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Abstract

Tabular data from IIoT devices are typically analyzed using decision tree-
based machine learning techniques, which struggle with high-dimensional and
numeric data. To overcome these limitations, techniques converting tabular
data into images have been developed, leveraging the strengths of image-
based deep learning approaches such as Convolutional Neural Networks.
These methods cluster similar features into distinct image areas with fixed
sizes, regardless of the number of features, resembling actual photographs.
However, this increases the possibility of overfitting, as similar features, when
selected carefully in a tabular format, are often discarded to prevent this is-
sue. Additionally, fixed image sizes can lead to wasted pixels with fewer
features, resulting in computational inefficiency. We introduce Vortex Fea-
ture Positioning (VFP) to address these issues. VFP arranges features based
on their correlation, spacing similar ones in a vortex pattern from the im-
age center, with the image size determined by the attribute count. VFP
outperforms traditional machine learning methods and existing conversion
techniques in tests across seven datasets with varying real-valued attributes.

Keywords: 1loT tabular data, data augmentation, convolutional neural
networks.
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1. Introduction

The industrial Internet of Things (IToT) collects vast amounts of sensor
data commonly presented in a tabular form [1, 2, 3]. This industry data is
often analyzed using traditional machine learning (ML) techniques based on
decision tree algorithms [4], supported by voting algorithms [5], and enhanced
by ensemble techniques such as Gradient Boosting [6], XGBoost [7], Light-
GBM [8], and CatBoost [9]. These techniques identify defective goods and
detect anomalies in IIoT systems. However, the increasing complexity and
breadth of attributes in IloT data, along with the need for high-resolution
data, often exceed the capabilities of traditional ML methods. For exam-
ple, in predictive maintenance, sensors may record high-frequency vibration
data that is highly granular, posing a challenge for traditional ML methods
to process [10]. Similarly, in optimizing wafer fabrication processes, precise
control of numerous parameters based on real-time sensor data is crucial for
yield improvement, requiring more sophisticated solutions [11].

When the input data is numeric and highly complex, a deep learning
approach becomes more suitable for analyzing tabular data [12]. Many re-
searchers have explored using Convolutional Neural Networks (CNNs) [10]
by converting tabular data into images. CNNs are a deep learning technique
with numerous parameters, excelling particularly in handling image data that
exhibit distinct patterns within pixels [13]. However, applying CNNs to tab-
ular data is challenging because convolution kernels are designed to detect
specific spatial patterns in multidimensional data. Typically, tabular data
is represented as a vector, and even when reshaped into a 2-D matrix using
conventional methods, the resulting ‘image’ often lacks meaningful spatial
patterns. Consequently, for CNNs to perform effectively, the attributes of
the tabular data must be strategically arranged in the reshaped matrix to
create recognizable spatial patterns [10, 14].

Previous studies, such as Deeplnsight [15], REFINED [16], IGTD [17],
and SuperTML [18], have proposed methods to convert 1-D tabular data
into 2-D image data by considering the positions of attributes. Specifically,
Deeplnsight, REFINED, and IGTD focus on grouping similar attributes with
high correlations in specific locations within a 2-D matrix. This enables a
CNN model to learn patterns within these similar attributes. However, this
approach can lead to overfitting if similar attributes are intensively grouped
in one area, making it difficult for the model to train on universal pat-
terns between dissimilar attributes [19]. Additionally, these methods con-



vert tabular data into fixed-size images, which can result in wasted pixels
for smaller datasets or insufficient space to represent all attribute values for
larger datasets. Wasted pixels lead to computational inefficiency, as the CNN
processes empty or irrelevant areas of the image, consuming resources with-
out contributing to learning valuable patterns. Conversely, Super'TML carves
tabular features (or attributes) of a sample (or row) onto an empty black im-
age by assigning different font sizes to features based on their importance.
While SuperTML has shown improved performance on some datasets, it has
limitations: it may not be applicable when there are too many attributes to
fit on a reasonably sized image, and its performance can vary depending on
the font type.

This paper presents a novel approach, Vortex Feature Positioning (VFP),
which converts tabular data into images tailored for CNNs while accounting
for attribute correlations. With the increasing number of sensors in IIoT,
there is a corresponding rise in attributes with real value sensor data [20].
To accommodate such IIoT applications, VFP arranges the attributes of the
tabular data in a vortex shape, rotating from the center based on their Pear-
son correlation coefficient (PCC). This arrangement facilitates convolution
operations, allowing for the optimal extraction of essential patterns. By po-
sitioning low-correlated features near the center of the converted image, VFP
creates a convex-like loss landscape. A convex-like loss landscape helps pre-
vent, overfitting by ensuring that the optimization process is smoother and
less likely to get stuck in local minima. It encourages the model to find
broader, more generalizable solutions rather than narrowly focusing on spe-
cific patterns that may not apply to unseen data. Additionally, this vortex
shaping allows for the formation of images with flexible sizes, ensuring that
the spatial representation is optimally adapted to the number of attributes.
This flexibility further contributes to the efficient training of the CNN model.

We evaluated VFP on datasets related to typical industrial environments
and general datasets to ensure its applicability across a broad range of IIoT

Table 1: Overview of datasets in this study, detailing the number of attributes, sample
count, and labels, and noting any missing data.

Name Iris Wine | DryBean | HELOC | HIGGS Esiiilffrt;c SECOM | DARWIN | Eating
# of attributes 4 12 16 23 28 178 591 450 6,373
#ofsamples | 150 6,497 13,611 11,459 |11,000,000| 11,500 1,567 174 945
# of labels 3 2 7 2 2 5 2 2 7
Missing data No Yes No No No No Yes No No




environments. These datasets were sourced from the UCI Machine Learning
Repository [21], Kaggle [22], and OpenML [23]. The industrial datasets in-
clude Wine, Dry Bean, and SECOM (semiconductor manufacturing data).
For general IIoT applications, we included Epileptic Seizure, Eating, DAR-
WIN, Iris, HELOC, and HIGGS. Detailed descriptions of each dataset are
provided in Table 1. As shown in the evaluation section, VFP outperforms
traditional ML techniques such as XGBoost and CatBoost, and it generally
excels across most datasets compared to techniques utilizing CNNs, such as
Deeplnsight, REFINED, and IGTD.

