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Abstract

Recent advances in Machine and Reinforcement Learning, particularly in visuomotor control

policies for robotics, have increased reliance on simulation frameworks and physics engines.

These tools generate synthetic data and create sandbox environments to meet the substantial

data demands of neural network training. However, given the inherit discrepancies between

simulation and reality, the Simulation to Reality (Sim2Real) Gap in Robotics refers

to all factors and specialized techniques that affect a transfer of an agent from the

simulation to the real-world.

Our literature review revealed that this field is largely empirical, fragmented across

the robotics landscape, and heavily influenced by technical aspects of visuomotor policy

design. To address this, our methodology covers the Sim2Real domain comprehensively,

establishing performance metrics, identifying Reinforcement Learning design considerations,

and developing a taxonomy of specialized Sim2Real techniques. We also create a detailed

taxonomy of available simulation frameworks and physics engines for robotics.

The next phase of our research focuses on mushroom harvesting, an unsolved problem

in industrial food automation. This interdisciplinary challenge involves complex kinody-

namic task and motion planning under constraints and environment uncertainties related to

deformable bodies and material failure modes.We develop a practical Sim2Real pipeline for

mushroom harvesting using a robotic gripper, allowing us to evaluate several Sim2Real

techniques, including system identification with modeling approximations and explicit

transferable abstractions. Contrary to conventional Sim2Real approaches, we show



x

that the simulation framework is not just a tool for training but should be an integral

component of the perception and planning system. This is a key statement of the thesis,

demonstrating the predictive power of simulation in real-world applications.

Our concluding remark and future work directions, based on the experience gained during

this work, point to a holistic point-of-view for active inference, where the robotic agent

actions are point towards an active, life-long, real-world model discovery.
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Chapter 1

Introduction

”Reality exists in the human mind, and nowhere else.”

—George Orwell, 1984



2 Introduction

1.1 Socio-Economical & Political Context

1.1.1 From Cybernetics to AI

The Sim2Real problem, as it currently viewed by the community, refers exclusively in the

adaptation of an Reinforcement-Learning (RL) scheme for training an agent, most usually in

the form of a Neural-Network in Simulation and a consequent deployment to a real-world

equivalent robotic hardware platform.

It could be argued thought, that this problem, in a more generic formulation, is not exactly

a new problem and a very extensive and advanced scientific and technological framework has

already been developed within the control & systems engineering raum over the last century.

Robust controller design and system identification techniques combined with the so called

model-based design approaches, are very well researched and understood concepts and have

been widely adopted in a wide variety of systems, ranging from space exploration vehicles to

military applications, modern vehicles, telecommunications etc.

It is very interesting to observe the changing nature of “machine intelligence” over the

technological eras, starting with terms like, cybernetics, regulators, “smart systems”, system

engineering till the current AI umbrella term.

It would be then naturally assumed that the Sim2Real problematic, would be a natural

evolution and it should probably then be derived directly of the system engineering and

control disciplines. The fundamental components, such as Reinforcement-Learning, Neural-

Nets, mathematical optimization, stochastic-control, adaptive-control where all there.

It would seem only natural for this discipline of system engineering and control to give

birth to the “modern AI”, where instead of controllers we are now talking about agents,

instead of robust control and system identification we talk about Sim2Real etc.
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The question of how we jumped from “cybernetics” and “control” to “agents” and

“generative AI” is a very interesting one and has to do with a variety of factors with the

dominant being one: data.

Another important factor that needs to be added, lies in the philosophy of approaching

things. Control Engineering is deeply rigorous, analytical and thoroughly heavily relies

on mathematical proof. This allows for concrete definitions of robustness, stability and

safety margins which in turn allows for rockets and missiles to be launched, vehicles and

communications to be operable with safety. But it was known that there are limitation. Severe

limitations.

Especially in the field of robotics, and some of it’s hardest fields like e.g robotic manipula-

tion there have been prominent voices in the community raising the need for a paradigm shift

as in the advent of the 21st century the robots still were missing, from physical or man-made

disasters, helping in our every day lives etc.

Real-world perception through vision which should result in true autonomy in planning

and control for systems that are physically interacting with the world were outside of reach,

as the DARPA robotics challenge has proven. Analytical, manual-feature engineering for

perception and robotic manipulation is proven to be an intractable problem to formulate.

Control theory has served perfectly well the cold-war era economy, has successfully

lifted humanity to space and the world-wide telecommunication network. It has also fostered

the building blocks that would later shape the “modern AI” era.

The paradigm shift has already been set in action but from a unexpected source.

1.1.2 YouTube & Cat Videos - Data Feature Shaping

The internet boom of the 2000s in combination with smartphone boom after 2007 has given

rise to a new economy and a new set of players, such as Google & Facebook which dominated

the new landscape.
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Computation, due to developments in data-centers and the smart phone revolution became

cheap and therefore accessible. This also in combination with the gaming industry gave rise

to accessible powerful parallel GPU processing.

Internet seems to be acting as world-wide data accumulator and this has not been left

unnoticed as phrases like “data is the new gold” started to become commonplace.

It became apparent that a great deal of value could be potentially hidden in unstructured,

unlabeled data stored in data-bases, which would be really expensive and slow to manually

extract.

Some sort of intelligent system should be able to automatically perform pattern precogni-

tion to these unlabeled data and extract valuable insights.

Google was at the forefront of this research front and in 2012 shook the research commu-

nity by training a neural-network, in an unsupervised manner, to auto-decipher the concept of

a “cat” by just “watching” thousands upon thousands of you-tube videos. This was a pivotal

moment.

Another pivotal moment was the seminal worked on computer vision, which managed to

train a deep layered neural network architectures, the now extremely popular convolutional

neural network (CNN). Deep layering, as a measure to increase performance is challenging

to a variety of technical issues, with the most prominent the problem of vanishing gradients.

But the influence of this work was monumental, as it demonstrated the ability to automat-

ically,through training, shape a hierarchical set of features which vastly outperformed the

previous-state-of-the-art, which was based in the traditional manual-feature engineering.

The departure from “manual-feature-engineering” was a tremendous breakthrough, and

it’s in sharp contrast to the more traditional ways of working for the control engineering and

pattern recognition communities. Allowing the data to shape the feature space completely

within the context of a neural-network architecture was major shift.
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1.1.3 Deep-Layers and Robots

Naturally, now that we are able to train deep-layered architectures the question is how can

we apply the lessons learned in optimal-control design for optimal decision making given a

set of measurements which represent the current state of the system and the world.

Optimal Control Theory and Reinforcement-Learning offer a rigorous mathematical

definition and frameworks for the design of such agents. Traditionally though a complete

end-to-end approach by a naive application of these methods is proven to be intractable,

especially when dealing with high-dimensional inputs such as cameras and other multi modal

sensors within complex environments.

The seminal DQN paper from, now Google’s, Deepmind with the seminal DQN paper

made the breakthrough and managed to train end-to-end an agent (or previously controller)

for competitively playing Atari games, directly from pixel readings to controller discrete

actions. The introduction of CNNs to process raw pixels in combination with techniques

such as Experience Replay, Fixed-Q Targets and Reward Clipping was critical factor for the

success.

This line of work naturally then raised the question on whether this might be the so

wanted paradigm shift for robotics and attempts for adapting this end-to-end framework for

continuous-control started shortly after. Early attempts focused in continuous control for a

variety of kinematic structures only in simulation.

The watershed moment on continuous control for robotics with RL based on a deep

network architecture came in 2018 from OpenAI and the Dactyl project which managed to

train an agent in simulation for manipulating a Rubik’s cube in 3D space with the help of

a Shadow Robot Hand with a significant rate of success when deploying to the real-world

setup. Quite extensive domain & dynamics randomization was utilized during training, e.g

changing the colors, textures as well as a set of physical parameters and the application of
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random forces on the object forcing the agent to focus on an esoterically meaningful set of

features and thus increasing the chances for a successful transfer on the real-world setup.

This is fundamentally the line of work that gave essentially birth to a modern line of

work for robotics and the quest for Sim2Real. Although the Domain randomization received

the attention of the community as the predominant technique for Sim2Real, only limited

attempts have been made for a rigorous and analytical mathematical-statistical definition and

still empirical approaches dominate the field.

The standard workflow has been set and a very extensive line of research work tried since

to extend and improve this framework in robotics.

Apart from the Domain & Dynamics randomization a set of specific techniques have

been introduced specifically for Sim2Real as it seems on the surface that this might be the

most significant bottleneck for transferring the impressive agent performance achieved in

simulation to the real-world.

Although some great research results have been presented, based on this line of work

there are quite a few of severe limitations that hinder wide-adaptation and eventually broad

commercialization in industrial and consumer settings.

1. The black-box nature of the agent’s architecture and the consequent explainability

problem.

2. Still expensive to train in simulation.

3. The simulation its self is not an easy task to develop. This is rarely discussed and

usually it is taken as a given that it simply “exists.” In some cases it might be more

difficult to develop manually than the controller its self.

4. Lack of a hard-guarantee on safety margins. The long-tail distribution problem.
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1.1.4 Robot dance is (largely) not AI

During the same time and as this revolution is taking place in continuous control for robotics

with deep RL, some equally or more impressive results in robotics control are coming from

the robots of Boston Dynamics, which seem able to perform impressive locomotion and

acrobatics and even more impressively build an available commercial robot platform with

the spot robot dog.

This is though, it it’s core, not RL but rather a very advanced and very well fine-tuned

of Model Predictive Control (MPC) which is derived from the more traditional control

engineering line of research.

This level of locomotion and the commercialization of a usable and useful robotic

platform seemed a bit far for the aforementioned RL approaches.

The Model Predictive Control approach is still a very active area of research and still

receives significant attention by the research community, despite the AI dominance.

MPC has still some significant drawbacks and limitations:

1. Requires a model of the system! This might be hard to obtain and errors might be

detrimental to performance.

2. Computational complexity and Real-Time constraints.

3. Tuning & Sensitivity to parameters.

4. Cost function design.

5. MPC is fundamentally a local planner. It requires a high-level planner to achieve true

“intelligence”.

Boston dynamics seems though to be diving deep into the realms of Reinforcement-

Learning space, as the investments strategies on the AI Institute of the company reveal in

combination with actual recent research results for the robot dog and it’s advanced RL based

robust control strategies.

https://theaiinstitute.com
https://www.youtube.com/watch?v=Kf9WDqYKYQQ
https://www.youtube.com/watch?v=Kf9WDqYKYQQ
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1.1.5 Large Language Models (LLMs) have entered the chat.

Since the public release of ChatGPT Large Language Model by OpenAI the world of

technology & business is phasing a monumental shift. LLMs trained on vast corpora of text

data, possess a deep contextual understanding and can perform a wide range of language-

related tasks changing the fundamental nature of human labor in almost all it’s facets.

The core breakthrough of these models lies in the adaptation of the Transformer Models

[1] in a very large scale which in turn allow a contextual multi-scaled semantic “understand-

ing” of words-sentences.

Since the introduction ChatGPT a race on harnessing the predictive power of genera-

tive models in robotics has been initiated in various and creative ways, as an attempt to

mitigate/alleviate well-established bottlenecks within existing working frameworks.

For example in the RL context, the reward function shaping is notoriously hard task if

done manually. A great line of work tries for a direct exploitation of the existing LLMs

as-they-are. Interpreting LLMs as high-level semantic planners and by exploiting their code

writing capabilities they can be for example utilized directly for reward function shaping [2].

A direct generation/synthesis of code containing an action policy for a robotic task has been

attempted as well [3].

Another already known and existing bottleneck, is the lack of the vast amount of data

required for training potential foundation models in robotics. Auto-generation of synthetic

data in simulation [4] is another potential use-case of LLMs in robotics, as the generation of

well established formal and internet-scale data-sets would potentially allow for a “ChatGPT”

moment in robotics [5].

As the “pixel2torques” problem in robotics is a sequence optimal decision making

problem, the core LLMs model architecture could be direly repurposed for predicting actions

instead words, as it is the case with Vision-Language-Action models [6].
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A great topic of discussion regarding LLMs lies on the kind of internal representation and

on whether they build some kind of “world-model”, as a prediction capability on the world

state would allow for explicit and accurate reasoning beyond a pure statistical inference [7].

Sparks of the effectiveness of LLMs as global planners have already demonstrated [8] where

a task decomposition into simpler admissible tasks is achieved.

LLMs seem to have strongly impacted the world of robotics as well, and have sparked an

impressive research trend with significant results in a very short period. We only can expect

this trend to exponentially grow over the following years.

1.1.6 The race for an “iPhone moment” for robotics. The era of hu-

manoid robots.

In parallel to the currently ongoing LLM “revolution” we observe another strong trend

in robotics with an unprecedented surge in interest and investment in humanoid robots

in recent years. Tech companies like Tesla, Amazon, Google, Nvidia and Microsoft and

research institutions worldwide are in a race to develop advanced humanoid robots capable of

performing tasks that closely mimic human actions and interactions. This race is fueled by the

potential of humanoid robots to revolutionize industries such as healthcare, manufacturing,

customer service, and personal assistance. Major technology corporations like Tesla, Honda,

and Boston Dynamics are at the forefront of this innovation wave, pouring significant

resources into the development of robots that exhibit human-like dexterity, mobility, and

social interaction capabilities.

This level of investment and the subsequent economies of scale, can be expected to

democratize the availability of highly capable humanoid platforms to a broad range of

researchers & technologist which in turn will further accelerate the pace of research in

robotics intelligence. The Humanoid Robot by Unitree Robotics, currently available at

$16K is a testament to this ongoing revolution in the field. The efforts of Agility Robotics,
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Apptronik, Sanctuary AI to explore the rise of these AI-driven humanoids are also worth

mentioning.

1.1.7 Overall remarks

From the ancient “automaton” empirical machines utilized for the emperor’s amusement, till

Watt’s centrifugal regulator, from the first PID controller application in the USA navy in late

19th century till the modern jet fighters, the space age and the modern control theory, from the

Antikythera mechanism till Baggage’s “difference engine”-automatic mechanical calculator,

from the ENIAC in WWII till the World-Wide-Web and the Apple’s iPhone, from Google

till ChatGPT and from Unimate robot to Atlas from Boston Dynamics, we are standing in a

point in history where we, for the first time, might be reaching a singular point in the field of

robotics.

This has an ultimate disruptive potential as human-labor has been at the core of economy

and civilization since the agricultural revolution. A careful human-centric sensible political

approach should allow for a universe of abundance where the auto-generated wealth should

be democratized.

Lastly, and probably most importantly, a great opportunity is presented, where in our

attempt of building a an artificial human, we can vastly expand our understanding of the

actual human being. At the heart of Large Language Models, World-Models, Representation

Learning, Vision, Planning and control, namely the “pixel2torques” problem we can draw

parallels and find the right sets of questions on the greatest mystery of them all, that of human

consciousness (qualia).
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1.2 Robotics in Agriculture

Agricultural robotics is a rapidly advancing field in academia-research and commerce due

to multiple synergistic effects on recent scientific and technological breakthroughs, most

notably in perception and planning, in combination with hardware cost and availability.

The continued advancement of robotics in agriculture offers solutions to pressing issues,

including population growth, increasing urbanization, and labor shortages. Robotics are

being explored as a method of increasing agricultural productivity and meeting the increasing

global demand for food. The integration of robotic systems in agriculture aims to enhance

efficiency, productivity, and sustainability by automating various tasks and minimizing

reliance on manual labor, which has been especially impacted by recent global health crises

such as the COVID-19 pandemic. This transition towards automation is driven by the need to

adopt advanced technologies that improve working conditions for farmers, addressing issues

like musculoskeletal disorders linked to traditional farming practices. Precision agriculture,

a growing trend that promotes sustainable practices and reduces the carbon footprint of

farming, is a key beneficiary of these advancements. [9, 10]

1.2.1 The Low Hanging Fruit for Robotics Adaptation in Scale

Harvesting robots, particularly those designed for crops like strawberries and tomatoes,

are moving closer to commercialization. These robotic solutions often combine a mobile

platform, a robotic arm for picking, and sophisticated vision systems for identifying and

locating ripe produce. This progress is driven by the labor-intensive and time-sensitive nature

of harvesting, making automation highly desirable to address labor shortages and boost

productivity. However, challenges remain in adapting these systems for crops with more

complex shapes and growth patterns, like grapes, which still lack widely available robotic

harvesting solutions. Despite this, research into vineyard robots is ongoing, focusing on

tasks like monitoring, pruning, and spraying. The development of standardized and modular
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Figure 1.1 The SoftGrip Project logo.

robotic platforms is further driving commercial prospects by allowing for adaptation to

different agricultural tasks beyond just harvesting, such as UV treatment and weeding [9].

1.2.2 Robotic Mushroom Harvesting

The task of mushroom harvesting is an exemplary case for demonstrating advanced percep-

tion, long-horizon planning, and dexterous robotic manipulation capabilities, as it simultane-

ously involves scene decluttering based on long-horizon Task and Motion Planning (TAMP)

with forceful manipulation and grasp synthesis for purposeful fracturing, given a set of cost

objectives and operational constraints necessary for an optimal crop yield. As is usually

the case to avoid bruises in the case of grasping and manipulation of delicate produce, soft

grippers are necessary, which further increases the complexities around perception, modeling,

and control.
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1.2.3 The SoftGrip EU Research Project

The SoftGrip Project [11] is an EU Research Project in which the University of Essex is

a partner responsible with the key task of developing an imitation learning pipeline for

autonomous mushroom harvesting.

Overall the project aims to create a soft robotic gripper for the delicate harvesting of

produce, with a particular focus on the mushroom farming sector. The gripper is designed

to address the need for automation in this industry, aiming to increase production and

reduce labor costs for European SMEs. The project focuses on developing a gripper that

is economically viable, scalable, and environmentally friendly. The gripper design evolves

around soft, self-repairing, food-safe, and recyclable materials, ensuring both safety and

sustainability. Intrinsic sensing will be embedded directly into the soft material of the gripper,

enabling it to interact with delicate produce without causing damage.

The SoftGrip project has been of paramount importance to the creation of this thesis,

as it has given us the opportunity to work in the forefront of research, among high-profile

institutes and some of the most prominent researches in the field. Lastly it has allowed us

to experiment and test against a real-world, high-stakes industrial scale problem which in

turn allows for some greatly valuable insights on what kind of state-of-the-art research and

methodology is practically applicable and with a potential for commercialization.

1.3 Thesis Structure & Organization

1.3.1 Chapter 2

From early on we fundamentally establish that Sim2Real in robotics is quite empirically

practiced, with a quite scattered methodological approach, with sometimes seemingly con-

tradictory research outcomes, and finally without a concrete, well framed and established

ontological foundation.
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We do therefore attempt in Chapter 2 through a rigorous literature survey to:

1. establish a complete taxonomy of all the Sim2Real methodologies already practiced in

robotics to date.

2. establish a coherent Sim2Real framework based on the compiled taxonomy, which

should utilized as a road-map in the field.

3. identify the key open questions and the limitations on the current methodologies.

4. establish connections between preexisting and coexisting concepts, like the traditional

Control Theory, Model-Based Control and the more modern Generative AI, Diffusion

Models, LLMs etc.

5. as the Simulation Environments and the Physics Engines lie at the core of Sim2Real,

based on most often used RL workflows, for synthetic data generation, training and

testing, we attempt a complete listing of all the existing simulation frameworks for

robotics.

6. lastly attempt a take on future research work and how the field could progress and

evolve in the years to come.

1.3.2 Chapter 3

At the core of Sim2Real workflow lies the development of the Simulation Environment as

the “Digital Twin” of real-world robotics task at hand. The development of of simulation

environments comes with it’s own unique set of challenges, which are quite often overlooked

within the context of Reinforcement Learning methodologies for robotics control.

As already mentioned, our selected task at hand, as a demonstrator and a test-bench

against the techniques and methodologies developed within the context of this dissertation, is

the one of automated mushroom picking with a robotic gripper.

At Chapter 3 we do therefore proceed with analytically explore the development of

a simulation framework for mushroom harvesting with a robotic gripper, with the pose of
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the research question on whether such approximations in simulation can suffice for such a

complex robotic manipulation task.

The key elements of this work are:

1. Utilizing a rigid multibody physics engine (pybullet) for approximating the mushroom-

root system elastic deformations and failure mode with a first-order approximation

of continuous mechanics and the Von Mises Failure Mode adapted to the anisotropic

properties of the mushroom-root material.

2. We proceed to an experimental methodology for determining the simulation parameters

through system identification as a methodology for Real2Sim.

3. We showcase a real-world equivalent setup for deploying and testing to the real-world.

4. Based on the same principles we develop a solution for the simulation of a soft robotic

gripper.

5. We demonstrate the limitations of a hand-crafted approach to the development of

“Digital-Twins” and we propose a road-map for future solutions.

1.3.3 Chapter 4

A core statement of our Thesis is that the Simulation Environment is an asset that traditionally

is under-utilized for agent training. We believe that the predictive power of the simulation

engine should be further utilized for solving the Sim2Real gap as a core component of the

perception and control pipeline.

We do therefore utilize the concept of the Model Predictive Path Integral (MPPI) control

for harnessing the “digital twin” within the perception-planning-control pipeline.

Specifically for the task of mushroom harvesting with a robotic gripper we experimentally

prove that this method is able to autonomously generate optimal and identifiable picking

strategies, which are then able to reliably transfer to the real-world though selected transfer-

able abstractions.
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1.3.4 Chapter 5

Lastly in the closing chapter we present a summary with the potential extensions of the

current line of work, as well as a possible research direction for Sim2Real based on latest

research trends.

1.4 Thesis Main Contribution Statement

As mentioned in the previous section, the Sim2Real field is applied empirically without a

concrete framework as a reference guide for the researchers and engineers.

Our literature survey on Sim2Real contributes therefore to the following main aspects:

• A complete taxonomy on the Sim2Real techniques already utilized in the field.

• A complete taxonomy on the simulation frameworks and physics engines available for

the development of digital twins.

• A core statement on the case of Real2Sim2Real and the case of lifelong learning as a

solution to the automatic 3D world model reconstruction problem, as an equivalent

reformulation of the Sim2Real problem.

Fundamentally our Thesis challenges the standard assumptions regarding the typical

Sim2Real workflow with Reinforcement-Learning for Robotics Control. We argue that the

simulation-modeling environment is a valuable asset that holds some strong predictive value

on the fundamental dynamics of the scene and it should be therefore further harnessed and

utilized as an integral part of the perception-planning-control stack.

Based on that core statement our contribution is based around the following main ele-

ments:

• A dynamic simulation framework for mushroom crop harvesting with a soft or rigid

robotic gripper with first-order continuum mechanics approximations, with parameter

identification based on real-world mushroom characterization (SysId).
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• A Real2Sim 3D scene reconstruction with embedded physics based on mushroom pose

estimation and the aforementioned simulation framework.

• An offline planner based on the Volumetric Grasping Network (VGN) for mushroom

selection and MPPI for generating optimal mushroom picking primitives, which despite

being a local planner subject to potentially stuck in local minima, is able to generate

composite picking actions that correspond well to empirical evidence.

1.5 Publications & Related Activities

The following conference papers have been accepted and they will presented at the respective

conference.

• K. Vasios, A. Porichis, V. Mohan and P. Chatzakos “Robotic Mushroom Harvesting

with Real2Sim2Real and Model Predictive Path Integral (MPPI) based Planning”

ICRA 2025

The following conference papers have been published as part of the current PhD Thesis.

• A. Porichis, K. Vasios, M. Iglezou, V. Mohan and P. Chatzakos, “Visual Imitation

Learning for robotic fresh mushroom harvesting,” 2023 31st Mediterranean Confer-

ence on Control and Automation (MED), Limassol, Cyprus, 2023, pp. 535-540, doi:

10.1109/MED59994.2023.10185745.

The following journal papers have been submitted and are currently under review as of

the writing of this Thesis.

• K. Vasios, V. Mohan and P. Chatzakos “Real2Sim2Real in Robotics: A literature

review on active perception”.

A presentation & a panel discussion have been delivered in
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• agROBOfood conference in the Agricultural University of Athens, GR

representing the University of Essex as partners in the EU SoftGrip project.

Lastly a visit in

• ICRA23’ London, UK conference

has been paid in it’s full duration with a participation in the following workshops:

• 3rd Workshop on Representing and Manipulating Deformable Objects.

• Embracing contacts. Making robots physically interact with our world.

https://agrobofood.eu/


Chapter 2

Sim2Real in Robotics - A Literature

Survey

”How could they see anything but the shadows if they were

never allowed to move their heads?”

—Plato, The Republic, Allegory of the Cave
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Figure 2.1 “sim2real” term occurrences in Google Trends with the associated standout

contributions in the field [12–16]

2.1 Introduction

2.1.1 Methodological Approach

We start our work with a literature survey on the topic of “bridging the simulation to reality

(Sim2Real) gap in robotics” by first identifying a key set of relevant, already preexisting,

literature reviews and surveys. We end up with a set of 4 main lines of work [17–20] that

directly elaborate on the topic of Sim2Real.

Based on these aforementioned lines of work, as well as our overall broader study on on

the topic, it became quickly apparent that the field is still mostly empirically applied, as the

Sim2Real problem seem to be treated as a subproblem in the general Reinforcement Learning

for control in robotics. It therefore still lacks an established, commonly accepted, well

understood and formalised epistemic definition in conjunction to the broader categories and
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Figure 2.2 Sim2Real survey papers [17–20] knowledge graph.
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subsequent methodologies for the Sim2Real techniques, in a way that not only encompasses

the existing ones but it would potentially allow for new ones to be readily identified and

added in a scalable and expandable way.

We attempt to attack this problem by firstly identifying the overall span of the knowledge

map covered by the survey papers [17–20]. By using a set of keywords we can extract a

graphical representation on the existing knowledge on the field (See fig. 2.2).

