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ABSTRACT

This study explores the ability of a large number of macroeconomic variables to forecast the
mean, quantiles and density of key economic indicators. In the baseline case, we construct
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the forecasts using an autoregressive model. We then consider several general specifications

that augment the time series model with macroeconomic information, either directly using
the full set of predictors, through targeted-factors, targeted-predictors or forecast combina-
tions. Our findings suggest that aggregating information across quantiles leads to improved
estimates of the conditional mean. Overall, augmenting the autoregressive model with
macroeconomic variables through methods that perform variable selection or account for
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non-linearities improves predictive performance. This increase in out-of-sample performance

arises from the improved estimation of the lower and middle part of the distribution.

1. Introduction

The prediction of the future evolution of key economic
indicators is imperative to the conduct of economic
policy, due to the delayed impact of a central bank’s
actions on economic activity. Therefore, accuracy is
essential when forecasting the effects of various shocks
on the future dynamics of key business cycle and infla-
tion indicators. Typically, forecasting focuses on model-
ing the conditional mean using a large number of
macroeconomic variables (see e.g, Kim & Swanson,
2014; Medeiros et al., 2021; Stock & Watson, 2002a,
2002b). However, central banks are increasingly con-
cerned about the uncertainty around the point forecasts
of economic indicators such as industrial production,
inflation and employment. This has led to a growing
number of recent papers that focus on modeling and
forecasting the quantiles and density of economic indi-
cators (see e.g., Amisano & Giacomini, 2007; Barbaglia
et al,, 2023; Carriero et al., 2024; De Gooijer & Zerom,
2019; Manzan, 2015; Pfarrhofer, 2022; Rossi &
Sekhposyan, 2014). Forecasting the distribution of eco-
nomic variables is important for several reasons.
Density forecasts are able to fully capture the uncertain
future behavior of an economic indicator, instead of
measuring its central tendency similar to point fore-
casts. Furthermore, forecasting the distribution becomes
important when a central bank evaluates the risks of a

JEL CLASSIFICATIONS
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future increase or decrease of an economic indicator
differently. Distribution forecasts can also lead to more
accurate estimates of the conditional mean, which can
be modeled as a function of individual quantiles (Lima
& Meng, 2017).

The aim of this study is to forecast the mean, quan-
tiles and distribution of the Industrial Production Index,
the Consumer Price Index for all urban consumers and
Non-farm Payroll Employment using models that
include both a time series component and a large num-
ber of economic variables. In the baseline case, we fore-
cast the conditional mean using an autoregressive
model and to forecast the quantiles we employ the
quantile autoregressive model, proposed by Koenker
and Xiao (2006), where the forecasts depend only on
the past values of the target variable. To enhance the
forecasting models with a richer information set, we fol-
low Kim and Swanson (2014) and Manzan (2015) by
assuming that both the conditional mean and quantiles
of the variables being forecast are functions of their own
lags in addition to a large panel of macroeconomic and
financial indicators based on the FRED-MD database by
McCracken and Ng (2016).

We explore four general specifications to forecast
the conditional mean or quantiles, all of which aug-
ment the baseline time series model with economic
indicators. In the first approach, we directly augment
the baseline model by incorporating the full set of
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predictors through methods that perform dimension-
ality reduction, variable selection and account for
non-linearities. The next two approaches exploit the
ability of machine learning methods to uncover
important variables and non-linear interactions.
Specifically, the second approach directly includes the
selected variables to the baseline model, while the
third approach constructs latent factors based on
the subset of targeted predictors before augmenting
the time series model. The final approach extends the
baseline model through forecast combinations of
bivariate prediction models, based on either simple
weighting schemes or with the weights estimated
using machine learning methods. The proposed spec-
ifications allow for heterogeneous degrees of persist-
ence of the variable we forecast and asymmetric
dynamic responses of economic variables at different
parts of the distribution. To take advantage of the var-
ied information content in the forecasts of different
quantiles, we follow Lima and Meng (2017) and
Meligkotsidou et al. (2019) and construct forecasts of
the conditional mean as the weighted average of a set
of conditional quantile forecasts.

The analysis by Manzan (2015) is similar to the one
considered in this paper, however, there are several dif-
ferences between the two. First, our study considers a
general specification of models based on forecast com-
binations, in addition to targeted predictors or factors.
We also expand the scope of machine learning models
beyond the lasso to encompass non-linear models such
as random forests, gradient boosting, and neural net-
works. In addition to examining the accuracy of indi-
vidual quantile forecasts, we also assess the models’
ability to predict the entire distribution of economic
indicators, similar to Manzan and Zerom (2013).
However, unlike their study, we use a larger dataset of
macroeconomic predictors, a wider selection of models
and focus on industrial production and employment in
addition to inflation. Finally, in line with Kim and
Swanson (2014) and Medeiros et al. (2021), we add to
the current literature on machine learning-based fore-
casting of the conditional mean of economic indicators
in a data-rich environment. However, we enhance the
forecasting accuracy of the center of the distribution by
combining information across quantiles from several
model specifications.

An alternative framework often used to forecast
the quantiles and distribution of economic indicators
is based on stochastic volatility models. Therefore, in
addition to models within the four augmented autore-
gressive specifications, we consider univariate autore-
gressive stochastic volatility models with symmetric
or asymmetric error distributions (see e.g., Jacquier
et al, 1994; Kim et al, 1998; Omori et al., 2007;
Taylor, 1982). Since cross-lags have been shown to
improve predictive performance (Gruber & Kastner,

2022), we also employ vector autoregressions with
stochastic volatility based on Bayesian estimation
methods. Bayesian vector autoregressions (BVAR) are
widely used for macroeconomic forecasting, as
Bayesian shrinkage helps mitigate the curse of dimen-
sionality from the large number of parameters and
Bayesian estimation facilitates the efficient computa-
tion of time-varying volatility (see e.g., Banbura et al.,
2010; Carriero et al., 2019; Giannone et al., 2015;
Huber & Feldkircher, 2019). The BVAR models differ
according to the structure of the covariance matrix,
with one case assuming that the errors follow a
Cholesky stochastic volatility structure, and the other
that the covariance matrix has a factor stochastic
volatility structure.

Our findings suggest that combining information
across quantiles improves the accuracy of condi-
tional mean forecasts relative to generating point
forecasts directly. Additionally, including economic
variables to the baseline model through methods
that perform variable selection or account for non-
linearities can further improve predictive perform-
ance. The results also show that models combining
information or forecasts generate performance
equivalent to or surpassing that of stochastic volatil-
ity models. The out-of-sample analysis indicates that
augmenting the autoregressive model with macro-
economic and financial information can increase the
accuracy of conditional quantile forecasts. This
improved forecasting performance is observed espe-
cially in the lower and middle quantiles. For the
density forecast evaluation, the majority of the mod-
els significantly outperform the benchmark, which
can be attributed to greater forecasting accuracy in
the left tail and center of the distribution. Models
incorporating a large number of predictors offer the
highest accuracy for industrial production and infla-
tion, while stochastic volatility models yield compar-
able out-of-sample performance for employment.

Our findings show that the global financial crisis
represents a break for the evolution of model per-
formance over time. During the crisis, cumulative
performance is more volatile for industrial produc-
tion and inflation than it is for employment, while
after the crisis, performance of the models over the
benchmark accumulates higher, especially for indus-
trial production and inflation. Furthermore, extend-
ing the sample to cover the turbulent COVID-19
pandemic period leads to a decline in out-of-sample
performance, with inflation forecasts being less
affected compared to those for industrial production
and employment. To account for the heterogeneity
in forecasting accuracy across different models, we
construct an amalgamation of all individual fore-
casts. Amalgam forecasts significantly outperform
the benchmark for the conditional mean, although



their performance is equivalent to that of the best-
performing individual model. The amalgamation
approach results in improved density forecasts and
higher predictive accuracy for the lower and middle
quantiles. Finally, since the contribution of a specific
predictor to the formation of a forecast of the con-
ditional mean can be different to that of the condi-
tional quantiles, we conduct a variable importance
analysis to explore which variables influence the
conditional distribution far from its center. We find
that variable importance not only differs across the
conditional mean and quantiles, but also based on
whether the predictor set is comprised of macroeco-
nomic variables, or their individual forecasts based
on simpler models.

The article is organized as follows. Section 2 dis-
cusses the models used to construct point, quantile
and density forecasts. Section 3 describes the data
and sample splitting. Section 4 presents the empir-
ical results, and Section 5 concludes.

2, Methodology

In this Section we introduce the models used to
forecast the conditional mean and quantiles and the
benchmarks used to evaluate their predictive
performance.