Machine and deep learning approaches aim to effectively discover complex
but generalized patterns in training data. In this context, VFP makes three
significant contributions:

e VFP outperforms traditional ML techniques for tabular data and pre-
vious methods for converting tabular data into images for CNNs.

e VEP can convert tabular data with varying numbers of attributes into
images with an optimized number of pixels.

e Since VFP is a data format transformation technique, it can be utilized
with any state-of-the-art CNNs and training methods.

With these contributions, VF'P presents a valuable and versatile tool for
transforming tabular data into images suitable for use with CNNs.

The rest of the paper is structured as follows: In Section 2, we discuss
related works. We present our proposed VFP method in Section 3. Section 4
shows the strategic positioning of correlated features and convergence analy-
sis of VFP, Section 5 describes the experimental evaluation, and in Section 6,
we conclude the paper and discuss future work.

2. Related Work

2.1. Machine Learning Techniques for Tabular Data

Traditional ML methods for analyzing tabular data include Gradient
Boosting [6], XGBoost [7], LightGBM [8], and CatBoost [9], all based on
decision tree algorithms [4]. These techniques are widely used and remain
dominant over CNNs when handling tabular data [24]. They mitigate over-
fitting in regression or classification tasks by employing ensemble methods
such as boosting and bagging [6].



Despite their strengths, these models face significant challenges when han-
dling high-dimensional data with numerous real-valued attributes. The pri-
mary mechanism in these tree-based models involves splitting the data at var-
ious thresholds to maximize criteria like information gain or Gini impurity.
However, many real-valued attributes exponentially increase the number of
potential split points. This elevates the computational burden and increases
the risk of overfitting, as the models may select splits that fit the train-
ing data too closely, failing to generalize to unseen data [6, 7, 9]. Also, the
curse of dimensionality becomes particularly problematic in high-dimensional
spaces. As the number of attributes grows, the data points become increas-
ingly sparse, making it difficult for the models to find statistically significant
and generalizable splits. This sparsity reduces the models’ ability to capture
meaningful patterns, leading to degraded performance on test data [1, 25].
Moreover, these models are inherently sensitive to feature correlation, a com-
mon characteristic of real-valued attributes in industrial sensor data. Highly
correlated features can lead to redundant splits, where the model repeat-
edly selects similar features, adding complexity without contributing to the
model’s predictive power. This redundancy not only increases computational
costs but also hampers the interpretability and efficiency of the model [8].

LightGBM, with its leaf-wise growth algorithm, was designed to improve
training speed by selecting optimal leaves to split rather than following a
level-wise approach. However, this method often struggles to capture the
detailed interactions between features crucial in high-dimensional spaces, re-
sulting in performance that does not consistently surpass that of XGBoost
and CatBoost [9]. As a result, there is a pressing need for new methods to
handle the challenges of tabular data with numerous real-valued attributes
more effectively.

2.2. Converting Tabular Data into Images for CNNs

Industries such as semiconductor manufacturing generate extensive tab-
ular data characterized by real-number attributes, which differ from integer-
based categorical attributes. These data sets, often collected from many
sensors at high frequencies, present significant challenges due to their scale
and complexity. Traditional machine learning techniques struggle with such
data, particularly as the dimensionality increases, leading to inefficiency in
capturing meaningful patterns [1, 10, 25].

CNNss are specifically designed to handle complex patterns in 2-D spatial
data, such as images [13], but their effectiveness is limited when applied



to 1-D tabular data [10, 24]. This limitation arises because CNNs excel at
detecting spatial hierarchies and local patterns within grid-like structures
where the proximity of data points is meaningful. In contrast, traditional
machine learning models often need help with high-dimensional tabular data,
where interactions between features can be complex and non-linear, making
it difficult for these models to generalize effectively.

To leverage the strengths of CNNs in capturing intricate feature inter-
actions, researchers have proposed various methods to convert tabular data
into images where spatial relationships can be encoded. Techniques such as
Deeplnsight [15], REFINED [16], IGTD [17], and SuperTML [18] have shown
superior performance compared to traditional machine learning approaches,
particularly in scenarios with numerous attributes. Transforming tabular
data into 2-D representations allows CNNs to exploit their inherent ability
to model local dependencies and complex patterns, which are challenging for
conventional models to capture in high-dimensional spaces. This approach
enhances predictive accuracy and enables more effective feature learning and
representation in complex datasets. °

However, these methods can lead to overfitting or the oversight of global
patterns [10]. A common approach among these methods is assigning each
attribute a fixed position within a 2D (or 3D) matrix by grouping similar
attributes. While this may seem logical, it can hinder learning complex pat-
terns across different attributes, as convolutional operations might overly
focus on patterns among adjacent, similar features [10, 26]. This strategy
contrasts with traditional machine learning practices, which often recom-
mend dropping highly correlated attributes to prevent overfitting [10, 27].

SuperTML [18] engraves features of tabular data onto an empty black
image (i.e., a zero 2-D matrix), with each feature engraved in varying sizes
based on its importance. Although SuperTML performed better than tradi-
tional ML techniques in some datasets, it faces challenges in determining the
extent to increase image size with a growing number of attributes. It also
requires prioritizing attributes due to considerations of font size when the
choice of font type influences engraving features and its performance. These
constraints highlight the necessity for a more generalized method.

