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Abstract

The purpose of this study was to examine the reliability of load-velocity profiles (LVPs) and validity of |-repetition
maximum (1-RM) prediction methods in the back-squat using the novel Vitruve linear position transducer (LPT).
Twenty-five men completed a back-squat [-RM assessment followed by 2 LVP trials using five incremental loads
(20%—40%—60%—80%—90% |-RM). Mean propulsive velocity (MPV), mean velocity (MV) and peak velocity (PV) were
measured via a (LPT). Linear and polynomial regression models were applied to the data. The reliability and validity
criteria were defined a priori as intraclass correlation coefficient (ICC) or Pearson correlation coefficient (r) > 0.70,
coefficient of variation (CV) < 10%, and effect size (ES) < 0.60. Bland-Altman analysis and heteroscedasticity of
errors (r?) were also assessed. The main findings indicated MPV, MV and PV were reliable across 20%-90% |-RM
(CV < 8.8%). The secondary findings inferred all prediction models had acceptable reliability (CV < 8.0%). While
the MPV linear and MV linear models demonstrated the best estimation of |-RM (CV < 5.9%), all prediction models
displayed unacceptable validity and a tendency to overestimate or underestimate |1-RM. Mean systematic bias (—7.29
to 2.83 kg) was detected for all prediction models, along with little to no heteroscedasticity of errors for linear
(r* < 0.04) and polynomial models (** < 0.08). Furthermore, all 1-RM estimations were significantly different from
each other (p < 0.03). Concludingly, MPV, MV and PV can provide reliable LVPs and repeatable 1-RM predictions.
However, prediction methods may not be sensitive enough to replace direct assessment of |-RM. Polynomial regres-
sion is not suitable for |-RM prediction.
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inverse linear relationship between relative load and
movement velocity to produce a load-velocity profile

Introduction

Ongoing collaboration between coaches, engineers and
scientists has brought about a multitude of technology
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that aids athletes in training and preparation for the
demands of competition.! The ability to objectively
quantify, monitor and analyse resistance training vari-
ables is an essential component for practitioners aiming
to maximise adaptations.” One of the most important
variables for programme design is training volume as it
influences neural and morphological adaptations.®*
Velocity-based training (VBT) uses velocity to inform
or enhance training practice,” and has received consid-
erable interest in recent years for the regulation of
training volume.®’ VBT utilises the well-established
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(LVP) which provides insights into an individual’s cur-
rent physiological status.®>'® Applications of VBT
include the provision of feedback during resistance
training,"' ' autoregulatory prescriptive methods,'>'
fatigue monitoring'” and prediction of 1-repetition
maximum (1-RM) from submaximal loads.'®!” The
successful implementation of VBT relies on instruments
which are reliable and valid.?® While it is widely
accepted that linear position transducers (LPTs) out-
perform other technologies including accelerometers
and optic laser devices,”' *° the price of an LPT pre-
sents a barrier of entry for practitioners.*

Cost concerns may be alleviated by the Vitruve (pre-
viously Speed4Lifts), which is the cheapest commer-
cially available LPT. Real-time feedback is provided via
a digital display on the device and a smartphone appli-
cation, the latter of which also generates a wider range
of features including load summary reports. When com-
pared to six other devices, the Vitruve displayed the
highest validity (+* = 0.95-0.96) and the lowest levels of
variability (coefficient of variation [CV] = 2.61%) dur-
ing the Smith machine bench press exercise.>' Very high
intra-device reliability for the Vitruve was also found
during Smith machine back-squat exercise.’* However,
previous studies’ reliance on untrained participants and
Smith machine modalities limit the transferability of
findings to strength-trained populations.*’** This is
because stronger participants exhibit different LVPs
due to an increased capacity to overcome the sticking
region associated with heavy loads at a lower concentric
velocity.®