Based on that in combination with a further, fairly exhaustive, research in the robotics

literature, we propose a set of the main thematic entities on Sim2Real upon which we try

to further analyse and expand respectively with a strong focus in a taxonomical study on

Sim2Real.

Lastly, it is important to point out that as the spectrum of robotic fields and application

is quite vast and although ideally Sim2Real should be treated in a unified way [18] for e.g

navigation to manipulation, control, planning, perception etc. our literature survey steers in

the direction of the problem of robotic manipulation with a (potentially soft) gripper. This

particular problem has the unique element of really hard to model phenomena in simulation,

such contact and friction which are NP-Hard [19], elastic deformations and material failure

modes which allow to challenge against established Sim2Real assumption and commonly

applied practices.

2.1.2 Sim2Real Definition

2.1.2.1 Sim2Real Definition in Literature.

As expected the typical definition in literature of Sim2Real refers to the attempt of transferring

behaviours learning in simulation to the real world [17] where the gap lies on the modeling

imperfections of the simulator [17].

Hofer et al. [19] raise the debate question on whether Sim2Real is really a new concept

and not just an unecessary rebranded old concept such as model-based Reinforcement Learn-
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ing, domain-randomization or system identification. The opposing side to this arguments

that even Sim2Real is not new this potential re-branding could be beneficial to the field as a

whole by connecting interdisciplinary research paths.

Salvato et al. [18] restricts the Sim2Real definition within the Reinforcement Learning

framework and specifically the transferability of controllers. More specifically, the “Reality

Gap” (RG), per author, is defined as the “degradation” in performance of a controller learned

in simulation when deployed to the real-world as a result of modeling inaccuracies in the

simulator side.

Muratore et al. [21] apart from mentioning the unmodeled dynamics, they also mention

the numerical errors introduced by the simulator as a root cause for the Sim2Real gap.

2.1.2.2 The Historical Frame. From controller to agent.

Modeling and Simulation have always been an integral part of the software development of

robotic systems and control/automation systems in general. A direct transfer of the software,

which is only evaluated in a simulated environment, to the real-world has never been so far

neither expected nor required as it is commonly accepted by the community that due to the,

always omnipresent, modeling discrepancies a complete behavior transfer is not a system

requirement.

Modeling and Simulation though remained crucial especially for early stage development

in the content of the Software-in-the-Loop (SiL), Processor-in-the-Loop (PiL), Hardware-

in-the-Loop (HiL) model-based software development for control and automation systems,

where a significant number of issues can be caught early on, in a safe, measurable and

controllable, way saving significantly in time, effort and cost. After this model-based

development pipeline a deployment and testing to the real hardware can eventually take

place, where ideally with only some minor adjustment and fine-tuning, the final desired

requirements can be fulfilled.
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With the advent of the recent research breakthroughs in end-to-end architectures for

continuous control in robotics a significant shift in culture seems to be taking place. The

dynamic simulation environments, imperfect as they are, in the Reinforcement-Learning

content, allow the agents to learn behaviors that can be considered “smart” and “intelligent”

in ways that are simply extremely difficult to manually embed with a more “traditional”

model-based control design approach. Only if we could reliably and seamlessly “transfer”

this learned behavior to the real-world. . .

2.1.2.3 Sim2Real as a System Design Requirement.

As the Simulation to Reality gap (Sim2Real) or simply the Reality Gap (RG), as referenced

by Salvato et al. [18] is not a newly introduced concept we attempt to define it in terms of a

cultural shift, namely from the cybernetics era and the “smart systems”, from the traditional

controllers to now mostly called agents, from the “strict” model-based to data-driven etc.

We propose a definition based on the following criterion:

“Sim2Real defines the expectation of a direct transfer of a functional quality achieved in

Simulation to the Real-World.”

This definition is agnostic the the development methodologies utilised, it is therefore not

restricted to a Reinforcement Learning (RL) framework only.

Additionally this criterion is agnostic to whether explicit Sim2Real techniques are utilised

or just simply the agent is directly transferable due to intrinsic properties in a “zero effort”

manner.

Lastly it is necessary to define the “transfer” term.

We propose the following definition:

“A Sim2Real transfer, in a robotics setting context, is fulfilled when it can be proven that

the agent can perform the functional quality learned in simulation, well enough to solve the

long-tail distribution problem in the real-world (99.99% success rate).”
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Figure 2.3 Sim2Real Mathematical Sim2Real Definition [18]

The later is closely related to the “Learning Reality Gap” as defined by Paull nad

Courchesne [22].

2.1.3 Sim2Real Mathematical Formulation

Usually Sim2Real is treated empirically by researchers and a well defined, commonly and

unifiedly, standardised mathematical formalisation and definition is still largely lacking.

Salvato et. al [18] have a attempted a mathematical formalisation and definition for

Sim2Real (see fig. 2.3).

Where E ′ is the simulator which models the environment E using the transformation φ .

L is the agent and π∗ the policy learned in simulation.

We cohere to this definition throughout our current work. Pure mathematical theoretical

considerations on the Sim2Real, although definitely necessary for the advancement of the

field, are outside of the scope of this line of work.

2.1.4 Why not just a Realistic Simulation for Sim2Real?

An obvious question arises after a first encounter with the field, namely why not just build

more realistic simulation as a mitigation strategy? Although this is certainly one of the
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Figure 2.4 Sim2Real is not fundamentally a problem of unknown physics

already applied techniques for Sim2Real, as we explain in the next section, the existence of a

generic, task agnostic, extremely high fidelity simulator for robotics is a lucid goal. There

will aways be a Sim2Real gap of some sort, larger or smaller.

The history of science could be crudely summed up as an attempt to formally model

the phenomena of the natural world in order to gain understanding and therefore predictive

power. Fundamentally, Sim2Real for robotics, is not a problem of lack of understanding

regarding the underlying physics involved, as the physics and phenomena involved in scale

of robotics application are well defined and understood in the sciences, and lie well beyond

the current envelope, probably with the exception of the mechanics of “Intelligence” in a

biological frame.

The constraints in narrowing the Sim2Real gap lie in the following:

• Computational complexity e.g for contact-friction among objects (NP-Hard), de-

formable materials, failure modes which require expensive FEM analysis.
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• Law of diminishing returns. After a certain point it becomes increasingly expensive

in effort, time and complexity to identify, model and tune high-order phenomena of

questionable value and effect to the robotics task at hand, making it infeasible for

robotic teams to maintain.

This raises immediately some questions:

1. How do we define a good-enough simulator for the robotic task at hand?

2. What explicit Sim2Real techniques, such as domain-randomization, and pipeline

architectures can compensate for the gap to reality and can there be well-defined

guarantees on performance?

3. Can we utilise, at-least-some, data from the real-world setup for agent fine-tuning

or/and residual un-modelled phenomena capturing?

These are the essential main questions with concert to the Sim2Real problem.

2.1.5 Sim2Real Ontological Question

An interesting question that rises regarding a study on Sim2Real, as Hofer et al. [19] brought

up, is whether Sim2Real deserves to be standalone scientific and technological standalone

entity as a separate and distinct field of study.

The rapid raise in popularity of the term “Sim2Real” in combination with the inter-

disciplinary nature of Sim2Real combining fields of robotics, control, computer vision,

mechatronics etc. can be extremely beneficial and fruitful in the generation of paradigm

shifts and radical new standpoints.

This approach though should be careful handled and in good coordination with the

co-jointed scientific and technological field in order to avoid an unnecessary fragmentation

among the community [19].
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2.1.6 Is Sim2Real really necessary?

Thought our line of argumentation for Sim2Real so far the simulation is assumed to be an

integral part for solving the quest of a truly smart agent operating in the real world. But is the

simulation part really a fundamental part for achieving intelligence? Despite the fundamental

issues when dealing exclusively with data and hardware in the real world, namely, cost, time

effort and safety, there are cases where this might be preferable and more effective.

A particularly successful case of a Real2Real approach is the one applied in imitation

learning schemes, where the agent is trained directly on data received by an expert trajectory

applied in a real-world setup like in the seminal case of the work presented by Shi et. al [23].

An effective Real2Real workflow would pose the benefit of eliminating the need for

developing a simulated “digital twin” environment which depending on the task at hand can

be a very costly and complicated endeavour.

At the moment the usage of simulation is highly incentivised by the need of a large

amount of data for training the existing deep learning architectures. Although the research

field of “few-shot” learning is very active the need for a high number of trial-error tries in the

RL context is still the predominant method.

2.1.7 Sim2Real as a multidisciplinary “Meta” field

A crucial factor in any approach to this field is the realization that Sim2Real is a multidisci-

plinary field which requires an optimal combinatoric distillation of a number of fields.

We identify the following adjacent scientific and engineering disciplines:
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Table 2.1 Engineering & Scientific Principles connected to Sim2Real

Fields Connection to Sim2Real

Reinforcement

Learn-

ing

The “birth” of Sim2Real stems from breakthroughs in deep end-to-end

reinforcement learning for continuous control. Any advancement in the RL

field, especially in data efficiency during training in the direction of “few

shot” learning would be pivotal in any sim2real approach and could even

lead potentially to its obsolescence.

Machine

Learn-

ing

Advancements in Machine Learning are directly affecting the Sim2Real

pipeline especially which concern to core computational architectures such

as deep layered neural networks, auto-encoders, and attention mechanism

in combination with advancements in optimization techniques for training.

Meta-Learning architectures [24] are also pivotal in Sim2Real.

Representation

Learn-

ing

We believe this is the field most closely connected with Sim2Real.

Simulation and modeling as computational physics are essentially our

best effort in human intuitive and mathematically comprehensible

terms to build representations about our surrounding cosmos.

Sim2Real workflows essentially are essentially assisting the agent to

see the world through our own man-made representations (physics)

first before engaging in the real-world. This line of argumentation

regarding representation learning and Sim2Real, their connections

and parallels, are at the core of this Thesis.



30 Sim2Real in Robotics - A Literature Survey

Fields Connection to Sim2Real

Computer

Vi-

sion

As computer vision advances, along with the increasing levels of feature

abstraction hierarchies in image processing, there could be significant

implications for Sim2Real robustness.

Robotics As the available robotic hardware platforms increase together with the

number of field applications the need for respective Sim2Real is

proportionally following those trends.

Physics

En-

gines

&

Sim-

ula-

tion

Frame-

works

Every advancement and performance increase in the available physics

engines and simulation frameworks, as well as the software libraries and

tools available, has huge consequences in utilising the proper technique for

Sim2Real.

Computer

Sci-

ence

Advancements in computational complexity that would make

computations of hard to model phenomena faster and more accurate,

especially for friction, contacts, deformations and failure modes would also

be pivotal for bridging the Sim2Real gap and enabling robotic applications.
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Fields Connection to Sim2Real

Control

En-

gi-

neer-

ing

Control Theory is a well-established field with strong mathematical

foundation and rich tradition in building advanced and complex military,

space and commercial applications. Establishing bridges between and

allowing for a convergence between concepts such as adaptive and optimal

control, model-based design, Model-Predictive-Control (MPC) and

representation learning etc. would significantly impact the Sim2Real

workflow.

Any advancements in Sim2Real lie in the overlap of all the aforementioned disciplines

and their current state-of-the-art, which automatically constitutes Sim2Real a meta-scientific

and technological field. This brings automatically some inherit challenges and opportunities,

as keeping-up with the progress in each adjacent field is a haunting task but at the same time

synergies and potential bridges between fields can accelerate the overall scientific progress

in ways not possible when studying each field independently.

2.1.8 Methodological Gaps and Thesis Contributions

Domain Randomization (DR) has emerged as a critical technique for addressing the reality

gap in robotics, enabling the transfer of policies learned in simulation to real-world envi-

ronments. While DR has shown significant promise, several gaps and limitations in current

methodologies persist, which my thesis explicitly addresses through novel approaches.

2.1.8.1 Identified Gaps in Current Methodologies

1. Excessive Parameter Randomization:
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• Many DR methods rely on uniformly randomizing a wide range of simulation

parameters, such as friction coefficients, sensor noise, and visual properties. How-

ever, this often leads to increased task complexity and suboptimal policies due

to the exponential growth in sample complexity with the number of randomized

parameters [25–27].

• Additionally, inappropriate or excessive randomization can result in overgener-

alized models that fail to exploit specific environmental constraints for optimal

performance [28, 27].

2. Limited Contextual Adaptation:

• Most DR approaches assume static parameter distributions throughout training,

which neglects the evolving dynamics of real-world environments. This rigidity

limits the ability to adapt policies dynamically when faced with unforeseen

conditions [27, 29].

3. Dependency on High-Fidelity Simulations:

• Despite advances, existing DR techniques are constrained by the fidelity of the

underlying physics engines. Simulators often fail to capture nuanced real-world

phenomena such as deformable object interactions or complex contact dynamics,

leading to persistent reality gaps [25, 30].

4. Inefficient Real2Sim2Real Integration:

• While Real2Sim2Real workflows have been explored, they often lack seamless

integration of real-world data into simulation updates. This results in inefficient

feedback loops and suboptimal exploitation of real-world observations during

policy refinement [30, 31].
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2.1.8.2 Unique Contributions of This Thesis

To address these gaps, my thesis introduces an innovative framework that combines analytical

modeling with domain randomization in a Real2Sim2Real pipeline. Key contributions

include:

1. First-Order Analytical World Models:

• By leveraging first-order approximations within a rigid multibody physics en-

gine, my approach reduces reliance on high-fidelity simulations while retaining

sufficient accuracy for robotic manipulation tasks. This analytical model serves

as a robust foundation for simulating diverse scenarios without overwhelming

computational costs.

2. Dynamic Scene Reconstruction:

• A novel 3D scene reconstruction module integrates real-world observations

into simulation updates. This Real2Sim component enhances the simulator’s

fidelity by iteratively refining key environmental parameters based on observed

discrepancies between simulated and real-world outcomes.

3. Model Predictive Path Integral (MPPI) Planner Integration:

• The incorporation of an MPPI planner showcases the practical and optimal har-

nessing of the predictive power of our model as it allows to readily synthesize

smart manipulation policies without the need for training and in a fully inter-

pretable and explainable manner.

4. Real2Sim2Real Pipeline:

• My framework establishes a perception-planner-action pipeline where real-world

data informs simulation updates (Real2Sim), and improved simulations refine

policy learning for real-world deployment (Sim2Real). This process reduces
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reliance on static parameter distributions and enhances adaptability to dynamic

environments.

2.1.8.3 Conclusion

By addressing critical gaps in domain randomization methodologies—such as excessive

parameter randomization, limited adaptability, and inefficient Real2Sim2Real integration—

this thesis provides a comprehensive framework for bridging the simulation-to-reality gap in

robotics. The combination of analytical modeling and iterative feedback loops represents

a significant step forward in achieving robust and efficient sim-to-real transfer for robotic

systems.

2.2 Sim2Real Evaluation Metrics

Before any attempt on listing any technique for Sim2Real it is necessary to define a set of

metrics and benchmarks in order for any methodological and systematic evaluation approach

to take place.

2.2.1 Simulation Optimization Bias (SOB)

Muratore et al. [32] introduce a concrete mathematical definition of the Simulation Opti-

mization Bias (SOB) which is critical in Sim2Real and can be a useful indication of policies

that tend to overfit and exploit simulation imperfections which in turn hinder a deployment

to reality.

As previously defined, the RL setting with domain randomization in place for parameter

distribution ξ over a set of environments the goal is the maximization of the expected return

over all environment instances

J(θ) = Eξ [J(θ ,ξ )]
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θ is the parametrization of the policy at ∼ π(at | st ;θ)

Formulating the RL problem as a Stochastic Program (SP) with θ ∗ = argmaxθ∈Θ J(θ)

we get:

J(θ ∗) = max
θ∈Θ

Eξ [J(θ ,ξ )] = max
θ∈Θ

J(θ)

An approximation of the above can be produced with n domains:

Ĵn(θ
∗
n ) = max

θ∈Θ
Ĵn(θ) = max

θ∈Θ

1

n

n

∑
i=1

J(θ ,ξi)

Ultimately the Simulation Optimization Bias (SOB) can be defined as:

b
[

Ĵn(θ
∗
n )
]

= Eξ

[

max
θ∈Θ

Ĵn(θ̂)

]

−max
θ∈Θ

Eξ [J(θ ,ξ )]≥ 0.

with the property that it is always positive, namely the policy’s performance in the target

domain is systematically overestimated.

2.2.2 Optimality Gap (OG)

Consequently a minimization of the SOB should be an objective for successful Sim2Real

transfer. Muratore et al. [32] suggest an approximation of the Optimality Gap (OG) which

relates to SOB since a direct computation of SOB is intractable.

The Optimality Gap at the candidate solution θ c is:

G(θ c) = J(θ ∗)− J(θ c)≥ 0,

Muratore et al. [32] recommend a sample based estimation of the Optimality Gap, show a

positive correlation between the sample size and the decrease of the OG. They also establish
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the connection between the SOB and OG, where a reduction in OG leads in a reduction in

SOB.

Based on the aforementioned key metrics, namely the SOB and OG Muratore et al.

[32] also introduce an upper bound, the Upper Confidence Bound on the Optimality Gap

(UCBOG) during training based on a transferability assessment which in turn results in

convergence with less steps.

2.2.3 The question of Sim2Real Predictivity

2.2.3.1 Sim-vs-Real Correlation Coefficient (SRCC)

Kadian et al. [33] raise the important question of “Sim2Real predictivity”, namely how can

we evaluate whether performance increase in simulation between different agents translates in

performance difference in reality as well. In an attempt to quantify this Sim2Real discrepancy

they introduce the “Sim-vs-Real Correlation Coefficient (SRCC)”. By evaluating the SRCC

metric in an autonomous navigation problem the predictor was found able to estimate

potential failure when deployed in real. Performance differences in simulation do not

seem to translate in the real-world setup as the agent seems to be exploiting the simulation

imperfections for performance gains.

Sim-vs-Real Correlation Coefficient is defined as the Pearson correlation coefficient

(bivariate or other e.g rank correlation can be used) on the set of pairs {(s1,r1), . . . ,(sn,rn)}

where si and ri are the success rate of an nth agent in simulation and reality respectively.

A coefficient close to 1 would suggest a simulator with high predictive power and good

transferability chances to reality.

Although this metric is a potentially useful indicator, as Paull & Courchesne [22] point

out, it can be “myopic”, does not asses underlying dependencies and ultimately it does not

suffice for predicting the effectiveness of a simulator for transferring in real.
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2.2.4 Sim2Real gap conditioned over the robotic task

Paull & Courchesne [22] make the crucial statement that the Sim2Real gap should not

be examined naively as a standalone independent problem but it should be conditioned

over the robotic task at hand. In essence a metric on Sim2Real gap alone, from a pure

physics perspective, could indicate potentially a large discrepancy but if the task “transfers”

successfully to real then the Sim2Real should be effectively zero.

2.2.4.1 Predictive Reality Gap (PRG)

Paull & Courchesne [22] introduce the Predictive Reality Gap (PRG) for a given task T

defined by evaluation metrics M and an A that generates trajectory xsim in simulation and

xreal in real as:

PRG ≜
m

∑
i=1

βi

∣

∣Mi(X
1:N
sim )−Mi(X

1:N
real )

∣

∣

A PRG factor of zero would indicate a “perfectly faithful” simulator. This metric is not that

different from the aforementioned SRCC with the difference of the task conditioning.

2.2.4.2 Relative PRG (RPRG)

Paull & Courchesne [22] introduce the Relativ PRG (RPRG) as follows:

Given K agents, the relative predictive ability of a simulator is defined by its ability to

accurate predict the binary relations between agents. Asim =
[

αi j

]

i, j=1..K
is a matrix with it’s

elements defined as:

αsim
i j =































1 Asim
i ≥ Asim

j

0.5 Asim
i ̸= Asim

j and Asim
j ̸= Asim

i

0 Asim
i ≤ Asim

j
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The Areal is constructed the same way. The RPRG is defined as:

RPRG(A1:K) =
K

∑
i, j=1

∣

∣

∣
αsim

i j −α real
i j

∣

∣

∣

A “perfectly faithful” simulator given the RPRG metric would mean that it produces “the

identical partial order over agents that would be produced if the agents were run on the real

robot.”

2.2.4.3 Learning Reality Gap (LRG)

Paull & Courchesne [22] introduce the Learning Reality Gap (LRG) in an attempt to evaluate

the simulator this time as a teacher instead of a predictor.

“Learning Reality Gap (LRG) is the number of trials on the real robot needed for

an agent trained in simulation and transferred to the real robot, Asim2real to achieve

equivalent or better performance”

2.2.5 Sim2Real Observation Discrepancy

Chebotar et al. [34] incorporate the observation discrepancy function D for measuring

the Sim2Real Gap for real world observation trajectories τob
real =

(

o0, real . . . ,oT, real

)

and

simulated observation trajectories τob
ξ

=
(

o0,ξ . . . ,oT,ξ

)

as follows:

D
(

τob
ξ ,τob

real

)

= wℓ1

T

∑
i=0

∣

∣W
(

oi,ξ −oi, real

)∣

∣+wℓ2

T

∑
i=0

∥

∥W
(

oi,ξ −oi, real

)∥

∥

2

2

Where wℓ1
and wℓ2

are the weights of the ℓ1 and ℓ2 norms, and W are the importance weights

for each observation dimension. The authors also mention the application of a Gaussian filter

on the D measurement as a smoothness operation to compensate for potential misalignments.
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2.2.6 Offline Trajectory Error

Aljalbout et al. [35] introduce the “Offline Trajectory Error (OTE)” as a metric in order to

study the effects of different action space formulations for Sim2Real.

OTE(π) = Ea,qreal ∼Dreal
|qsim −qreal |

a and qreal are the actions and joint configurations respectively from dataset Dreal . The

respective simulation joint configurations qsim are collected by applying a in simulation in an

open-loop fashion.

2.2.7 Sim2Real Fitness Objective

Collins et al. [36] for evaluating their experiments for simulation fine-tuning with real-world

data they introduce the following fitness factor for measuring the Sim2Real discrepancy.

f =
∑points

√

∑i=x,y,z

(

W d
i −W s

i

)2

npoints

which is the normalized Euclidean distance between the wrist joint of the robotic manipulator

in simulation W s
x,y,z and the “dataset” W d

x,y,z.

2.2.8 Sim2Real Gap Metrics for Point-Clouds

In [37] Blanco-Mulero et al. use the Chamfer Distance (CD) and the Hausdorff Distance

(HD) distance metrics for measuring the discrepancy between real and simulated cloths as an

attempt to evaluate different simulation frameworks for deformable object manipulation.

CD(Vt ,Pt) :=
1

|Vt |
∑

v∈Vt

min
p∈Pt

∥v− p∥1
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HD(Vt ,Pt) := max
v∈Vt

min
p∈Pt

∥v− p∥1

For a point cloud Pt and a simulated mesh with vertices Vt . The authors recommend the

Manhattan distance for computing the norm instead the Euclidean one.

2.3 RL - Design Considerations for Sim2Real

2.3.1 Learning Algorithm and Policy Architecture

The general consensus on picking a reinforcement learning algorithm and a policy architecture

is to proceed based on the task and the computational resources available and additionally

apply dedicated sim2real techniques for increasing the tasks for a successful transfer. There

has been in general little effort to systematically investigate the correlation between RL-

Algorithm, Policy Architecture and Sim2Real transferability.

Salvato et al. [18] in their survey present a list with influential works in the field and the

RL-Algorithms that have been utilized under the Sim2Real prism (See fig. 2.5)

It can be agreed that LSTM policy architectures perform better in complex dynamic

scenarios and this exact generalization and robustness under different dynamics allows for a

more successful Sim2Real transfer [38, 39, 16].

This methodological schism, namely a dichotomy in RL-Algorithm/Policy Architecture

and Sim2Real methodology can be hypothesized that incorporates potential performance

bottlenecks and general overall system and workflow inefficiency which is direct call for a

holistic approach that should unify RL-Algorithms-Policy Architectures-Simulation/Model

under a single framework.

Chi et al. [40] propose the a denoising diffusion process for representing the visuomotor

policy, declaring an average 46.9% improvement against standard baselines.
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Figure 2.5 RL-Algorithms and Tasks that have been utilized for Sim2Real scenarios and that

have applied Domain-Randomization [18]
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2.3.2 Observation Space Considerations

The formulation of the observation space as a combination of proprioceptive and exteroceptive

sensor aggregate and the shaped feature space as a result of a potential embedding of high

dimensional inputs, naturally affects a sim2real transfer.

In the case of [41] only depth readings are utilized from the RGB-D camera which in

combination with privileged information training in simulation with a consequent teacher-

student imitation learning pipeline result in a successful sim2real transfer. The crucial

element in this case is the omission of the RGB component which has a high degree of

discrepancy between sim and real and a focus on the pure geometric nature of the depth

sensor.

Yin et al. [42] for the in-hand manipulation utilize exclusively a set of 16 binary low-cost

Force-Sensing-Resistors (FSR) as exteroceptive information evenly covering the fingers and

palm of the robotic hand instead of an vision RGB-D based approach which allows for a very

efficient Sim2Real Gap minimization due to the binary nature of the sensors. The approach

remains effective though as the total 16bits of touch resolution allows for a representation of

a total of 216 states.

Beddow et al. [43] on their work for grasping attempts with soft fingers and reinforcement

learning strategies through pure force-feedback, conduct ablation studies where they note

that using fewer tactile sensors, the sim2real transfer was more “variable”, balancing between

potential overfitting and simulation bias when using palm force signals and poor training

performance when working with fewer sensors.