2.1. Autoregressive models

Let y,, for t=1,2,...,T, be the macroeconomic
variable we are interested in forecasting h-step
ahead that we assume is stationary. We focus on
one period ahead forecasts and set & = 1. The base-
line model we use to forecast the conditional mean
is the autoregressive (AR) model of order p, where
p is determined by the Bayesian information criter-
ion (BIC), with the maximum value of p set to 12
lags. The model can be written as:

P
Vet = Bo + Z Byi—iv1 + ens (1)

i=1
where f3;, for i =0, 1,...,p, are the model parameters
and ¢ is the error of the regression. The estimates
of the parameter vector f are obtained by minimiz-
ing the least squares loss function:

B = argmin £(p)
B

2
. 1 T p
= argmm?z (yt+h - By — Z ﬁi)/t—iJrl) .
B =1 i=1
(2)

Once the parameters have been estimated the
forecast for the conditional mean can be obtained

as Yoy = Po+ S Byein
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However, the above loss function is affected by
the presence of extreme observations and can be
restrictive since it focuses only on one aspect of the
distribution of y,. These potential limitations led to
the development of quantile regression, introduced
by Koenker and Bassett (1978), who generalize
ordinary sample quantiles to a regression setting,
thus providing a more complete approximation for
the distribution of y;.

In this setting, the baseline approach we use to
model the quantiles of y; is the quantile autoregres-
sive (QAR) specification considered in Koenker and
Xiao (2006):

pe
Genje () = Bo(T) + Z Bi(O)ye—is1 + sn(t),  (3)

where ¢;(7) indicates the 7€ (0,1) conditional
quantile of y,, p;(t), for i=0,1,...,p,, are the
model parameters depending on 1, p, is the lag
order used to model g;(7) and &¢(7) is the error for
quantile 7. The QAR model extends the AR model
used for the conditional mean to a quantile regres-
sion setting. This model allows the lag order to
vary at different parts of the distribution. To select
the lag order at each quantile we follow Manzan
(2015) and minimize a BIC-type criterion based on
the quantile loss function. The parameters of the
model are estimated by minimizing the following
function:

B() = arg;nin Q:(B(v))

T P

= arg?lin%z Q. ()’t+h = Bo(7) - Z Bi(f))’ti+l)>
t=1 i=1

(4)

where Q.(-) is the quantile loss function defined as:

) ten(n) if en(t) >0
Qr(8t+h(f)) - { (T _ 1)3t+h(f)> if gt+h('f) <0 (5)
and eern(T) = yern — Po(t) — A Bi(T)yt-is1-

Similarly, the forecast for the tth quantile can be
obtained as .y (1) = Bolt) + 30, Bilt)yiminr.
For all models, we rearrange the quantiles to avoid
quantile crossing as proposed in Chernozhukov
et al. (2010).

2.2. Augmented AR models

To examine whether augmenting the AR and QAR
models with information from a large number of
macroeconomic variables can improve forecast
accuracy, we consider several model specifications.
In the first specification we augment the autoregres-
sive models with the direct inclusion of macroeco-
nomic variables modelled using a variety of flexible
functions from machine learning that induce
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sparsity or introduce non-linearities. The second
approach allows a subset of predictors chosen by
machine learning methods to enter the model dir-
ectly in a linear fashion. An alternative approach
consists of extracting principal components of the
macroeconomic variables chosen by machine learn-
ing models. The final approach combines the fore-
casts of bivariate prediction models to construct
forecasts for the conditional mean and quantiles,
similar to Huang and Lee (2010) and Rossi and
Sekhposyan (2014). We consider both simple fore-
cast combination schemes and approaches based on
machine learning.

The augmented AR models build upon the resid-
uals of the autoregressive model similarly to Kim
and Swanson (2014). For all models described below
we start by fitting an autoregressive model to the
dependent variable, excluding predictor variables,
using least squares for the AR model or quantile
regression for the QAR model, and retain the corre-
sponding residual series. For all augmented model
specifications, we use the same lag orders, p or p.,
selected for the autoregressive part of the model as
discussed above. The objective then becomes to map
the macroeconomic variables to the residuals using
different functions, in order to improve upon the fit
of the autoregressive model.

Let z;, be the N-vector of stationary predictors at
time ¢, the augmented AR model for the conditional
mean is:

p
Yernje = PBo + Z Biyi-iv1 + &(2450) + urin, (6)
i=1
where g(+) is a flexible function with parameters 0
that maps the predictors to the macroeconomic
variable y; through the residuals of the AR model
and u, are the errors of the augmented model. The
parameters are derived by minimizing the least
squares loss:

T

- . 1
0= arg(r)nln L£(0) = argmlnfz (8t+h —g(zs; 0))2.

0 t=1

(7)

_ The forecast for the conditional mean is y, , =
Bo+ St Byieic1 +8(2::0), where § is the esti-
mated function based on data up to time ¢.

The augmented QAR model is given by:

pe
qrne(T) = Po(7) + Z Bi(©)yt-is1 + &e(2:5 0(7)) (8)

+ ut+h(‘5),
where the parameters 0(t) of function g:(-) now

depend on the conditional quantile 7 and are esti-
mated by minimizing the following function:

0(7) = arg‘r)nin Q.(0(7))

1T

= arg;nin? Z Qr(eryn(t) — &(2150(7))),  (9)
=1

where Q.(-) is defined as:

if upn(t) >0
if l/lH_h(T) <0

Tur+h(‘f),

(t— 1)Ut+h(’f)s (10)

Q:(upn(7)) = {
and  un(7) = e4n(7) — g(2;0(7)). The forecast
for the tth conditional quantile in the case of the
augmented AR models is th‘t(t):ﬁo(r)—k

P By +g. (2:0() ).

We consider four general model specifications for
the conditional mean and quantiles that vary based
on the choice of flexible function, g and the type of
inputs, z.

2.2.1. Predictor-augmented AR

In this specification the models incorporate infor-
mation from the full set of predictors. The pre-
dictor-augmented (PA) AR and QAR models can
respectively be rewritten as:

p
Vene = Po + Z Biye-it1 + §(%e50) + &rns (11)

i=1

pe
2e(®) = Fo(0) + DAy e 00) o

+ &rn(1),

where x =z is a large panel of macroeconomic
variables and the function g is approximated using
several fitting methods. We denote and outline
below the five predictor-augmented AR approaches
as PCA-PA, LASSO-PA, GB-PA, RF-PA and
NN-PA.

In the first approach, we augment the autoregres-
sive model with a linear combination of principal
components extracted from x; (PCA) in order to fore-
cast y;. These factor-augmented autoregressions have
been proposed, among others, by Stock and Watson
(2002a, 2002b) and Forni et al. (2000) for the condi-
tional mean, while Manzan (2015) explores the ability
of these models to forecast the conditional quantiles.
The advantage of this approach is that it reduces the
dimensionality of the initial predictor set by concen-
trating the informational content of N macroeconomic
indicators in a small number K <« N principal com-
ponents. The number of factors to be included in the
model is selected using BIC, while the maximum
number of factors is set to K = 5.

Another popular approach to reduce the dimen-
sionality of a large panel of macroeconomic varia-
bles is through variable selection using shrinkage
methods. In this study we employ the Ilasso



(Tibshirani, 1996), which adds a penalty term to the
objective function based on the I; norm of the
model parameters. This way, the parameters are
shrunk towards zero and depending on the strength
of regularization, they may be set to zero, thus per-
forming variable selection. The penalized linear
model in high-dimensional settings has been
extended to the estimation of conditional quantiles
by Belloni and Chernozhukov (2011) and by Yi and
Huang (2017). Lasso has been employed by De Mol
et al. (2008) and Medeiros et al. (2021) along with
other methods for the conditional mean case, while
Manzan (2015) considers it to forecast conditional
quantiles.

The methods described above assume a linear
relationship between the variable of interest and the
macroeconomic variables. We also consider ensem-
bles of regression trees and artificial neural net-
works, which connect y; to the predictor set in a
non-linear way. The first ensemble approach is gra-
dient boosting (GB), proposed by Friedman (2001)
for the regression framework, which combines a
large number of shallow trees, to form an ensemble
with greater stability than a single more complex
regression tree. The trees are sequentially combined
by refitting shallow trees to the residuals from previ-
ous iterations. This process is repeated until a cer-
tain number of iterations is reached. The objective
function to be minimized is the least squares or
quantile loss. The second ensemble method we con-
sider is based on bootstrap aggregating or bagging
(Breiman, 1996), which combines forecasts from a
large number of trees estimated for different boot-
strap subsamples to obtain a single low-variance
model. The bagging-based approach we use is ran-
dom forests (RF), proposed by Breiman (2001),
which aims to reduce the variance of the forecast
relative to bagging by combining a large set of de-
correlated trees based only on a randomly drawn
subset of predictors. Random forests have also been
extended to a quantile setting by
Meinshausen (2006).

