A LFP power (expressed in decibel units relative to a 1/fα fit, see Methods) reveals
prominent activity in the theta (4−8 Hz) and low-beta (10−18 Hz) bands. B Theta and beta oscillations in the power spectra of the spike triggered power
(STP) during the sequence learning sessions (relative to a 1/fα fit). Again, peaks are observed in the theta and beta bands. In A, B, the solid gray lines and
shaded areas correspond to the mean and SEM across all recording channels, respectively. The solid black horizontal lines represent frequencies in the
theta and beta ranges that were significantly different from a 1/fα fit. C Distribution of preferred firing phases across cells in the sequence learning sessions
with respect to the theta and beta oscillations. The colored dotted and angular solid lines correspond to the mean and standard deviation of the preferred
firing phase across cells, respectively. The p-values are from a Rayleigh test.
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sequence of images and showed that, on successfully encoded
trials, consecutive items in the sequence exhibited higher gamma
power at distinct theta phases. Our results go beyond by
demonstrating theta-phase-coding of action potentials. This is
important because models of STM13 and hippocampal function12,
posit a key role for neuronal spiking activity phase-locked to theta
rhythms.

Theta-phase coding models of STM13 propose that a phase
precession-like code could underlie the encoding of a sequence of
items (e.g., a phone number). A salient feature of our experi-
mental paradigm is that the task display and instructions evoked
the impression of an event sequence, and participants had to
learn the temporal order of items. Future studies could investigate
if phase precession also occurs for tasks in which participants
report about the items in the sequence but in which the order
itself is irrelevant.

Phase precession was discovered in the rodent hippocampus.
While our report of the advancement of spike phases during
sequence-learning bears an overall resemblance to these previous
findings, the differences between paradigms raise several ques-
tions for future research. For example, rodent place cells show
strong preferences for particular spatial positions, and the dis-
tance between place fields is reflected in the firing patterns of
individual cells33. In our task, the cognitive space was a sequence
of visual items, which is not strictly analogous to navigation in a
two-dimensional space, and cells with strong selectivity for their
preferred stimuli showed weaker phase precession (Supplemen-
tary Fig. 13G), raising interesting questions for future research
about the role of the so-called “concept cells”34 in the human
hippocampal framework35. Furthermore, as explained above, in
this study we investigated spike-phase coding at the population
level and included all cells with a reliable (but sometimes weak)

stimulus preference. Thus, stimulus preference was weaker and
firing rates were lower than is typically reported for rodent place
cells. In this context, it is worth noting that the strongest phase-
coding effects were observed for the full population of responsive
neurons; the effects were still visible but statistically weaker when
smaller groups of neurons were tested (Supplementary Fig. 13).
Therefore, phase-coding in our study is an ensemble effect, more
easily detectable in larger populations (although see Supplemen-
tary Figs. 3−8 for examples of individual neurons).

Another difference between our results and rodent phase
precession is that in the rodent, instantaneous firing rates cor-
relate with spike phase36, but our results suggest that different
phase values are observed without a concomitant difference in
firing rate (Supplementary Fig. 10). Finally, it is of interest to
compare the rate at which phase precession proceeds between the
two species. In rodent place cells, the rate of phase precession is
not fixed, but varies as a function of the spatial extent of the place
field, and the speed at which the animal crosses it37. For example,
when the same place field is crossed at slow or fast speeds (within
e.g. 12 cycles or 5 cycles), the phase shift from cycle to cycle slows
down or speeds up accordingly. In our sequence, the number of
stimuli that elicit elevated spiking is one to two stimuli (Fig. 1D)6.
It took ~24 cycles (2 s/stimulus and two stimuli for a 6 Hz
oscillation) to traverse the region in stimulus space associated
with increased activity. This is a large number of cycles compared
to the number that pass by when a rat traverses a hippocampal
place field, and consequently the phase shift from cycle to cycle
(or the phase lag reported in Fig. 4) was lower than that reported
during spatial navigation in rodents. Future work could test how
the rate of phase precession in a conceptual navigation space in
humans varies as a function of the presentation speed of the
sequence.
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Fig. 3 Phase encoding of successive stimuli. A Distribution of spike phases relative to the theta band LFP for the preceding (blue), preferred (red) and
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Although our paradigm measures the response of single neu-
rons to distinct, successive stimuli, it is of interest to consider the
response of multiple neurons (with distinct stimulus selectivity)
within a single theta cycle. The finding that it is possible to track
the phase advance of one neuron across theta cycles implies that a
sequence of items is represented by a set of neurons tuned to
different pictures within every theta cycle, firing at specific phases

