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Continuous demands for improved performance within constrained resource budgets are driving a move
from homogeneous to heterogeneous processing platforms for the implementation of today’s Real-Time (RT)
embedded systems. The applications executing on such systems are typically represented as a Precedence Task
Graph (PTG), where a node represents a task or algorithm for one functionality and edges represent the complex
interactions betweenmultiple functionalities. Due to RT constraints, the task graph needs to be executed within
a specified deadline. Although some existing studies have looked into solving this challenge, comprehensive
studies that combine the theoretical features of RT task-graph mapping and scheduling with practical runtime
architectural characteristics have mostly been ignored to date. Hence, in this paper, we consider the challenge
of scheduling a RT application modelled as a single PTG, with the objective of minimizing the overall execution
time under Hardware (HW) resource and deadline constraints for heterogeneous Central Processing Unit (CPU)
+ Field Programmable Gate Array (FPGA) architectures. First, we introduce an optimal solution using Integer
Linear Programming (ILP). However, this ILP-based optimal solution suffers from computational complexity
and does not scale well even for moderately large problem sizes. Hence, we additionally propose heuristic
algorithms for task mapping and scheduling. The efficiency of the proposed scheme, named MESSI, has been
evaluated through experiments using PTGs on a practical CPU+FPGA system regarding current technology
restrictions. Our experiments demonstrate that performance gains of 55.6% and area usage reductions of
46.3 % are possible compared to full Software (SW) and HW execution, respectively.
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1 INTRODUCTION
Over the years, we have witnessed a drastic shift in the nature of processing platforms employed
in RT embedded systems. For example, modern System-on-Chip (SoC) platforms contain multicore
processors with specialized Digital Signal Processing (DSP) cores, Graphics Processing Units (GPUs),
FPGAs, Application Specific Instruction Set Processor or other Application Specific Integrated
Circuit. Processing platforms with such varying types of computing elements are known as het-
erogeneous platforms. These heterogeneous platforms typically deliver higher performance and
better energy efficiency as compared to general-purpose processors [58]. Currently, the NVIDIA
Tegra [26]/Jetson [27] with GPUs and the Xilinx Zynq [52] with SoC FPGAs are popular examples.
Particularly, FPGA-based heterogeneous systems have drawn considerable interest due to their
flexible architecture that can enable efficient HW customization for particular algorithms. For
example, FPGA-based systems have been deployed in RT edge computing to accelerate AI-based
face tracking, leading to high throughput at low power [22]. Such heterogeneous FPGA-based
systems contain a CPU as soft-core Intellectual Property (IP) or even hardwired, IP such as in the
Xilinx Zynq SoC FPGA. CPU+FPGA systems are not only relevant for prototyping such systems
but become the viable realization of embedded systems as their prices decrease. In recent years,
heterogeneous embedded systems have been realized through CPU+FPGA systems for their ad-
vantages over normal FPGA-based solutions [30]. The flexibility of these platforms makes them
popular in fields where FPGAs are predominant, like aerospace [19, 49] and automotive [5, 28], as
well as emerging fields like the Internet of Things [14, 18].

Applications in today’s heterogeneous embedded systems are often represented by Directed
Acyclic Graphs (DAGs) or PTGs. In such PTGs, a node represents a task associated with the
application, while an edge denotes interdependencies among tasks. When these PTGs (alternatively
referred to as task graphs or DAGs in the remainder of this paper) are implemented on heterogeneous
platforms [1], (i) the same task may require different execution times on different Processing
Elements (PEs), and (ii) inter-task data transmission may incur distinct overheads on the different
communication channels. Moreover, due to its RT nature, such systems often impose a stringent
timing constraints where a specific application has to be executed within the given deadline by
executing all the associated tasks. Hence, given an application modelled as a task graph and a
heterogeneous computing platform, the successful execution of all associated tasks within the given
deadline while satisfying all resource, precedence-related and architectural constraints is a challenging
scheduling problem.

The problem of RT scheduling of task graphs can be broadly categorized as either static/offline
scheduling or dynamic/online scheduling [23]. In the case of static scheduling, decisions, for ex-
ample, "task-to-processor allocations", execution start times of tasks, etc., are determined offline
prior to the system starting its operation. Such offline scheduling is popular for embedded systems
because information such as the worst-case execution requirement of each task on every processor,
precedence constraints, and communication overheads between task pairs are completely or par-
tially available at design time. However, such partial or complete information about a task graph
is not available before execution in the case of dynamic scheduling, and thus all the scheduling
decisions can only be taken at runtime.

As many RT systems require a high degree of timing predictability with well-defined workload
(e.g., manufacturing robot control, avoinic systems), it is typically preferable to employ offline
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scheduling algorithms for such systems, as this allows all timing requirements to be specified offline
before runtime operation [4, 41]. Thus, this work also deals with the generation of static schedules
for PTGs.
The task graph scheduling problem is usually classified as NP-complete [42]. This means that

strategies that try to find the best schedules for PTGs on different types of PEs often come with
high computational costs, even for small problem sizes. This is mainly because they necessitate a
thorough enumeration of an exponential state space. Therefore, researchers are often focused on
designing low-complexity heuristics that can generate a near optimal schedule within a reasonable
time [37].
A majority of heuristic scheduling policies attempt to develop the schedule with the objective

of minimizing overall schedule length, also known as makespan time. In the context of task
graph scheduling for embedded systems, this makespan time minimization could be beneficial
and necessary in many ways. For example, in an anti-collision controller for a robot, the obstacle
detection application (generally represented as a task graph [48]) is executed repetitively. A lower
makespanwill provide the actuators with enough time to take action, which in turn could potentially
improve stability [44]. Additionally, with the deadline constraint, this lower makespan time will
generate slack times that can be used to improve other performance metrics of the system, such as
expenditure on QoS enhancement [32, 33], energy consumption [38, 50], and reliability [10, 53].
However, in spite of the practical importance, many existing works [29, 54, 59] that deal with

makespan minimization for heterogeneous embedded systems only evaluated their technique
via SW simulations using hypothetical parameters without considering any practical constraints.
Until now, studies that combine the theoretical aspects of RT scheduling of task graphs along with
runtime architectural characteristics have not been conducted. Unlike these existing techniques,
MESSI, attempts to address the problem of scheduling a RT application modelled as a PTG, which
must be scheduled within a stipulated deadline, with the objective of minimizing the makespan
time under system-wide constraints. The targeted platform is an CPU+FPGA-based heterogeneous
architecture.

The main technical contributions of this paper are:

• Formulation of an ILP-based optimal solution strategy, which can be used to obtain schedules
for RT applications represented as a single PTG, executing on a heterogeneous platform. The
scalability of the proposed ILP is better than the optimal strategy in the previously presented
work [1]. The scalability of our previous ILP was limited due to its explicit dependency on
the deadline associated with a given PTG. In MESSI, we used different integer variables to
represent the instants at which the task begins and completes execution on the processor
to which it has been assigned. In the proposed ILP formulation, we have considered the
communication time between two tasks if they were placed in different processing elements.
This reflects the possible system’s properties more accurately.

• In Design Space Exploration (DSE), where numerous rapid design iterations are required,
a substantial time overhead is often unaffordable. Therefore, in addition to the optimal
solution approach, we propose two distinct heuristic algorithms for task mapping and
scheduling. It is observed that the solution qualities delivered by the proposed heuristic is
similar to the ILP-based solution. However, the computational overheads associated with
ILP are significantly higher than the proposed heuristics.

• We show how to implement a given scheduling on a practical CPU+FPGA system regarding
current technology restrictions and discuss the different trade-offs with respect to the
system capabilities. This is mostly not considered in related works.
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• We provide a case-study to validate the applicability of our proposed scheduling technique in
delivering practical results and demonstrate that performance gains of 55.6 % and area usage
reductions of 46.3 % are possible compared to a full SW and HW execution, respectively.
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Fig. 1. Overview of our proposed mapping and scheduling strategy.

Fig. 1 shows a high-level overview of MESSI, our proposed approach for task mapping and
scheduling in a heterogeneous CPU+FPGA system. The green boxes represent the application’s
specification, and initial artifacts for the system. The RT constraints define the deadline for the
schedule, how much memory and area is available on the CPU+FPGA system, and potential other
constraints of the RT system. The task graph represent the tasks with their dependencies and order
in which they are executed. The tasks themselves should each be available as SW implementation for
the CPU and as HW implementation for the FPGA (e.g., synthesizable Register-Tranfer Level (RTL)
models written in a HW description language). Based on the task implementations, relevant
execution metrics are obtained by executing the tasks in isolation (purple, right, middle of Fig. 1).
Possible important metrics are the execution time and area usage on the respective FPGA. These
metrics are passed together with the RT constraints and task graph to MESSI, our proposed mapping
and scheduling strategy (blue, left, middle of Fig. 1), which derives a task mapping and scheduling.
Depending on the requirements and the development cycle, a mapping and schedule can be obtained
from MESSI through either ILP or heuristics (yellow boxes within MESSI, right middle of Fig. 1).
The scheduling is then implemented on the heterogeneous CPU+FPGA system and executed. If
there are differences between the obtained schedule and the executed schedule, a refinement
step can be performed to add system specific constraints or conditions to the ILP formulation
or the heuristics. Possible differences are expected, as the ILP formulation targets a generalized
model for many possible systems. This refinement step is optional in case the mapping & schedule
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implemented on the system diverge too much from the ILP solution. Refinements can contain
timing specific properties of the CPU or constraints to enable limited preemption between tasks
and task communication. New constraints may be added to provide more specialization for a
specific CPU+FPGA system. The trade-off in refining either the ILP formulation or the heuristics
comes with a more accurate solution (due to specialized constraints) by losing generality for other
systems and PTGs. Refining the ILP formulation allows for a more analytical description than a
refinement of the heuristic. For the heuristics, refinements consider the requirements as well as
decision heuristics for mapping and scheduling, thus possibly affecting the quality of the obtained
solution. It has to be noted that in MESSI, the heuristic techniques do not need to be employed
in conjunction with the ILP technique; both techniques are independent of each other and can be
employed separately.
Additional metrics can be integrated in order to consider practical implementation constraints,

such as the communication overhead in moving results between the CPUs and FPGAs accessible
memories. However, such metrics are highly system specific and can vary depending on the
capabilities of the system. In this work, we focus on bare-metal systems and consider the RISC-
V Instruction Set Architecture (ISA). Our evaluation case-study demonstrates the applicability of
our proposed scheduling algorithm in providing practical results for a heterogeneous RISC-V
CPU+FPGA system.