Despite the enhanced performance achieved by Deeplnsight, REFINED,
IGTD, and SuperTML, it remains to be seen whether the improvement stems
from CNNs’ ability to detect complex patterns through 2-D convolution op-
erations or primarily from their feature positioning methods. To address this
uncertainty, we introduce 12 different feature positioning scenarios in CNNs
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in Section 3. These scenarios aim to demonstrate that the effectiveness of
CNNs in detecting complex patterns is not solely responsible for improved
test performance; how features are positioned also plays a critical role. Based
on these insights, we introduce a new method for positioning features called
Vortex Feature Positioning (VFP). VFP directly transforms all attributes
of tabular data into images based on their correlations, reducing the risk of
overfitting by considering the varying degrees of correlations. Additionally,
VFP adjusts the image size based on the number of attributes, directly con-
verting all tabular data attributes into images based on their correlations
and accounting for their correlation degrees, unlike prior methods with fixed
image sizes.

3. Vortex Feature Positioning

As the number of real value attributes in tabular data increases, tradi-
tional ML techniques exhibit lower performance and slower training speeds [10].
CNNs can overcome these limitations by converting tabular data into images
and exploiting the benefits of 2-D convolution operations to capture complex
patterns in tabular data [15, 17].

Previous methods of converting tabular data into images aggregate similar
features in specific locations. However, because tabular data is inherently
heterogeneous, its features do not correspond to pixels in a literal image,
where similar pixels are naturally grouped together to form coherent patterns.
Aggregating similar features of tabular data in this context may lead to
overfitting, especially when dealing with highly correlated features [10, 27].
Our new method, Vortex Feature Positioning (VFP), addresses these issues
by taking into account two critical factors:

e Tabular data is heterogeneous because it comes from distinct sensors,
and its features are not like the pixels in an actual image. Therefore, we
interpret the functionality of 2-D convolutions as forming appropriate
patterns based on tabular features such as numerical values, categories,
or textual information rather than merely extracting patterns like an
actual image.

e Highly correlated features of tabular data should be positioned far away
from each other.



First, we explain how to embed features into a 2-D matrix while considering
convolution operations in Section 3.1. Then, we describe how to arrange
features based on the correlation of attributes in an image in Section 3.2.

3.1. Embedding Features Considering Convolution Operations

CNNs, such as ResNet [28] and DenseNet [29], typically employ 3 x 3
kernels in the convolution layer. The results of convolution operations with
3 x 3 kernels and feature maps in the first layer impact the kernels of ev-
ery subsequent layer and, consequently, influence the final inferences [13].
Therefore, in the first layer, we need to consider the number of features in an
image per convolution operation to determine the complexity of patterns. To
simplify the explanation, assume there are m x n attributes in tabular data,
where m and n represent the numbers of rows and columns in the feature
matrices, respectively. We examine three methods for embedding features
into a 2-D matrix: zero-padding with sizes of 1 and 2, as well as distancing,
as illustrated in Fig. 1.

Zero Padding of Size 1 (ZPOS1)

NPadl — 4

NPt =2 x (m—2)+2x (n—2) =2m +2n — 8 (1)

NFt = (m —2) x (n —2) =mn —2m — 2n + 4
Zero Padding of Size 2 (ZPOS2)

NPad2 _ 4 NFad2 — g NPad2 — 4

NP2 =2 x (m—2)+2x (n—2)=2m+2n — 8

NEPo2 =2 x (m —2)+2x (n—2) =2m +2n — 8

NP2 = (m —2) x (n —2) =mn —2m — 2n + 4
Distancing

NPt = m x n=mn

NP =nx (m—1)4+mx (n—1)=2mn—m—n (3)

NP =(m—-1)x(n—1)=mn—m-—n-+1,

Here, N**¢ represents each case’s convolution operations involving 7 fea-
tures. The 3 x 3 kernels of convolution layers can handle up to nine features.
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Figure 1: Three cases of feature positioning considering the number of features per con-
volution operation. From the top: zero padding of sizes 1-2 and distancing.

The numbers of convolution operations per the number of features dealt with
at once are calculated by Equations 1, 2, and 3, and the results are shown in
Table 2.

ZPOSI1 uses three cases of the number of features for convolution opera-
tions totaling mn. ZPOS2 uses six cases of features for convolution operations
totaling mn + 2m + 2n + 4. Distancing uses three cases of the number of
features for convolution operations totaling 4mn — 2m —2n+ 1. The number
of total convolution operations denotes how many patterns CNNs have and
the number of features used at once, which are related to the complexity of
patterns. For example, if nine features (m = 3 and n = 3) exist, ZPOS2
and distancing perform twenty-five convolution operations identically. How-
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Table 2: Number of convolution operations per the number of features in cases with zero
padding of sizes 1 and 2, and distancing.

Zero Paddin Zero Paddin . .
Cases of Size 1 g of Size 2 g Distancing
1 feature N/A 4 mn
2 features N/A 8 2mn —m —n
3 features N/A 2m +2n — 8 N/A
4 features 4 4 mn—m-—n+1
6 features 2m+2n —8 2m+2n — 8 N/A
9 features | mn —2m —2n+4 | mn—2m —2n+4 N/A
All cases mn mn+2m+2n+4 | dmn —2m —2n+1

ever, if there are more than nine features, distancing performs many more
convolution operations and uses fewer features than ZPOS2. Therefore, dis-
tancing considers many rough patterns between features, while ZPOS2 con-
siders complex patterns as combinations of various features. Since ZPOS1
uses only four, six, and nine features and performs mn convolution opera-
tions, it is beneficial for avoiding overfitting compared to ZPOS2, which finds
excessively detailed patterns. We also embed features in an image with no
padding or distancing. However, convolution operations only use nine fea-
tures at once, and the number of convolution operations is (m —2)(n—2), the
smallest among the methods. Overall, the number of features used in a single
convolution operation and the complexity of patterns should be considered
when embedding features into a 2-D matrix.