We can overall conclude that an observation space which encodes measurements and/or

features for exteroception that are more of a geometric nature such as distances and positions,

or binary signals can help to bridge the sim2real gap.
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2.3.3 Action Space Design

Action space design and formulation for an effective control authority, convergence in an RL

context as well as a successful Sim2Real transfer is highly important. Aljabout et al. [35]

explore exactly the effect that the choice of action space has in Sim2Real. More concretely

for the tasks of “pushing” and “reaching” an object with a robotic manipulator they study

the difference in position vs velocity vs torque, joint space vs task space, and “base” action

space vs “delta” action spaces. We distinguish the following important findings:

• For handling the non-smoothness resulted from RL policies targeting in the Cartesian

space position or velocity a direct utilization of Inverse-Kinematics for feeding joint

level controllers is recommended.

• In this study direct joint torque policies were not able to perform for the pushing task

as they result in abrupt motions outside the robot’s safety boundaries.

• Joint action spaces have less effect in sim2real gap compared to the Cartesian space

ones based on the OTE metric.

• Feedback loops should be properly tuned for the implementation of control schemes

and translating from velocities/positions to torques for being actually beneficial in

sim2real scenarios.

• Multi-step Integrator (vd ← vd + c · a · dt) as delta action space behaves better for

sim2real when compared to one-step integrator (vd ← v+ c ·a ·dt).

• In general velocity-based action spaces tend to perform better for sim2real in compari-

son to position-based strategies.

• Delta-action spaces perform better than base spaces.

• One-step integrator leads to lower tracking error OTE.

• Joint-velocity as action space in general performs better than Cartesian space-

velocity for sim2real overall.
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The joint velocities q̇d generated by the policy are fed to a simple joint impedance

controller in the form:

τ = K (qd−q)+D(q̇d− q̇)

This result is also empirically observed among the RL literature that attempts continuous

control in robotics through RL and sim2real.

In practice filtering techniques are usually additionally applied at the action signal in

the real-world setup in order to smoothen the resulted signal. Simple exponential moving

average filters [42], low-pass filters or rate limiters are used in practice [35].

Lastly regarding the action space design it is important to mention, even outside the scope

of Reinforcement-Learning, that the verdict is not exactly concluded. For example Xue et al.

[44] in their work based on Diffusion-Style Annealing for sampling based Model Predictive

Control, they command directly torques on the quadruped robot where they manage to

surpass the previous state-of-the-art which seems totally contrary to the aforementioned

results. They utilize carefully tuned system identification for matching the dynamics between

simulation (Brax) and the real robot, and they command the desired torque with the addition

of a damping velocity term in the form:

τ̂i = τi−dωi

In that case it would be interesting to examine whether an alternative action choice, namely the

recommended relative velocity term, could lead to potential improvements in performance.

2.3.4 Reward Function Shaping

It is very common that the reward function incorporates terms specifically designed for

improving sim2real transfer.
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Yin et al. [42] add a special velocity term −||vt || in the reward function in order to

promote more stable object rotation for in-hand manipulation which in turn increases the

transferability of the trained policy. They additionally place a term −⟨|τ|, |q̇t |⟩ for improving

the smoothness of finger motion by penalizing the “work of the controller”.

Yu et al. [45] design a rsim2real term specifically for deployment to real-world hardware

setup in an Model Predictive Control (MPC) setting for keeping the overall system robot-

object velocities low and in general discourage dynamic in-hand movements.
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Haarnoja et al. [46] include two reward terms specifically for improving sim2real transfer.

The first penalty term aims to a stress reduction in joints by minimizing the time integral of

torque peaks for the constraint forces on the targeted joints. The second term would mitigate

the effect of a simulation bias behavior, namely a forward leaning motion which in reality

would case balance lose and failure. A reward term for keeping the an upright pose mitigates

the issue as the authors suggest.
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Figure 2.6 The Sim2Real Techniques as identified by our literature review.

2.4 Sim2Real Techniques in Robotics - A Taxonomy

Table 2.2 A Taxonomy on Sim2Real

Category Subcategory Description

Domain

Randomization

Randomization for

Perception

Varying visual aspects

such as color, texture,

and lighting in

simulations.

Randomization for

Dynamics

Altering physical

parameters like mass,

friction, and elasticity.

Automatic/Active/Dynamic

Randomization

Adaptive approaches

to randomization

based on agent

performance.
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Category Subcategory Description

Randomization for

Data Genera-

tion/Augmentation

Enhancing training

datasets with

randomized synthetic

data.

Adversarial

Perturbations

Introducing controlled

disruptions to test

robustness.

Domain Adaptation Synthetic-to-Real

Adaptation

Aligning synthetic

and real-world data

distributions.

Task-Aware Domain

Adaptation

Customizing

adaptation strategies

for specific robotic

tasks.

Unmodeled Dynamics

Adaptation

Addressing

uncertainties not

captured in

simulation.

Real2Sim

Techniques

Traditional System

Identification

Calibrating simulation

parameters using

real-world data.

Simulator Tuning and

Validation

Adjusting simulations

to closely replicate

real-world behaviors.

Hybrid Sim & Real

Reinforcement

Learning

Combining simulated

and real-world data

for training.

Explicit

Transferable

Abstractions

Manual Observation

Space Design

Predefining relevant

features for

simulations.

Auto Feature Space

Shaping

Using machine

learning to extract

transferable features.

Simulation Fidelity High-Fidelity

Simulation

Using detailed models

for accurate

simulation.
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Category Subcategory Description

Differentiable

Simulation

Allowing

gradient-based

optimization through

simulations.

Learning Strategies Imitation Learning Training agents using

expert

demonstrations.

Curriculum &

Lifelong Learning

Gradually increasing

task complexity to

improve agent

adaptability.

Multi-Task and

Meta-Learning

Training generalist

agents capable of

adapting to multiple

tasks.

Zero-Effort

Sim2Real

Zero-Shot

Generalization

Deploying agents

trained in simulation

directly to real-world

tasks.

Built-in Architectural

Robustness

Designing agents

inherently resistant to

reality gaps.

2.4.1 Randomization in Simulation

2.4.1.1 Domain Randomization

Salvato et al. [18] make the observation that Sim2Real has been also been successfully

achieved for controllers that do not fall in the RL Raum, and they draw parallels to control

theory, namely “robust control under parametric or non parametric uncertainty.” Interestingly

enough they also identify the first research work in robotics that defines the reality gap and

the “treatment of noise” during simulation as a mitigation measure [47].
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Figure 2.7 Sim2Real Techniques Taxonomy per Zhao et al. [20]

Figure 2.8 Muratore et al. [21] attempt to establish the relations of Sim2Real to other adjacent

learning fields mostly with respect to domain-randomization.
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Domain-Randomization is currently the most predominant and most strongly associated

to Sim2Real technique in the field [17–21]. Domain-Randomization is defined within the

frame of Reinforcement-Learning for continuous control with the usage of simulation for

training. At its core the idea of introducing randomization in the simulation parameters

during the agent training phase states that by doing so we “force” the agent to “robustify”

against overfitting, thus learn better internal representations that when transferred to the

real-world setup its perception would render it as just “another variation” that would allow

the necessary generalization property. Muratore et al. [21] argue that domain-randomization

can be seen as a regularization method preventing from overfitting to a specific simulation.

Muratore et al. [21] argue though a historical retrospective that randomized simulation is

not a newly introduced concept in the history of computation, simulation and Reinforcement-

Learning and that the probably newly introduced concept is a direct, in contrast to an

“indirect”, tuning of the simulation parameters. Attributing a reasoning behind the popularity

in randomization in simulation during training we identify the breakthrough results achieved

by the works of Tobin et al. [48], Sadegi et al. [15] and probably most importantly by OpenAI

and it’s Dactyl Project [16] which apart from gaining significant popularity in mainstream,

demonstrated unrepresented results in dexterous robotic manipulation attributing domain-

randomization as a key-factor for the significant success in the real transfer.

2.4.1.2 Mathematical Formulation

Muratore et al. [21] expand the typical Reinforcement Learning (RL) problem definition

based on the Markov Decision Process (MDP) in order to define the goal as an overall return

maximization as usual, but this time over a distribution of domain parameters as such:

J(θ) = Eξ∼p(ξ )[J(θ ,ξ )] = Eξ∼p(ξ )

[

Eτ∼p(τ)

[

T−1

∑
t=0

γ trξ (st ,at) | θ ,ξ ,s0

]]
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Where ξ ∈ R
nξ are the randomization parameters and p(ξ ) : Rnξ → R

+ their unknown

distribution.

Although this extension lays the foundations for a mathematical formulation of domain

randomization in RL the field still lacks a concrete mathematical framework [20] that would

allow definite answers, like for example the physical plausibility of randomized parameters

[21], in the main currently open questions as presented in the rest of this sections.

2.4.1.3 Domain-Randomization Types

A categorization in types of randomization is observed in the literature, based on which stage

of the typical robotics software “perception-planning-control” stack it is applied, the way it

is applied and the function it tries to solve.

A quite common categorization for domain-randomization is the distinction in “Random-

izing for Perception” and “Randomizing for Control”[17, 20].

Muratore et al. [21] identify domain-randomization into “static”, “adaptive” and “adver-

sarial”, where in static case a distribution for the simulation parameters is pre-selected before,

in adaptive the distribution is updated, potentially from real-world data, during training.

The adversarial domain randomization aims at mitigating the well known issue of deep

layered architectures being brittle to adversarial attacks by introducing perturbations during

the training in order to robustly the agent’s performance and thus increasing the chances

for a successful Sim2Real transfer. Additionally the authors make the distinction for each

of these categories depending on whether data from real-world have been utilised for the

determination of the distribution of the randomised parameters.

We propose the following categories for domain randomization based on where and how

the randomization is applied:



52 Sim2Real in Robotics - A Literature Survey

Table 2.3 Domain-Randomization Function Based Categorization.

Domain

Random-

ization

Function

Based Type Description

Randomization

for Data-

Generation

Data-

Augmentation

This category refers to the randomization that occurs for training

data-generation or data-augmentation as a separate stage before any

training occurs in an offline manner. This could be used for

generating a set of distinct environments in which the agent will be

trained on in a later stage.

Randomization

for

Perception

This category refers to the randomization of parameters in the

environment aiming to enhance the perception capabilities of the

agent, like e.g camera intrinsic and extrinsic parameters, scene

colour noise etc.

Randomization

for

Dynamics-

Control

This category refers to the randomization of parameters in the

environment aiming to enhance the perception capabilities of the

agent, like e.g camera intrinsic and extrinsic parameters, scene

colour noise etc.
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Domain

Random-

ization

Function

Based Type Description

Adversarial

Perturba-

tions

This category refers to any attempt in adding noise and

perturbations during training in order to compensate and robustify

against unmodeled phenomena. E.g adding random forces in a

manipulated object, noise injection in control or perception signals

should account to that.

Table 2.4 Domain-Randomization Automation Based Categorization.

Domain Randomization Auto-tuning

based type Description

Static Domain Randomization Static domain randomization refers to

drawing samples for the randomized

from a constant predefined

distribution.

Dynamic Domain Randomization Dynamic domain randomization refers

to dynamically changing the

distribution characteristics during

training.
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Domain Randomization Auto-tuning

based type Description

Automatic Domain Randomization Automatic domain randomization

refers to auto-tuning methodologies

for the randomization characteristics.

Table 2.5 Domain-Randomization Real-World Data Utilization Criterion.

Domain Randomization -

Real-World Data utilization Description

Real-World Data enhanced

Domain Randomization

This is when real-world data are utilized either

before or during training.

Table 2.6 Domain-Randomization Free Sim2Real Criterion.

Domain Randomization Free

Sim2Real Description

Randomization Free This category is added for completeness in

cases where no randomization has been

applied but Sim2Real has been achieved.

Based on the categories defined above the randomization type can be precisely defined as

potential combination e.g “static randomization for perception the real-world data enhance-

ment”.
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We attempt a further explanation and analysis, together with relevant literature references,

for each of these categories in the following subsections.

2.4.1.4 Randomization for Data Generation/Augmentation

In [15] the authors report that at the core of the Sim2Real success in indoor autonomous

drone flight, lies on the randomization of the 3D environments built in Blender with an

emphasis on morphology, textures and rendering conditions. Additionally a set of pre-taining

images was collected in simulation through a camera with randomized height and orientation.

In [49] the data set provided through human-in-the-loop in VR is consequently augmented

through scene randomization. Although this is a Sim2Sim work, without real-world testing it

provides an interesting approach with the initial human-in-the-loop element.

In [50] a data set for grasping pose prediction has been generated fully in simulation

through randomized grasping trials with a naive manually crafted grasping strategy in clutters

of randomized objects.

Based on the advent of Large Language Models (LLMs) Want et al. [51] utilize GPT-4 in

order to generate robotic tasks in simulation for training multi-task agents which is a very

promising direction in developing robust and generic agents with thus with strong sim2real

potential.

2.4.1.5 Randomizing for Perception

Randomizing for perception is a widely utilized approach for Sim2Real and it has been

attributed multiple times as the predominant strategy for solving Sim2Real.

Although the work in [48] is focused only in object localization based on a single

monocular camera with an implicit impact in robotic manipulation some important milestones

and precursors have been achieved which will later set the stage for end-to-end robotic

manipulation.
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Based on the literature references [52, 48, 53, 54, 17, 16, 55, 56, 41] we gather the

following predominant candidate parameters for randomization for perception.

Table 2.7 Domain-Randomization Example Parameters for Perception.

Perception Randomization Parameters

Object Positions (In grasping & manipulation scenarios)

Object Textures (In grasping & manipulation scenarios)

Distractor Objects (Number, shapes, colours, textures, positions)

Scene Textures ( e.g table, floor, robot, surounding objects)

Camera Pose

Camera Field of View

Camera Image Noise

Simulated Point Cloud Noise

Scene Lighting (adding, removing light sources)

Lighting source (6D pose, specular characteristics, intensivity)

Background Colours

Reflectance coefficients

Type of shadows
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Perception Randomization Parameters

Height samples (quadruped robot) nominal noise

Root positioning localization error (quadruped robot) drift noise

One of the most successful and intricate attempts on randomization for perception can

be bound at OpenAI’s Dactyl project [16] where the rendering parameters in simulation

have been heavily randomized. This is a bit in contrast to the belief that heavy domain

randomization leads to unsuccessful transfers [18] and raises the question on where the line

should be drawn on what exactly should be perceived as “heavy randomization”.

Another important point is with regard to which of the aforementioned parameters are the

most important to randomize for perception. Alghonaim et al. [57] point to the importance

of distractors and textures. They also comment on the rendered image quality as “a small

number of high-quality images is superior to a large number of low-quality images”.

2.4.1.6 Randomizing for Dynamics

Based on the work by [52, 38, 58, 16, 55, 59, 56, 46, 60, 61] we are able to gather a set of

parameters which are most typically randomized during training for dynamics.

Table 2.8 Domain-Randomization Example Parameters for Dynamics.

Dynamics Randomization Parameters

Contact Models

Robot’s kinematics, e.g link length
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Dynamics Randomization Parameters

Center of mass location

Mass of robot links

Damping of joints

Mass, friction, damping of manipulated objects

Motor friction

Motor strength

Working table height

Gains of any underlying controller

Control step time

IMU bias + noise

Backlash

Joint margin

Joint range

Joint friction

Joint angular offsets

external mass to a randomly chosen location on the robot torso
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Dynamics Randomization Parameters

PD Gains for motor control

In [38] Peng et al. mention that randomization in the parameters of the system dynamics

allow for memory-bases policies to generalize to the dynamics of the real world without

the need for an exhaustive system calibration with system identification procedures. It

is also worth mentioning that in the same work a set of a total 95 parameters have been

randomized during training raising potentially again the question on what constitutes a “heavy

randomization” which could hinder a successful Sim2Real transfer. In the work by Haarnoja

et al. [46] for example a small number of parameters has been selected for randomization

in order to a avoid a conservative policy, which is again in sharp contrast to the work by

OpenAI [16].

Swapping Physics Engines During Training Another source of randomization for the

scene dynamics could be the physics engine its self. As there are notable differences between

physics engines when deploying in Sim2Sim scenarios [21], due to different coordinate

representations, numerical solvers, friction and contact models utilized by the underlying

physics engines. This could be utilised as source of randomization for dynamics during

training.

2.4.1.7 Adversary Perturbations

The role of adversary perturbation is in effect to robustify the agent for phenomena which are

not modeled in simulation during training. This can typically involve adding perturbations

in action, thus with regard to unmodeled phenomena in actuation, and explicit force/torque

perturbations e.g in the torso of a humanoid that learns to walk, in the manipulated object.
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Haarnoja et al. [46] applied random perturbations to the humanoid torso as “an external

impulse force of 5 to 15 Nm lasting for 0.05 to 0.15 s, to a randomly selected point on the

torso every 1 to 3 s”. Li et al. [62] add noise and delay factors in observation with the

additional periodical random “pushing” of the torso of the quadruped robot.

Chen et al. [41] apply random forces in the manipulated object.

Serifi et al. [60] perform random pushes on the root, head, hands, and feet and perturb

the joint positions by a maximum of εq to account for inaccuracy in joint calibration,

Table 2.9 Adversary Perturbations Examples.

Adversary Perturbations

Latency and noise to the actuation

Latency and noise to the observation

Force/Torque perturbations on the robot e.g torso or in the manipulated object

2.4.1.8 When to Randomize

As mentioned by Muratore et al. [21], and as we also observe in literature, the most common

approach for applying randomization is the episodic dynamics randomization. This seems to

be an empirical result not based in some rigorous mathematical justification.

As argued by Muratore et al. [21] “randomizing the domain parameters at every time step

instead would drastically increase the variance, and pose a challenge to the implementations

since this typically implies recreating the simulation at every step”.

This is in contrast to some cases where the adversarial perturbations are applied randomly

at every step drawn from a constant distribution until the randomization scheme is updated

[21].
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Figure 2.9 Automatic Domain Randomization (ADR) System Overview [16]

2.4.1.9 Automatic/Active/Dynamic Domain Randomization

A significant amount of research effort has been directed towards methodologies for dynami-

cally and/or even fully autonomously setting the probability distribution characteristics for

domain randomization in simulation. At it’s core the main idea is to adjust the amount of

randomness of the parameters based on some performance criterion during training, an idea

closely resembling that of curriculum learning.

Automatic Domain Randomization (ADR) OpenAI [16] presents a methodology for an

automatic definition for the distribution ranges of the randomized parameters in combination

with a dynamic adaptation of those during training based on performance metrics of the

current policy (see fig. 2.9).

OpenAI establishes a clear correlation between the Sim2Real transferability and a large

ADR Entropy which requires extensive periods for training in large scale in order to outper-

form manual tuning, which also in turn would require extensive manual experimentation.

DOmain RAndomization via Entropy MaximizatiON (DORAEMON) Very close to

the central concept of the aforementioned Automatic Domain Randomization Tiboni et al.

[63] introduce the DOmain RAndomization via Entropy MaximizatiON (DORAEMON)

which again is based in the idea of a gradual increase, curriculum learning style, of the
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randomization for the simulation parameters during training based on the current policy

“maturity”. DORAEMON will increase the the diversity of the sampled dynamics parameters

if the chances of success of the current policy are sufficiently high.

DORAEMON and ADR seem conceptually at least identical and analytical ablation

studies are necessary in order to address the differences and the potential introduced novelty.

Active Domain Randomization (ADR) In their work “Active Domain Randomization

(ADR)” Mehta et al. [26] are introducing a methodology for actively searching for sim-

ulation parameters with the highest training disruption influence rendering essentially an

adversarial agent as the simulation parameters generator. The problem is indeed formulated

as a Reinforcement Learning problem with ADR policy being parametrized with the Stein

Variational Policy Gradient [64].

Random Network Adversary (RNA) The generation of adversarial forces that would

cause perturbations in the system in order to robustify the agent against unmodeled dynamics

can be also subject to automation. In [65, 66] the problem is treated holistically as an

adversarial RL problem where the adversarial agent has to learn to challenge the main policy

as a destabilizing factor.

Inspired by this approach OpenAI [16] introduce the random network adversary (RNA)

which is essentially networks with randomly sampled weights for generating the adversarial

perturbation forces during training. These weights are sampled at the beginning of each

episode.The authors support that this method outperforms the aforementioned adversarial

policies as ultimately the supplied diversity a randomized network is more crucial than a

targeted trained and sophisticated adversarial.



2.4 Sim2Real Techniques in Robotics - A Taxonomy 63

Figure 2.10 Tuning the simulation parameters randomization distribution by measuring a

sim2real discrepancy [34]

2.4.1.10 Utilization of Real-World Data

Real-World data can be utilized for a more purposeful and sharp domain randomization

with regards to values ranges and stochasticity characteristics. For example in [16] the first

environment instantiation for the policy training is performed with parameters measured

from the real-world setup.

Hietala et al. [67] provide a methodology where they derive a set of simulated cloths

based on the top performing simulation parameters when compared with expert demonstration

in the real-world.

Chebotar et al. [34] adapt dynamically the simulation randomized parameters distribution

after deployment to the real world and measuring the sim2real discrepancy.

2.4.1.11 Sim2Real without Randomization

Although randomization in simulation during training would seem a necessary element for a

Sim2Real transfer, there are some significant testimonies in the literature that would suggest

otherwise. Crucial factor to the criticality of randomization in simulation as a necessary
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Sim2Real component seems to be the overall architecture, where composite architectures

with, a potential model-based, control architecture with an operational space controller (OSC)

seem to be inherently more robust to dynamics deviancy between Sim and Real.

Xie et al. [68] in their findings suggest that Sim2Real transfer is possible without

dynamics randomization or domain adaptation and they strongly advocate for conservative

randomization policies if and only if there are necessary with a careful selection of the truly

impactful parameters that should be randomized using domain specific knowledge.

Kaspar et al. [69] utilize indeed an OSC framework with system identification and

high-quality model of the robot where they are able to transfer policies without dynamics

randomization for a peg-in-hole task.

Dao et al. [70] make the crucial and usually very unexplored point with regards to

the effects of mechanical design, and most importantly the effects of compliant elements,

in this case springs, where they are able to transfer to real due to the compliant mechanics.

2.4.1.12 Addressing Computational Overheads and Performance Trade-offs in Do-

main Randomization

The integration of domain randomization (DR) into robotics pipelines introduces a critical

tension between computational efficiency and real-world policy robustness. While DR

enhances sim-to-real transfer by training policies across randomized dynamics [28, 25] , its

computational overhead and potential over-regularization require careful consideration. This

section synthesizes recent advancements to address these challenges.

Computational Overheads in Traditional Domain Randomization Traditional DR meth-

ods randomize all dynamics parameters (e.g., friction, material properties, sensor noise)

uniformly during training [28, 25]. While effective, this approach scales poorly with:

- Parameter dimensionality: Training time grows exponentially with the number of random-

ized parameters [71, 26]. - Exploration complexity: Policies must adapt to a combinatorially
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large space of dynamics variations, delaying convergence [27, 72]. - Over-regularization

risk: Excessively broad randomization can dilute task-specific learning, leading to suboptimal

policies [73].

For instance, Muratore et al. [71] demonstrated that naively expanding DR parameter

ranges increases sample complexity by 3–5× in tasks like robotic grasping.

Balancing Randomization and Performance Modern DR frameworks address this trade-

off through strategic parameter selection and adaptive training:

1. Focused Randomization:

Prioritize parameters with high real-world uncertainty (e.g., friction coefficients over

gravity) [28, 25]. Let

P = {p1, . . . , pn}

denote dynamics parameters, and

I (pi)

represent their real-world variance. The training objective becomes:

max
θ

Epi∼U (I (pi)) [R(θ ; pi)] ,

where U samples parameters proportional to their real-world variability [71].

2. Sequential and Curriculum-Based DR:

Methods like Continual Domain Randomization (CDR) [27] decompose training into

stages, gradually introducing parameters:

• Stage 1: Train in nominal simulation.
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• Stage 2: Randomize dominant parameters (e.g., actuator dynamics).

• Stage 3: Introduce secondary variations (e.g., sensor noise).

This reduces peak exploration complexity by 40–60% compared to full random-

ization [27].

3. Bayesian Adaptive DR:

Bayesian Domain Randomization (BayRn) [71] optimizes parameter distributions

using real-world feedback:

φ∗ = argmax
φ

Eξ∼ν(φ) [Jreal(πθ )] ,

where φ parameterizes the simulator distribution ν . This focuses training on high-

impact parameters, cutting wasted iterations by 30% [71].

Key Metrics for Efficiency-Performance Trade-offs

Table 2.10 Key Metrics for Efficiency-Performance Trade-offs

Metric Description

Impact

on

Over-

head

Training

time

Wall-clock hours to converge Directly

re-

duces
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Metric Description

Impact

on

Over-

head

Sample

efficiency

Episodes required for policy stability Indirectly

re-

duces

Real-

world

success

rate

Policy performance post-transfer (e.g., grasp

success %)

Prioritizes

quality

Parameter

relevance

score

Correlation between randomized parameters and

real-world variability [28, 71]

Guides

opti-

miza-

tion

Practical Recommendations

1. Parameter Prioritization: Use real-world system identification to rank parameters by

variability [28, 25].

2. Adaptive Scheduling: Implement CDR or BayRn to phase in parameters [27, 71].

3. Validation-Driven Early Stopping: Terminate randomization phases once policy

performance plateaus on held-out test domains [73].
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Recent benchmarks show that adaptive DR achieves 85–92% real-world task success with

50% lower compute than uniform DR [27, 71], proving that strategic randomization—not

maximal randomization—bridges the sim2real gap efficiently.

Conclusion This analysis underscores that computational overheads in DR are not inherent

but stem from suboptimal implementation. By aligning randomization with real-world priors

and adopting adaptive frameworks, practitioners achieve robust policies without prohibitive

costs.