Finally, we consider is artificial neural networks
(NN) and specifically feed-forward neural networks.
These models are comprised of a number of layers
with multiple nodes in each layer. They consist of
an input layer of the predictors, one or more hidden
layers, with nodes that transform the predictors
using non-linear activation functions and an output
layer that allows a final transformation of the out-
come of the hidden layers to form a prediction. We
consider a shallow neural network, which minimizes
the least squares loss in the case of the conditional
mean and the quantile loss in the case of the condi-
tional quantiles.

regression
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2.2.2. Targeted predictor-augmented AR

This specification allows us to exploit the ability of
the machine learning models to uncover important
variables and non-linear interactions to forecast y;.
The targeted predictor-augmented (TP) autoregres-
sions re-estimate the least squares or quantile
regression model using the most important varia-
bles as selected by the lasso, the two ensemble
methods or the neural network. The models are
given by:

P n
Virhe = Bo + Z Biyi-it1 + Z 0ix,j + erpns - (13)
i=1 =1

P ne
Qe (7) = Bo(D) + D Bi(t)yeisr + > 05(7)xe
(14)

+ &r4n(1)s

where n < N denotes the number of variables
selected by one of the four machine learning
approaches. In the case of the conditional quan-
tiles, n and the variables x; vary according to 7.
The top ten most influential variables for each
model are considered and the rankings are con-
structed based on the absolute change in the mean
squared error (MSE) or quantile loss for setting
one of the predictors to zero over the validation
sample. We refer the four targeted predictor-aug-
mented AR approaches as LASSO-TP, GB-TP, RF-
TP and NN-TP.

2.2.3. Targeted factor-augmented AR

We follow Bai and Ng (2008), and construct tar-
geted factors (TF), namely factors based on a sub-
set of the macroeconomic variables selected with
the specific target of forecasting y,. Manzan (2015)
extends this approach to a quantile regression set-
ting, where the variables used to construct factors
differ for each quantile. Specifically, this approach
involves building factors by extracting information
from the subset of macroeconomic variables
selected by the machine learning models. The con-
ditional mean and quantile models are given
respectively by:

p K
Yith|t = Bo + Z ﬂ,’}’t—iJrl + Z ijt] + &4n  (15)
i—1 =1

Pr K.
Geee(®) = Fol®) + DBy + 20 o
i=1 j=1

+ e (1),

where f; denotes the jth factor derived using PCA
and K the number of factors selected via BIC. The
targeted factors and the number of factors vary
based on the conditional quantile. We define the
subset of variables as those that when set to zero
the validation MSE or quantile loss will increase.
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In the case that no variables are selected, the model
is reduced to an AR specification. The four targeted
factor-augmented AR approaches are denoted as
LASSO-TF, GB-TF, RF-TF and NN-TF.

2.2.4. Forecast combination-augmented AR

In the fourth specification we augment the baseline
AR model by combining forecasts generated from
simple models. Forecast combinations (FC), origin-
ally proposed by Bates and Granger (1969), may be
preferred over individual models that combine
information, since they reduce model instability and
parameter uncertainty. The models for the condi-
tional mean and quantiles are:

P
eine = Bo+ Y Byiist + &(Franis 0) + eceis

i=1

(17)
) 43
Qt+h\t(f) = Po(7) + Z Bi(T)yi—it1

+gr(€lt+h\z(f)§ 0(17)) + &rn(1)s (18)

where y,.,, and g, (t) are N-vectors of individ-
ual forecasts for the mean and quantiles respect-
ively, derived from bivariate prediction models
using least squares or quantile regression. The
forecast combinations vary depending on estima-
tion method of the combining weights, 6. We
consider simple forecast combinations such as the
mean (MN-FC) and median (MD-FC) forecast,
and approaches where the combining weights are
computed based on the historical forecasting per-
formance of the individual models over an initial
holdout period, such as the rank (RANK-FC) and
cluster (CL-FC) combinations by Aiolfi and
Timmermann (2006) or the discounted forecast
error (DFE-FC) proposed by Stock and Watson
(2004). Finally, we employ PCA, the lasso, ensem-
ble methods and neural networks as another
approach to combine individual forecasts. These
forecast combination methods are referred to as
PCA-FC, LASSO-FC, GB-FC, RF-FC and NN-FC.

Details on the machine learning and forecast
combination methods used to approximate g and g,
throughout the four general specifications can be
found in Supplementary Appendix B.

2.3. Quantile combinations

We also examine whether combining information
from different quantiles can yield improved esti-
mates for the conditional mean. We follow Lima
and Meng (2017) and Meligkotsidou et al. (2019)
and forecast the conditional mean of the macroeco-
nomic variables as the weighted average of a set of
quantiles. For a given model specification, the point

forecast is derived from the estimates of the condi-
tional quantiles in the following way:

Virhlt = waqt+h\z(f)’ ZWr =1 (19)

TeS €S

where w; denotes the weight associated with the tth
quantile forecast and S is the set of quantiles being
aggregated. We consider three different quantile com-
binations with time-invariant weights. Specifically, we
consider three-quantile estimators similar to Tukey
(1977) and Gastwirth (1966), given respectively by
the following formulae:

QCL: J;,p; = 0.254,5,(0.2) +0.509, ,,,(0.5)
+0.25G,,,(0.8),

QC2: j,,p; = 0.304,,,(0.3) + 0.409, ,,,(0.5)
+0.304,, 4,(0.7).

(20)

(21)

In order to attach more weight on extreme
events, we also employ the five-quantile estimator,
suggested by Judge et al. (1988):

QC3: Jy 4y = 0.054,,,,,(0.1) +0.25g, ,,,(0.2) + 0.404, . ,,(0.5)
+0.253,,4,,(0.8) +0.054,,,,(0.9).
(22)

2.4. Alternative models

We consider several alternative forecasting models
that are employed in the literature of macroeco-
nomic forecasting in addition to the AR(1) and
AR(12) models described in Section 2.1.

The first alternative model is the random walk
(RW), where the point forecasts are computed as
Vesne = yt, while the quantile forecasts are derived
from the quantiles of a normal distribution with a
mean and standard deviation estimated based on
the random walk model.

Another popular approach in the forecasting litera-
ture is the stochastic volatility (SV) model, where the
variance specification is stochastic and time varying.
We consider an AR(p) model augmented by stochastic
volatility and estimated by Markov chain Monte Carlo
(MCMC) methods. The model is given by:

Yetht = ﬁo + ﬁi)’t + Orinétin

2
log (2,) = i+ plog (2) + 23)

where ¢; and 7, are the error terms that are assumed
to be independent of each other and distributed as

N(0,1) and N (0, ai) respectively. We report the

results for the basic SV model with one lag and
twelve lags (ARSV1 and ARSV12). A restriction of
the “vanilla” stochastic volatility model is the
assumption that the error distribution is symmetric.
We allow for asymmetries in the error distribution
by extending the basic SV model to incorporate the
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leverage effect, which is introduced to Equation (23)
by allowing &, and 7, to be correlated with:

(Zi:) - N{ <<0)> <; f) } (24)

where p is the corelation that captures the leverage
effect. We estimate asymmetric ARSV with one and
twelve lags (ARSVLEV1 and ARSVLEV12).

The alternative models considered thus far rely
solely on lags of the response variable. While own-
lags are important in forecasting macroeconomic
variables, cross-lags have also been shown to
enhance predictive performance (Gruber & Kastner,
2022). Therefore, we also employ Bayesian vector
autoregressions (VARs), which are widely adopted
in forecasting macroeconomic time series (see e.g.,
Banbura et al, 2010; Clark, 2011; Koop, 2013;
Korobilis, 2013; Huber & Feldkircher, 2019;
Pfarrhofer, 2024).

A VAR model of order p, VAR(p), can be given
by the following equation':

P
Yerne = Z Biy,_iy1 + €in> €4n ~ N(O’ Zt+h\t)>
i=1

1

(25)

where y, is an m x 1 vector of endogenous varia-
bles, B;, for i=1,...,p, the m x m coefficient
matrix, € is an m X 1 vector of exogenous shocks
and X, corresponds to the m x m covariance matrix.
For the VAR coefficients we use the Horseshoe
(HS) shrinkage prior (Carvalho et al., 2010), which
leads to sparse models and has the advantage that
no tuning parameters need to be specified. We con-
sider two types of VAR models that differ in the
way the covariance matrix is decomposed. In the
first case we assume that the errors follow a
Cholesky stochastic volatility structure (see Cogley
& Sargent, 2005; Feldkircher et al., 2024), where the
covariance matrix can be decomposed to:

¥, = UHU, (26)

where U is an m x m upper triangular matrix with
ones on the diagonal, whose off-diagonal elements
are distributed based on the HS prior and H; is an
m x m diagonal matrix, whose elements are
assumed to follow independent, univariate AR(1)
processes. In the second case we assume that the
covariance matrix has a factor stochastic volatility
structure (see Kastner & Huber, 2020). The covari-
ance matrix is given by:

Y, =ASA+Z, (27)

where A is an m X k matrix of factor loadings, S; is a
k x k diagonal matrix containing the variances of the k
latent factors, while Z, is an m x m diagonal matrix
that contains the idiosyncratic variances. The
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logarithms of the elements in the factor and idiosyn-
cratic components of the covariance matrix follow
independent AR(1) processes. Further details on the
estimation of the elements of X; and prior specifica-
tions can be found in Kastner et al. (2017) and Kastner
(2019). Here we consider the case of a single latent fac-
tor (k = 1). We estimate VAR models of lag order p =
1,2 for both Cholesky SV (VARCSV1 and VARCSV2)
and factor SV (VARFSV1 and VARFSV2).