3.2. Arranging Features Considering Correlations of Attributes

The traditional ML techniques may exhibit overfitting when heavily re-
lying on highly correlated attributes without dropping them during train-
ing [27, 30]. Previous methods of converting tabular data into images have
mainly focused on placing similar features together, resulting in better per-
formance [10, 15]. The high ability of CNNs to capture critical patterns
contributes to increased performance. However, we cannot conclude that
gathering similar features increases performance because each attribute in
tabular data, which is heterogeneous, differs from pixels in an actual image,
which represents homogeneous data [10].

VFP performs convolution operations on low-correlated attributes by
placing features with low correlation at a blank image’s center (in ascend-
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Algorithm 1: Vortex Feature Positioning: This algorithm ar-
ranges attributes based on the sum of Pearson correlation coefficients
(PCCs). It takes a set of attributes X and outputs the attributes
arranged in a vortex pattern X, 4ereq- 1he vector ¢ contains the sum
of absolute PCCs for each feature ¢;, which determines the order.
: Input: X = {x;|i =1,2..., k}
Output: X 4ereq
c={qli=1,2,.. k}
forie1,2,....k do

¢+ 0

for j€1,2,....k do

¢ ¢ + |r(xi,x;)|

end for
end for
Xordered — X[rankascending<c)] or X[rankdescending(c)}

[a—y

,_.
@

ing order). This is because 2-D convolution operations use center-located
features more than edge-located features.

In the context of investigating attribute relationships, the Pearson Corre-
lation Coefficient (PCC), denoted as r(a, b) in Equation 4, is employed. This
coefficient measures the linear correlation between two attributes, a and b,
which are sets of data points in a dataset. The PCC is calculated by divid-
ing the sum of the products of the deviations of each data point from their
respective means (a; —a and b; — b) by the square root of the product of
the sums of the squared deviations.

n

r(a, b) — nZ(az - E_l)(l: - b) — ’
Ve — 82 (3(bs — b))

Algorithm 1 outlines the arranging process, which sorts attributes in as-
cending or descending order based on the sum of absolute values of
PCC's aiming to investigate whether gathering similar values improves per-
formance more than spreading them out.

X is a tabular dataset composed of attributes x; (line I in Algorithm 1).
c is a vector composed of ¢;, which is the sum of PCCs of x; and other
attributes (line 3). rankqscending(c) and rankgescending(c) are functions that

(4)
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arrange ¢ according to ¢; size in ascending or descending order and provide
ordered indices (lines 4-9). We arrange X based on the order stored in ¢
(line 10).

After arranging attributes based on the PCC, features of attributes are
embedded in an image. CNNs perform more convolution operations on fea-
tures at the center of the image than on exterior features. Therefore, placing
features in a vortex shape from the center of the image exploits desired
features for many convolution operations, while undesired features are the
opposite. For example, arranging features in ascending order according to
the sum of PCCs performs many convolution operations with low-correlated
features such as z{, z§, =5, and z{, which are similar to feature selection in
ML techniques for tabular data [30]. In contrast, features z¢ and z¢_,, which
have high PCCs and are located near the edge, are used for relatively fewer
convolution operations.

We use a single-channel image (i.e., a grayscale image) in VFP. However,
state-of-the-art CNNs (i.e., ResNet and DenseNet) require 3-channel images.
This paper employs Pre-activated ResNet-18 [28]. Therefore (R), green (G),
and blue (B) channels all have the same feature map, as shown in Fig. 2.

\ortex Positioning 3-ch Image (Grayscale Image)
Red Green Blue
9 0 N N NS
0PN\ 0PN\ 0T\
% 0|x|0]... e 0™ 0T 0N
Oh()}\()kﬂ()}\okto}\
7 \\7 \\7
00 00 000*\500\\\0*500\\\0 *50}\
. . . . 0)((00() 0\0\\0 0\0\\() 0}\
%] 0= i s 0o O T TS P O TS0 P 0o e 0 0
N R
0 0 0 0 0 0*§00 x5 0 x5 0 xg 0
0 SO PO TS0 L0 o Lo 0o TS0 0
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0 {00,(;\000{0000“\0000&0
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SN0 B SINL0 TEL SINL 0
0 0 SO0 T N0 N T
SO NG Y
N N N

Figure 2: Vortex Feature Positioning and forming a 3-channel image by copying a 2-D
matrix.

4. Analysis of Vortex Feature Positioning
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The VFP method optimizes the arrangement of features within an image
representation of tabular data to fully leverage CNNs’ strengths. This section
provides a detailed analysis of the key design choices in VFP, specifically
the strategic positioning of correlated features and the utilization of CNNs’
inherent central bias. Using these design choices, we analyze the potential for
improved convergence properties in CNNs, particularly when using stochastic
optimization techniques like SGD.

4.1. Strategic Positioning of Correlated Features

4.1.1. Mathematical Justification

A critical aspect of VFP is the deliberate spatial separation of correlated
features within the image. This strategy aims to reduce redundancy in the
information processed by CNNs, thereby minimizing the risk of overfitting
and enhancing the model’s generalization capability. In CNNs, the output of
a convolutional operation for a given pixel y(i, j) in the feature map is given

by:

M N
y(i,j) = ZZx(i+m— Lj+n—1)-w(m,n)+0b,
m=1 n=1
where y(i,j) is the output feature at position (4,7), z(i + m — 1,5 +n — 1)
represents the input values within the receptive field, w(m,n) are the kernel
weights, M x N is the kernel size, b is the bias term.

When correlated features are adjacent, the convolution operation tends to
reinforce these correlations, which can cause the model to focus excessively
on localized patterns, leading to overfitting. By placing correlated features
far apart, VFP ensures that CNNs process these features in different parts
of the image, forcing the network to learn more diverse, global patterns.
This decorrelation can be expressed as minimizing the covariance Cov(f;, f;)
between feature activations f; and f; across the network:

N

Cov(fin £3) =y DU = i) 7 = 1),

n=1

where N is the number of samples, iy, and py, are the mean activations of
features f; and f;, respectively.