1.1 Structure of the Paper
This journal paper includes and expands upon published material from our previous conference
paper [1]. After this outline, we will elaborate on our new contributions of this paper in the next
paragraph. Following this introduction, the remainder of the paper is organized as follows: In
Section 2 we discuss the related work and the context in which MESSI fits into. We present our
proposed scheduling strategy in Section 3, which covers our ILP-based formulation. In Section 4.1
and Section 4.2 we discuss our heuristic approaches for mapping and scheduling, respectively.
Then, we discuss practical constraints and trade-offs in implementing the resulting mapping and
scheduling on a heterogeneous CPU+FPGA system in Section 5. Next, we present our RISC-V case-
study with an example application task graph on which we employ MESSI and show the obtained
results in Section 6. In Section 7 we further discuss our proposed methodology, the obtained results
and provide ideas for future work. Finally, we conclude the paper in Section 8.

2 RELATEDWORK
A plethora of existing work discusses the scheduling problem for general multicore computing
environments, which involve various SW computing modules such as CPUs and GPUs [11, 56].
These algorithms take into account the different computation speeds of heterogeneous PEs as
well as intercore parallelism. Many works discuss tailored models for application domains and
specific heterogeneous system configurations (e.g., CPU+FPGA). Hence, model formulations con-
sider different parameters of the underlying system (e.g., configuration time). Among CPU+FPGA
systems, there also exist heterogeneous systems containing CPU+GPU systems andMulti-Processor
System-on-Chips (MPSoCs). Related works tailoring solutions for systems different from CPU+FPGA
systems are still of interest, as formulations in the models or constraints based on the application
domain can be related. Hence, we will also discuss works that focus on CPU+GPU systems and
MPSoCs as well.
In [16], the authors exploit the advantages of heuristic-based algorithms and also proposed

a genetic algorithm-based task allocation strategy to minimize the schedule length. Similarly, a
machine learning based online task scheduler for hybrid CPU+GPU systems has been proposed
in [13]. However, such computation-intensive methods often raise concerns regarding resource
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limitations on real platforms. Thus, some studies propose scheduling methods for systems with
limited computing resources. In [10] the authors present a scheduling algorithm for a fixed number
of heterogeneous processing units (CPUs, GPUs) to obtain both a high performance and lower
makespan time, while maintaining the system’s reliability against any faults. Xie et al. [51] introduce
a methodology for energy-constrained task scheduling with a primary focus on the power usage of
MPSoCs. This work provides insight into the usage of power estimations in the task scheduling
across processors, but is only applied to MPSoCs.

With the increasing complexity level of high-performance computing and RT embedded systems,
current heterogeneous computing systems are employing FPGAs along with CPUs and GPUs to
overcome existing limitations [3, 6]. FPGA-based multicore systems are composed of multiple SW
executing PEs (i.e., multiple CPUs and GPUs) and fixed HW resources (FPGA area).

Letras et al. [20] propose an approach to map data flow based applications onto MPSoCs through
multi-objective optimization. While this method allows to optimize for high throughput, it does
not consider the utilization of custom HW acceleration or FPGA-based heterogeneous systems.
In [39] the authors explore the optimization of shared memory architecture for heterogeneous
systems with HW accelerators and CPUs. This method enables extensive use of shared memory
architectures with increases in performance, but does not particularly deal with the partitioning
and scheduling of tasks within the system. Such methods would extend the possibilities in the
design space for heterogeneous systems, as Section 5.1 discusses shared memory as a technique to
improve performance.
In recent years, the problem of RT task execution on FPGA-based heterogeneous systems has

gathered considerable attention from the research community. The generic problem of RT schedul-
ing tasks has branched out in different directions, primarily based on: i) using optimizing frame-
works [31], ii) using heuristic algorithms [57], and iii) using priority-driven algorithms [17]. In [31],
the authors proposed a static partitioning-based scheduling strategy for CPU+FPGA systems to
minimize energy consumption. In [55], the authors measured the speed-up in task execution on an
FPGA and by utilizing their speed-up utilization model, they determine the appropriate PE (i.e., CPU
or FPGA) to assign the tasks to. However, all these works are designed for non-RT applications
and do not consider HW constraints. Recently, Zhu et al. [59] proposed a RT task scheduling
framework for CPU+FPGA systems, but their work only considered independent tasks. Dependent
RT task scheduling in an FPGA-based multicore setting to minimize the makespan under HW
resource constraints has been investigated in [54]. However, this technique is only evaluated via SW
simulations using hypothetical FPGA parameters without considering any practical constraints.

Ding et al. [12] propose a task partitioning, scheduling and floorplanning approach for partially
dynamically reconfigurable systems. The main focus of this work is the realization of a task graph
through full HW execution within a single FPGAs resources, which is capable of being partially
reconfigured during runtime. While this approach maps a task graph, with its data dependencies
for partially reconfigurable FPGAs, it doesn’t consider CPUs as part of the system. Hence, a possible
execution in SW versus HW is not considered. Furthermore, RT constraints, as discussed in our
work, aren’t considered either.

In [37] the authors introduce a scheduling approach that is tailored for utilization in embedded
systems inwhich the temperature of the chip cannot exceed a defined limit. This approachminimizes
the make span of the task graph with respect to the system’s temperature limit. For this, the authors
utilize ILP as well as a newly introduced heuristic, but in this work only embedded systems
containing a single CPU are considered. In [15] the authors showed how tasks can be mapped onto
multiple CPUs utilizing ILP enhancedwith logic-based Benders decomposition.While this technique
allows to overcome some scalability issues of ILP, the formulation of the problem looks into task
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scheduling w.r.t. the makespan alone, however it is not considering any resource constraints or
HW acceleration.

The authors of [43] introduce a scheduling framework for FPGA-based heterogeneous systems in
order to achieve higher performance. However, the proposed framework does not consider resource
constraints and targets to increase high performance computing workloads as well as partial
reconfiguration of the FPGA.While the approach of Xu et al. [54] is related to our approach, because
it targets task graph scheduling for FPGA-based heterogeneous systems under RT constraints,
it solely relies on integer programming techniques. In the work of Xu et al. two approaches are
introduced and utilized. Their first algorithm utilizes ILP to solve the task mapping and scheduling,
but does not consider the communication between tasks. In order to overcome the lack of the
missing communication times, the second approach treats the communication between tasks as
part of the optimization problem. Their second algorithm relies on integer non-linear programming,
hence potentially requiring more computational effort than ILP-based solutions.

While the work of Xu et al. [54] is related, a fair comparison is challenging due to their reliance on
theoretical models without experimental validation on an actual CPU+FPGAs system. Additionally,
there appear to be differences in the workloads and benchmarks used across related studies, making
it difficult to establish a common ground for comparison, even when similar applications like fast
Fourier transform or Gaussian elimination are considered.
In MESSI, we provide an improved ILP-based scheduling generation with communication con-

straints. We additionally provide two heuristics, in order to overcome the scalability issues that ILP
computations can be subject to for bigger task graphs. Finally, we discuss and empirically validate
all our theoretical findings in practical implementation with real-life case studies. Until now, studies
that consider both, the theoretical aspects of RT scheduling of tasks along with runtime architec-
tural characteristics, have not been conducted. MESSI, our mapping and scheduling algorithms,
fills this gap with the objective of minimizing the makespan under HW resource constraints for
CPU+FPGA based heterogeneous RT architectures.

3 PROPOSED SCHEDULING STRATEGY
In this section, we provide the necessary definitions (Section 3.1 and Section 3.2) and present the
proposed constraint-based formalism to obtain scheduling in this context (Section 3.3).

3.1 Application and Architecture Model
We model a RT application (A) as a PTG,𝐺 = (𝑇, 𝐸), where𝑇 is a set of tasks (𝑇 = {𝑇𝑖 | 1 ≤ 𝑖 ≤ 𝑛})
and 𝐸 is a set of directed edges (𝐸 = {⟨𝑇𝑢,𝑇𝑣⟩ | 1 ≤ 𝑢, 𝑣 ≤ 𝑛;𝑢 ≠ 𝑣}) representing the dependency
between distinct pairs of tasks. 𝑛 denotes the number of tasks within the set 𝑇 . An edge ⟨𝑇𝑢,𝑇𝑣⟩
refers that the task 𝑇𝑣 can begin execution only after the completion of 𝑇𝑢 . The source task does
not have any predecessors; similarly, the sink task does not have any successors. In the case of
multiple sink/source nodes, we add dummy nodes having an execution time of zero, connected to
each of the multiple source / sink nodes. This allows us to consider only the PTG formation with
one single source and sink task. Being a RT application, the entire application (A) must satisfy its
deadline, denoted as 𝐷𝐷𝐴𝐺 , by executing all the task nodes within the interval.

In a heterogeneous multiprocessor system, PEs of the same type are usually grouped together as
a cluster. The individual tasks belonging to an application are assigned to clusters. The architectural
model considered in this paper consists of a two type of clusters. One type of cluster contains
Embedded Processors (EPs) (or CPUs) and another type of cluster consists of Reconfigurable Logic (RL)
(or FPGA). Let us assume CPU cluster is denoted as 𝐶𝑙𝐶 and there are𝑚𝐸𝑃 number of EPs. The
FPGA cluster is denoted as 𝐶𝑙𝐹 and the number of RL within the cluster is denoted as𝑚𝑃𝑅𝐿 .
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Each task𝑇𝑖 of the task graph contains a tuple denoting SW execution time (CPU execution time),
HW execution time (FPGA execution time) and HW area cost (amount of logic gates requirement),
respectively. Additionally, each edge 𝐸 also includes the communication cost between tasks 𝑇𝑖
and 𝑇𝑗 . All tasks can be bi-partitioned into HW executable, 𝐻𝑊 or SW executable, 𝑆𝑊 , satisfying
𝐻𝑊 ∪ 𝑆𝑊 = 𝑇 and 𝐻𝑊 ∩ 𝑆𝑊 = ∅. All processors are also assumed to be identical within a cluster,
thus a SW task’s execution time is identical in any processor.

