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Modeling the distribution of key economic indicators in a data-rich 
environment: new empirical evidence

Iason Kynigakisa and Ekaterini Panopouloub 

aUniversity College Dublin, Dublin, Ireland; bUniversity of Essex, Colchester, UK 

ABSTRACT 
This study explores the ability of a large number of macroeconomic variables to forecast the 
mean, quantiles and density of key economic indicators. In the baseline case, we construct 
the forecasts using an autoregressive model. We then consider several general specifications 
that augment the time series model with macroeconomic information, either directly using 
the full set of predictors, through targeted-factors, targeted-predictors or forecast combina
tions. Our findings suggest that aggregating information across quantiles leads to improved 
estimates of the conditional mean. Overall, augmenting the autoregressive model with 
macroeconomic variables through methods that perform variable selection or account for 
non-linearities improves predictive performance. This increase in out-of-sample performance 
arises from the improved estimation of the lower and middle part of the distribution.
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1. Introduction

The prediction of the future evolution of key economic 
indicators is imperative to the conduct of economic 
policy, due to the delayed impact of a central bank’s 
actions on economic activity. Therefore, accuracy is 
essential when forecasting the effects of various shocks 
on the future dynamics of key business cycle and infla
tion indicators. Typically, forecasting focuses on model
ing the conditional mean using a large number of 
macroeconomic variables (see e.g., Kim & Swanson, 
2014; Medeiros et al., 2021; Stock & Watson, 2002a, 
2002b). However, central banks are increasingly con
cerned about the uncertainty around the point forecasts 
of economic indicators such as industrial production, 
inflation and employment. This has led to a growing 
number of recent papers that focus on modeling and 
forecasting the quantiles and density of economic indi
cators (see e.g., Amisano & Giacomini, 2007; Barbaglia 
et al., 2023; Carriero et al., 2024; De Gooijer & Zerom, 
2019; Manzan, 2015; Pfarrhofer, 2022; Rossi & 
Sekhposyan, 2014). Forecasting the distribution of eco
nomic variables is important for several reasons. 
Density forecasts are able to fully capture the uncertain 
future behavior of an economic indicator, instead of 
measuring its central tendency similar to point fore
casts. Furthermore, forecasting the distribution becomes 
important when a central bank evaluates the risks of a 

future increase or decrease of an economic indicator 
differently. Distribution forecasts can also lead to more 
accurate estimates of the conditional mean, which can 
be modeled as a function of individual quantiles (Lima 
& Meng, 2017).

The aim of this study is to forecast the mean, quan
tiles and distribution of the Industrial Production Index, 
the Consumer Price Index for all urban consumers and 
Non-farm Payroll Employment using models that 
include both a time series component and a large num
ber of economic variables. In the baseline case, we fore
cast the conditional mean using an autoregressive 
model and to forecast the quantiles we employ the 
quantile autoregressive model, proposed by Koenker 
and Xiao (2006), where the forecasts depend only on 
the past values of the target variable. To enhance the 
forecasting models with a richer information set, we fol
low Kim and Swanson (2014) and Manzan (2015) by 
assuming that both the conditional mean and quantiles 
of the variables being forecast are functions of their own 
lags in addition to a large panel of macroeconomic and 
financial indicators based on the FRED-MD database by 
McCracken and Ng (2016).

We explore four general specifications to forecast 
the conditional mean or quantiles, all of which aug
ment the baseline time series model with economic 
indicators. In the first approach, we directly augment 
the baseline model by incorporating the full set of 
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predictors through methods that perform dimension
ality reduction, variable selection and account for 
non-linearities. The next two approaches exploit the 
ability of machine learning methods to uncover 
important variables and non-linear interactions. 
Specifically, the second approach directly includes the 
selected variables to the baseline model, while the 
third approach constructs latent factors based on 
the subset of targeted predictors before augmenting 
the time series model. The final approach extends the 
baseline model through forecast combinations of 
bivariate prediction models, based on either simple 
weighting schemes or with the weights estimated 
using machine learning methods. The proposed spec
ifications allow for heterogeneous degrees of persist
ence of the variable we forecast and asymmetric 
dynamic responses of economic variables at different 
parts of the distribution. To take advantage of the var
ied information content in the forecasts of different 
quantiles, we follow Lima and Meng (2017) and 
Meligkotsidou et al. (2019) and construct forecasts of 
the conditional mean as the weighted average of a set 
of conditional quantile forecasts.

The analysis by Manzan (2015) is similar to the one 
considered in this paper, however, there are several dif
ferences between the two. First, our study considers a 
general specification of models based on forecast com
binations, in addition to targeted predictors or factors. 
We also expand the scope of machine learning models 
beyond the lasso to encompass non-linear models such 
as random forests, gradient boosting, and neural net
works. In addition to examining the accuracy of indi
vidual quantile forecasts, we also assess the models’ 
ability to predict the entire distribution of economic 
indicators, similar to Manzan and Zerom (2013). 
However, unlike their study, we use a larger dataset of 
macroeconomic predictors, a wider selection of models 
and focus on industrial production and employment in 
addition to inflation. Finally, in line with Kim and 
Swanson (2014) and Medeiros et al. (2021), we add to 
the current literature on machine learning-based fore
casting of the conditional mean of economic indicators 
in a data-rich environment. However, we enhance the 
forecasting accuracy of the center of the distribution by 
combining information across quantiles from several 
model specifications.

An alternative framework often used to forecast 
the quantiles and distribution of economic indicators 
is based on stochastic volatility models. Therefore, in 
addition to models within the four augmented autore
gressive specifications, we consider univariate autore
gressive stochastic volatility models with symmetric 
or asymmetric error distributions (see e.g., Jacquier 
et al., 1994; Kim et al., 1998; Omori et al., 2007; 
Taylor, 1982). Since cross-lags have been shown to 
improve predictive performance (Gruber & Kastner, 

2022), we also employ vector autoregressions with 
stochastic volatility based on Bayesian estimation 
methods. Bayesian vector autoregressions (BVAR) are 
widely used for macroeconomic forecasting, as 
Bayesian shrinkage helps mitigate the curse of dimen
sionality from the large number of parameters and 
Bayesian estimation facilitates the efficient computa
tion of time-varying volatility (see e.g., Ba�nbura et al., 
2010; Carriero et al., 2019; Giannone et al., 2015; 
Huber & Feldkircher, 2019). The BVAR models differ 
according to the structure of the covariance matrix, 
with one case assuming that the errors follow a 
Cholesky stochastic volatility structure, and the other 
that the covariance matrix has a factor stochastic 
volatility structure.

Our findings suggest that combining information 
across quantiles improves the accuracy of condi
tional mean forecasts relative to generating point 
forecasts directly. Additionally, including economic 
variables to the baseline model through methods 
that perform variable selection or account for non- 
linearities can further improve predictive perform
ance. The results also show that models combining 
information or forecasts generate performance 
equivalent to or surpassing that of stochastic volatil
ity models. The out-of-sample analysis indicates that 
augmenting the autoregressive model with macro
economic and financial information can increase the 
accuracy of conditional quantile forecasts. This 
improved forecasting performance is observed espe
cially in the lower and middle quantiles. For the 
density forecast evaluation, the majority of the mod
els significantly outperform the benchmark, which 
can be attributed to greater forecasting accuracy in 
the left tail and center of the distribution. Models 
incorporating a large number of predictors offer the 
highest accuracy for industrial production and infla
tion, while stochastic volatility models yield compar
able out-of-sample performance for employment.

Our findings show that the global financial crisis 
represents a break for the evolution of model per
formance over time. During the crisis, cumulative 
performance is more volatile for industrial produc
tion and inflation than it is for employment, while 
after the crisis, performance of the models over the 
benchmark accumulates higher, especially for indus
trial production and inflation. Furthermore, extend
ing the sample to cover the turbulent COVID-19 
pandemic period leads to a decline in out-of-sample 
performance, with inflation forecasts being less 
affected compared to those for industrial production 
and employment. To account for the heterogeneity 
in forecasting accuracy across different models, we 
construct an amalgamation of all individual fore
casts. Amalgam forecasts significantly outperform 
the benchmark for the conditional mean, although 
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their performance is equivalent to that of the best- 
performing individual model. The amalgamation 
approach results in improved density forecasts and 
higher predictive accuracy for the lower and middle 
quantiles. Finally, since the contribution of a specific 
predictor to the formation of a forecast of the con
ditional mean can be different to that of the condi
tional quantiles, we conduct a variable importance 
analysis to explore which variables influence the 
conditional distribution far from its center. We find 
that variable importance not only differs across the 
conditional mean and quantiles, but also based on 
whether the predictor set is comprised of macroeco
nomic variables, or their individual forecasts based 
on simpler models.

The article is organized as follows. Section 2 dis
cusses the models used to construct point, quantile 
and density forecasts. Section 3 describes the data 
and sample splitting. Section 4 presents the empir
ical results, and Section 5 concludes.

2. Methodology

In this Section we introduce the models used to 
forecast the conditional mean and quantiles and the 
benchmarks used to evaluate their predictive 
performance.