By reducing the covariance between features, VF'P promotes a more gen-
eralized learning process, enabling CNNs to capture complex interactions
across the entire feature space.
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4.1.2. Leveraging CNNs’ Central Bias

CNNs naturally emphasize features located near the center of an image
due to the expansion of the receptive field as layers deepen. This character-
istic is strategically utilized in VFP by positioning critical features near the
center of the image, where they are more likely to influence the network’s
output.

4.1.3. Receptive Field Fxpansion
The receptive field R; at any given layer [ can be calculated recursively

as:
-1

Ri=Ri 1+ (k—1) H 54,
i=1
where k; is the kernel size at layer [, s; is the stride at layer [, and R;_; is
the receptive field of the previous layer.
For a convolutional layer with a stride of 1 (s; = 1), this simplifies to:

Rl = Rl_1 + (k)l — 1)

As the network depth increases, the receptive field expands, particularly
overlapping more in the image’s central region. This overlap results in a bias
towards the central features, which influence more neurons in deeper layers
of the network.

4.1.4. Impact of Global Average Pooling

In many CNNs, global average pooling (GAP) is used to reduce the spatial
dimensions of the feature maps before the fully connected layers. The output
of a GAP layer for a channel c is calculated as:

GAP(C) = ﬁ Z Zyc(iaj)a

i=1 j=1

where H x W are the height and width of the feature map, y.(7,j) is the
feature map value at position (4, j) for channel c.

Due to the denser overlap of receptive fields at the center, central features
disproportionately contribute to the final output after GAP, reinforcing the
central bias.
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4.1.5. Summary

VFP exploits this central bias by positioning essential features near the
center of the image, ensuring they receive more attention during the con-
volution process. This approach maximizes CNNs’ ability to capture criti-
cal patterns and relationships within the data, leading to improved model
performance. By combining decorrelating feature positions and leveraging
the central bias, VFP enhances CNNs’ effectiveness in handling complex,
high-dimensional tabular data. This dual approach is key to the improved
performance observed in our experiments, as discussed in Section 5.

4.2. Convergence Analysis

4.2.1. Preliminaries: Vortex Feature Positioning

Vortex Feature Positioning (VFP) arranges tabular data into an image
format by positioning attributes outward from the center, with features closer
to the center being less correlated. This spatial layout facilitates the learning
of feature relationships through convolution operations.

4.2.2. Assumptions
The convergence analysis of Stochastic Gradient Descent (SGD) in the
context of VFP relies on the following assumptions:

e Locally Convex Regions: While the entire loss surface of a CNN
trained on VFP images might be non-convex, regions close to the center
(where less correlated attributes reside) are approximated as locally
convex.

¢ Bounded Gradients: The gradient magnitude does not grow indefi-
nitely. This is a reasonable assumption given the structured nature of
VFP images and the bounded activations in CNNs.

e Lipschitz Continuity of Gradients: Despite the spatial rearrange-
ments due to VFP, we assume that small changes in the input lead to
proportionally small changes in the output. This is represented by a
Lipschitz constant L such that:

IVf(z) =Vl < Lz -y

e Diagonal Dominance in Hessian for Central Features: For fea-
tures positioned centrally in VFP images (and thus less correlated),
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their Hessian matrix is approximately diagonal, indicating limited in-
teractions with other features. Consider two features, ¥ and z!, with
their effect on the loss f represented as a second-order term in the
Hessian matrix H: )

g O

OzFor!

For uncorrelated features z¥ and z!, Hy,; is close to zero. A function is
convex if its Hessian is positive semi-definite everywhere. With VFP,
central features (less correlated) have a Hessian structure that’s ap-
proximately diagonal:

H~ diag()\l, )\2, ceny /\m), >\n >0

where ), are eigenvalues. Local convexity around these features is
suggested if these eigenvalues are non-negative.

4.2.3. Convolution’s Role in Convergence

In CNNs, convolution operations, especially in the initial layers, focus on
the local regions of the input image. Given the VFP structure, these convo-
lutions will predominantly operate on the less correlated central features in
their early stages. This behavior ensures:

e Unique Feature Capture: Convolutions can effectively capture the
unique characteristics of these less correlated features, providing more
informative gradient signals during backpropagation.

e Gradient Quality: Gradients derived from less correlated features
are likely more distinct, reducing the chances of vanishing or exploding
gradients, especially in the early layers.

4.2.4. Correlation-Induced Convexity

The combined influence of less correlated features z¥ and z! on the loss
f can be depicted by the Hessian entry H,;, which is expected to be close to
zero. The diagonal-like Hessian for central features in VFP images suggests
potential local convex regions.
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4.2.5. SGD Convergence Analysis with VFP Images

In the context of VFP, we analyze the convergence of Stochastic Gradient
Descent (SGD), which updates the model using randomly sampled mini-
batches, incorporating the spatial structure of VFP images into the gradient
computation.

Consider the general SGD update rule:

‘9t+1 =0, — ntvf(xta 015)’

where 0; are the model parameters, and x; is a mini-batch of the feature
vectors sampled at iteration ¢, 7; is the learning rate, and V f(zy, 6;) is the
stochastic gradient of the loss function with respect to both x and 6 at
iteration t.

In the case of VFP, the gradient incorporates the interaction between
features:

_of of
Vf(xe,0:) = 8—%(90 + ; Cklﬁ_xt(et)’

where Cj; represents the interaction coefficient between features z¥ and x!
based on their spatial positioning in the VFP image. The interaction term
Cp captures the correlations between features. When features #¥ and z! are
weakly correlated, the interaction term C%; becomes small.