2.4.2 Domain Adaptation

In this section we present a set of techniques for sim2real that attempt an explicit so called

“domain adaptation”, namely from the simulation domain to the reality domain, usually by

utilizing an explicit mapping in the the space of the residual unmodelled dynamics and/or

through learning an invariant set of features, which should allow for a direct sim2real transfer.

2.4.2.1 Domain Adaptation for Synthetic2Real

Bousmalis et al. [74] attempt to learn such invariant features that are transferable from one

domain to another by learning a “private” set of features for each domain which encodes

essentially what makes each domain unique (see fig. 2.11).

An interesting implication of this approach would be a direct translation of rendered

images in simulation to realistic in “synthetic-to-real” scenarios.

Bousmalis, Irpan et al. [75] attempt to train a grasping network by enriching the training

dataset with synthetic images resulted in simulation and which are consequently adapted in

order to resemble the realistic setup (see fig. 2.12).

This pixel-level domain-adaptation for synthetic-to-real images is learned through a GAN

based procedure which results in a “generator” as a fixed module in the pipeline [76]. A
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Figure 2.11 Domain Separation Networks Architecture [74]

Figure 2.12 Training a grasping network with adapted and real images [75].



70 Sim2Real in Robotics - A Literature Survey

Figure 2.13 The generator G is able to translate images from real2sim[79]

feature level adaptation module [77] is consequently applied for both images and motor level

commands.

Combining Pixel-Level Adaptation with Feature-Level Domain Adaptation is attempted

by Park et al. [78] as well as an effort to minimize the use of real-world data.

James et al. [79] moving in the opposite direction learn a generator that maps “disrupted-

randomized” images to simulated ones which in turn are observed by the agent. This

generator is able to generalize to real images and thus mapping them to simulated ones, in a

real-to-synthetic direction, which is a form that the agent can operate on as it is canonical to

its training set.

Bharadhwaj et al. [80], instead of translating to a canonical simulated image, attempt

to directly encode real images in the same way as they would be decoded if they where

synthetic and thus allowing the learned planner to execute robustly and accordingly. The

feature encoding is performed through a discriminator and an adversarial domain transfer. A

final fine-tuning step with real world expert demonstration completes the pipeline.

Zhang et al. [81] also similarly attempt an adversarial transfer for reducing the amount of

real labeled data needed for fine-tuning when transferring to real.
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Figure 2.14 Adversarial adaptation for shared feature encoding for sim and real[80]

Figure 2.15 RL Q Value Consistency Criterion ensures task relevant image generation [82]

2.4.2.2 Task Aware Domain Adaptation

Rao et al. [82] make the critical observation that the domain adaptation techniques, as

described in the previous subsection, are task-agnostic and consequently do not necessarily

encode task critical information. The propose solution in this case is the introduction of

a loss which can guarantee a translation operator which is invariant with respect to the Q

Values for the image (see fig. 2.15).
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Figure 2.16 Rapid Motor Adaptation Architecture [83]

2.4.2.3 Adaptation Module for Unmodelled Dynamics

Kumar et al. [83] based on the idea that extrinsic system dynamics are encoded in the history

of proprioceptive information as state-action pairs [84, 38], they train an adaptation module

in simulation that learns to predict the latent extrinsics vector zt which can be then be directly

deployed to the real-world setup (see fig. 2.16).

Qi et al. [85] apply the exact same principle for the task of in-hand object rotation where

the adaptation module allow for generalization to a diverse set of objects where the agent has

not been trained on.

2.4.2.4 Progressive Nets

Rusu et al. [86] propose the utilization of “Progressive Nets” (see fig. 2.17) as an effective

way to utilize the knowledge learned in simulation in reality. Progressive Nets allow a direct

access and reuse of the feature space of one domain to another rendering it an excellent

candidate for a sim2real scenario. This concept can be arbitrarily expanded in order to



2.4 Sim2Real Techniques in Robotics - A Taxonomy 73

Figure 2.17 Sim2Real through a modified Progressive Network [86]

accommodate multi-task and life-long learning with the additional benefit of allowing for

different input multi-modalities as the columns allow for heterogeneous data structures.

2.4.3 Real2Sim - Real World Data Utilization for Sim2Real

Utilizing real-world data for fine-tuning the simulation framework is one of the most predom-

inant techniques for Sim2Real, as closely matching the real-world dynamics and phenomena

allow for a seamless transition for an agent trained in simulation to the real-world.

This simulation/model parameter tuning is well studied problem and widely applied in

control engineering, traditionally under the “System Identification” nomenclature.

We see that an incorporation of real-world data for simulation/model fine-tuning within a

Reinforcement-Learning Sim2Real context is an integral part of numerous lines of works,

mostly in order to match the actuation dynamics, whose predictable behavior in simulation is

crucial for successful Sim2Real transfer.

2.4.3.1 Traditional System Identification (SysId)

System identification methodologies are commonly applied in many research works as an

attempt to minimize the Sim2Real gap by matching real-world dynamics.
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Tan et al. [58] proceed in an analytical system identification which includes a disassembly

of the Minitaur robot for measuring the dimensions and inertia characteristics which are then

incorporated to the URDF file. They additionally conduct experiments for identifying the

motor friction characteristics.

OpenAI [16] in their influential work in the Sim2Real field for manipulating a Rubik’s

Cube with a Dexterous Robot Hand, also apply system identification methodologies for

matching the coupled joint dynamics to the real-world configuration by minimizing the root

mean square error between simulated and real joint trajectories. Similar system identification

approaches can be found in [59, 46]

Zhang et al. [87] also employ system identification for matching the real-world dynamics

with the simulation, by utilizing the the computational speed of Julia and the Lyceum MoJoCo

wrapper.

2.4.3.2 Identifying Actuation Dynamics

Hwangbo et al. [61] in order to model the intricate actuator net (software/hardware) dynamics

for a quadruped robot they train an “actuator-net” with real-data for this purpose. This

“actuator-net” is utilized in simulation jointly with the stochastic rigid-body model of the

robot for training a policy. This policy is then directly deployed to the real-robot successfully.

2.4.3.3 Action Space Alignment for Real-World Deployment

Wu et al. [55] for learning the task of deformable objects manipulation they incorporate

real-world images of cloths in their training data-set. Additionally, as their action space is

defined as points in the image space, they need to align those points to with the real-world

robot actions. For doing so they collect a small number or data-points for linearly mapping

the robot coordinates to the image pixel locations.
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Figure 2.18 State-Action pair for implicit SysId with recurrent policy and value network

architectures [38]

2.4.3.4 Implicit SysId Policy Embedding

As covered previously in the domain-adaptation section for sim2real, it is possible to infer

information about the system dynamics based on the short history of state-action pairs,

as a sort of an on-line system identification procedure, which benefits the overall policy’s

robustness and generalization capabilities.

As Peng et al. [38] note though this approach might impose limitations in more complex

systems. They propose an implicit embedding of SysId through a recurrent policy model

where the internal memory encodes the information contained in the history of state and

actions, namely some useful information about the system dynamics. The authors therefore

pass through the recurrent policy (LSTM) only the features that are relevant to system

dynamics, whereas they propagate through forward networks all the rest for the policy and

value networks respectively (see fig. 2.18).
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2.4.3.5 Simulator Tuning for Sim2Real

Real-World data have been utilized in numerous research works in order to tune the simulation

parameters in order reduce the Sim2Real gap. For the most part, and as traditionally there have

been non-differentiable rigid-body physics engines mostly available, parameter tuning has

been relying on gradient-free methodologies, such as Bayesian optimization and Evolutionary

Algorithms [36].

Chen et al. [41] use such an evolutionary search algorithm (CMA-ES [88]) for searching

a set of optimal parameters in order to approximate as much as possible the real-world

reference trajectories. This process is performed with massive GPU based parallelization,

which speeds up the search, taking into advantage the inherit capabilities of the NVIDIA’s

Isaac Gym physics engine.

Collins et al. [36] attempt parameter tuning with Differential Evolution for a set of 5

physics engines including PyBullet, PyRep and V-Rep versions. Their strategy based on this

special version of Evolutionary Algorithm seems to be improving the performance across

all physics engines tested. Their methodology allowed an evaluation of the importance of

specific parameters, which they found to be the simulation time-step, lateral object friction

and joint maximum velocity.

Du et al. [89] attempt to search for for best fitting parameters for the simulation based

only on pure RGB observations from the real-world (see fig. 2.19). They formulate the

parameter tuning as a search problem, and they train a model as a binary classifier which

predicts the probability that the true parameters that generate the current trajectory are either

lower or higher than a given value.

2.4.3.6 Hybrid Sim & Real Reinforcement Learning

Kang et al. [90] attempt to learn a real-world control policy with simulated data and a limited

amount of real-world data. The authors suggest that the real world data and simulated data
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Figure 2.19 Simulation Parameters Tuning based only on RGB observations from the real-

world [89]

are offering complementary qualities, namely accuracy for real and diversity for sim. Thus

they proceed in learning the dynamics of the robot from the real-world data and leveraging

the simulation for learning a generalizable visual perception system. More concretely the

separately train a task-specific perception module in simulation which in turn they fix and

transfer it in the real-world setup for training the residual agent, which is based on an LSTM

network. Interestingly enough, due to the limited real-world data, the agent learns to predict

future rewards based on actions for a limited horizon. The action is picked for maximizing

the total horizon rewards in an MPC fashion.

2.4.3.7 Data-Augmentation with Imperfect Sim & Proxy Task Fine-Tuning

Zhang et al. [87] in order to tackle the demanding and delicate task of cherry-picking,

which requires a precise, reactive and robust agent, propose a multi-stage learning schema

which starts from training from a small amount of trajectories from a hand-written heuristic

controller, continues with enriching the sample trajectories with off-line simulated ones,

which are also domain-randomized, and concludes with a final fine-tuning in the real-world

on a “Proxy” task which is easy to repeat using an asynchronous updating policy. The

perception module is based on estimating the object centroid position from an Azure Kinect

RGB-D camera.
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2.4.3.8 Online Iterative Simulation Tuning and Policy Learning Tuning - Real2Sim2Real

Online BayesSim Possas et al. [91] use probabilistic inference to learn distributions over

simulation parameters conjointly with the controller in an end-to-end fashion for the task

of autonomous driving. They utilize likelihood-free inference (LFI) for Bayesian analysis

and they solve the inherent problem of high-conditionality for the state-action pairs by

embedding them through a Recurrent Neural Network which functions as a Mixture of

Gaussians estimator. This on-line tuning of the simulation parameters leads in increased

performance after only some rollouts in the real-world setup.

Grounding Simulation Learning (GSL) Farchy et al. [92] introduce the Grounding

Simulation Learning (GSL) algorithm for iteratively learning in simulation, deploying in to

the real world and finally utilizing this real-world experience for improving or “grounding”

the simulation in order to the consequently improve the policy through a more accurate and

consistent with reality training procedure. The authors report an overall 25% increase in the

walking speed of the Nao robot by utilizing this GSL approach.

Grounding Action Transformation (GAT) Hanna & Stone [93] inspired by the aforemen-

tioned GSL algorithm they propose the Grounding Action Transformation (GAT) algorithm

as an attempt to eliminate some fundamental limitations of GSL, most notably that the action

dynamics do not seem to be accounted in simulation. For this they introduce the modification

function g (see fig. 2.20), which conjointly learned, in order to estimate which action in

simulation will bring the system to the state that it would have been observed in reality. This

time the authors suggest a 43% increase in velocity again for the Nao robot.

Stochastic Grounded Action Transformation Desai et al. [94] inspired by [93], they

extend the GAT algorithm in order to account for the inherit stochasticity than naturally the

real-world setup embeds. This time the freal (see fig. 2.20) predicts a distribution over the
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Figure 2.20 Grounding Action Transformation (GAT) modification function g [93]

Figure 2.21 In the SGAT algorithm the freal learns to predict a distribution over the next

states [94]

next states instead of the “most likely next state” (see fig. 2.21). This approach when applied

again to the Nao robot demonstrates improved robustness during walking in uneven terrains,

when compared to GAT.

Mutual Alignment - Transfer Learning Wulfmeier et al. [95] propose a “mutual-

alignment” solution (see fig. 2.22) between simulation and real-world training based on

“auxiliary” rewards that guide the exploration in the real-world based on performance in

simulation. This approach aims to increase sample efficiency in the real-world by harnessing

learning in simulation in parallel.
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Figure 2.22 Mutual Alignment Transfer Learning [95]

Figure 2.23 Learning Inverse Dynamics [96]

2.4.4 Learning Inverse Dynamics for Sim2Real

By learning an inverse dynamics model it is possible to explicitly account for the discrepancy

between the simulated and real-world dynamics by learning to predict the actions that would

lead to a desired state as dictated by the source (simulation) domain [96, 97].

This concept is inversely related to the Grounding Action Transformation (GAT) pre-

sented in the previous section “Real2Sim - Real World Data Utilization for Sim2Real”.

2.4.5 High-Fidelity Simulation

Intuition suggests that a high-fidelity simulation framework with a photo-realistic rendering

pipeline and highly precise dynamics closely matching the real-world system dynamics
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should be beneficial for learning based methodologies and a sim2real transfer. Indeed this

has been suggested in the literature numerous times. Alghonaim and Johns [57] and as

pointed by Muratore et al. [21], they conclude that “a small number of high-quality images is

superior to a large number of low-quality images”. The simulation accuracy has been also a

point of debate in [19] where it was pre-juxtaposed in the conversation that a highly accurate

simulation of reality “remains a pipe-dream”, as everyone agreed that this would be arguably

beneficial overall, where “there is no alternative to accurate simulation” and generally there

has been strong argumentation against the “imprecise simulation”. On the same line of

thought [18, 20] also points that “simulators improvement is an essential requirement” as

even robust controllers would struggle matching the dynamics discrepancy.

Lastly photo-realistic rendering in simulation has been the objective of numerous research

works as sim2real transfer measure [98, 76] in order to train closer to reality.

2.4.5.1 The Case Against High-Fidelity Simulation

Although is seems that a general consensus has been reached, namely that a high-fidelity

simulation is a desired property, Truong et al. [99] challenge this core belief. They conclude

that higher simulation fidelity “does not enable learning better high-level visual navigation

policies” and that “dynamic policies tend to overfit to low-level simulation details”. They

also mention about the good transfer characteristics of the kinematic policies, as we analyse

in section about “expicit transferable abstractions”.

2.4.6 Hierarchical Reinforcement-Learning

One of the most important characteristics of the Machine Learning Breakthroughs was the

unsupervised, auto-built encoding of feature hierarchies that was taking place during training

[12]. One of the most important inherit architecture properties with the introduction of the

Convolution Neural Networks (CNNs) for Computer Vision, it was the feature hierarchies,
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from low level edge detection, to gradually shapes and objects, which was in close alignment

to the more traditional, manually crafted feature engineering that was taking place before.

This explainability layer of the presented features allowed for better understanding and easier

mass adoption into commercial applications.

Although this has been the norm with the Computer Vision pipelines, in the realm of

Reinforcement Learning for continuous control for dynamic systems we haven’t seen such

system hierarchical learning and for the most part the policy implementations remain an unin-

terpreted black-box which severely hinders targeted scientific and engineering advancements

and a consequent mass adoption in commercial applications.

Within the context of a Sim2Real pipeline for robotics such a hierarchical layering

would allow for a system decomposition where the high-level abstract layers could reason

seamlessly between simulation and reality and, with the low-level layers being susceptible to

the sim2real gap.

Such decomposition is in essence at the core of the “domain-adaptation”, “explicit

transferable abstractions” where such encoding is attempted either at the observation or

the action space. A holistic framework for Reinforcement Learning that would allow a

concrete fundamental handling as such is still largely missing and till recently it has been

underexplored with potentially the fields of “metal-learning” and “multi-task” learning

driving towards this same goal.

2.4.6.1 Multi-Task and Multi-Agent Systems

Shu et al. [100] propose a framework for hierarchical policies which autonomously decide

between exploitation of a previously learned policy and learning a new skill.

Julian et al. [101] propose skill decomposition as a direct solution to the sim2real transfer,

where they explicitly learn a set of “high-level” which in turn control “low-level” tasks (see

fig. 2.24).
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Figure 2.24 Hierarchical skill decomposition for sim2real transfer [101]

Wu et al. [55] learn a composite action space for pick-and-place where they factor the

policy as:

πfactor ≡ πpick(apick | o) ·πplace(aplace | o,apick)

Chen et al. [102] combine multiple dexterous sub-policies for dexterous manipulation

by learning a “Transition Feasibility Function” (see fig. 2.25) which is responsible for an

optimal “on-the-fly” of these. The authors report a “zero-shot” transfer to the real-world.

2.4.6.2 Decomposing the “What” from the “How”

A very interesting recent research direction on the problem of skill decomposition and

hierarchical learning structures is a problem formulation that examines separately the “What”

from the “How”[103]. This approach can be applied in a sim2real transfer scenario, where

the simulation environment is responsible for the “what” needs to be happened as an abstract

task long-horizon planner, without the “how” specifics which can be then analysed separately

in a later stage of the overall pipeline.
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Figure 2.25 Sequential Dexterity for Long-Horizon Manipulation [102]

2.4.7 Explicit Transferable Abstractions in Perception

By the term “explicit transferable abstraction” we refer to states or features that have the

property of one-to-one correspondence between simulation and reality. Usually these refer to

either (most usually) to the perception part and the observation space or the action space and

include pure geometric characteristics or a specifically designed feature space for a direct

sim2real correspondence. This characteristic property often times allows for a zero-shot

sim2real transfer.

2.4.7.1 Manual Observation Space Design

We proceed with a listing of some influential research works that make use of such represen-

tation for the observation space, enabling a direct sim2real transfer.
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Table 2.11 Examples of manually crafted “explicit transferable abstractions” for zero-shot

Sim2Real transfer.

Explicit Abstraction

Image Segmentation Mask and current configuration of the robot arm. Yan et al. [104]

Depth only readings from a depth camera, omitting the RGB component which would hinder

a direct sim2real transfer. Breyer et al.[50] Chen et al.[105]

Bounding Boxes for representation of obstacles. Zhang et al. [106]

2.4.7.2 Auto Feature Space Shaping for Sim2Real Transfer

Alternatively to a manual approach in feature shaping as an explicit sim2real transferable

abstraction, it is also common to auto-encode such representation with a sim2real discrepancy

minimization criterion as an encoding guidance.

Table 2.12 Examples of auto-encoded “explicit transferable abstractions” for zero-shot

Sim2Real transfer.

Explicit Abstraction

An intermediate representation of the observation is specifically designed for consistency

between simulation and reality for autonomous highly dynamic drone navigation. Kaufmann

et al. [107]
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Explicit Abstraction

A “hybrid discrete-continuous action representation for temporally-abstracted and

spatially-grounded object-centric action representation” is learned for 6D Non-Prehensile

Manipulation. Zhou et al. [108]

A continuum state representations is defined with “hand-crafted numerical states to encoded

image-based representations, with decreasing levels of induced task-specific knowledge”.

Petropoulakis et al. [109]

2.4.8 Privileged Information Training

One of the most important aspects when working with a simulated environment is access to

the full state. This can be exploited in order to train the value function with the privileged

information present in simulation and the policy function independently with the observation

that is actually gonna be present in the real-world. This “asymmetric actor-critic” [53]

framework has been part of numerous sim2real approaches [21, 110, 105, 111].

2.4.9 Imitation Learning & Human-in-the-Loop

In this section we examine the role of imitation learning and Human-in-the-Loop within

the scope of sim2real transfer. A very common usage of imitation learning schemes is

the inclusion of those as initial prior “seeds” for learning acceleration, especially under the

presence of sparse rewards [21, 54]. These demonstration can be either from human “teachers”

or from manually crafted controllers that take advantage of the privileged information present

in simulation.
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Figure 2.26 Collecting demonstration priors for consequent training in simulation [112]

Figure 2.27 Human operator for residual policy training with TRANSIC [113]

Li et al [62] use flipping demonstrations for inferring the task reward function and

consequently learning an agent by training in simulation.

Jiang et al. [113] with the “TRANSIC” framework employ a “human-in-the-loop” frame-

work for enabling a sim2real transfer. They are doing so by allowing human users to augment

and correct simulation policies in order to overcome any sim2real gaps.

2.4.10 Multi-Task Generalist Agents and Meta-Learning

As defined by Caruana [114] “Multitask Learning is an approach to inductive transfer that

improves generalization by using the domain information contained in the training signals

of related tasks as an inductive bias”. By using a shared-shaped representation the agent is
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force to encode optimally features that are able to readily transfer to new unforeseen tasks

[24]. Multitask learning has received a lot of attention in the research community.

This has immediate implications for Sim2Real transfer as a well trained generalist agent,

that has properly embedded transferable features, could easily adapt to a deployment into the

real-world.

We can observe direct connections to domain-randomization, where in the first case

the agent implicitly is forced to become a “generalist” with the exposure to randomized

environments. This has been observed and analysed by OpenAI [16] where the claim that this

exposure to diverse environments with the simultaneous use of a recurrent neural network

(LSTM) as an agent architecture gave rise to emergent metal-learning properties. More

concretely the authors in that case claim that this policy implicitly learned to update its belief

about the true transition probability P(st+1|st ,at).

Nagabandi et al. [115] introduce an online adaptation scheme to new tasks by incor-

porating meta-learning to train a dynamics model in way that it can rapidly adapt with the

introduction of new observations. The authors report remarkable robustness to even “crippled

body parts” where the agent is able to quickly online adapt it’s behavior.

2.4.10.1 LLMs - Foundation Models inspired Meta-Learning

With the advent of the recent success of LLMs, Visual-Language models and a quest for

“foundational models”, a lot of research work is focused in elaborating some of these tech-

niques in the realm of robotics.

Wang et al. [51] utilize LLMs for generating a large number of diverse tasks in simulation

for training generalist agents which are then able to perform long-horizon tasks in the

real-world, as the authors suggest (see fig. 2.28).
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Figure 2.28 GenSim generates numerous tasks in simulation automatically with the help an

LLM [51]

Figure 2.29 RoboCat as a “multi-task, multi-embodiment, visual goal-conditioned agent that

can self-improve” [117]

More recently “multi-model”, “multi-task” and “multi-embodiment” generalist agents

started to appear [116, 117] as clear trend towards foundational models for robotics setting a

clear research trend.

2.4.11 Curriculum & Lifelong Learning

In this section we are interested in how “curriculum” and “life-long” learning techniques can

be implemented and incorporated for sim2real transfer.

Curriculum learning is commonly incorporated in Reinforcement Learning as it allows

for a gradual increase in difficulty by changing the simulation environment characteristics.

This approach allows for better convergence, especially in the presence of sparse rewards
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[110]. For Sim2Real transfer curriculum learning has an immediate application where the

real-world environment could be seen as another evolution of the difficulty level of the

environment [118].

Life-long learning is also a widely researched topic with also an immediate application

on Sim2Real where such an approach would allow for learning to continue after deployment

in the real-world and thus auto adapt and fine-tune.

2.4.12 Sim2Real through Embodied Intelligence

An aspect that is generally overlooked under the Sim2Real prism is that of the affect of the

mechanical design of the robotic setup in the overall transfer from simulation to reality.

Dao et al. [70] make the crucial and usually very unexplored point with regards to

the effects of mechanical design, and most importantly the effects of compliant elements,

in this case springs, where they are able to transfer to real due to the compliant mechanics.

Similarly [41] note that the use of soft fingertips allow the system to be naturally more

compliance under it’s collision/contact/friction dynamics in combination with the manipu-

lated object, increasing the degree of tolerances and thus the chances of a successful sim2real

transfer.

The compliance effect for sim2real transfer was also noted by Beddow et al. [43] where

their usage of soft fingers “as their compliance inherently smoothed the forces” which is

closer to the MuJoCo soft constraints physics.

Compliance seems therefore to be an important factor for sim2real, as suggested by the

literature, and a more holistic approach that encompasses agent design conjointly with the

actual robotic mechanical design under an embedded intelligent design criterion should be

more thoroughly and formally researched.
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2.4.13 Zero-Effort Sim2Real

In numerous research articles there is an explicit mention of a “zero-shot” transfer from

Sim2Real which can be interpreted as due to the utilization of an effective Sim2Real strategy

that it did not require a further adaptation, fine-tuning down the line, or simply an inherit

property of the architecture and methodology that simply allowed for an “effortless” sim2real

transfer without any explicit sim2real technique.

2.4.13.1 Zero-Shot Generalization

Kansky et al. [119] introduce the “Schema Networks” which are able to learn the underlying

world model dynamics and consequently exploit them in order to achieve the desired goals.

This understanding of the world-model allow for a zero-shot generalization as the authors

suggest in “Sim2Sim” arcade game scenarios.

Valassakis et al. [120] try to analyse the “zero-shot” transfer criteria and requirements

for a “zero-shot” sim2real transfer. They focus in transfer of the system dynamics and for

that they employ again explicit transferable abstractions in the perception and propriocep-

tion observation space. They demonstrate good sim2real transferability under adversarial

randomization training in simulation.

2.4.13.2 Zero-Effort as an Inherit Architecture Property

We observe that usually when there seems to be a “zero-effort” sim2real transfer, it usually

incorporates an architecture that includes explicit transferable abstractions in the observations

space, either through manual feature assignment or some auto-encoding scheme which favors

spacial and non-dynamic characteristics. We analyse some of these “explicit transferable

abstraction” related works in the corresponding section.
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2.4.14 Real2Real (SimFree)

This section showcases a line of work that does not utilize any form of simulation for

training, but it rather learns directly from real-world demonstrations, in a sample-efficient

manner, through some form of imitation learning scheme. This, rather provocatively, raises

the question on the ultimate necessity of training in simulation, at least for some cases of

robotic employment scenarios [121–124, 23, 125].