The Vitruve can also be distinguished from other
LPTs for its ability to calculate all three commonly
used variables: mean propulsive velocity (MPV), mean
velocity (MV) and peak velocity (PV). MPV is the aver-
age velocity from the start of the concentric phase until
acceleration is less than gravity (—9.81m-s™2),'%3
whereas MV is the average velocity across the entire
concentric phase.*® PV is the highest recorded velocity
attained from the concentric phase.’® MPV accounts
for the breaking phase of the movement, whereas MV
does not. Historically, MV has been the most com-
monly reported variable on a number of devices,” and
has featured in considerably more research as a result.?’
Nonetheless, while both MPV and MV have been used
to generate LVPs of nonaerial movements, inconsistent
findings have made it unclear which measure is best for
training prescription.”®*® This inconsistency may be
associated with variations in research methodologies in
relation to sample size and strength ability, exercise
type and statistical approaches. Hence, a comprehen-
sive comparison of these velocity measures would help
coaches to understand and monitor the performance
potential of their athletes.

Research has not examined the test-retest reliability
of velocity measures from the Vitruve during free-
weight exercise. The back-squat is a closed kinetic chain
exercise often used by practitioners to enable the

transfer of strength adaptations into athletic perfor-
mance.** Unlike Smith machine modalities, the back-
squat can involve greater horizontal movement of the
barbell which is known to affect velocity measures cal-
culated by LPTs.*! Therefore, the findings from Smith
machine investigations of the Vitruve should not be
used to infer the LPTs reliability during free-weight
exercise. While a plethora of studies have investigated
the reliability of LPTs during lower body free-weight
exercises,*> ** the reliability of the Vitruve during back-
squat exercise is not known. Given the Vitruve’s sub-
stantially lower retail value, this is worthy of further
investigation.

Movement velocity has received increasing attention
as an alternative approach for assessing an individual’s
1-RM strength ability.'” This is because the 1-RM
assessment presents numerous challenges. Primarily,
maximal strength is known to change within short time
frames,*> but frequent testing can take valuable time
away from training and induce unwanted fatigue which
heightens the risk of injury. The explanatory mechanisms
of injury stem from a breakdown of technique at the
sticking point of the movement.*® Considering that bio-
mechanical principles, injury mechanisms and human
tolerance are central to the design of sports technology,*’
any potential improvements to the precision of 1-RM
predictions should be of importance to engineers.

To date, lower body Smith machine protocols have
generated accurate predictions of 1-RM (R* = 0.94—
0.96) using submaximal loads during full-depth squat
exercise.®*® However, Banyard et al.*® found back-
squat 1-RM predictions were not only different to mea-
sured 1-RM (effect size [ES] = 0.71-1.04), but all I-RM
prediction equations were different from each other.
This result was attributed to high between-session
variability of the velocity used to predict 1-RM.
Subsequently, the authors suggested the validity of
back-squat 1-RM predictions could be improved using
MPV or second order polynomial regression.
Interestingly, recent research reported no differences
between back-squat LVPs derived from linear or non-
linear regression using MPV, MV and PV.*¥
Furthermore, Thompson et al.>® found individualised
back-squat LVPs for MV (r=0.98-0.99) and PV
(r =0.98-0.99) were stable and displayed improved
goodness of fit when using nonlinear regression.
However, neither Banyard et al.** nor Thompson
et al.>® published any data relating to 1-RM prediction.
This may be attributed to the added complexity of
applying nonlinear regression fits outside of dedicated
software platforms.* Collectively, while the usefulness
of different regression models and velocity measures
have previously been examined, their precision in esti-
mating back-squat 1-RM has not been compared within
the same study. Further examination would also be use-
ful for engineers. For instance, in the event polynomial
models are shown to be more accurate than their linear
counterparts, this could guide future innovations to
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software development which may enhance the efficiency
of training programmes.

The primary objective of this study was to investi-
gate the reliability of MPV, MV and PV to develop
LVPs using the Vitruve LPT during back-squat exer-
cise. The secondary aim of this study was to determine
the reliability and validity of 1-RM back-squat predic-
tions derived from MPV, MV and PV using linear and
polynomial regression. It was hypothesised that (1) all
velocity measures would display acceptable reliability,
(2) all estimations of 1-RM would be reliable and (3)
all estimations of 1-RM would be different to 1-RM.

