

Reaping the Rewards of Autonomous Robotic

Harvesting: Imitation Learning of Picking

Motions Directly from Video

By

Antonios Porichis

Supervisors: Dr Vishwanathan Mohan, Dr Anirban Chowdhury, Dr Panos

Chatzakos

School of Computer Science and Electronic Engineering

University of Essex

A thesis submitted for the degree of

Doctor of Philosophy

October 2024

ii

iii

To Theodosis-Konstantinos, Eleni-Emmanuela, and Katerina,

iv

Acknowledgements

This is the hardest section to write; one cannot always express their gratitude as thoroughly as

necessary, particularly when they are not writing in their native tongue. With moderate

hesitation and enormous excitement, I proceed.

I would like to extend my heartfelt thanks to my academic supervisors Dr. Vishwanathan Mohan

and Dr. Anirban Chowdhury. Their deep expertise and insightful advice have been crucial in

deepening my understanding of the nuances of Imitation Learning and the challenges of applying

it to robotic manipulation tasks. Vishuu, your balanced combination of deep theoretical

knowledge and practical mindset is rare among the world of academia, and it has been invaluable

throughout this research.

I must also express my deepest gratitude to Dr. Panos Chatzakos, my industrial supervisor, a man

of rare intellect and the most genuine care for helping people to grow I have ever encountered.

Pano, I consider myself lucky to have enjoyed your mentorship.

My research was made possible by the sponsorship and support of Lloyd’s Register Foundation.

The work was enabled through, and undertaken at, the National Structural Integrity Research

Centre (NSIRC), a postgraduate engineering facility for industry-led research into structural

integrity established and managed by TWI through a network of both national and international

Universities. The greatest part of this work has received funding from the EU’s Horizon 2020

research and innovation programme, under grant agreement no. 101017054 (SoftGrip project).

A big thank you to my colleagues and close collaborators in the SoftGrip project, Konstantinos

Vasios, Thanasis Mastrogeorgiou, Dora Panteliou, Leonidas Delimpasis, Nikos Kegkeroglou and

Myrto Inglezou.

My academic endeavour would have been impossible without my family’s support. To my father

Theodosis, and my mother Chrysoula, thank you for sacrifice and for instilling in me the values of

hard work and perseverance. Your endless belief in my potential has been a powerful force.

Panagiotis and Dimitris-Stefanos, thank you for showing your older brother the importance of

creativity, dedication and commitment to a goal. Your jokes and wit have provided much-needed

laughter during challenging times, reminding me not to take life too seriously.

To my wife Katerina, any choice of words seems shamefully inadequate to express the depth of

my gratitude to you. You are my shining light. Your tremendous patience, your sense of

commitment and persistence have been my guiding beacon through the highs and lows of this

fascinating journey. To my son, Theodosis-Konstantinos, and my daughter Eleni-Emmanouela,

your hugs and smiles have been my greatest joy and source of motivation. Thank you all from the

bottom of my heart.

v

Abstract

The agricultural sector faces severe challenges; amidst strong pressures for cost saving while

maintaining sustainable practices in the face of climate change, and steep labour shortages which

significantly disrupt harvesting logistics, there is tremendous value to be unlocked by robotic

automation. Yet, a large portion of crops is still harvested manually, requiring human workers

carry out tedious, menial tasks under conditions that raise considerable health and safety risks.

Harvesting requires a combination of motions such as reaching, grasping, twisting, and pulling,

all under force constraints to avoid damaging the crop being harvested. This sequence can seem

effortless for human expert harvesters thanks to the tremendous capabilities and physical

intelligence of the human hand, but it is extremely difficult, and at times utterly impossible, to

program into a robotic controller. Imitation Learning allows a robotic agent to learn how to mimic

an expert in accomplishing an activity completely circumventing the need for programming

explicit procedures. This thesis explores Imitation Learning pipelines for robotic harvesting. We

focus on optimizing the performance of robots in the delicate task of mushroom harvesting,

leveraging end-to-end learning techniques that are adaptable across various crops. The novel

contributions in this work include (i) the design of efficient representations to improve action

prediction accuracy while keeping computational costs low, (ii) the development of a one-shot

Imitation Learning approach for mushroom harvesting enabling high success rates from a single

expert demonstration combined with a small number of auxiliary trajectories that are cheap and

straightforward to obtain and (iii) the introduction of a novel, end-to-end trainable

Representation Learning module that produces interpretable representation, significantly

boosting the transparency of the overall Imitation Learning pipelines. These advancements lay

the groundwork for the next generation of robotic automation in agriculture, ultimately

facilitating significant enhancements to productivity, sustainability and resilience for this

strategic sector.

vi

Contents

Acknowledgements ... iv

Abstract .. v

Contents .. vi

List of Figures .. ix

List of Tables .. xv

List of Abbreviations ... xvi

1 Introduction .. 1

1.1 Digital technologies in agriculture – challenges and opportunities 1

1.2 Case In Point - Robotic Mushroom Harvesting ... 2

1.2.1 Environmental Drivers .. 4

1.2.2 Social Drivers ... 5

1.3 Contributions of this Thesis .. 5

1.4 Overview ... 7

2 Imitation Learning Background and Related Work .. 9

2.1 Background ... 9

2.1.1 Deep Neural Networks .. 9

2.1.2 Variational Autoencoders ... 12

2.1.3 Vector Quantisation .. 14

2.1.4 Mixer Models .. 15

2.2 Related Work .. 17

2.2.1 Inverse Reinforcement Learning ... 17

2.2.2 Behavioural Cloning .. 18

2.3 Few-shot Imitation Learning ... 20

2.4 Explainable AI .. 23

vii

2.5 Representation and Object Centric Learning ... 24

3 Mushroom Harvesting Human Expert Demonstration Collection 27

3.1 Data Streams and Recording Equipment .. 27

3.1.1 RGB-D Video Stream ... 27

3.1.2 Tactile sensing stream .. 28

3.2 Data acquisition hardware .. 31

3.3 Data Overview ... 33

3.3.1 RGB-D Data ... 33

3.3.2 Tactile Data ... 33

3.3.3 Synchronised Sequences... 35

3.4 Data Annotation .. 36

4 Behavioural Cloning for Mushroom Picking in Simulated environment 39

4.1 Imitation Learning Architecture .. 39

4.2 Experiments .. 41

4.3 Results ... 46

4.4 Discussion.. 48

5 Behavioural Cloning for mushroom picking with a rigid gripper .. 51

5.1 Imitation Learning Architecture .. 51

5.2 Environment.. 53

5.3 Experiments .. 56

5.4 Results ... 59

5.5 Discussion.. 63

6 One-shot Imitation Learning for Autonomous Mushroom Picking 65

6.1 Imitation Learning Architecture .. 65

6.2 Environment.. 68

6.3 Experiments .. 70

6.4 Results ... 73

viii

6.5 Discussion.. 80

7 Interpretable Representations for Imitation Learning ... 83

7.1 Representation Learning Architecture ... 84

7.2 Environments .. 87

7.2.1 Generic Robotic Manipulation Tasks .. 87

7.2.2 Mushroom Picking Task .. 88

7.3 Experiments .. 89

7.3.1 Lift, Can and Square manipulation tasks .. 89

7.3.2 Mushroom picking task ... 90

7.4 Results ... 91

7.4.1 Lift, Can and Square manipulation tasks .. 91

7.4.2 Mushroom picking task ... 94

7.5 Discussion.. 97

8 Conclusions and Future Work ... 99

8.1 General Discussion .. 99

8.2 Retrospective Analysis of our Work .. 100

8.3 Directions for Future Work ... 102

References .. 104

ix

List of Figures

Figure 1.1 Four size categories of Agaricus bisporus ready for picking. The cap diameter can span

a range from 12cm down to 2cm: (a) 40mm diameter closed cup, (b) 50 mm diameter closed cup,

(c) 60mm diameter open cup, (d) 90mm diameter closed cup. ... 3

Figure 1.2. Picking mushrooms is one of the most physically demanding jobs. 3

Figure 2.1 Conceptual schematic of a CNN showing the three types of layers [22] 11

Figure 2.2. Conceptual schematic of a VAE operation ... 13

Figure 2.3 The architecture of the VQ-VAE [23] ... 14

Figure 2.4 The MLP mixer architecture [25] ... 15

Figure 2.5 The ConvMixer architecture [27] ... 16

Figure 2.6 Time-contrastive network architecture. A reward function is learned through

contrastive learning using pairs of aligned videos. Negative and positive samples are drawn based

on temporal distance. [32].. 17

Figure 2.7 The Behaviour Transformer architecture. The implementation includes discretising the

action by splitting each vector into a discrete component via a simple k-means process while

keeping the residual. A standard, small-scale Generative Pre-training Transformer is used as the

action decoder [40]. .. 19

Figure 2.8 The Perceiver-Actor architecture. The approach implements a language-conditioned

behavior-cloning agent trained with supervised learning to detect actions. The input is a language

goal and a voxel grid reconstructed from RGB-D sensors. The models operate on 3D patches of

the voxelised grid [43]. ... 20

Figure 2.9 The Diffusion Policy architecture. The diffusion model refines noise into actions via a

learned gradient field. This formulation is considered to stabilise training, enabling the learning

of multi-modal action distributions, and accommodating high-dimensional action sequences [46].

... 20

Figure 2.10 The WHIRL’s approach three main components. The robot first obtains human priors

such as hand movement and object interactions by watching the expert and then post processing

the image to remove the expert from each frame via inpainting. These priors are repeated by

interacting in the real world, trying to achieve task success and explore around the prior. The task

x

policy is improved leveraging an agent-agnostic objective function which aligns human and robot

videos [58]. .. 21

Figure 2.11 The coarse-to-fine IL approach. The task is deconstructed into a Visual Servoing and

a Manipulation subtask. The former is learned based on a dataset collected by moving the end-

effector to various positions above the target, while the latter is simply replayed from the single

expert demonstration [59]. .. 22

Figure 3.1. RGB-D camera positions. .. 27

Figure 3.2. Expert demonstration collection setup. ... 28

Figure 3.3 Pressure map profiles tracked by Tekscan Grip System .. 28

Figure 3.4. Used glove with stains indicating finger regions most frequently contacting the

mushroom surface. ... 29

Figure 3.5. Tekscan Grip System sensing elements mounted on the mushroom picker's gloves.

... 30

Figure 3.6. Mushroom Picking trial using the sensorised glove. .. 30

Figure 3.7 Force sensors mounted on the expert picker gloves. .. 31

Figure 3.8 The ZED camera is connected to the Jetson. A trigger signal initiates the recording

procedure. This signal is sent from the Tekscan output port and received at a Jetson GPIO pin.

... 32

Figure 3.9 Topology of the Jetson devices, the ZED2 cameras and the PC that records the camera

streams. ... 32

Figure 3.10 RGB-D camera 1: Left Image, Right Image and Depth Array 33

Figure 3.11 RGB-D camera 2: Left Image, Right Image and Depth Array 33

Figure 3.12 Aggregated pressures on fingertips (Tekscan Grip System). 34

Figure 3.13 Aggregated pressures on finger mid-sections (Tekscan Grip System). 34

Figure 3.14 Forces on finger tips (Mitsui sensors). ... 35

Figure 3.15 Overlay - finger region correspondence. ... 35

Figure 3.16 Mushroom picking sequence with pressure maps overlay 36

Figure 3.17 State sequence for recording presented in Figure 14 and Figure 15. 37

xi

Figure 3.18 Segmentation of the index tip pressure profile. .. 37

Figure 4.1 Architecture and flow of data (solid lines) and gradients (dashed lines) during training.

Orange flow: The pretraining sequence, where the RepL module is trained on random

trajectories. Blue Flow: Joint training of both the RepL and the BC modules where the gradients

from the 𝐿𝐵𝐶 flow all the way back to the encoder of the RepL module © 2023 IEEE. 41

Figure 4.2 PyBullet debug window rendering for the gym simulation environment for mushroom

harvesting © 2023 IEEE .. 42

Figure 4.3 A sequence of a failed outrooting attempt; (1) the gripper starts at a random position,

(2) moves fingers around the mushroom, (3) grasps the mushroom, (4-5) pulls the mushroom

upwards without twisting resulting in slippage, (6) mushroom completely slips away 44

Figure 4.4 A sequence of a successful episode rollout by the trained agent. (1) the gripper starts

at a random position, (2-3) moves fingers around the mushroom, (4) grasps the mushroom, (5)

twists, and (6) pulls the mushroom upwards. © 2023 IEEE ... 45

Figure 4.5 The trajectories (x, z position and yaw angle) and the squeezing forces observed on the

gripper fingers of the trained agent (cyan) and the expert demonstrator (orange). © 2023 IEEE

... 47

Figure 4.6 (a) RGB image, (b) depth map with artificial noise. © 2023 IEEE 48

Figure 5.1 Architecture and flow of data (blue lines) and gradients (orange and yellow lines)

during training. Dashed lines indicate gradient copying to accommodate non differentiable

modules. The ampersand (&) symbol indicates concatenation. .. 51

Figure 5.2 Top- and side-view of the five mushroom models used in the picking experiments. 53

Figure 5.3 Our experimental setup; Left: the robotic manipulator (xArm6 by Ufactory) and an

example of the mushroom 3D-printed mock-ups. Right: The 3D printed mount and the camera

(Realsense D435f) used for imaging ... 54

Figure 5.4 Failed attempt without twisting; (1) the gripper starts at the random position, (2)

moves and grasps the mushroom mock-up, (3) starts pulling upwards causing mushroom mock-

up to slip, (4) mushroom mock-up completely slips away ... 55

Figure 5.5 Successful attempt with twisting; (1) the gripper starts at the random position, (2)

moves and grasps the mushroom mock-up, (3) twists the mushroom mock-up, breaking some of

the adhesive bonds, (4) pulls mushroom mock-up upwards successfully 56

xii

Figure 5.6 A sequence of a successful episode rollout by the trained agent. (1) the gripper starts

at a random position; (2) moves above the mushroom; (3) reaches down; (4) grasps; (5) twists,

breaking the adhesive bonds; and (6) pulls the mushroom upwards. ... 58

Figure 5.7 The trajectories (x, y, z position and yaw angle) observed on the gripper fingers of the

trained agent (skyblue) and the expert demonstrator (orange). ... 59

Figure 5.8 Grouped bar chart of success rates for each of the 8 models tested for each of the 5

mushroom models. ... 61

Figure 5.9 Top: embeddings with VQ, Bottom: embeddings without VQ. Color shade indicates the

episode step index .. 62

Figure 6.1 Schematic of Imitation learning driven visual servoing approach. The architecture

integrates an Image Encoder for processing RGB images, an Image Decoder for frame

reconstruction, a Vector Quantization (VQ) module for embedding quantization based on a

codebook that is updated using Exponential Moving Average (EMA), and a Target Position

Decoder for predicting the Target Position. The system is trained in a self-supervised manner,

using a combined loss function that includes reconstruction loss (L_IR), VQ loss (L_VQ), and the

Target Position loss (L_TP), facilitating accurate end-effector positioning based on visual and

encoder inputs. Dashed lines denote gradient copying to account for the fact that the

quantization operation is not differentiable per se. .. 66

Figure 6.2 The actuated cartesian robotic system used for mushroom picking trials. The gantry-

like robot moves along the x-axis with actuated wheels (M1), and along the y-axis and the z-axis

with linear slides (M2 and M3 respectively). .. 69

Figure 6.3 The in-hand camera position as well as the motors (M1, M2 and M3) of controlling the

motion of the gripper. Only M3 which controls the twisting motion was active during our

experiments. ... 70

Figure 6.4 Four screenshots of the eye-in-hand camera during a spiral trajectory, Right: 3D plot

of the trajectory of the gripper in the 3D space. .. 71

Figure 6.5 3D plot of the trajectory of the gripper in the 3D space ... 72

Figure 6.6 Front view and view of a sequence of a successful episode rollout by the trained agent

on real mushrooms. (1) the gripper starts at a random position; (2) moves above the mushroom;

(3) reaches down; (4) grasps; (5) twists; and (6) pulls the mushroom upwards. 74

xiii

Figure 6.7 Eye-in-hand view of a sequence of a successful episode rollout by the trained agent on

real mushrooms. (1) the gripper starts at a random position; (2) moves above the mushroom; (3)

reaches down; (4) grasps; (5) twists; and (6) pulls the mushroom upwards. 75

Figure 6.8 Predictions of different IL pipelines on the expert demonstration. Predictions are

produced offline, based on the observations obtained during the expert trajectory. 76

Figure 6.9. Expert and trained agent (vq-rec) trajectories on rollouts with the same environment

conditions. Trained agent predictions are produced online by rolling out a new episode. 77

Figure 6.10 t-SNE mapping of embeddings produced by the three IL approaches considered.