2.1. Autoregressive models

Let yt; for t ¼ 1, 2, :::, T; be the macroeconomic 
variable we are interested in forecasting h-step 
ahead that we assume is stationary. We focus on 
one period ahead forecasts and set h ¼ 1: The base
line model we use to forecast the conditional mean 
is the autoregressive (AR) model of order p; where 
p is determined by the Bayesian information criter
ion (BIC), with the maximum value of p set to 12 
lags. The model can be written as:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ etþh, (1) 

where bi; for i ¼ 0, 1, :::, p; are the model parameters 
and et is the error of the regression. The estimates 
of the parameter vector b are obtained by minimiz
ing the least squares loss function:

b̂ ¼ argmin
b

L bð Þ

¼ argmin
b

1
T

XT

t¼1
ytþh − b0 −

Xp

i¼1
biyt−iþ1

 !2

:

(2) 

Once the parameters have been estimated the 
forecast for the conditional mean can be obtained 
as ŷtþhjt ¼ b̂0 þ

Pp
i¼1 b̂iyt−iþ1:

However, the above loss function is affected by 
the presence of extreme observations and can be 
restrictive since it focuses only on one aspect of the 
distribution of yt: These potential limitations led to 
the development of quantile regression, introduced 
by Koenker and Bassett (1978), who generalize 
ordinary sample quantiles to a regression setting, 
thus providing a more complete approximation for 
the distribution of yt:

In this setting, the baseline approach we use to 
model the quantiles of yt is the quantile autoregres
sive (QAR) specification considered in Koenker and 
Xiao (2006):

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1 þ etþh sð Þ, (3) 

where qt sð Þ indicates the s 2 0, 1ð Þ conditional 
quantile of yt; bi sð Þ; for i ¼ 0, 1, :::, ps; are the 
model parameters depending on s; ps is the lag 
order used to model qt sð Þ and et sð Þ is the error for 
quantile s: The QAR model extends the AR model 
used for the conditional mean to a quantile regres
sion setting. This model allows the lag order to 
vary at different parts of the distribution. To select 
the lag order at each quantile we follow Manzan 
(2015) and minimize a BIC-type criterion based on 
the quantile loss function. The parameters of the 
model are estimated by minimizing the following 
function:

b̂ sð Þ ¼ argmin
b

Qs b sð Þð Þ

¼ argmin
b

1
T

XT

t¼1
Qs ytþh − b0 sð Þ −

Xps

i¼1
bi sð Þyt−iþ1

 !

,

(4) 

where Qs ∙ð Þ is the quantile loss function defined as:

Qs etþh sð Þð Þ ¼
setþh sð Þ, if etþh sð Þ � 0
s − 1ð Þetþh sð Þ, if etþh sð Þ < 0

(

(5) 

and etþh sð Þ ¼ ytþh − b0 sð Þ −
Pps

i¼1 bi sð Þyt−iþ1:

Similarly, the forecast for the sth quantile can be 
obtained as q̂tþhjt sð Þ ¼ b̂0 sð Þ þ

Pps

i¼1 b̂i sð Þyt−iþ1:

For all models, we rearrange the quantiles to avoid 
quantile crossing as proposed in Chernozhukov 
et al. (2010).

2.2. Augmented AR models

To examine whether augmenting the AR and QAR 
models with information from a large number of 
macroeconomic variables can improve forecast 
accuracy, we consider several model specifications. 
In the first specification we augment the autoregres
sive models with the direct inclusion of macroeco
nomic variables modelled using a variety of flexible 
functions from machine learning that induce 
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sparsity or introduce non-linearities. The second 
approach allows a subset of predictors chosen by 
machine learning methods to enter the model dir
ectly in a linear fashion. An alternative approach 
consists of extracting principal components of the 
macroeconomic variables chosen by machine learn
ing models. The final approach combines the fore
casts of bivariate prediction models to construct 
forecasts for the conditional mean and quantiles, 
similar to Huang and Lee (2010) and Rossi and 
Sekhposyan (2014). We consider both simple fore
cast combination schemes and approaches based on 
machine learning.

The augmented AR models build upon the resid
uals of the autoregressive model similarly to Kim 
and Swanson (2014). For all models described below 
we start by fitting an autoregressive model to the 
dependent variable, excluding predictor variables, 
using least squares for the AR model or quantile 
regression for the QAR model, and retain the corre
sponding residual series. For all augmented model 
specifications, we use the same lag orders, p or ps;

selected for the autoregressive part of the model as 
discussed above. The objective then becomes to map 
the macroeconomic variables to the residuals using 
different functions, in order to improve upon the fit 
of the autoregressive model.

Let zt be the N-vector of stationary predictors at 
time t; the augmented AR model for the conditional 
mean is:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ g zt; hð Þ þ utþh, (6) 

where g ∙ð Þ is a flexible function with parameters h 

that maps the predictors to the macroeconomic 
variable yt through the residuals of the AR model 
and ut are the errors of the augmented model. The 
parameters are derived by minimizing the least 
squares loss:

ĥ ¼ argmin
h

L hð Þ ¼ argmin
h

1
T

XT

t¼1
etþh − g zt; hð Þ
� �2

:

(7) 

The forecast for the conditional mean is ŷtþhjt ¼

b̂0 þ
Pp

i¼1 b̂iyt−iþ1 þ ĝ zt; ĥ
� �

; where ĝ is the esti
mated function based on data up to time t:

The augmented QAR model is given by:

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1 þ gs zt; h sð Þð Þ

þ utþh sð Þ,

(8) 

where the parameters h sð Þ of function gs ∙ð Þ now 
depend on the conditional quantile s and are esti
mated by minimizing the following function:

ĥ sð Þ ¼ argmin
h

Qs h sð Þð Þ

¼ argmin
h

1
T

XT

t¼1
Qs etþh sð Þ − gs zt; h sð Þð Þð Þ, (9) 

where Qs ∙ð Þ is defined as:

Qs utþh sð Þð Þ ¼
sutþh sð Þ, if utþh sð Þ � 0
s − 1ð Þutþh sð Þ, if utþh sð Þ < 0

(

(10) 

and utþh sð Þ ¼ etþh sð Þ − gs zt; h sð Þð Þ: The forecast 
for the sth conditional quantile in the case of the 
augmented AR models is q̂tþhjt sð Þ¼ b̂0 sð Þþ
Pps

i¼1 b̂i sð Þyt−iþ1þ ĝ s zt;ĥ sð Þ

� �

:

We consider four general model specifications for 
the conditional mean and quantiles that vary based 
on the choice of flexible function, g and the type of 
inputs, z:

2.2.1. Predictor-augmented AR
In this specification the models incorporate infor
mation from the full set of predictors. The pre
dictor-augmented (PA) AR and QAR models can 
respectively be rewritten as:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ g xt; hð Þ þ etþh, (11) 

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1 þ gs xt; h sð Þð Þ

þ etþh sð Þ,

(12) 

where x � z is a large panel of macroeconomic 
variables and the function g is approximated using 
several fitting methods. We denote and outline 
below the five predictor-augmented AR approaches 
as PCA-PA, LASSO-PA, GB-PA, RF-PA and 
NN-PA.

In the first approach, we augment the autoregres
sive model with a linear combination of principal 
components extracted from xt (PCA) in order to fore
cast yt: These factor-augmented autoregressions have 
been proposed, among others, by Stock and Watson 
(2002a, 2002b) and Forni et al. (2000) for the condi
tional mean, while Manzan (2015) explores the ability 
of these models to forecast the conditional quantiles. 
The advantage of this approach is that it reduces the 
dimensionality of the initial predictor set by concen
trating the informational content of N macroeconomic 
indicators in a small number K � N principal com
ponents. The number of factors to be included in the 
model is selected using BIC, while the maximum 
number of factors is set to K ¼ 5:

Another popular approach to reduce the dimen
sionality of a large panel of macroeconomic varia
bles is through variable selection using shrinkage 
methods. In this study we employ the lasso  
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(Tibshirani, 1996), which adds a penalty term to the 
objective function based on the l1 norm of the 
model parameters. This way, the parameters are 
shrunk towards zero and depending on the strength 
of regularization, they may be set to zero, thus per
forming variable selection. The penalized linear 
model in high-dimensional settings has been 
extended to the estimation of conditional quantiles 
by Belloni and Chernozhukov (2011) and by Yi and 
Huang (2017). Lasso has been employed by De Mol 
et al. (2008) and Medeiros et al. (2021) along with 
other methods for the conditional mean case, while 
Manzan (2015) considers it to forecast conditional 
quantiles.

The methods described above assume a linear 
relationship between the variable of interest and the 
macroeconomic variables. We also consider ensem
bles of regression trees and artificial neural net
works, which connect yt to the predictor set in a 
non-linear way. The first ensemble approach is gra
dient boosting (GB), proposed by Friedman (2001) 
for the regression framework, which combines a 
large number of shallow trees, to form an ensemble 
with greater stability than a single more complex 
regression tree. The trees are sequentially combined 
by refitting shallow trees to the residuals from previ
ous iterations. This process is repeated until a cer
tain number of iterations is reached. The objective 
function to be minimized is the least squares or 
quantile loss. The second ensemble method we con
sider is based on bootstrap aggregating or bagging 
(Breiman, 1996), which combines forecasts from a 
large number of trees estimated for different boot
strap subsamples to obtain a single low-variance 
model. The bagging-based approach we use is ran
dom forests (RF), proposed by Breiman (2001), 
which aims to reduce the variance of the forecast 
relative to bagging by combining a large set of de- 
correlated trees based only on a randomly drawn 
subset of predictors. Random forests have also been 
extended to a quantile regression setting by 
Meinshausen (2006).