(Fig. 5). During the cycle, neurons whose preferred stimulus is the
previous item fire at the earliest phase and are followed by neu-
rons coding for the current and following stimulus, analogously
to the behavior of place cells.

In summary, learning and maintaining the order of a series of
stimuli or events is crucial in many tasks. An accurate encoding of
a sequence of ordered stimuli enables an organism to predict the
future based on regularities learned in the past. Some authors
have argued that the role of the hippocampus is to encode events
that occur in a temporally organized sequence38,39, by generating
sequentially organized cell assemblies12,24. Our results are broadly
consistent with these hypotheses in that we observe distinct theta
phase firing for successive items in a sequence, that reflects the
sequence order. Nevertheless, the importance of phase coding is
still under dispute–some species, such as bats, have excellent
navigational capabilities and similar neuronal place coding stra-
tegies, which do not depend on the theta rhythm40,41, although
more recent results suggest non-oscillatory phase coding and
phase precession in the bat hippocampus42. The precise role of
theta-phase precession therefore remains to be determined. It is
encouraging that it is now possible to systematically study theta
phase-coding in the human brain so that future studies can also
use this approach to test the generality of theta-phase shifts
during sequence coding, navigation in real and conceptual spaces,
STM, and other cognitive functions.

Methods
Participants were nine patients (four females, age range 18−36 years) with phar-
macologically intractable epilepsy undergoing epileptological evaluation at the
Amsterdam University Medical Center, location VUmc, The Netherlands. Patients
were implanted with chronic depth electrodes for 7−10 days in order to localize the
seizure focus for possible surgical resection43,44. All surgeries were performed by
J.C.B and S.I. The Medical Ethics Committee at the VU Medical Center approved
the studies, and informed consent was obtained from participants. The electrode
locations were based entirely on clinical criteria and were evaluated based on the
pre-surgical planned trajectories on the basis of structural MRI scans. The accuracy
of the implantation was always checked using a CT scan co-registered to the MRI.
We only included electrodes that were within a 3 mm deviation from the target
(based on visual confirmation).

Each electrode contained eight microwires (Behnke-Fried electrodes, Ad-Tech
Medical) from which we recorded single/multi-unit activity and local field
potentials, and a ninth microwire that served as a local reference. The signal from
the microwires was recorded using a 64-channel Neuralynx system, filtered
between 1 and 9000 Hz, sampled at 32 KHz. On average, each patient was
implanted with 34 ± 10 microwires (mean ± standard deviation across patients,
range= [16,48]). Participants sat in their hospital room at the Epilepsy Monitoring
Unit, and performed the experimental sessions on a laptop computer. All patients
participated in the two types of experimental sessions described below.
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determined by a Watson-William test on the phase distributions for the
preceding vs. following stimuli. The gray dashed lines correspond to the
best linear fit through the data, and is plotted for illustration purposes. The
phase lag was significant in the theta band (60°/stimulus, Watson-William
test, F(1,903)= 48.3, p < 0.0001), and just significant in the beta band
(12°/stimulus, Watson-William test, F(1,903) = 5.5, p < 0.05).
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~230° and ~120° when S1 and S3 are presented, respectively (Fig. 3B). The thickness of the bars represents the firing rate. The stippled lines for the theta
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stimulus for this neuron). Finally, the neuron whose preferred stimulus is S3 (in yellow) will fire at ~230° (S2 is the preceding stimulus for this neuron).
Thus, in a given theta cycle, successive items are represented in the same order as the temporal order of the sequence.
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Screening sessions. On each day that the patient was available, s/he first per-
formed a screening session during which we presented a large variety of different
images (famous people, relatives, animals, landmarks, objects etc.). Each image
subtended 2−3 degrees of visual angle and was presented at the center of the
screen. Images were presented for 1000−1200 ms, followed by an inter-stimulus
interval of 500−700 ms. Each image was repeated 8 times in a randomized order.
Between 7 and 51 images were used in the screening sessions depending on the
patient’s availability. After the presentation of each image the patients performed a
simple yes/no task, for example “Did the picture contain a human face”? The exact
question depended on the picture set. This task ensured that patients attended to
the stimuli. Data from the screening sessions were analyzed to determine which
images elicited stimulus-selective responses in some of the recorded neurons6.
These images from the screening sessions were included in the sequence learning
experiment, along with a number of arbitrarily selected images.