Colour shade indicates the episode step index. ... 78

Figure 6.11 Annotated screenshots during trained agent (vq-rec) episode rollouts: (a) the bottom

left right finger is significantly displaced due to collision with a nearby mushroom, (b) the top

finger is moderately displaced due to hysteresis. .. 79

Figure 7.1 Interpretable Representation Learning Module Architecture. 85

Figure 7.2 Screenshots from the three simulated tasks, Top: Front camera view, Bottom: Eye-in-

Hand camera view. ... 87

Figure 7.3 Screenshot from simulated mushroom picking task, Left: Eye-in-hand camera view,

Right: Front camera view. ... 88

Figure 7.4 Screenshot from real-world mushroom picking task, Left: Eye-in-hand camera view,

Right: Front camera view. ... 89

Figure 7.5 Indicative example of determining a target mushroom. Right: Target pixel is painted

on the image. Left: Extra image channel carrying an inverse modulated distance map as described

in eq. (7.9). .. 91

Figure 7.6 Screenshots of the three highest scores for each of the four slots for a single timestep

of Lift environment. .. 92

Figure 7.7 Screenshots of highest scores for each of the four slots for a single timestep of Can

environment. .. 92

Figure 7.8 Screenshots of highest scores for each of the four slots for a single timestep of Square

environment. .. 93

Figure 7.9 Screenshots of a single slot across multiple episode steps of the Square episode for the

eye-in-hand camera. ... 94

xiv

Figure 7.10 Screenshots of highest scores for each of the three slots for a single timestep of the

real-world mushroom picking environment. Top: Implementation with target pixel drawn on the

image with a red cross. Bottom: Implementation with target pixel concatenated to the

embedding. For visualisation purposes, we draw the target pixel in blue colour to distinguish it

from the previous case. .. 96

Figure 7.11 Screenshots of a single slot across multiple episode steps of the real world mushroom

picking task. Top: Implementation with target pixel drawn on the image with a red cross. Bottom:

Implementation with target pixel concatenated to the embedding. For visualisation purposes, we

draw the target pixel in blue colour to distinguish it from the previous case. 96

Figure 8.1 Taxonomy of desired features when it comes to Imitation Learning approaches 99

Figure 8.2 Mapping of our implementations with respect to the aforementioned taxonomy . 102

xv

List of Tables

Table 4.1 Key Simulation Parameter Values ... 43

Table 4.2 Results with Grayscale Image as Input © 2023 IEEE .. 47

Table 5.1 Success Rates for Different Model Pipelines .. 60

Table 6.1. The proposed model parameters. ... 68

Table 6.2 Success rates in mushroom grasping an lifting of different approaches. 73

Table 7.1 Success rates of original and modified implementation of the BC benchmarks. 91

Table 7.2 Success rates for different IL pipelines with different target pixel input modes in

simulated mushroom picking task. ... 95

Table 7.3 Success rates for different IL pipelines with different target pixel input modes in real-

world mushroom picking task. .. 95

xvi

List of Abbreviations

ML: Machine Learning

AI: Artificial Intelligence

IL: Imitation Learning

RL: Reinforcement Learning

IRL: Inverse Reinforcement Learning

GAN: Generative Adversarial Network

RepL: Representation Learning

VQ: Vector Quantisation

DNN: Deep Neural Network

MLP: Multi-layer Perceptron

CNN: Convolutional Neural Network

ViT: Vision Transformer

VAE: Variational Auto-Encoder

XAI: Explainable Artificial Intelligence

ELBO: Evidence Lower Bound

KL: Kullback-Leibler

BeT: Behaviour Transformer

DP: Diffusion Policy

xvii

1

1 Introduction

1.1 Digital technologies in agriculture – challenges and opportunities

The labour shortage in agriculture has become a significant and widespread challenge, posing

threats to the global food supply chain. This shortage is primarily attributed to several factors,

including demographic shifts, changing preferences among the workforce, and increased

competition for labour from other industries. Younger generations are increasingly opting for

non-agricultural careers, leading to a diminishing pool of skilled and unskilled workers in the

farming sector. Additionally, stringent immigration policies in some regions have restricted the

flow of foreign labour, further exacerbating the shortage. The consequences of this shortage are

far-reaching, affecting crop harvests, productivity, and overall agricultural sustainability. Efforts

to address this issue often involve implementing technological solutions, such as automation and

robotics, to alleviate the reliance on human labour in agriculture.

Europe’s agricultural workforce is expected to fall by 28% until 2030, according a 2018 report by

the European Commission [1]. The latest edition estimates a cumulative decline of almost 33%

between 2007 and 2032 [2]. This comes largely because of structural changes within the EU agri-

food industry and better employment opportunities in other sectors. This decline is not confined

to Europe: the U.S. Department of Agriculture’s (USDA) Economic Research Service reports that

the country’s agricultural workforce has been dropping for years. Specifically, the number of self-

employed and family farmworkers in the U.S. plunged from 7.6 million in 1950 to 2.06 million in

2000—a 73% reduction[3].

It is therefore clear that wide adoption of digital technologies to alleviate the labour shortage

and reduce the need for pesticides is imperative for Europe. However, a crucial factor to consider

in developing such technologies is the cost of deployment and cost of ownership considering the

unique characteristics of the EU agriculture sector. Consolidation of agricultural land in the EU is

slow and the market is still extremely fragmented with over 40% of EU agricultural holdings being

less than 5 ha in size. There were 9.1 million agricultural holdings in the EU in 2020, using 157

million hectares of land [4]. This means that the average size of an EU farm is ~17ha. That’s less

than 10 times smaller than the mean US farm size (444 acres, i.e. 180ha in 2020) [5]. Smaller

farms have tighter economic constraints in adopting new technologies. Thus, it is crucial that cost

effectiveness is among the top priorities in designing, developing and deploying new technology-

based solutions.

2

1.2 Case In Point - Robotic Mushroom Harvesting

The fresh mushroom industry is under growing pressure to reduce production costs due to high

levels of competition between supermarket chains and rival competitors in countries where the

cost of labour is significantly lower. Moreover, it is highly labour-intensive, with labour costs at

anything up to 50% of the product cost. Much of the manual work in food industry requires rapid,

repetitive, and monotonous movement and, consequently, low levels of motivation among

workers. This leads to poor quality control and a high incidence of industrial accidents. Therefore,

the food industry is looking increasingly towards automation and robotics to help lower

production costs further.

EU mushroom grower SMEs are struggling to maintain profit margins due to the globalization of

agricultural markets, the increasing cost of raw materials and utilities, and often the use of

outdated and inefficient cultivation methods; it is no surprise that fresh mushrooms are often

delivered under cost price. In Ireland, one of the largest mushroom producers in Europe farm the

farms have been reduced from 504 in 2000 to 40 in 2020 [6], although production has been

maintained due to improvements in harvesting efficiency and crop management. This is against

a backdrop of severe labour shortages and Brexit [7]. In the future, this number is foreseen to

drop even more. It is clear that operations of this magnitude have the need of automating as

much as possible their plants for lowering the production costs and therefore being competitive.

On the other hand, small growers also need more cost-effective methods; otherwise they are

sentenced to disappear.

The white button mushroom (Agaricus bisporus) is the most widely cultivated mushroom in the

world (15-36% of total market share) leading mushroom crop worldwide with a global production

in 2017 of 4.4 million tonnes [8]. More than 60% of this production is destined for the fresh

market, while the rest are processed and canned. Whereas for the canned industry mushrooms

can be harvested and handled by an automated system (see State of the Art), such automation

does not yet exist for picking and handling mushrooms for the fresh market, due to the high-

quality standards required by this product. Although downstream elements of the process can

be automated, the actual picking of the mushroom is still done manually, due to the dexterity,

precision and sensitivity of the human hand that can pick the mushroom and not damage it. All

mushroom that are picked are grouped according to their size and whether the cap is closed or

open. Common size specifications are: baby buttons, 20 -35 mm; closed cups, 40-60 mm; and

flats, 80-120 mm however depending on the customer, there are many different codes with

3

individual specifications (e.g. some closed cup are 40-50mm or 40-55mm, some baby buttons

codes are 20-30mm and some flat codes are 80-100mm or sometimes 100-120mm.); some

examples shown in Figure 1.1 and the mushrooms placed in a tray should be of similar size and,

above all, with no damage or blemish on their snow-white skin, making hand picking the only

option for producers, with a cost accounting for between 20 and 46% of their total production

costs [9].

Figure 1.1 Four size categories of Agaricus Bisporus ready for picking. The cap diameter can span

a range from 12cm down to 2cm: (a) 40mm diameter closed cup, (b) 50 mm diameter closed cup,

(c) 60mm diameter open cup, (d) 90mm diameter closed cup.

In addition, the actual work of picking mushrooms is one of the most physically demanding in the

agricultural sector, given the setup of the shelves and the humidity of the growing rooms, causing

high incidences of sick leave in detriment to both the workers and their employers (see Figure

1.2). This also makes it difficult for growers to find people willing to work under such conditions.

Figure 1.2. Picking mushrooms is one of the most physically demanding jobs.

4

Fresh mushroom picking poses significant challenges with respect to the mechatronic

functionalities of the robot (hardware and software) required to accomplish the picking task.

Despite the tremendous uptake of robotic automation, particularly in indoor vertical farming

systems, fresh mushrooms are currently being harvested almost exclusively by human mushroom

pickers due to the task’s highly complex nature; mushrooms can grow in wildly varying positions

and their root system strength is different across different cultivation phases. At the same time,

however, mushrooms are extremely sensitive to applied forces and can easily blemish which

results in poorer quality and revenue loss for the growers. Thus, human harvesters employ

motion patterns combining twisting the mushroom before pulling to achieve outrooting with

minimal squeezing force [10]. This composite manipulation pattern in combination with the

environment variations make fresh mushroom harvesting a notable example of a task with

significant manipulation challenges as well as with substantial industrial impact. Large mushroom

growers have made huge improvements in terms of mushroom yields per sq.m. of compost [11]

yet they face steep labour shortages that render harvesting a crucial bottleneck in their

production pipeline [12], [13]. Thus, enabling automated harvesting of fresh mushrooms is of

paramount importance and conventional robotic approaches to this problem require significant

engineering in terms of perception, to accurately localize the mushroom, and control, to perform

the necessary manipulations.

1.2.1 Environmental Drivers

Mushroom production is one of the most resource efficient and less polluting agricultural

practices according to a study by SureHarvest [14]. Water required for mushroom production is

a fraction compared to other foods and the production of a 1kg of mushrooms requires only 15

litres of water which is a fraction of water inputs required for many other foods. Growing one kg

of mushrooms generates just 0.7 kg of CO2 equivalent, calculated by tracking total emissions

from electricity and fuel used for composting equipment and growing operations (e.g.

equipment, heating, cooling, etc.). For comparison the carbon footprint of 1kg of beef is 100kg

of CO2 equivalent [15], so mushrooms are also a far more sustainable crop, especially considering

that they are an excellent source of protein and mushrooms are used to combat protein

deficiency and as a supplement to cereal grains [16]. Mushrooms’ small growing space conserves

soil and the SureHarvest study calculated that growers can produce thousands of tonnes of

mushrooms on just a few hectares of land. In addition, the soil used to produce mushrooms is

made of composted materials. After mushrooms are harvested, the soil is recycled for multiple

5

uses, including potting soil. The annual average yield of mushrooms is 34.6 kg per square meter

– meaning up to 346 tonnes of mushrooms can be produced on just one hectare.

1.2.2 Social Drivers

Agriculture remains a big employer within the EU; 8.7 million people worked in agriculture in

2020 but only 11.9 % of EU farm managers were under the age of 40 years old in 2020 and farming

is a male dominated profession, only 31.6 % of farmers were women in 2020 [4]. This decline is

also evident in the US and the number of self-employed and family farmworkers in the U.S.A had

been reduced by 73% in the last 30 plus years [17]. According to a 2023 OECD study [18] the

agriculture and food sector have the highest rate of skills misalignments (including over and

under-qualification) while the demand for employees with higher level entrepreneurial and

management skills, and digital know-how is increasing with the largest skill gaps in quality control

systems and equipment maintenance.

The role of agriculture is evolving with increasing attention to food security, environmental

goods, biodiversity, and social aspects. The way forward is by implementing agricultural policies

that encourage investment in skills and human capital and strengthening agricultural innovation

and by improving the image of agriculture as a sector capable of offering career opportunities to

make it more attractive [18].

1.3 Contributions of this Thesis

There is a significant need for robots to intelligently behave in the face of complex, non-repetitive

tasks while minimizing the time and effort required to program a robot for a new activity.

Reinforcement Learning (RL) techniques have achieved impressive performance in such complex

tasks; however, they require the availability of enormous volumes in terms of data samples as

well as per-sample reward annotations which is not always feasible to obtain [19].

Imitation Learning (IL), or Learning by Demonstration, has emerged as an alternative that enables

agents to learn how to solve complex tasks by observing the interactions of an expert agent with

the environment. Such methods can in principle enable new levels of robotic automation

allowing robots to carry out tasks involving high variability with respect to critical characteristics,

such as object locations, for which it would be impossible to program a procedural routine [20].

IL, therefore, holds significant promise for industrial applications involving menial work that is

still being carried out manually. This is particularly important for sectors where the activities

carried out are tedious and of low added value or involve significant health and safety risks.

6

This thesis introduces several novel contributions towards teaching robots to perform harvesting

motions through Imitation Learning. Although our work has primarily focused on fresh

mushroom harvesting, we have employed end-to-end learning techniques that can be applied

across different crops. Concretely, this thesis makes the following contributions:

1) We investigate Representation Learning pipelines that show significant increases in the

action prediction performance of both Behavioural Cloning and one-shot visual servoing

agents in the mushroom harvesting setting. These make use of Vector Quantisation

techniques under the key assumption that, within a robotic manipulation setting, the

latent codes required to describe the observations can be significantly compressed. This

performance increases are crucial to achieving acceptable successful picking rates while

maintaining the computational complexity of the AI models at moderate levels so that

they can be deployed on local computer controllers.

2) We develop a one-shot Imitation Learning approach that takes advantages of the

harvesting task composition. Observing that harvesting motion combinations can

generally be broken down into a Visual Servoing and a Manipulation phase, with the latter

often being straightforward to replicate, we learn a Visual Servoing controller from a

single RGB camera that achieves remarkable accuracy in positioning the gripper to grasp

and outroot mushrooms. We test this approach on mushroom harvester combining a

cartesian mechanism and a bio-inspired soft, pneumatically actuated gripper, moving

significantly further than the conventional Imitation Learning benchmarks. The task

performances are tested against both highly realistic mushroom mock-ups and real

mushrooms and the results are thoroughly analysed.

3) We introduce an interpretable Representation Learning module that enables significant

improvements in the transparency of Imitation Learning architectures. This module

enables detailed visualization of regions of the image that are regarded as of high

importance for the task being solved allowing for easier identification of errors and

inherently explaining the model’s behaviour. To the best of our knowledge this is the first

interpretable Imitation Learning approach for robotic manipulation that can be trained in

an end-to-end fashion. We test this Interpretable Representation Learning module into

an goal-conditioned Imitation Learning paradigm with straightforward user input; in this

regime, a human supervisor indicates the target mushroom to be harvested via a simple

click or tap on the camera’s visual stream allowing the system to perform the task under

7

external guidance. This capability is crucial in the mushroom harvesting domain, as

prioritising which mushrooms to pick first hugely affects the overall yield.

The work carried out within the scope of this thesis has given rise to the following results:

Two peer-reviewed publications successfully published:

• Porichis, A., Vasios, K., Iglezou, M., Mohan, V., & Chatzakos, P. (2023, June). Visual

Imitation Learning for robotic fresh mushroom harvesting. In 2023 31st Mediterranean

Conference on Control and Automation (MED) (pp. 535-540). IEEE.

• Porichis, A., Inglezou, M., Kegkeroglou, N., Mohan, V., & Chatzakos, P. (2024). Imitation

Learning from a Single Demonstration Leveraging Vector Quantization for Robotic

Harvesting. Robotics, 13(7), 98.

Three technical reports as part of the deliverables of the EU-funded project SoftGrip (H2020

project, Grant Agreement No. 101017054), evaluated by experts:

• D5.1 Annotated datasets of human expert demonstrations

• D5.2 Report on multi-task and meta-learning algorithms including neural network

architectures

• D5.3 Adaptation and skill transfer learning algorithms

One invited talk titled “Visual-based Imitation Learning for robotic harvesting with multiple

embodiments”, thanks to the kind invitation of Dr. Teena Chakkalayil Hassan as part of her course

“Human-Centred Interaction in Robotics” at the Department of Computer Science of the

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

One publication aimed at the IEEE Robotics and Automation Letters journal, titled "Towards

Interpretable Representations for Visual-based Imitation Learning”

1.4 Overview

This Thesis is structured as follows:

• Chapter 2 describes the background and mathematical formulations of the core

components we used in our work. It also outline related work with similar aspects to ours

in terms of scope.

8

• Chapter 3 details the methodology of the expert demonstration collection, describing the

hardware and electronic components used as well as the annotation of the resulting

datasets

• Chapter 4 explains the initial study of using Behavioural Cloning approaches to accomplish

mushroom harvesting within a simulation environment.

• Chapter 5 describes the methodologies used to enable harvesting with a real robot using

physical mushroom mock-ups, introducing the merits of Vector Quantisation

• Chapter 6 details the methodology used to accomplish harvesting of real mushrooms

with a bio-inspired soft, pneumatically actuated gripper focusing on data-efficient

approaches

• Chapter 7 explores novel, interpretable representations allowing for transparent

Imitation Learning

• Chapter 8 presents the conclusions derived from our work and lay out possible avenues

to pursue as future research.

9

2 Imitation Learning Background and Related Work

2.1 Background

2.1.1 Deep Neural Networks

A deep neural network is a type of machine learning model inspired by the structure and function

of the human brain. It consists of multiple layers of interconnected nodes, or "neurons," that

process and transform input data to produce an output. Within the context of this thesis, we

consider a Deep Neural Network, parametrised by a vector 𝜃, to be a composition of functions:

𝑔 = 𝑓𝐿 ∘ 𝑓𝐿−1 ⋅⋅⋅ ∘ 𝑓2 ∘ 𝑓1 (2.1)

where ∘ denotes composition, and each 𝑓𝑙 denotes the function applied at the 𝑙-th layer. Each

𝑓𝑙 typically follows the Multi-Layer Perceptron (MLP) structure [21] consisting of two main

components, (i) an affine function parametrised by weights 𝑾𝒍 and biases 𝒃𝒍

𝒛𝑙 = 𝑾𝑙𝒉𝑙−1 + 𝒃𝑙 (2.2)

Where 𝒉𝑙−1 is the output from the previous layer (or the input data for the first layer), and (ii) a

non-linear function 𝜎 applied elementwise to the linear transformation's output:

𝒉𝑙 = 𝜎(𝒛𝑙) (2.3)

Common activation functions include:

• the sigmoid function 𝜎(𝑥) = (1 + 𝑒−𝑥)−1,

• hyperbolic tangent 𝜎(𝑥) = tanh(𝑥),

• the Rectified Linear Unit (ReLU) 𝜎(𝑥) = max(0, 𝑥)

These non-linearities introduce the ability to model complex, non-linear relationships in the data.