2.5 Physics Engines & Simulation Frameworks for Sim2Real

Physics Engines and the Simulation Frameworks for Robotics wrapped around the former

lie at the core of the Sim2Real pipeline. Physics Engines and the surrounding software

tooling for rendering has been predominantly a product of the 3D gaming explosion of

the 90s. This fundamental development timeline for the gaming industry usually meant

that the physics should mostly look realistic enough, be robust and stable as well as fast

to compute. This of course creates fundamentally a Sim2Real discrepancy. Despite that

physics engines such for rigid body dynamics, such as the Open Dynamics Engine [126] or

Bullet [127], have been in common usage among the robotics community even before the

Machine and Reinforcement Learning dominance, during the more model-based era. Since

the major breakthroughs in Reinforcement Learning for continuous control, which started

from evaluation in simple dynamic simulated environments such as arcade video games and

toy dynamic 2D environments, we have seen major deployment of those aforementioned

rigid-body dynamics engines for training, as they most closely match a real-world setup with

potential for a consequent deployment and evaluation (fig. 2.30).

Physics Engines and Simulation Frameworks are increasingly developing in more com-

plex highly sophisticated integral components of the learning community for robotics control
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Figure 2.30 Reinforcement Learning Control for Continuous Dynamics. From toy examples

in simulation to real-world robotic actuation.

and are gradually advancing and are incorporating advanced dynamic capabilities and rich

tool-chains for robotics control.

2.5.1 Choosing a Physics Engine for Robotics Simulation

Choosing a physics engine for training for a robotic application with a sim2real pipeline in

mind can be a complex process and requires a lot of parameters that need to be taken into

account.

Even starting with typical robotic tasks in non-dynamic situations that involve rigid-body

dynamics the differences between physics engines can be significant [128, 21].

Ivaldi et al. [129] have conducted a simulation usage survey among robotics concerned

users, with a quite thorough questionnaire at the year 2014. In this work there has been

an attempt to infer the most important features and criteria that roboticists prioritize when

choosing a physics engine and they have tried to categorize the most predominant physics

engines of the era based on this user feedback. Interestingly enough one of the most requested
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improvement was the realisticity of the simulator, without though differentiating between

rendering photorealism and dynamics. Although at the moment 10 years have gone by, it

still seems that most the core issues with regard to physics engines, simulation frameworks

and robotics research remain.

Erez et al. [130] have made significant efforts to compare between the most dominant

rigid-body simulation frameworks Bullet, Havok, MuJoCo, ODE, PhysX with introduction

of quantitative measures and multiple ablative testing in different robotic task scenarios.

Collins et al. [131] have explicitly compared three physics engines, namely, MuJoCo

[132], PyBullet [127] and the V-Rep [133] environment against a real-world setup for

determining quantitatively the Sim2Real gap for manipulated oriented tasks. The work

concludes that the simulation of the kinematic model and control of the manipulators is

“largely solved” and points to the problematic nature of simulated interaction between

objects where the simulated dynamics fail to track.

Korber et al. [134] also make a comparison study, this time between Gazebo, MuJoCo,

PyBullet and Webots and with the scope of robotics and reinforcement learning, with the

later translating mostly about performance characteristics under heavy parallelization.

Lastly [37] make an ablative study for comparing the MuJoCo, Bullet, Flex, and SOFA

for deformable object simulation, where they state that MuJoCo was able to track better the

real cloth dynamics.

2.5.2 AI Enhanced Physics Engines for Sim2Real

There have been numerous attempts to utilize some of the latest data-driven learning method-

ologies for augmenting the dynamics of the physics engines in order to compensate for

residual unmodeled phenomena and thus bridging the Sim2Real gap.

Golemo et al. [135] with their Neural-Augmented Robot Simulation are able to learn the

sim2real discrepancies when running the same actions in sim and real. They train and LSTM
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Figure 2.31 Neural-Augmented Robot Simulation [135]

Figure 2.32 Potential AI-Augmented Physics Engines Schemas [137]

model based on these differences which they then deploy adjointly to the simulation in order

to get more accurate and realistic state transitions (see fig. 2.31).

Ajay et al. [136] are focusing in enhancing the contact dynamics, as they are one of, if

not the most, problematic source of sim2real discrepancies. They propose a hybrid dynamics

model, the “simulator-augmented interaction networks (SAIN)”, where they combine a

physics engine with an object-based neural network for dynamics modeling.

Heiden et al. [137, 138] introduce the “NeuralSim” augmenting a differentiable rigid-

body physics engine with neural networks (see fig. 2.32).

Zeng et al. learn to model residual physics which are necessary in order to achieve the

highly dynamic task of grasping objects and tossing them to a desired box location. The

system predicts grasping and throwing motion primitives in an open-loop non reactive manner

by self supervised training in simulation and the real-world.
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Figure 2.33 Hybrid Architectures for combining analytical and data-driven leaned residual

physics [139]

Ota et al. [140] also learn residual physics, where they utilize MuJoCo for providing the

analytic model which is then corrected using Gaussian process regression.

2.5.3 Physics Enhanced AI

A very interesting research direction, this time to the opposite direction in comparison the

the previous subsection “AI Enhanced Physics”, is the “Physics Enhanced AI” for inducing

strong physical laws as learning priors in order to increase the modeling accuracy, such as

the “Lagrangian Neural Nets” [141, 142] or the “Hamiltonian Neural Nets” [143]

2.5.4 Differentiable Simulation

As the Deep Learning Architectures became predominant in Machine Learning there has been

a rising interest in automatic differentiation, as the training of those relies on backpropagation

in deep and non-linear networks.

It would be therefore appealing also for being able to automatically differentiate physics

engines in order to be able to tune its parameters through some iterative gradient descent

schema as a way to easily perform system identification, controller tuning, such as adap-
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Figure 2.34 DiffTaichi allows for integration of a neural network controller and a physical

simulation module [151]

Figure 2.35 GradSim pipeline allows for end-to-end training of visuomotor policies[152]

tive MPC or Reinforcement Learning Agent training, even during robot development for

determining its geometries and dynamics [144–150].

Hu et al. [151] present DiffTaichi which is a programming language specifically for

assembling differentiable physics simulations (fig. 2.34). DiffTaich supports massive paral-

lelization with GPU.

Jatavallabhula et al. [152] after auto-differentiating NVIDIA’s flex, which is a physics

engine for fast FEM simulation, for producing “dflex”, they extend to a differentiable renderer

as well for an end-to-end visuomotor policy training for controlling deformable structures

(see fig. 2.35). Heiden et al. [148] also apply similar methodology, with the “DiSECt” project

for learning policies for allowing cutting with a robotic enabled knife in simulation. Both

of the aforementioned lines of work are limited in simulation trials. A similar pipeline and

methodology in the real-world is developed for applying system identification by Arnavaz

et al.[153] in an end-to-end fashion, namely from depth to simulation parameters for soft

robotic fingers.
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Xu et al. [154] demonstrate the effectiveness of differentiable simulation for accelerating

policy learning with parallel differentiable simulation and they report 17 fold decrease in

training time when compared to the best alternative baseline.

2.5.5 Material Deformations & Failure Modes

As the real-world is non-rigid, for the most part, rigid body physics engines, even in an

ideal-state, which they are not, introduce a sim2real gap.

There has been a very strong research effort towards the simulation and control of

deformable objects [37, 155–157].

Xian et al. [158] introduce “FluidLab” which is a differentiable environment for complex

fluid robotic manipulation.

Material failure does not seem to receive much attention in simulation and is hardly ever

discussed, with some notable exceptions [148].

2.5.6 A Taxonomy on Physics Engines

Deciding on investing in a Simulation Framework for the robotics application at hand can be

a very overwhelming experience as a large number of options exist in the market and a large

number of considerations needs to be taken into account, which requires highly specialized

knowledge, which is hard to practically obtain.

In this section we attempt to list all the currently available physics engines and simulation

frameworks for robotics applications, divided in a set of 9 main categories, namely:

• Representation-Agnostic Physics Simulation

• Physics Engines - Simulation Frameworks with Advanced Features for Learning

• Physics Engines - Rigid Body Dynamics

• Meta-Simulation Frameworks

• Simulation Frameworks for Soft Bodies and Deformable Bodies Simulation
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• Frameworks allowing for complex multi-physics modeling

• Frameworks allowing for complex multi-physics modeling

• Libraries & Tools for Robotics Modeling & Simulation

• Physics Engines and Simulation Frameworks for the Web

• Physics Engines Misc.

This aims to be a helpful initial orientation guide for choosing the right software simula-

tion framework in a robotics related application.

2.5.6.1 Representation-Agnostic Physics Simulation

Table 2.13 Representation-Agnostic Physics Simulation Frameworks.

Simulation

Frame-

work Description

NVIDIA

Kaolin

PyTorch API for working with a variety of 3D representations and includes

a growing collection of GPU-optimized operations such as modular

differentiable rendering, fast conversions between representations, data

loading, 3D checkpoints, differentiable camera API, differentiable lighting

with spherical harmonics and spherical gaussians, powerful octree

acceleration structure called Structured Point Clouds, interactive 3D

visualizer for jupyter notebooks, convenient batched mesh container,

quaternion operations, representation-agnostic physics simulation It

includes reduced elastic simulations of 3D objects in any geometric

representation such as 3D Gaussian Splats, SDFs, point-clouds, and even

medical scans. Our mesh-free, grid-free method utilizes implicit neural

fields to construct a physics-aware subspace of the object via our data-free

training process using the latest Simplicits method.

https://developer.nvidia.com/kaolin
https://developer.nvidia.com/kaolin
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2.5.6.2 Physics Engines - Simulation Frameworks with Advanced Features for Learn-

ing

In this category we fetch a set of the most recent and advanced physics engines and simulation

frameworks for robotics with incorporate features relevant for machine and reinforcement

learning such as, CPU, TPU GPU parallelization and differentiability or any other learning

related feature.

Table 2.14 Advanced Physics Engines towards Learning.

Simulation

Frame-

work Description

MuJoCo MuJoCo is a free and open source physics engine that aims to facilitate

research and development in robotics. Designed for the purpose of

model-based optimization, and in particular optimization through

contacts. It features simulation in generalized coordinates, avoiding joint

violations, Inverse dynamics that are well-defined even in the presence of

contacts, constraints include soft contacts, limits, dry friction, equality

constraints, simulation of particle systems, cloth, rope and soft objects,

actuators including motors, cylinders, muscles, tendons, slider-cranks,

choice of Newton, Conjugate Gradient, or Projected Gauss-Seidel solvers,

Euler or Runge-Kutta numerical integrators, multi-threaded sampling and

finite-difference approximations, MyJoCo Python Bindings. Around

MuJoCo the “dm_control” software stack offers environments for

Reinforcement Learning training. Lastly the MuJoCo MPC is a software

framework for real-time predictive control. MuJoCo includes MuJoCo

XLA (MJX) under the mjx directory. MJX allows MuJoCo to run on

compute hardware supported by the XLA compiler via the JAX framework.

MJX runs on a all platforms supported by JAX: Nvidia and AMD GPUs,

Apple Silicon, and Google Cloud TPUs.

https://mujoco.org/
https://github.com/google-deepmind/mujoco/tree/main/mjx
https://www.tensorflow.org/xla
https://github.com/google/jax#readme
https://jax.readthedocs.io/en/latest/installation.html#supported-platforms
https://cloud.google.com/tpu
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Simulation

Frame-

work Description

NVIDA

Isaac

Sim

NVIDIA Isaac Sim™ is a reference application enabling developers to

design, simulate, test, and train AI-based robots and autonomous

machines in a physically-based virtual environment.Isaac Sim, built on

NVIDIA Omniverse, is fully extensible, enabling developers to build their

own Universal Scene Description (OpenUSD)-based custom simulators or

integrate core Isaac Sim technologies into their existing testing and

validation pipelines.NVIDIA Isaac Lab is a lightweight sample

application built on Isaac Sim and optimized for robot learning that’s

pivotal for robot foundation model training. Isaac Lab optimizes

reinforcement, imitation, and transfer learning and can train all types of

robot embodiments, including the Project GR00T foundation model for

humanoids.

brax Brax is a fast and fully differentiable physics engine used for research and

development of robotics, human perception, materials science,

reinforcement learning, and other simulation-heavy applications.Brax is

written in JAX and is designed for use on acceleration hardware. It is both

efficient for single-device simulation, and scalable to massively parallel

simulation on multiple devices, without the need for pesky

datacenters.Brax simulates environments at millions of physics steps per

second on TPU, and includes a suite of learning algorithms that train

agents in seconds to minutes 1) Baseline learning algorithms such

as PPO, SAC, ARS, and evolutionary strategies2) Learning algorithms that

leverage the differentiability of the simulator, such as analytic policy

gradients. Brax offers four distinct physics pipelines that are easy to swap:

MuJoCo XLA - MJX, Generalized, Positional and Spring.

https://developer.nvidia.com/isaac
https://developer.nvidia.com/isaac
https://developer.nvidia.com/isaac
https://github.com/google/brax
https://github.com/google/brax/blob/main/brax/training/agents/ppo
https://github.com/google/brax/blob/main/brax/training/agents/sac
https://github.com/google/brax/blob/main/brax/training/agents/ars
https://github.com/google/brax/blob/main/brax/training/agents/es
https://github.com/google/brax/blob/main/brax/training/agents/apg
https://github.com/google/brax/blob/main/brax/training/agents/apg
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Simulation

Frame-

work Description

jaxsim JaxSim is a differentiable physics engine and multibody dynamics

library designed for applications in control and robot learning,

implemented with JAX. Its design facilitates research and accelerates

prototyping in the intersection of robotics and artificial intelligence.

Physics engine in reduced coordinates supporting fixed-base and

floating-base robots. Multibody dynamics library providing all the

necessary components for developing model-based control algorithms.

Completely developed in Python with google/jax following a functional

programming paradigm. Transparent support for running on CPUs, GPUs,

and TPUs. Wide range of fixed-step explicit Runge-Kutta integrators.

Support for variable-step integrators implemented as embedded

Runge-Kutta schemes. Soft contacts model supporting full friction cone

and sticking-slipping transition. Being developed with JAX, all the RBDAs

support automatic differentiation both in forward and reverse modes. All

fixed-step integrators are forward and reverse differentiable. Ideal for

sampling synthetic data for reinforcement learning (RL). Ideal for

designing physics-informed neural networks (PINNs) with loss functions

requiring model-based quantities. Ideal for combining model-based control

with learning-based components. JaxSim currently focuses on locomotion

applications. Only contacts between bodies and smooth ground surfaces

are supported. Ideal for combining model-based control with

learning-based components.

https://github.com/ami-iit/jaxsim
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Simulation

Frame-

work Description

PhysX NVIDIA’s PhysX is a real-time physics engine widely used in gaming,

simulation, and robotics applications for its ability to handle complex

physical interactions and high-performance computations. PhysX provides

FEM soft body simulation, cloth, particles, and fluid simulation with

two way coupled interaction under a unified solver framework. PhysX

simulations can run on a wide range of platforms, from low-power mobile

CPUs to high-end GPUs. This includes a new GPU API designed for

end-to-end GPU-based reinforcement learning through Isaac Lab (prev.

Isaac gym). Through collision detection and the solver, PhysX offers

simulation stability for more robust stacking and joints. PhysX also

includes momentum conservation for the articulation system and

gyroscopic forces in the rigid body system. Reduced coordinate

articulations provide a linear-time, guaranteed joint-error-free simulation of

a tree of rigid bodies. PhysX’s implementation closely matches analytical

models. Finite Element Method (FEM) soft bodies simulate

measurable properties of hyperelastic materials to form an accurate

and efficient model of elastic deformable bodies. Signed Distance Field

based collision representation allows PhysX to simulate non-convex shapes

like gears and cams without convex decomposition. NVIDIA PhysX SDK

includes Blast, a destruction and fracture library.

NVIDIA

warp

Warp auto- differentiable Python developer framework for writing

high-performance simulation and spatial computing graphics GPU code

for GPUs. Warp takes regular Python functions and JIT compiles them to

efficient kernel code that can run on the CPU or GPU.Warp is designed for

spatial computing and comes with a rich set of primitives that make it easy

to write programs for physics simulation, perception, robotics, and

geometry processing. In addition, Warp kernels are differentiable and can

be used as part of machine-learning pipelines with frameworks such as

PyTorch and JAX. Warp generates a forward and backward (adjoint)

version of each kernel definition. The backward version of a kernel can be

used to compute gradients of loss functions that can be back propagated to

machine learning frameworks like PyTorch.

https://www.nvidia.com/en-us/drivers/physx/physx-9-19-0218-driver/
https://github.com/NVIDIA/warp
https://github.com/NVIDIA/warp
https://en.wikipedia.org/wiki/Spatial_computing
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Simulation

Frame-

work Description

Taichi Taichi Lang is an open-source, imperative, parallel programming

language for high-performance numerical computation. It is embedded

in Python and uses just-in-time (JIT) compiler frameworks, for

example LLVM, to offload the compute-intensive Python code to the

native GPU or CPU instructions. The language has broad applications

spanning real-time physical simulation, numerical computation,

augmented reality, artificial intelligence, vision and robotics, visual

effects in films and games, general-purpose computing, and much

more. Taichi Lang shares almost the same syntax with Python, allowing

you to write algorithms with minimal language barrier. It is also well

integrated into the Python ecosystem, including NumPy and PyTorch. It

provides a set of generic data containers known as SNode (/snod/), an

effective mechanism for composing hierarchical, multi-dimensional fields.

This can cover many use patterns in numerical simulation (e.g. spatially

sparse computing). With the ti.kernel decorator, Taichi Lang’s JIT compiler

automatically compiles your Python functions into efficient GPU or CPU

machine code for parallel execution. Currently, Taichi Lang supports most

mainstream GPU APIs, such as CUDA and Vulkan. A cross-platform,

Vulkan-based 3D visualizer, differentiable programming, quantized

computation (experimental), etc.

SAPIEN SAPIEN is a realistic and physics-rich simulated environment that hosts a

large-scale set for articulated objects. It enables various robotic vision and

interaction tasks that require detailed part-level understanding. SAPIEN is

a collaborative effort between researchers at UCSD, Stanford and SFU.

SAPIEN Engine provides physical simulation for articulated objects. It

powers reinforcement learning and robotics with its pure Python

interface. SAPIEN provides rasterized and ray traced rendering with

Vulkan. SAPIEN releases PartNet-Mobility dataset, which is a collection

of 2K articulated objects with motion annotations and rendernig material.

The dataset powers research for generalizable computer vision and

manipulation. The entire stack is “as open-source as possible”.

https://github.com/yuanming-hu/taichi
https://sapien.ucsd.edu/
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Simulation

Frame-

work Description

EAGERx EAGERx (Engine Agnostic Graph Environments for Robotics) to easily

define new (Gymnasium compatible) environments with modular robot

definitions. It enables users to: Define environments as graphs of nodes

Visualize these graph environments interactively in a GUI Use a single

graph environment both in reality and with various simulators EAGERx

explicitly addresses the differences in learning between simulation and

reality, with native support for essential features such as: Safety layers and

various other state, action and time-scale abstractions Delay simulation &

domain randomization Real-world reset routines Synchronized parallel

computation within a single environment

Tiny-

differentiable-

simulator

Tiny Differentiable Simulator is a header-only C++ (and CUDA) physics

library with zero dependencies.It currently implements various rigid-body

dynamics algorithms, including forward and inverse dynamics, as well as

contact models based on impulse-level LCP and force-based nonlinear

spring-dampers. Actuator models for motors, servos, and Series-Elastic

Actuator (SEA) dynamics are implemented.The entire codebase is

templatized so you can use forward- and reverse-mode automatic

differentiation scalar types, such as CppAD, Stan Math fvar and

ceres::Jet. The library can also be used with regular float or double

precision values. Another option is to use the included fix-point integer

math, that provide cross-platform deterministic computation.TDS can run

thousands of simulations in parallel on a single RTX 2080 CUDA GPU at

50 frames per second.

2.5.6.3 Physics Engines - Rigid Body Dynamics

This list contains what is probably now considered a “classic” physics engine for rigid-body

and multi-body dynamics simulation. These physics engines are stemming from usage in the

gaming industry and are mostly concerned with delivering a realistic feel to the eye, rather

than accuracy, numerical stability and speed, requirements necessary for gaming applications.

Nevertheless, these physics engines have become an invaluable tool in robotics, in both

a more classical model-based design paradigm as well as a more modern data-driven and

https://eagerx.readthedocs.io/en/master/
https://github.com/eager-dev/eagerx
https://gymnasium.farama.org/
https://github.com/erwincoumans/tiny-differentiable-simulator
https://github.com/erwincoumans/tiny-differentiable-simulator
https://github.com/erwincoumans/tiny-differentiable-simulator
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“learning” approach. Most of these implementations are inspired by Roy Featherstone’s book

“Rigid Body Dynamics Algorithms” [159].

Table 2.15 “Traditional” Rigid Body Dynamics Physics Engines

Physics

Engines Description

Drake Drake is a C++ toolbox, with Python bindings, created for

model-based design and verification in robotics. Drake’s most

important component is its physics engine, which provides

state-of-the-art implementations of rigid and compliant body physics.

Drake’s physics engine focuses on robust numerics for contact

mechanics, using a method called hydroelastic contact to

simulate contact forces. This method calculates contact over

finite-area patches between objects instead of using the conventional

“contact point” method. Hydroelastic contact more realistically

simulates the deformation of objects in contact by precalculating a

“pressure field” throughout the interior volume of a compliant object.

In addition to the physics engine, Drake offers a “systems

framework” for building and combining systems from a library using

a block diagram approach. Drake also provides an optimization

framework that can be used to solve problems such as trajectory

optimization and parameter estimation. Drake is open-source and

supported by the Toyota Research Institute.

Bullet The Bullet physics engine is an open-source physics engine used in

games, visual effects, robotics, and machine learning.Bullet uses a

Sequential Impulse constraint solver. It works by iteratively applying

impulses (instantaneous changes in momentum) to objects to satisfy

constraints, such as collisions or joints. Bullet includes: 1) Rigid

body dynamics 2) Collision detection 3) Constraint solving: Bullet

can handle various constraints, such as joints (like hinges or

ball-and-socket joints) and contact constraints that prevent objects

from penetrating each other.Bullet Physics offers support for

simulating elastic deformations in objects using the Finite Element

Method.Furthermore, a python API is offered, namely the

“pybullet”.

https://drake.mit.edu/
https://github.com/bulletphysics/bullet3
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Physics

Engines Description

ODE ODE is an open source, high performance library for simulating

rigid body dynamics. It is fully featured, stable, mature and platform

independent with an easy to use C/C++ API. It has advanced joint

types and integrated collision detection with friction. ODE is useful

for simulating vehicles, objects in virtual reality environments and

virtual creatures. It is currently used in many computer games, 3D

authoring tools and simulation tools.

DART Nimble, developed at Stanford, is an analytically differentiable fork

of the popular DART physics engine. That means everything from

fast Jacobians of dynamics, to using a physical timestep as a

non-linearity in your PyTorch neural networks.

RaiSim RaiSim is a cross-platform multi-body physics engine for robotics

and AI. It fully supports Linux, Mac Os, and Windows. RaiSim is

closed-source and is distributed under a few different types of

license. RaiSim is a physics engine developed by RaiSim Tech Inc. It

is designed to provide both the accuracy and speed for simulating

robotic systems. However, it is a generic rigid-body simulator and

can simulate any rigid body very efficiently. RaiSim seems to be

used predominantly for legged robots and mobile platforms.

OpenRAVE OpenRAVE provides an environment for testing, developing, and

deploying motion planning algorithms in real-world robotics

applications. The main focus is on simulation and analysis of

kinematic and geometric information related to motion planning.

OpenRAVE’s stand-alone nature allows is to be easily integrated into

existing robotics systems. It provides many command line tools to

work with robots and planners, and the run-time core is small

enough to be used inside controllers and bigger frameworks. An

important target application is industrial robotics automation.

Newton

Dynamics

Newton Dynamics is a cross-platform life-like physics simulation

C++ library. It can easily be integrated into game engines and other

applications and provides top of it’s class performance and

simulation stability. Ongoing development and a permissive license

makes Newton Dynamics a top choice for all kinds of projects from

scientific projects to game engines. Newton Dynamics implements a

deterministic solver, which is not based on traditional LCP or

iterative methods, but possesses the stability and speed of both

respectively. This feature makes Newton Dynamics a tool not only

for games, but also for any real-time physics simulation.

https://www.ode.org/
https://dartsim.github.io/
https://raisim.com/
http://openrave.org/
https://newtondynamics.com/forum/newton.php
https://newtondynamics.com/forum/newton.php
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Physics

Engines Description

havok Havok is a commercial physics engine primarily used for game

development with three leading product offerings: Havok

Navigation, Havok Cloth and Havok Physics. It also offers

integrations for all these products in the Unreal Engine as well as a

Havok Physics implementation in Unity. Havok Physics offers the

Havok Visual Debugger tool to empower you with rich capturing,

profiling and debugging abilities. Havok offers world–class

support for all our products. We have teams in Europe, North

America and Japan, so there is always someone in your time zone to

cater to your needs.

Simbody Simbody is a high-performance, open-source toolkit for science- and

engineering-quality simulation of articulated mechanisms, including

biomechanical structures such as human and animal skeletons,

mechanical systems like robots, vehicles, and machines, and

anything else that can be described as a set of rigid bodies

interconnected by joints, influenced by forces and motions, and

restricted by constraints. Simbody includes a multibody dynamics

library for modeling motion in generalized/internal coordinates in

O(n) time. This is sometimes called a Featherstone-style physics

engine. Simbody provides a C++ API that is used to build

domain-specific applications; it is not a standalone application itself.