Sequence Learning (SL) Sessions. The patients performed a total of 29 sequence
learning (SL) sessions. In each SL session, participants were presented with a
sequence of 5-7 images (image number determined as a function of the difficulty
level and the availability of the patient; 1 session with 5 stimuli, 13 sessions with
6 stimuli, and 17 sessions with 7 stimuli). The images were always in a pre-
determined order such that a given image, A, predicted the identity of the next
image, B, and so on. Participants were asked to remember the order of the stimuli
in the sequence. Each stimulus was presented for 1.5 s with an inter-stimulus
interval (ISI) of 0.5 s, resulting in individual trials of 2 s (Fig. 1). The sequence was
repeated continually 60 times resulting in experimental sessions of ~10−14 min,
not including time spent by the participant to respond on probe trials. 20% of trials
were “probe” trials in which, instead of being presented with the next image of the
sequence, participants were shown two images side by side and asked to decide (by
pressing one of two keys on the keyboard) which of the two was the next image in
the sequence.

To further the impression of a sequence of images we used the following display
arrangement (Fig. 1): Each image was presented at the center of the screen while
placeholders (empty gray squares) were presented to the left and right of the central
image. At the end of the 1.5 s presentation period, the central image was replaced
by a gray placeholder and all the gray squares moved one “step” forward in a
clockwise direction for the duration of the ISI, such that each placeholder
eventually occupied the next placeholder position. At the end of the ISI, the
placeholder that now occupied the central position was replaced by the next image
in the sequence. The viewer’s subjective impression at the end of the ISI interval
was that the central image had been hidden, and then moved clockwise, while the
central position was replaced by the next image in the sequence.

Neuronal stimulus preferences. As has been previously reported, a subset of
human medial temporal lobe neurons (~20% of recorded neurons) show highly
sparse and stimulus-selective responses15. These “strongly-tuned neurons” are
typically identified with screening sessions in which each neuron is tested with a
wide set of stimuli, and the stimulus that elicits a large increase in firing activity is
identified as the preferred stimulus of the neuron. The remaining recorded cells
(~80%) are frequently neglected.

However, recent studies show that weakly-tuned neurons with weak stimulus
dependence can also participate in a reliable neural code (e.g., 16,17). Therefore, in
the current study we also wished to investigate population-level dynamics and
include cells that might show a weaker preference for a given stimulus, but which
may nonetheless be reliable across repeats of the stimulus. To this end, we
identified preferred stimuli and verified their reliability using the non-parametric
cross-validation procedure described below. This approach allowed us to retain a
large number of cells in our population (80%), along with the strongly-tuned
neurons, while excluding cells with inconsistent stimulus preferences.

For each neuron we identified the stimulus that elicited the largest number of
spikes (i.e., the “hot spot” in the sequence) and designated this stimulus as the
preferred stimulus. The stimuli before and after the preferred stimulus were labeled
as the preceding and following stimuli, respectively. To verify that the stimulus
preference was reliable for each cell, we performed a cross-validation analysis in
which we split the data into two halves (and we repeated this process randomly on
105 iterations for each cell). The preferred stimulus was chosen on one half of the
data as the stimulus with the largest response. In the second half of the data, we
tested the consistency in stimulus preference by verifying that the median response
to the preferred stimulus was larger than the median response to the other stimuli
(chance is 50%). The consistency measure (reported on subplots (b) of
Supplementary Figs. 3-8) was the proportion of iterations on which the preferred
stimulus was consistent across the two halves of the dataset. Significance was
determined by a binomial test. Only cells (N= 452) with a significant consistency
score (Binomial test, p < 0.05) were included in the final analysis. Of these, 102
(~22.5%) were “strongly-tuned” (i.e., their response covaried significantly with
stimulus identity as determined by an ANOVA, p < 0.05). The remaining 350 cells
were labeled as “weakly-tuned”–cells with weaker but reliable stimulus preferences.