In the vast majority of applications, DNNs are trained via gradient descent, an optimisation

algorithm used to minimize the loss function by iteratively updating the network's parameters

(weights and biases) in the direction of the negative gradient of the loss function with respect to

the parameters:

𝜽𝑡+1 = 𝜽𝑡 − 𝜂∇ℒ(𝜽) (2.4)

were, 𝜃 represents the parameters, 𝜂 is the learning rate, and ℒ(𝜽) is the loss function. Variants

like stochastic gradient descent (SGD) and adaptive methods like Adam and RMSprop are

commonly used to improve convergence speed and performance.

10

The “layered” structure of DNNs allows the use of backpropagation, an efficient formulation of

the gradient computation leveraging the chain rule of derivation. Backpropagation involves two

passes through the network: a forward pass to compute the output and loss, and a backward

pass to propagate the error and compute the gradients.

During the backward pass, the chain rule of calculus is applied to compute the gradient of the

loss function with respect to each parameter. For a weight matrix 𝑾𝑙 in layer 𝑙, the gradient is

computed as:

𝜕ℒ

𝜕𝑾𝑙
=

𝜕ℒ

𝜕𝒉𝐿
⋅

𝜕𝒉𝐿

𝜕𝒛𝐿
⋅ ⋯ ⋅

𝜕𝒉𝑙

𝜕𝒛𝑙
⋅

𝜕𝒛𝑙

𝜕𝑾𝑙
 (2.5)

This recursive application of the chain rule allows the network to efficiently compute the

gradients for all parameters, enabling effective learning.

Deep Learning, the overall field encompassing the theory around DNNs, is extremely broad and

an exceptional number of NN variants have been proposed, usually differing in architecture-

related choices around the combination of the functional building blocks and the resulting

computational graph. A well-known family of DNNs, particularly suited for processing data with

a grid-like topology, such as images, is that of Convolutional Neural Networks (CNNs). CNNs are

designed to automatically and adaptively learn spatial hierarchies of features from input data.

CNNs are composed of a series of layers that transform the input data through a sequence of

operations. The primary building blocks of CNNs include convolutional layers, pooling layers, and

fully connected layers.

Convolutional layers apply convolution operations to the input data using a set of learnable filters

usually referred to as kernels. Each filter scans the input spatially e.g., across the width and height

of an image, to produce feature maps. These feature maps highlight different aspects of the

input, such as edges, textures, or more complex patterns. The mathematical formulation of the

convolution operation for a single filter 𝑲 on an input 𝑿 is defined as:

(𝑿 ∗ 𝑲)(𝑖, 𝑗) = ∑ ∑ 𝑰(𝑖 + 𝑚, 𝑗 + 𝑛)𝑲(𝑚, 𝑛)

𝑛𝑚

 (2.6)

where (𝑖, 𝑗) denotes the spatial location, and (𝑚, 𝑛) are the dimensions of the filter.

Pooling layers reduce the spatial dimensions of the feature maps, effectively downsampling the

input. This process helps to reduce the computational load and the number of parameters, as

well as to achieve spatial invariance to small translations of the input. Common pooling

11

operations include max pooling and average pooling. Max pooling, for instance, selects the

maximum value within a pooling window 𝑤:

𝒀(𝑖, 𝑗) = max
(𝑚,𝑛) ∈ 𝑤

𝑿(𝑖 + 𝑚, 𝑗 + 𝑛) (2.6)

After a series of convolutional and pooling layers, the high-level reasoning in the neural network

is performed through fully connected, also termed dense, layers. These layers have neurons that

are fully connected to all activations in the previous layer, like those in traditional DNNs. Before

feeding the feature maps into fully connected layers, they are flattened into a single vector. This

vector is then processed by one or more fully connected layers, ultimately leading to the output

layer which performs the final prediction. The overall operation of a typical CNN is illustrated in

Figure 2.1.

Figure 2.1 Conceptual schematic of a CNN showing the three types of layers [22]

Two key parameters modulating the convolution process; stride and padding. Stride refers to the

number of pixels by which the filter moves across the input. Larger strides reduce the spatial

dimensions of the output feature maps. Padding involves adding extra pixels around the input’s

border, typically zeros, to control the spatial dimensions of the output feature maps and to

preserve edge information. In the context of our Imitation Learning work, we rely on stride,

rather than pooling, to progressively reduce the input size. This way, we avoid a set of operations,

reducing the computational load, while also ensuring that important features and their location

12

on the image are better preserved. The latter is crucial in determining actions based on image

input as opposed to the canonical task of classification where the location of certain features is

less important.

Ultimately, CNNs take advantage of parameter sharing, as the same filter, i.e. set of weights, is

applied across different parts of the input. Each neuron in a convolutional layer is connected to

a local region of the input, called the receptive field. This local connectivity helps the network to

learn spatial hierarchies of features and, crucially, significantly reducing the number of

parameters compared to fully connected networks, thereby achieving high performance with

lower computational loads.

2.1.2 Variational Autoencoders

Variational Autoencoders (VAEs), introduced by Kingma and Welling in 2013, are a class of

generative models that combine ideas from variational inference and neural networks. Unlike

traditional autoencoders that only compress data, VAEs aim to learn a low-dimensional latent

representation of high-dimensional data while simultaneously learning to generate new data

samples from this latent space.

A VAE consists of two main components, an encoder and a decoder, both of which are modelled

as DNNs. The encoder maps the input data 𝑥 to a latent space, represented by a set of latent

variables 𝒛. In contrast to deterministic autoencoders, the encoder in a VAE outputs parameters

of a probability distribution instead of a single vector. This distribution 𝑞𝜑(𝒛 ∣ 𝒙) where 𝝓

represents the parameters of the encoder, is typically selected to be the Normal distribution with

𝜇(𝒙) and variance 𝜎2(𝒙) which are the outputs of the encoder. For practical reasons, the

variance is typically modelled as a diagonal matrix, implicitly assuming that each latent dimension

is independent from the rest, and the output of the encoder is log 𝜎2(𝒙). The decoder

reconstructs the input data from the latent representation. It maps the latent variables 𝑧 z back

to the data space, providing a distribution 𝑝𝜃 (𝒙 ∣ 𝒛) where 𝜃 denotes the parameters of the

decoder.

The objective of the VAE is to maximize the likelihood of the observed data under the model. This

however would require the marginal likelihood, or evidence, to be computed:

𝑝𝜃(𝒙) = ∫ 𝑝(𝒙 ∣ 𝒛)𝑝(𝒛)𝑑𝒛 (2.7)

13

This computation is intractable due to the integral over the latent space. Instead, VAEs optimize

a tractable lower bound known as the Evidence Lower Bound (ELBO). This is given as:

ℒ(𝜑, 𝜃; 𝒙) = 𝔼𝑞𝜑(𝒛∣𝒙) [log 𝑝𝜃(𝒙 ∣ 𝒛)] − 𝐾𝐿 (𝑞𝜑(𝒛 ∣ 𝒙) ∥ 𝑝(𝒛)) (2.8)

The two terms of the ELBO lend themselves to a straightforward interpretation from a practical

standpoint. The first term, 𝔼𝑞𝜑(𝒛∣𝒙) [log 𝑝𝜃(𝒙 ∣ 𝒛)], measures how well the decoder reconstructs

the input data from the latent variables. It encourages the model to produce samples that are

similar to the input data and can thus be considered a reconstruction term. The second term,

𝐾𝐿 (𝑞𝜑(𝒛 ∣ 𝒙) ∥ 𝑝(𝒛)), is the Kullback-Leibler (KL) divergence between the approximate

posterior 𝑞𝜑(𝒛 ∣ 𝒙) and the prior 𝑝(𝒛). This term regularizes the latent space to be close to the

prior distribution, typically chosen to be a standard normal distribution 𝒩(0, Ι). It ensures that

the latent space does not deviate too much from a simple distribution, ensuring a smooth

manifold for the latent space that facilitates the sampling process.

The optimisation of the ELBO requires computing the gradient of (2.8) with respect to 𝜃, 𝜑. This

however is not well defined given that the gradient of the expectation term 𝔼𝑞𝜑(𝒛∣𝒙) [log 𝑝𝜃(𝒙 ∣

𝒛)] with respect to 𝜙 is not straightforward to compute since 𝑧 is produced stochastically by

sampling the Normal distribution with mean and variance produced by the decoder. A way

around this obstacle, is the use of the Reparameterization Trick, whereby the random variable 𝒛

is expressed in terms of a deterministic function of 𝒙 and an auxiliary variable 𝜀 with a fixed

distribution, which is usually set as the standard normal distribution 𝜀 ~ 𝒩(0, 𝚰).

Figure 2.2. Conceptual schematic of a VAE operation

One challenge in training VAEs is that sampling from q(z|x) introduces a non-differentiable

operation in the computational graph, which prevents backpropagation. The reparameterization

trick addresses this issue by reformulating the sampling process in a differentiable manner. This

reparameterisation can be written as:

14

𝒛 = 𝜇(𝒙) + 𝜎(𝒙) ⊙ 𝜀

(2.9)

Where 𝜇(𝒙) and 𝜎(𝒙) are produced by the encoder network, and ⊙ denotes element-wise

multiplication. By reparameterising 𝑧 in this way, the gradients can be passed through the

deterministic parts 𝜇(𝒙) and 𝜎(𝒙), making the model differentiable with respect to the encoder's

parameters 𝜙. Thus, gradients can flow through the sampling operation, enabling end-to-end

training of the VAE using standard backpropagation techniques. Figure 2.2 depicts the typical

architecture of a VAE.

2.1.3 Vector Quantisation

Vector Quantisation in the context of Representation Learning was originally introduced in [23],

in the form of a so-called Vector Quantised Variational Autoencoder (VQ-VAE) illustrated in

Figure 2.3, and has been widely adopted as a technique enabling the transformation of

continuous-valued vectors into discrete codes. This process is essential for applications requiring

discrete latent variables, such as generative models and draws inspiration from the simple

observation that a mental description of an image would require far less information than the

amount afforded by a high-dimensional continuous vector. VQ was a crucial component of the

first image generative models to achieve world-wide prominence such as Dall-E [24].

The approach makes use of a codebook, i.e. a set of discrete embeddings, also referred to as code

vectors {𝒆𝑖}𝑖=1
𝐾 , where 𝐾 is the codebook size, i.e. the number of code vectors within it. Each

code vector 𝒆𝑖 has the same dimensionality as the latent variables. During training, the codebook

is updated to capture the distribution of the latent variables effectively, ensuring that the discrete

representations are both informative and compact.

Figure 2.3 The architecture of the VQ-VAE [23]

15

The quantisation process involves an encoder and a decoder. In the encoding phase, a continuous

latent variable 𝒛 is mapped to its nearest code vector. This nearest-neighbour search is

performed using the Euclidean distance metric:

𝑘 = argmin
𝑖

∥ 𝒛 − 𝒆𝑖 ∥2 (2.9)

Once the nearest code vector is identified, 𝒛 is quantised to 𝒆𝑘. In the decoding phase, the

quantised representation is processed to reconstruct the original input or generate new data.

This discrete code provides a compact and efficient representation of the latent space, facilitating

various downstream tasks.

2.1.4 Mixer Models

The concept of mixing for vision applications was first introduced in [25] which presented a novel

approach to vision tasks by relying solely on MLPs, diverging from traditional convolutional neural

networks (CNNs) and the more recent Vision Transformers (ViTs) [26]. The core idea is to perform

spatial and channel mixing to capture complex patterns in image data using a special model

architecture made entirely of MLPs, the MLP-Mixer. The MLP-Mixer architecture consists of a

series of layers that alternately apply MLPs for token mixing and channel mixing. The model

operates on image patches drawing inspiration from the ViT architecture.

Figure 2.4 The MLP mixer architecture [25]

16

As seen in Figure 2.4, The MLP-Mixer operation relies on the input image being divided into a grid

of non-overlapping patches. Each patch is then linearly embedded into a fixed-dimensional

vector thus producing a sequence of patch embeddings. The embeddings are then processed by

sequences of Mixer layers, alternating between token mixing and channel mixing MLPs. The

token mixing MLPs operate across the patch direction, allowing for “communication” between

different patches, i.e. tokens keeping the features of each patch independent. Conversely, the

channel mixing MLPs operates across the feature dimension within each patch. The processed

patch embeddings from the final Mixer layer are used for classification or other downstream

tasks.

The MLP-Mixer model stimulated a line of research for new models operating on patches,

revisiting older concepts. The ConvMixer is such a result, introduced by which introduces CNNs

back into the [27] architecture with a view to leverage the weight sharing and resulting efficiency

of the convolution kernel concept. The ConvMixer, illustrated in Figure 2.5, has shown

remarkable results, significantly outperforming much more complex architectures despite its

exceptional simplicity and efficiency. Like MLP-Mixer, ConvMixer requires the image to be split

into patches and each patch transformed into an embedding. It then proceeds with the mixing

process using depthwise and pointwise convolutions. The former achieve spatial mixing through

grouped convolution with groups equal to the number of channels while the latter achieves

channel mixing using kernels of size 1x1.

Figure 2.5 The ConvMixer architecture [27]

17

2.2 Related Work

This section provides an overview of the current state of the art in the field of Imitation Learning.

Within this scope, tangential fields of Explainable AI and Representation Learning and their links

to Imitation Learning are also analysed.

2.2.1 Inverse Reinforcement Learning

Imitation Learning often takes the form of Inverse Reinforcement Learning (IRL) [28], where the

demonstrations are used to learn a reward function that can subsequently be used by a RL

algorithm. Finn et al. [29] were among the first to demonstrate a functional IRL method that

could operate directly on images, employing a cost learning algorithm based on policy

optimization. A visual-based IRL pipeline for robotic manipulation was implemented by Das et al.

[30], however their approach involves learning a dynamics model and a processing step that

detects key points on the robot configuration. Recent work has shown significant improvements

in sample efficiency using Optimal Transport principles [31] but these improvements were

demonstrated in simple manipulation tasks only involving pushing rather than grasping. A novel

reward learning mechanism has been proposed in [32] using time contrastive networks, where

the reward is the inverse of the distance between corresponding embeddings of expert and agent

observations.

Figure 2.6 Time-contrastive network architecture. A reward function is learned through

contrastive learning using pairs of aligned videos. Negative and positive samples are drawn based

on temporal distance. [32]

18

An alternative prominent class of IL methods is Adversarial Imitation Learning (AIL), originally

introduced by Ho et al. [33]. This approach draws inspiration from IRL and Generative Adversarial

Networks (GANs) [34]. The GAN’s Discriminator network is trained to distinguish between

samples derived from agent and expert trajectories and its loss is then used as a reward function

to drive an RL procedure. Approaches such as Primal Weisserstein Imitation Learning [35] have

been successful in robotic manipulation directly from pixel-level input on a simulated door

opening task, by using the Weisserstein distance, a key component of GANs, in its primal

formulation. Still, to attain sufficient performance this approach requires over 1 million steps of

interactions, i.e., more than an order of magnitude higher than the methodologies presented

within this thesis.

2.2.2 Behavioural Cloning

By using demonstrations as a proxy to a reward function, IRL and AIL require the agent to be

trained by interacting with the environment while still not being able to act close to an optimal

and/or safe behaviour. A line of work in IL that avoids this constraint is Behavioural Cloning (BC)

originally presented in [36]. This approach directly casts the IL problem as a supervised learning

problem, i.e., predicting an action 𝑎 = 𝑓(𝑜) where 𝑜 is an observation returned by the

environment, and 𝑓 is any Machine Learning model regressing 𝑎 on 𝑜. Despite the presence of

distributional shift, i.e., potential instabilities because the i.i.d. requirement for the training data

does not hold since past observation-action pairs directly influence the present and future, BC

has been shown to perform remarkably well in robotic manipulation by visual inputs.

Rahmatizadeh et al. [37] have implemented an visual-based approach to learning five different

tasks using BC. This approach requires four different neural networks and several manual

adaptations to the pipeline while it relies on >900 demonstrations for certain tasks. Florence et

al. [38] proposed Implicit Behavioural Cloning (IBC), where action inference is performed by

minimizing the loss of an energy-based model, trained on observation-action pairs, with respect

to the action. IBC shows promising results in tasks where optimal trajectories can have multi-

modal distributions, training on pixel-based data has only been tested on a block sorting task

with a reduced, 2D action space. Other works have been capitalizing on the impressive

performance of transformers in other ML-related fields such as Natural Language Processing. The

Trajectory Transformer [39] and the Behaviour Transformer (BeT) [40] are two prominent

examples. The former follows a pure sequence modelling approach, capturing distribution over

trajectories. However, it is an Offline RL algorithm and thus requires a notion of reward. The latter

19

employs an action discretization technique, using a Generative Pretrained Transformer [41] to

predict the action category and the residual.

Figure 2.7 The Behaviour Transformer architecture. The implementation includes discretising the

action by splitting each vector into a discrete component via a simple k-means process while

keeping the residual. A standard, small-scale Generative Pre-training Transformer is used as the

action decoder [40].

Zhao et al. [42] have proposed the Action Chunking Transformer for learning complex tasks

involving bimanual manipulation. This approach requires four different cameras and model with

>80m parameters, an order of magnitude larger than ours. Finally, the Perceiver-Actor

architecture [43] shows promising results in language conditioned goal-oriented tasks but it

requires registered RGB-D cameras, and it operates on a voxelised representation inducing high

computational cost.

Several recent approaches to BC leverage Denoising Diffusion Probabilistic Models [44], drawing

inspiration by their recent successes in modelling high-dimensional data including images and

videos. These are generative models that map Gaussian noise to some target distribution, usually

conditioned on some context-specific embedding. Pearce et al. [45] implement a BC pipeline by

using a diffusion-based generative model that is conditioned on the current observation

embedding, and maps gaussian noise to the next action. The approach has only been tested on

simulated environments and videos. Chi et al. [46] introduced Diffusion Policy, a complex pipeline

combining Feature-wise Linear Modulation [47] with a diffusion model that instead of predicting

20

actions directly, it predicts the gradient field of action energy scores that is then used to obtain a

series of actions. This results in a powerful model which however comes at a great computational

cost, involving over 250M parameters and requiring days to train on state-of-the art GPUs while

requiring a dual camera setup. Due to the iterative nature of diffusion models, these approaches

are much slower and require a lot of empirical tweaks for them to be deployed on real systems.