3. Data and sample splitting

Our dataset consists of the FRED-MD database by
McCracken and Ng (2016), which is a large monthly
macroeconomic dataset ideally suited for empirical
analysis in high-dimensional settings. We obtain the
dataset from Michael McCraken’s webpage.” The num-
ber of variables in the FRED-MD database is 127.
Details on the variables included in the FRED-MD
database can be found in Tables Al-A8 in
Supplementary Appendix A. We forecast the h-month
growth (h=1) of Industrial Production Index
(INDPRO), the Consumer Price Index for all urban
consumers (CPIAUCSL) and Non-farm Payroll
Employment (PAYEMS). The first twelve lags of each
respective response variable are accounted as candi-
dates in the autoregressive part of the model, leaving
N = 126 candidate predictors for the part of the model
that combines information or forecasts. The three
response variables are transformed using log differen-
ces, while for the remaining variables we use the same
transformations as McCracken and Ng (2016). The full
sample period is from December 1964 to December
2019, for a total of T' = 661 monthly observations.

3.1. Sample splitting and hyperparameter tuning

The forecasts from the four model specifications
described in Section 2.2 are generated using a roll-
ing window scheme. The first £, = 60 observations
of the rolling window are only used in the estima-
tion of the simple forecasts based on individual pre-
dictors used in forecast combinations, while the
remaining T, = 240 observations are used to esti-
mate the models that combine either information or
simple forecasts. The initial rolling window is from
December 1964 to November 1989 (or 300 monthly
observations), which leaves a total of Tpps = 361
observations, from December 1989 to December
2019, that can be used for forecast evaluation.

To choose the hyperparameters of the machine
learning models, we adopt the validation sample
approach. In each iteration, the rolling window, Ty,
is split into two disjoint periods, the training sub-
sample, consisting of 90% of the observations, with
the remaining observations belonging to the
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validation subsample. The predictors are standar-
dized for all methods using the mean and standard
deviation calculated from observations from the
training subsample. In the training subsample the
model is estimated for several sets of hyperpara-
meters. The second subsample is used to select the
optimal set of tuning parameters, by constructing
forecasts, using the model estimates from the train-
ing sample for the respective hyperparameter set,
for the observations in the validation sample. The
optimal set of hyperparameters is chosen to minim-
ize the mean squared error or the quantile loss
function over the validation subsample, for the
mean and quantile forecasts respectively. Once the
optimal set of hyperparameters is chosen, the model
is refitted using all data from the rolling window,
Ty, and the estimates of the model parameters are
kept to construct the forecasts.

4, Empirical results

In this section, we first examine the forecasting per-
formance of the proposed models that either fore-
cast the conditional mean directly or indirectly by
combining information across different quantiles.
We then proceed to evaluate the out-of-sample per-
formance of individual quantile forecasts and finally
the ability of the models to approximate different
parts of the distribution.

4.1. Point forecast evaluation

First, we examine the accuracy of the point forecasts
of the three macroeconomic variables, which is eval-
uated based on the out-of-sample MSE computed as

Toos

MSE; = —> "¢}, (28)

where €;; =y, —y;, and y,, is the forecast of the
macroeconomic variable of model i. Specifically, we
follow Medeiros et al. (2021) and report the MSE
ratio of model i with respect to the random walk
(RW) benchmark, with a smaller ratio indicating
greater outperformance from the benchmark model.
To evaluate the statistical significance of our condi-
tional mean forecasts relative to the benchmark, we
employ the Diebold and Mariano (1995) (DM) test
for predictive accuracy. Table 1 reports the MSE
ratio of the alternative model with respect to the
random walk benchmark and its significance
through the p-values of the DM test, for industrial
production, inflation and employment.

Overall, the results indicate that the majority of
the models outperform the RW benchmark, as
revealed by the MSE ratios of the target variables. In
addition, the majority of the models exhibit

statistically significant outperformance over the RW
model at the 1% level, with just a few exceptions at
the 5% and 10% levels, while only three models, in
the case of employment, fail to significantly outper-
form the benchmark. Furthermore, the results show
that models that combine information or forecasts
generate MSE ratios equivalent to or lower than
those of univariate or multivariate stochastic volatil-
ity models. More importantly, combining informa-
tion across quantiles considerably improves the out-
of-sample performance of the models. This
improved performance is more prominent in the
four specifications that incorporate a large number
of predictors to the models.

The results for industrial production show that
direct forecasts of the conditional mean (LS) would
lead to outperformance of the RW benchmark, with
MSE ratios between 0.563 and 0.787. Approximately
40% of the models (9 models) conditioned on eco-
nomic variables have MSE ratios lower than the
AR(12) model, while 22% of the conditional fore-
casts (5 models) outperform VAR-SV2, which yields
the lowest MSE ratio among the ten autoregressive
models. The models with the lowest MSE ratio in
each of the four specifications are the factor-aug-
mented AR (PCA-PA), the targeted factor- and tar-
geted predictor-augmented AR with predictors
selected using the random forests algorithm (RF-TP
and RF-TF) and forecast combinations based on
PCA (PCA-FC). Combining information across
quantiles has a positive effect on the predictive
accuracy for the majority of the models, particularly
those incorporating a large number of predictors.
The percentage of models that outperform the
AR(12) model in each quantile combination specifi-
cation increases to over 90% and the percentage of
the quantile combinations that outperform VAR-
SV2 varies between 48% to 57%. Through quantile
combinations the MSE ratio is reduced to the range
of 0.545 to 0.675, with targeted predictor augmented
regression based on the neural network and factor
augmented regressions based on the two ensemble
methods having the best performance.

For inflation, we observe that methods minimiz-
ing the least squares loss outperform the benchmark
with MSE ratios ranging from 0.693 to 1.012. Over
half of the models conditioned on a large number
of variables yield MSE ratios lower than the AR(12)
baseline model, which is also the best performing
autoregressive model. The models with the lowest
MSE ratios for the three specifications that combine
information are based on gradient boosting (GB-PA,
GB-TP and GB-TF), while for the forecast combina-
tions the neural network (NN-FC) has the lowest
MSE ratio. Combining information across quantiles
further reduces the MSE ratios to a range of 0.674 to
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0.838, with approximately 80% of the models outper-
forming the AR(12) baseline across the three QC
specifications. Models that combine information
benefit more from quantile combinations, with the
PA, TP and TF specifications based on gradient
boosting consistently offering improved performance.
The results for employment reveal that directly
forecasting the conditional mean can lead to good
out-of-sample performance relative to the RW, with
MSE ratios that are from 0.713 to 0.952.
Furthermore, over 50% of the models outperform
the AR(12) baseline, while 17% of the models condi-
tioned on a large number of variables outperform
the AR(12) augmented by stochastic volatility with
leverage (ARSVLEV12), which has the lowest ratio
among the ten alternative autoregressive models.
Factor-augmented AR (PCA-PA), targeted predictor
based on the lasso (LASSO-TP), targeted factor-
augmented model based on gradient boosting (GB-
TF) and forecast combinations based on PCA (PCA-
FC) are the models with the lowest MSE ratios in
each of the four specifications. Combining informa-
tion across quantiles results to MSE ratios in the
range of 0.696 to 1.107. The majority of the models
benefit from quantile combinations, with over 80%
of the models having a lower MSE ratio than the
AR(12) and over 70% outperforming the
ARSVLEVI12 model. Predictor-augmented models
based on the lasso and random forests, as well as
targeted factor-augmented models based on the two
ensemble methods have the lowest MSE ratios across
all QC specifications. In contrast, the forecast based
on NN-PA for QC3 is the only instance that the
RW would be preferable to an alternative model.