Finally, we consider is artificial neural networks 
(NN) and specifically feed-forward neural networks. 
These models are comprised of a number of layers 
with multiple nodes in each layer. They consist of 
an input layer of the predictors, one or more hidden 
layers, with nodes that transform the predictors 
using non-linear activation functions and an output 
layer that allows a final transformation of the out
come of the hidden layers to form a prediction. We 
consider a shallow neural network, which minimizes 
the least squares loss in the case of the conditional 
mean and the quantile loss in the case of the condi
tional quantiles.

2.2.2. Targeted predictor-augmented AR
This specification allows us to exploit the ability of 
the machine learning models to uncover important 
variables and non-linear interactions to forecast yt:

The targeted predictor-augmented (TP) autoregres
sions re-estimate the least squares or quantile 
regression model using the most important varia
bles as selected by the lasso, the two ensemble 
methods or the neural network. The models are 
given by:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ

Xn

j¼1
hjxt, j þ etþh, (13) 

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1 þ

Xns

j¼1
hj sð Þxt, j

þ etþh sð Þ,

(14) 

where n� N denotes the number of variables 
selected by one of the four machine learning 
approaches. In the case of the conditional quan
tiles, n and the variables xt vary according to s:

The top ten most influential variables for each 
model are considered and the rankings are con
structed based on the absolute change in the mean 
squared error (MSE) or quantile loss for setting 
one of the predictors to zero over the validation 
sample. We refer the four targeted predictor-aug
mented AR approaches as LASSO-TP, GB-TP, RF- 
TP and NN-TP.

2.2.3. Targeted factor-augmented AR
We follow Bai and Ng (2008), and construct tar
geted factors (TF), namely factors based on a sub
set of the macroeconomic variables selected with 
the specific target of forecasting yt: Manzan (2015) 
extends this approach to a quantile regression set
ting, where the variables used to construct factors 
differ for each quantile. Specifically, this approach 
involves building factors by extracting information 
from the subset of macroeconomic variables 
selected by the machine learning models. The con
ditional mean and quantile models are given 
respectively by:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ

XK

j¼1
hjft, j þ etþh, (15) 

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1 þ

XKs

j¼1
hj sð Þft, j

þ etþh sð Þ,

(16) 

where fj denotes the jth factor derived using PCA 
and K the number of factors selected via BIC. The 
targeted factors and the number of factors vary 
based on the conditional quantile. We define the 
subset of variables as those that when set to zero 
the validation MSE or quantile loss will increase. 
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In the case that no variables are selected, the model 
is reduced to an AR specification. The four targeted 
factor-augmented AR approaches are denoted as 
LASSO-TF, GB-TF, RF-TF and NN-TF.

2.2.4. Forecast combination-augmented AR
In the fourth specification we augment the baseline 
AR model by combining forecasts generated from 
simple models. Forecast combinations (FC), origin
ally proposed by Bates and Granger (1969), may be 
preferred over individual models that combine 
information, since they reduce model instability and 
parameter uncertainty. The models for the condi
tional mean and quantiles are:

ytþhjt ¼ b0 þ
Xp

i¼1
biyt−iþ1 þ g ŷtþhjt; h

� �
þ etþh,

(17) 

qtþhjt sð Þ ¼ b0 sð Þ þ
Xps

i¼1
bi sð Þyt−iþ1

þ gs q̂tþhjt sð Þ; h sð Þ
� �

þ etþh sð Þ, (18) 

where ŷtþhjt and q̂tþhjt sð Þ are N-vectors of individ
ual forecasts for the mean and quantiles respect
ively, derived from bivariate prediction models 
using least squares or quantile regression. The 
forecast combinations vary depending on estima
tion method of the combining weights, h: We 
consider simple forecast combinations such as the 
mean (MN-FC) and median (MD-FC) forecast, 
and approaches where the combining weights are 
computed based on the historical forecasting per
formance of the individual models over an initial 
holdout period, such as the rank (RANK-FC) and 
cluster (CL-FC) combinations by Aiolfi and 
Timmermann (2006) or the discounted forecast 
error (DFE-FC) proposed by Stock and Watson 
(2004). Finally, we employ PCA, the lasso, ensem
ble methods and neural networks as another 
approach to combine individual forecasts. These 
forecast combination methods are referred to as 
PCA-FC, LASSO-FC, GB-FC, RF-FC and NN-FC.

Details on the machine learning and forecast 
combination methods used to approximate g and gs 

throughout the four general specifications can be 
found in Supplementary Appendix B.

2.3. Quantile combinations

We also examine whether combining information 
from different quantiles can yield improved esti
mates for the conditional mean. We follow Lima 
and Meng (2017) and Meligkotsidou et al. (2019) 
and forecast the conditional mean of the macroeco
nomic variables as the weighted average of a set of 
quantiles. For a given model specification, the point 

forecast is derived from the estimates of the condi
tional quantiles in the following way:

ŷtþhjt ¼
X

s2S
wsq̂tþhjt sð Þ,

X

s2S
ws ¼ 1, (19) 

where ws denotes the weight associated with the sth 
quantile forecast and S is the set of quantiles being 
aggregated. We consider three different quantile com
binations with time-invariant weights. Specifically, we 
consider three-quantile estimators similar to Tukey 
(1977) and Gastwirth (1966), given respectively by 
the following formulae:

QC1: ŷtþhjt ¼ 0:25q̂tþhjt 0:2ð Þ þ 0:50q̂tþhjt 0:5ð Þ

þ 0:25q̂tþhjt 0:8ð Þ,
(20) 

QC2: ŷtþhjt ¼ 0:30q̂tþhjt 0:3ð Þ þ 0:40q̂tþhjt 0:5ð Þ

þ 0:30q̂tþhjt 0:7ð Þ:
(21) 

In order to attach more weight on extreme 
events, we also employ the five-quantile estimator, 
suggested by Judge et al. (1988):

QC3: ŷtþhjt ¼ 0:05q̂tþhjt 0:1ð Þ þ 0:25q̂tþhjt 0:2ð Þ þ 0:40q̂tþhjt 0:5ð Þ

þ 0:25q̂tþhjt 0:8ð Þ þ 0:05q̂tþhjt 0:9ð Þ:

(22) 

2.4. Alternative models

We consider several alternative forecasting models 
that are employed in the literature of macroeco
nomic forecasting in addition to the AR(1) and 
AR(12) models described in Section 2.1.

The first alternative model is the random walk 
(RW), where the point forecasts are computed as 
ŷtþhjt ¼ yt; while the quantile forecasts are derived 
from the quantiles of a normal distribution with a 
mean and standard deviation estimated based on 
the random walk model.

Another popular approach in the forecasting litera
ture is the stochastic volatility (SV) model, where the 
variance specification is stochastic and time varying. 
We consider an AR(p) model augmented by stochastic 
volatility and estimated by Markov chain Monte Carlo 
(MCMC) methods. The model is given by:

ytþhjt ¼ b0 þ biyt þ rtþhetþh
log r2

tþh
� �

¼ lþ ulog r2
t

� �
þ gtþh, (23) 

where et and gt are the error terms that are assumed 
to be independent of each other and distributed as 
N 0, 1ð Þ and N 0, r2

g

� �
respectively. We report the 

results for the basic SV model with one lag and 
twelve lags (ARSV1 and ARSV12). A restriction of 
the “vanilla” stochastic volatility model is the 
assumption that the error distribution is symmetric. 
We allow for asymmetries in the error distribution 
by extending the basic SV model to incorporate the 
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leverage effect, which is introduced to Equation (23)
by allowing etþh and gtþh to be correlated with:

etþh

gtþh

� �

¼ N
0
0

� �

,
1
q

q

1

� �( )

, (24) 

where q is the corelation that captures the leverage 
effect. We estimate asymmetric ARSV with one and 
twelve lags (ARSVLEV1 and ARSVLEV12).

The alternative models considered thus far rely 
solely on lags of the response variable. While own- 
lags are important in forecasting macroeconomic 
variables, cross-lags have also been shown to 
enhance predictive performance (Gruber & Kastner, 
2022). Therefore, we also employ Bayesian vector 
autoregressions (VARs), which are widely adopted 
in forecasting macroeconomic time series (see e.g., 
Ba�nbura et al., 2010; Clark, 2011; Koop, 2013; 
Korobilis, 2013; Huber & Feldkircher, 2019; 
Pfarrhofer, 2024).