For example, it is used by biomechanists in OpenSim, by roboticists

in Gazebo, and for biomolecular research in MacroMoleculeBuilder

(MMB). Python wrappers for the SimTK core libraries do exist

under the name “PySimTK”.

React

Physics

3D

ReactPhysics3D is a C++ physics engine library that can be used in

3D simulations and games. The library is developed by Daniel

Chappuis and is released under the open-source ZLib license. It

features, Rigid body dynamics, Discrete collision detection,

Collision shapes (Sphere, Box, Capsule, Convex Mesh, Static

Concave Mesh, Height Field), Multiple collision shapes per body,

Broadphase collision detection (Dynamic AABB tree), Narrowphase

collision detection (SAT/GJK), Collision response and friction

(Sequential Impulses Solver), Joints (Ball and Socket, Hinge, Slider,

Fixed), Collision filtering with categories, Ray casting and Sleeping

technique for inactive bodies.

https://www.havok.com/havok-physics/
https://github.com/simbody/simbody
https://github.com/DanielChappuis/reactphysics3d
https://github.com/DanielChappuis/reactphysics3d
https://github.com/DanielChappuis/reactphysics3d
http://opensource.org/licenses/zlib
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Physics

Engines Description

Rigid

Body

Dynamics

RigidBodyDynamics.jl is a rigid body dynamics library in pure

Julia. It aims to be user friendly and performant, but also generic

in the sense that the algorithms can be called with inputs of any

(suitable) scalar types. This means that if fast numeric dynamics

evaluations are required, a user can supply Float64 or Float32

inputs. However, if symbolic quantities are desired for analysis

purposes, they can be obtained by calling the algorithms with

e.g. SymPy.Sym inputs. If gradients are required, e.g. the

ForwardDiff.Dual type, which implements forward-mode

automatic differentiation, can be used.

siconos Siconos is an open-source scientific software package for modelling

and simulation of nonsmooth dynamical systems in C++ and

Python. Our main applications are mechanical systems (rigid or

solid) with unilateral contact and Coulomb friction and impact

(nonsmooth mechanics, contact dynamics, multibody systems

dynamics or granular materials).Other constitutive models are being

developed to model plasticity, damage, cohesive zones.

Robotics

Library

The Robotics Library (RL) is a self-contained C++ library for robot

kinematics, motion planning and control. It covers mathematics,

kinematics and dynamics, hardware abstraction, motion planning,

collision detection, and visualization.It is being used by several

research projects (e.g., JAHIR, JAMES, JAST, SMErobotics) and in

education, available under a BSD license, and free for use in

commercial applications.RL can be run on all machines from

real-time patched Linux to Windows desktop PCs. It uses CMake as

a build system, may be compiled with GCC and Visual Studio.

https://github.com/JuliaRobotics/RigidBodyDynamics.jl
https://github.com/JuliaRobotics/RigidBodyDynamics.jl
https://github.com/JuliaRobotics/RigidBodyDynamics.jl
https://github.com/JuliaRobotics/RigidBodyDynamics.jl/blob/master/docs/src/benchmarks.md
https://github.com/JuliaPy/SymPy.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://en.wikipedia.org/wiki/Automatic_differentiation
https://github.com/siconos/siconos
https://www.roboticslibrary.org/
https://www.roboticslibrary.org/
https://www6.in.tum.de/en/research/jahir
https://www.fortiss.org/en/research/projects/james
https://www6.in.tum.de/en/research/jast
https://www.fortiss.org/en/research/projects/smerobotics
https://www.roboticslibrary.org/license
https://www.roboticslibrary.org/tutorials/build-ubuntu
https://www.roboticslibrary.org/tutorials/install-windows


110 Sim2Real in Robotics - A Literature Survey

Physics

Engines Description

npphysics npphysics is a physics engine designed for the Rust programming

language, supporting 2D and 3D simulations. It supports rigid body

dynamics, deformable bodies and continuous collision detection. It

also allows the simulation of deformable bodies, employing either a

mass-spring system or the finite-element method. To cater to

different accuracy and performance needs, the engine offers a

selection of contact models, such as the Signorini and approximate

Signorini-Coulomb models. It also facilitates interaction handling by

providing access to collision events, empowering developers to

implement custom logic based on object interactions. Additionally,

it features sensors, specialized colliders designed to detect proximity.

To ensure robust collision detection, even for rapidly moving objects,

nphysics incorporates continuous collision detection (CCD) support

for both standard colliders and sensors.

Trep Trep is a Python module for modeling articulated rigid body

mechanical systems in generalized coordinates. Trep supports basic

simulation but it is primarily designed to serve as a calculation

engine for analysis and optimal control algorithms that require 1st

and 2nd derivatives of the system’s dynamics. ROS users can now

get trep binaries directly from the ROS repositories. Check the

python_trep wiki page for more information.

Matali

Physics

Matali Physics is an advanced, modern, multi-platform,

high-performance 3d physics environment intended for games, VR,

AR, physics-based simulations and robotics. Matali Physics consists

of the 3d physics engine Matali Physics Core and other

physics-driven modules. It supports destructible scenes and

deformable triangle meshes. Commercially Licensed and Written

in native, modern C++.

IBDS The IBDS physics library is a C++ library for the dynamic

simulation of multi-body systems. The library is open source, under

the zlib license, and is therefore free for commercial use. IBDS

simulates rigid bodies, particles, collisions (with static and dynamic

friction), and many different joint types. IBDS stands for

Impulse-Based Dynamic Simulation. IBDS also stands for Institut

für Betriebs- und Dialogsysteme, the University of Karlsruhe

institute where IBDS was developed.

https://nphysics.org/
https://murpheylab.github.io/trep/
http://wiki.ros.org/python_trep
https://www.google.com/search?q=Matali+Physics&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=Matali+Physics&sourceid=chrome&ie=UTF-8
https://animation.rwth-aachen.de/software/ibds-physics-library/
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Physics

Engines Description

RBDL The Rigid Body Dynamics Library (RBDL) contains code for both

forward and inverse dynamics for kinematic chains and branched

models. It includes 1) Recursive Newton Euler Algorithm (RNEA)

2) Composite Rigid Body Algorithm (CRBA) 3) Articulated Body

Algorithm (ABA). RBDL is written in C++ and it also contains

python bindings.

Klampt Klamp’t is a cross-platform software package for modeling,

simulating, planning, and optimization for complex robots,

particularly for manipulation and locomotion tasks. It has been

developed at Indiana University since 2009 primarily as a research

platform, and has been used in classrooms beginning in 2013. It has

been used in several real-world projects, including the Amazon

Picking Challenge, TeamHubo in the DARPA Robotics Challenge,

and was the platform for the IROS 2016 Robot Grasping and

Manipulation Challenge simulation track. Supports legged and

fixed-based robots. Built in models NASA ATHLETE, Rethink

Robotics Baxter, AIST HRP-2, Willow Garage PR2, KAIST

Hubo-II+, Robonaut 2, Staubli TX90, Puma 760, Robotiq Adaptive

Gripper. Forward and inverse kinematics, forward and inverse

dynamics Contact mechanics computations: force closure, support

polygons, stability of rigid bodies and actuated robots.

RBDyn RBDyn provides a set of classes and functions to model the

dynamics of rigid body systems in C++ and with python bindings as

well.This implementation is based on Roy Featherstone Rigid Body

Dynamics Algorithms book and other state of the art publications.

Jolt

Physics

A multi core friendly rigid body physics and collision detection

library. Suitable for games and VR applications. Used by Horizon

Forbidden West. It allows for soft and deformable object simulation

e.g. a soft ball or piece of cloth, as well as buoyancy calculations.

https://rbdl.github.io/
http://motion.pratt.duke.edu/klampt/
https://github.com/jrl-umi3218/RBDyn
http://www.springer.com/fr/book/9780387743141
http://www.springer.com/fr/book/9780387743141
https://github.com/jrouwe/JoltPhysics
https://github.com/jrouwe/JoltPhysics
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Physics

Engines Description

qu3e qu3e is a compact, light-weight and fast 3D physics engine in C++.

It is has been specifically created to be used in games. It is portable

with no external dependencies other than various standard c header

files (such as cassert and cmath). qu3e is designed to have an

extremely simple interface for creating and manipulating rigid

bodies.qu3e is of particular interest to those in need of a fast and

simple 3D physics engine, without spending too much time learning

about how the whole engine works. In order to keep things very

simple and friendly for new users, only box collision is supported.

No other shapes are supported (capsules and spheres may be

added in the future if requested).

2.5.6.4 Meta-Simulation Frameworks

Under this category we place “Meta-Simulation Frameworks”, namely high-level software

suites for robotics with advanced GUI, user-friendly, capabilities which incorporate more

than one physics engines.

https://github.com/RandyGaul/qu3e
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Table 2.16 “Meta” Simulation Frameworks

Meta-

Framework Description

Gazebo Gazebo is an open-source robotics simulator that provides a versatile and

robust platform for designing, testing, and validating robotic systems in

complex environments. It offers high-fidelity simulation of physical

interactions, including rigid body dynamics, collision detection, and sensor

feedback, supporting a wide range of sensor and actuator models. Gazebo’s

integration with the Robot Operating System (ROS) enhances its utility for

developing and testing robotic algorithms in a realistic virtual environment.

However, Gazebo can be computationally intensive, potentially leading to

performance bottlenecks when simulating large-scale environments or

highly detailed models. Its steep learning curve and the complexity of

setting up simulations can pose challenges, especially for users with limited

experience in robotic simulation. Additionally, while Gazebo’s extensive

plugin architecture allows for significant customization, ensuring

compatibility and stability across different plugins and ROS versions can be

problematic, requiring meticulous configuration and testing to achieve

reliable performance. Gazebo supports the following physics engines: ODE,

Bullet, DART, and Simbody.

CoppeliaSim CoppeliaSim is used for fast algorithm development, factory automation

simulations, fast prototyping and verification, robotics related education,

remote monitoring, safety double-checking, as digital twin, and much more.

The robotics simulator CoppeliaSim is based on a distributed control

architecture. Each object/model can be individually controlled via: Python,

Lua, C/C++, an embedded script (Python or Lua), remote API client like

Python, Lua, Java, MATLAB, Octave, C, C++, Rust, or a custom solution.

It supports 5 physics engines (MuJoCo, Bullet Physics, ODE, Newton and

Vortex Dynamics) Forward/Inverse kinematics calculations for any type of

mechanism (branched, closed, redundant, containing nested loops, etc.). An

embeddable version of the IK/FK algorithms is available. Powerful,

realistic and exact volumetric proximity sensor simulation: performs an

exact minimum distance calculation within a customizable detection

volume. Operates on meshes, octrees and point clouds. Simulation of vision

sensors with many image processing options, fully customizable and

extendable (e.g. via plugin). Path planning / motion planning is supported

in a very flexible way via the OMPL library wrapped in a plugin for

CoppeliaSim.PyRep is a toolkit for robot learning research, built on top of

CoppeliaSim.

https://gazebosim.org/home
https://www.coppeliarobotics.com/
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Meta-

Framework Description

AMBF Asynchronous Multi-Body Framework (AMBF) offers a real-time dynamic

simulation of robots, free bodies, and multi-link puzzles coupled with

real-time haptic interaction via several haptic devices (CHAI-3D)

(including dVRK Manipulators and Razer Hydras). It also provides a

Python client for training NN and RL Agents on real-time data with

the simulation in the loop. This framework is built around several external

tools that include an extended version of CHAI-3D (developed alongside

AMBF), BULLET-Physics, Open-GL, GLFW, yaml-cpp, pyyaml, and

Eigen to name a few.

Vortex

Stu-

dio

Vortex Studio is a commercial solution simulation and visualization

platform designed for modeling and testing complex mechanical systems,

particularly in robotics and heavy machinery applications. It provides

robust tools for simulating real-time physics, including rigid body

dynamics, collision detection, and multi-body interactions.

Webots Webots is an open-source robotics simulation platform that provides an

environment for developing, testing, and validating robotic systems in

realistic 3D environments. It supports a wide range of robot models and

offers detailed physics simulations, including rigid body dynamics, sensors,

and actuator dynamics, which are crucial for accurate performance

evaluation. Webots features a graphical interface that facilitates rapid

prototyping and integration with various programming languages, including

C++, Python, and MATLAB. Webots utilized the ODE physics engine but it

also offers the possibility to add custom physics plugins making possible to

e.g. to design an aerodynamics model for a flying robot, a hydrodynamics

model for a swimming robot, etc.

MARS The MARS provides physics simulations, enabling modeling of robot

dynamics, sensors, and interactions with the virtual environment in C++.

MARS supports various robotic platforms and is equipped with features for

simulating rigid body dynamics, soft body physics, and multi-body systems.

It runs on (Ubuntu) Linux, Mac and Windows and consists of a core

framework containing all main simulation components, a GUI (based on

Qt), 3D visualization (using OSG) and a physics core (based on ODE). It

focuses on developing and validating algorithms for navigation, control,

and perception. It is developed by developed at the Robotics Innovation

Center of the German Research Center for Artificial Intelligence

(DFKI-RIC) and the University of Bremen.

https://github.com/WPI-AIM/ambf
https://www.cm-labs.com/en/vortex-studio/
https://www.cm-labs.com/en/vortex-studio/
https://www.cm-labs.com/en/vortex-studio/
https://cyberbotics.com/
https://rock-simulation.github.io/mars/
http://www.openscenegraph.org
http://www.ode.org
http://robotik.dfki-bremen.de/en/startpage.html
http://robotik.dfki-bremen.de/en/startpage.html
http://robotik.dfki-bremen.de/en/startpage.html
http://www.informatik.uni-bremen.de/robotik/index_en.php
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Meta-

Framework Description

SimSpark simulation system for various multiagent simulations. It supports

developing physical simulations for AI and robotics research with

an open-source application framework. SimSpark uses the Open Dynamics

Engine (ODE) for detecting collisions and for simulating rigid body

dynamics.

2.5.6.5 Simulation Frameworks for Soft Bodies and Deformable Bodies Simulation

In this list we include physics engines and simulation frameworks which are highly special-

ized in the simulation of soft bodies and deformable objects.

Table 2.17 Simulation Frameworks for Soft/Deformable Bodies.

Physics

En-

gines Description

NVIDIA

FleX

FleX is a particle based simulation technique for real-time visual

effects.Traditionally, visual effects are made using a combination of

elements created using specialized solvers for rigid bodies, fluids,

clothing, etc. Because FleX uses a unified particle representation for all

object types, it enables new effects where different simulated substances

can interact with each other seamlessly FleX capabilities on particle

simulation should not be confused with PhysX’s similar capabilities.

From github discussion NVIDIA stuff: “The PhysX particle system is

indeed not a straight port of Flex, and it will likely never become a 1:1

replacement. Flex went a long way being a general simulator using only

particles which comes with great uniformity at the interface level and

provides possibilities which other systems don’t provide that easily like

phase transitions. It also has disadvantages for very common use-cases.

PhysX is trying to strike another balance.” The derivative version of FleX,

the “dflex”, as result of automatic differentiation, has been incorporated in

recent research [152, 154] allowing for policy learning with differentiable

simulation.

https://robocup-sim.gitlab.io/SimSpark/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open_Dynamics_Engine
https://en.wikipedia.org/wiki/Open_Dynamics_Engine
https://developer.nvidia.com/flex
https://developer.nvidia.com/flex
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Physics

En-

gines Description

Obi Obi is able to simulate the interaction between ropes, cloths, liquid and

general volumetric bodies. Obi has experimentally proven it’s ability to

robustly simulate ropes for bi-manual robotic manipulation in the case of

the highly demanding shoe lacing task [160]. In this case Obi was used in

combination with Unity.

SOFA Simulation Open Framework Architecture (SOFA) for interactive

mechanical simulation, with emphasis on biomechanics and robotics is an

open-source library distributed under LGPL license, hosted on GitHub. It

offers state-of-the-art constitutive laws and algorithms to efficiently

compute soft and rigid body dynamics. Linear and non-linear elastic

models as well explicit/implicit integration schemes and traditional

linear solvers. All SOFA simulations can be succinctly described by a

python script.

Position

Based

Dy-

nam-

ics

This library supports the physically-based simulation of mechanical

effects. In the last years position-based simulation methods have become

popular in the graphics community. In contrast to classical simulation

approaches these methods compute the position changes in each

simulation step directly, based on the solution of a quasi-static

problem. Therefore, position-based approaches are fast, stable and

controllable which make them well-suited for use in interactive

environments. However, these methods are generally not as accurate as

force-based methods but still provide visual plausibility. Hence, the

main application areas of position-based simulation are virtual reality,

computer games and special effects in movies and commercials.The

PositionBasedDynamics library allows the position-based handling of

many types of constraints in a physically-based simulation. Library

supports many constraints, lastic rods, eformable solids.

Sorotoki Sorotoki is an open-source MATLAB toolkit for soft robotics that aims

to facilitate the development of novel research in the field by

providing a comprehensive set of tools for design, modeling, and

control. The toolkit includes a diverse array of scientific disciplines

relevant to soft robotics, such as continuum mechanics, dynamic systems

and control theory, topology optimization, and computer graphics. The

Sorotoki toolkit aims to make it easier for new researchers to learn about

soft robotics by providing a range of tools that cover various important

aspects of the field. This can significantly reduce the amount of time and

effort required to get up to speed on the topic.

https://obi.virtualmethodstudio.com/index.html
https://www.sofa-framework.org/
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics
https://bjcaasenbrood.github.io/SorotokiCode/
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Physics

En-

gines Description

SomoGym SoMoGym (SoftMotion Gym) [157] is an open-source framework that

builds on SoMo (SoftMotion) in order to facilitate the simulation of

continuum manipulator (CM) motion in pybullet. SoMo makes it easy to

create URDFs of such approximated manipulators and load them into

pybullet’s rigid body simulator. With SoMo, environments with various

continuum manipulators, such as hands with soft fingers (xxx links), or

snakes, can be created and controlled with only a few lines of code.

SoftGym SoftGym [155], a set of open-source simulated benchmarks for

manipulating deformable objects, with a standard OpenAI Gym API and a

Python interface for creating new environments. SoftGym builds on top of

Nvidia FleX physics simulator.

ARCSim ARCSim is a simulation engine used for animating sheets of deformable

materials. The simulator is well-suited for materials such as cloth, paper,

plastic, and metal. ARCSim uses adaptively refined triangle meshes to

efficiently resolve the geometric and dynamic detail of the simulated

objects. It accomplishes this through adaptive anisotropic remeshing,

which aligns mesh edges with features like wrinkles and creases,

efficiently resolving fine details. This technique anticipates buckling and

wrinkle formation, preserving fine-scale dynamic behaviour. Additionally,

ARCSim includes an efficient implementation of strain limiting, working

for arbitrary non-uniform and anisotropic meshes and converging faster

than other solvers.

2.5.6.6 Libraries & Tools for Robotics Modeling & Simulation

This list includes a set of libraries which include tools for robotic modeling and simulation,

which do not directly fit in the “physics engine” and “simulation framework” category.

https://github.com/GrauleM/somogym
https://sites.google.com/view/softgym
http://graphics.berkeley.edu/resources/ARCSim/index.html
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Table 2.18 Libraries & Tools for Robotics Modeling and Simulation

Libraries

and

Tools Description

Pinocchio Pinocchio is a robust robotics library focused on the efficient modeling and

simulation of rigid body dynamics. It implements kinematic and dynamic

algorithms, leveraging articulated body dynamics to optimize performance

for real-time applications. It instantiates the state-of-the-art Rigid Body

Algorithms for poly-articulated systems based on revisited Roy

Featherstone’s algorithms. Pinocchio provides the analytical derivatives of

the main Rigid-Body Algorithms like the Recursive Newton-Euler

Algorithm or the Articulated-Body Algorithm. Pinocchio’s architecture

enables easy integration with other software frameworks, such as ROS and

OpenHRP. Its capabilities make it a valuable tool for researchers and

engineers tackling complex robotics problems, although careful

consideration is required for integration in large-scale systems due to

potential overhead in more intricate scenarios. It is built upon Eigen for

linear algebra and FCL for collision detection. It comes with a Python

interface for fast code prototyping.

iDynTree iDynTree is a C++ library that provides algorithms for robot dynamics

calculations, useful for control, estimation, and simulation. Although

specifically designed for robots with a free-floating base, it can also be used

with fixed-base robots. iDynTree is written in C++ and offers bindings for

Python and MATLAB. The library employs an undirected graph data

structure iDynTree::Model to represent robots. This allows for flexible

changes to the base link used in kinematics and dynamics computations

without requiring model reloads or changes to joint/link serializations. It

supports reading and writing URDF files from an iDynTree::Model, which is

beneficial for tools modifying robot models and saving them. This feature

was designed for developing tools that identify kinematics and dynamics

parameters. While it defaults to the mixed representation for link quantities,

iDynTree allows users to opt for body or inertial representations. This caters

to research in floating-base whole-body controller synthesis. Joint Torque

Estimation: iDynTree includes an algorithm used by the iCub humanoid

robot, which estimates joint torques without requiring dedicated joint torque

sensors. It leverages the library’s unique undirected graph data structure.

https://stack-of-tasks.github.io/pinocchio/
https://github.com/robotology/idyntree
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Libraries

and

Tools Description

KDL KDL, the Kinematics and Dynamics Library, is an application-independent

framework for modelling and computing kinematic chains like robots,

human models, animated figures and machine tools. KDL provides C++

class libraries for 1) Geometric Primitives: These include points, frames,

and twists. 2) Kinematic Trees: KDL uses kinematic trees to represent the

structure of kinematic chains. 3) Kinematic and Dynamic Solvers: KDL

provides various generic forward and inverse kinematic algorithms and

redundancy resolution.4) Motion Trajectories: This includes Cartesian paths,

velocity profiles and Cartesian trajectories.KDL also includes parameters for

dynamics, such as inertia. All real-time-safe operations and functions in

KDL are deterministic in time and do not use dynamic memory allocation.

KDL also provides Python bindings, typekits and transport-kits for

Orocos/RTT and is integrated into ROS.

Kindr The Kindr library by ANYbotics is a C++ tool designed for efficient and

rigorous mathematical operations in robotics, leveraging the Eigen library

for high-performance computations. It supports a wide range of types and

operations for 3D vectors, rotations, and transformations, with a consistent

and intuitive API. Kindr handles different coordinate frames and

transformations, crucial for managing sensors, actuators, and reference

frames in robotics applications. Extensible and customizable, Kindr

integrates well with other software components, is compatible with ROS,

and supports cross-platform use. Developed and maintained by ANYbotics,

it is robust, reliable, and ideal for research, development, simulation, and

control in autonomous robotic systems.

MRPT Mobile Robot Programming Toolkit (MRPT) provides developers with

portable and well-tested applications and libraries covering data structures

and algorithms employed in common robotics research areas.It is open

source, released under the 3-clause BSD license.

2.5.6.7 Physics Engines and Simulation Frameworks for the Web

In this list we include a set of physics engines and simulation frameworks specialized for

web applications written in JavaScript.

https://www.orocos.org/kdl.html
https://github.com/ANYbotics/kindr
https://docs.mrpt.org/reference/latest/
https://docs.mrpt.org/reference/latest/applications.html
https://docs.mrpt.org/reference/latest/modules.html
https://docs.mrpt.org/reference/latest/license.html
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Table 2.19 Physics Engines for the Web.

Physics

En-

gine Description

OimoPhysics The OimoPhysics engine is a lightweight, high-performance 3D physics

simulation library designed for applications in games and interactive

simulations. It is implemented in JavaScript and optimized for use with

WebGL, making it particularly suitable for web-based applications. The

engine supports a variety of physical behaviors, including rigid body

dynamics, collision detection, and constraint resolution. Key features

include support for convex hull shapes, spheres, boxes, and cylinders, as

well as a broad phase collision detection algorithm to enhance

computational efficiency. OimoPhysics also incorporates iterative

constraint solvers to ensure stable and realistic simulations, even in

complex scenarios. Its API is designed for ease of integration and

flexibility, allowing developers to customize and extend its functionality to

meet specific requirements.

Rapier Rapier is a set of 2D and 3D physics engines written using the Rust

programming language. It targets applications requiring real-time physics

like video games, animation, and robotics. It is designed to be fast, stable,

and optionally cross-platform deterministic. Rapier features include

among other, 1) rigid-body collisions and forces. 2) Joint constraints. 3)

Contact events and sensors. 4) JavaScript bindings.Free and Open-Source

built with a FOSS mindset.

PHY PHY Universal physics language on Worker or Direct for three.js Phy

simplify game creation, is a bridge between three.js and physics. You can

use compress or full version of physics engines. It supports Oimo,

Ammo, Rapier, Jolt, Havok and Physx.

ammo ammo.js is a direct port of the Bullet physics engine to JavaScript, using

Emscripten. The source code is translated directly to JavaScript, without

human rewriting, so functionality should be identical to the original

Bullet.‘ammo’ stands for “Avoided Making My Own js physics engine by

compiling bullet from C++”.ammo.js is zlib licensed, just like Bullet.

https://github.com/saharan/OimoPhysics
https://rapier.rs/
https://github.com/lo-th/phy
https://github.com/mrdoob/three.js
https://github.com/kripken/ammo.js?tab=readme-ov-file
http://bulletphysics.org/
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2.5.6.8 Frameworks allowing for complex multi-physics modeling

For completeness sake’s we also include a set of multi-physics and FEM analysis simulation

suites.

Table 2.20 Multi-Physics Simulation Frameworks.

Physics

En-

gine Description

Project

Chrono

Project Chrono is an open-source physics engine written in C++ and allows

for multibody dynamics, nonlinear finite element analysis, large-scale

simulation, collision detection. A Python wrapper, Pychrono, is available

via Anaconda. Project Chrono offers a DEM-Engine, described as an

“External GPU solver for DEM simulations”. This suggests that Chrono

leverages GPU computing for Discrete Element Method simulations, likely

employing solvers optimised for parallel processing on GPUs.