4.2. Quantile forecast evaluation

We next examine the accuracy of individual quantile
forecasts for each of the nine values of 7 € (0,1).
Gneiting and Raftery (2007) and Gneiting and
Ranjan (2011) propose that the same loss function
should be employed in both model estimation and
forecast evaluation. Therefore, following Manzan
and Zerom (2015) and Manzan (2015), we evaluate
quantile forecasts using the quantile score (QS)
function. The QS function focuses on a specific
quantile 7 and provides a local evaluation of the
forecasts. The QS for the tth quantile forecast of
model i is given by:
. 18 +(T if e;,(7)>0
as,ofenite) = { (2] o =S,
(29)

where ¢; ;(t) = y; — g, ,(7) and g, ,(t) is the forecast
of the target variable of model i for the tth quantile.
This scoring rule is negatively orientated coinciding

with the notion of a loss function, so that when
comparing two models, we prefer the one with the
lowest score. To evaluate the hypothesis of equal
predictive accuracy of the quantile forecasts, we fol-
low Amisano and Giacomini (2007) and Giacomini
and White (2006) and compare the quantile score of
model i to that of the benchmark model using the
test statistic:

— @i,r _@0,1
(3- bl

t (30)

where QS; ; and QS ; denote the averages over the
out-of-sample period of the quantile scores for a
given quantile 7 for model i and the benchmark
model respectively, while ¢ is the standard error
estimator of the quantile score difference. Assuming
suitable regularity conditions, the statistic ¢ is
asymptotically standard normal under the null
hypothesis of vanishing expected score differentials.
In the case of rejection, model i is preferred over
the benchmark if ¢ is negative, and the benchmark
model is preferred if ¢ is positive. We follow studies
such as Manzan (2015), who consider an autoregres-
sive model with stochastic volatility as the bench-
mark. Specifically, we set the autoregressive model
augmented by stochastic volatility with leverage
(ARSVLEV1) as the benchmark. In Sections 4.2.1-
4.2.3, we describe the results for the quantile fore-
cast accuracy for industrial production, inflation and
employment. Tables 2-4 report the test statistics of
the quantile score test for the null hypothesis of
equal quantile forecast accuracy of a model relative
to the stochastic volatility benchmark model for the
three target economic variables.

4.2.1. Quantile forecast evaluation: Industrial
Production Index

Starting with the results for industrial production,
presented in Table 2, we observe that the majority
of the models are more accurate than the bench-
mark. The forecast accuracy, based on the statistical
significance of the QS tests, is more pronounced in
the left tail (v € {0.1,0.2,0.3}) and the center
(1 € {0.4,0.5,0.6}) of the distribution. However, the
performance of the models is weaker for the right-
most part of the distribution, where most models
fail to significantly outperform the benchmark for
7 ={0.8,0.9}. The autoregressive models that con-
sistently outperform the benchmark across the lower
and middle part of the distribution, are the AR(12)
baseline and the AR(12) models augmented by sto-
chastic volatility (ARSV12 and ARSVLEV12), as
well as the VAR(2) with factor stochastic volatility
(VARFSV2), with AR(12) yielding the lowest QS
test statistic for 7 € [0.1,0.5]. The rankings of mod-
els that augment the QAR baseline by combining
information or forecasts vary depending on the
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Table 2. Quantile forecast evaluation for the Industrial Production Index (INDPRO).

q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)
RW 4.350 5.563 5.386 5.159 5.155 5.407 5.540 5.603 4.397
AR1 0.396 -0.199 —0.641 —0.439 0.007 —0.626 —0.938 —-1.215 —0.753
AR12 —2.621 —2.632 -3.172 —2.785 —-2.521 -2.074 —1.482 —1.457 —0.255
ARSV1 —1.546 —0.628 0.183 -0.317 1.461 2.239 1.949 2.583 2.824
ARSV12 —-1.943 —1.905 —2.477 —2.382 —2.346 —2.168 —1.404 —0.529 0.325
ARSVLEV12 —2.591 —2.154 —2.433 —2.450 -2418 —2.354 —1.880 —1.245 —0.765
VARCSV1 —1.788 —1.289 -0.762 -1.017 —-1.723 —-2.062 -1.617 —-1.336 —-0.106
VARCSV2 -2.103 —-1.793 —1.398 —1.490 -2.173 —2.708 —2.376 —1.534 —0.156
VARFSV1 -2.016 —1.564 -1.076 —1.058 —1.631 —1.851 —1.427 —0.851 0.185
VARFSV2 —2.160 -2417 —2.060 —1.858 —2.391 -2.714 —2.343 -1.31 0.068
A. Predictor-Augmented AR (PA)
PCA-PA —2.965 -3.015 —3.412 —3.352 —3.162 -2.018 —1.140 —0.962 0.064
LASSO-PA 0.603 -0.276 —0.099 -0.254 -0.223 0.143 1.061 1.531 1.867
GB-PA -1.871 —1.902 —2.740 -3.319 —3.458 —2.656 —1.855 -1.077 0.299
RF-PA —2.684 —3.240 —3.088 —2.267 —2.836 —-2.303 —1.462 —-1.622 —0.694
NN-PA —1.025 —1.298 —2.632 —2.643 —2.292 —2.002 -1.039 —0.579 0.843
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP -2.315 —3.575 —2.555 -2.379 —-2.196 —-1.441 -0.767 0.115 —0.032
GB-TP —-1.799 -2.152 -3.071 —2.800 —2.990 -2.313 —1.699 —0.335 0.415
RF-TP —-1.997 -2.163 —2.444 —2.646 —-2.309 —2.338 —-1.507 —0.567 1.713
NN-TP —-2.417 -3.329 —-3.976 —2.852 —-3.374 —3.338 —-2.186 —1.244 1.160
C. Targeted Factor-Augmented AR (TF)
LASSO-TF —2.523 -3.067 —-2.915 —2.443 —-2.090 —1.425 —1.061 —-0.204 0.507
GB-TF -2.118 —2.692 —3.270 —-3.211 -3.125 —2.585 —1.467 —1.201 0.131
RF-TF —2.667 —3.555 -3.793 —3.502 -3.009 —-2.291 —0.891 —-0.512 0.613
NN-TF —-2.937 —3.056 —3.644 —3.082 —2.956 —2.241 —1.378 —1.155 -0.271
D. Forecast Combination-Augmented AR (FC)
MN-FC -2.191 —-2.327 —3.065 —2.661 —2.040 —1.260 -0.197 0.363 1.51
MD-FC —2.625 —2.568 -3.106 —2.758 —-2.414 —1.998 -1.339 —1.208 —-0.026
RANK-FC —2.585 —2.686 —3.334 —3.099 —2.640 —2.031 —1.415 —1.245 0.122
CL-FC —2.638 —2.681 -3.250 —2.881 —2.632 -2.175 —-1.671 —-1.631 -0.276
DFE-FC —2422 —2.407 —3.099 —2.689 —2.155 —1.492 —0.581 -0.172 0.756
PCA-FC —2.578 —-2.831 —3.438 —-2.916 —2.582 —-1.782 -1.610 —2.021 -0.118
LASSO-FC —2.555 -3.029 —3.531 —3.143 —2.829 —2.636 —2.552 —2.099 -0.199
GB-FC —-1.854 -1.811 —2.589 —-2.571 —-2.835 —1.955 —1.047 —1.550 0.142
RF-FC —1.473 —1.959 -3.131 -3.097 —2.660 —2.246 -2.177 =111 —0.301
NN-FC —2.489 -2.179 -2.273 —-2.320 —2.463 -2.112 —0.840 —0.749 0.332

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater
outperformance from the benchmark. Values less than —1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The

out-of-sample period is from December 1989 to December 2019.

quantile under examination. Targeted factor-aug-
mented AR models based on random forests and
the neural network (RF-TF and NN-TF) are consist-
ent in outperforming the benchmark and improving
upon the QAR baseline model compared to other
specifications for t € [0.1,0.6].

4.2.2. Quantile forecast evaluation: Consumer
Price Index

The results for inflation (Table 3) indicate that
most models significantly outperform the bench-
mark, especially in the left tail and middle part of
the distribution. For 7 = 0.9, the AR models aug-
mented by stochastic volatility tend to outperform
those that combine information or forecasts from
a large set of predictors, while for 7 € {0.2,0.3},
VAR models show improved out-of-sample per-
formance compared to univariate AR models. The
VARFSV2 model outperforms the remaining
autoregressive models for the lower quantiles,
while the AR(12) performs better for the middle
quantiles. Specifications that augment the QAR
model by combining information generate statis-
tically significant outperformance over the

benchmark for 7= 0.9, compared to models that
combine forecasts, where only the lasso yields sig-
nificant outperformance. For 7t € [0.2,0.7] the
majority of the models that incorporate a large
number of economic variables outperform the
benchmark and improve upon the QAR baseline.
Overall, specifications where variables are selected
by the lasso, or the two ensemble methods demon-
strate the best out-of-sample performance for the
lower and middle quantiles. In contrast, when © =
{0.8,0.9} the benchmark becomes increasingly dif-
ficult to significantly outperform for all models
considered.