A VAR model of order p; VAR(p), can be given 
by the following equation1:

ytþhjt ¼
Xp

i¼1
Biyt−iþ1 þ etþh, etþh � N 0, Rtþhjt

� �
,

(25) 

where yt is an m� 1 vector of endogenous varia
bles, Bi; for i ¼ 1, :::, p; the m�m coefficient 
matrix, et is an m� 1 vector of exogenous shocks 
and Rt corresponds to the m�m covariance matrix. 
For the VAR coefficients we use the Horseshoe 
(HS) shrinkage prior (Carvalho et al., 2010), which 
leads to sparse models and has the advantage that 
no tuning parameters need to be specified. We con
sider two types of VAR models that differ in the 
way the covariance matrix is decomposed. In the 
first case we assume that the errors follow a 
Cholesky stochastic volatility structure (see Cogley 
& Sargent, 2005; Feldkircher et al., 2024), where the 
covariance matrix can be decomposed to:

Rt ¼ U
0

HtU, (26) 

where U is an m�m upper triangular matrix with 
ones on the diagonal, whose off-diagonal elements 
are distributed based on the HS prior and Ht is an 
m�m diagonal matrix, whose elements are 
assumed to follow independent, univariate AR(1) 
processes. In the second case we assume that the 
covariance matrix has a factor stochastic volatility 
structure (see Kastner & Huber, 2020). The covari
ance matrix is given by:

Rt ¼ K
0

StKþ Zt, (27) 

where K is an m� k matrix of factor loadings, St is a 
k� k diagonal matrix containing the variances of the k 
latent factors, while Zt is an m�m diagonal matrix 
that contains the idiosyncratic variances. The 

logarithms of the elements in the factor and idiosyn
cratic components of the covariance matrix follow 
independent AR(1) processes. Further details on the 
estimation of the elements of Rt and prior specifica
tions can be found in Kastner et al. (2017) and Kastner 
(2019). Here we consider the case of a single latent fac
tor (k ¼ 1). We estimate VAR models of lag order p ¼
1, 2 for both Cholesky SV (VARCSV1 and VARCSV2) 
and factor SV (VARFSV1 and VARFSV2).

3. Data and sample splitting

Our dataset consists of the FRED-MD database by 
McCracken and Ng (2016), which is a large monthly 
macroeconomic dataset ideally suited for empirical 
analysis in high-dimensional settings. We obtain the 
dataset from Michael McCraken’s webpage.2 The num
ber of variables in the FRED-MD database is 127. 
Details on the variables included in the FRED-MD 
database can be found in Tables A1–A8 in 
Supplementary Appendix A. We forecast the h-month 
growth (h ¼ 1) of Industrial Production Index 
(INDPRO), the Consumer Price Index for all urban 
consumers (CPIAUCSL) and Non-farm Payroll 
Employment (PAYEMS). The first twelve lags of each 
respective response variable are accounted as candi
dates in the autoregressive part of the model, leaving 
N ¼ 126 candidate predictors for the part of the model 
that combines information or forecasts. The three 
response variables are transformed using log differen
ces, while for the remaining variables we use the same 
transformations as McCracken and Ng (2016). The full 
sample period is from December 1964 to December 
2019, for a total of T ¼ 661 monthly observations.

3.1. Sample splitting and hyperparameter tuning

The forecasts from the four model specifications 
described in Section 2.2 are generated using a roll
ing window scheme. The first t0 ¼ 60 observations 
of the rolling window are only used in the estima
tion of the simple forecasts based on individual pre
dictors used in forecast combinations, while the 
remaining T0 ¼ 240 observations are used to esti
mate the models that combine either information or 
simple forecasts. The initial rolling window is from 
December 1964 to November 1989 (or 300 monthly 
observations), which leaves a total of TOOS ¼ 361 
observations, from December 1989 to December 
2019, that can be used for forecast evaluation.

To choose the hyperparameters of the machine 
learning models, we adopt the validation sample 
approach. In each iteration, the rolling window, T0;

is split into two disjoint periods, the training sub
sample, consisting of 90% of the observations, with 
the remaining observations belonging to the 
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validation subsample. The predictors are standar
dized for all methods using the mean and standard 
deviation calculated from observations from the 
training subsample. In the training subsample the 
model is estimated for several sets of hyperpara
meters. The second subsample is used to select the 
optimal set of tuning parameters, by constructing 
forecasts, using the model estimates from the train
ing sample for the respective hyperparameter set, 
for the observations in the validation sample. The 
optimal set of hyperparameters is chosen to minim
ize the mean squared error or the quantile loss 
function over the validation subsample, for the 
mean and quantile forecasts respectively. Once the 
optimal set of hyperparameters is chosen, the model 
is refitted using all data from the rolling window, 
T0; and the estimates of the model parameters are 
kept to construct the forecasts.

4. Empirical results

In this section, we first examine the forecasting per
formance of the proposed models that either fore
cast the conditional mean directly or indirectly by 
combining information across different quantiles. 
We then proceed to evaluate the out-of-sample per
formance of individual quantile forecasts and finally 
the ability of the models to approximate different 
parts of the distribution.

4.1. Point forecast evaluation

First, we examine the accuracy of the point forecasts 
of the three macroeconomic variables, which is eval
uated based on the out-of-sample MSE computed as

MSEi ¼
1

TOOS

XTOOS

t¼1
ê2

i, t, (28) 

where êi, t ¼ yt − ŷi, t and ŷi, t is the forecast of the 
macroeconomic variable of model i: Specifically, we 
follow Medeiros et al. (2021) and report the MSE 
ratio of model i with respect to the random walk 
(RW) benchmark, with a smaller ratio indicating 
greater outperformance from the benchmark model. 
To evaluate the statistical significance of our condi
tional mean forecasts relative to the benchmark, we 
employ the Diebold and Mariano (1995) (DM) test 
for predictive accuracy. Table 1 reports the MSE 
ratio of the alternative model with respect to the 
random walk benchmark and its significance 
through the p-values of the DM test, for industrial 
production, inflation and employment.

Overall, the results indicate that the majority of 
the models outperform the RW benchmark, as 
revealed by the MSE ratios of the target variables. In 
addition, the majority of the models exhibit 

statistically significant outperformance over the RW 
model at the 1% level, with just a few exceptions at 
the 5% and 10% levels, while only three models, in 
the case of employment, fail to significantly outper
form the benchmark. Furthermore, the results show 
that models that combine information or forecasts 
generate MSE ratios equivalent to or lower than 
those of univariate or multivariate stochastic volatil
ity models. More importantly, combining informa
tion across quantiles considerably improves the out- 
of-sample performance of the models. This 
improved performance is more prominent in the 
four specifications that incorporate a large number 
of predictors to the models.

The results for industrial production show that 
direct forecasts of the conditional mean (LS) would 
lead to outperformance of the RW benchmark, with 
MSE ratios between 0.563 and 0.787. Approximately 
40% of the models (9 models) conditioned on eco
nomic variables have MSE ratios lower than the 
AR(12) model, while 22% of the conditional fore
casts (5 models) outperform VAR-SV2, which yields 
the lowest MSE ratio among the ten autoregressive 
models. The models with the lowest MSE ratio in 
each of the four specifications are the factor-aug
mented AR (PCA-PA), the targeted factor- and tar
geted predictor-augmented AR with predictors 
selected using the random forests algorithm (RF-TP 
and RF-TF) and forecast combinations based on 
PCA (PCA-FC). Combining information across 
quantiles has a positive effect on the predictive 
accuracy for the majority of the models, particularly 
those incorporating a large number of predictors. 
The percentage of models that outperform the 
AR(12) model in each quantile combination specifi
cation increases to over 90% and the percentage of 
the quantile combinations that outperform VAR- 
SV2 varies between 48% to 57%. Through quantile 
combinations the MSE ratio is reduced to the range 
of 0.545 to 0.675, with targeted predictor augmented 
regression based on the neural network and factor 
augmented regressions based on the two ensemble 
methods having the best performance.

For inflation, we observe that methods minimiz
ing the least squares loss outperform the benchmark 
with MSE ratios ranging from 0.693 to 1.012. Over 
half of the models conditioned on a large number 
of variables yield MSE ratios lower than the AR(12) 
baseline model, which is also the best performing 
autoregressive model. The models with the lowest 
MSE ratios for the three specifications that combine 
information are based on gradient boosting (GB-PA, 
GB-TP and GB-TF), while for the forecast combina
tions the neural network (NN-FC) has the lowest 
MSE ratio. Combining information across quantiles 
further reduces the MSE ratios to a range of 0.674 to 
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0.838, with approximately 80% of the models outper
forming the AR(12) baseline across the three QC 
specifications. Models that combine information 
benefit more from quantile combinations, with the 
PA, TP and TF specifications based on gradient 
boosting consistently offering improved performance.

The results for employment reveal that directly 
forecasting the conditional mean can lead to good 
out-of-sample performance relative to the RW, with 
MSE ratios that are from 0.713 to 0.952. 
Furthermore, over 50% of the models outperform 
the AR(12) baseline, while 17% of the models condi
tioned on a large number of variables outperform 
the AR(12) augmented by stochastic volatility with 
leverage (ARSVLEV12), which has the lowest ratio 
among the ten alternative autoregressive models. 
Factor-augmented AR (PCA-PA), targeted predictor 
based on the lasso (LASSO-TP), targeted factor- 
augmented model based on gradient boosting (GB- 
TF) and forecast combinations based on PCA (PCA- 
FC) are the models with the lowest MSE ratios in 
each of the four specifications. Combining informa
tion across quantiles results to MSE ratios in the 
range of 0.696 to 1.107. The majority of the models 
benefit from quantile combinations, with over 80% 
of the models having a lower MSE ratio than the 
AR(12) and over 70% outperforming the 
ARSVLEV12 model. Predictor-augmented models 
based on the lasso and random forests, as well as 
targeted factor-augmented models based on the two 
ensemble methods have the lowest MSE ratios across 
all QC specifications. In contrast, the forecast based 
on NN-PA for QC3 is the only instance that the 
RW would be preferable to an alternative model.