Simscape MathWorks’ Simscape is a simulation tool integrated with MATLAB and

Simulink, enabling multidomain physical modeling essential for robotics

applications. It facilitates the simulation of mechanical, electrical,

hydraulic, and thermal components of robotic systems, offering a broad

library of pre-built and customizable components for modeling robotic

joints, actuators, sensors, and controllers.

https://projectchrono.org/
https://projectchrono.org/
https://www.mathworks.com/products/simscape.html
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Physics

En-

gine Description

ANSYS ANSYS is a simulation software suite renowned for its capabilities in

finite element analysis (FEA), computational fluid dynamics (CFD), and

electromagnetics, among other domains. It provides robust tools for

simulating a wide range of physical phenomena, including structural

mechanics, fluid flow, thermal management, and electromagnetic

fields. ANSYS excels in high-fidelity modeling and offers comprehensive

material libraries, advanced meshing algorithms, and powerful solver

technologies, enabling precise and reliable simulations of complex

engineering systems. The software supports multiphysics simulations,

allowing for the coupling of different physical domains to accurately

capture the interactions in real-world scenarios. Despite its strengths,

ANSYS is known for its steep learning curve and high computational

requirements, which can pose challenges for new users and require

substantial computational resources. Additionally, the complexity of

setting up and validating intricate simulations can lead to lengthy

preparation times and necessitate significant expertise. While ANSYS

offers extensive documentation and support, effectively leveraging its full

potential often demands a deep understanding of both the software and the

underlying physical principles.

Abaqus Abaqus, developed by Dassault Systèmes, is an advanced simulation

software suite used extensively for finite element analysis (FEA) in

various engineering disciplines. It is particularly renowned for its robust

capabilities in simulating complex material behaviors and nonlinear

interactions, making it ideal for structural analysis, stress testing, and

failure analysis. Abaqus supports a wide range of material models,

including metals, polymers, composites, and hyperelastic materials,

allowing for accurate representation of real-world conditions. Its

comprehensive suite includes Abaqus/Standard for static and low-speed

dynamic events and Abaqus/Explicit for high-speed dynamic events and

complex contact problems. However, the sophisticated features and

extensive customization options of Abaqus come with a steep learning

curve and significant computational demands. Setting up and validating

detailed simulations can be time-consuming and require a deep

understanding of both the software and the specific application domain.

Despite these challenges, Abaqus is widely regarded for its precision and

versatility, offering extensive documentation and a strong support network

to assist users in leveraging its full potential.

https://www.ansys.com/products/structures/ansys-mechanical
https://www.3ds.com/products/simulia/abaqus
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Physics

En-

gine Description

COMSOL COMSOL Multiphysics is a simulation software that provides a

comprehensive environment for modeling and solving physics-based

problems across various engineering and scientific disciplines. It supports

a wide range of physics interfaces, including structural mechanics, fluid

dynamics, electromagnetics, heat transfer, and chemical reactions. The

platform’s multiphysics capabilities allow for the seamless coupling of

different physical phenomena within a single model, enabling the

simulation of complex interactions and real-world conditions. COMSOL’s

powerful solver algorithms and customizable physics interfaces offer high

accuracy and flexibility, but the software’s steep learning curve and

significant computational demands can be challenging. Effective

utilization of COMSOL often requires substantial expertise in both the

software and the underlying physical principles. Additionally, while

COMSOL provides extensive documentation and support, the complexity

of setting up multiphysics simulations can lead to long development times,

necessitating careful planning and validation to ensure accurate and

reliable results.

MBDyn MBDyn is an open-source multibody dynamics analysis software

distributed under the GNU GPL 2.1 license, developed by the Department

of Aerospace Science and Technology at Politecnico di Milano, Italy. It

supports the simulation of multibody and multiphysics systems, including

rigid and flexible body dynamics, smart materials, and various physical

networks. The software can integrate with external solvers for

co-simulation of multiphysics problems, such as CFD and terradynamics,

via a straightforward API. MBDyn is used extensively in aerospace, wind

energy, automotive, and mechatronics for dynamic system analysis and

simulation. It allows for runtime loading of user-defined modules to extend

its capabilities and supports real-time execution on GNU/Linux with RTAI.

It is a command-line tool designed for researchers, not a commercial

software with a user-friendly GUI or round-the-clock support.

2.5.6.9 Physics Engines Misc.

In this list we include a set of miscellaneous, highly specialized simulation frameworks in a

specific area.

https://www.comsol.com/
https://www.mbdyn.org/
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Table 2.21 Residual-Miscellaneous Simulation Frameworks

Physics Engine Description

Chai3D launched in 2003 at the Robotics and Artificial Intelligence

Laboratory at Stanford University, CHAI3D is a powerful

cross-platform C++ simulation framework with over 100+

industries and research institutions developing CHAI3D

based applications all around the world in segments such as

automotive, aerospace, medical, entertainment and

industrial robotics.Designed as a platform agnostic

framework for computer haptics, visualization and

interactive real-time simulation, CHAI3D is an open

source framework that supports a variety of

commercially-available three-, six- and

seven-degree-of-freedom haptic devices, and makes it

simple to support new custom force feedback

devices.CHAI3D’s modular capabilities allows for the

creation of highly-performing native haptic applications

as well as for hybrid development where you can choose

which components provide the best haptic and visual user

experience.

habitat-sim physics-enabled 3D simulator developed by Facebook

Research with support for 3D scans of indoor/outdoor

spaces, CAD models of spaces and piecewise-rigid objects,

Configurable sensors (RGB-D cameras, egomotion

sensing), Robots described via URDF, Rigid-body

mechanics (via Bullet Physics Engine). The design

philosophy of Habitat is to prioritize simulation speed

over the breadth of simulation capabilities. When

rendering a scene from the Matterport3D dataset,

Habitat-Sim achieves several thousand frames per second

(FPS) running single-threaded and reaches over 10,000 FPS

multi-process on a single GPU.

MINOS MINOS is a simulator designed to support the development

of multisensory models for goal-directed navigation in

complex indoor environments. MINOS leverages large

datasets of complex 3D environments and supports flexible

configuration of multimodal sensor suites.

https://www.chai3d.org/
https://github.com/facebookresearch/habitat-sim
https://github.com/minosworld/minos
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Physics Engine Description

Deepmind Lab DeepMind Lab is a 3D learning environment based on id

Software’s Quake III Arena via ioquake3 and other open

source software. DeepMind Lab provides a suite of

challenging 3D navigation and puzzle-solving tasks for

learning agents. Its primary purpose is to act as a testbed

for research in artificial intelligence, especially deep

reinforcement learning.

Gibson Gibson is a virtual environment based off of real-world, as

opposed to games or artificial environments, to support

learning perception. Gibson enables developing algorithms

that explore both perception and action hand in hand.

iTHOR iTHOR is an environment within the AI2-THOR

framework, which includes a set of interactive objects and

scenes and provides accurate modeling of the physics of the

world.

AGX Dynamics Modeling and simulation of complex mechanical systems,

handle impacts, contacts, and friction at large, fixed step.

can model robots, heavy vehicles and machinery, cranes,

and other complex mechanical systems found in

manufacturing and transportation for instance. C++ SDK

comes with C# and Python bindings OpenSceneGraph

viewer allows for quick modeling and data analysis. The

AGX Dynamics for Unity and AGX Dynamics for Unreal

modules help develop interactive applications with stunning

graphics. Also available are FMI and Simulink export

functions, as well as SpaceClaim integration. Commercially

Licensed.

matlab-whole-

body-simulator

matlab-whole-body-simulator is a simulator for the

humanoid robots. It has been designed to work in

Simulink. In the simulator the ground is assumed to be flat

and the contact forces are computed using the Maximum

dissipation principle and under the linear approximation of

the friction cones assumption.

https://github.com/google-deepmind/lab
https://github.com/id-Software/Quake-III-Arena
https://github.com/ioquake/ioq3
https://github.com/google-deepmind/lab#upstream-sources
https://github.com/google-deepmind/lab#upstream-sources
http://gibsonenv.stanford.edu/
https://ai2thor.allenai.org/
https://www.algoryx.se/agx-dynamics/
https://www.algoryx.se/agx-unity/
https://www.algoryx.se/agx-dynamics-for-unreal/
https://www.algoryx.se/momentum/
https://github.com/ami-iit/matlab-whole-body-simulator
https://github.com/ami-iit/matlab-whole-body-simulator




Chapter 3

A Simulation Framework as an

Interpretable Representation for

Sim2Real

”For it is the same thing that can be thought and that can

be.”

—Parmenides, On Nature
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Our strategy for tackling this complex and multifaceted problem revolves around the

development of a simulation framework with the PyBullet [127] physics engine to capture

the dominant dynamics involved by first-order approximations of the mushroom and gripper

overall system. By doing so, we can take advantage of a rich set of tools & capabilities that

the physics engine provides, such as Newton-Euler governing motion dynamics, collision

detection between scene objects, and friction models coupled with RGB-D rendering with

scene segmentation. As we are dealing with complex, nonlinear dynamics with a high degree

of uncertainty, like object deformations, failure modes, and potentially soft-gripper actuation

with the additional requirement for fast computation for allowing data-driven and MPC-like

techniques, we are utilizing first-order approximations of the equivalent continuum mechanics

models. For the derivation of the modeling parameters, we conducted real-world experiments

for the characterization of mushroom stiffness with force sensors and the Phasespace tracking

system [161].

3.1 Mushroom Harvesting with Robotic Actuators

Previous attempts have been made on white button mushroom harvesting with robotic ac-

tuators. [162] have presented a sense-plan-act approach with a camera-based mushroom

localization and a twisting action primitive for detachment with a suction cap gripper, result-

ing in a reported success rate of 57%. [163] report an average success rate of 70% by using a

combination of bending and twisting. At a later stage, [164] will present a more fine-tuned

version for the 2D planar mushroom localization, based again on a monochromatic camera

and, most importantly, on a gripper capable of bending and twisting motions composites,

resulting this time in an improved average success rate of 68% for the overall system. [165]

also based on a suction cap gripper with a root bending action only as an optimal strategy

for bruising avoidance [166] reports 90% and 94.2% success rates for first and second pick,

respectively.
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Figure 3.1 The Simulated Environment for Mushroom Harvesting and the Real-World

Equivalent Setup.
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The definition of the mechanical properties of the mushroom root system has been the

subject of previous studies. In the works of [167] and [168] the anisotropic elastic properties

of the mushroom stiffness are studied and experimental values for the Young Elastic Modulus

and strain are derived. Similar methodologies for crop characterization can be found in other

types of produce [169].

Similar challenges arise in other types of produce in agriculture. [170] where an adaptive

impedance controller has been developed for apple harvesting, following an analytical

modeling and characterization process. [171] study optimal picking patterns for apple harvest

based on an analytical Finite Element Model (FEM). [172] develop a strategy based on

human demonstrations on a physical twin for the harvest of raspberries. [173] present a

visual servo controller for autonomous citrus harvesting.

The task of mushroom harvesting can be examined as an attempt at purposeful fracturing

of an object with a robotic actuator, which seems to be a surprisingly underexplored topic

in robotics research on manipulation. The work of [174] seems to be the single instance

that studies this specific problem and is based on material failure theories and optimization

techniques on grasp quality measures.

3.2 Mushroom Modeling & Characterization

3.2.1 Mushroom Modeling

An analytical modeling of the mushroom root system introduces a set of challenging re-

quirements, given the anisotropic elastic material in combination with the failure modes that

must be predicted during execution. In addition, we add the requirement of fast execution

time for fast evaluations for potential utilization of Reinforcement Learning (RL) and Model

Predictive Control (MPC) techniques. Ideally, for this type of system, we would choose

an analytical finite element method (FEM), but the execution time would be prohibitively
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Figure 3.2 Mushroom 3D Model wire & object diagram.

Spherical Joint

Prismatic Joint

Mushroom

Figure 3.3 The Mushroom Model Mechanical Schematic Drawing.
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Figure 3.4 The PyBullet debug GUI view of the simulation framework for mushroom

harvesting.

slow. Given the empirical knowledge that ultimately the mushroom-picking maneuvers from

human experts seem to distill around a basic set of primitives, namely “bending”, “twisting”,

and “pulling” around the root, we suggest that capturing a set of first-order approximations of

the continuum mechanics models of the mushroom root system should suffice. Based on the

work found in [157, 175, 176] , we result in a mushroom root model as a combination of a

spherical and a prismatic joint, controlled with a fixed position PD law to emulate the stiffness

and damping characteristics (see fig. 3.3) of elastic deformation. To calculate the stress

threshold necessary for material failure and the consequent detachment of the mushroom

from the ground, the VonMises criterion is utilized. Lastly, instead of incorporating the

complete robot model, we only include the gripper by defining a fixed constraint in the flange

frame in the 3D space, as suggested in [50]. For the implementation of the proposed model,

we rely on the PyBullet rigid multibody dynamics physics engine, as it easily provides the

ability to add and remove fixed constraints between objects during run-time.

The axial, rotational, and bending stiffness components of an isotropic cylindrical rod

representing a mushroom-root model are defined as follows.
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Figure 3.5 Simulation environment with randomized colors.

Table 3.1 Mushroom Model Parameters Definitions

Mushroom Model Parameters Values

pose [px, py, pz,ωx,ωy,ωz] m, rad

mass m Kg

cap/stem diameter & height [cd,ch,sd,sh]

young modulus Ym Pa

poisson ratio Pr

yielding stress Ys Pa

cap contact stiffness ck N/m

cap contact damping cd Ns/m

cap restitution cr

cap lateral friction cc

cap spinning friction csc

Kpull =
EA

I
, Krot =

GJ

I
, Kbend =

GA

I
L2
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Where E, G are the Young and Shear Modulus terms and A, I, L are the axial surface area,

second moment of area, and length, respectively. For bending, the definition is for transversal

action given the relatively short length of the mushroom stem.

The VonMises stress factor for a cylindrical rod under shear and axial stress is defined as

follows.

σV M =
(

σ2
x +3τ2

zx

)1/2

Failure and therefore mushroom yielding will occur when the VonMises stress factor

exceeds the yielding stress factor value, namely:

σV M > Sy

Regarding the damping terms of the PD controllers, we manually tune them in order to

approximate critical damping characteristics.

3.2.2 Mushroom Model Parameters Identification (SysID)

To tune the stiffness parameters and determine the yielding stress threshold, we proceed

with a series of experiments. We attach a Touchence Shokac chip force sensor to the index,

middle fingers, and thumb of an expert mushroom picker and a Phasespace-led tracker

to the mushroom cap to determine the relative displacement. The goal here is to identify

the stress-strain diagrams for distinctive “pulling”, “bending”, and “twisting” motions (see

fig. 3.11 fig. 3.12 fig. 3.13 fig. 3.14 ). A similar approach has been adopted by [166] where

an IMU unit was used for position tracking.

Stress - Strain experiments results for mushroom root stress characterization (SysId). We

derive critical modeling parameters for the Young modulus, Poisson ratio, and yielding stress

with simple linear regression over the close to linear stress-strain regions.
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Figure 3.6 Phasespace equipment experimental setup.

Figure 3.7 Phasespace working space capture.
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Figure 3.8 Phasespace LED attached on mushroom cap.

Figure 3.9 Tekscan force sensor attachment on mushroom expert picker.
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Figure 3.10 Experimental configuration for root stiffness characterization during bending

action with a Touchence Shokac Chip force sensor attached on the finger that will perform

the action, and the Phasespace tracker led for measuring the total displacement.
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Figure 3.11 Mushroom tensile testing plot.

Figure 3.12 Mushroom bending stress strain diagram.
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Figure 3.13 Mushroom tensile stress strain diagram.

Figure 3.14 Mushroom twisting shear stress strain diagram
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In practice, we found that by setting values for the Young Modulus that resemble the

real world, namely, on the order of magnitude of 0.5 MPa, the system becomes too stiff,

which in turn requires a sample rate dt for the physics engine at 0.1 ms for ensuring stability,

rendering the simulation 2 times slower than the real world clock time. As the design purpose

of this simulation as a dynamic model is to derive a kinodynamic plan with the motion

primitives for mushroom picking, we can scale the stiffness to the order of magnitude of

10kPa, resulting in a kinodynamically equivalent model that is 1/10 faster than the real-world

clock time.

Lastly, we found that the bending action resulting from the lineal isotropic model defined

above is too stiff compared to the experimental results, as also confirmed in [167]. We simply

readjust to emulate the anisotropic properties as Kbend adj = 1/5Kbend.

3.3 Soft Gripper Modeling

For the needs of the EU Project “SoftGrip” [11] we need to incorporate a soft gripper (see

fig. 3.15) in our simulation framework for the task of mushroom harvesting.

Modelling of soft, deformable elements within the robotic manipulation context is a

complex tasks, as usually for an accurate modeling of such elements analytical Finite Element
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Figure 3.15 Soft Gripper Real-World Hardware Prototype

Analysis (FEA) methodologies are incorporated. As these models offer high-fidelity they are

usually slow and require significant domain expertise in the development stage. Similarly to

the mushroom modeling, we proceed with a “Line-Segement Model” [177], which serves

as a first order approximation of the equivalent continuum dynamics model [176]. We are

able to readily design the soft fingers URDF files and incroprorate them in PyBullet using

the SoMoGym Framework [157]

3.3.1 Soft Gripper Dynamics with a Line-Segment Model

We proceed with modeling of the soft fingers using the line-segment model [177] (see

fig. 3.16) as a first order approximation of the continuum mechanics equivalent model [176].
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Figure 3.16 Soft Gripper Dynamics Modeling Using a Line-Segment Model [177]

We use SoMoGym [157] for generating the URDF file and for controlling the soft finger,

inspired by the “antipodal gripper” example (see fig. 3.17) inside the code base.

We test the soft finger by applying a ramp function as an input (see fig. 3.18) in order to

test the system response as a pressure vs angle (fingertip) (see fig. 3.19).

We proceed with a final integration of the soft fingers at the rigid gripper base (see

fig. 3.20). The URDF file for the complete soft gripper is manually crafted, with a manual

integration of the auto-generated URDF files of the soft-fingers as described above.

3.3.2 FEM Finger Models and PyBullet Testing

It is important to mention that although PyBullet does incorporate the ability to import

meshes for the simulation of deformable objects, initial tests of ours indicated that it was not

possible to proceed by this approach. We found the simulation time to be extremely slow for

practical control purposes in a MPC or a RL context and additionally it proved impossible to

apply grasping with soft fingers to any type of object, as this would result in penetration or
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Figure 3.17 Somogym anti-podal gripper example [157].

Figure 3.18 Soft finger step response in simulation.
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Figure 3.19 Soft finger step response in simulation. Pressure vs Angle

Figure 3.20 Complete System Soft Gripper and Mushroom Model in PyBullet simulation
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the object slipping even when high closure forces were applied. This finding seems also to

be supported in [54].

3.3.3 Potential Future Directions

3.3.3.1 System Identification

Further experiments with the real-world setup should be conducted for validating the model

design. Black-box techniques or differentiable end-to-end architectures [153] for system

parameters identifications could be utilized in that case.

3.3.3.2 Physics Engines alternatives

We could experiment with different physics engines, specialized for simulating deformable

objects for robotic manipulation, like [155].

3.4 Real-World Hardware & Software Setup

3.4.1 Robot Manipulator

We use the Franka Robot [178] for conducting our real-world experiments (see fig. 3.21)

as with it’s 7 DOFs allows for a redundant 6DOF control of it’s end-effector, and it is

additionally equipped with a simple 1 DOF rigid gripper. Moreover, the Franka Robot is

equipped with torque sensors in each joint and thus allowing for direct impedance control

schemes as operational space controller (OSC) which expands significantly the envelop

for forceful robotic manipulation. Lastly it’s API’s in C++ and consequently in ROS (and

Simulink/MATLAB), allow for direct and seamless software integration.
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Figure 3.21 Franka robot real-world setup.

3.4.2 Vision System

For the vision system we rely on Intel’s real-sense cameras, namely the 455 [179] and the 405

[180] models, for complete 3D workspace reconstruction (see fig. 3.21) and fine-manipulation

in close proximity (see fig. 3.22) respectively.

3.4.3 Computation

As the Franka Robot requires Real-Time Linux Kernel for control in the 1kHz loop, we use a

NVIDIA’s Jetson Nano [181] with RT_PREEMPT Kernel patch for running the Franka ROS

[182] control node.

The main workstation PC is a generic linux laptop or PC with intel cpu and an NVIDIA’s

GTX graphics card.
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Figure 3.22 Franka Robot with the Intel Real Sense 405 mounted.

3.4.4 Software Architecture

We build the complete software stack around the Robotic Operation System (ROS) and we

utilize the MoveIt! motion planning framework for [183] generating robot motions and to

perform hand-eye calibration for determining the camera extrinsic properties.

3.5 Conclusion

3.5.1 Limitations & Future Work

The proposed simulation framework, built on first-order approximations and a rigid multi-

body physics engine, offers a balance between computational efficiency and policy training

effectiveness. However, this approach introduces inherent trade-offs in fidelity and gener-

alization. The framework’s complexity stems from model simplification, which linearizes

system dynamics. While computationally efficient, this method restricts applicability to
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Figure 3.23 Hardware configuration for the real-world experiments.
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regimes where nonlinearities and inertial coupling remain negligible, and limits parameter

diversity primarily to geometric and kinematic variations.

Key limitations of the framework include reduced dynamic fidelity in high-acceleration

or contact-rich tasks, narrowed randomization scope for deformable objects, and potential

exploration bias in complex scenes.

Future work will focus on integrating second-order sensitivity analysis and continuum

mechanics priors to address these limitations while maintaining real-time performance

[184, 185]. , thereby enhancing the framework’s applicability to a broader range of robotic

tasks and environments.

3.5.2 Generalization. Beyond Mushroom Harvesting.

The analytical framework employing first-order approximations and adaptive domain ran-

domization for rigid multibody systems exhibits broad applicability beyond agricultural

robotics. In soft robotics, where high damping and low inertia dominate dynamics [186],

this approach could streamline real-time control of deformable actuators while maintaining

computational efficiency—critical for applications like minimally invasive surgical tools

or underwater exploration systems. Similarly, precision agriculture could leverage these

methods for digital twins simulating soil–root interactions or crop responses to environmental

stressors, enabling predictive analytics for irrigation and nutrient management [187]. The

framework’s ability to balance accuracy with computational cost also benefits industrial

automation, particularly in handling delicate objects through soft grippers that require rapid

adaptation to material variability [188, 189].





Chapter 4

Real2Sim2Real with Model Predictive

Path Integral (MPPI) based Planning

”No man ever steps in the same river twice, for it’s not the

same river and he’s not the same man.”

—Heraclitus, Fragments
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4.1 Grasping Pose Prediction for Object Manipulation

In an attempt to approach the problem of mushroom uprooting with a robotic manipulator

we analyse the well-established field of “Grasping Pose Prediction” with robotic grippers.

This sub-field of robotic manipulation deals with the problem of an automatic prediction and

evaluation of an optimal grasp pose given an object or a complete scene and a gripper. The

complete task of robotic manipulation is then based on this predicted grasping pose and by

usually employing traditional motion planning.

Grasping Pose Prediction is useful in pick-and-place and scene decluttering scenarios.

For more dexterous and delicate manipulation tasks which impose strict dynamics constraints

and require complex kinodynamic planing in hybrid dynamic spaces more elaborate robotic

manipulation approaches should be employed, which usually stem from the disciplines

of “Task and Motion Planing” (TAMP), “Forceful Robotic Manipulation” or more lately

end-to-end visuomotor policies with Reinforcement Learning.

4.1.1 Deep-Learning for Grasp Prediction

Optimal Grasping Prediction has been a long standing research topic in robotics and still

remains an open research topic. Till recently the predominant approach in grasping have

been analytical and sampling based approaches based on optimization of some force closure

quality evaluation metric. The GraspIt! framework [190] encapsulates the core results of this

era and still remains today a golden standard and a commonly used baseline.

A combination of major breakthroughs in data-driven, end-to-end, deep architectures in

Machine and Reinforcement Learning, the introduction of advanced perception and vision

sensors and apparatuses in combination with powerful computational resources have naturally

brought great research interest in grasping prediction as well.

Levine et al. [191] by purely utilizing an end-to-end, pixels-to-velocities approach based

on a Convolutional Neural Network (CNN) and gathering a large number of trials from
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real-world robots they train an agent able to autonomously grasp random objects from a bin

without then need of a manual hand-eye camera calibration.

Bousmalis et al. [75] as an attempt to mitigation the issue of the extreme cost of real-

world data sampling, they employ domain adaptation with Generative Adversarial Network

(GAN) for realistically rendering synthetic images for a consequent successful sim2real

transfer. Their pipeline is based in observation from a single monocular raw camera.

Pas et al. [192] are able to work on the point cloud generated from a cluttered scene,

without the need for an explicit object segmentation, by extracting a “Region of Interest

(ROI)” based on heuristics, sampling several thousand grasp candidates on that region, and

finally assigning a grasping score on each grasp with the help of a convolution neural network.

One of the most concrete lines of work in the field and as an attempt to establish a

foundational model for grasping pose prediction is the case of the “Dex-Net” [193–197]

which makes again heavy usage of training in simulation, where by utilizing the privileged

information, a large data of training data can be generated with expert grasping demonstra-

tions.

Dyrstad et al. [49] showcase how human input can help in generate grasping samples

which can then be further enriched with data enhancement methodologies for training a deep

grasping network.