4.2.3. Quantile forecast evaluation: Employment

Turning to the results for employment, reported in
Table 4, we observe that most models can signifi-
cantly outperform the benchmark, however, out-of-
sample performance diminishes for the upper quan-
tiles. Univariate autoregressive models yield improved
predictive performance relative to VAR models, with
the AR(12) model augmented by stochastic volatility
with leverage (ARSVLEV12) exhibiting strong per-
formance across all quantiles. The majority of the
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Table 3. Quantile forecast evaluation for the Consumer Price Index (CPIAUCSL).

q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)
RW 3.205 4134 3.889 4177 4341 3.887 3.354 3.590 3.491
AR1 —0.726 —2.236 —2.660 —2.661 —2.538 —2.474 —-2.297 —1.425 0.423
AR12 —-1.293 —-2.441 -3.022 —-2.979 —-3.050 —3.748 —3.445 —2.381 —-0.367
ARSV1 1.398 —1.659 —1.403 —1.801 1.059 3.582 4.090 2.720 0.952
ARSV12 —2.966 —-2.734 —-2.009 -1.315 —1.306 —-1.523 —-1.231 —-0.974 —0.547
ARSVLEV12 —2.584 —2.581 —1.862 —1.285 —1.424 —1.660 —1.382 -1.218 —0.808
VARCSV1 —-3.570 —3.999 —-3.299 —2.423 —-2.212 —2.161 -1.774 —1.246 —-0.752
VARCSV2 —3.534 —3.854 -3.120 —2.467 —2.421 —2.535 —-2.153 —1.694 —1.040
VARFSV1 -3.310 -3.717 -3.117 -2.307 =2.171 -2.237 -1.902 —1.242 —-0.557
VARFSV2 —3.375 —4,003 -3.336 —2.599 —2.385 —2.148 —1.790 —1.421 —0.635
A. Predictor-Augmented AR (PA)
PCA-PA —1.464 —2.558 -3.118 —3.058 —3.045 -3.729 —3.562 —2.584 —0.624
LASSO-PA —-1.952 —1.687 -1.789 —-1.301 —1.504 —1.652 -1.339 —0.682 -0.252
GB-PA —1.685 —2.784 —3.308 —3.455 -3.761 —4.101 —-4.014 -3.125 —0.687
RF-PA —2.478 —3.960 —-3.571 —-3.751 —3.995 —4.462 -3.169 -2.170 —0.506
NN-PA 2.968 0.109 —-0.414 —1.226 —1.100 —-0.193 0.967 1.242 2493
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP —1.343 —2.609 -3.079 —3.340 —3.589 —3.272 —2.863 -1.920 —0.849
GB-TP —2.581 —4.001 -3.717 -3.713 —-3.351 —3.665 —-3.791 —2.586 —0.491
RF-TP =221 —-2.970 —2.800 -3.113 —3.188 —-3.673 —2.768 —1.593 -0.170
NN-TP —-2.363 —2.482 —2.349 —-2.753 -3.030 -3.710 —3.005 —-1.383 —0.699
C. Targeted Factor-Augmented AR (TF)
LASSO-TF —-1.672 —-3.441 —3.287 —3.463 —3.593 —4.069 —3.705 —2.600 -0.732
GB-TF —2.909 -3.718 —3.701 —3.655 —3.636 —4.366 —3.941 —2.846 —0.574
RF-TF —1.289 -3.351 -3.093 —3.555 -3.237 —4.202 —-3.939 —2.387 —0.687
NN-TF —1.558 —2.748 —3.145 -3.212 —2.988 —3.798 —3.661 -2.339 -0.373
D. Forecast Combination-Augmented AR (FC)
MN-FC —1.420 —-2.023 —1.652 —1.295 —1.248 —1.654 —1.468 —-0.413 1.075
MD-FC -1.317 —2.434 —-2.824 —-2.776 —2.747 -3.419 —3.200 —2.090 -0.276
RANK-FC —1.448 —2.584 —2.843 -2.919 —3.066 —3.498 —3.201 —2.182 -0.324
CL-FC —1.544 —2.699 —-3.205 -3.141 —-3.060 —-3.671 —3.362 —2.230 —0.360
DFE-FC —1.491 —2.290 —-2.297 —1.949 —1.900 —2.533 —2.448 —1.257 0.192
PCA-FC -1.373 —-2.267 —2.846 —2.878 —-2.852 -3.710 —3.562 —2.383 —0.649
LASSO-FC -1.912 —3.572 —3.542 —3.060 -3.019 —3.308 —2.875 —1.634 —0.420
GB-FC —1.478 —-3.001 —2.742 —2.985 —2.993 —3.995 -3.757 —2.558 —-0.583
RF-FC —1.437 —3.068 -3.514 —3.208 —3.548 —4.413 —4.046 —2.237 —0.490
NN-FC -1.162 —1.521 —2.186 -2.110 —2.447 —2.565 —2.699 —0.087 1.762

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater
outperformance from the benchmark. Values less than —1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The

out-of-sample period is from December 1989 to December 2019.

models that augment the QAR baseline with a large
number of predictors outperform the benchmark in
the lower and middle quantiles. Notably, the models
that improve the most upon the QAR baseline are the
predictor-augmented AR based on random forests
(RE-PA), the targeted factor-augmented AR based on
the neural network (NN-TF) and the cluster weight-
ing scheme to combine forecasts (CL-FC).

4.3. Density forecast evaluation

In this Section we examine the ability of the models
to approximate the density of the three target eco-
nomic variables. To evaluate the ability of a model
to forecast an area of the distribution we follow
Manzan and Zerom (2013) and Meligkotsidou et al.
(2019) and use the weighted quantile score (WQS)
function. The WQS is constructed by integrating the
QS across a set of quantiles, with the score multi-
plied by a weight function that focuses on a specific
part of the distribution. The WQS is defined as
follows:
1

WQS,, —J QS; . s.d, (31)

0

where @, denotes a weight function in the unit
interval. We replace the continuous version of WQS
with a discrete version summing over the quantiles
of interest, allowing us to evaluate specific areas of
the distribution. We employ four different weighting
functions w.: 1. full: w, = 1, which assigns uniform
weights across the entire distribution; 2. mid: w, =
7(1 — 1), places more weight in the middle of the
distribution; 3. left o, = (1—-1)° assigns more
weight to the left tail of the distribution; 4. right:
®; = t?, which focuses on the right tail of the dis-
tribution. Another measure we consider when evalu-
ating density forecasts is the mean log predictive
score (MLPS), where the log predictive score is
derived as the logarithm of the predictive density
generated by a model and evaluated at the realized
value of the target variable (see e.g., Geweke &
Amisano, 2010). If the alternative model generates a
higher MLPS value than the benchmark model, then
that model outperforms the benchmark. We evalu-
ate the statistical significance of the WQS and
MLPS measures using the Diebold and Mariano
statistic. The test statistic is constructed to be nega-
tively oriented, with model i outperforming the
benchmark if the statistic is significantly negative.



Table 4. Quantile forecast evaluation for Employment (PAYEMS).

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 2083

q(0.1) q(0.2) q(0.3) q(0.4) q(0.5) q(0.6) q(0.7) q(0.8) q(0.9)
RW 5.561 5.687 3422 2.347 2.558 3.272 4.451 6.063 6.772
AR1 —2.959 —2.438 0.366 0.205 0.305 0.566 1.533 3.244 4.325
AR12 —3.435 -3.041 —2.653 —3.351 —-3.639 —-3.637 —-2.710 -1.619 1.109
ARSV1 —2.360 —4.225 —3.149 —1.556 1.215 3.566 3.761 2911 3.105
ARSV12 —-2.108 —2.046 -2.710 -3.241 —3.454 —-3.601 —3.455 —2.981 —1.847
ARSVLEV12 —2.723 —2.548 —3.057 —3.509 -3.630 —3.686 —3.579 —3.207 —2.156
VARCSV1 —1.785 —-1.043 —-0.418 -0.307 -0.103 0.818 2.020 3.024 5.070
VARCSV2 —2.250 —-2.913 —2.878 —2.536 —2.270 —1.987 —1.382 —0.964 —0.480
VARFSV1 —1.580 —0.942 -0.133 0.082 0.117 1.037 1.992 3.149 4.529
VARFSV2 —2.146 —2.898 —-2.795 —2.647 —2.554 —2.146 —1.856 1771 —-1.115
A. Predictor-Augmented AR (PA)
PCA-PA —3.805 -3.970 —3.786 —3.876 —4,063 -3.112 —2.344 -1.176 1.057
LASSO-PA —-1.697 -1.166 —-1.241 —1.531 —1.240 —0.939 —0.351 0.929 1.527
GB-PA —2.102 —2.505 —2.544 -3.014 -3.169 —2.548 —2.906 —2.299 —0.140
RF-PA —3.481 —3.808 —-3.412 —4.263 —-4.319 —4.266 -3.131 —2.026 0.797
NN-PA 5.827 2.745 0.126 —0.640 —1.651 —1.427 —0.651 1.810 5.297
B. Targeted Predictor-Augmented AR (TP)
LASSO-TP —1.869 -1.915 —-1.727 —2.084 —2.643 -2.117 —1.840 —1.556 0.600
GB-TP —1.758 -2.355 —2.522 —-3.301 —2.999 —2.820 —2.263 -1.322 2.050
RF-TP —3.035 —2.048 -2.767 -3.132 —3.546 —3.823 —2.504 —1.396 1.078
NN-TP —-2.610 —2.581 —2.893 —3.258 —3.308 —3.429 -2.175 —1.503 0.796
C. Targeted Factor-Augmented AR (TF)
LASSO-TF —2.454 —-2.782 —-2.306 —2.633 —-2.477 —-2.812 -3.167 -1.810 —0.201
GB-TF —2.813 —2.554 —3.260 —4.087 —3.703 —3.638 —2.639 —2.005 0.848
RF-TF —3.245 —3.588 -3.233 —3.869 —4.058 -3.705 —2.781 —1.843 0.275
NN-TF —3.474 —3.348 —3.101 —3.824 —3.949 -3.797 —2.304 -1.711 0.948
D. Forecast Combination-Augmented AR (FC)
MN-FC —2.657 —2.383 —1.982 —2.039 —1.698 —0.602 0.597 2.395 4214
MD-FC —3.665 —-3.085 —-2.673 -3.210 —-3.372 —-2.875 —1.889 —0.862 1.563
RANK-FC —3.958 -3.397 -2.810 -3.391 —3.661 —3.346 —2.204 —0.904 1.677
CL-FC —3.663 —-3.340 -3.134 —-3.602 —3.878 —3.800 —3.155 —1.959 1.022
DFE-FC —3.160 —3.052 —2.858 -3.181 —3.024 —2.350 —1.308 0.143 2.637
PCA-FC -3.073 —3.369 -3.076 —3.560 —4.090 —-3.742 —2.768 —1.464 1.222
LASSO-FC —2.822 —3.493 —3.228 —3.406 -3.273 —2.587 —1.992 —0.646 1411
GB-FC -2.279 -2.170 —1.889 -3.292 -3.220 —3.308 —2.667 —2.445 —0.422
RF-FC -2.939 -3.027 —2.746 -3.210 —3.890 —3.837 -2.971 —1.883 1.109
NN-FC —-0.053 —1.583 —-1.954 -1.707 -2.202 —2.366 —-2.011 -1.723 6.382