Materials and methods

Subjects

Twenty-five strength-trained males (mean = SD; age =
25.2 = 2.8 years; body mass = 91.2 + 14.0 kg; stature =
180.0 £9.7cm; back-squat = 1-RM 178.0 = 28.0 kg;
relative 1-RM = 2.0 = 0.4x/body mass) were recruited
for this study. All subjects had at least 4 years’ experi-
ence of resistance training and trained approximately
8.6 £2.5h per week. A-priori sample size estimation
was calculated using G*Power software (Version
3.1.9.3).>! Twenty-four subjects were needed to identify
differences between two dependant means using a
Cohen d. of 0.59,°%% a two-sided « level of 0.05, and
1B of 0.80. Informed consent was provided prior to
data collection with ethical approval granted by the St
Mary’s University, Twickenham’s ethics committee in
accordance with the seventh revision of the Declaration
of Helsinki (2013). All sessions were performed at a
similar time of day (£1h) and were separated by 48-72
h. Subjects were instructed to refrain from strenuous
exercise, and to avoid alcohol and caffeine consump-
tion within 24 and 12 h of testing respectively.

Design

A repeated-measures within-subject design was used.
Each participant’s back-squat 1-RM was assessed, fol-
lowed by 2 LVP trials utilising incremental loads. The
1-RM assessment provided accurate relative loads in
the subsequent sessions.

Maximum strength assessment

All sessions were initiated with a standardised warm-up
protocol. The warm-up consisted of 5min cycling at 60
RPM and 60 W using an air-braked cycle ergometer
(Wattbike Pro, Wattbike Ltd, Nottingham, UK) fol-
lowed by 5 mobility exercises and 10 repetitions with
an unloaded barbell. All repetitions were performed
using a squat stand, calibrated 20 kg barbell, and bum-
per plates (Eleiko®, Halmstad, Sweden). Back-squat 1-
RM was assessed via an established protocol, as used
previously.*** Participants completed five repetitions
at 50% 1-RM, three repetitions at 70% and 80% 1-

RM, and one repetition at 90% 1-RM. A maximum of
five 1-RM attempts were allowed, with loads increasing
by 1-10kg between attempts. Rest periods were 3 min
between warm-up sets and up to Smin between 1-RM
attempts. Adequate squat depth was confirmed by
video capture and a strength and conditioning coach
with more than 5years’ experience. Participants were
also familiarised with the performance of light loads
with maximal intent.”®

Load-velocity profile assessment

Sessions 2 and 3 assessed each participant’s individual
LVP. Participants performed 3 repetitions at 20%,
40%, 60% and 80% 1-RM and two repetitions at 90%
1-RM. These intensity zones were chosen based on
their high reliability to predict 1-RM using MPV.* Up
to 3min rest was provided between sets. All relative
loads were rounded up to the nearest 1kg. Participants
were instructed to control the eccentric portion of the
back-squat at a self-selected pace until full knee flexion
was achieved, followed by execution of the concentric
portion with maximal intent until full hip and knee
extension was achieved.*® Participants were told to
keep their feet in contact with the ground and to apply
constant downward pressure on the barbell onto the
superior aspect of the trapezius muscle.*>* Visual feed-
back of velocity scores and verbal encouragement were
provided throughout. Adequate squat depth was retro-
spectively confirmed using validated motion-capture
software (Coach’s Eye, TechSmith Corporation, USA,
version 6.5.3.0)°>>® via a smartphone camera system
(iPhone 11, version i0OS 14.4.2; Apple, Cupertino, CA)
which captured video footage at 60 fps and 1080p. The
smartphone was rigged onto a tripod set at a height of
62 cm (floor to camera) and distance of 250 cm (camera
to centre of lifting area) in the sagittal plane. The setup
was identical for all trials. Only repetitions with the
highest mean concentric velocity outputs were
analysed.