4.2. Quantile forecast evaluation

We next examine the accuracy of individual quantile 
forecasts for each of the nine values of s 2 0, 1ð Þ:

Gneiting and Raftery (2007) and Gneiting and 
Ranjan (2011) propose that the same loss function 
should be employed in both model estimation and 
forecast evaluation. Therefore, following Manzan 
and Zerom (2015) and Manzan (2015), we evaluate 
quantile forecasts using the quantile score (QS) 
function. The QS function focuses on a specific 
quantile s and provides a local evaluation of the 
forecasts. The QS for the sth quantile forecast of 
model i is given by:

QSi, s êi, t sð Þð Þ ¼
sêi, t sð Þ if êi, t sð Þ � 0
s − 1ð Þêi, t sð Þ, if êi, t sð Þ < 0 ,

�

(29) 

where êi, t sð Þ ¼ yt − q̂i, t sð Þ and q̂i, t sð Þ is the forecast 
of the target variable of model i for the sth quantile. 
This scoring rule is negatively orientated coinciding 

with the notion of a loss function, so that when 
comparing two models, we prefer the one with the 
lowest score. To evaluate the hypothesis of equal 
predictive accuracy of the quantile forecasts, we fol
low Amisano and Giacomini (2007) and Giacomini 
and White (2006) and compare the quantile score of 
model i to that of the benchmark model using the 
test statistic:

t ¼
QSi, s − QS0, s

r̂
, (30) 

where QSi, s and QS0, s denote the averages over the 
out-of-sample period of the quantile scores for a 
given quantile s for model i and the benchmark 
model respectively, while r̂ is the standard error 
estimator of the quantile score difference. Assuming 
suitable regularity conditions, the statistic t is 
asymptotically standard normal under the null 
hypothesis of vanishing expected score differentials. 
In the case of rejection, model i is preferred over 
the benchmark if t is negative, and the benchmark 
model is preferred if t is positive. We follow studies 
such as Manzan (2015), who consider an autoregres
sive model with stochastic volatility as the bench
mark. Specifically, we set the autoregressive model 
augmented by stochastic volatility with leverage 
(ARSVLEV1) as the benchmark. In Sections 4.2.1–
4.2.3, we describe the results for the quantile fore
cast accuracy for industrial production, inflation and 
employment. Tables 2–4 report the test statistics of 
the quantile score test for the null hypothesis of 
equal quantile forecast accuracy of a model relative 
to the stochastic volatility benchmark model for the 
three target economic variables.

4.2.1. Quantile forecast evaluation: Industrial 
Production Index
Starting with the results for industrial production, 
presented in Table 2, we observe that the majority 
of the models are more accurate than the bench
mark. The forecast accuracy, based on the statistical 
significance of the QS tests, is more pronounced in 
the left tail (s 2 0:1, 0:2, 0:3f g) and the center 
(s 2 0:4, 0:5, 0:6f g) of the distribution. However, the 
performance of the models is weaker for the right
most part of the distribution, where most models 
fail to significantly outperform the benchmark for 
s ¼ 0:8, 0:9f g: The autoregressive models that con
sistently outperform the benchmark across the lower 
and middle part of the distribution, are the AR(12) 
baseline and the AR(12) models augmented by sto
chastic volatility (ARSV12 and ARSVLEV12), as 
well as the VAR(2) with factor stochastic volatility 
(VARFSV2), with AR(12) yielding the lowest QS 
test statistic for s 2 0:1, 0:5½ �: The rankings of mod
els that augment the QAR baseline by combining 
information or forecasts vary depending on the 
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quantile under examination. Targeted factor-aug
mented AR models based on random forests and 
the neural network (RF-TF and NN-TF) are consist
ent in outperforming the benchmark and improving 
upon the QAR baseline model compared to other 
specifications for s 2 0:1, 0:6½ �:

4.2.2. Quantile forecast evaluation: Consumer 
Price Index
The results for inflation (Table 3) indicate that 
most models significantly outperform the bench
mark, especially in the left tail and middle part of 
the distribution. For s ¼ 0:9; the AR models aug
mented by stochastic volatility tend to outperform 
those that combine information or forecasts from 
a large set of predictors, while for s 2 0:2, 0:3f g;

VAR models show improved out-of-sample per
formance compared to univariate AR models. The 
VARFSV2 model outperforms the remaining 
autoregressive models for the lower quantiles, 
while the AR(12) performs better for the middle 
quantiles. Specifications that augment the QAR 
model by combining information generate statis
tically significant outperformance over the 

benchmark for s ¼ 0:9; compared to models that 
combine forecasts, where only the lasso yields sig
nificant outperformance. For s 2 0:2, 0:7½ � the 
majority of the models that incorporate a large 
number of economic variables outperform the 
benchmark and improve upon the QAR baseline. 
Overall, specifications where variables are selected 
by the lasso, or the two ensemble methods demon
strate the best out-of-sample performance for the 
lower and middle quantiles. In contrast, when s ¼

0:8, 0:9f g the benchmark becomes increasingly dif
ficult to significantly outperform for all models 
considered.

4.2.3. Quantile forecast evaluation: Employment
Turning to the results for employment, reported in 
Table 4, we observe that most models can signifi
cantly outperform the benchmark, however, out-of- 
sample performance diminishes for the upper quan
tiles. Univariate autoregressive models yield improved 
predictive performance relative to VAR models, with 
the AR(12) model augmented by stochastic volatility 
with leverage (ARSVLEV12) exhibiting strong per
formance across all quantiles. The majority of the 

Table 2. Quantile forecast evaluation for the Industrial Production Index (INDPRO).
q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)

RW 4.350 5.563 5.386 5.159 5.155 5.407 5.540 5.603 4.397
AR1 0.396 −0.199 −0.641 −0.439 0.007 −0.626 −0.938 −1.215 −0.753
AR12 −2.621 −2.632 −3.172 −2.785 −2.521 −2.074 −1.482 −1.457 −0.255
ARSV1 −1.546 −0.628 0.183 −0.317 1.461 2.239 1.949 2.583 2.824
ARSV12 −1.943 −1.905 −2.477 −2.382 −2.346 −2.168 −1.404 −0.529 0.325
ARSVLEV12 −2.591 −2.154 −2.433 −2.450 −2.418 −2.354 −1.880 −1.245 −0.765
VARCSV1 −1.788 −1.289 −0.762 −1.017 −1.723 −2.062 −1.617 −1.336 −0.106
VARCSV2 −2.103 −1.793 −1.398 −1.490 −2.173 −2.708 −2.376 −1.534 −0.156
VARFSV1 −2.016 −1.564 −1.076 −1.058 −1.631 −1.851 −1.427 −0.851 0.185
VARFSV2 −2.160 −2.417 −2.060 −1.858 −2.391 −2.714 −2.343 −1.311 0.068
A. Predictor-Augmented AR (PA)
PCA-PA −2.965 −3.015 −3.412 −3.352 −3.162 −2.018 −1.140 −0.962 0.064
LASSO-PA 0.603 −0.276 −0.099 −0.254 −0.223 0.143 1.061 1.531 1.867
GB-PA −1.871 −1.902 −2.740 −3.319 −3.458 −2.656 −1.855 −1.077 0.299
RF-PA −2.684 −3.240 −3.088 −2.267 −2.836 −2.303 −1.462 −1.622 −0.694
NN-PA −1.025 −1.298 −2.632 −2.643 −2.292 −2.002 −1.039 −0.579 0.843
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP −2.315 −3.575 −2.555 −2.379 −2.196 −1.441 −0.767 0.115 −0.032
GB-TP −1.799 −2.152 −3.071 −2.800 −2.990 −2.313 −1.699 −0.335 0.415
RF-TP −1.997 −2.163 −2.444 −2.646 −2.309 −2.338 −1.507 −0.567 1.713
NN-TP −2.417 −3.329 −3.976 −2.852 −3.374 −3.338 −2.186 −1.244 1.160
C. Targeted Factor-Augmented AR (TF)
LASSO-TF −2.523 −3.067 −2.915 −2.443 −2.090 −1.425 −1.061 −0.204 0.507
GB-TF −2.118 −2.692 −3.270 −3.211 −3.125 −2.585 −1.467 −1.201 0.131
RF-TF −2.667 −3.555 −3.793 −3.502 −3.009 −2.291 −0.891 −0.512 0.613
NN-TF −2.937 −3.056 −3.644 −3.082 −2.956 −2.241 −1.378 −1.155 −0.271
D. Forecast Combination-Augmented AR (FC)
MN-FC −2.191 −2.327 −3.065 −2.661 −2.040 −1.260 −0.197 0.363 1.511
MD-FC −2.625 −2.568 −3.106 −2.758 −2.414 −1.998 −1.339 −1.208 −0.026
RANK-FC −2.585 −2.686 −3.334 −3.099 −2.640 −2.031 −1.415 −1.245 0.122
CL-FC −2.638 −2.681 −3.250 −2.881 −2.632 −2.175 −1.671 −1.631 −0.276
DFE-FC −2.422 −2.407 −3.099 −2.689 −2.155 −1.492 −0.581 −0.172 0.756
PCA-FC −2.578 −2.831 −3.438 −2.916 −2.582 −1.782 −1.610 −2.021 −0.118
LASSO-FC −2.555 −3.029 −3.531 −3.143 −2.829 −2.636 −2.552 −2.099 −0.199
GB-FC −1.854 −1.811 −2.589 −2.571 −2.835 −1.955 −1.047 −1.550 0.142
RF-FC −1.473 −1.959 −3.131 −3.097 −2.660 −2.246 −2.177 −1.111 −0.301
NN-FC −2.489 −2.179 −2.273 −2.320 −2.463 −2.112 −0.840 −0.749 0.332

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the 
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater 
outperformance from the benchmark. Values less than −1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The 
out-of-sample period is from December 1989 to December 2019.
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models that augment the QAR baseline with a large 
number of predictors outperform the benchmark in 
the lower and middle quantiles. Notably, the models 
that improve the most upon the QAR baseline are the 
predictor-augmented AR based on random forests 
(RF-PA), the targeted factor-augmented AR based on 
the neural network (NN-TF) and the cluster weight
ing scheme to combine forecasts (CL-FC).