3.2 Problem Description
Generate a RT schedule with feasible PE assignment, and start time for each task node of a given
DAG having a stipulated end-to-end deadline, such that the total completion time is minimized,
while ensuring that deadline, precedence, and resource constraints are not violated on a hetero-
geneous multiprocessor platform. To achieve this, the mapping and scheduling strategy should
answer the following questions:

(1) What task to schedule at which time (temporal reconfiguration)?
(2) Where to place the respective task, in CPU or FPGA (spatial reconfiguration)?
(3) When to start the execution of a task according to its precedence constraints (temporal

scheduling)?
This setup can be compared to a multiprocessor task allocation problem (whilst being more

abstract by including HW execution), as the platform provides multiple different PEs for the
execution of a task. However, due to the constraints (as mentioned below) and the challenges
associated with heterogeneous architecture, existing multiprocessor scheduling strategies cannot
be applied.

The constraints for the given problem description are as follows:
(1) HW task execution is non-preemptive.
(2) The communication not only has to take place between tasks in SW, but also between the

SW and HW domain to utilize the HW accelerators.
(3) Execution times of a task are heavily dependent on the selected execution unit. In general,

the execution in HW is faster as compared to the SW. However, this depends upon the
task’s characteristics (see Tab. 3).

To execute a task in SW or HW, considering the given constraints, is an optimization problem.
In the following section, we present how to obtain an effective solution to this problem.

3.3 ILP-based Mapping and Scheduling
We present a scheduling strategy based on ILP. For this purpose, we first introduce an integer
decision variable 𝑆𝑖 ∈ Z+ to capture the start time of each task𝑇𝑖 , whereZ+ denotes the set of positive
integers. We further define a binary decision variable, 𝑍𝑢,𝑐𝑙𝑖 , where, 𝑢 = 1, 2, ..., 𝑛; 𝑐𝑙𝑖 = 𝐶𝑙𝐶 ,𝐶𝑙𝐹 ;
𝑍𝑢,𝑐𝑙𝑖 is 1, if 𝑇𝑢 executes on cluster 𝑐𝑙𝑖 , otherwise 0. We define another binary variable 𝑌𝑢𝑣 , where
𝑌𝑢𝑣 = 1, if task 𝑇𝑢 starts before 𝑇𝑣 , else 0. The variable 𝐸𝑇 (𝑢, 𝑐𝑙𝑖 ) denotes the execution time of task
𝑇𝑢 if executes on cluster 𝑐𝑙𝑖 . Similarly, 𝐸𝐶 (𝑢, 𝑐𝑙𝑖 ) denotes the communication/data transfer time
needed to transfer the data from 𝑐𝑙𝑖 for task 𝑇𝑈 .
Data communication between two clusters resulting from data dependence between two tasks

of an edge (⟨𝑇𝑢,𝑇𝑣⟩ ∈ 𝐸) is modeled as a binary variable 𝛽𝑢,𝑣,𝑐𝑙𝑖 ,𝑐𝑙 𝑗 . It is “1” when there exists a data
dependency between 𝑇𝑢 and 𝑇𝑣 in task graph𝐺 and task 𝑢 and 𝑣 are assigned to clusters 𝑐𝑙𝑖 and 𝑐𝑙 𝑗 ,
respectively.

To model our mapping and scheduling strategy, the required constraints on the decision variable
are now stated as follows:
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(1) Each task 𝑇𝑢 is assigned to exactly one cluster:

∀𝑢 |
∑︁

𝑐𝑙𝑖 ∈𝐶𝐿
𝑍𝑢,𝑐𝑙𝑖 = 1 (1)

(2) The application A must meet its end-to-end absolute deadline 𝐷𝐷𝐴𝐺 . Hence, the sink node
𝑇𝑛 should be finished by 𝐷𝐷𝐴𝐺 , which is represented by the following constraint:

𝑆𝑛 +
∑︁

𝑐𝑙𝑖 ∈𝐶𝐿
(𝐸𝑇 (𝑛, 𝑐𝑙𝑖 ) × 𝑍𝑛,𝑐𝑙𝑖 ) − 1 ≤ 𝐷𝐷𝐴𝐺 (2)

(3) Lemma 1: For an edge, ⟨𝑇𝑢,𝑇𝑣⟩ ∈ 𝐸, data communication exists between two clusters 𝑐𝑙𝑖
and 𝑐𝑙 𝑗 if and only if there exists data dependence between tasks 𝑇𝑢 and 𝑇𝑣 , while task 𝑇𝑢 is
assigned to 𝑐𝑙𝑖 and task 𝑇𝑉 is assigned to cluster 𝑐𝑙 𝑗 . This can be modeled as following:

2𝛽𝑢,𝑣,𝑐𝑙𝑖 ,𝑐𝑙 𝑗 − 1 ≤ 𝑍𝑢,𝑐𝑙𝑖 + 𝑍𝑣,𝑐𝑙 𝑗 − 1 ≤ 𝛽𝑢,𝑣,𝑐𝑙𝑖 ,𝑐𝑙 𝑗 (3)
The precedence constraints between the tasks must also be satisfied. The execution of 𝑇𝑣
should commence only after the completion of its predecessor𝑇𝑢 and all data communication
from its predecessors to itself are finished. Using Eq. (3) this constraint can be formulated
as follows:

∀(⟨𝑇𝑢,𝑇𝑣⟩) ∈ 𝐸 | 𝑆𝑢 +
∑︁

𝑐𝑙𝑖 ∈𝐶𝐿
[𝐸𝑇 (𝑢, 𝑐𝑙𝑖 ) × 𝑍𝑢,𝑐𝑙𝑖 ] +

∑︁
𝑐𝑙𝑖 ∈𝐶𝐿

∑︁
𝑐𝑙 𝑗 ∈𝐶𝐿

[𝛽𝑢,𝑣,𝑐𝑙𝑖 ,𝑐𝑙 𝑗 × 𝐸𝐶 (𝑢, 𝑐𝑙 𝑗 )] ≤ 𝑆𝑣 (4)

NOTE: Within a single cluster, if two tasks are assigned to different PEs, then the com-
munication cost may be associated with that, and those constraints can be formulated
similarly. However, in this formulation, we assume the communication time between any
two different clusters is higher than that within a cluster.

(4) All the tasks selected for execution on CPU or FPGA should satisfy the memory constraint
as follows: ∑︁

𝑐𝑙𝑖 ∈𝐶𝐿

𝑛∑︁
𝑢=1

[𝑀𝑅𝑢,𝑐𝑙𝑖 × 𝑍𝑢,𝑐𝑙𝑖 ] ≤ 𝑇𝐴𝑀 (5)

In the above equation,𝑀𝑅𝑢,𝐶𝑙𝑖 denotes the memory footprints of individual tasks for the
respective cluster and 𝑇𝐴𝑀 denotes the total available memory budget.

(5) The tasks placed in the FPGA cluster should satisfy the logic area constraint, i.e., the sum
of the area requirements in logic cells (𝐿𝐶𝑢 ) of the tasks (𝑇𝑢 ) should be less than the total
available logic budget (𝑇𝐿𝐶).
This constraint can be represented as:

𝑛∑︁
𝑢=1

[𝐿𝐶𝑢 × 𝑍𝑢,𝑐𝑙𝐹 ] ≤ 𝑇𝐿𝐶 (6)

(6) In order to avoid overlapping between tasks executing at the same PEs, the following
inequalities need to be satisfied: ∀(⟨𝑇𝑢,𝑇𝑣⟩) ∈ A, where 𝑢 ≠ 𝑣 ,

𝑌𝑢𝑣 + 𝑌𝑣𝑢 > 0 (7)

𝑌𝑢𝑣 + 𝑌𝑣𝑢 ≤ 1 (8)
𝑆𝑢 +

∑︁
𝑐𝑙𝑖 ∈𝐶𝐿

[𝐸𝑇 (𝑢, 𝑐𝑙𝑖 ) × 𝑍𝑢,𝑐𝑙𝑖 ] ≤ 𝑆𝑣 + (1 − 𝑌𝑢𝑣) ×𝑀 (9)

Eq. (9) avoids time-wise overlap of any pair of tasks on the same cluster, i.e. 𝑇𝑣 should start
after completion of 𝑇𝑢 , if 𝑇𝑢 is the predecessor of 𝑇𝑣 . If tasks are executed in reverse order,
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we use big-M nullification for deactivating the constraint.𝑀 has been considered as high
positive integer.

(7) Objective: The objective of the formulation is to choose a feasible solution which minimizes
finish time of the sink task. This is formulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑆𝑛 +
∑︁

𝑐𝑙𝑖 ∈𝐶𝐿
(𝐸𝑇 (𝑛, 𝑐𝑙𝑖 ) × 𝑍𝑛,𝑐𝑙𝑖 )] (10)

Table 1. Complexity of ILP formulation constraints

Equation # Constraints # Variables Per Constraints

Eq. (1) 𝑂 (𝑛) 𝑂 (𝑚)

Eq. (2) 𝑂 (1) 𝑂 (𝑚)

Eq. (4) 𝑂 ( |𝐸 | ) 𝑂 (𝑚)

Eq. (5) 𝑂 (𝑛 ×𝑚) 𝑂 (𝑛 ×𝑚)

Eq. (6) 𝑂 (1) 𝑂 (𝑛)

Eq. (9) 𝑂 (𝑛2 ) 𝑂 (𝑚)

Complexity analysis: We present the complexity analysis for our ILP in Tab. 1. The second column
of this table lists the upper bound of the number of constraints for each equation. The unique
resource constraint in Eq. (1) should be determined for all 𝑛 tasks, hence, for a given PTG, overall 𝑛
constraints will be required. Similarly, the number of variables for this constraint can be represented
as 𝑂 (𝑚), where𝑚 denotes the total number of PEs in the system including all clusters. For the
deadline constraint in Eq. (2), this condition should be checked for a single sink node, and thus,
only 𝑂 (1) constraints will be required. In this way, the total complexity of ILP (in terms of the
number of constraints) can be represented as 𝑂 (𝑛2). It may be noted that the complexity of ILP is
independent of the number of PEs in a platform and deadline of a PTG.