Spike detection and sorting. Spike detection and sorting were performed with
wave_clus45. Briefly, the data were band pass filtered between 300 and 3000 Hz and

spikes were detected with an automatic amplitude threshold (Supplementary
Fig. 14). Spike sorting was performed with a wavelet transform that extracted the
relevant features of the spike waveform. Clustering was performed using a super-
paramagnetic clustering algorithm. Clusters were visually reviewed by the first
author for (1) the mean spike shape and its variance; (2) the ratio between the spike
peak value and the noise level; (3) the inter spike interval distribution of each
cluster; (4) the presence of a refractory period for the single-units; i.e. fewer than
1% of spikes in a 3 ms or smaller inter- spike interval; (5) the similarity of each
cluster to other clusters from the same microwire. Based on manual inspection of
these criteria, clusters were retained, merged or discarded. Unit quality metrics are
shown in Supplementary Fig. 15.

Number of neurons and their locations. Over the nine patients we recorded
from 551 neurons in the left and right hippocampi (N= 429) and temporal cortices
(N= 122) in the sequence learning sessions. Of these, 362 hippocampal neurons
and 90 cortical neurons showed significant consistency scores for stimulus pre-
ference and were included for further analysis. Single units were manually classified
based on the shape and variance of the waveform, the ratio between the waveform
peak value and the noise level, the inter-spike interval distribution, and the pre-
sence of a refractory period. 126 units were classified as single units.

Data analysis. All analyses were performed with the FieldTrip toolbox46 and
custom Matlab code.

Estimation of theta-band oscillatory activity. All LFP analyses were performed with
the FieldTrip toolbox in Matlab46. The LFP was recorded from the same micro-
wires as the spiking activity. It was downsampled to a 1,000-Hz sampling rate and
notch filtered (between 45−55 Hz and 98−102 Hz) using a second order Butter-
worth filter. For each channel, we computed the time-frequency decomposition
between 1 and 40 Hz. The time-frequency decomposition was performed with the
“mtmfft” method and Hanning tapers over 2 second epochs of the raw LFP trace
over the entire duration of the session (i.e., without epoching). We estimated
whether significant theta activity was present in the LFP by fitting a 1/fα function to
the power spectrum and taking the ratio (in units of decibels) between the actual
power spectrum and the 1/fα fit (Fig. 2A). The value for α in the 1/fα fit was 1.98 ±
0.4 (mean ± standard deviation across channels), close to the value previously
reported in humans47. Significant deviation from the 1/fα fit was estimated with a t-
test, Bonferroni corrected for multiple comparisons (79 frequencies). In addition to
estimating theta power with the raw traces, we also measured the power spectrum
of the oscillations around the time of each spike (spike triggered power; Fig. 2B).
We extracted a 1 s LFP segment centered on each spike and extracted the frequency
spectrum of each segment. The average power spectrum of these LFP traces was
estimated by taking the average of the absolute values (the power) of the spectra of
all LFP segments48. The resultant power spectrum was fitted to a 1/fα function, and
the ratio (in decibel units) computed. Significant deviation from the 1/fα fit was
estimated with a t-test, Bonferroni corrected for multiple comparisons. Both
measures of quantifying oscillatory power revealed prominent theta activity in the
4-8 Hz range and beta activity in the 10−18 Hz range.

Estimation of spike-LFP phase-locking. The LFP traces were band-pass filtered with
a second order Butterworth filter in the theta (4−8 Hz) and beta (10−18 Hz)
frequency ranges. A phase value for each spike in each frequency range was
extracted using the Hilbert transform on the band-passed signal, using the Hilbert
transform option in the FieldTrip toolbox. The phase value was the angle of the
value returned from the Hilbert transform at the time of the spike. A phase of 0˚
corresponds to the peak of the LFP oscillation, and a phase of ±180˚ corresponds to
the trough of the oscillation. Phase-locking was evaluated by comparing the dis-
tribution of phase angles against the uniform distribution using the Rayleigh test.
We observed significant phase-locking in the theta and beta ranges (Fig. 2C,
Supplementary Fig. 14G). For all analyses, mean phase values were computed as
the angle of the mean resultant vector using the Circular Toolbox for Matlab49.

