Si, Weiyong and Wang, Ning and Li, Qinchuan and Yang, Chenguang (2022) A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation. Frontiers in Neurorobotics, 16. p. 840240. DOI https://doi.org/10.3389/fnbot.2022.840240
Si, Weiyong and Wang, Ning and Li, Qinchuan and Yang, Chenguang (2022) A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation. Frontiers in Neurorobotics, 16. p. 840240. DOI https://doi.org/10.3389/fnbot.2022.840240
Si, Weiyong and Wang, Ning and Li, Qinchuan and Yang, Chenguang (2022) A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation. Frontiers in Neurorobotics, 16. p. 840240. DOI https://doi.org/10.3389/fnbot.2022.840240
Abstract
In this article, an impedance control-based framework for human-robot composite layup skill transfer was developed, and the human-in-the-loop mechanism was investigated to achieve human-robot skill transfer. Although there are some works on human-robot skill transfer, it is still difficult to transfer the manipulation skill to robots through teleoperation efficiently and intuitively. In this article, we developed an impedance-based control architecture of telemanipulation in task space for the human-robot skill transfer through teleoperation. This framework not only achieves human-robot skill transfer but also provides a solution to human-robot collaboration through teleoperation. The variable impedance control system enables the compliant interaction between the robot and the environment, smooth transition between different stages. Dynamic movement primitives based learning from demonstration (LfD) is employed to model the human manipulation skills, and the learned skill can be generalized to different tasks and environments, such as the different shapes of components and different orientations of components. The performance of the proposed approach is evaluated on a 7 DoF Franka Panda through the robot-assisted composite layup on different shapes and orientations of the components.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | semi-autonomous composite layup; human-in-the-loop; dynamic movement primitives; learning from demonstration; teleoperation |
Divisions: | Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 17 Feb 2025 15:56 |
Last Modified: | 17 Feb 2025 15:56 |
URI: | http://repository.essex.ac.uk/id/eprint/40330 |
Available files
Filename: A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.pdf
Licence: Creative Commons: Attribution 4.0