4 HEURISTIC BASED MAPPING AND SCHEDULING STRATEGY
Due to its drawbacks and scalability issues, obtaining optimal solutions for mapping and scheduling
through ILP is not always feasible, especially if the DSE demands multiple quick design iterations.
Heuristic based approaches are a common way to trade off the shortcoming of ILP for near optimal
solutions. As heuristic based approaches can be tailored for different requirements, we will introduce
two heuristics to cover the goals of the ILP based methodology. The first heuristic (discussed in
Section 4.1) is utilized to obtain a feasible mapping of tasks between the SW and HW domain, such
that the resource constraints are satisfied. In our case study specifically, this means deciding if a
task is executed on the CPU as SW, or in the FPGA fabric as HW. The second heuristic (discussed
in Section 4.2) is utilized in order to obtain a scheduling in time, such that the task graph is executed
within the deadline and the task graph dependencies are satisfied. It should be noted, that our
heuristic based approach is tailored towards a mapping and scheduling that utilizes one CPU as
the computing element for the SW execution. Furthermore, this approach can be utilized as a
template for more complex heuristics with different system properties. Lastly, splitting the heuristic
into multiple smaller algorithm is not the only way to obtain a feasible solution for our problem
description.
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4.1 HW/SW Task Mapping Heuristic
In multimedia applications, applications are split into several tasks with similar functions to increase
the system throughput by executing these tasks concurrently using different cores. Similarly, for the
given problem, the DAG represents a stream application with some tasks and a multicore system
with one SW and one HW PE.

The partitioning and mapping problem discussed in this paper can be formulated as a minimiza-
tion problem, aiming to determine maximum throughput subject to area constraint for the FPGA
as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑎𝑥 (𝐻𝑊𝑡 , 𝑆𝑊𝑡 ) (11)

Subject to : ∀𝑗 |
|𝑇 |∑︁
𝑖=1

[𝐿𝐶𝑖 × 𝑥𝑖 𝑗 ] ≤ HW resource Budget (12)

𝑥𝑖 𝑗 = 1 if task is𝑇𝑖 is mapped on 𝑗𝑡ℎ PE and 0, otherwise. Here,𝐻𝑊𝑡 and 𝑆𝑊𝑡 denote the execution
time, if all the tasks execute on HW and SW respectively, which are formulated in the following
equations as follows:

𝐻𝑊𝑡 =

|𝑇 |∑︁
𝑖=1

𝐸𝑇 (𝑖, 𝑗) × 𝑥𝑖, 𝑗 | 𝑗 ∈ 𝐶𝑙𝐹 (13)

where 𝑗𝑡ℎ PE belongs to FPGA. Similarly, we can represent 𝑆𝑊𝑡 where the PE represent CPU.

𝑆𝑊𝑡 =

|𝑇 |∑︁
𝑖=1

𝐸𝑇 (𝑖, 𝑗) × 𝑥𝑖, 𝑗 | 𝑗 ∈ 𝐶𝑙𝑐 (14)

From Eq. (11), it can be observed that the partitioning and mapping strategy wants to maximize
throughput for a given area constraint without exhaustively exploring all possible partitioning.
Higher throughput can be achieved if tasks can be executed in parallel across different cores.
However, due to data dependency among tasks, they cannot be executed arbitrarily in parallel.
Moreover, some tasks must be executed serially due to dependency constraints. Taking a clue
from this, our proposed heuristic attempts to minimize this mandatory serial execution time, and
eventually it will aid in satisfying our objective functions mentioned in the Eq. (11). Our proposed
mapping heuristic is shown in Alg. 1.
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Algorithm 1: Partitioning & Mapping Heuristic of MESSI
1

Input :Set of 𝑛 tasks of DAG (𝑇 );
𝐸𝑇 (𝑖,𝐶𝑙𝐶 ): CPU execution time of 𝑇𝑖 ;
𝐸𝑇 (𝑖,𝐶𝑙𝐹 ): FPGA execution time of 𝑇𝑖 ;
𝐿𝐶𝑖 : Area utilization of 𝑇𝑖 ;
𝑇𝐿𝐶 : Total area budget;
Output :𝜏𝑠 : Task set selected for CPU;
𝜏ℎ : Task set selected for FPGA;

2 Initialize: 𝜏𝑠 = 𝜏ℎ = ∅
3 Identify the critical path (CP) of the DAG;
4 Calculate the length of CP on CPU: 𝐶𝑃𝐶 =

∑
𝑇𝑖 ∈𝐶𝑃 𝐸𝑇 (𝑖,𝐶𝑙𝐶 );

5 Calculate the length of CP on FPGA: 𝐶𝑃𝐹 =
∑

𝑇𝑖 ∈𝐶𝑃 𝐸𝑇 (𝑖,𝐶𝑙𝐹 );
6 if 𝐶𝑃𝐹 < 𝐶𝑃𝐶 AND 𝐶𝑃𝐹 ≤ 𝐷𝐷𝐴𝐺 AND

∑
𝑇𝑖 ∈𝐶𝑃 𝐿𝐶𝑖 ≤ 𝑇𝐿𝐶 then

7 𝜏ℎ = 𝐶𝑃 // Assign all critical path tasks to FPGA

8 else if 𝐶𝑃𝐶 < 𝐶𝑃𝐹 AND 𝐶𝑃𝐶 ≤ 𝐷𝐷𝐴𝐺 AND
∑

𝑇𝑖 ∈𝐶𝑃 𝑀𝑅𝑖,𝐶𝑙𝐶 ≤ 𝑇𝐴𝑀 then
9 𝜏𝑠 = 𝐶𝑃 // Assign all critical path tasks to CPU

10 for all tasks 𝑇𝑖 ∉ 𝐶𝑃 do
11 if

∑
𝑇𝑖 ∈𝜏ℎ 𝐿𝐶𝑖 + 𝐿𝐶𝑖 ≤ 𝑇𝐿𝐶 then

12 𝜏ℎ = 𝜏ℎ ∪ {𝑇𝑖 } // Assign task to FPGA if feasible
13 else if

∑
𝑇𝑖 ∈𝜏𝑠 𝑀𝑅𝑖,𝐶𝑙𝐶 ≤ 𝑇𝐴𝑀 then

14 𝜏𝑠 = 𝜏𝑠 ∪ {𝑇𝑖 } // Assign task to CPU
15 Move to scheduling phase;

Tasks connected by edges in the DAGmust be executed sequentially, because of the dependencies.
Identifying the critical path in the DAG provide us the maximum length of tasks that should be
executed in sequence to ensure logical correctness. This critical path determines the total execution
time of these processes. Here, the critical path is the longest sequential portion of the task graph,
i.e., the number of nodes in that path that require sequential execution. Alg. 1 first determines
the total execution time of the critical path by executing all the task nodes in the CPU (Alg. 1 line
3) and then in the FPGA (Alg. 1 line 4). If the total execution time of the critical path is less if we
execute all tasks in the FPGA rather than in a CPU, then all the tasks belonging to the critical path
will be assigned to the FPGA, provided the area constraint is satisfied. If the total execution time is
shorter than its FPGA counterpart, then the critical path will be executed in the CPUs. However,
for both cases, it has to be ensured that the length of the critical path is less than the deadline
𝐷𝐷𝐴𝐺 . Once the task parts are partitioned, it has to be checked whether the total available memory
is able to accommodate the individual task’s footprint together. Once the condition stands, MESSI
will proceed with the scheduling phase.

Note, that even if FPGA tasks commonly might be faster than CPU tasks, this is not always the
case. As will be shown in Section 6.3 and Tab. 3, tasks like map can be faster in on the CPU than
the FPGA. Alg. 1 handles this situation correctly.

4.2 Scheduling Heuristics
From the partitioning strategy, once we partition tasks for CPU and FPGA, the scheduling algorithm
generates a schedule for each task by assigning the tasks to the respective PEs at a particular
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Algorithm 2: Latest Possible Start Time Calculation
Input:
i.The task graph 𝐺 (𝑇, 𝐸)
ii. 𝜏𝑠/𝜏ℎ : selected version of each task 𝑇𝑖 (from Alg. 1)
iii. Execution time of 𝑇𝑖
iv. 𝐷𝐷𝐴𝐺 : The deadline of the task graph.
Output:
i. 𝐿𝑃𝑆𝑇𝑖 : LPST of each task 𝑇𝑖

1 for 𝑇𝑖 ∈ 𝑇 do
2 if 𝑇𝑖 is a sink task in PTG then
3 𝐿𝑃𝑆𝑇𝑖 = 𝐷𝐷𝐴𝐺 − 𝐸𝑇 (𝑇𝑖 , 𝑃𝐸) ; // From Alg. 1, we know 𝑇𝑖 is placed on which PE
4 else
5 Calculate the minimum of the latest start times𝑚𝑖𝑛 (𝐸𝑇 ( 𝑗, 𝑃𝐸)) ∀𝑇𝑗 ∈ 𝑆𝑢𝑐𝑐 (𝑇𝑖 ) ;

// Let task 𝑇𝑠𝑐 have the minimum value of the latest start times

among all successors of 𝑇𝑖

6 𝐿𝑃𝑆𝑇𝑖 = 𝐿𝑃𝑆𝑇𝑠𝑐 − 𝐸𝑇 (𝑇𝑖 , 𝑃𝐸) ;

time instant while maintaining the data dependency and associative constraint. However, for
the scheduling heuristic, the most important question to answer is when to schedule the task by
maintaining the inter-task dependency. So, at first, the algorithm needs to derive tasks’ execution
order. To find the execution order, our proposed heuristic calculates the parameter called Latest
Possible Start Time (LPST) for each task. The LPST of a particular task 𝑇𝑖 implies that 𝑇𝑖 must be
started at least by that time to avoid a deadline miss. Alg. 2 shows the algorithm for the LPST
calculation. Once Alg. 2 returns all the LPST values of each task, our scheduling heuristic will
set the priorities for each task based on these values to determine the execution order. From
Alg. 2, it is evident that the value of the LPST of a task provides an estimate of the remaining
computational demand before the sink task completes its execution (lines 3 & 6). Hence, for any
given deadline bound, a relatively lower LPST of a task indicates a higher remaining processing
requirement. Taking a clue from this, the proposed heuristic sorts the tasks in ascending order based
on their LPST values. This sorted list is the representation of tasks’ execution order by maintaining
interdependency.
Once the execution is obtained, our scheduling heuristic iterates through each time step until

either the deadline is reached or all the tasks have been scheduled, whichever is earlier. The proposed
scheduling heuristic is described in Alg. 3. The algorithm can be divided into two parts, the HW
task execution and the SW task execution. As we mentioned before, in the similar vein of modern
resource-constrained embedded systems, our heuristic attempts to schedule tasks, considering one
CPU for SW execution and one FPGA resource for HW task execution. However, it should be noted
that scalability will not limit the effectiveness of the proposed algorithm, and it can be applied to
higher numbers of PE as well. In the next paragraphs, we will first discuss the part of about HW
task execution through the heuristics, followed by the part of the SW task execution.