Individualised LVPs were constructed for each parti-
cipant using least squares regression. Relative load was
plotted as the independent variable, and velocity mea-
sures as the dependent variable. Both linear and poly-
nomial lines were fitted to the data. Post hoc analysis
was undertaken to predict 1-RM from these LVPs
using the minimum velocity threshold (MVT) method.
The MVT for each individual was established using the
velocity from the final successful 1-RM attempt
(1IRMppyt). This method was employed due to its
greater reliability of indicating general performance
potential when compared to alternate 1-RM prediction
methods.>*

Data acquisition

The Vitruve (Vitruve encoder; Madrid, Spain) was used
to measure MPV, MV and PV. The unit was placed on
the floor with a Velcro attachment strapped around the
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inside of the barbell’s right-hand collar. All data was
captured at a sampling rate of 100Hz through
Bluetooth connection to a third-generation iPad tablet
(iPad; Apple Inc, Cupertino, CA) using the Vitruve
teams (version 1.11.2) application. The Vitruve
recorded displacement-time-curve data by determining
changes in the barbell position. Barbell acceleration
was then obtained from double-differentiation of the
displacement-time curve. MPV was calculated using
average velocity data during the concentric phase until
acceleration was less than gravity (—9.82m-s 2).
Whereas MV was calculated using average velocity
data from the entire concentric phase. Finally, PV was
determined as the maximum value in the same con-
centric period.

Statistical analyses

All measures were tested for normality using the
Shapiro-Wilk test at an « level of 0.05. All data are
presented as mean and SD unless stated otherwise. The
confidence intervals (CI) for all analyses were set at
95%. Test re-test reliability of outcome measures from
the LPT and 1-RM predictions were assessed at each
relative intensity against the magnitude of the intraclass
correlation coefficient (ICC;;), CV and ES. The
strength of the correlations were determined using the
following criteria: trivial (0.00-0.09), small (0.10-0.29),
moderate (0.30-0.49), large (0.50-0.69), very large
(0.70-0.89) or nearly perfect (0.90-1.0).>> The magni-
tude of the CV were categorised as poor (>10%),
moderate (5%-10%), or good (< 5%).>> The magni-
tude of the ES were considered trivial (< 0.19), small
(0.2-0.59), moderate (0.60-1.19), large (1.20-1.99), or
very large (>2.0).” This study considered the vari-
ables highly reliable if they met the following 3 criteria:
very large correlation (> 0.70), moderate CV (<10%),
and a small ES (< 0.60).>** The smallest detectable
difference (SDD) was determined using the formula®®:

SDD = 1.96X V2 X SEM

Where SEM is the standard error of the measurement,
which was also calculated.

The relationship between relative load and velocity
were examined in GraphPad Prism (GraphPad
Software, San Diego, CA, USA, version 9.1.0). A one-
tailed runs test was performed on all regression models
to detect the presence of autocorrelation. The goodness
of fit of the load-velocity relationships were assessed
using the coefficient of determination (+%) and the stan-
dard error of the estimate (SEE). The validity of the 1-
RM prediction methods in relation to measured 1-RM
were assessed using Bland-Altman analysis (systematic
bias and 95% limits of agreement [LOA]), heteroscedas-
ticity of errors (%), the Pearson correlation coefficient
(r), CV, ES and SEE. The threshold for acceptable
validity required low heteroscedasticity of errors

(* < 0.10),% a very large correlation (> 0.70), moder-
ate CV (<10%) and a small ES (< 0.60).%"*
Correlations between 1-RM predictions and measured
1-RM were compared using the Fisher r to z-transfor-
mation and a I-tailed Meng’s z-test.”® Finally, compari-
sons for reliability and validity were assessed for all
measures using a two-tailed paired samples 7 test
with Bonferroni corrections and type 1 error rate set at
a < 0.05. The test re-test reliability and validity analy-
sis were performed via a custom spreadsheet.’® All
other analyses were performed on SPSS (version 27.0:
SPSS Inc, Chicago, IL).

Results

Results from the Shapiro—Wilk test confirmed all mea-
sures were normally distributed (p > 0.05). Group
mean peak knee flexion (20% = 131.0*=7.3%
40% = 131.2°*8.4° 60% = 131.3°£8.6° 80% =
131.3°£9.4° 90% = 131.4°*=9.9°) are as reported.
The group mean 1-RMyyr were as follows:
MPV =0.28 20.05m-s"!; MV =0.26*0.05m-s"
PV =10.74%0.13m-s"".