Figure 2.8 The Perceiver-Actor architecture. The approach implements a language-conditioned

behavior-cloning agent trained with supervised learning to detect actions. The input is a language

goal and a voxel grid reconstructed from RGB-D sensors. The models operate on 3D patches of the

voxelised grid [43].

Figure 2.9 The Diffusion Policy architecture. The diffusion model refines noise into actions via a

learned gradient field. This formulation is considered to stabilise training, enabling the learning

of multi-modal action distributions, and accommodating high-dimensional action sequences [46].

2.3 Few-shot Imitation Learning

We use the term few-shot to describe a class of algorithms that can learn a task from a handful

of demonstrations or less, down to one or, in extreme cases, zero expert trajectories. This sort of

data efficiency is of paramount importance in the context of robotic manipulation as

demonstrations are almost always expensive and cumbersome to collect.

21

Initial attempts to tackle the problems of data efficiency in Imitation Learning for non-linear

settings were based on tiered approaches where local policies were chained or hierarchically

combined under a certain context [48], [49], [50], [51]. One of the first attempts to tackle few-

shot Imitation Learning from raw pixels was [52] which introduced Meta-Imitation Learning

(MIL), in which a policy is learned that can be quickly adapted, via one or few gradient steps at

test time, in order to solve a new task given one or more demonstrations, leveraging Model

Agnostic Meta Learning [53] algorithms. This gave rise to a broad range of methods based on

Multi-task and Meta-Learning techniques [54], [55], [56] which enable robots to generalize to

new tasks after having been trained in an initial task set. As a result, few-shot in this context

refers to the novel tasks being learned; the original tasks may still require quite a number of

expert trajectories.

Another line of work that does not involve meta-learning, tackles the few-shot challenge by using

the demonstrations as meaningful priors and allowing the agent to self-explore in a

Reinforcement Learning fashion where the reward is essentially a distance between the current

trajectory and the expert one at different phases. Pathak et al. [57] introduce a zero-shot

technique that enabled a robot to tie a rope knot while using manual annotation of key trajectory

points of the demonstration as individual goals. WHIRL, proposed in [58], attempts to achieve

one-shot imitation directly from videos by leveraging image processing techniques to remove the

agent from the videos and allowing the agent to explore the environment utilizing specific motion

primitives. Such approaches indeed require an extremely low number of demonstrations but the

requirement to allow the agent to freely explore is not always practical in industrial applications

due to safety and cost constraints.

Figure 2.10 The WHIRL’s approach three main components. The robot first obtains human priors

such as hand movement and object interactions by watching the expert and then post processing

the image to remove the expert from each frame via inpainting. These priors are repeated by

22

interacting in the real world, trying to achieve task success and explore around the prior. The task

policy is improved leveraging an agent-agnostic objective function which aligns human and robot

videos [58].

Another line of work towards one-shot learning is that of [59], dubbed coarse-to-fine IL, which

attempt to derive an IL approach that imitates the visual servoing part which is essential in almost

all IL methods pertaining to robotic manipulation, with the object handling part of the trajectory

following a scripted policy, i.e. by replaying the original expert demonstration’s velocities from

the grasping point onwards. Indeed, a vast class of tasks can be broken down in a similar manner

and harvesting tasks are no exception. An extension of this work attempts to directly learn to

estimate the pose of the target object by providing strong inductive biases to the learning

approach leveraging geometrical transformations [60]. This approach, like [59], makes a strong

assumption about the structure of the scene, namely that the target object to be manipulated is

singular and no distractors exist in the camera’s field of view. Another approach that loosens this

assumption, allowing for the presence of distractors is that of [61] which employs a sophisticated

pipeline that first segments the image to determine the presence of the target object and then

processes the image to determine the pose of the target object guiding the visual servoing

sequence by trying to match the scale of the detected object with that of the reference trajectory.

Although this accomplishes one-shot learning without the use of auxiliary data, it is not practical

in our application as we are dealing with scenes where distractors are almost the same as the

target object and the target object can vary in scale.

Figure 2.11 The coarse-to-fine IL approach. The task is deconstructed into a Visual Servoing and a

Manipulation subtask. The former is learned based on a dataset collected by moving the end-

effector to various positions above the target, while the latter is simply replayed from the single

expert demonstration [59].

23

2.4 Explainable AI

Recent years have seen the rise of complex decision-making systems such as Deep Neural

Networks (DNNs), which are less transparent than the simpler early AI systems. Deep Learning

(DL) models, including DNNs, have achieved significant empirical success owing to their extensive

parametric space and powerful learning algorithms. With millions of parameters and numerous

layers, DNNs are often called black-box models [62]. These tremendous achievements have

enabled a rapid expansion of their usage across all industrial and commercial sectors; indeed one

would struggle to identify one aspect of human activity that is not currently being redefined by

the use of AI. The opaque nature of such systems however gives rise to significant ethical

concerns and issues of trust which have prompted European policy makers to create a framework

for Trustworthy AI [63]. A fundamental constituent of Trustworthy AI is Explainable AI (XAI).

XAI approaches can be categorised into ante-hoc and post-hoc [64] where the former refers to

using inherently transparent systems such as Decision Trees or Bayesian Models, also frequently

termed Intepretable AI, and the latter encompasses methods to obtain insights into the decision

process of non-explainable (i.e., black-box) models. Another taxonomy splits XAI techniques into

model-specific and model-agnostic with model-agnostic being applied to black-box trained

agents as they are independent on the constituents of a model [65]. Model agnostic models are

mainly divided into two categories, attribution- and surrogate-based; the former seek to assess

the effects of certain aspects of the input most frequently applying perturbations while

monitoring the outputs and the latter focus on locally approximating the model under inspection

with simpler surrogate models that are easier to explain. Popular model agnostic, post-hoc XAI

algorithms include SHAP [66] and LIME [67] respectively. One of the most prominent model-

specific schemes is the Layerwise Relevance Propagation [68].

In the context of Reinforcement and Imitation Learning, the need for transparent techniques that

move beyond the conventional “black-box” models has attracted strong research interest in

recent years [69]. Several works have approached this problem from the policy generation point

of view. Initial attempts focused on evolutionary algorithms that produced interpretable policies

using fuzzy rules [70], or basic algebraic formulas [71]. Other approaches utilized Decision Trees

either distilled from neural network-based policies [72], or evolved through genetic programming

[73]. Other important works include [74] which implements Imitation Learning by using the

expert trajectories as a basis to extract symbolic reward functions and then relying on

Reinforcement Learning, while [75] leverages Signal Temporal Logic to extract formulas that

24

optimally explain expert trajectories. Another line of research aimed at building causal models,

such as directed acyclic causal graphs capturing causal relations to explain environment dynamics

and create interpretable policy controllers [76],[77],[78] A crucial limitation of all these works is

that they rely on extremely simplified representations of the environment, containing full

knowledge of the true state, and their practicality is limited to very small action spaces.

Therefore, they are only tested in simplistic environments, such as cart-pole, mountain-car or

simple 2D games.

Although these approaches offer robust and mathematically rigid groundwork explainable

models, their scalability is limited which is why they have only been demonstrated in tasks with

low dimensionality. Visual-based Imitation Learning is significantly more complex. InfoGAIL [79]

is among the first explainable techniques to operate on visual inputs, focusing on autonomous

driving, however interpretability in this work’s context refers to disentangling action modes using

a latent variable rather than uncovering some part of the model’s decision process per se. There

is relatively scarce work in explainable Imitation Learning for robotic manipulation beyond [80]

which focuses on a drink pouring task and achieves explainability by imposing a hierarchical

structure to the task learning rather than an end-to-end learning approach.

A concept of self-interpretable agents was introduced in [81], where the focus of the

interpretability was shifted to the environment representation instead of the policy generation.

In this approach, an end-to-end learning pipeline, operating on pixel-based input was introduced,

where a self-attention module was responsible for identifying the most important patches of the

input image, whose coordinates were then fed to an LSTM that produced the action. The key

limitations of this pipeline were that the operation for extracting the important patches is

inherently non-differentiable and thus made the use of evolutionary algorithms necessary which

severely limited scalability.

2.5 Representation and Object Centric Learning

The vast majority of IL approaches largely rely on well-trusted Computer Vision models such as

ResNets [82] as the backbone of the RepL module, often enhanced through techniques such as

Feature-wise Linear Modulation [83]. Indeed, when success rate in task solving is the single

metric an IL pipeline is judged on, this is a valid choice as explained in [84] which showed that the

performance of IL pipelines was largely unaffected by different choices of RepL models.

25

Previous work in IL leveraging Vector Quantization (VQ) on observations, rather than actions, is

sparse. VQ is used in [85] to obtain object-centric representations but the result is processed on

a semantic level and the approach focuses on 2D video game playing and self-driving simulation.

Another notable work is [86], where VQ is used in a hierarchical IL approach, by quantizing

subgoals again in 2D game playing. Our work makes use of VQ directly on visual-based input

showing that it can significantly increase the performance of the downstream IL model.

Object-centric learning is a promising field attempting to create representations that focus on

objects in the scene. One the first prominent works in this line was [87] which implemented a

learning module for determining relevant objects in the scene using a subset of the

demonstration trajectories using a separately trained region proposal network. In similar vein,

[88] use point detectors for object tracking and embed these in graphs to capture spatial

relationships. Such approaches require manual labelling of scene-specific data. To avoid this,

recent work capitalizes on the rapid progress of foundational Computer Vision models whose

pre-trained versions can be relied on for highly accurate object detection due to their exposure

to vast amounts of data during training [89]. Nevertheless, the need to define the concept of

“objectness” still remains while there is no guarantee that the specific task scene the robot

operates within as well as its point of view will be similar to the dataset the object detection

backbone is trained on which can lead to poor performance.

Recent works have investigated approaches for learning object-centric representations in a self-

supervised manner directly from the data at hand [90], [91]. This mechanism, termed Slot-

Attention attempts to extract a stack of pixel-level semantic masks corresponding to objects on

the scene with no previous notion of “objectness”. So far these approaches have been tested on

artificial datasets with a view to produce representations suitable for Visual Question Answering

tasks rather than IL.

26

27

3 Mushroom Harvesting Human Expert Demonstration Collection

3.1 Data Streams and Recording Equipment

Expert demonstrations comprise two main data streams, the tactile sensing and the RGB-D video

stream. These streams along with the respective pieces of equipment used to record them are

described below.

3.1.1 RGB-D Video Stream

The RGB-D stream provides visual and depth information which will be crucial for obtaining high-

level semantic-rich information. Four RGB-D sensors were installed on separate locations to

obtain a comprehensive view through multiple viewpoints. The RGB-D sensors used in the expert

demonstration recording sessions were four instances of the ZED 2 camera. The layout of the

four sensors around the mushroom bed is illustrated in Figure 3.1 below while a picture of the

setup is shown in Figure 3.2 in the next page.

Figure 3.1. RGB-D camera positions.

28

Figure 3.2. Expert demonstration collection setup.

3.1.2 Tactile sensing stream

The main tactile sensing recording system used was the Tekscan Grip System1. The system

provides >300 sensing elements distributed across the surface of the user’s hand providing high-

resolution pressure mapping information as seen in Figure 3.3. In the context of mushroom

picking demonstration recording, we focused on the sensing elements placed on the Thumb, the

Index and the Middle Finger.

Figure 3.3 Pressure map profiles tracked by Tekscan Grip System

1 Datasheet available https://www.tekscan.com/products-solutions/systems/grip-system

29

To determine the optimal positions for force and pressure sensing elements to be mounted on

the finger, we observed the markings left by mushrooms on regular gloves after a number of

pickings. These are illustrated in Figure 3.4. In this way, we were able to gain insight on the points

of the finger that are most frequently in touch with the mushroom.

Figure 3.4. Used glove with stains indicating finger regions most frequently contacting the

mushroom surface.

Following this observation, the sensing elements were mounted on a new set of mushroom

pickers’ gloves as shown in Figure 3.5. Figure 3.6 illustrates a mushroom picking experiment

carried out by an expert picker.

30

Figure 3.5. Tekscan Grip System sensing elements mounted on the mushroom picker's gloves.

Figure 3.6. Mushroom Picking trial using the sensorised glove.

31

Figure 3.7 Force sensors mounted on the expert picker gloves.

In order to investigate the domain shift between the measurements of the Tekscan Grip System

and the tactile sensors envisaged for the soft robotic gripper developed within the project, a

limited number of trials were conducted using the sensors developed by MITSUI Chemicals.

Unlike the Tekscan Grip System sensing elements, which provide pressure maps, these are 6-axis

tactile sensors measuring force and torque at a single point. Figure 3.7 above shows these sensors

mounted on the mushroom picker’s glove.

3.2 Data acquisition hardware

For the camera and the glove recordings to be synchronized, the two streams should start

simultaneously. To achieve that, a pulse signal was generated at the beginning of the recording

procedure by the Tekscan hub output port. A GPIO pin on the Jetson devices was used to read

this pulse, together with a pull-down resistor as shown in the Figure 3.8. The ZED2 cameras are

connected to the Jetson via USB 3.0, are initialized and are waiting in standby mode for the pulse

signal to initiate the recording. The output is an SVO file from every camera. The executable that

interacts with the ZED cameras was developed in C++ using the ZED2 SDK. Lastly, it is important

to mention that 4 cameras were used. The Jetson Xavier NX could handle 2 ZED2 cameras while

one jetson nano per camera was needed for the last two cameras. Figure 3.9, illustrates how the

Jetson devices and the cameras were connected during the data acquisition trials.

32

Figure 3.8 The ZED camera is connected to the Jetson. A trigger signal initiates the recording

procedure. This signal is sent from the Tekscan output port and received at a Jetson GPIO pin.

Figure 3.9 Topology of the Jetson devices, the ZED2 cameras and the PC that records the camera

streams.

33

3.3 Data Overview

3.3.1 RGB-D Data

Indicative screenshots of the RGB-D streams are provided in the next figures.

Figure 3.10 RGB-D camera 1: Left Image, Right Image and Depth Array

Figure 3.11 RGB-D camera 2: Left Image, Right Image and Depth Array

3.3.2 Tactile Data

The following figures illustrate the aggregated pressures retrieved from the Tekscan Grip System.

The aggregation was performed by way of averaging the pressures recorded at each region of

the finger. Figure 3.12 illustrates the time-series of the aggregated pressures on the tips of the

three fingers (thumb, index and middle finger) while Figure 3.13 depicts the corresponding

pressures at the finger mid-sections. These time-series are obtained for the same picking trial as

the one illustrated in Figure 3.10 and Figure 3.11.

In this picking trial, it seems that the pressure from the thumb tip is dominant while the pressures

from the index and middle fingers is relatively evenly distributed between the tip and the mid-

section. The picker initially touches the mushroom around the 10th second of the recording and

the twisting and tilting motion starts between the 11th second. The peak observed around the

12th second marks the successful breaking of the roots and from that point on the mushroom is

being lifted.

34

The illustration of force measurements retrieved by the force sensors are provided in Figure 3.14.

As observed in Figure 3.12 and Figure 3.14, pressure and force measurements by the two systems

provide similar time-series profiles.

Figure 3.12 Aggregated pressures on fingertips (Tekscan Grip System).

Figure 3.13 Aggregated pressures on finger mid-sections (Tekscan Grip System).

35

Figure 3.14 Forces on finger tips (Mitsui sensors).

3.3.3 Synchronised Sequences

For a comprehensive overview of the picking process both in terms of the visual and the pressure

maps streams, Figure 3.16 illustrates four screenshots, each belonging to a different state, of the

picking attempt considered throughout Figure 3.12, Figure 3.13, Figure 3.17 and Figure 3.18 with

the pressure maps reading overlaid in the bottom right corner of each image. The

correspondence of the each overlayed patch with the finger regions is provided in Figure 3.15.

As seen in Figure 3.16, there is a clear distinction between the pressure patterns observed during

the different states, with measurements being increasingly apparent during the “Touching” and

“Outrooting” states and gradually receding towards the lifting phase.

Figure 3.15 Overlay - finger region correspondence.

36

Figure 3.16 Mushroom picking sequence with pressure maps overlay

3.4 Data Annotation

By examining the pressure time-series in combination with the visual streams we have performed

an annotation of the recording based on four states, namely “Approaching”, “Touching”,

“Outrooting” and “Lifting”. The state annotation corresponding to the picking trial considered in

Figure 3.12 and Figure 3.13 is plotted in Figure 3.17 below. Figure 3.18 illustrates the

segmentation of the index tip pressure profile into the four states.

37

Figure 3.17 State sequence for recording presented in Figure 3.12 and Figure 3.13.

Figure 3.18 Segmentation of the index tip pressure profile.

A total of 30 demonstration attempts were recorded. By examining the expert demonstration

recordings, we were able to determine the core characteristics of the motion and force profiles

during mushroom picking. The following observations were made:

38

1) The most prominent motion pattern during picking is that of twisting the mushroom

around its principal axis.

2) Tilting the mushroom is employed by the picker only when twisting as far as possible given

the human finger configuration allows is not enough to break the mushroom roots which

happens in less than 10% of the demonstrations.

3) The force applied during the outrooting phase is between 1.5 and 3N. This is to ensure

that no blemishes are caused to the mushroom.

Based on the above observations an array of different Imitation Learning techniques were

designed and implemented across different environments, namely a physics-based simulation, a

robotic arm with 3D printed mushroom mock-ups and a soft gripper.

39

4 Behavioural Cloning for Mushroom Picking in Simulated

environment

As a first step towards Imitation Learning of mushroom picking, we consider an implementation

of an Imitation Learning method for solving a simulated version of the composite manipulation

task involving force interactions, published in [92] (© 2023 IEEE).