HW task execution (Alg. 3 lines 2-17): Once the partitioning of tasks is completed by Alg. 1, this
part of the schedule only deals with tasks designated for HW executions. However, as we have only
one CPU, this CPU acts as the controller which transfers data between the memory of the CPU and
the HW task memories. Therefore, at the beginning, the algorithm first checks whether the CPU is
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Algorithm 3: Scheduling Heuristic of MESSI
Input:
i. Tasks’ characteristic as SW or HW tasks
ii. Tasks’ execution order obtained from Alg. 2; Assume tasks’ are sorted in set 𝑇 based on
ascending LPST values
Output: Generated schedule

1 for 𝑡 = 0; 𝑡 ≤ 𝐷𝐷𝐴𝐺 𝐴𝑁𝐷 𝑇 ≠ 𝑁𝑈𝐿𝐿; 𝑡 + + do
2 // ======== HW TASK EXECUTION ========
3 if CPU is free and 𝑇𝑖 is not root node then
4 𝐶𝐵𝑃 = 𝐶2𝐹𝑖 ;
5 /* 𝐶𝐵𝑃 : an integer variable denoting CPU Busy Period which holds the remaining

time required to finish the CPU to FPGA data transfer and vice versa */
6 if 𝐶2𝐹𝑖 == 0 AND 𝑃𝑟𝑒𝑑 (𝑇𝑖 ) data is available upon completion then
7 𝑠𝑡𝑖 = 𝑡 ; // assign the time stamp at which 𝑇𝑖 started;
8 Execute 𝑇𝑖 on FPGA for 𝐸𝑇 (𝑖, 𝐹𝑃𝐺𝐴) duration;
9 𝐸𝑇 (𝑖, 𝐹𝑃𝐺𝐴)–;

10 if execution on FPGA is over (𝐸𝑇 (𝑖, 𝐹𝑃𝐺𝐴) == 0) then
11 𝐹𝑡𝑖 = 𝑡 ; // assign the time stamp at which 𝑇𝑖 finished;
12 Remove the task from set 𝑇 ;
13 if 𝑇 ′

𝑖 𝑠 execution is over AND CPU is free then
14 𝐶𝐵𝑃 = 𝐹2𝐶𝑖 ;
15 if (CBP==0) mark the cpu as free at 𝑡 ;
16 else
17 𝐶𝐵𝑃 = 𝐶𝐵𝑃 − 1;
18 // ======== SW TASK EXECUTION ========
19 if CPU is free AND 𝑃𝑟𝑒𝑑 (𝑇𝑖 ) data is available upon completion then
20 𝑠𝑡𝑖 = 𝑡 ; // assign the time stamp at which 𝑇𝑖 started;
21 Execute 𝑇𝑖 on CPU for 𝐸𝑇 (𝑖,𝐶𝑃𝑈 ) duration;
22 𝐶𝐵𝑃 = 𝐸𝑇 (𝑖,𝐶𝑃𝑈 );
23 if execution on CPU is over (𝐸𝑇 (𝑖,𝐶𝑃𝑈 ) == 0) then
24 𝐹𝑡𝑖 = 𝑡 ; // assign the time stamp at which 𝑇𝑖 finished;
25 Remove the task from set 𝑇 ;
26 if (CBP==0) mark the cpu as free at 𝑡 ;
27 else
28 𝐶𝐵𝑃 = 𝐶𝐵𝑃 − 1;

free. Once the CPU is free, the scheduling heuristics will assign the task with no predecessors to
the FPGA.

In Alg. 3 line 3-5, the heuristic describes that once a HW task 𝑇𝑖 is ready for its execution on the
FPGA and provided it is not the root node, it will wait until the data transfer (from its predecessors)
is completed between the CPU and HW task’s memory. We denoted the data transfer time from
CPU to FPGA for 𝑇𝑖 as 𝐶2𝐹𝑖 . We also defined an additional variable as 𝐶𝐵𝑃 , which marks the CPU
Busy Period (CBP). In line 5, the algorithm assigns data transfer time (𝐶2𝐹 ) as 𝐶𝐵𝑃 , which in turn
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provides the remaining data transfer time requirement of 𝑇𝑖 and thus 𝐶𝐵𝑃 becomes zero when the
data transfer to initiate 𝑇𝑖 finishes. Once the data transfer is completed, the CPU is marked as free
and SW tasks can be executed on the CPU.
Once the data transfer is complete and if the data from the predecessors is available or if the

task doesn’t have any predecessors (root node) then the algorithm will start executing the HW
tasks. The algorithm will mark the start time and will execute the tasks for the stipulated duration
denoted as 𝐸𝑇 (𝑖, 𝐹𝑃𝐺𝐴) (lines 6-8). Once task execution is finished, the finish time will be marked
and the task will be removed from the task set (lines 10-12). After the task is completed the data
needs to be transferred to the CPU and in line 14, that time is denoted as 𝐹2𝐶𝑖 . The CPU will remain
busy for that period.

SW task execution (Alg. 3 lines 18-28): Once a task 𝑇𝑖 is designated as a SW task, Alg. 3 will
attempt to schedule it at the proper time instant, utilizing results from Alg. 2. Initially, it will check
whether the CPU is available and all the predecessors of 𝑇𝑖 are completed, and it has the required
data to start its execution. Once these checks has been carried out (line 19),𝑇𝑖 will start its execution
and the start time will be marked. 𝑇𝑖 will be executed for the stipulated duration 𝐸𝑇 (𝑖,𝐶𝑃𝑈 ). The
𝐶𝐵𝑃 variable will indicate if the CPU is busy for that duration (lines 20-22). Once the execution is
completed, the finish time will be marked (line 24) and the task will be removed from the task set.
The algorithm will continue its execution with other tasks until the terminating conditions are
reached. A few important points on the utilization of Alg. 2 can be stated as follows:

• The algorithm continues to consider tasks only when all its predecessor tasks have finished
their executions.

• Such task to PE assignments enable that the beginning of the task will be the latest finishing
time of its predecessors, including communication overhead.

• If a task has a single predecessor, then our scheduling algorithm will execute the task right
after the finishing time of its predecessor. When a task has multiple predecessors, we will
consider the predecessor which has the latest finishing time.

• The successor task will be assigned to the same processor that was assigned to its predecessor
with the latest finishing time.

• The algorithm uses a relative priority order amongst all tasks based on the tasks’ LPST start
time, considering each task 𝑇𝑖 . This priority list based on task’s LPST times ensures that
inter-task precedence relationships are always satisfied (the LPST time of a predecessor
task is always less than the LPST times of all its successors).

5 APPLICATION CASE-STUDY PRELIMINARIES
To evaluate MESSI, an application case-study featuring a realistic heterogeneous RT system is
specified and designed. Especially on the HW platform, there exist several choices in building
an overall system, which in turn has impact on the task implementation and execution. These
considerations are also highlighting the heterogeneity of these systems, as they will be tailored for
their use in an embedded system.

An important part is the FPGA which has to be chosen. It has to provide sufficient area to fit in a
processing system like an SoC and additional HW tasks. Commercially available FPGAs offer a
variety of additional features beyond the conventional programmable logic blocks and block RAM.
These readily available features (e.g., HW peripheral blocks or interconnects) span a spectrum
of possibilities for tailoring application specific computing solutions. For example, FPGAs like
the Xilinx Zynq 7000 Series [52] feature an integrated ARM Cortex-M9 dual core-processor with
a multichannel Direct Memory Access (DMA) controller and various SoC peripherals, while the
programmable FPGA logic contains additional blocks for DSP, high-speed transceivers and more.
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Other commercial FPGA manufacturers like Intel (e.g., Arria V Series [2]), Lattice Semiconductor
(e.g., Avant-E Series [36]) and Microsemi (e.g., SmartFusion2 Series [24]) offer similarly broad
solutions with different pricing, features and integrated processors or an extensive library of IP
cores. Depending on this FPGA choice, various aspects of the task mapping and scheduling can
change. The ILP-based mapping and scheduling in MESSI allows for consideration of technological
constraints and considerations as long as these can be formulated with an ILP constraint (e.g.,
different memory access times through various available technologies that impact memory and
area usage differently).
As we can not exhaust all possible configurations of the options for various heterogeneous RT

systems, we summarize the relevant practical considerations for various RT systems for which our
proposed scheduling strategy applies. According to these practical considerations, we select and
evaluate a specific configuration for our application case-study in the evaluation Section 6.

5.1 General Practical Considerations
Heterogeneous RT systems encounter various practical considerations that are not always easily
formulated formally in terms of constraints. The following list provides a selection of relevant
practical constraints, which depend on the actual system considered and focus on technical aspects
with regard to communication between SW and HW tasks:

(1) What are the capabilities and requirements of the embedded system?
(a) Is there a shared memory?
(b) Is DMA available?
(c) If 1a and 1b are not available, where and how is the task related data be stored?