Reliability of outcome measures

Group means between trials of velocity measures are
presented in Table 1. Significant differences were found
for PV and MV at 60% 1-RM. The test re-test reliabil-
ity results of velocity measures are shown in Figure 1.
MPYV and MV were highly reliable at all relative inten-
sities, while PV displayed poor reliability at 60% 1-
RM. The low reliability observed at 60% 1-RM was
informed by moderate ES and significant differences
between trials (Table 1). The SDD of the outcome mea-
sures are shown in Table 2.

Maximum strength prediction

All LVPs and their corresponding prediction equations
can be seen in Figure 2. The runs test produced non-
significant results for all linear (MPV: p = 0.90; MV:
p=050; PV: p=0.50) and polynomial (MPV:
p =0.90; MV: p =0.90; PV: p = 0.90) regression mod-
els. All models presented nearly perfect /2. Both linear
and polynomial regression models for MPV and MV
displayed nearly perfect Pearson’s correlations with
relative load. Whilst PV models showed a very large
correlation with relative load (Figure 2). Group mean
1-RM predictions are shown in Table 1. No significant
differences were found between mean 1-RM predic-
tions between trial 1 and trial 2 from either prediction
model. The test re-test reliability of the 1-RM predic-
tion models are displayed in Figure 3. All models
exhibited acceptable reliability.

The paired samples ¢ test revealed that all PV derived
1-RM predictions were not statistically different to
measured 1-RM (PV linear: t,4, = —0.23, p = 0.82; PV
polynomial: #,; = 0.24, p = 0.81). All other models
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Table |. Paired Samples t test Results for Velocity Measures and |1-RM Predictions.
Variable Trial | Trial 2 t test p Value
MPV, mean (SD), m-s ™'
20% 1-RM 1.29 (0.19) 1.32 (0.19) —1.35° 0.19
40% 1-RM 1.06 (0.13) 1.06 (0.13) —-0.12° 0.91
60% 1-RM 0.83 (0.11) 0.81 (0.10) 1.53° 0.14
80% 1-RM 0.57 (0.09) 0.58 (0.09) 0.23° 0.82
90% 1-RM 0.45 (0.10) 0.44 (0.08) 0.62° 0.54
MV, mean (SD), m-s”
20% 1-RM 1.13 (0.12) 1.14 (0.11) —1.00° 0.33
40% 1-RM 0.97 (0.10) 0.97 (0.10) —0.40° 0.69
60% 1-RM 0.77 (0.10) 0.76 (0.08) 2.48° 0.02*
80% I-RM 0.54 (0.90) 0.54 (0.80) —0.10° 0.92
90% 1-RM 0.43 (0.10) 0.41 (0.70) I.10° 0.28
PV, mean (SD), m-s”
20% 1-RM 1.84 (0.19) 1.87 (0.17) —1.03° 0.31
40% 1-RM 1.57 (0.14) 1.56 (0.14) 0.35° 0.73
60% 1-RM 1.29 (0.15) 1.26 (0.14) 2.41° 0.02*
80% |-RM 1.00 (0.15) 1.00 (0.14) 0.19° 0.85
90% 1-RM 0.89 (0.17) 0.88 (0.15) 0.20° 0.84
Linear regression, mean (SD), kg
MPV 186.9 (30.2) 182.2 (29.6) 1.68° 0.10
MV 191.1 (30.6) 186.7 (30.0) 1.28° 0.21
PV 180.4 (28.7) 176.6 (29.2) 1.07° 0.29
Polynomial regression, mean (SD), kg
MPV 180.6 (27.8) 184.4 (31.4) —1.17¢ 0.25
MV 181.7 (28.1) 180.0 (28.4) 0.66' 0.52
PV 175.5 (30.2) 179.8 (30.1) —1.042 0.31
I-RM: |-repetition maximum; MPV: mean propulsive velocity; MV: mean velocity; PV: peak velocity.
?Analyses were performed after the removal of outliers.
®The df=24.
“The df=23.
*The df=20.
The df=22.
8The df= 16.
*p values are significant at < 0.05.
Table 2. Smallest detectable difference of velocity measures at 20%, 40%, 60%, 80% and 90% |-RM.
Load (%1-RM) MPV, m-s™' MV, m-s~! PV, m-s™'
20 0.07 0.10 0.10
40 0.06 0.08 0.07
60 0.05 0.08 0.05*
80 0.05 0.08 0.05
90 0.05 0.09 0.05