4.1 Imitation Learning Architecture

Our Imitation Learning Architecture comprises two main components; a Representation Learning

(RepL) module that allows for the high-dimensional input to be cast into a latent space to obtain

a low dimensional embedding, and the Behavioural Cloning (BC) module which predicts the next

action given the embedding of the current observation. We use two different datasets to train

our models. The first dataset 𝐷𝑟 = {𝑇1
𝑟 … 𝑇𝑁

𝑟 } is a collection of 𝑁random trajectories. These are

created by sampling random actions by rolling forward a Ornstein–Uhlenbeck process [93]. This

dataset is cheap to collect as it does not need and expert agent while still providing important

information about the observation structure which is useful to pretrain the RepL module as

explained later. Such random trajectory collection has been implemented to stimulate

exploration [94]. The second dataset, 𝐷𝑒 = {𝑇1
𝑒 … 𝑇𝑀

𝑒 } contains 𝑀 expert demonstrations,

driven by a precise rule-based policy that has direct access to the location and orientation of the

target, i.e. the mushroom to be picked and the proprioception measurements of the robot. Each

trajectory 𝑇𝑖 = {(𝑜𝑘, 𝑎𝑘), 𝑘 = 1 … 𝐾𝑖} is a sequence of observation-action pairs as is the case in

a standard IL setting. In our case, each observation 𝑜 is a depth image 𝐼, i.e. we only feed one

frame per step to the model. This is feasible because gripper actions are defined in terms of linear

and angular velocities of the end-effector on the task space as will be explained later. Each depth

image is a normalized image, with pixel intensities mapped to [0,1], captured by a camera located

close to the end-effector. Thus, we are adopting an eye-in-hand approach.

The RepL module is implemented as a Variational Autoencoder (VAE) [95]. The VAE’s encoder,

𝑔(𝑜), receives and observation 𝑜 and outputs two vectors, 𝑔𝜇(𝑜) and 𝑔𝜎(𝑜) which are treated

as the mean and the diagonal covariance matrix of normal distribution. 𝑔𝜇(𝑜) is considered an

embedding of 𝑜 in a latent space captured by the VAE. The decoding step requires sampling the

normal distribution and then running the sample through the decoder which produces a

reconstruction of the original input 𝑜̃. The model loss for each observation sample is defined as:

40

𝑙𝑉𝐴𝐸(𝒐) = (𝒐 − 𝒐̃)2 + 𝐷𝐾𝐿 (𝛮(𝑔𝜇(𝒐), 𝑔𝜎(𝒐)), 𝑁(0, Ι)) (4.1)

where 𝐷𝐾𝐿 is the Kullback – Leibler divergence. The overall model is trained by minimizing the

mean of the above loss over the entire dataset:

𝐿𝑉𝐴𝐸 =
∑ 𝑙𝑉𝐴𝐸(𝒐𝑘)𝑘

𝐾
 (4.2)

where 𝐾 is the total number of observation action pairs in the dataset.

The Behavioral Cloning module comprises a Multi-layer Perceptron that receives as input the

embedding 𝑢 = 𝑔𝜇(𝑜) and outputs an action prediction 𝑎̃. This model is trained to minimize the

Mean Squared Error loss:

𝐿𝐵𝐶 =
∑ (𝒂𝑘 − 𝒂̃𝑘)2

𝑘

𝐾

(4.3)

The training of the entire model proceeds in three steps. Firstly, the RepL module is trained on a

dataset of random trajectories. The purpose of this is to provide the RepL module with

observation instances of sufficient diversity and avoid cases where a new observation lies too far

from what the RepL module can properly capture in its latent space. Then, a second training stage

of the RepL module takes place. This time it is trained with expert trajectories. Finally, the RepL

and BC modules are trained jointly on the expert data. This means that the gradients from the

𝐿𝐵𝐶 loss flow back to the encoder, updating the weights of 𝑔𝜇(𝑜).

This staged training approach, illustrated in Figure 4.1, keeps a balance in allocating the

representational power of the RepL module to the information contained in the images that is

meaningful to predict the actions. During the first two stages, the encoder is trained to minimize

𝐿𝑉𝐴𝐸, i.e. to capture information that can be used to reconstruct the image while ensuring that

the embeddings are smoothly distributed. In the last stage however, 𝐿𝑉𝐴𝐸 is disregarded and the

encoder is adapted so that it encodes information that is important to predict the optimal action

given the observation. Reconstructing the observation and choosing the action are two distinct

tasks, potentially requiring the encoder to allocate representational power to different parts.

Chen et al. [96] have confirmed how this fact can lead to suboptimal RepL for IL by contrasting

the embeddings obtained by using VAEs in a standard classification setting compared to an IL

setting, showing that similar embeddings can underpin different actions.

41

Figure 4.1 Architecture and flow of data (solid lines) and gradients (dashed lines) during training.

Orange flow: The pretraining sequence, where the RepL module is trained on random trajectories.

Blue Flow: Joint training of both the RepL and the BC modules where the gradients from the 𝐿𝐵𝐶

flow all the way back to the encoder of the RepL module © 2023 IEEE.

4.2 Experiments

We rely on a custom simulation framework for artificially generating the required training data

and for evaluating the imitation-learning pipeline. The simulation is built on top of the PyBullet

rigid multibody dynamics physics engine [97], commonly used in the robotics and control

community, as the core for modelling the mushroom-root and gripper system. Modelling the

mushroom poses a significant set of challenges as it includes elastic body dynamics, material

failure mode and intricate complex collision and friction interactions which are notoriously hard

to accurately simulate and in a reasonable execution time. Our mitigation strategy relies on a

surrogate 4 DOF mass-spring model comprised of a spherical and prismatic joint kinematic

structure for the mushroom root motion, which assumes linear isotropic elastic material

properties of a solid cylinder for capturing the dominant system dynamics. For computing the

stress threshold necessary for material failure and the consequent mushroom detachment from

the ground von Mises criterion is utilized. Lastly, instead of incorporating the complete robot

model we only include the gripper by defining a fixed constraint in the flange frame in 3D space,

as also suggested in [98]. The end-effector is a model of the gripper of the Panda robot by Franka

Emika GmbH, one of the most widely used collaborative robots in academia and industry alike.

Figure 4.2 shows a snapshot of the simulation environment.

42

Figure 4.2 PyBullet debug window rendering for the gym simulation environment for mushroom

harvesting © 2023 IEEE

The stiffness parameters for the 4DOFs of the root model are defined as follows assuming linear

isotropic properties and given the Young’s modulus 𝐸 and the Poisson ratio 𝑣. The axial,

rotational and bending stiffness components are given as follows:

𝐾𝑎𝑥 =
𝐸𝐴

𝑙

(4)

𝐾𝑟𝑜𝑡 =
𝐺𝐽

𝑙

(5)

𝐾𝑏𝑒𝑛𝑑 =
3𝐸𝐼

𝑙

(6)

where 𝐺 is the shear modulus is calculated by:

𝐺 =
𝐸

2(1 + 𝑣)

(7)

and 𝑙 is the length of the stem, 𝐴 the axial surface area, 𝐽 the second polar moment of area, and

𝐼 the second moment of area.

43

A critically damped component is also defined for all 4 DOFs for ensuring stability. The axial and

shear stress component under axial force 𝑝, bending force 𝑓 and twisting torque 𝜏 are computed

by:

𝜎𝑎𝑥 =
𝑝

𝐴
 +

𝑓𝑙𝑟

𝐼

(8)

τ𝑧𝑥 =
𝜏𝑟

𝐽
 (9)

where 𝑟 is the radius of the mushroom stem and 𝜏. The von Mises stress factor is given by:

σ𝑉𝑀 = (σ𝑥
2 + 3τ𝑧𝑥

2)1/2 (10)

Failure and therefore mushroom yielding will occur when the von Mises stress factor exceeds the

yielding stress factor 𝑆𝑦, namely when σ𝑉𝑀 > 𝑆𝑦. The Young’s modulus, Poisson ratio and

Yielding stress factor where selected based on harvesting experiments carried out, also

confirmed by literature [99]. The selected values are provided in Table I.

Table 4.1 Key Simulation Parameter Values

Parameter Value range

Young’s Modulus 0.05 – 0.15 MPa

Poisson Ratio 0.3 – 0.5

Yielding stress 14,000 kPa

The simulated mushroom dynamics ensure a highly realistic outrooting behaviour. Concretely,

by setting a squeezing force threshold value at 1N, the mushroom cannot be outrooted by pulling

alone. An attempt to pull the mushroom with this force would result in the mushroom slipping

away from the fingers and thus the outrooting attempt would fail. Such a scenario is illustrated

in Figure 4.3. On the other hand, with the same force threshold the mushroom can be outrooted

successfully if a twisting motion is applied first which would result in increasing the stress on the

roots according to the equations above. This is illustrated in Figure 4.4 which shows an outrooting

attempt accomplished by the trained agent.

44

Figure 4.3 A sequence of a failed outrooting attempt; (1) the gripper starts at a random position,

(2) moves fingers around the mushroom, (3) grasps the mushroom, (4-5) pulls the mushroom

upwards without twisting resulting in slippage, (6) mushroom completely slips away

In our simulated mushroom harvesting setting, the observation 𝑜 that the IL agent has access to

is purely a grayscale or a depth image from a camera mounted close to the robot gripper. The

action 𝑎 the agent produces given an observation is an 8-dimensional vector; the six first

elements of the vector contain the desired linear and angular velocities of the gripper while the

last two elements determine the gripper control. Concretely, the seventh element is a binary

value that triggers the gripper fingers to close while the last element is the desired force the

gripper fingers should reach for the fingers to stop moving. This action representation,

45

particularly the part about the gripper, follows [98] as it allows for a direct transfer to a real robot.

However, it is not without complications since it leads to a hybrid action space, i.e., containing

both continuous and binary elements. Thankfully, we’ve observed that our IL approach is

sufficiently stable to allow for a simple thresholding of the continuous relaxation of the binary

value without hurting performance. Thus, our approach treats the action as continuous and then,

during episode rollouts the binary element is thresholded at 0.1 to obtain a binary value.

Figure 4.4 A sequence of a successful episode rollout by the trained agent. (1) the gripper starts

at a random position, (2-3) moves fingers around the mushroom, (4) grasps the mushroom, (5)

twists, and (6) pulls the mushroom upwards. © 2023 IEEE

46

Figure 4.4 provides an illustration of a mushroom harvesting sequence accomplished by a trained

IL agent on grayscale images. Fig 5. illustrates the respective trajectory, also showing the

trajectory of the expert demonstrator. It is shown that the agent closely mimics the expert, and

it also performs the task slightly faster. The gripper z-position is telling; the gripper is lowered

towards the mushroom, it stays in that low position for a time until the gripper closes, as seen by

the squeezing force increase, and then the gripper moves up, pulling the mushroom with it.

4.3 Results

To assess the robustness of our approach, we have conducted experiments in both partially and

fully randomized versions of the environment. In the partially randomized version, the size of the

mushroom as well as the extrinsic and intrinsic parameters of the camera do not change across

episodes. Thus, in this version, the only source of randomness between episodes was the starting

point of the gripper. In contrast, in the fully randomized version of the environment, we randomly

varied the extrinsic parameters of the camera, namely its yaw and pitch angle, its distance

relative to the gripper as well as the intrinsic 2D coordinate frame centre. We specifically applied

a randomness factor of ±5% across each of these parameters compared to the nominal values.

We also varied the size of the mushroom by ±10%.

Figure 4.5 illustrates the trajectories followed and forces applied by the expert and the trained

agent on the same simulation. As seen, the trained agent is able to closely mimic the expert albeit

with a slight delay in terms of solving the episode. It is worth noting that the forces achieved are

almost identical, even though the force information is not provided as an input to the policy

network.

Furthermore, we tested our approach with two different types of images as observations. In the

first case, we used grayscale images as the single source of information while in the second case

we used artificially noise-corrupted depth maps. Adding noise to the depth maps is crucial to

mimic a realistic setting. To produce the artificial noise, we used an empirically derived technique,

where random noise is added close to the edges of the image, detected via a standard edge

detection technique. Figure 4.6 compares a pair of an RGB and a depth map from an actual

RealSense camera with a similar pair obtained by our simulation environment after artificial noise

has been added to the depth map. Table III and IV summarize the results across all different tests.

Success rates were measured on 50 different episode rollouts.

47

Figure 4.5 The trajectories (x, z position and yaw angle) and the squeezing forces observed on

the gripper fingers of the trained agent (cyan) and the expert demonstrator (orange). © 2023

IEEE

Table 4.2 Results with Grayscale Image as Input © 2023 IEEE

Approach Randomization Success rate

Expert Only Partial 90%

Expert Only Full 58%

Random + Expert Partial 96%

Random + Expert Full 78%

As seen above, our approach successfully reproduces the mushroom harvesting sequence >90%

of the time in the partially randomized environments. Pre-training on random trajectories can

sustain a 78% success rate even in the case of significant camera perturbation and mushroom

size variation, where pure training on expert demos reaches 58%. The high success rates in the

corrupted depth map case show significant versatility and resilience to noise, particularly

48

considering the noise severity as shown in Fig 6. Pre-training did not improve the depth map

agents while it also caused a slight drop of performance in the non-randomized case.

The computational cost of our approach is exceptionally light; the entire pipeline (RepL and BC)

is trained in two passes, with about ~80,000 images of size 61x89 pixels per pass in under an hour

on a Laptop GPU (GTX 1650 Ti). Inference takes less than 1.5ms on a Laptop CPU (Intel i5).

Figure 4.6 (a) RGB image, (b) depth map with artificial noise. © 2023 IEEE

4.4 Discussion

The approach described above demonstrates remarkable computational efficiency, particularly

in its training time and computational requirements, enabling real-time inference on a standard

Laptop GPU. This is a crucial feature that allows our pipeline to be used on local controllers

comprising computational power in the order of single-board computers.

In terms of data efficiency, although our approach reaches acceptable levels thanks to leveraging

random sampling for pretraining the auto-encoders, there is still significant room for

improvement as there is a need for tens of thousands of steps which correspond to over 100

episodes. Although these numbers are easy to obtain in a simulation environment, it can be

challenging to achieve in real settings.

Our approach’s ability to solve a robotic manipulation task with force constraints directly from

visual stream with such a simple architecture illustrates that BC holds significant promise

particularly when compared with RL methods. The latter typically require millions of steps to

attain sufficient success rates and requires extended exploration phase where the behaviours

49

rolled out by the agent cannot be considered safe [100]. Thus, even though our approach requires

a considerable amount of expert data, fulfilling this requirement comes at a lower cost in terms

of effort compared to that of ensuring safety for an exploring agent in a physical manifestation

such as a robotic manipulator. Nevertheless, it should be noted that Offline Reinforcement

Learning techniques can be highly competitive due to the existence of the critical state before

grasping [101]. This, however, comes at the expense of having to carefully craft a reward

function. Such a requirement is not straightforward to fulfill beyond simulated environments.

50

51

5 Behavioural Cloning for mushroom picking with a rigid gripper

Building on the previous architecture, we adjust transfer the approach to a real robotic arm with

a rigid gripper

5.1 Imitation Learning Architecture

In contrast to [102], this end-to-end training approach, illustrated in Figure 5.1, does not require

separate training of a Representation Learning and Behavioral Cloning modules. No

representational power is allocated in reconstructing the observation; instead the encoder learns

embeddings that are directly relevant to action prediction following the lessons of Chen et al.

[96].

Figure 5.1 Architecture and flow of data (blue lines) and gradients (orange and yellow lines) during

training. Dashed lines indicate gradient copying to accommodate non differentiable modules. The

ampersand (&) symbol indicates concatenation.

Each action 𝑎 is 5-dimensional vector; the first four elements contain the desired linear velocities

𝑣𝑥, 𝑣𝑦, 𝑣𝑧 and the angular velocity 𝜔𝑦𝑎𝑤 of the gripper while the last element is a binary value

that triggers the gripper fingers to close. The 𝜔𝑝𝑖𝑡𝑐ℎ, 𝜔𝑟𝑜𝑙𝑙 angular velocities are set to zero

throughout the task. This action representation, i.e. the task-space based velocities and gripper

closing trigger follows [98] and it allows for straightforward transfer of the learning pipeline to

different robotic arms. However, it is not without complications since it leads to a hybrid action

space, i.e., containing both continuous and binary elements. Thankfully, we’ve observed that our

IL approach is sufficiently stable to allow for a simple thresholding of the continuous relaxation

of the binary value without hurting performance. Thus, our approach treats the action as

52

continuous and then, during episode rollouts the binary element is thresholded to obtain a binary

value. Representing the action in terms of task-space velocities means that even one-step

observation-action pairs are sufficient to learn a suitable policy. In our tests with Transformer-

based models we also utilize multi-step sequences of observation-action pairs.

The Image encoder module 𝑓, parametrized by 𝜽𝑓 , applies a sequence of convolutional residual

blocks which downsample each image sample 𝑰𝑡 and then flattens the result into an embedding

𝒆𝑡 = 𝑓(𝑰𝑡). The embedding 𝒆𝑡 is passed through the Vector Quantization module 𝑞 which yields

a quantized embedding 𝒛𝑡 = 𝑞(𝒆𝑡). This quantization process uses a learnable codebook of

vectors 𝑪 = {𝒃𝒊, 𝑖 = 1 … 𝑁}. Each block of length 𝐵 of 𝑒𝑡 is matched with its nearest neighbor

within 𝑪 in the Euclidean distance sense, leaving a residual 𝑟𝑖. The residuals are used to update

the codebook using and Exponential Moving average scheme:

𝒃𝑖
𝜏 = 𝒃𝑖

𝜏−1 ∗ 𝛾 + 𝒓𝑖(1 − 𝛾) (5.1)

where 𝛾 is an update coefficient between 0.9 and 1. To encourage the Image Encoder to produce

embeddings with blocks that are close to the codebook vectors we implement a commitment

loss:

𝐿𝑉𝑄(𝒆𝑡, 𝒛𝑡) = (𝒆𝑡 − 𝑠𝑔[𝒛𝑡])2 (5.2)

where 𝑠𝑔[∙] denotes stopping the gradient flow to account for the fact that the operation of

finding the near neighbor is not differentiable per se. In practice, this means that in computing

the gradient of 𝐿𝑉𝑄, 𝑧𝑡 is considered independent of the 𝜃𝑓 parameters.