(2) How is data transported or shared between the SW and SW tasks?
(3) What interfaces will the HW tasks use? Considering the data transport, what interfaces are

required for certain transportation methods?
(4) How will tasks be notified to start, respectively how do tasks notify they are done?
This list is not meant to be a complete list of considerations, as the considerations significantly

depends on the system and its execution environment. Depending on each of these points, the
calculated schedule will deviate from the real execution taking place on the system. For example,
there will be a transportation and synchronization overhead in the communication between the CPU
and the task in the FPGA fabric that adds to the total execution in the schedule. This deviation can
be very small or (depending on the system) being of significant relevance to the scheduling outcome.
The technical implementation also has impact on the SW memory footprint (e.g., additional code
and memory areas to manage DMA or other interfaces to share data and memory). Next to the
method of implementing the SW as well as HW tasks, which itself offers various dimensions of
optimization, these considerations can contribute to more strict or loose constraints and thus affect
the mapping and scheduling strategy.

5.2 Technical System Considerations
The goal for our application case-study is to evaluate the viability of our approach on an actual
heterogeneous RT system. Our target system combines an FPGA together with a soft-core CPU
based SoC. This SoC provides a rudimentary set of peripherals required in embedded systems,
while leaving sufficient memory space and FPGA fabric area for custom HW based tasks. Tasks
that are implemented as SW are stored in the SoCs memory, while tasks that are implemented as
HW are connected to the SoCs memory mapped bus system. We consider a bare-metal system that
does not provide a DMA controller or dedicated shared memory regions between the soft-core and
FPGA, i.e., the soft-core needs to copy the application data explicitly between the FPGA internal
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memory and CPU accessible memory. Moreover, we consider a bare-metal SW setting without
employing operating systems that might provide preemptive task scheduling capabilities. We
believe evaluating our proposed strategy on such a heterogeneous RT system is representative of
the embedded system domain. Furthermore, through the introduction of other techniques (e.g.,
DMA) the system’s performance can only be improved.

6 EVALUATION: A RISC-V CASE-STUDY
This section presents results on the evaluation of our proposed scheduling and mapping strategy
and shows the achieved task execution and implementation strategy on a concrete heterogeneous
CPU+FPGA system, using an application case-study. We start with a description on the specific
choices with regard to the technical considerations, which constitute the setup of our evaluation
(Section 6.1). Then, the example application is introduced, and a corresponding implementation
sketch is provided (Section 6.2). Next, we present relevant metrics and the obtained mapping and
scheduling for the example application based on MESSI (Section 6.3). Finally, we present and discuss
the overall results in obtaining the calculated as well as executed mapping and scheduling and
elaborate how the system choice impacted the realization of the schedule (Section 6.4).

6.1 Setup
For this case-study we choose the Lattice Semiconductor HX8K FPGA [35] which is capable of
containing a SoC, whilst offering additional FPGA fabric area for HW tasks. Compared to other
commercially available FPGAs, the HX8K does not offer a built-in SoC or slices for DSP tasks like
multiply-accumulate. Within the technology of the HX8K, area is mainly determined through Logic
Cells (LCs). These LCs each contain a four-input look-up table, a D-flip-flop with optional enable
and reset controls and carry logic to interconnect with other LCs. Additionally, the HX8K FPGA is
compatible with the open source tool chain IceStorm [9], which includes the open source synthesis
tool Yosys [47].

Lattice Semiconductor HX8K (FPGA)

Murax SoC      

VexRiscv 
RV32IM 
(CPU)

Memory

System bus

APB Peripheral Bus

GPIO

GPIO

Timer A Timer BPrescaler

UART

UART

JTAG

APB
Translator

IRQ Ctrl

JTAG

Utilizable  
Hardware  

Area

Fig. 2. VexRiscv based Murax SoC on HX8K FPGA as baseline system configuration.

As a SoC, we choose the Murax SoC (see Fig. 2). The Murax SoC uses a SpinalHDL [7] based
RISC-V [45, 46] implementation called VexRiscv [8]. The VexRiscv processor is known for its high
degree of configurability, while minimizing the overhead of the generated code, thus resulting
in very small FPGA-compatible RISC-V CPUs, whilst suiting the requirements for RT embedded
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system tasks. If required, more powerful configurations to increase the maximum frequency at
which the processor runs, as well as features to boot operating systems like Linux. Murax SoC
uses a small, pipelined 32 bit RISC-V single core with a lightweight main bus system and an
adapter for the APB bus [21] for peripherals, making this SoC is representative for other embedded
systems and microcontroller units. All tasks are implemented in C for SW execution on the RISC-V
processor and in SpinalHDL as RTL description for HW task execution. SpinalHDL is an emerging
language for HW description and generation that can be used to describe HW generators as well as
traditional RTL descriptions. Various first-class language elements and language libraries improve
the development cycle, thus improving the quality of the HW descriptions. The SpinalHDL-based
descriptions can be used to generate either Verilog or VHDL code. As the HW tasks are described
with SpinalHDL an easy integration into the Murax SoC is ensured. The complete development tool
chain is based on open source tools and allows for static, simulation based, and FPGA emulation
based analysis. The main, but not only, simulation backend in SpinalHDL is Verilator [40]. Verilator
is used to obtain a cycle- and synthesis-accurate RTL simulation to extract the metrics like the
execution times of the tasks. With the extracted metrics, the task graph and the constraints, the
scheduling strategy can return a static schedule fulfilling the constraints. This obtained schedule
is then realized through a main RISC-V SW, in which SW and HW task execution is orchestrated
and interleaved. The execution of the obtained schedule is measured on the FPGA and through
synthesis, place and route, and the cycle- and synthesis-accurate RTL simulation to compare the
calculated result with the experimental result. With these results, we discuss some boundaries of
MESSI with regard to the practical considerations in Section 5.1.

Shared memory architectures and DMA for effortless data sharing between the CPU and a HW
task are not part of Murax SoC. This is due to the goal of Murax SoC fitting in small FPGAs such as
the HX8K FPGA (and even smaller variants of the same FPGA-family [35] of Lattice Semiconductor).
Thus, we have a low-level bare-metal embedded system for our application case-study, representing
a FPGA-based heterogeneous RT system. We think this choice is appropriate for a case-study in
the embedded system domain. Moreover, our method is also compatible with embedded systems
that provide more features (like DMA, more cores, etc.) on the FPGA or the SoC, and can lead to
improved results and better usability of the proposed technique. Furthermore, it should be noted
that there exist whole bodies of research regarding optimization of SW and HW implementations
and the automatic translation from high level specification towards SW and HW. While these
topics are compatible with our strategy, their utilization is out of the scope of this work.
For this application case-study, each HW task is designed with its own small memory section,

if required. The memory section is multiplexed between the memory mapped bus and the task
itself. After storing the initial data in the task memory, the CPU will trigger the task’s execution.
The task’s memory interface provides signals that represent the address, write data, read data
and a write-enable. The task is controlled through a valid and a ready signal. If the valid signal is
asserted, the tasks will start its processing with the provided parameters and data. Once the task is
finished, the ready flag will be asserted by the task and the task’s memory is multiplexed back to
the memory mapped bus. The ready flag can either be used to trigger an interrupt or it will be read
before accessing it. After the task’s execution, the CPU can read all resulting data from the task’s
memory. Additional configuration inputs are mapped to memory mapped registers.

Table 2. Baseline of the case-study setup, Lattice Semiconductor HX8K FPGA with VexRiscv, Murax SoC.

Description Maximum available Used Available
Memory usage / Bytes 4096 904 3192
Area usage / LC 7680 2820 4860
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With the HX8K FPGA and the VexRiscv based Murax SoC as our heterogeneous system in place,
the baseline for the available HW area and memory can be determined. Tab. 2 shows the baseline
values for the memory usage in Bytes and the area usage in LCs. These values declare the maximum
budget of the memory and area that are available.

T1

T2

T3 T5

T4

T6

generate

map

sort sum

max

hash

T7

clamp

End 
(Deadline)Start

Fig. 3. Task graph for the case-study example application.

6.2 Application and Implementation
The task graph for the example application of this case-study is shown in Fig. 3. This task graph
contains seven different tasks, with one source task (T1, generate) and two sink tasks (T6, hash
and T7, clamp). The tasks represent data flow operations known from digital signal processing and
functional programming. Generate (T1) is used to generate vectors with pseudorandom values by
utilizing a given seed value. Map (T2) transforms a vector into a vector and applies a function to
each value of that vector. Sort (T3) sorts the values of a vector. Max (T4) obtains the maximum
value of a vector, thus transforming a vector into a scalar value. Sum (T5) calculates the sum of each
element of a vector, thus transforming a vector into a scalar value. Hash (T6) applies a mathematical
function to two scalar values and returns a single scalar value. Clamp (T7) takes a vector and clamps
each value between two given scalar values. Hence, the task graph combines vector and scalar
operations. In this case study, we utilize vectors of the size 16, which could be like the amount of
data samples the complete task graph has to process until the deadline. In Fig. 3 the data flow can
be described as follows: Generate (T1) is utilized to obtain the data to process, the fork in the task
graph means the same data is provided as a copy to Map (T2) and Sort (T3). Along the bottom path
of the task graph, Map (T2) transforms the vector, Max (T4) obtains the maximum value in the
vector, and the maximum value is used as an input in Hash (T6) as well as the two scalar inputs
for Clamp (T7). For Clamp (T7) the maximum value is provided as negative and positive number,
respectively. Along the top path of the task graph, Sort (T3) transforms the vector, Sum (T5) obtains
the sum of all values to pass it to Hash (T6), while the sorted vector is passed to Clamp (T7).

A directed edge in the task graph represents a dependency on the output/input of another task.
Therefore, a task can only be executed if and only if the required data is available. For example:
Task T2 (map) can only be executed if the data from task T1 (generate) is available. This results in
constraints on the order in which the tasks can be executed. At the same time, these tasks can be
implemented into a HW description by hand, to evaluate the feasibility of the implementation step
of the top level flow from Fig. 1. For each task an implementation, in both C and SpinalHDL, is
created and measured for their metrics such as execution time, area consumption after synthesis,
SW memory footprint and transportation time of the data between CPU and FPGA fabric. It has to
be noted, that tasks HW still require memory for their firmware drivers.
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The task graph structure already implies requirements with respect to the technical implemen-
tation. For example: Task T1 generates data that is used in task T2 and T3 distinctly. Passing the
data from and to the tasks T2 and T3 have to be handled as part of the scheduling. A fork in this
sense also means that the output data from T1 has to be copied to be available for both tasks
independently (e.g., memcpy() on an array of data).