I-RM: |-repetition maximum; CV: coefficient of variation; ES: effect size; ICC: intraclass correlation coefficient; MPV: mean propulsive velocity;

MV: mean velocity; PV: peak velocity.

*Did not meet reliability criteria ICC > 0.70, CV < 10% and ES < 0.60).

were found to differ significantly from measured 1-RM
(MPYV linear: t,4, = —3.23, p = 0.004; MPV polynomial:
thy = —4.09, p < 0.001; MV linear: 1y = —4.87,
p < 0.001; MV polynomial: 2,4, = —2.80, p =0.01).
Figures 4 and 5 feature Bland—Altman plots describing
the agreement and heteroscedasticity of error present
between measured and predicted 1-RM using the
respective models. Figure 6 contains further validity
findings of 1-RM prediction using data from both
trials. The PV polynomial model was the only regres-
sion method which satisfied the acceptable criteria of

validity. All models demonstrated significant (p
< 0.001) correlations between measured 1-RM and
predicted 1-RM ranging from very large to nearly
perfect. The Fisher r to z-transformation revealed all 1-
RM prediction models were significantly different from
each other (linear models: p < 0.001; polynomial mod-
els: p = 0.001-0.03). Poor CV and moderate ES were
apparent in all other models. Figure 7 expresses the
absolute difference between measured 1-RM and pre-
dicted 1-RM. All MPV and MV derived models consis-
tently overestimated 1-RM. Whereas all PV derived
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Figure |. Forest plot displaying the test re-test reliability of MPV, MV and PV in the back squat at 20%, 40%, 60%, 80% and 90%
I-RM load: (a) ICC, (b) CV, (c) ES, and (d) SEM. Grey-shaded area indicates the zone of acceptable reliability. Error bars indicate 95%
confidence limits. MPV indicates mean propulsive velocity; MV: mean velocity; PV: peak velocity; |-RM: |-repetition maximum;

ICC: intraclass correlation coefficient; CV: coefficient of variation; ES: effect size; SEM: standard error of the measurement.

models were capable of overestimating and underesti-
mating 1-RM.

Discussion

This is the first study to assess the reliability of MPV,
MYV and PV to develop LVPs using the Vitruve LPT
during back-squat exercise. The findings deduce MPV
and MV are highly reliable across 20%-90% 1-RM.
Similarly, PV was highly reliable at all intensities apart
from 60% 1-RM. The secondary aim examined the
reliability and validity of 1-RM back-squat predictions
derived from MPV, MV and PV using linear and poly-
nomial regression models. Notably, this is the first
study to compare all velocity measures and regression
methods within the same study. All 1-RM predictions
were highly reliable but displayed poor validity. While
both the MPV and MV linear models demonstrated
acceptable predictive ability, the MV model was mar-
ginally better, whereas both PV models showed the
worst predictive ability. However, all prediction models
overestimated or underestimated 1-RM. Further, all

estimations of 1-RM were significantly different from
each other.