Sundermeyer et al. [198] with the Contact-Grasp-Network learn to predict grasping poses

based on the point cloud of the cluttered scene. The training is taking place in simulation

where multiple random, but stable, cluttered scenes are generated with the help of the

ACRONYM dataset [199].

Weng et al. [200] with the Neural Grasp Distance Fields (NGDF) for grasping instead of

a discrete set of grasping poses they predict a distance of the gripper to valid set of continuous

grasping poses on the object. This representation, which can be interpreted as a cost, it allows

for a conjoint overall manipulation planning, which is a unique element.
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At the core of most of the aforementioned techniques lie the simulated datasets, such as

[199], which contain grasping picking demonstrations. Want et al. [201] expand the envelope

with the DexGraspNet, which contains “1.32 million dexterous grasps for the Shadow Hand

on 5355 objects”.

4.1.2 An Evaluation of The Volumetric Grasping Network (VGN)

We choose to evaluate the Volumetric Grasping Network [50] as a candidate for grasping

pose generation for mushroom picking. This approach has some key properties that render it

a a good candidate for our intents and purposes, namely:

1. Direct Grasping Pose Generation from a Point Cloud without the need for an explicit

object detection or segmentation in the clutter, which in our case is the mushroom

crop.

2. The ability to evaluate a case of a direct, zero-effort Sim2Real approach due the explicit

transferable abstraction through this pure geometric nature.

We start by evaluating the VGN in simulation, with the pretrained network, for the case

of a single mushroom at first (see fig. 4.1, fig. 4.2). The pretrained network, even though it

hasn’t been trained for single mushrooms, or mushroom crops, seems to be able to generate

a grasping pose (see fig. 4.3), sub-optimal though as it may be.

We proceed with an evaluation on a real-world setup, again with the pre-trained VGN, in

a scene which includes 3 mushrooms (see fig. 4.4).

VGN was able to generate a quite convincing set of grasping poses for each mushroom,

assigning the best grasping score to an individual one (see fig. 4.5). Again this is quire

remarkable, given that the network has only been trained in simulation only, with a quite

different set of objects and cluttered scenes.

VGN, in it’s pre-trained form at least, does not seem to generate accurate enough grasping

poses for mushroom grasping. These results nevertheless, allow us to exploit the VGN in
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Figure 4.1 3D scene in simulation.

Figure 4.2 Point Cloud generated after scanning the scene and utilizing the Volumetric

Grasping Network.
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Figure 4.3 Grasping pose as predicted from VGN applied in Simulation.

our pipeline for mushroom harvesting, as we can select a good mushroom candidate for

grasping within a surrounding mushroom cluster, something usually really hard to approach

analytically.

4.1.3 Future Directions

An immediate improvement would be a retraining of the VGN, by skewing the data-set

towards mushroom like crop scenarios. This should allow for the generation of precise and

robust grasping poses for mushroom harvesting.

As we are dealing with a highly dynamic task, that includes strict constraints on allowed

force application, in combination with dexterous forceful manipulation, within hard opti-

mization in overall time and total yield production for a practical industrial application the

grasping pose prediction is heavily conditioned and cannot be examined independently. More

holistic frameworks, such as Task and Manipulation Planning for Forceful Manipulation or

end-to-end RL schemes should be employed in that sense like in the cases of [202, 200].
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Figure 4.4 Poses for 3D Scene Reconstruction as Truncated Signed Distance Function

(TSDF).
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Figure 4.5 Predicted grasping poses with VGN as rendered in rviz.
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4.2 Mushroom Harvesting with Real2Sim2Real and Model

Predictive Path Integral (MPPI) based Planning

To extract the necessary scene semantics for an on-the-fly physics simulation scene instanti-

ation (Real2Sim) we capture a set of depth images from a set of different poses which we

then integrate with the Iterative Closest Point (ICP) for generating a Point Cloud (PC) and a

Truncated Signed Function (TSDF) equivalent representation. We utilize these representa-

tions twofold, first to estimate the mushroom poses, using the pipeline developed by [203]

and second for selecting a good mushroom candidate for grasping together with its close

surrounding clutter for an on-the-fly generation of a simulation instance which acts as scene

reconstruction and a model for our system where we perform the planning reasoning. For the

mushroom & the consequent region selection, we make use of the pre-trained Volumetric

Grasping Network (VGN) [50] which can generate a set of grasping pose candidates for

scene decluttering.

Based on the scene reconstruction with the simulation framework, we can now reason

in an offline manner to generate an optimal mushroom uprooting strategy. We utilize the

MPPI control framework as a simple, yet effective [204–206] framework to solve the task of

optimal mushroom picking in simulation and to carry out subsequent rollouts of the set of

critical waypoints of the end-effector in the real-world setup. This framework allows for a

definition of cost objectives for task shaping together with collision avoidance and grasping

force minimization. It is also gradient-free, which fits well in the context of the inherent

hybrid dynamic modalities involved in grasping & manipulation dynamics.

An overview of the overall system architecture is presented in fig. 4.6 fig. 4.7 1.

During the first step of the pipeline, a sub-region of the mushroom crop is scanned to

obtain a set of depth images { Dimgs} from various poses. The 3D point cloud and equivalent

1A video explaining the complete pipeline can be viewed at youtube.com/watch?v=k38ePBsBego

https://www.youtube.com/watch?v=k38ePBsBego
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Figure 4.6 Mushroom harvesting with Real2Sim2Real and Model Predictive Path Integral

(MPPI) overall system architecture.
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TSDF representations are then obtained with the IPC method and the open3D library. We

can then obtain a set of mushroom pose estimations with [203] and a set of grasping pose

candidates with respective VGN score rankings [50]. We select the mushroom with the

highest grasping score to be picked on the basis of the Euclidean distance between the

grasping candidate from VGN and the mushroom pose estimates. By instantiating the

“master simulation” scene equivalent and the MPPI planner we can extract a set of waypoints

for the gripper which are descriptive of the optimal picking maneuver. We finally deploy

to the real Franka robot by feeding the generated waypoints to the MoveIt! library which

generates the final joint trajectories with RRT and inverse kinematics.

Algorithm 1 Autonomous Mushroom Harvesting

1: while mushroomsPosesDetected do

2: { Dimgs}← sceneScan()
3: PC, TSDF← get3DPointCloudWithIPC({ Dimgs})
4: MP, MS← mushroomPoseEstimation( PC)
5: GP, GPR← graspingPosesEstimation( TSDF)
6: TMP, SMP← selectTargetMushroom( MP, GP)
7: Sim← instantiateMasterSimulation( TMP, SMP)
8: GWP← graspingManueverWithMPPI( Sim)
9: TRJ← tra jectoryGenWithRRTandIK( GWP)

10: rolloutTra jectoryToT heRealWorld( GTR)
11: end while

4.2.1 Optimal uprooting planning with MPPI

To generate an optimal mushroom picking planning, we base our implementation on the

MPPI controller in [205]. Our simulation framework is implemented in PyBullet instead

of NVIDIA’s Isaac gym, as we make use of the active constraint removal (for mushroom

detachment) during the simulation run-time, which is not available in the latter. We modify

therefore the implementation for sampling from our simulation environment in parallel in

CPU as pybullet is not GPU parallelizable. This modification does not allow for real-time

control; therefore, we do use a “master” simulator where we can extract a set of waypoints,



162 Real2Sim2Real with Model Predictive Path Integral (MPPI) based Planning

Figure 4.7 MPPI planner - system overview

rendering the system, in essence, an offline planner. This subsampling methodology has the

added benefit of denoising the trajectory, which is a known issue with MPPI controllers. For

an overview of the proposed implementation, see fig. 4.7.

To describe the mushroom picking task, we define a set of cost functions.

Cpick =Cdist +Cforce +Cstress

Cdist = ωd ∥pEE − pM∥+ωMp
∥pG− pM∥
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The Cdist incentivizes the interaction between the gripper and the mushroom cap and

describes its desired goal position, which in our case is just an offset by the z-axis.

Cforce =















ω f ∑ f f ingers, if ∑ f f ingers < fsafe

0, otherwise

Cforce should penalize actions that are outside the safe limits in an attempt to avoid

bruising and, consequently, destruction of the produce. In practice fsafe = 3 N.

Cstress =−ωσ σV M

The Cstress cost term incentivizes actions that will cause stress on the root and ultimately

failure for the mushroom to be picked. We found this cost term to be necessary to allow

the MPPI controller to discover the bending action, as it would otherwise be stuck to local

minima.

For the current demonstrator, we have avoided adding a collision-cost term, as this would

be necessary in a cluttered environment. Given the aforementioned compromise of a CPU

parallelization instead of a GPU one, we found in practice that including collision detection

between multiple mushroom instances was prohibitively expensive and impractical in terms

of computation. This is within the scope of future work, which should include a GPU

parallelizable physics engine that also allows for the removal of fixed constraints during

runtime for material failure-mode emulation.

4.2.2 Experiments

We start by testing the efficacy of the simulation framework in combination with the MPPI

planner with an AB test purely in simulation. In case A, we set the friction cc of the

mushroom cap at an abnormally high value cc = 1.0 where the development of high shear
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Table 4.1 Cost function weights

Cost function weights Values

ωd 8

ωMp
12

ω f 0.005

ωσ 0.0001

Table 4.2 MPPI parameters tuning

MPPI parameters Values

Sampling Environments Number 60

Planning Horizon 20 steps

Sampling Method Halton Spline

Sampling Noise σ [diag(0.1),0.05]

Rollout var discount λ 0.95

Table 4.3 PyBullet simulation parameters tuning

Simulation Parameters Values

Controller sampling time 0.01 sec

Physics engine dt 0.001 sec

Solver iterations 10

Friction ERP 0.02

grasping forces should overcome the axial root resistance, allowing for a direct pulling

motion within the desired constraints. We repeat the experiment in case In case B, under

the same configurations, only this time setting the friction of the mushroom cap to a more
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Figure 4.8 The key way-points poses generated from the MPPI planner describing the

“bending motion” as optimal for mushroom picking.

realistic value cc = 0.3, where a pure pulling motion would only be possible by exerting high

lateral grasping forces, which would exceed the safe thresholds or would even be impossible

to develop. As we see in fig. 4.9 our hypothesis is satisfied and the MPPI planner discovers

autonomously the bending action to successfully detach the mushroom within the desired

constraints. The total planning time with an Intel i5 13600K CPU and the configurations as

described in Tables was in both cases 70 real world secs which corresponds to 1.4 ‘master’

simulation secs.

In the first row we observe the picking attempt of the MPPI planner when we set an

abnormally high friction value at cc = 1.0 at the mushroom cap. In that case, a direct pull

motion is emerging because the necessary high shear forces can be easily generated. In the

second row, we observe the result where we set a lower friction value cc = 0.3 where the

MPPI planner autonomously discovers the bending motion as the optimal picking strategy
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Figure 4.9 MPPI Mushroom harvesting AB cap friction testing resulting in alternative picking

strategies by the MPPI planner.

We finally deploy the generated trajectory of the B test by first subsampling, in order

to generate a set of key-waypoints for the gripper pose. We manually choose the gripper

pose when contact of both fingers is initiated with the mushroom cap, and the pose at the

precise moment when the mushroom is detached. We then feed the waypoints directly to

the MoveIt! group commander for generating the final trajectory with RRT and handling

the inverse kinematics. Automated extraction of an optimal set of waypoints to accurately

describe the picking maneuver is within the scope of future work.

The bending action as transferred to the real-world setup with the Franka Robot and a 3D

printed mushroom-like shape.

4.2.3 Future Directions

We have demonstrated a pipeline for mushroom harvesting with a robotic gripper, based on

on-the-fly 3D scene reconstruction with a physical simulation and an offline MPPI planner

for generating optimal uprooting manipulation maneuvers. We show that despite the lumped

system dynamic model and the CPU parallelization limitations of the MPPI planner, the
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Figure 4.10 MPPI - mushroom harvesting real-world deployment.
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system manages to discover optimal actions for mushroom picking. This is a sense-plan-act

open-loop architecture; namely, it is not reactive to unpredictable events due to environmental

changes and failures due to modeling discrepancies. Therefore, the next step is to close

the loop, which means that the pass-through computation should be achieved in real time.

We can do so through GPU parallelization [205] and an on-the-fly perception module for

mushroom state estimation that includes pose and root stiffness. This would also allow for a

significant increase in the total number of sampling environments and the planning horizon,

resulting in more complex and robust grasping strategies.

As mentioned above, the MPPI-based planning strategy is prone to get stuck in local

minima and additionally requires a significant engineering effort for the cost function shaping.

Potential extensions to long-term planning could include MPC-like approaches [207, 208] or

more analytical discrete/continuous TAMP frameworks such as PDDLStream for multi-stage

forceful manipulation [209] or optimization over graphs of convex sets [210]. Finally, real-

world analytical experiments in industrial settings with the incorporation of a softgripper

into actual mushroom crops are necessary to assess the effectiveness of the method and any

potential commercial viability.

4.3 Conclusions

4.3.1 MPPI-Based Planning in Broader Robotic Contexts

Model Predictive Path Integral (MPPI) control provides a unifying framework for addressing

diverse robotics challenges, particularly in dynamic and uncertain environments. Its sampling-

based nature enables robustness to both parametric and structural uncertainties—a critical

requirement for bridging the simulation-to-reality (sim2real) gap. By leveraging Monte

Carlo trajectory sampling and parallelized cost evaluation, MPPI inherently accommodates

nonlinear dynamics, non-convex constraints, and stochastic disturbances, making it applicable
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beyond robotic arm manipulation to tasks such as autonomous navigation, multi-agent

coordination, and contact-rich object interaction [211–213].

In the context of domain randomization (DR), MPPI’s adaptability aligns with the need

for policies robust to variations in dynamics, sensor noise, and environmental geometry. For

example, space manipulators for debris removal [213] and autonomous vehicles navigating

cluttered urban environments [212] rely on MPPI’s ability to iteratively refine on-board

models using real-time parameter estimation. Furthermore, MPPI’s capacity to handle

discontinuous cost functions—such as collision penalties and task-specific rewards—enables

seamless integration with reinforcement learning pipelines that employ DR for policy transfer

[211].

MPPI’s utility can extend to:

• Multi-robot systems: Distributed collision avoidance through coupled cost functions

[211]

• Legged locomotion: Terrain adaptation via online inertia matrix estimation [211]

• Human-robot collaboration: Safe interaction through stochastic impedance tuning

[214, 215]

4.3.2 Potential Alternatives to MPPI for Sim2Real

While MPPI excels in handling nonlinear dynamics and parametric uncertainties, alternative

planning frameworks offer complementary strengths for specific robotic applications. Below,

we present three prominent approaches as an alternative to MPPI based planning:
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Table 4.4 Predominant alternatives to MPPI planners for Sim2Real

Method

Key

Features

Sim2real

Relevance Limitations

D*

Lite

Incremental

replanning

for dynamic

environ-

ments [216]

Efficient

adaptation

to

real-world

map

changes

(e.g.,

movable

obstacles)

Limited to

geometric

constraints;

struggles

with high-

dimensional

action

spaces

APP

(Al-

ter-

na-

tive

Paths

Plan-

ner)

Precomputed

path sets for

semi-

structured

environ-

ments [217]

Fixed-time

guarantees

enhance

predictabil-

ity for

repetitive

industrial

tasks

Requires

offline pre-

processing;

less

adaptable

to novel

perturba-

tions
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Method

Key

Features

Sim2real

Relevance Limitations

RU-

PRM

Reusable

roadmap

components

for similar

obstacle

configura-

tions [218]

Accelerates

planning in

partially

random-

ized

environ-

ments via

memory

reuse

Performance

degrades

with

extreme

domain

shifts in

DR training

4.3.2.1 Why MPPI Remains Central

MPPI’s sampling-based formulation provides inherent advantages for sim2real transfer that

discrete or precomputed methods lack:

1. Unified handling of parametric and structural uncertainties through parallelized

Monte Carlo rollouts [213]

2. Seamless integration with DR-trained neural policies via differentiable cost formu-

lations [211]

3. Real-time adaptation to residual reality gaps through online covariance tuning [211]

While the alternatives excel in structured subproblems, none match MPPI’s generalizabil-

ity across manipulation, navigation, and human-robot interaction domains under randomized

training regimes [211].
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4.3.3 Scalability and Industrial Viability

MPPI’s sampling-based architecture exhibits strong scalability for industrial applications due

to its parallelizable computation and adaptability to high-dimensional systems. Through GPU

acceleration, MPPI achieves real-time performance even in complex scenarios like multi-

robot coordination (48–144 state dimensions) [219] and 7-DoF manipulator control [206],

making it viable for large-scale manufacturing lines requiring synchronized robotic cells.

Its derivative-free optimization bypasses gradient calculations, enabling efficient scaling

across tasks with nonlinear dynamics, such as contact-rich assembly or precision grasping

under variable friction [220, 221]. Commercial adoption is further bolstered by MPPI’s

compatibility with modular safety frameworks like Control Barrier Functions (CBFs) [222,

223], which enforce collision avoidance and joint limit constraints without compromising

planning speed—critical for ISO-certified industrial environments. For instance, MPPI-based

systems have demonstrated 125Hz control rates in joint-space trajectory optimization [206].

While computational demands historically limited deployment, advances in edge-computing

hardware and distributed sampling [224] now enable cost-effective integration into collab-

orative robots (cobots) and autonomous guided vehicles (AGVs). Hybrid architectures

combining MPPI with learned cost functions [206] further enhance commercial appeal by

reducing manual tuning for tasks like PCB soldering or battery module handling, where do-

main randomization prepares controllers for component tolerances. These attributes position

MPPI as a scalable, safety-certifiable solution for Industry 4.0 applications requiring both

precision and rapid reconfigurability [225].



Chapter 5

Conclusions & Future Work

”The real voyage of discovery consists not in seeking new

landscapes, but in having new eyes.”

—Marcel Proust, In Search of Lost Time
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5.1 Summary & Extension

This work has studied the current state-of-the-art on the Simulation to Reality Gap for

Robotics through an extensive literature review in an attempt to provide a set of concrete

definitions, a taxonomy on sim2real techniques and methodologies and simulation tools, as

well as the correlation to adjacent scientific principles and fields. This broad and holistic

methodological approach, reveals that Sim2Real cannot be simply reduced to isolated, ad-

hoc techniques applied to an already predefined system architecture, but on the contrary it

impacts all aspects of a visuomotor policy design process—from the observation space and

the representation of the perception module, the controller-agent architecture and training

methodology, to the action space design, all of which are task conditioned and are affecting a

sim2real transfer as we establish in Chapter 2. Based on the current research trends, usually

sim2real seems to be marginally treated in the context of the learning and control disciplines.

Our literature review and subsequent implementation offer valuable insights and can serve as

a reference for the design of visuomotor policies.

A future extension of the literature review should include an exhaustive coverage of the

model-based Reinforcement Learning and it’s interception with the Model Predictive Con-

trol(MPC) methodologies with respect to life-long learning and adaptive, ad-hoc, techniques

respectively. Based on the newly gained insights on sim2real, a manual design of simulation

frameworks is a significant bottleneck in the typically imposed sim2real workflow and it can

therefore not be a viable scalable way forward. It is crucial that the world model is actively

built by the agent itself as it goes, in an active inference [226] way, where the agent utilizes

the prior information and an inherit curiosity in order to further interact with the world in

order to autonomously discover it’s underlying ontologies and semantics. Lastly with regards

to the literature survey, the rapid advancements and mass adoption of Large Language Models

(LLMs) and Vision Language Models should be also examined with respect to implications

on sim2real for robotics.
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Our subsequent implementation for designing such a visuomotor policy for the hard

automation problem of mushroom harvesting with a robotic gripper allowed us to analytically

evaluate a set of key sim2real techniques, the impact of the overall agent architecture design

parameters and methodologies and most importantly has revealed the key weak points of a

“conventional” sim2real pipeline. More concretely by designing a fist order approximation

model, as a surrogate model for our simulation framework, which involves approximations

for the material elastic deformations and failure modes we were able to answer whether and

how such approximations, often-times crude, can be useful for effectively solving the task in

a sim2real context. We’ve shown that such 1st order modeling approximations for elastic

deformations and failure modes are possible in the context of a traditional rigid-body physics

engine in order to provide the necessary simulation runtime speed, which is necessary in a

RL training context as well as an MPC context.

Designing such a simulation framework for mushroom harvesting has proven to far

more challenging than initially anticipated, particularly in terms of development effort and

real-world data collection for fine-tuning in order to match the real-world dynamics through

system identification. Given the amount of development effort required to create a

simulation framework with adequate predictive accuracy and runtime speed, using

it solely for training seemed inefficient and underutilized. This led us to an alternative

approach beyond Reinforcement Learning, aiming to directly harness the predictive power of

our model as core component of the prediction and planning modules. We adopted a sampling

based MPC methodology, specifically the Model Predictive Path Integral (MPPI) control

framework as it is gradient-free and therefore is able to handle the inherit hybrid dynamics

nature of the robotic manipulation. The consequent transfer from simulation to the real-world

comes as a result of our modeling methodologies, the system identification procedures and

an architecture that renders the simulation a perception and planning module by effectively

transferring in the end a task plan description which can be handled by conventional planners
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and operational controllers into final torques to the joints. This showcases the power of

explicit transferable abstractions which allow even for relatively crude models to generate

accurate task descriptions involving complex dynamics, which is our main key insight and

contribution.

A first obvious potential future extension on this existing research work should include a

close-loop architecture which would necessitate faster simulation inference time. This could

be achieved by relaxing the stiffness conditions of our problem in combination with a more

efficient source code base with potentially an alternative physics engine. This would render

the pipeline reactive to potential world scene alterations during execution.

Another important note is that the sim2real transfer could be compromised occasion-

ally due to simulation optimization bias (SOB) as the planner tends to exploit simulation

imperfections generating infeasible and non-realistic plans. Extending the current frame-

work with higher level abstraction symbolic planners [227] could offer a viable solution for

long-horizon planning. Xue et al. [44] explore the parallels between sampling based MPC

and a Diffusion-Style Annealing as an attempt to robustify the more vanilla MPPI, which

could also be an excellent research direction for our architecture. Domain Randomization is

another interesting aspect with respect to a MPPI style planner where the parallel simulations

are varying in key parameters which should potentially increase the overall robustness.

Sensitivity to local minima and the laborious nature of fine-tuning the cost functions

for each task are also significant drawbacks of this approach. Generative methodologies,

leveraging the power of recent Large Language Models and Vision Language models, poten-

tially in combination with human-demonstrations, could automatically give rise to complex

cost functions as task descriptors [2, 228] with the additional benefit of increasing the visual

perception characteristics.

In the context of bridging the simulation-to-reality gap in robotics, the interpretability

of decisions made by robotic systems using Model Predictive Path Integral (MPPI) control
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requires also some rigorous attention, given the inherently stochastic nature of the method.

While MPPI’s stochastic nature can make it less immediately interpretable than traditional

deterministic methods, strategies such as visualizing sampled trajectories, decomposing

cost functions, and analyzing importance sampling can enhance human understanding

of the system’s decision-making process. However, a notable trade-off exists between

real-time performance and explainability, particularly in time-critical robotic manipulation

tasks. Enhancing explainability often involves additional computational steps that can impact

real-time performance, necessitating careful balancing through techniques like asynchronous

explainability analysis, adaptive sampling, and hierarchical interpretation systems.

Drawing parallels between physics modeling and mechanistic interpretability offers fur-

ther insights into this challenge. Physics models, with their well-defined coordinates and

parameters, can be viewed as monosemantic interpretations, providing clear physical

meanings and consistent interpretations. This approach aligns with the goals of mechanis-

tic interpretability in machine learning, where both seek to decompose complex systems into

interpretable components and establish causal relationships. However, the complexity and

non-linearity of real-world robotic systems often surpass simple physics models, leading to

emergent behaviors that challenge straightforward interpretations. Recent approaches, such

as Physics-Informed Neural Networks (PINNs) and hybrid modeling, aim to bridge this gap

by combining the interpretability of physics models with the flexibility of machine learning.

These advancements point towards a future where robotic systems can achieve both high

performance and interpretability, crucial for their safe and effective deployment in real-world

scenarios.

Lastly extensive testing and experimentation in real-world mushroom fields is necessary

in order to evaluate all these potential directions and assess their commercialization potential.
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Figure 5.1 The cost of developing a simulation framework for real-world robotic application

is most often underestimated.

5.2 Possible Research Direction

At the core of our research thematic lies the development of a simulation framework for a

hard real-world automation problem. We firmly believe that simulation as a solely training

artifact is a heavy under-utilization of a valuable asset with multiple underscored benefits.

Simulation should be seen as a human made “real-world embedding” based on spatial and

temporal transients of human scale, namely Newton-Euler dynamics (at least in case of rigid

body dynamics). This embedding space as perception module offers an explainable scene

reconstruction with obvious task planning possibilities. Even in the context learning based

methodologies and the “model-based” vs “model-free” (pseudo) dilemma, data efficiency

can achieved basically given a world model. A world model of course comes at a cost, either

development cost or training cost with the additional complexity potentially jeopardizing

convergence.

The future research direction should focus heavily in the active inference [226] framework,

where the agent should purposefully act in order to gain more information about the world

and update its current model. The robot agent should be seen as an “active world explorer”

and not purely the end deployment goal of static activation weights.

The concept of active inference aligns well also with addressing the issues of explainabil-

ity and interpretability as the agent should be able to embed autonomously and spontaneously
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the world model in a monosemantic base [229] that is also mechanistically interpretable

[230, 231] as an optimal encoding and translation for the action space as conditioned for the

task completion.

An interesting research direction could therefore be an attempt for a “dynamic embedding

space”, namely a learned dynamic world model as a perception module, namely 3D scene

reconstruction with physics embedding. The ability to predict the future world state should

drive the exploration and a consequent update of the world model [232].
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