This table reports the quantile score t-statistics for the null hypothesis of equal predictive ability of the alternative prediction model relative to the
benchmark. The benchmark is the autoregressive model augmented by stochastic volatility with leverage (ARSVLEV1). A lower value indicates greater
outperformance from the benchmark. Values less than —1.645 indicate that the alternative model outperforms the benchmark at the 5% level. The

out-of-sample period is from December 1989 to December 2019.

Table 5 reports the WQS and MLPS ¢-statistics for
the null hypothesis of equal predictive ability of the
alternative prediction model relative to the AR(1)
model augmented by stochastic volatility with lever-
age (ARSVLEV1) benchmark, for industrial produc-
tion, inflation and employment.

Overall, the findings show that the majority of
the models produce significantly superior density
forecasts relative to the benchmark across the three
variables of interest, with the augmented AR specifi-
cations improving upon the QAR baseline model.
This outperformance can be attributed to greater
forecasting accuracy in the left tail and center of the
distribution. For industrial production and inflation,
models from the four specifications that incorporate
a large number of predictors offer the highest accur-
acy, while for employment, models augmented by
stochastic volatility yield comparable out-of-sample
performance.

For industrial production, the AR(12) outper-
forms the remaining autoregressive models accord-
ing to the WQS metrics for the full distribution,
middle and the left tail, however, based on the
MLPS test statistic the AR(12) and VAR(2) models
augmented by stochastic volatility exhibit stronger

performance. In the case of models that use the pre-
dictors directly as inputs (Panel A), random forests
(RF-PA) and PCA (PCA-PA) offer the lowest WQS
test statistics, while gradient boosting (GB-PA) fol-
lowed by PCA generate the lowest values for the
MLPS t-statistic. In contrast, the lasso does not sig-
nificantly outperform the benchmark in this specifi-
cation. For the case of an AR augmented by
targeted predictors (Panel B), the neural network
(NN-TP) is the best performing model, while for
the case of the targeted factor-augmented AR (Panel
C), the neural network (NN-TF) and both ensemble
methods show significant outperformance across all
metrics. Most forecast combinations (Panel D) also
significantly outperform the benchmark, with the
lasso-based combination (LASSO-FC) having the
strongest performance.

Turning to the results for inflation, the AR(12)
outperforms the remaining autoregressive models
according to the MLPS t¢-statistic and in terms of
WQS for the full distribution, center and right tail
of the distribution. However, VAR models exhibit
better out-of-sample performance in the left tail.
Overall, ensemble approaches are the best perform-
ing models across the four augmented AR
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specifications. Specifically, for the predictor-aug-
mented and forecast combination specifications,
random forests (RF-PA and RF-FC) offer the lowest
WQS t-statistics, while gradient boosting (GB-PA
and GB-FC) has the lowest MLPS t¢-statistic. On the
other hand, the neural network for the predictor-
augmented AR (NN-PA) does not outperform the
benchmark, and forecast combinations based on
mean and neural network weighting schemes (MN-
FC and NN-FC) show mixed results in terms of sig-
nificant outperformance. For the remaining two
specifications, all models significantly outperform
the benchmark, with the targeted predictor- and the
targeted factor-augmented AR based on gradient
boosting (GB-TP and GB-TF) generating the best
performance.

Finally, the results for employment indicate that
among the autoregressive models, the AR(12) aug-
mented by stochastic volatility with leverage
(ARSVLEV12) exhibits the strongest performance
across all metrics, except for the WQS t-statistic in
the left tail, where the AR(12) baseline is better at out-
performing the benchmark. In general, the majority
of the models that augment the QAR baseline with a
large number of predictors, exhibit improved fore-
casting performance in terms of the MLPS ¢-statistic
and the WQS t-statistic in the left tail, while for the
other metrics, the performance is comparable to that
of the univariate autoregressive models such as the
ARSVLEVI2. In particular, random forests is better
at significantly outperforming the benchmark and
improving upon the QAR baseline in specifications
that combine information (PA, TP and TF), while the
cluster weighting scheme (CL-FC) and PCA-FC are
among the top performing models in the forecast
combination specification.

4.4. Further analysis

4.4.1. Performance over time

In this Section we examine how model performance
evolves over time. For the point forecast evaluation,
we plot in Figure Al in Supplementary Appendix A
the cumulative squared errors for the random walk
benchmark relative to a selection of models over
time. The chosen models are those that directly
forecast the mean (LS) and exhibit the lowest MSE
ratio in the five specifications of Table 1. The finan-
cial crisis of 2007-2008 is a break for the evolution
of the performance of the models. Performance is
more volatile for industrial production and inflation
during the global financial crisis than it is for
employment. After the crisis performance of the
models over the benchmark accumulates higher,
especially for industrial production and inflation.
Focusing on the rightmost point in the respective
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figure, we observe that for industrial production a
targeted factor-augmented AR based on random for-
ests (RE-TF) closely followed by a factor-augmented
AR based on PCA (PCA-PA) are the best perform-
ing models. For inflation, forecast combinations
based on the neural network (NN-FC) is the best
performing model especially after the global finan-
cial crisis, while before the crisis a predictor aug-
mented AR based on gradient boosting (GB-PA), or
targeted factor-augmented AR based on the neural
network (NN-TF) outperform the remaining mod-
els. For employment, point forecasts generated by a
factor-augmented AR (PCA-PA), targeted factor-
augmented AR based on gradient boosting (GB-TF)
and forecast combination based on PCA (PCA-FC)
outperform the other models over the out-of-sample
period.

For the density forecast evaluation, we plot the
cumulative differences in the four WQS functions
for the ARSVLEV1 benchmark relative to the
chosen forecasting models. For each of the three
variables of interest, the models selected are those
that yield the lowest WQS t-statistics for the full
distribution in each specification of Table 5. Figure
A2 depicts how the different WQS metrics evolve
over time for industrial production. The plots reveal
that the global financial crisis constitutes a break for
density forecasts as well, with cumulative perform-
ance being more volatile during the crisis, and
increasing after the crisis with the trend being
steeper for the left part of the distribution.
Considering the rightmost point in the plots a fore-
cast combination based on the lasso (LASSO-FC) is
the best performing model for the full distribution,
with a targeted predictor-augmented AR based on
the neural network (NN-TP) offering equivalent
performance in the middle part of the distribution
and outperforming LASSO-FC in the left tail of the
distribution. The results for inflation, presented in
Figure A3, show that
decreases during the crisis, then sharply increases
and relatively plateaus until the end of the sample
for all cases considered. The best performing models
for inflation according to all WQS metrics are tar-
geted predictor- and targeted factor-augmented AR
based on gradient boosting (GB-TP and GB-TF).
For employment (Figure A4), the results reveal that
cumulative performance during and after the crisis
is more stable in the left tail compared to the mid-
dle and right tail parts of the distribution. Predictor-
and targeted factor-augmented AR models based on
random forests (RF-PA and RF-TF) are the best
performing models for the middle and left tail parts
of the distribution. It is interesting to note that for
the right tail of the distribution the AR(12)

cumulative performance
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augmented by stochastic volatility with leverage out-
performs the remaining models.