Reliability of outcome measures

The reliability results from this study compare favour-
ably to that of the GymAware, which is widely
regarded as the most accurate LPT.** Using the same
intensities from this study, Orange et al.** found the
GymAware produced either the same or more SEM for
PV (range = 0.03-0.05m-s~ ') and MV (range = 0.06—
0.09m-s'). Interestingly, the 95% CI for ICC were
markedly wider than reported in this study for MV
(20%: ICC = 0.49-0.86; 60%: ICC = 0.67-0.92; 80%:
ICC =0.66-0.92) and PV (20%: ICC = 0.57-0.89;
60%: ICC = 0.61-0.90; 80%: ICC = 0.42-0.84; 90%:
ICC = 0.37-0.82) across light to heavy intensities.
Using the correlation classification in this study,> the
ICC at 20%, 80% and 90% overlap into the moderate
category, which was not observed in our study. The
tighter CI from the present study could signify confi-
dence in the Vitruve’s reliability, although variations in
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Figure 2. Relationship between relative load (%1-RM) and MPV, MV and PV using linear and polynomial regression: (a) MPV linear fit
from 20% to 90% |-RM, (b) MPV polynomial fit from 20% to 90% |-RM, (c) MV linear fit from 20% to 90% 1-RM, (d) MV polynomial
fit from 20% to 90% [-RM, (e) PV linear fit from 20% to 90% |-RM, (f) PV polynomial fit from 20% to 90% |-RM. Error bars indicate
SD. I-RM indicates |-repetition maximum; MPV: mean propulsive velocity; MV: mean velocity; PV: peak velocity; r*: bivariate
coefficient of determination; r: Pearson correlation coefficient; SEE: standard error of the estimate.

ICC may also imply the load-velocity relationship is
participant-dependant.'®>® Nonetheless, across 20%-—
90% 1-RM the difference in SEM between the Vitruve
and GymAware is marginal for MPV and MV (< 0.02
m-s~').* The Vitruve also produced less SEM for MV
and PV in comparison to other free-weight squat

investigations.*3#+346061  Although the Vitruve’s

reduced reliability at 90% 1-RM was consistent with
other analyses.®#>%34%59 This has been attributed to
horizontal variations in the barbell path during the
free-weight squat*' and the use of the SSC.**%* This is
why previous investigations have used Smith machine
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of the measurement.

modalities which minimise error, but at the cost of eco-
logical validity. For instance, Martinez-Cava et al.*?
found superior results for PV (ICC =0.99;
CV=086%; SEM=00lms ') and MPV
(ICC =0.99; CV = 1.24%; SEM = 0.0l m-s”") from
the Vitruve.

An unexpected finding was the detection of signifi-
cant differences for MV and PV between trials at 60%
1-RM. This unexplained variance could be attributed
to the fast execution of light to moderate loads which
may result in a lower degree of limb coordination and
more  varied muscle activation  patterns.*®*
Collectively, this study recommends all three velocity
measures can be used to predict 1-RM. Considering
that small differences (< 0.1m-s~") in movement velo-
city could represent variations equating to approxi-
mately 5% in training intensity'®: changes in velocity
greater than the SDD presented herein may be used to
monitor improvements in performance.

Maximum strength prediction

A novel finding from this study was the repeatability of
all back-squat 1-RM estimations, regardless of the
velocity measure or regression model used. To date,
only 3 studies have investigated back-squat 1-RM pre-
diction using linear regression, MV, and strength
trained males.’®>*** Neither Banyard et al*® nor
Hughes et al’* detected significant differences between
predictions using loads 20%-90% 1-RM, which coin-
cides with this study. Almost identical variation was
observed by Hughes et al** (ICC = 0.92; CV = 5.0%),
and Banyard et al*® (CV =57%; SEM = 8.6kg;
ES = —0.02). Despite each study utilising a different
LPT, the similar findings may be explained by metho-
dological parallels in relation to the sample’s relative
strength (>1.5 squat body ratio) and squat depth
(knee flexion: 121.0° + 10.9°).38

Contrariwise, this study adds to the reports of signif-
icant overestimations of 1-RM in the free-weight back-
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1% coefficient of determination.

squat.*®>* Large absolute errors and systematic biases
were observed, notwithstanding very large to nearly
perfect correlations between load and velocity and little
to no heteroscedasticity of error. This finding reflects
other studies,®>**® and demonstrates the interindividual
variability associated with 1-RM predictions in lower
body multi joint exercises.*®>*67¢ Alternatively, one
study reports lower SEE and systematic biases in tan-
dem with a tendency for linear models to underestimate
back squat 1-RM.%* Although this may be attributable
to the study’s reliance on a different extrapolation
method using data up to 80% 1-RM. Other studies
found linear models using MV are known to overesti-
mate back-squat 1-RM between 2.2 and 20.0kg.**>*
The larger absolute differences found by Banyard
et al.*® may be attributed to the researchers four trial