The Action Decoder module comprises a sequence of fully connected layers and outputs an

action prediction 𝑎̃. This model is trained to minimize the Mean Squared Error loss:

𝐿𝐵𝐶(𝒂, 𝑎̃) = (𝒂 − 𝒂̃)2 (5.3)

Different model alternatives can be implemented both for the Image Encoder and the Action

Decoder. In our experiments the Image Encoder is fixed but we test with a Transformer-based

Action Encoder instead of the dense layer network as well.

The training of the entire model proceeds in an end-to-end fashion where both modules, are

trained jointly. The gradients from the expert data. The gradients from the 𝐿𝐵𝐶 loss flow back

through the Action Decoder and the Image Encoder while those of 𝐿𝑉𝑄 are only flowing through

the latter. The 𝐿𝐵𝐶 gradients are side-stepping the discontinuity induced by the quantization

module by being copied directly from the Action Encoder to the Image Decoder.

53

Introducing a VQ module between the encoder and the decoder is shown to significantly enhance

the performance of the IL agent as explained in Section IV. This is possibly because it has a

stabilizing effect against image variations induced by factors like differences in lighting across

data collected during demonstrations and during actual trials.

5.2 Environment

The environment used to test our IL approach was designed to be representative of the actual

mushroom harvesting process while staying practical in terms of the equipment and

consumables required. Towards this end we designed and 3D-printed five different mushroom

mock-ups with Polylactic Acid (PLA) material. Each mock-up had different stem length, cap size

and orientation as shown in Figure 5.2.

Figure 5.2 Top- and side-view of the five mushroom models used in the picking experiments.

Our experimental setup encompasses the xArm 6 Robotic arm by Ufactory and a RealSense D435f

camera by Intel. The camera was mounted above the end-effector on a custom 3D-printed

mount, as seen in Figure 5.3. Although the camera is capable of capturing depth information, we

did not use depth maps in our approach as depth sensing quickly becomes unreliable at low

54

distances from the image surface, which is bound to be the case in an Eye-In-Hand set-up. Most

importantly, our focus was to explore the IL capabilities with sensorial streams that are

straightforward and affordable to capture, requiring no calibration.

Figure 5.3 Our experimental setup; Left: the robotic manipulator (xArm6 by Ufactory) and an

example of the mushroom 3D-printed mock-ups. Right: The 3D printed mount and the camera

(Realsense D435f) used for imaging

Although our setup involves a real robot and realistic mushroom mock-ups it entails two obvious

differences compared to an operational mushroom harvesting setting; (i) the PLA 3D-printed

mushroom models are stiffer compared to their real counterparts and (ii) human mushroom

harvesters must often pick mushrooms amongst dense clusters of other mushrooms rather than

individually.

The stiffness discrepancy is considered minor particularly under the low forces employed by

human pickers, which induces negligible deformation on real mushrooms. To further tackle this

difference, we regulate the force exerted by the gripper to 5N and we attach the mushroom to

the table using a putty-like self-adhesive on the bottom of the stem, emulating the root. The

amount of self-adhesive has been chosen through experiments to achieve a key characteristic of

the mushroom harvesting process; attempting to “outroot” the mushroom mockup simply by

pulling upwards is impossible under the force-regulation condition, as the mockup slips from the

fingers, but it is feasible by twisting it first, much like the situation with the real mushrooms. This

55

force regulation aspect introduces a significant challenge that distinguishes our setup from

conventional pick-and-place setups routinely used for benchmarking IL approaches.

Figure 5.4 Failed attempt without twisting; (1) the gripper starts at the random position, (2)

moves and grasps the mushroom mock-up, (3) starts pulling upwards causing mushroom mock-

up to slip, (4) mushroom mock-up completely slips away

Harvesting amongst dense clusters involves a higher-level cognitive process like selecting the

mushroom that must be picked based on expert knowledge and factors like mushroom size and

surrounding mushroom topology. We view such a process to lie beyond the scope of our work.

We focus on enabling learning of the motion combinations required to successfully harvest a

single mushroom under force constraints and from ultra simple visual and proprioceptive input.

We consider addressing this task to be the crucial element for automating the overall process.

56

Figure 5.5 Successful attempt with twisting; (1) the gripper starts at the random position, (2)

moves and grasps the mushroom mock-up, (3) twists the mushroom mock-up, breaking some of

the adhesive bonds, (4) pulls mushroom mock-up upwards successfully

5.3 Experiments

We collected 400 demonstrations of mushroom picking using the robotic arm, by employing a

precise, rule-based policy that has direct access to the 6DoF pose of the mushroom to be picked.

Each trajectory was 17-20s long, thus the entire set amounted to a total of ~2hrs worth of training

data. We used four of the mushroom models in these demonstrations, i.e. 100 demonstrations

for each mushroom. The fifth mushroom has left aside to test the generalization ability to

different mushroom heights and cap shapes. Each trajectory was collected with the gripper

starting at a random position relative to the mushroom within a square of 120mm side on the xy-

plane and with random mushroom orientation. The starting z-position of the gripper was kept

fixed. The lighting conditions were intentionally not strictly dictated to probe the resilience of the

approach to lighting perturbations.

57

We benchmark our core approach of convolutional residual blocks as an Image Encoder and a

dense block of fully connected layers (ConvVQDense) against two state-of-the-art models; the

Behavioral Transformer (VanillaBeT) [40], and a reduced version of the Diffusion Policy model

(ConvDP) [46], where the Diffuser is reduced to 65M parameters, and the ResNet18-based

Representation Layer is substituted by the simple convolutional residual blocks used in our

pipeline. This adaptation was necessary to make the model practical on the same setup that the

rest of the benchmarks are running on. In order to establish the merit of introducing a Vector

Quantization module in between the encoder and the decoder, we also test five additional

variants; an alternative BeT implementation where the initial Representation Module is changed

with a trainable Image Encoder identical to the one of our core approach with (ConvVQBeT) and

without a VQ module (ConvBeT), a Diffusion Policy model including a VQ module (ConvVQDP), a

variant of our core approach where the VQ has been removed (ConvDense) and, finally, an

implementation of our approach with a Variational Encoder (ConvVEDense) instead of a VQ

module. In the latter case we use an Encoder including a Kullback – Leibler Divergence loss in lieu

of the 𝐿𝑉𝑄 loss as in the case of Variational Autoencoders (VAEs) [95] to further test the

performance of the VQ against a competing embedding projector. In the cases without the VQ

or the Variational Encoder, a fully connected layer is added to transform the dimension of the

Image Decoder output in a dimension appropriate for the Action Decoder so that these two

models’ architectures are kept identical across all variants.

Our proposed architecture, ConvVQDense, is fairly lean, comprising to convolutional residual

blocks with 20 and 10 3x3 filters respectively, applied with stride 2 for downsampling, for the

Observation Encoder and two Fully Connected layers of size 360 each for the action Decoder. The

VQ module in between has a codebook of 128 vectors of size 10 and outputs a flattened

embedding of size 2940.

58

Figure 5.6 A sequence of a successful episode rollout by the trained agent. (1) the gripper starts

at a random position; (2) moves above the mushroom; (3) reaches down; (4) grasps; (5) twists,

breaking the adhesive bonds; and (6) pulls the mushroom upwards.

Figure 5.6 provides an illustration of a mushroom harvesting sequence accomplished by a trained

IL agent with the ConvVQDense architecture. Figure 5.7 illustrates the respective trajectory, also

showing the trajectory of the expert demonstrator with a similar starting location for the gripper.

59

It is shown that the agent closely mimics the expert solving the task in approximately the same

level of steps.

Figure 5.7 The trajectories (x, y, z position and yaw angle) observed on the gripper fingers of the

trained agent (skyblue) and the expert demonstrator (orange).

5.4 Results

All six models described above were trained on the same expert demonstration dataset which

comprised 244,000 steps in total. To accommodate the same control frequency across all models,

despite the large variation in inference speed, we use a 3Hz control loop. This was necessary since

inference for Diffusion Policy models exceeded 300ms per step. Since video and proprioception

measurements were captured at ~30Hz, each trajectory was split into 10-13 subsampled

trajectories. Approach-specific parameters such as action bins for the BeT were selected based

60

on Bayesian Optimization using the Optuna framework [103]. All models operated on single-

frame inputs except for the Diffusion Policy models which got the last two consecutive frames as

input. The VanillaBeT model uses a pretrained, frozen Resnet18 [104] as an Image Encoder,

following [40]. The resulting models were evaluated over 50 trials, 10 for each of the different

mushroom models. Episodes that ended with the gripper above 260mm from the table, holding

the mushroom in less than 30s from the beginning of the episode were deemed successful. The

success rate statistics were gathered by taking the average and the standard deviation across 3

different training seeds for each model pipeline.

The overall success rate of each model architecture over the entire set of trials is presented in

Table I. Figure 5.8 outlines a breakdown of the performance for each mushroom, averaging

across the three different training seeds for each model architecture.

Table 5.1 Comparison of our approach (ConvVQDense) against state-of-the-art models and

variations thereof

Architecture VQ/VE Action Decoder Success rate

VanillaBeT [40] None BeT 0.31±0.18

ConvBeT [46] None BeT 0.39±0.19

ConvVQBeT VQ BeT 0.45±0.17

ConvDP None Diffusion 0.44±0.19

ConvVQDP VQ Diffusion 0.57±0.12

ConvDense None Dense 0.61±0.18

ConvVEDense VE Dense 0.56±0.12

ConvVQDense VQ Dense 0.90±0.08

As seen above, introducing the VQ module invariably increases the performance of the respective

model architecture, leading to an improvement of 13% for the Behavior Transformer, 30% for

Diffusion Policy and 48% for the Dense network. Interestingly, in the latter case, substituting a

VE instead of VQ, leads to slight decrease on the overall performance. It is also interesting to note

that VQ also has a stabilization effect across training seeds as seen in the significantly smaller

error margins for ConvVQDP and ConvVQDense. Overall, the VQ module ultimately enables a

90% success rate with a model pipeline of exceptionally low computational cost, using a sequence

61

of simple Fully Connected layers instead of Transformers or Diffusion models. Our pipeline

requires just over 2ms for each inference step compared to >300ms for Diffusion Policy models

[46].

Figure 5.8 Grouped bar chart of success rates for each of the 8 models tested for each of the 5

mushroom models.

Drilling down into the performance of each approach for different mushrooms, seen (No. 1-4)

and not seen (No. 5) during training, we observe that our approach, employing a VQ module,

consistently outperforms all other approaches across all different mushroom cases. It is also

worth observing that the introduction of a VQ module, besides increasing the performance, has

the additional benefit of stabilizing it, leading to lower discrepancies across different training

seeds.

62

To further investigate the beneficial effects of the VQ module we performed PCA analysis on the

image embeddings passed as inputs to the Action Decoder with and without the VQ

(ConvVQDense vs ConvDense). The first two principal components are visualized on the 2D plane

in Figure 5.9. Quantized embeddings maintain a much more structured distribution as the

episode progresses. In contrast, continuous embeddings tend to disperse forming broad clusters

of points that often overlap even though they belong to time steps quite further away within the

episode. This is bound to lead to the downstream BC model outputting similar actions in different

phases of the task which is bound to be detrimental to the overall performance.

Figure 5.9 Top: embeddings with VQ, Bottom: embeddings without VQ. Color shade indicates the

episode step index

63

5.5 Discussion

Our pixel-based IL approach leverages Vector Quantization, for learning harvesting motion

combinations within an environment involving real robot and physical mushroom mockups,

designed based on observations from real mushroom harvesting experiments. The approach is

computationally lean achieving an inference duration of ~2ms per step on a moderate Laptop

GPU (GTX 1650 Ti).

Our approach outperforms two of the most popular state of the art models, namely the Behavior

Transformer [40] and a scaled down version of Diffusion Policy [46]. Most interestingly, our

results show that introducing the VQ module into these models consistently increases their

performance showing that Vector Quantisation can enhance the performance of BC models in

general.

The low computational cost is thanks to our explicit choice of using convolutional and de-

convolutional layers for producing low dimensional embeddings and decoding actions

respectively as opposed to larger, far more computationally heavy models such as state-of-the-

art Transformer or Diffusion networks like the ones we compare our approach against. In

particular, our pipeline consists of a mere ~1.2m parameters, making it an order of magnitude

leaner than the scaled down version of DP which consists of over 60m parameters, and two

oreders of magnitude leaner than the original implementation comprising over 200m parameters

making it impossible to run in real-time on standard GPU-enabled computers, necessitating

action batching, i.e. predicting 16 actions at each inference step and rolling out 8 of these actions

as environment steps. The low computational requirements coupled with the low cost of the

sensorial streams required for our pipeline make for a practical method and system for IL in

industrial setting.

Despite its promising performance our approach’s generalisability will be constrained by its

ability to handle domain shift, like change of lighting. This is a crucial issue with the entire family

of BC models which is further aggravated by their inherent challenges with Covariance Shift [105],

i.e. situations where the trained agent encounters observations not well covered in the training

set leading to suboptimal actions which take the agent to state subspaces further away from

those it was been trained on creating a vicious circle that leads to complete collapse of the model

performance in certain trajectories. Future work to mitigate the effects of this domain shift will

involve extensive Data Augmentation [106]; the model will be trained on large datasets

containing derivative observation instances, namely artificial images that are synthesized by the

64

existing dataset by applying certain modifications, usually random cropping, rotation and noise

addition. In our case more finely tuned modification strategies should be explored such as

random region color adjustments that could qualitatively capture changes in lighting. As a next

step, the implementation of a simple simulation environment similar to that of Chapter 4

combined with Domain Randomisation [107] can also be explored. Under this regime, the core

components of the scene, i.e. the textures mushroom mock-up, the gripper fingers and the table

can be synthesised through randomised processes to present significant changes between

different episodes or even between episode steps. This would further expand the observation

space the system is trained on, mitigating the effect of domain shift. Finally, more principled

methods drawing on control theory, such as Stable-BC [108], that are used to reduce covariant

shift can also be used for mitigating the effects of domain shift. This method introduces an

auxiliary loss term that shapes the learned policy to converge towards the demonstrated

behaviours instead of just minimising the action discrepancies. Although such work has mainly

been tested on environments where the full state is available to the agent, appropriate loss

functions could be formulated so that the domain shifted observation could be matched to the

closest observation from the training.

65

6 One-shot Imitation Learning for Autonomous Mushroom Picking

Through experimenting with the previous methods, we recognised the need for a considerable

amount of expert demonstration as a significant bottleneck for a practical system. We thus

turned our attention to more data-efficient approaches. Toward this end, we developed a new

approach following three core principles that are essentially man-dated by the constraints of

operating within an agricultural robotics context: (i) that learning should be accomplished

without an extensive number of demonstrations as these are cumbersome and often expensive

to collect, (ii) that the sensorial streams enabling IL are easy and cheap to collect and process,

and (iii) that the computational load of training and inference should be as low as possible so that

the learned policy can be deployed at the edge on hardware with moderate capacity. The latter

principle entails a preference towards IL methods that are affordable to train and require limited

computational infrastructure to be deployed for real systems control. This work has been

published in [109].

6.1 Imitation Learning Architecture

Our IL pipeline comprises four stages; an Image Encoder module that allows for the high-

dimensional RGB images input to be cast into a low dimensional embedding, a VQ module that

quantizes the embedding based on a learnable vector codebook, a Target Position Decoder that

takes as input the quantized embedding, 𝑧𝑡 which is concatenated with the encoder

measurement of the z-coordinate of the gripper 𝑠𝑡, yielding ℎ𝑡 and predicts the next target

position for the gripper 𝒑̃𝑡+1 = 𝑔(𝒉𝑡), and an Image Decoder that reconstructs the image input.

The quantized embedding is produced as a 2D concatenation of selected vectors of the codebook

which is in turn learned by minimizing an appropriate loss as explained in the next paragraphs.

The overall architecture is shown in Figure 6.1.

To train the IL models we use a dataset, 𝐷 = {𝑇1 … 𝑇𝑀}, containing 𝑀 trajectories. Each

trajectory in the dataset, 𝑇𝑖 = {(𝒐𝑘, 𝒑𝑘), 𝑘 = 1 … 𝐾𝑖} is a sequence of observation-action pairs

as in the canonical IL setting. In our case, each observation 𝑜 comprises two elements, namely an

RGB image 𝑰 and the 𝑧 coordinate of the robot end-effector as obtained by the cartesian robot

motor encoders, which is treated as a 1-dimensional vector 𝑠𝑡. Each RGB image 𝑰 is normalized,

with pixel intensities mapped to [0,1], captured by a camera mounted in the palm of the robot

gripper. Thus, we are adopting an eye-in-hand approach.

66

The Image encoder module 𝑓, parametrized by 𝜽𝒇, applies a sequence of convolutional residual

blocks which downsample each image sample 𝑰𝒕 and then flattens the result into an embedding

𝒆𝒕 = 𝑓(𝑰𝒕). The embedding 𝒆𝒕 is passed through the Vector Quantization module 𝑞 which yields

a quantized embedding 𝒛𝒕 = 𝑞(𝒆𝒕). This quantization process uses a learnable codebook of

vectors 𝐶 = {𝒃𝒊, 𝑖 = 1 … 𝑁} producing 𝑧𝑡 as a concatenation of vectors from 𝐶 in the following

manner. Each block of length 𝐵 of 𝒆𝒕 is matched with its nearest neighbor within 𝐶 in the

Euclidean distance sense, leaving a residual 𝒓𝒊. The residuals are used to update the codebook

using and Exponential Moving Αverage (ΕΜΑ) scheme as in Eq. (5.1).