4.4.2. Variable importance analysis

In this Section, we provide a description of the
results for the variable importance analysis of the
predictor-augmented AR and forecast combination-
augmented AR specifications for the cases of the
conditional mean and the conditional quantiles. The
out-of-sample variable importance is constructed for
each of the eight groups of variables in FRED-MD.’
The variable importance in each period is computed
as the absolute change in MSE for the conditional
mean forecasts, or the QS for the conditional quan-
tile forecasts, by setting each one of the predictors
to zero. Variable importance for a group is the aver-
age change in MSE or QS of the variables within
that group. The variable importance measure is
averaged throughout the out-of-sample period and
is normalized for each model to sum to 100.

The results of the variable importance analysis
for industrial production are presented in Figure A5
in Supplementary Appendix A for the conditional
mean. In the case of models that combine informa-
tion, the results indicate that labor market indicators
are primarily chosen by the lasso, while variables
from the money and credit group and output and
income group are chosen by the GB and RF models
respectively. On the other hand, bivariate forecasts
based on variables from the money and credit or
housing groups are those primarily selected by the
ensemble methods. Overall,
neural networks place approximately equal impor-
tance in each variable group.

The variable importance for industrial production
for the conditional quantiles is reported in Figures A6
and A7 for models that combine information or com-
bine forecasts respectively. The results show that the
groups of important predictors vary greatly based on
the value for T and the forecasting model. In the case
of the lower quantiles (t € {0.1,0.2,0.3}), predictors
from the output and income are better on average at
explaining industrial production, however, when com-
bining forecasts, the interest and exchange rate groups
is most often selected across all models. For the middle
part of the distribution (t € {0.4,0.5,0.6}), the labor
market, in addition to output and income groups are
important regardless of whether predictors or simple
forecasts are combined. For the right tail of the distri-
bution (r € {0.7,0.8,0.9}), output and income predic-
tors are selected by most models, except for neural

forecasts based on

networks that focus on consumption, orders, and
inventories. Simple forecasts of labor market variables
are selected primarily by the forecast combination
methods.

Figure A8 in the Supplementary Appendix presents
the variable importance analysis for inflation in the
case of point forecasts. A predictor-augmented AR
based on the lasso would select variables primarily
from the output and income group, while gradient
boosting focuses on price indicators and random for-
ests on labor market variables. In contrast, when the
predictor set in comprised of individual forecasts, the
lasso overall focuses on variables from the housing
group. Both ensemble methods select bivariate forecasts
from the price group, while random forests also selects
simple forecasts based on money and credit variables.
Neural networks again place approximately equal
importance across groups.

Figures A9 and A10 report the variable impor-
tance for the quantile forecasts of inflation for mod-
els that use the predictors variables directly or
combine forecasts respectively. For the left tail part
of the distribution, models that combine informa-
tion select predictors primarily from the output and
income group and then from the price group.
However, when modelling the middle and right tail
part of the distribution the majority of the models
place greater importance on the price group, with
housing variables also being useful for modelling
quantiles for 7 € {0.4,0.5,0.6}. Bivariate forecasts
based on consumption, orders, and inventories vari-
ables dominate all other groups when combining
forecasts, especially for the middle to right tail part
of the distribution. For the lower quantiles, simple
forecasts based on output and income, or interest
and exchange rate variables are also important in
modelling inflation.

Lastly, the variable importance results for the
conditional mean forecasts of employment are
reported in Figure All. Of particular note is that
lasso and especially random forests select variables
from the labor market group, while gradient boost-
ing selects primarily housing indicators. Otherwise,
when the predictor set is comprised of bivariate
forecasts, the lasso selects variables from the output
and income group, GB selects bivariate forecasts
based on labor market variables and RF from those
in the housing group.

The results for the variable importance of each
quantile for employment are depicted in Figures
A12 and A13 for the case of models that combine
information or forecast combinations respectively.
In terms of variable importance, regardless of
whether information or forecasts are combined, the
most important group to model employment are
labor market indicators. When modelling the middle
part of the distribution, the models that combine
information also focus on interest and exchange rate
variables. Forecast combinations also select bivariate
forecasts based on variables from the consumption,
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order and inventories group to estimate the lower
quantiles, stock market variables to model the lower
tail and middle part of the distribution, while for
the upper quantiles, forecasts based on housing vari-
ables are also important.

4.4.3. Amalgamation of forecasts

To account for the heterogeneity observed in the
forecasting accuracy across different model specifi-
cations and performance metrics we follow Rapach
and Strauss (2012) and construct an amalgamation
of all individual models. The point, quantile and
density performance evaluation of the amalgam
forecasts is presented in Table A9 in Supplementary
Appendix A.

Starting with the point forecast evaluation, aggre-
gating forecasts across the LS and the three QS
specifications leads to amalgam forecasts that signifi-
cantly outperform the random walk benchmark for
all variables of interest. However, pooling forecasts
across all models does not lead to any significant
gains compared to the best performing model, with
the MSE ratios between the amalgam and the model
with the strongest performance being equivalent.

The results for the quantile forecast evaluation
indicate that aggregating forecasts across all models
for each quantile leads to statistically significant out-
performance over the benchmark for 7 € [0.1,0.8]
for all target variables. For industrial production,
the amalgamation approach yields lower QS t-statis-
tic than the best performing individual model for
7 €[0.1,0.5]. In the case of inflation, the amalgam-
ation approach outperforms the top individual
model for 7 € [0.2,0.6]. For employment, the amal-
gam forecast would be preferable over that of the
individual model with the lowest QS t-statistic
for 7 € [0.3,0.6].

The amalgamation approach results to density
forecasts that significantly outperform the bench-
mark in terms of all metrics for the three variables
of interest. For industrial production, aggregating
forecasts leads to lower WQS t-statistics than the
individual models, while models such as GB-PA and
LASSO-FC  generate MLPS
Similarly, for inflation the amalgamation approach
yields improved performance according to the WQS
t-statistics, although models that combine informa-
tion using gradient boosting generate lower MLPS
t-statistics. In the case of employment, the amalgam
forecasts generate superior performance according
to the WQS t-statistics for the full distribution, the
left and middle parts of the distribution, while indi-
vidual models based on ensemble approaches out-
perform the amalgam forecast in terms of MLPS.

lower t-statistics.
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4.4.4. Model performance including the COVID-19
pandemic period

So far, this paper has focused on a sample period
ending in December 2019. In this Section, we
explore the performance of the models for an
extended sample up to March 2024, which includes
the turbulent period of the COVID-19 pandemic
and subsequent lockdowns. This poses a significant
challenge for macroeconomic forecasting, as the val-
ues of the target variables deviate significantly from
their historical range.*

The performance evaluation for the point fore-
casts is reported in Table Al0 in Supplementary
Appendix A. For inflation, the majority of the mod-
els provide significant outperformance over the
benchmark. In contrast, although most models out-
perform the benchmark for industrial production,
the results are not statistically significant. For
employment, models that use a large number of pre-
dictors do not outperform the benchmark, while
stochastic volatility models yield statistically insig-
nificant outperformance.

The results for the quantile forecast evaluation
can be found in Tables A1l to A13 for the respect-
ive variable of interest. For inflation, while perform-
ance diminishes after extending the sample, most
models continue to significantly outperform the
benchmark for 7 € [0.1,0.8]. For industrial produc-
tion, we observe significant outperformance mainly
in the lower quantiles (tr € {0.1,0.2}), while for the
remaining quantiles the results are not statistically
significant. For employment, augmented AR models
are most impacted by including the post-2019
period, while Bayesian VARs and univariate autore-
gressive models with a single lag show significant
outperformance in the lower quantiles.

The density forecast evaluation is presented in
Table Al4. For inflation, most models continue to
produce statistically significant results, with models
incorporating a large number of predictors improv-
ing upon the QAR baseline, particularly in the left
tail and middle parts of the distribution. For indus-
trial production, performance is better in the left tail
of the distribution, however, the results overall are
statistically insignificant. In the case of employment,
autoregressive models with a single lag tend to offer
statistically significant outperformance.

5. Conclusion

In this study we examine the ability of a large num-
ber of economic variables to forecast key business
cycle and inflation indicators. The aim of our ana-
lysis is to construct point, quantile, and density fore-
casts of industrial production, inflation and
employment, by leveraging the benefits arising from
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the quantile regression framework, machine learning
approaches and the information contained in the
predictor set. Specifically, the variables of interest
are analysed assuming that their future values
depend on their own lags and a large set of macro-
economic and financial variables, through several
specifications of an augmented time series model.
These models allow for heterogeneous degrees of
persistence of the target variable and asymmetric
dynamic responses of economic variables at different
parts of the distribution.

The results suggest that combining information
across quantiles to forecast the conditional mean
considerably improves the out-of-sample perform-
ance. In addition, augmenting an autoregressive
model with economic variables though methods that
perform variable selection or account for non-line-
arities can further increase the accuracy of the point
forecasts relative to simpler models. Furthermore,
our findings indicate that the improved forecasting
performance arises from incorporating economic
information into the quantile forecasts and is driven
especially from the lower left and middle part of the
distribution. The results also show that the proposed
approaches and the information of the economic
variables lead to more accurate distribution forecasts
than the benchmark models.
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(2021) and incorporate a dummy variable for March
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analysis.
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