In mini-batch SGD, these interaction terms tend to cancel out in expec-
tation due to random sampling:

sl

k£l

E

Thus, the gradient estimate V f(z;;6;) is a noisy approximation of the
true gradient of the full loss function F(6;), but remains unbiased:

E[V f(zt;0:)] = VF(0:),

where F'(6;) is the full objective function, and the expectation E[-] is taken
over the randomness in the selection of the mini-batch ;.
The SGD update rule, considering the VFP structure, becomes:

0 0
Orp1 =0, —my <a_£(9t) + chza—i(et)) -
Kt

17



We analyze the squared norm of the parameter difference:
101 — O°(* = [16: — 0V f (s 6,) — 67|,
Expanding this:
101 — 0% = (16, — 0°11 — 20,V f (4 0) T (0 — 0%) + 01V f (3 0) 1.
Using the convexity assumption:
F@®) = fla) + Vf(ze:6,) " (0" = 6,),
we obtain:
V(w0 (0 — 07) > fxe) — f(2).
Substituting this inequality into the squared norm expression gives:
E[l|0r+1 — 0°17) < 16 — 011" — 20E[f (xe) — f(2")] + m/E[|[V f (223 00) 7).
We assume that the gradient norm is bounded:

E[[|V f (x40, < 02,

leading to the simplified inequality:
oy 1 . o
Elf(a) = ()] < g (16 = 61 — Elles = 6°171) + 0™

With the assumption that expectations are linear and distributed over sums,
summing the inequality over ¢ from 1 to T yields:
16 — 0" | neo®T
+ .
277,5 2

> E[f(z) - fa")] <

With a diminishing learning rate n, = \/%, the convergence rate becomes:

. 1
Blf(e) - )] =0 ().
4.2.6. Summary
The interaction terms in the gradient estimate cancel out due to random-
ness in mini-batch selection, ensuring that the gradient remains unbiased.
Therefore, despite spatial correlations between features in VFP, the stochas-
tic gradient descent maintains the typical O(1/+/t) convergence rate.
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Figure 3: Converted images of IGTD and VFP (with distancing) using Iris and SECOM
datasets.

5. Experimental Evaluation

In this evaluation, we analyze nine benchmark tabular datasets, catego-
rized by the number of attributes and samples. These datasets are sourced
from the UCI Machine Learning Repository [21], OpenML [23], Kaggle [22],
and a peer-reviewed paper [31] (Penglung). The datasets include Iris, Wine,
Dry Bean, and SECOM, widely used in industrial applications. Additionally,
we evaluate the Epileptic Seizure, DARWIN, and Eating datasets, known for
their challenges in medical data training, the HELOC dataset, which high-
lights the disparity between current market value and purchase price in the
housing sector, and the HIGGS dataset, which is used to distinguish between
processes that produce Higgs bosons and those that do not.

Each dataset’s details are summarized in Table 1. Iris, Wine, Dry Bean,
HELOC, and HIGGS have relatively small numbers of attributes, while
Epileptic Seizure and SECOM have 178 and 591 attributes, respectively. We
also consider cases where the number of attributes far exceeds the number
of instances, such as DARWIN and Eating. This scenario is particularly im-
portant because in cases with more attributes than instances, deterministic
methods such as constructing the Hessian matrix are not feasible, leading to
the necessity of using machine learning or deep learning approaches [32, 31].
Therefore, by comparing the performance across different methods, we can
empirically determine which approaches are more effective in handling high-
dimensional data with limited instances. All datasets contain real-valued
attributes, which are challenging to train using ML techniques for tabular
data. Each dataset is randomly split into training and testing sets in a 0.8:0.2
ratio, and a Min-Max scaler is applied to normalize the data.

Fig. 3 shows converted images for the Iris and SECOM datasets using
IGTD and VFP with distancing. IGTD [17] is a recent method for converting
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Table 3: Averaged testing accuracies (with standard deviations) using VFP. Feature ar-
rangement methods include ascending (less correlated features near the center), descending
(more correlated features near the center), and random(where features were randomly po-
sitioned). Each case was tested with eight trials, and the cases achieving the top two

accuracies for each dataset are bolded.
Optimizer SGD AdamW

Data Name Iris Wine | DryBean | HELOC | HIGGS Espeii'ffrtéc SECOM | DARWIN | Eating
Ascending | 96.7 (4.08) [99.7 (0.22) |93.5 (0.33) | 72.6 (0.71) | 78.3 (0.07) | 76.1 (0.50) |93.0 (0.78) | 91.1 (2.83) | 63.0 (3.00)
Descending| 95.8 (3.23) [99.7 (0.21) |93.5 (0.40) | 72.7 (0.88) | 7.8 (0.05) | 76.1 (0.90) |93.1 (0.83) | 90.4 (4.02) | 61.5 (3.37)
Random |97.1 (2.14)|99.8 (0.19) |93.5 (0.43) | 72.7 (0.81) | 7.7 (0.10) | 76.0 (0.85) | 93.1 (0.84) | 90.4 (2.13) | 60.6 (4.13)
Ascending |94.6 (4.70) |99.7 (0.22) | 93.4 (0.34) | 72.2 (0.81) | 7.7 (0.06) | 74.9 (0.99) | 93.0 (0.84) | 92.1 (3.97) | 62.1 (2.80)

)
)
)
Descending | 94.6 (3.70) | 99.6 (0.21) | 93.5 (0.37) | 72.3 (0.82) | 77.6 (0.07) | 75.0 (0.84) | 93.1 (0.73) | 93.2 (3.03) | 61.3 (2.97)
)
)

Distancing

of Size 1

( (
( (
( (
( (
( (
Random |96.3 (4.15) |99.7 (0.23) | 93.5 (0.31) | 72.2 (0.89) | 7.8 (0.14) | 75.5 (0.99) |93.1 (0.83) | 92.1 (2.96) | 59.3 (3.00)
Ascending |97.1 (2.60) |99.7 (0.22) | 93.5 (0.34) | 72.5 (0.81) | 7.8 (0.10) | 75.3 (0.47) | 93.1 (0.73) | 90.4 (2.13) | 61.9 (3.94)
( (
( (
( (
( (
( (