Figure 6.1 Schematic of Imitation learning driven visual servoing approach. The architecture

integrates an Image Encoder for processing RGB images, an Image Decoder for frame

reconstruction, a Vector Quantization (VQ) module for embedding quantization based on a

codebook that is updated using Exponential Moving Average (EMA), and a Target Position

Decoder for predicting the Target Position. The system is trained in a self-supervised manner, using

a combined loss function that includes reconstruction loss (L_IR), VQ loss (L_VQ), and the Target

Position loss (L_TP), facilitating accurate end-effector positioning based on visual and encoder

inputs. Dashed lines denote gradient copying to account for the fact that the quantization

operation is not differentiable per se.

The Target Position Decoder module comprises a lean Long-Short Term Memory (LSTM)

Recurrent Neural Network [110] that predicts the target position 𝑝. This model is trained to

minimize the Mean Squared Error loss:

67

𝐿𝑇𝑃(𝒑𝒕, 𝒑̃𝒕) = (𝒑𝒕 − 𝒑̃𝒕)2 (6.1)

The Image Decoder module is a series of deconvolution layers that outputs a reconstruction 𝑰̃ of

the input image.

𝐿𝐼𝑅(𝑰, 𝑰̃) = 𝑰 ∙ log 𝑰̃ + (𝟏 − 𝑰) ∙ log(𝟏 − 𝑰̃) (6.2)

The training of the entire model proceeds in an end-to-end fashion where all modules are trained

jointly by minimizing the aggregate loss:

𝐿 = ∑ 𝐿𝑇𝑃

𝑖,𝑡

+ 𝛽𝐿𝑉𝑄 + 𝜆𝐿𝐼𝑅 (6.3)

Where 𝛽 is a coefficient modulating the relative weight of the vector quantization loss, also

termed commitment loss, and 𝜆 is the weight of the Image Reconstruction loss. The summation

is performed across all timesteps of all the trajectories.

The gradients from the 𝐿𝑇𝑃 loss flow back through the Target Position Decoder and the Image

Encoder while those of 𝐿𝑉𝑄 are only flowing through the latter. The 𝐿𝑇𝑃 and 𝐿𝐼𝑅 gradients are

side-stepping the discontinuity induced by the quantization module by being copied directly from

the Target Position Decoder and the Image Decoder respectively to the Image Encoder.

The Target Position Decoder estimates the target position relative to the robot’s position in

cartesian coordinates. Each such prediction is used to derive a simple velocity controller with a

proportional gain 𝐾𝑝. The choice of the controller was driven by simplicity and practicality; we

experimentally found that adding integral or derivative terms to the controller offered little

benefit in terms of speed in reaching the target position and introduced risks of oscillation around

the optimal position. Since the 𝑔(𝒉𝒕) estimation is bound to be noisy, we ignore small potential

steady-state errors by considering the visual servoing finished when the distance between the

current position of the gripper and the target position estimate is less than a threshold 𝛿. The

controller equation is thus given as:

𝝊𝒕+𝟏 = {
𝛫𝑝 ∙ 𝑔(𝒉𝒕), |𝒎𝒕 − 𝑔(𝒉𝒕)| ≥ 𝛿

0, |𝒎𝒕 − 𝑔(𝒉𝒕)| < 𝛿

(6.4)

This end-to-end training approach, illustrated in Fig. 2, does not require separate training of the

Representation Learning modules. The representational power of the embeddings is allocated in

68

capturing the necessary information to predict the correct target position as well as in

reconstructing the original image to keep the embedding manifold as smooth as possible.

The model architecture and parameters of the proposed approach are presented in Table 6.1

below.

Table 6.1. The proposed model parameters.

Model Component Type Layers/Parameters

Image Encoder
Conv layer 1: 20 channels, 5x5, stride 2

Conv layer 2: 10 channels, 3x3, stride 2

Convolutional Neural

Network

Vector Quantizer EMA-based Quantizer

Embedding Vocabulary size: 1024

Embedding dimension: 10

Embedding width/height: 14*21

Target Position Decoder Recurrent Neural Network

Sequence length: 5

Hidden layer 1: 1024

Hidden layer 2: 1024

Image Decoder
Convolutional Neural

Network

Deconv layer 1: 20 channels, 3x3,

stride 2

Deconv layer 2: 3 channels, 5x5, stride

2

6.2 Environment

The robotic prototype used for the evaluation of the approach is an actuated cartesian robot that

has been designed to be compatible with existing mushroom farms. The robot encompasses

three actuators, M1, M2 and M3 enabling it o move along a mushroom shelf (x direction) using

wheels (M1) and traverse the shelf from side to side (y direction) via a linear slide (M2). An

additional linear slide (M3) ensures the ability to lower the robot’s end-effector towards the

mushroom bed (z-direction). The overall system is shown in Figure 6.2. A detailed presentation

of the robot’s configuration and actuation principles is provided in [111].

69

Figure 6.2 The actuated cartesian robotic system used for mushroom picking trials. The gantry-

like robot moves along the x-axis with actuated wheels (M1), and along the y-axis and the z-axis

with linear slides (M2 and M3 respectively).

The end-effector of the robot is a soft-gripper that has been designed and implemented to

replicate the grasping forces recorded during expert demonstration trials. The gripper can deliver

a grasping force of max. 2.5N when 1 bar of pneumatic pressure is applied to inflate the fingers.

The gripper’s design and operational characteristics is detailed in [112]. The design also allows

for integrating an in-hand camera in a straightforward fashion. Figure 6.3 illustrates the gripper.

The gripper features three actuators, M4, M5 and M6. The first two are used to configure the

gripper’s angle towards the mushroom bed while the last one is used to deliver the twisting

motion. Of the six actuators of the cartesian robot and the gripper, in our experiments, only M1,

M2, M3 and M6 is used during the agent trajectory; M4 and M5 angles stay the same throughout

the picking experiments.

For the purposes of visual servoing, within the scope of our work, the gripper motion is controlled

with a velocity controller as described in Eq. 6.4. Motion planning is left entirely to the learned

agent which calculates the next target position based on visual input from the current image

frame.

70

Figure 6.3 The in-hand camera position as well as the motors (M1, M2 and M3) of controlling the

motion of the gripper. Only M3 which controls the twisting motion was active during our

experiments.

6.3 Experiments

We follow a simple yet practical approach to collecting the necessary data for learning the visual

servoing controller. The procedure can be described as follows:

1. The target mushroom is randomly placed on the soil and a number of other mushrooms are

randomly placed around it. All mushrooms are 30mm-50mm in cap diameter.

2. The gripper is manually moved in a position that allows for firm grasping, i.e. with the fingers

around the target mushroom.

3. The gripper is then moved upwards in a conical spiral with its position and the corresponding

image from the in-hand camera recorded at regular intervals. Each observation – relative

target position (𝑜𝑡 , 𝑝𝑡) is stored. The radius and the slope of the conical spiral are randomized

in each data collection.

71

We collected a total of 17 such trajectories, each with a different mushroom configuration. The

total data collection duration was ~20 min and the dataset comprised 16680 observation-target

position pairs. Figure 6.4 and Figure 6.5 illustrate this process, showing a series of screenshots

from the eye-in-hand camera during a data collection session and the trajectory of the gripper

respectively. We also used extensive Data Augmentation on the Images. This involved several key

transformations applied to the input images. Firstly, we adjusted the brightness and contrast

levels, which aids in simulating varying lighting conditions and improving model generalization.

Additionally, we introduce Gaussian noise to emulate real-world sensor noise and enhance the

model's ability to handle noisy input.

Figure 6.4 Four screenshots of the eye-in-hand camera during a spiral trajectory, Right: 3D plot of

the trajectory of the gripper in the 3D space.

Our approach for which we use the identifier, vq-rec, is evaluated against the following three

benchmarks:

1. A convolutional model following the coarse-to-fine approach of [59] from which our own

approach draws inspiration. We refer to this approach as cnn-c2f.

72

2. A simpler variant of our approach where the Image Decoder and the respective loss has

been removed to establish the merit of using the Vector Quantization module. This

approach is termed vq-norec

3. A non-IL based approach where visual servoing is accomplished leveraging YOLOv5 [113],

a well-trusted object detector to detect the mushrooms on the scene and a controller is

programmed to move the gripper to minimize the error between the centre of the image

and the center of the bounding box of the mushroom closer to the centre of the image.

This approach is detailed in [111] and we refer to it as yolo-vs.

Figure 6.5 3D plot of the trajectory of the gripper in the 3D space

The IL-based approaches, namely cnn-c2f, vq-norec, vq-rec are all trained based on the same

dataset, collected as described above and they learn a visual servoing controller that moves the

gripper to the appropriate position for the grasping, twisting and lifting motion combination to

take place. The latter is replicated directly from a single expert demonstration, similarly to [59].

Separating the visual servoing and the outrooting motion sequence can be accomplished by

73

simply cutting the trajectory at the point where the yaw angle of the gripper starts changing. This

is similar to extracting keyframes like in [114]. The expert demonstration is accomplished by a

controller with full knowledge of the optimal position for grasping the mushroom.

The yolo-vs controller requires learning just for mushroom detection. This is accomplished by

collecting and annotating 200 images of various mushroom configurations.

6.4 Results

The resulting models were evaluated over 50 trials, each with a cluster comprising between two

and five mushrooms at different positions. The learning-based techniques, namely vq-rec, vq-

norec and cnn-c2f were all trained on the same dataset and the transition from the visual-

servoing to the scripted twist and lift policy was performed when the prediction of the target

position was less than 1mm, i.e. we choose δ=1 in Eq. 6.4. Success or failure was determined in

a straightforward manner; whenever the gripper still held the mushroom after the lift motion,

the episode was deemed successful. The success rate of each the approaches described above is

summarized in Table 6.2.

Table 6.2 Success rates in mushroom grasping an lifting of different approaches.

Approach
Vector Quantization Image

Reconstruction
Success rate

yolo-vs [111] N/A N/A 78%

cnn-c2f [59] No No 84%

vq-norec Yes No 90%

vq-rec Yes Yes 100%

As seen in the table above, the proposed approach achieves a remarkable 100% success rate, i.e.

it successfully grasped the target mushroom in all instances of the task. Figure 6.6 and Figure 6.7

illustrate a sequence of frames of a successful episode from the front and the eye-in-hand camera

respectively. For the rest of the approaches, almost all of the missed cases were mainly due to

poor positioning in the z-axis. Indeed, due to the compliant nature of the gripper, a suboptimal

alignment in the x-y plane is usually less of a problem as small discrepancies are passively

corrected. However, even a few millimetres of deviation from the proper z-position can lead to

poor grasping leading to the mushroom slipping off the fingers. The yolo-vs approach was shown

to be significantly prone to this error mode. We attribute this to the fact that the mushroom scale

74

is not taken into account in such an approach; a larger mushroom seen from a certain height

might look very similar to a smaller mushroom observed by a lower height. The IL-based

approaches, however, are inherently taking scale into account through the LSTM-based decoder

that operates on a sequence of 5 frames along with the respective z-position of the gripper.

Figure 6.6 Front view and view of a sequence of a successful episode rollout by the trained agent

on real mushrooms. (1) the gripper starts at a random position; (2) moves above the mushroom;

(3) reaches down; (4) grasps; (5) twists; and (6) pulls the mushroom upwards.

75

Figure 6.7 Eye-in-hand view of a sequence of a successful episode rollout by the trained agent on

real mushrooms. (1) the gripper starts at a random position; (2) moves above the mushroom; (3)

reaches down; (4) grasps; (5) twists; and (6) pulls the mushroom upwards.

It is worth noting that the introduction of the Vector Quantization module leads to an increase

in performance compared to the Convolutional Neural Network model proposed by cnn-c2f.

Combining Vector Quantization with Image Reconstruction is shown to significantly improve the

76

accuracy of the predictions. Figure 6.8 illustrates the predictions produced by the different IL-

based agents, based on the observations collected by the expert agent, i.e. a totally scripted

agent that has full access to the location of the mushroom to be picked.

Figure 6.8 Predictions of different IL pipelines on the expert demonstration. Predictions are

produced offline, based on the observations obtained during the expert trajectory.

As seen in Figure 6.8, the proposed approach combining Vector Quantization and Image

reconstruction predicts the target position closer to the actual one compared to the rest of the

benchmarks, particularly for the time steps closer to the end of the episode. Figure 6.9 illustrates

the trajectories followed by the expert agent and the agent trained with the proposed approach.

In contrast to Figure 6.8, where predictions are produced offline, based on the observations

collected by the expert agent, Figure 6.9 illustrates a full rollout by the learned agent on the same

conditions with those of the expert episode, i.e. the same mushroom cluster configuration and

77

the same starting position of the gripper. The proposed agent is able to reach almost precisely

the final position of the expert agent, albeit with a delay of ~4 seconds and with some jittering

along the trajectory.

Figure 6.9. Expert and trained agent (vq-rec) trajectories on rollouts with the same environment

conditions. Trained agent predictions are produced online by rolling out a new episode.

To further investigate the beneficial effects of Vector Quantization and Image Reconstruction we

conduct an analysis of the embeddings passed as inputs to the Action Decoder across the three

different IL-based approaches. To visualize the embeddings, we use the well-trusted t-SNE [115]

method to map the high-dimensional vectors onto the 2D plane. Figure 6.10 illustrates a

visualization of the embeddings of each of the models for a single episode of 305 steps. To

accentuate the differences between the approaches we use a relatively low perplexity, value of

𝑝 = 5 in line with the low number of samples.

78

As seen in Figure 6.10, there are significant differences regarding the smoothness of the

embedding manifold; the embeddings produced by the model without Vector Quantization or

Image Reconstruction are significantly fragmented, i.e. there are exceptional gaps leading to

observations that are close to each other temporally to be mapped far away from each other.

The introduction of Vector Quantization significantly improves this mapping, reducing the gaps

between episode steps while Image Reconstruction further enhances this aspect. We theorize

that this smoothing effect is the main reason behind the improvement of the model

performance.

Figure 6.10 t-SNE mapping of embeddings produced by the three IL approaches considered. Colour

shade indicates the episode step index.

It is worth noting that even though the actuation of the gripper is not learned by the proposed

approach, as the outrooting sequence is just a replication of the expert agent demonstration,

accurately positioning the gripper presents challenges that are not normally observed in rigid

grippers. An example is illustrated in Figure 6.11 where two screenshots belonging to two

different episode rollouts are shown. The rectangular annotations are placed at the exact same

79

pixel coordinates in both images to highlight that, in contrast to a rigid gripper, whose fingers are

expected to show at the exact same location during visual servoing, this is not the case for the

soft fingers. The latter are prone to displacements due to hysteresis or because of collisions with

other objects. Given the fact that our approach is learning the visual servoing function in an end-

to-end fashion, i.e. directly from pixels, such discrepancies present an additional challenge.

Figure 6.11 Annotated screenshots during trained agent (vq-rec) episode rollouts: (a) the bottom

left right finger is significantly displaced due to collision with a nearby mushroom, (b) the top

finger is moderately displaced due to hysteresis.

80

6.5 Discussion

We have presented a pixel-based, one-shot IL approach, leveraging Vector Quantization, for

learning to solve the mushroom harvesting task. The approach was tested on a lab-scale

mushroom picking environment involving a cartesian robot and a soft, pneumatically actuated

gripper. The trials were designed based on observations from real mushroom harvesting

experiments. We demonstrated the benefit of using Vector Quantization and showed that the

proposed model architecture can learn the desired behaviour with minimal input, namely a

simple RGB camera and the z-position encoder measurement of the robot. Our approach

operates directly on raw observations with no pre-processing other than downscaling. By casting

the problem as a primarily visual servoing task our approach can learn the controller for reaching

the optimal position for grasping the mushroom based on less than 20 min of data collection. The

approach is shown to solve the task in 100% of the cases even though mushrooms are picked

from a cluster of very similar distractors. It is also computationally lean, with the entire pipeline

consisting of <800k parameters, allowing for inference of ~20ms on a moderate Laptop GPU (GTX

1650 Ti). The low computational requirements coupled with the low cost of the sensorial streams

required for our pipeline make for a practical method and system for IL in an industrial setting.

A crucial aspect of our approach is that it gracefully handles the two most prominent challenges

of soft, pneumatically driven grippers:

(i) the lack of proprioception sensing; the shape of the fingers and the location of their tips cannot

be directly measured with conventional sensorial systems. In contrast to rigid embodiments

where such information can be easily provided using encoders, in soft grippers, determining the

shape of the fingers requires sensors such as FBG optical fibres [116], [117] which are costly and

difficult to integrate.

(ii) unforeseen displacements due to hysteresis or collisions; the inherent compliance of the

fingers renders the prone to changing their default shape under zero pressure as operation cycles

strain the material, gradually altering its elasticity properties. At the same time, collisions with

distractors can temporarily drastically change the finger configurations. These effects, combined

with the lack of proprioception sensing, severely hinder the control of such grippers.

By enabling end-to-end Imitation Learning on soft robotic grippers, our approach lays the

groundwork for broader adoption of such systems. This is a crucial design choice for keeping the

entire system as low-cost as possible. Silicon-based soft grippers such as the one used in this work

can be manufactured in a straightforward manner by silicon casting on 3D printed moulds, and

81

rely on inexpensive valves rather than motors, thus achieving remarkably low costs of

manufacturing [112]. At the same time, thanks to their compliant properties, soft grippers ensure

smooth handling of delicate produce by passively conforming to the crop’s shape and size and

inherently limiting the forces applied based on the choice of the material’s elastic properties. In

this way, soft gripping eliminates the need for force sensing which drives cost up due to the need

of additional hardware modules and integration challenges. This is a crucial aspect from a

commercial perspective; in the agricultural sector, and particularly in Europe, where farming is

fragmented with almost have of the farm holdings being less than 5ha in size [4] as analysed in

Chapter 1, cost is the main factor affecting the rate of adoption of automation technologies.

82

83

7 Interpretable Representations for Imitation Learning

The performance of Imitation Learning has so far been primarily judged based on success rate

and data- or computation-efficiency secondarily. However, over the past few years, the need for

transparent AI approaches has emerged [65], [118]. The robotic agents of the future will not only

be required to behave optimally with respect to the task at hand, but also to do so in a way that

allows their operators and/or collaborators to understand their inner workings. This is a less

explored aspect of Imitation Learning.