Furthermore, a directed edge in the graph can represent three different types of data transactions:
(1) A task in SW is succeeded by a task in HW, and data is moved from the SW task to the HW

task.
(2) A task in HW is succeeded by a task in HW, and data is moved from one HW task to another

HW task.
(3) A task in HW is succeeded by a task in SW, and data is moved from the HW task to the SW

task.
These three cases will look different in the realization of the schedule and their implementation

varies based on the features of the embedded system too (e.g., if a DMA is available).
In general, our architecture requires the SW code to access the memory mapped registers via

the system bus. This type of access is an essential part of the RISC-V architecture as well as many
other embedded systems, thus such transactions as mentioned above don’t give rise to additional
challenges.

Listing 1. Accessing the task interface through memory mapped registers.

1 / / s t o r e a l l e l ement o f the a r r ay i n t o the memory o f the t a s k
2 f o r ( u i n t 8 _ t i = 0 ; i < v e c S i z e ; i ++) {
3 TASK_MAX−>MEM_ADDR = i ;
4 TASK_MAX−>MEM_WDATA = inpu tDa ta [ i ] ;
5 TASK_MAX−>MEM_WRENA = 1 ;
6 TASK_MAX−>MEM_WRENA = 0 ;
7 }
8 / / s t a r t the t a s k
9 TASK_MAX−>VALID = 1 ;
10 / / check ready f l a g o f t a s k u n t i l i t s done p r o c e s s i n g
11 whi l e ( ! TASK_MAX−>READY) ;
12 / / l o ad max va lue
13 maxVal = TASK_MAX−>MAX_VALUE ;

Listing 1 shows such an exemplary transaction between the CPU and the HW task. Lines 2 to 7
move data into the tasks’ memory, line 9 starts the task and after line 11 retrieves the ready flag
from the task, line 13 reads the result register of the task.

Compared to an approach with a DMA or shared memory, this approach requires manual copying
and moving data to and from tasks in order to execute the tasks. It has to be noted that additional
features such as DMA will minimize the memory footprint further for the HW tasks.

If preemption of tasks is included in the considered properties of MESSI, the active checking for
the ready flag (see Listing 1 line 11) would be handled through interrupts.

6.3 Tasks Metrics, Mapping and Scheduling
In order to collect the aforementioned metrics (execution time, memory footprint, HW area usage),
the tasks are implemented in SW and HW respectively. The SW tasks are implemented as C
functions, which are called with their parameters and their return value is stored into a variable to
be accessed by the next task. For the HW tasks, implemented in SpinalHDL, the SW implementations
are used as reference models. Control flow elements from the SW task are implemented as finite
state machines, while the data flow elements represent the data path of the circuit (i.e., finite state
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machines with data path [34]). The compiler, synthesis, and place & route tools are utilized to
determine the memory footprint of SW code, and HW area usage. The various runtimes of the
tasks are determined through the simulation trace for cycle accurate timings.

Table 3. Task metrics of the example application with seven tasks and vector size 16. For completeness, we
list the forking process of data in this table, as the execution time is relevant for the difference between a

calculated and executed schedule. (N/A = Not applicable)

Task Software (CPU) Hardware (FPGA fabric)
Execution
time / 𝜇𝑠

Memory
footprint /
Bytes

Time / µs Memory
footprint /
Bytes

Area
Usage /
LC

Total
execution

Transport
CPU to
FPGA

Task
processing

Transport
FPGA to
CPU

− (fork data) 32.33 N/A N/A N/A N/A N/A N/A N/A
𝑇1 (generate) 80.00 52 33.67 N/A 1.50 27.00 48 1295
𝑇2 (map) 39.92 36 61.08 29.08 1.50 26.67 108 1275
𝑇3 (sort) 310.50 76 99.42 29.17 41.50 26.75 88 1383
𝑇4 (max) 64.33 152 33.08 28.92 1.50 0.08 68 1305
𝑇5 (sum) 48.08 48 33.17 26.75 1.50 0.08 60 1220
𝑇6 (hash) 88.92 108 9.75 1.17 4.17 0.50 36 631
𝑇7 (clamp) 43.25 96 59.67 28.33 1.50 26.75 112 1556

Tab. 3 shows the measured task parameters of our example application. The table is split in three
parts: The left column contains the tasks with their designator 𝑇𝑖 , the middle column contains the
obtained execution time and memory footprint of each task in SW, and the right column contains
the obtained execution time, memory footprint and area usage of the HW tasks. The execution
time of the HW tasks is further separated into their total execution time (counted from the first
instruction that belongs to interacting with the HW task until the last instruction interacting with
the HW task), the plain data transport time between the CPU (SW) and FPGA (HW) as well as
FPGA (HW) to CPU (SW) and finally the actual task processing time in HW. Note that the columns
for the times for each task don’t have to add up to the column Total Execution, but are contained
within these bounds. For further clarity, we added the data forking (task fork data) as a row in the
table, as it consumes a notable amount of time compared to the tasks.
The task parameters from the SW and HW tasks are fed into our ILP formulation from Sec-

tion 3.3. Together with the top-level constraints (e.g., deadline at 320 µs, area budget of 4800 LC)
the CPLEX [25] solver, which we employ for ILP solving, generates an optimal task mapping and
scheduling according to our ILP formulation. Solving the ILP problem for our case-study took
around 800 s. Fig. 4 shows the calculated schedule for the tasks with the parameters from Tab. 3.
Please note, that the time parameter on the x-axis is not true to scale, but is meant to show the
results of the task mapping and scheduling in a compacted way. The tasks T2, T4 and T7 mapped to
the CPU and the tasks T1, T3, T5 and T6 are mapped to be executed as HW tasks on the FPGA. The
ILP based schedule and mapping calculated a runtime of 183 µs, which is far below the deadline of
320 µs. The additional HW area used is 4529 LC which also is below the budget of 4860 LC.

With this schedule, we can now use the mapping and scheduling for the SW and HW tasks and
implement the top level schedule such that it executes the proposed solution. After the boot code
of the SoC has completed, the proposed schedule is executed. Furthermore, we obtain a scheduling
and mapping from the heuristic described in Section 4.
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T1

T2

T3

T4 T7

T5 T6

CPU
Time

Time

Deadline 
t = 320

FPGA

34 74 134 168 183178139

Fig. 4. Scheduling outcome from our proposed approach for the example application utilizing ILP based
mapping and scheduling.

6.4 Results
Our results are twofold: First, we discuss the results related to the mapping and schedule obtained
from our proposed strategy against the execution on the real system. This result will show, how
MESSI applies to an application on a real system. Second, we compare the obtained metrics of
the mapping and schedule with those of executing all tasks in SW and HW, respectively. This
result puts the obtained solution by our proposed strategy into the context of traditional HW-SW
co-design, in which an all SW or all HW solution is the starting point of the optimization.
With the obtained task mapping and scheduling order, shown in Fig. 4, we can execute the

mapping and scheduling accordingly on the Murax SoC and HX8K FPGA. Hence, the mapping of

Lattice Semiconductor HX8K (FPGA)

Murax SoC      

VexRiscv 
RV32IM 
(CPU)

Memory

System bus

APB Peripheral Bus

GPIO

GPIO

Timer A Timer BPrescaler

UART

UART

JTAG

APB
Translator

IRQ Ctrl

JTAG

Task 2

Task 1Task 4
Task 7

Task 3

Task 5

Task 6

Fig. 5. Partitioned and mapped tasks from task graph for execution in software and hardware.

the tasks is configured and implemented in the system as shown in Fig. 5. The tasks T2, T4 and
T7 (in the system’s main memory) are executed in SW, while tasks T1, T3, T5 and T6 (attached as
peripherals on the APB bus) are executed in HW.

As can be seen in Fig. 4, the calculated schedule would require preemptive task execution with
discontinuities during Tasks 4 (at time 134 µs) and 7 (at time 168 µs and 178 µs). Furthermore, the ILP-
based mapping and schedule does not contain a consideration for the data forking discussed earlier.
As MESSI contains a heuristic to complement the trade-offs ILP-based mapping and scheduling has,
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Fig. 6. Compared schedule results for application study. Top: calculated schedule (also refer to Fig. 4),
Bottom: executed schedule implemented in application study.

we will discuss the comparison with the heuristic based solution in further detail. The heuristic
will accommodate for the aforementioned differences of the ILP and chosen heterogeneous system.

Fig. 6 shows the schedules for the heuristic based solution and the executed schedule for com-
parison. The top plot shows the calculated schedule from our proposed scheduling and mapping
strategy. The bottom plot shows the real execution of the schedule on the heterogeneous system.
The events and their timestamps are reconstructed from a wavetrace, the source code and the
disassembly of the implemented schedule. The deadline of the application is marked with a dotted
line (purple) at the time 320 µs. Each task is annotated with a task identifier corresponding with
Tab. 3. The top half of each plot show the execution traces of the tasks on the CPU part of the
system (SW tasks) (red and blue events). For the SW tasks, the strike through events (red) show the
task execution on the CPU, while the dashed event (blue) is the execution of housekeeping data
(i.e., fork data). This is required, as for example T3 and T2 both require the same data from T1, thus
it needs to be copied once. The bottom parts of each plot show the execution traces for the HW
tasks on the FPGA fabric (yellow and green events). For the HW tasks, the strike through events
(green) show the task execution on the FPGA fabric, while the dashed (yellow) events are data
transmission for the tasks. Hence, the HW task execution is broken down to data transportation
and task processing. This is required, as our application case-study leverages an embedded system
without shared memory or DMA for devices on the memory bus. It can be seen from the figure,
that the executed schedule differs slightly from the heuristic based solution. Copying the data (i.e.,
fork data task) is visibly executed on the CPU as SW code, while the heuristic considers this as part
of the task T1 (generate). This will cause the both tasks to end up requiring similar amount of time.
Further differences in the two schedules come from the real code execution on an SoC, in which
some portions of the code aren’t fully related to a task (i.e., calculating or preparing addresses,
saving the register file to the stack, etc.).