Descending| 97.5 (2.20) [99.8 (0.19) |93.5 (0.30) | 72.4 (1.00) | 7.6 (0.04) | 75.0 (0.43) |93.1 (0.83) | 93.2 (2.13) | 60.8 (3.05)
Random |95.4 (3.96) |99.7 (0.18) | 93.5 (0.45) | 72.5 (0.90) | 7.8 (0.10) | 75.1 (0.42) |93.1 (0.95) | 91.1 (4.69) | 60.8 (1.99)
Ascending | 96.3 (2.00) [99.7 (0.26) |93.5 (0.41) | 72.6 (0.80) | 78.1 (0.06) | 75.4 (0.73) |93.0 (0.78) | 89.3 (3.97) | 61.8 (3.07)
Descending| 95.0 (5.53) [99.7 (0.18) |93.5 (0.29) | 72.7 (0.87) | 7.9 (0.06) | 75.1 (0.32) |93.0 (0.74) | 92.1 (3.33) | 59.8 (2.33)
Random |94.6 (5.02) |99.7 (0.27) | 93.4 (0.47) | 72.5 (0.89) | 7.8 (0.03) | 75.3 (0.94) | 93.1 (0.82) | 90.4 (3.03) | 60.0 (0.85)

of Size 2

No Padding & Zero Padding|Zero Padding

Distancing

tabular data into images that has shown better performance and smaller
image sizes than other methods such as Deeplnsight [15] and REFINED [16].
The image size generated by IGTD is fixed at 50 x 50 pixels, regardless of the
number of attributes in the dataset. Although the authors [17] mention that
the image size can be changed according to the number of attributes, there
is no proposed generalized rule for image sizes across different datasets. In
contrast, VFP, with distancing, adjusts the image size based on the number
of attributes, resulting in image sizes of 5 x 5 and 45 x 45 pixels for the Iris
and SECOM datasets, respectively.

5.1. Models

We evaluate performance using Pre-activated ResNet-18 (for Iris, Wine,
Dry Bean, HELOC, HIGGS, and Epileptic Seizure) and ResNet-10 (for DAR-
WIN and Eating) architectures, both constructed by stacking residual blocks.
He et al. [28] used four types of residual blocks to build ResNets. In our setup,
ResNet-18 consists of 2 blocks for each type, while ResNet-10 consists of 1
block per type. We use these simpler ResNet variants to demonstrate the ef-
fectiveness of CNNs compared to traditional ML techniques for tabular data.
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Table 4: Averaged testing accuracies (with standard deviations) of VFP, traditional ma-
chine learning techniques, and previous deep learning-based image conversion techniques.
The cases achieving the top two accuracies for each dataset are bolded.

Epileptic
Seizure
Distancing [96.7 (4.08)|99.7 (0.22)|93.5 (0.33) |72.6 (0.71)| 78.3 (0.07)| 76.1 (0.50) |93.0 (0.78)| 91.1 (2.83) | 63.0 (3.00)

Ze;‘; ;’i";‘e’dli”g 94.6 (4.70)|99.7 (0.22) |93.4 (0.34)| 72.2 (0.81) | 77.7 (0.06) | 74.9 (0.99)| 93.0 (0.84) |92.1 (3.97) | 62.1 (2.80)

Ze;‘; ;’iaz‘:dz‘”g 97.1 (2.60)|99.7 (0.22) |93.5 (0.34)| 72.5 (0.81) | 77.8 (0.10) | 75.3 (0.47)| 93.1 (0.73)90.4 (2.13) |61.9 (3.94)

No Padding &
Distancing

) (
XGBoost |90.8 (6.18)|99.5 (0.21) |93.0 (0.21) | 72.2 (0.86) | 76.2 (0.02) | 70.8 (0.44) |93.0 (0.89) | 87.9 (3.43) |60.8 (4.06)
CatBoost [92.9 (3.89) |99.5 (0.14) [93.0 (0.38) |72.6 (0.74) | 73.9 (0.02) | 71.6 (0.53) | 93.0 (0.78) | 88.2 (2.65) | 62.7 (4.9)
) (
) (
) (

Data Name Iris Wine Dry Bean | HELOC HIGGS SECOM | DARWIN Eating

VFP
(Ascending)

96.3 (2.00)|99.7 (0.26)|93.5 (0.41) | 72.6 (0.80) | 78.1 (0.06) | 75.4 (0.73)| 93.0 (0.78)| 89.3 (3.97) | 61.8 (3.07)

ML
Techniques

Deeplnsight |96.2 (0.03) |99.3 (0.00) |91.6 (0.00) |73.0 (0.01) | 71.8 (0.04) | 67.2 (1.59) | 92.8 (0.01)|90.0 (0.04) | 14.8 (0.00)
REFINED |97.1 (3.51)|99.3 (0.24) |91.1 (0.79) | 71.7 (0.93) | 78.2 (0.06) | 70.7 (1.05) |93.1 (0.86) |90.0 (4.29) | 46.6 (2.07)
99.7 (0.17) |93.0 (0.42) | 72.0 (0.65) | 78.0 (0.07) | 73.9 (1.07) |93.1 (0.97) | 86.8 (2.81) |51.0 (2.94)

DL
Image Converting
Techniques

IGTD |95.8 (5.46

One modification we made is changing the kernel size in the first layer to 3x 3
with a stride of 1 to be consistent with VFP’s convolution operations.

5.2. Experimental Setups

Our experiments were conducted on an NVIDIA A100 40GB GPU. We
applied a cosine annealing warm-up with restarts for optimization, using
the SGD optimizer with a learning rate varying between 0.01 and 0.001 for
the Iris, Wine, Dry Bean, HELOC, HIGGS, Epileptic Seizure, and SECOM
datasets. These learning rates were reset every five epochs. For the DARWIN
and Eating datasets, we used the AdamW optimizer, with fixed learning
rates of 0.005. The experiments were run with a mini-batch size of 128. We
trained each dataset for 20 epochs (HIGGS), and 200 epochs for the others.
To ensure the reliability of the results, each experiment was repeated eight
times using different random seeds ranging from 1000 to 8000, incremented
by 1000.