assessment of 1-RM. Considering the variability of
IRMpyt (CV = 25%), multiple assessments of 1-RM
may have amplified the variation observed in that study
in comparison to our study. This supports previous
findings that daily predictions of maximal strength are
not sensitive enough to detect fatigue or modify train-
ing load,”® as originally propositioned.'®! Intriguingly,
a recent study found bench press 1-RM can be esti-
mated more accurately with machine learning methods
than the MVT method,”! but it is unknown if this can
be translated into free-weight examinations. This
should be a consideration for future research.

It was not anticipated the data would suggest both
PV models possessed the most valid estimation of
back-squat 1-RM in relation to measured 1-RM.
Under closer inspection, the range of estimated 1-RMs
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from the PV polynomial and PV linear models were
considerably wider in comparison to the MPV and MV
models (Figure 7). This study does not recommend the
use of PV for back-squat 1-RM prediction. This is
informed by both PV models presenting higher SEE
and CV than the other models, which is consistent with
other investigations.** Though PV may be used to
monitor ballistic exercises, this is beyond the scope of
this study. Altogether, this study found the MV linear
model displayed the highest validity.

The higher precision of linear 1-RM estimations in
this study weighs in on the assertion that polynomial
regression adds an unnecessary complexity.3%384%-3472
Predicting 1-RM beyond the known data of a polyno-
mial curve is known to yield implausible results.*® In
this study two participants (n =2) exhibited a

hyperbolic curve for PV which resulted in no estimation
of 1-RM at all. Moreover, some studies advocating
polynomial regression have breached the assumption of
independence by pooling data.'®*® This practice has
been critiqued within the literature.>** When data from
multiple LVP sessions are combined for a given partici-
pant, the data observations are no longer independent.
This causes autocorrelation which overinflates regres-
sion statistics.”® Consequently, overestimations of rela-
tive load may occur. A runs test can be used to detect
both autocorrelation and whether a data set differs
from its desired model.”* It is important to note the
runs test found none of the linear models in this study
departed from linearity. Furthermore, all of the var-
iance between load and velocity was accounted for by
the linear models. This objectively infers polynomial
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curve fitting in this instance is not only an unnecessary
complexity, but also a statistical misdemeanour. The
inclusion of a runs test is a distinguishing feature
between this study and the extensive work of
Thompson et al,** whose findings conflict with ours in
recommending quadratic modelling for the prediction
of back squat 1-RM. Altogether, the acceptance of a
linear load-velocity relationship would be consistent
with the growing consensus concerning the linearity of
the force velocity relationship during multi-joint
movements.’>

The present study shows that all 3 velocity measures
produced by the Vitruve can generate stable individua-
lised LVPs. Although practitioners should be consistent
with their use of velocity measure. Lamentably, this
study was unable to distinguish the variability associ-
ated with the Vitruve LPT from the variability associ-
ated with the subjects. Although the Vitruve is known
to display very high inter-device reliability during Smith
machine back-squat exercise (MPV: SEM = 0.03m-s ;

SDC =0.08m-s~'; CV =3.09%; PV: SEM = 0.02
ms ! SDC=0.07 ms !, CV= 1.60%),32 future
research must consider the influence of biological varia-
tion when assessing the reliability of the Vitruve during
free weight exercise.”’ Otherwise researchers risk misre-
porting the true precision of a given device.®’

Prediction methods may not be sensitive enough to
replace direct assessment of 1-RM. However, LVPs
using linear regression and MPV or MV may still pro-
vide practical information regarding an individual’s
performance potential. Future research should consider
whether a combination of lighter loads, smaller range
of velocities, or machine learning can improve the effi-
ciency of 1-RM prediction in free-weight exercise.

Conclusions

The Vitruve provides reliable LVPs for MPV, MV and
PV in the back-squat using strength-trained males.
Linear regression is superior for 1-RM prediction. Any
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further investigations using polynomial regression
should publish statistics which confirm the assumptions
of regression are met.
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