4.3. Density forecast evaluation

In this Section we examine the ability of the models 
to approximate the density of the three target eco
nomic variables. To evaluate the ability of a model 
to forecast an area of the distribution we follow 
Manzan and Zerom (2013) and Meligkotsidou et al. 
(2019) and use the weighted quantile score (WQS) 
function. The WQS is constructed by integrating the 
QS across a set of quantiles, with the score multi
plied by a weight function that focuses on a specific 
part of the distribution. The WQS is defined as 
follows:

WQSi, t ¼

ð1

0
QSi, s, txsds, (31) 

where xs denotes a weight function in the unit 
interval. We replace the continuous version of WQS 
with a discrete version summing over the quantiles 
of interest, allowing us to evaluate specific areas of 
the distribution. We employ four different weighting 
functions xs: 1. full: xs ¼ 1; which assigns uniform 
weights across the entire distribution; 2. mid: xs ¼

sð1 − sÞ; places more weight in the middle of the 
distribution; 3. left: xs ¼ 1 − sð Þ

2
; assigns more 

weight to the left tail of the distribution; 4. right: 
xs ¼ s2; which focuses on the right tail of the dis
tribution. Another measure we consider when evalu
ating density forecasts is the mean log predictive 
score (MLPS), where the log predictive score is 
derived as the logarithm of the predictive density 
generated by a model and evaluated at the realized 
value of the target variable (see e.g., Geweke & 
Amisano, 2010). If the alternative model generates a 
higher MLPS value than the benchmark model, then 
that model outperforms the benchmark. We evalu
ate the statistical significance of the WQS and 
MLPS measures using the Diebold and Mariano 
statistic. The test statistic is constructed to be nega
tively oriented, with model i outperforming the 
benchmark if the statistic is significantly negative. 

Table 3. Quantile forecast evaluation for the Consumer Price Index (CPIAUCSL).
q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)

RW 3.205 4.134 3.889 4.177 4.341 3.887 3.354 3.590 3.491
AR1 −0.726 −2.236 −2.660 −2.661 −2.538 −2.474 −2.297 −1.425 0.423
AR12 −1.293 −2.441 −3.022 −2.979 −3.050 −3.748 −3.445 −2.381 −0.367
ARSV1 1.398 −1.659 −1.403 −1.801 1.059 3.582 4.090 2.720 0.952
ARSV12 −2.966 −2.734 −2.009 −1.315 −1.306 −1.523 −1.231 −0.974 −0.547
ARSVLEV12 −2.584 −2.581 −1.862 −1.285 −1.424 −1.660 −1.382 −1.218 −0.808
VARCSV1 −3.570 −3.999 −3.299 −2.423 −2.212 −2.161 −1.774 −1.246 −0.752
VARCSV2 −3.534 −3.854 −3.120 −2.467 −2.421 −2.535 −2.153 −1.694 −1.040
VARFSV1 −3.310 −3.717 −3.117 −2.307 −2.171 −2.237 −1.902 −1.242 −0.557
VARFSV2 −3.375 −4.003 −3.336 −2.599 −2.385 −2.148 −1.790 −1.421 −0.635
A. Predictor-Augmented AR (PA)
PCA-PA −1.464 −2.558 −3.118 −3.058 −3.045 −3.729 −3.562 −2.584 −0.624
LASSO-PA −1.952 −1.687 −1.789 −1.301 −1.504 −1.652 −1.339 −0.682 −0.252
GB-PA −1.685 −2.784 −3.308 −3.455 −3.761 −4.101 −4.014 −3.125 −0.687
RF-PA −2.478 −3.960 −3.571 −3.751 −3.995 −4.462 −3.169 −2.170 −0.506
NN-PA 2.968 0.109 −0.414 −1.226 −1.100 −0.193 0.967 1.242 2.493
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP −1.343 −2.609 −3.079 −3.340 −3.589 −3.272 −2.863 −1.920 −0.849
GB-TP −2.581 −4.001 −3.717 −3.713 −3.351 −3.665 −3.791 −2.586 −0.491
RF-TP −2.211 −2.970 −2.800 −3.113 −3.188 −3.673 −2.768 −1.593 −0.170
NN-TP −2.363 −2.482 −2.349 −2.753 −3.030 −3.710 −3.005 −1.383 −0.699
C. Targeted Factor-Augmented AR (TF)
LASSO-TF −1.672 −3.441 −3.287 −3.463 −3.593 −4.069 −3.705 −2.600 −0.732
GB-TF −2.909 −3.718 −3.701 −3.655 −3.636 −4.366 −3.941 −2.846 −0.574
RF-TF −1.289 −3.351 −3.093 −3.555 −3.237 −4.202 −3.939 −2.387 −0.687
NN-TF −1.558 −2.748 −3.145 −3.212 −2.988 −3.798 −3.661 −2.339 −0.373
D. Forecast Combination-Augmented AR (FC)
MN-FC −1.420 −2.023 −1.652 −1.295 −1.248 −1.654 −1.468 −0.413 1.075
MD-FC −1.317 −2.434 −2.824 −2.776 −2.747 −3.419 −3.200 −2.090 −0.276
RANK-FC −1.448 −2.584 −2.843 −2.919 −3.066 −3.498 −3.201 −2.182 −0.324
CL-FC −1.544 −2.699 −3.205 −3.141 −3.060 −3.671 −3.362 −2.230 −0.360
DFE-FC −1.491 −2.290 −2.297 −1.949 −1.900 −2.533 −2.448 −1.257 0.192
PCA-FC −1.373 −2.267 −2.846 −2.878 −2.852 −3.710 −3.562 −2.383 −0.649
LASSO-FC −1.912 −3.572 −3.542 −3.060 −3.019 −3.308 −2.875 −1.634 −0.420
GB-FC −1.478 −3.001 −2.742 −2.985 −2.993 −3.995 −3.757 −2.558 −0.583
RF-FC −1.437 −3.068 −3.514 −3.208 −3.548 −4.413 −4.046 −2.237 −0.490
NN-FC −1.162 −1.521 −2.186 −2.110 −2.447 −2.565 −2.699 −0.087 1.762

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the 
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater 
outperformance from the benchmark. Values less than −1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The 
out-of-sample period is from December 1989 to December 2019.
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Table 5 reports the WQS and MLPS t-statistics for 
the null hypothesis of equal predictive ability of the 
alternative prediction model relative to the AR(1) 
model augmented by stochastic volatility with lever
age (ARSVLEV1) benchmark, for industrial produc
tion, inflation and employment.

Overall, the findings show that the majority of 
the models produce significantly superior density 
forecasts relative to the benchmark across the three 
variables of interest, with the augmented AR specifi
cations improving upon the QAR baseline model. 
This outperformance can be attributed to greater 
forecasting accuracy in the left tail and center of the 
distribution. For industrial production and inflation, 
models from the four specifications that incorporate 
a large number of predictors offer the highest accur
acy, while for employment, models augmented by 
stochastic volatility yield comparable out-of-sample 
performance.

For industrial production, the AR(12) outper
forms the remaining autoregressive models accord
ing to the WQS metrics for the full distribution, 
middle and the left tail, however, based on the 
MLPS test statistic the AR(12) and VAR(2) models 
augmented by stochastic volatility exhibit stronger 

performance. In the case of models that use the pre
dictors directly as inputs (Panel A), random forests 
(RF-PA) and PCA (PCA-PA) offer the lowest WQS 
test statistics, while gradient boosting (GB-PA) fol
lowed by PCA generate the lowest values for the 
MLPS t-statistic. In contrast, the lasso does not sig
nificantly outperform the benchmark in this specifi
cation. For the case of an AR augmented by 
targeted predictors (Panel B), the neural network 
(NN-TP) is the best performing model, while for 
the case of the targeted factor-augmented AR (Panel 
C), the neural network (NN-TF) and both ensemble 
methods show significant outperformance across all 
metrics. Most forecast combinations (Panel D) also 
significantly outperform the benchmark, with the 
lasso-based combination (LASSO-FC) having the 
strongest performance.