5.8. Converting Tabular Data into Images

To convert tabular data into images, we first embed one sample of each
tabular dataset into a 2-D matrix with different types of zero padding and
distancing: zero padding of size 1 (ZPOS1), zero padding of size 2 (ZPOS2),
and distancing. We then convert the resulting 2-D matrix into a 3-channel
image by copying itself.
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Figure 4: Part a) lines correspond to the test accuracies presented in Table 3, while part
b) lines relate to the test accuracies in Table 4. VFP consistently shows better testing
performance than other methods.

5.4. Employing Vortex Feature Positioning

VFP improves performance by conducting convolution operations on se-
lected features. The test results, presented in Table 3 (which highlights the
top two testing accuracies for each scenario, categorized by dataset and fea-
ture positioning method) and in Fig. 4 part a), demonstrate that arranging
features in ascending order based on their correlation from the center leads
to better performance.

Among 8 trials, arranging features in ascending order achieved a top-
two accuracy in 30 cases, compared to 20 for descending order and 18 for
random feature arrangement out of 36 testing scenarios. In these scenar-
ios, descending order did not show a significant difference from random fea-
ture arrangement, whereas ascending order consistently outperformed. The
choice of strategy—whether distancing, zero-padding (sizes 1 or 2), or no
padding—varied depending on the dataset’s complexity. As shown in Ta-
ble 3, distancing achieved top performance in 22 cases, zero-padding size 1
in 17 cases, zero-padding size 2 in 15 cases, and no padding (or distancing)
in 14 cases. This suggests that distancing consistently delivers moderately
strong results, even when using only 1, 2, or 4 features. This simplicity helps
avoid overfitting and enhances overall performance. In conclusion, a tailored
embedded space that leverages specific feature relationships leads to more
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effective patterns and improved performance.

5.5. Comparison Performance with Machine Learning Techniques for Tabu-
lar Data

We evaluated the effectiveness of VFP against traditional machine learn-
ing techniques (XGBoost and CatBoost) as well as previously established
deep learning conversion methods (Deeplnsight, REFINED, and IGTD). For
traditional machine learning techniques, we modified the maximum number
of leaves in CatBoost from 16 to 64 and adjusted the minimum child weight
in XGBoost from 1 to 9. Additionally, we varied the maximum tree depth
from 4 to 16 for both CatBoost and XGBoost. For established deep learning
conversion methods, we applied the same training configuration as that used
in VFP cases.

These comparisons are detailed in Table 3 and illustrated in part b) of
Fig. 4. For the machine learning techniques, we conducted eight repeated
experiments at various tree depths, ranging from one to sixteen. Similarly, we
repeated the tests eight times for the deep learning approaches, maintaining
the same training conditions used for VFP.

The results indicate that VFP surpasses other methods across most of the
datasets tested. Particularly, compared to traditional machine learning tech-
niques, VFP achieved test accuracy improvements in the following ranges:
Iris (4.5-6.9%), Wine (0.2-0.2%), Dry Bean (0.5-0.5%), HELOC (0.0-0.6%),
HIGGS (2.8-6.0%), Epileptic Seizure (6.3-7.5%), SECOM (0.1-0.1%), DAR-
WIN (4.4-4.8%), and Eating (0.5-3.6%). Compared to deep learning ap-
proaches, VFP also showed accuracy improvements of Iris (0.0-1.4%), Wine
(0.0-0.4%), Dry Bean (0.5-2.6%), HELOC (-0.5-1.3%), HIGGS (0.1-9.1%),
Epileptic Seizure (3.0-13.2%), SECOM (0.0-0.3%), DARWIN (2.3-6.1%),
and Eating (23.5-325.7%).

Overall, our evaluation demonstrates the robustness and superiority of
VFP in handling diverse datasets, offering a significant improvement over
traditional machine learning techniques and existing deep learning-based im-
age conversion methods. The flexibility in adjusting image sizes based on the
number of attributes and the strategic arrangement of features contributes
to VFP’s enhanced performance.

By capitalizing on the strengths of both CNNs and VFP’s unique feature
arrangement strategy, our method provides a reliable and efficient approach
to transforming tabular data into a format that maximizes the potential of
deep learning models. This leads to better generalization, improved accuracy,
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and a reduction in overfitting, making VFP a valuable tool for a wide range
of applications in industrial and other domains.

6. Conclusions

This paper introduces Vortex Feature Positioning (VFP), a novel method
for converting tabular data into images based on attribute correlations. VFP
strategically positions attributes to fully exploit the strengths of convolu-
tional neural networks (CNNs), leading to performance improvements across
various datasets. Specifically, VFP achieves performance increases ranging
from 0.0% to 7.5% compared to traditional machine learning techniques.

When compared to existing methods for converting tabular data into
images, VFP demonstrates performance improvements ranging from -0.5%
to 325.7%. These results suggest that VEFP effectively mitigates overfitting
by considering the correlations among attributes. Additionally, VFP can
dynamically adjust the size of the converted images to accommodate different
numbers of attributes, making it a flexible and adaptable solution for complex
industrial tabular data, including that generated by Industrial Internet of
Things systems.

VFP’s capability to transform tabular data into a format optimized for
CNNs enhances model performance. Our experiments show that VFP con-
sistently outperforms traditional machine learning methods and other deep
learning-based image conversion techniques. This makes VFP a valuable tool
for a wide range of applications in industrial and other domains where han-
dling complex, high-dimensional tabular data is crucial. Therefore, future
work will focus on optimizing VFP and exploring its applications to broaden
its utility and impact in various data-driven industries.
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