Next is the comparison of our obtained mapping and scheduling with all SW and all HW solution
in terms of the utilized metrics, respectively. Tab. 4 shows a comparison of three schedules: The
column All Software and All Hardware represent the non-optimal boundaries in which the schedule
results of the ILP-based and heuristic based scheduling can be expected. For the schedules All
Hardware and All Software, we kept the same sequential order, both such that they respect the

ACM Trans. Des. Autom. Electron. Syst., Vol. 0, No. 0, Article 0. Publication date: 2023.



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

0:24 Sallar Ahmadi-Pour, Sangeet Saha, Klaus D. McDonald-Maier, and Rolf Drechsler

Table 4. Proposed schedule in context to executing all tasks in software or hardware. Entries marked bold
violate the deadline or resource constraints, respectively.

Property
Schedule All Software Proposed All Hardware

Memory Footprint (complete) / Bytes 1692 1676 1772
Memory Footprint (no boot code) / Bytes 788 772 868
Area Usage (complete) / LC 2820 7351 11251
Area Usage (w/o SoC) / LC 0 4531 8431
Total Execution Time / 𝜇𝑠 711 315.25 325.75

dependencies on the task graph of the application. The memory footprint and the area usage are
declared twice. In the rows with (complete) annotation, the absolute size in terms of Bytes and LCs
is shown. For the memory footprint, this includes the boot code, which would be part of every
SW application. For the area usage, this includes the baseline area usage of the Murax SoC on
the HX8K FPGA. The other rows show the values for just the SW and HW solution of the tasks,
respectively. These values are calculated as the difference to the baseline values of the embedded
system from Tab. 2. The measurements were obtained through the compiler tool chain, synthesis,
and place & route tools. It has to be noted, that differences in the sums of columnsMemory Footprint
and Area Usage in Tab. 3 come from optimizations that the tools can introduce on the SW and HW
design, respectively.

The All Software schedule requires no additional HW, while the All Hardware requires 8431 LC,
or 11 251 LC for (complete), implementing all tasks in HW. Hence, the All Hardware schedule is not
realizable with the area budget. Our proposed mapping and schedule requires an area utilization of
4531 LC, or 7351 LC for (complete), thus being 1.86× better (46.3 % reduction in area usage) than the
All Hardware schedule. For the All Software schedule, the memory usage is 788 Byte, or 1692 Byte
for (complete). The All Hardware schedule requires 868 Byte, or 1772 Byte for (complete), of code, in
order to interact with the HW tasks and move the task data around. Our proposed mapping and
schedule requires a memory usage of 772 Byte, or 1676 Byte for (complete). Hence, our proposed
strategy requires 96 Byte less than the All Hardware (11.1% decrease) schedule and 16 Byte less
than All Software (2.0 % decrease), while requiring much less area of the FPGA fabric (3900 LC less
than All Hardware). The All Software schedule executes in 711 µs which is 391 µs more than the
deadline of 320 µs. The All Hardware schedule executes in 325.75 µs which is 5.75 µs more than
the deadline of 320 µs. Without any level of parallel execution involved, it can be seen that the All
Hardware schedule is ×1.18 better (54.2 % reduction) than the All Software schedule. Our proposed
mapping and schedule executes within 315.25 µs, which is within the deadline of 320 µs. Comparing
our proposed mapping and scheduling with the All Software schedule, our result is ×1.25 better
(55.6 % reduction).

In summary, while the All Software fits in terms of memory usage and area utilization, the
deadline of 320 µs is exceeded. Furthermore, the All Hardware schedule fits the memory usage as
well, but exceeds the area budget of 4860 LC and the deadline 320 µs. Finally, our proposed schedule
provides improvements in memory usage (11.1 % versus All Hardware and 2.0 % versus All Software)
and area utilization (46.3 % versus All Hardware), while executing the task graph within 315.25 µs
(improving by 55.6 % versus All Software and 3.2 % versus All Hardware).

7 DISCUSSION AND FUTUREWORK
The results shown in Fig. 4 and Fig. 6 show differences in how the schedule is executed on the
embedded system. First, the ILP creates a solution (Fig. 4) that does not fully cover all aspects of
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the system. The utilized ILP constraints don’t consider that the data generated by task T1 needs to
be copied (see blue time interval in Fig. 6), hence requiring additional time (which is not part of the
task itself). Furthermore, the solution would require interrupting the task execution of T4 and T7.
Moreover, the ILP is not considering the memory transfers (yellow time intervals in Fig. 6) between
the SW and HW domain as separate operation that can be delayed (e.g., the memory transfer of
T3 in Fig. 6 from FPGA to CPU occurs after T4 finishes and frees the CPU). Such architectural
considerations and constraints are not part of the ILP constraints and thus are not part of the
calculated schedule. The advantage of the ILP-based mapping and scheduling is that, at this point,
we could refine our constraints to represent our system architecture.

Further refinements can be formulated on the generic set of ILP constraints provided by MESSI,
or additional development cycles (as shown in Fig. 1) can employ more specific ILP constraints in
order to accommodate the requirements. This might be useful if different task graphs based around
the same set of tasks are explored and compared. But such additional ILP constraints are specific to
the properties of the underlying embedded system (refer to Section 5.1, Section 5.2 and Section 6.1)
as well as the tasks graph and tasks of the application. The set of ILP constraints already provided in
this paper deliver a set of common scheduling constraints found in many RT applications. Therefore,
the ILP-based mapping and scheduling can provide early estimations independent of the underlying
system architecture while being adaptable for refinement due to more specific system details. Hence,
ILP-based mapping and scheduling require additional refinement cycles, which can also lead to
further issues of scalability (see Tab. 1). Additions to the ILP formulation naturally increase the
complexity (see Section 3.3), thus should be done with caution. When we applied the given ILP
formulation to our application, our complexity analysis hints towards high computational overhead
(in terms of run time of the ILP solver) as the number of nodes in a PTG and/or the number of
resources increase. For our task graph, it has been experimentally observed that our proposed ILP
formulation takes around 4 hours to find feasible schedules for a PTG with circa 25 nodes on a
platform with two heterogeneous PE. Hence, reiterations and small changes will lead to longer
DSE, making the heuristic approach more practical than the ILP formulation.
While general task graph scheduling is NP-complete, our approach demonstrates effectiveness

for both tractable and complex instances. Firstly, our case study, though hypothetical, reflects
the reality of many embedded systems with relatively simple task graphs and fixed processors,
where polynomial-time solutions are feasible. This showcases the practical applicability of MESSI in
common scenarios. Secondly, the scalability analysis of our ILP formulation (Tab. 1) demonstrates
its ability to handle increasingly complex task graphs. The observed trend, though exhibiting
non-linearity as expected for ILP, remains manageable due to the formulation’s independence
from deadline and PE count. This scalability is crucial for tackling NP-complete instances where
exhaustive search is impractical. Furthermore, recent work by Senapati et al. [38] highlights
the challenges of scheduling multiple periodic DAGs on heterogeneous systems. Their findings
emphasize the need for efficient scheduling techniques that can handle complex dependencies
and real-time constraints, further validating the relevance of our approach. While acknowledging
the NP-completeness of general task graph scheduling, we believe that our approach, with its
demonstrated scalability and focus on practical scenarios, provides a valuable contribution to the
field. Lastly, ILP solvers are becoming stronger/more effective, so scalability issues can be improved
using better ILP solvers for complex tasks.

Our additionally proposed heuristic provides further considerations and overcomes the scalability
issues of the ILP-based approach. Comparing themapping and scheduling generated by the heuristic,
we can observe an improvement compared to the mapping and scheduling obtained with ILP. While
the task fork data becomes part of the task T1 to keep the heuristic approach lightweight, we can
see that the remainder of the task graph matches with only minor differences. These differences
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come from the real SW execution, in which SW contains pieces of code that aren’t directly part of
a task.
Lastly, our proposed methodology could also be utilized to handle multiple applications, while

not specifically tailored for this. For this, a global task graph consisting of the multiple applications
can be created. Consecutive applications’ task graphs must be virtually connected through their sink
and source node, respectively. By adding up the separate deadlines of the applications to one global
deadline, the problem can be mapped to our methodology. With both, the ILP formulation and our
proposed heuristics, it is expectable that the complexity of the scheduling problem increases. This
is further underlined, when considering that the overall graph structure becomes more complex.
For future work, we aim to consider further evaluations that involve different heterogeneous

RT systems and different application examples. These systems should contain a range of different
features (e.g., interrupts, DMA) to further investigate and expand on the general and technical
considerations. Through more evaluations, we can refine MESSI further, to include more appli-
cation specific properties and constraints. Additionally, we plan to investigate automating the
implementation of tasks through High-Level Synthesis (HLS) in order to speed up the develop-
ment and verification cycles. Using HLS allows for faster design space exploration and can aid
in obtaining estimates for task metrics much faster. Lastly, we want to investigate the use of a
Virtual Prototype (VP) as a reference model of a heterogeneous RT system. VPs allow early HW-SW
co-design and verification, thus the possible refinement loop in the methodology can be achieved
more efficiently.

8 CONCLUSION
In this paper, we proposeMESSI, a static scheduling strategy for mapping and scheduling application
tasks for heterogeneous RT systems. The strategy encompasses an ILP-based optimization of
constraints, modeling the application’s properties, as well as a system specific heuristic approach
to overcome the disadvantages of ILP. Through the ILP constraints, we describe general scheduling
properties (such as deadlines or preemption behavior) as well as relevant system architecture and
application specific properties (such as HW area budget or SWmemory limits). We proposed general
practical and technological considerations that assist engineers in their decision-making process
and in understanding the advantages, disadvantages as well as the limitations of the underlying
architecture of the heterogeneous system. With a case-study we provide an evaluation through
which we show the consequences that follow from considering specific systems decisions (e.g., no
DMA or specific HW task interfaces). Our evaluation demonstrates the applicability of MESSI in
providing practical results for a heterogeneous CPU+FPGA system. Furthermore, our evaluation
shows how the mappings and schedules obtained through the ILP, a heuristic and the real task
execution compare. Additionally, the obtained schedule is compared against the initial system
configurations (i.e., All Software, All Hardware) that span the search space of HW-SW Co-Design.
Finally, we provided ideas for future work to further boost our methodology and broaden the scope
of our scheduling algorithm to consider more general and application specific constraints, as well
as different system architectures.
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