Stimulus-specific spike-phase-locking. To determine whether the spikes for the
different stimuli occurred at different phases, we assigned phase values to each
stimulus depending on the time at which the spikes were fired. Phase values were
binned into 15 bins. For visualization purposes only, a smoothing of two bins in
both directions was applied. The angular standard deviation (half of the 68.3%
confidence interval) was reported on each plot (again, solely for visualization). To
statistically compare the phase distributions between stimuli, the Watson−William
test from the Circular Toolbox for Matlab49 was applied to the unsmoothed phase
values.

Only sequence iterations in which the preceding, preferred and following
images occurred consecutively were included in the final analyses (Figs. 3 and 4). In
other words, sequence iterations in which any of these images corresponded to a
probe event were excluded. The mean ± standard deviation of included sequence
iterations across cells was 24.1 ± 4.6. To control for the effect of spike number on
phase between the following and preceding stimuli (Supplementary Fig. 10), we
equalized the number of spikes for each neuron by only including the subset of
iterations on which the difference between the two stimuli was <=1 spike. We re-
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computed the preferred phases for the preceding and following stimuli, while only
considering the reduced number of sequence iterations (mean ± standard deviation
of included sequence iterations across cells = 14.5 ± 6.9). In the population-level
figures (Fig. 4 and Supplementary Fig 13), for display purposes only, the plotted
phase values are the circular mean phase values across cells computed in sliding
windows (steps of 0.112 s corresponding to 50 steps in each figure). The sliding
windows were centered on each time bin, and any window that expanded beyond
the trial edges (i.e., −2 s and 3.5 s) were truncated accordingly. Phase precession
lags were computed by taking the difference of the mean phase across cells in non-
overlapping windows for the extreme stimuli (i.e., the preceding vs. the following
stimulus), and statistical significance was determined with a Watson−William test.
The window size depended on the exact analysis and the number of cells included
in the analysis. In the analysis that pooled over all cells (Fig. 4), the window size
was smaller (1.5 s) since there was less variability in the data because of the larger
number of cells. In analyses where the data were reduced via a median split (e.g.,
Supplementary Fig. 13B), it was 2 s; and it was 2.5 s for the remaining analyses. The
circular mean was only plotted when the requirements for confidence limits were
met as determined by the Circular Statistics Toolbox (please see ref. 49 for details).

Phase-reset and inter-trial coherence (ITC). We controlled for the possible influence
of phase-reset of the theta oscillation caused by stimulus onset on measures of
phase precession (Supplementary Fig. 11). We computed the inter-trial coherence
at each time and frequency point. On each trial of the following, preferred and
preceding stimuli we extracted an LFP segment in the time window of [−0.5 1.5]
sec (time 0 corresponds to stimulus onset). For each channel, we computed the
time-frequency decomposition for 32 logarithmically-spaced frequencies between
1.7 Hz and 98.7 Hz9. The time-frequency decomposition was performed with the
multitaper method with 2 cycles per frequency on the notch-filtered and down
sampled signal, in a time interval of −0.5 s to 1.5 s in steps of 50 ms. The phase and
power at each time and frequency point was extracted from a time-frequency
transform of the signal. The inter-trial coherence is the absolute value of the
average spectrum normalized by its amplitude50, and varies between zero (no
phase-locking) and one (perfect phase-locking). Equal numbers of trials were used
for the different stimuli.

Statistical testing. We used two-tailed tests unless otherwise specified. All sta-
tistical tests performed on circular data were performed with the Circular Toolbox
for Matlab49, applied to the unsmoothed data.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Source data for Figs. 2, 3, 4, and Supplementary Figs. 10, 11, 12, 13 are provided with this
paper. Additional data are available from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The analysis used the wave_clus toolbox,the FieldTrip toolbox, and the Circular Statistics
toolbox.
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