Turning to the results for inflation, the AR(12) 
outperforms the remaining autoregressive models 
according to the MLPS t-statistic and in terms of 
WQS for the full distribution, center and right tail 
of the distribution. However, VAR models exhibit 
better out-of-sample performance in the left tail. 
Overall, ensemble approaches are the best perform
ing models across the four augmented AR 

Table 4. Quantile forecast evaluation for Employment (PAYEMS).
q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)

RW 5.561 5.687 3.422 2.347 2.558 3.272 4.451 6.063 6.772
AR1 −2.959 −2.438 0.366 0.205 0.305 0.566 1.533 3.244 4.325
AR12 −3.435 −3.041 −2.653 −3.351 −3.639 −3.637 −2.710 −1.619 1.109
ARSV1 −2.360 −4.225 −3.149 −1.556 1.215 3.566 3.761 2.911 3.105
ARSV12 −2.108 −2.046 −2.710 −3.241 −3.454 −3.601 −3.455 −2.981 −1.847
ARSVLEV12 −2.723 −2.548 −3.057 −3.509 −3.630 −3.686 −3.579 −3.207 −2.156
VARCSV1 −1.785 −1.043 −0.418 −0.307 −0.103 0.818 2.020 3.024 5.070
VARCSV2 −2.250 −2.913 −2.878 −2.536 −2.270 −1.987 −1.382 −0.964 −0.480
VARFSV1 −1.580 −0.942 −0.133 0.082 0.117 1.037 1.992 3.149 4.529
VARFSV2 −2.146 −2.898 −2.795 −2.647 −2.554 −2.146 −1.856 −1.771 −1.115
A. Predictor-Augmented AR (PA)
PCA-PA −3.805 −3.970 −3.786 −3.876 −4.063 −3.112 −2.344 −1.176 1.057
LASSO-PA −1.697 −1.166 −1.241 −1.531 −1.240 −0.939 −0.351 0.929 1.527
GB-PA −2.102 −2.505 −2.544 −3.014 −3.169 −2.548 −2.906 −2.299 −0.140
RF-PA −3.481 −3.808 −3.412 −4.263 −4.319 −4.266 −3.131 −2.026 0.797
NN-PA 5.827 2.745 0.126 −0.640 −1.651 −1.427 −0.651 1.810 5.297
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP −1.869 −1.915 −1.727 −2.084 −2.643 −2.117 −1.840 −1.556 0.600
GB-TP −1.758 −2.355 −2.522 −3.301 −2.999 −2.820 −2.263 −1.322 2.050
RF-TP −3.035 −2.048 −2.767 −3.132 −3.546 −3.823 −2.504 −1.396 1.078
NN-TP −2.610 −2.581 −2.893 −3.258 −3.308 −3.429 −2.175 −1.503 0.796
C. Targeted Factor-Augmented AR (TF)
LASSO-TF −2.454 −2.782 −2.306 −2.633 −2.477 −2.812 −3.167 −1.810 −0.201
GB-TF −2.813 −2.554 −3.260 −4.087 −3.703 −3.638 −2.639 −2.005 0.848
RF-TF −3.245 −3.588 −3.233 −3.869 −4.058 −3.705 −2.781 −1.843 0.275
NN-TF −3.474 −3.348 −3.101 −3.824 −3.949 −3.797 −2.304 −1.711 0.948
D. Forecast Combination-Augmented AR (FC)
MN-FC −2.657 −2.383 −1.982 −2.039 −1.698 −0.602 0.597 2.395 4.214
MD-FC −3.665 −3.085 −2.673 −3.210 −3.372 −2.875 −1.889 −0.862 1.563
RANK-FC −3.958 −3.397 −2.810 −3.391 −3.661 −3.346 −2.204 −0.904 1.677
CL-FC −3.663 −3.340 −3.134 −3.602 −3.878 −3.800 −3.155 −1.959 1.022
DFE-FC −3.160 −3.052 −2.858 −3.181 −3.024 −2.350 −1.308 0.143 2.637
PCA-FC −3.073 −3.369 −3.076 −3.560 −4.090 −3.742 −2.768 −1.464 1.222
LASSO-FC −2.822 −3.493 −3.228 −3.406 −3.273 −2.587 −1.992 −0.646 1.411
GB-FC −2.279 −2.170 −1.889 −3.292 −3.220 −3.308 −2.667 −2.445 −0.422
RF-FC −2.939 −3.027 −2.746 −3.210 −3.890 −3.837 −2.971 −1.883 1.109
NN-FC −0.053 −1.583 −1.954 −1.707 −2.202 −2.366 −2.011 −1.723 6.382

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the 
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater 
outperformance from the benchmark. Values less than −1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The 
out-of-sample period is from December 1989 to December 2019.
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specifications. Specifically, for the predictor-aug
mented and forecast combination specifications, 
random forests (RF-PA and RF-FC) offer the lowest 
WQS t-statistics, while gradient boosting (GB-PA 
and GB-FC) has the lowest MLPS t-statistic. On the 
other hand, the neural network for the predictor- 
augmented AR (NN-PA) does not outperform the 
benchmark, and forecast combinations based on 
mean and neural network weighting schemes (MN- 
FC and NN-FC) show mixed results in terms of sig
nificant outperformance. For the remaining two 
specifications, all models significantly outperform 
the benchmark, with the targeted predictor- and the 
targeted factor-augmented AR based on gradient 
boosting (GB-TP and GB-TF) generating the best 
performance.

Finally, the results for employment indicate that 
among the autoregressive models, the AR(12) aug
mented by stochastic volatility with leverage 
(ARSVLEV12) exhibits the strongest performance 
across all metrics, except for the WQS t-statistic in 
the left tail, where the AR(12) baseline is better at out
performing the benchmark. In general, the majority 
of the models that augment the QAR baseline with a 
large number of predictors, exhibit improved fore
casting performance in terms of the MLPS t-statistic 
and the WQS t-statistic in the left tail, while for the 
other metrics, the performance is comparable to that 
of the univariate autoregressive models such as the 
ARSVLEV12. In particular, random forests is better 
at significantly outperforming the benchmark and 
improving upon the QAR baseline in specifications 
that combine information (PA, TP and TF), while the 
cluster weighting scheme (CL-FC) and PCA-FC are 
among the top performing models in the forecast 
combination specification.

4.4. Further analysis

4.4.1. Performance over time
In this Section we examine how model performance 
evolves over time. For the point forecast evaluation, 
we plot in Figure A1 in Supplementary Appendix A 
the cumulative squared errors for the random walk 
benchmark relative to a selection of models over 
time. The chosen models are those that directly 
forecast the mean (LS) and exhibit the lowest MSE 
ratio in the five specifications of Table 1. The finan
cial crisis of 2007–2008 is a break for the evolution 
of the performance of the models. Performance is 
more volatile for industrial production and inflation 
during the global financial crisis than it is for 
employment. After the crisis performance of the 
models over the benchmark accumulates higher, 
especially for industrial production and inflation. 
Focusing on the rightmost point in the respective 

figure, we observe that for industrial production a 
targeted factor-augmented AR based on random for
ests (RF-TF) closely followed by a factor-augmented 
AR based on PCA (PCA-PA) are the best perform
ing models. For inflation, forecast combinations 
based on the neural network (NN-FC) is the best 
performing model especially after the global finan
cial crisis, while before the crisis a predictor aug
mented AR based on gradient boosting (GB-PA), or 
targeted factor-augmented AR based on the neural 
network (NN-TF) outperform the remaining mod
els. For employment, point forecasts generated by a 
factor-augmented AR (PCA-PA), targeted factor- 
augmented AR based on gradient boosting (GB-TF) 
and forecast combination based on PCA (PCA-FC) 
outperform the other models over the out-of-sample 
period.

For the density forecast evaluation, we plot the 
cumulative differences in the four WQS functions 
for the ARSVLEV1 benchmark relative to the 
chosen forecasting models. For each of the three 
variables of interest, the models selected are those 
that yield the lowest WQS t-statistics for the full 
distribution in each specification of Table 5. Figure 
A2 depicts how the different WQS metrics evolve 
over time for industrial production. The plots reveal 
that the global financial crisis constitutes a break for 
density forecasts as well, with cumulative perform
ance being more volatile during the crisis, and 
increasing after the crisis with the trend being 
steeper for the left part of the distribution. 
Considering the rightmost point in the plots a fore
cast combination based on the lasso (LASSO-FC) is 
the best performing model for the full distribution, 
with a targeted predictor-augmented AR based on 
the neural network (NN-TP) offering equivalent 
performance in the middle part of the distribution 
and outperforming LASSO-FC in the left tail of the 
distribution. The results for inflation, presented in 
Figure A3, show that cumulative performance 
decreases during the crisis, then sharply increases 
and relatively plateaus until the end of the sample 
for all cases considered. The best performing models 
for inflation according to all WQS metrics are tar
geted predictor- and targeted factor-augmented AR 
based on gradient boosting (GB-TP and GB-TF). 
For employment (Figure A4), the results reveal that 
cumulative performance during and after the crisis 
is more stable in the left tail compared to the mid
dle and right tail parts of the distribution. Predictor- 
and targeted factor-augmented AR models based on 
random forests (RF-PA and RF-TF) are the best 
performing models for the middle and left tail parts 
of the distribution. It is interesting to note that for 
the right tail of the distribution the AR(12) 
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augmented by stochastic volatility with leverage out
performs the remaining models.

4.4.2. Variable importance analysis
In this Section, we provide a description of the 
results for the variable importance analysis of the 
predictor-augmented AR and forecast combination- 
augmented AR specifications for the cases of the 
conditional mean and the conditional quantiles. The 
out-of-sample variable importance is constructed for 
each of the eight groups of variables in FRED-MD.3

The variable importance in each period is computed 
as the absolute change in MSE for the conditional 
mean forecasts, or the QS for the conditional quan
tile forecasts, by setting each one of the predictors 
to zero. Variable importance for a group is the aver
age change in MSE or QS of the variables within 
that group. The variable importance measure is 
averaged throughout the out-of-sample period and 
is normalized for each model to sum to 100.

The results of the variable importance analysis 
for industrial production are presented in Figure A5 
in Supplementary Appendix A for the conditional 
mean. In the case of models that combine informa
tion, the results indicate that labor market indicators 
are primarily chosen by the lasso, while variables 
from the money and credit group and output and 
income group are chosen by the GB and RF models 
respectively. On the other hand, bivariate forecasts 
based on variables from the money and credit or 
housing groups are those primarily selected by the 
ensemble methods. Overall, forecasts based on 
neural networks place approximately equal impor
tance in each variable group.

The variable importance for industrial production 
for the conditional quantiles is reported in Figures A6 
and A7 for models that combine information or com
bine forecasts respectively. The results show that the 
groups of important predictors vary greatly based on 
the value for s and the forecasting model. In the case 
of the lower quantiles (s 2 0:1, 0:2, 0:3f g), predictors 
from the output and income are better on average at 
explaining industrial production, however, when com
bining forecasts, the interest and exchange rate groups 
is most often selected across all models. For the middle 
part of the distribution (s 2 0:4, 0:5, 0:6f g), the labor 
market, in addition to output and income groups are 
important regardless of whether predictors or simple 
forecasts are combined. For the right tail of the distri
bution (s 2 0:7, 0:8, 0:9f g), output and income predic
tors are selected by most models, except for neural 
networks that focus on consumption, orders, and 
inventories. Simple forecasts of labor market variables 
are selected primarily by the forecast combination 
methods.

Figure A8 in the Supplementary Appendix presents 
the variable importance analysis for inflation in the 
case of point forecasts. A predictor-augmented AR 
based on the lasso would select variables primarily 
from the output and income group, while gradient 
boosting focuses on price indicators and random for
ests on labor market variables. In contrast, when the 
predictor set in comprised of individual forecasts, the 
lasso overall focuses on variables from the housing 
group. Both ensemble methods select bivariate forecasts 
from the price group, while random forests also selects 
simple forecasts based on money and credit variables. 
Neural networks again place approximately equal 
importance across groups.

Figures A9 and A10 report the variable impor
tance for the quantile forecasts of inflation for mod
els that use the predictors variables directly or 
combine forecasts respectively. For the left tail part 
of the distribution, models that combine informa
tion select predictors primarily from the output and 
income group and then from the price group. 
However, when modelling the middle and right tail 
part of the distribution the majority of the models 
place greater importance on the price group, with 
housing variables also being useful for modelling 
quantiles for s 2 0:4, 0:5, 0:6f g: Bivariate forecasts 
based on consumption, orders, and inventories vari
ables dominate all other groups when combining 
forecasts, especially for the middle to right tail part 
of the distribution. For the lower quantiles, simple 
forecasts based on output and income, or interest 
and exchange rate variables are also important in 
modelling inflation.

Lastly, the variable importance results for the 
conditional mean forecasts of employment are 
reported in Figure A11. Of particular note is that 
lasso and especially random forests select variables 
from the labor market group, while gradient boost
ing selects primarily housing indicators. Otherwise, 
when the predictor set is comprised of bivariate 
forecasts, the lasso selects variables from the output 
and income group, GB selects bivariate forecasts 
based on labor market variables and RF from those 
in the housing group.

The results for the variable importance of each 
quantile for employment are depicted in Figures 
A12 and A13 for the case of models that combine 
information or forecast combinations respectively. 
In terms of variable importance, regardless of 
whether information or forecasts are combined, the 
most important group to model employment are 
labor market indicators. When modelling the middle 
part of the distribution, the models that combine 
information also focus on interest and exchange rate 
variables. Forecast combinations also select bivariate 
forecasts based on variables from the consumption, 
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order and inventories group to estimate the lower 
quantiles, stock market variables to model the lower 
tail and middle part of the distribution, while for 
the upper quantiles, forecasts based on housing vari
ables are also important.

4.4.3. Amalgamation of forecasts
To account for the heterogeneity observed in the 
forecasting accuracy across different model specifi
cations and performance metrics we follow Rapach 
and Strauss (2012) and construct an amalgamation 
of all individual models. The point, quantile and 
density performance evaluation of the amalgam 
forecasts is presented in Table A9 in Supplementary 
Appendix A.

Starting with the point forecast evaluation, aggre
gating forecasts across the LS and the three QS 
specifications leads to amalgam forecasts that signifi
cantly outperform the random walk benchmark for 
all variables of interest. However, pooling forecasts 
across all models does not lead to any significant 
gains compared to the best performing model, with 
the MSE ratios between the amalgam and the model 
with the strongest performance being equivalent.

The results for the quantile forecast evaluation 
indicate that aggregating forecasts across all models 
for each quantile leads to statistically significant out
performance over the benchmark for s 2 0:1, 0:8½ �

for all target variables. For industrial production, 
the amalgamation approach yields lower QS t-statis
tic than the best performing individual model for 
s 2 0:1, 0:5½ �: In the case of inflation, the amalgam
ation approach outperforms the top individual 
model for s 2 0:2, 0:6½ �: For employment, the amal
gam forecast would be preferable over that of the 
individual model with the lowest QS t-statistic 
for s 2 0:3, 0:6½ �:

The amalgamation approach results to density 
forecasts that significantly outperform the bench
mark in terms of all metrics for the three variables 
of interest. For industrial production, aggregating 
forecasts leads to lower WQS t-statistics than the 
individual models, while models such as GB-PA and 
LASSO-FC generate lower MLPS t-statistics. 
Similarly, for inflation the amalgamation approach 
yields improved performance according to the WQS 
t-statistics, although models that combine informa
tion using gradient boosting generate lower MLPS 
t-statistics. In the case of employment, the amalgam 
forecasts generate superior performance according 
to the WQS t-statistics for the full distribution, the 
left and middle parts of the distribution, while indi
vidual models based on ensemble approaches out
perform the amalgam forecast in terms of MLPS.

4.4.4. Model performance including the COVID-19 
pandemic period
So far, this paper has focused on a sample period 
ending in December 2019. In this Section, we 
explore the performance of the models for an 
extended sample up to March 2024, which includes 
the turbulent period of the COVID-19 pandemic 
and subsequent lockdowns. This poses a significant 
challenge for macroeconomic forecasting, as the val
ues of the target variables deviate significantly from 
their historical range.4

The performance evaluation for the point fore
casts is reported in Table A10 in Supplementary 
Appendix A. For inflation, the majority of the mod
els provide significant outperformance over the 
benchmark. In contrast, although most models out
perform the benchmark for industrial production, 
the results are not statistically significant. For 
employment, models that use a large number of pre
dictors do not outperform the benchmark, while 
stochastic volatility models yield statistically insig
nificant outperformance.

The results for the quantile forecast evaluation 
can be found in Tables A11 to A13 for the respect
ive variable of interest. For inflation, while perform
ance diminishes after extending the sample, most 
models continue to significantly outperform the 
benchmark for s 2 0:1, 0:8½ �: For industrial produc
tion, we observe significant outperformance mainly 
in the lower quantiles (s 2 0:1, 0:2f g), while for the 
remaining quantiles the results are not statistically 
significant. For employment, augmented AR models 
are most impacted by including the post-2019 
period, while Bayesian VARs and univariate autore
gressive models with a single lag show significant 
outperformance in the lower quantiles.

The density forecast evaluation is presented in 
Table A14. For inflation, most models continue to 
produce statistically significant results, with models 
incorporating a large number of predictors improv
ing upon the QAR baseline, particularly in the left 
tail and middle parts of the distribution. For indus
trial production, performance is better in the left tail 
of the distribution, however, the results overall are 
statistically insignificant. In the case of employment, 
autoregressive models with a single lag tend to offer 
statistically significant outperformance.

5. Conclusion

In this study we examine the ability of a large num
ber of economic variables to forecast key business 
cycle and inflation indicators. The aim of our ana
lysis is to construct point, quantile, and density fore
casts of industrial production, inflation and 
employment, by leveraging the benefits arising from 
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the quantile regression framework, machine learning 
approaches and the information contained in the 
predictor set. Specifically, the variables of interest 
are analysed assuming that their future values 
depend on their own lags and a large set of macro
economic and financial variables, through several 
specifications of an augmented time series model. 
These models allow for heterogeneous degrees of 
persistence of the target variable and asymmetric 
dynamic responses of economic variables at different 
parts of the distribution.

The results suggest that combining information 
across quantiles to forecast the conditional mean 
considerably improves the out-of-sample perform
ance. In addition, augmenting an autoregressive 
model with economic variables though methods that 
perform variable selection or account for non-line
arities can further increase the accuracy of the point 
forecasts relative to simpler models. Furthermore, 
our findings indicate that the improved forecasting 
performance arises from incorporating economic 
information into the quantile forecasts and is driven 
especially from the lower left and middle part of the 
distribution. The results also show that the proposed 
approaches and the information of the economic 
variables lead to more accurate distribution forecasts 
than the benchmark models.
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