Towards this end, we develop a novel Representation Learning (RepL) layer for visual-based IL

pipelines that significantly improves the approach’s interpretability. For the context of this work,

we adopt the term “interpretable”, as opposed to “explainable”, to describe the ability of a

human to directly understand the produced representation rather than obtain post-hoc

explanations [118], [119]. Our RepL model is designed to capture an embedding of the image-

based observation that directly relates to pixel-based coordinates of certain image patches. In

contrast to usual RepL layer outputs that are opaque to human operators, this output is

straightforward to visualize, providing insights into what the IL model is focusing on at each step

in order to solve the task. The RepL model is fully differentiable and can thus be trained via

standard backpropagation enabling end-to-end training of the entire IL pipeline.

We investigate the performance of this approach in a mushroom harvesting context with the

added complexity of allowing an expert to specify the target mushroom to be picked instead of

the system moving automatically towards the centremost mushroom. This is of particular

interest in the mushroom picking domain; selecting the mushroom to be picked is a significant

decision as factors like mushroom size and health as well as the profound implications in the

surrounding mushrooms play into it.

To further assess the transferability of this approach to more generic robotic manipulation tasks,

we investigate its performance in terms of success rates by evaluating it across a range of

environments, including a toy task as well as selected tasks of the RoboMimic framework [120].

Like previously, we use two different state-of-the-art Behavioural Cloning models, namely BeT

and DP as action decoder and compare the performance of the original implementations vis-à-

vis that of using our interpretable RepL layer.

84

7.1 Representation Learning Architecture

We employ a patch-based approach similar to the ViT architecture [26]. The image is thus broken

down in non-overlapping patches. The core of our architecture is designed to predict 𝑁 sets of

per-patch scores, denoted as 𝑠𝑖
𝑛, for each patch in the image, with 𝑖 indexing over the patch

location in the image and 𝑛 indexing over the 𝑁 slots. These scores capture the importance of

each patch and are used to aggregate the patch embeddings as well as the corresponding

normalized coordinates of the centre of each patch yielding the. Different slots are expected to

focus, i.e. assign higher scores, to different parts of the image.

The score prediction module builds on the ConvMixer architecture [27], starting with the same

initial layers that break the image into 64-dimensional patch embeddings. We extend this with a

conditional variant of the ConvMixer layer, incorporating a FiLM [83] conditioning layer that uses

the output embeddings of a ResNet18-based encoder [82]. This encoder is also used for

observation encoding in all the vanilla policy networks we compare against, making the FiLM

layer a straightforward mechanism to leverage the robust output of the ResNet architecture.

Apart from this addition, the ConvMixer layer retains its original structure, alternating between

depthwise (spatial mixing) and pointwise (channel mixing) convolutional layers.

After passing through the ConvMixer, the patch embeddings are processed by a final pointwise

convolution layer to generate the 𝑁 sets of per-patch score outputs. To encourage the module

to assign semantically distinct patches to different sets, we integrate a module that Minimises

the Entropy of Sinkhorn (MESH) [91], which normalizes and redistributes the scores across the

𝑁 slots using an optimal transport algorithm. This allows for sharper and more distinct patch

assignments, avoiding redundancy across sets while preserving differentiability in the learning

process.

The overall architecture is shown in Figure 7.1. First, the initial patch embeddings 𝑧0 are

calculated from the input image 𝑰 as:

𝒛0 = 𝐵𝑁 (𝜎(𝐶𝑜𝑛𝑣𝑠𝑡𝑟𝑖𝑑𝑒=7,𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒=7 (𝑰)) (7.1)

This convolution operation breaks the image into non-overlapping 7x7 patches, each with a 64-

dimensional embedding. This dimensionality is maintained throughout the ConvMixer Layers,

only being reduced to 𝑁 channels at the end, where the deep embeddings get transformed into

per-patch score sets. We follow the same GELU activation function (𝜎) and BatchNorm (𝐵𝑁)

normalization as used in the original ConvMixer architecture.

85

Figure 7.1 Interpretable Representation Learning Module Architecture.

The patch embeddings are processed through a series of 𝐿 FiLM-conditioned ConvMixer Layers.

As in the original ConvMixer, these layers alternate between pointwise (1x1 kernel) and

depthwise (per-channel kernel) convolutions. The key difference is the introduction of a FILM

layer, which adjusts the embeddings with per-channel scale and bias values. Thus, each

ConvMixer block calculates three intermediate embeddings:

𝒛𝑙
𝐷𝑒𝑝𝑡ℎ = 𝐵𝑁(𝜎 (𝐶𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒,𝑙(𝒛𝑙−1)) , 𝑙 = 1, … , 𝐿 (7.2)

𝒛𝑙
𝐹𝑖𝐿𝑀 = (𝛾𝑙(𝒛𝑐𝑜𝑛𝑑)⨀ 𝑧𝑙 + 𝛽𝑙(𝒛𝑐𝑜𝑛𝑑)) + 𝑧𝑙−1, 𝑙 = 1, … , 𝐿 (7.3)

𝒛𝑙−1 = 𝐵𝑁(𝜎 (𝐶𝑜𝑛𝑣𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒,𝑙(𝒛𝑙
𝐹𝑖𝐿𝑀)) , 𝑙 = 1, … , 𝐿 (7.4)

where ⨀ is used to denote element-wise operation as described in [83].

Finally, a pointwise Convolution layer transforms the deep patch embeddings into 𝑁 per-patch

output scores 𝐶:

𝑪 = 𝐵𝑁 (𝐶𝑜𝑛𝑣𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒(𝒛𝐿)) (7.5)

86

The MESH technique, threats 𝐶 as a cost matrix to compute the transport map 𝑆 for assigning

patches to slots. This is accomplished using a variant of the Sinkhorn algorithm [121] which solves

the entropy-regularized optimal transport problem:

𝑺 = argmin
𝑆∈ℝ𝑁×𝑀

∑ 𝑠𝑖
𝑛𝑐𝑖

𝑛

𝑖,𝑛

+ 𝜆𝐻(𝑺)

𝑠𝑡. ∑ 𝑠𝑖
𝑛 = 𝒂𝑖 , ∑ 𝑠𝑖

𝑛 = 𝒃𝑛,

𝑖

 𝑖 = 1, … , 𝑀, 𝑛 = 1, … , 𝑁

𝑛

(7.6)

Where 𝒂𝑖 and 𝒃𝑛 represent the target patch and slot distributions respectively and 𝛨 is the

entropy function. In our case, those distributions are treated as learned marginals, where the

patch distribution is derived from the initial patch embeddings via a fully connected layer, while

the slot distribution is derived from learned slot embeddings. These distributions act as weights

to reduce the impact of less relevant patches or slots, such as background regions. The Sinkhorn

algorithm iterates between row-wise and column-wise normalizations, converging on a matrix

that satisfies the distribution constraints. However, by itself, this algorithm tends to produce

high-entropy transport maps, leading to patches being distributed across multiple slots, which is

undesirable for our purposes. To address this, the MESH module refines the cost matrix 𝑪

iteratively, applying a gradient descent step to minimize the entropy of the transport map

produced by the Sinkhorn algorithm, while also introducing a small perturbation via noise. Thus,

the optimization problem shown in (7.6) is solved iteratively with modifying 𝑪 as follows:

𝑪𝑡+1 = 𝑪𝑡 − 𝜇
∇𝐂t

𝐻(𝑺)

‖∇𝐂t
𝐻(𝑺)‖

𝑪0 = 𝑪 + 𝜀, 𝜀 ~𝒩(0, 10−6 ∙ 𝚰)

(7.7)

This refinement ensures a lower-entropy final transport map, encouraging clearer patch-to-slot

assignments. A final execution of the Sinkhorn algorithm yields a transport map with stronger

tie-breaking properties, producing more distinct and interpretable assignments. This method

preserves differentiability, enabling efficient end-to-end training and offering the potential for

extracting interpretable attention maps from the final transport map.

The resulting scores 𝑠𝑖
𝑛 are used to produce an image embedding for each slot through a

weighted sum of the corresponding patch and position embedding, 𝒛𝑝𝑎𝑡𝑐ℎ, 𝒛𝑐𝑜𝑜𝑟𝑑 as follows:

87

𝒑𝑛 = ∑ 𝑠𝑖
𝑛(𝒛𝑝𝑎𝑡𝑐ℎ⨁𝒛𝑐𝑜𝑜𝑟𝑑)

𝑖,𝑛

where ⨁ denotes the concatenation operation.

(7.8)

7.2 Environments

We test our approach in two types of environments, three simulated generic robotic

manipulation tasks and a real environment similar to that of Chapter 5 where a robotic arm

attempts to pick 3D printed mushroom models.

7.2.1 Generic Robotic Manipulation Tasks

We use the Lift, Can and Square tasks from the RoboMimic framework [120] to benchmark our

RepL module across generic manipulation tasks. Lift requires the robotic arm to simply reach,

grasp and lift a cube, Can encompasses picking a can and placing it in an appropriate position

while Square entails picking a square nut and fitting it in a peg. Figure 7.2 shows indicative

screenshots for each of these tasks

Figure 7.2 Screenshots from the three simulated tasks, Top: Front camera view, Bottom: Eye-in-

Hand camera view.

88

At each environment step, the observations comprise two image frames, one from a camera

mounted on the robot’s gripper and the other fixed on the opposite side of the table, aimed at

the robot and the task scene, as well as the proprioception sensor measurements obtained from

the robot’s joints and the gripper. No state-based information is provided to the agent, such as

the location of the target object or the desired position for placement. The action space

comprises the 6 joints of the robotic arm as well as the gripper, for a total of 7 dimensions.

7.2.2 Mushroom Picking Task

We implement a simulation and a real-world task similar to that of Chapter 5 with the additional

complexity of multiple mushrooms being in the scene, with the target mushroom being specified

at the start of the episode by providing the image coordinates of a point close to its centre. The

specified point is then tracked across frames using a standard tracking algorithm, namely the

Boosting Tracker [122]. The focus in this investigation is picking a mushroom based on external

instructions and thus the simulation does not include a model the root dynamics. In the real-

world task these are emulated exactly as described in Chapter 5. The simulation was conducted

using the Gazebo engine [123]. The real-world environment also includes soil to enhance realism.

Indicative screenshots for both environments are provided in Figure 7.3 and Figure 7.4

respectively.

Figure 7.3 Screenshot from simulated mushroom picking task, Left: Eye-in-hand camera view,

Right: Front camera view.

89

Figure 7.4 Screenshot from real-world mushroom picking task, Left: Eye-in-hand camera view,

Right: Front camera view.

The observation space is identical to that of Chapter 5; just the image frame from the eye-in-

hand camera and the z and yaw measurements from the proprioceptive sensors. Actions are

defined in the task space, with the three position coordinates, the yaw angle and the gripper for

a total of 5 dimensions.

7.3 Experiments

We conduct extensive experiments to assess the behaviour of the interpretable representations

as well as the effect on the accuracy of the overall pipeline. These are described in the next

subsections.

7.3.1 Lift, Can and Square manipulation tasks

We evaluate the effectiveness of our RepL module by using two state-of-the-art Behavioural

Cloning models, namely Behaviour Transformer (BeT) [40] and Diffusion Policy (DP) [46]. For the

latter we train a version of the DiffusionPolicy-C model with fewer neurons per layer that can still

achieve near perfect success rates in Lift and Can. Both models use a simple ResNet-18 as a RepL

module to extract feature vectors from the image input in their original implementations. We

first produce benchmarks using training these original implementations and producing episode

rollouts for each environment using random seeds. We then test the modified versions where

the original RepL module is substituted with our own which produces the interpretable

representations. Thus, we obtain four IL pipelines, BeT, DP and ModifiedBet, ModifiedDP

respectively. We use four slots for the score maps, i.e. we set 𝑁 = 4. The demonstration data

were sourced from the RoboMimic framework’s webpage which included 200 demonstrations

90

per task. All IL pipelines process two consecutive frames. The BeT-based pipelines output the

next action while the DP-based ones output the next 16 actions, 8 of which are rolled out before

the next prediction as in [46]

7.3.2 Mushroom picking task

In this task we explore our approach’s capability to operate in a goal-conditioned version of the

mushroom picking task explored so far. In both the simulated and real-world version, we collect

200 demonstrations using an expert policy which has access to the 3D location of the cap of the

mushroom mock-up to be picked, recorded during the mushroom placement. The training data

comprise an additional piece of information, namely the pixel coordinates of a point close to the

target mushroom in the image frame of the eye-in-hand camera. This is provided at the start of

the episode and the point is tracked across successive frames using a standard implementation

of the Boosting Tracker [122]. Since there is no way to specifically determine the centre, and the

tracking process is bound to have some drift, the measurement of the tracked pixel is noisy,

adding to the challenging nature of the task.

We then consider three methods for providing the tracked pixel coordinates to the IL models. For

the simulated environment the first method is to paint the tracked pixel on the image using a red

cross and the second is to append the coordinates of the pixel to the embedding produced by

the RepL module. For the real-world scenario, we observed that painting the pixel seemed

insufficient to achieve high success rates, due to the high color variation induced by noise and

lighting variations that are always a challenge in real-world settings. We thus introduced a third

variant that provides richer information by passing an modulated inverse distance map as a

fourth channel to the input image. This map is produced as follows:

𝑰𝑚𝑎𝑝(𝑖, 𝑗) = exp(− 𝛼√(𝑖 − 𝑖𝑜)2 + (𝑗 − 𝑗𝑜)2), 𝑖 = 1 … 𝐻, 𝑗 = 1 … 𝑊

(7.9)

where 𝑎 is a coefficient modulating the breadth of the region carrying distance information,

(𝑖𝑜, 𝑗𝑜) are the coordinates of the target pixel and 𝐻, 𝑊 are the dimensions of the image. This

formulation assumes a square image which is the case in our experiments.

We benchmark our approach using the DP model for policy generation. We evaluate all models

across 40 simulated and 50 real mushroom mock-up picking trials.

91

Figure 7.5 Indicative example of determining a target mushroom. Right: Target pixel is painted on

the image. Left: Extra image channel carrying an inverse modulated distance map as described in

eq. (7.9).

7.4 Results

7.4.1 Lift, Can and Square manipulation tasks

Table 7.1 below summarises the success rates for the original implementations of the BC

benchmarks alongside those where the original RepL module has been changed to ours. As seen,

the difference in performance is in the order of 2-6%.

Table 7.1 Success rates of original and modified implementation of the BC benchmarks.

IL Pipeline Lift Can Square

BeT [40] 100% 88% 62%

ModifiedBeT 94% 82% 58%

DP [46] 100% 98% 90%

ModifiedDP 98% 98% 86%

Figure 7.6, Figure 7.7 and Figure 7.8 illustrate key screenshots of the important patches identified

by our RepL module for the Lift, Can and Square environments respectively. The patches

highlighted are the ones with the three highest scores.

92

Figure 7.6 Screenshots of the three highest scores for each of the four slots for a single timestep

of Lift environment.

Figure 7.7 Screenshots of highest scores for each of the four slots for a single timestep of the Can

environment.

93

Figure 7.8 Screenshots of highest scores for each of the four slots for a single timestep of the

Square environment.

As seen in the figures above, the important patches tend to gravitate towards semantically

meaningful regions of the images. This tendency is stronger as the task difficulty increases. In the

case of the simpler task, i.e. Lift some slots seem to not attend to reasonable regions. This seems

to be the case for slots 1,2 for the eye-in-hand-camera and for slots 1,3 for the front view camera.

We theorise that this is because, since this task only requires the agent to identify a very simple

shape, allocating just two of the slots towards this is enough to solve the task. Indeed, we observe

that more of the slots are focusing on meaningful regions in Can. This becomes even more

evident in the case of Square, which is the most complex of the tasks considered as the robot

needs to grasp a complex-shaped nut and place it around a peg. In that task, for this particular

step, all of the eye-in-hand camera slots attend to parts of the nut.

To explore our RepL module’s behaviour across the entire episode, Figure 7.9 illustrates a

sequence of screenshots of the eye-in-hand camera and the three most high-scored patches from

the second slot. The vast majority of these again attend to semantically important regions of the

image, such as edges and corners of the nut or the gripper’s fingers. Although at certain

timesteps, the highest score patches of a slot may switch to areas of the background instead, this

happens when another slot takes over focus to the foreground. Thus, our RepL module can

indeed produce representations that capture important regions of the image in an interpretable

way with small deterioration of the overall success rates.

94

Figure 7.9 Screenshots of a single slot across multiple episode steps of the Square environment

for the eye-in-hand camera.

7.4.2 Mushroom picking task

Table 7.2 Success rates for different IL pipelines with different target pixel input modes in

simulated mushroom picking task. Table 7.2 and Table 7.3 below summarise the success rates of

the original and the modified DP implementations similarly to subsection 7.4.1. An additional

experiment is included in Table 7.2 to show that the target pixel coordinates by themselves are

not sufficient for reliably performing the picking. In this experiment (DP without Frames), we

95

provide a binary image as an input to the original DP pipeline with a white cross painted against

black background so that no information from the actual camera is taken into account.

Table 7.2 Success rates for different IL pipelines with different target pixel input modes in

simulated mushroom picking task.

IL Pipeline Pixel Drawn Pixel Coordinates

DP without frames 55% 22.5%

DP 97.5% 12.5%

ModifiedDP 92.5% 87.5%

Table 7.3 Success rates for different IL pipelines with different target pixel input modes in real-

world mushroom picking task.

IL Pipeline Distance Map Pixel Drawn Pixel Coordinates

DP 92% 60% 20%

ModifiedDP 84% 58% 88%

As seen in the tables above, the modified DP with our RepL module again performs only slightly

worse than the original one in cases where information of the target pixel is provided within the

image. However, it is worth noting that our approach performs significantly better when the

target pixel coordinates are provided after the RepL module, as a concatenated vector to the

embedding.

Figure 7.10 and Figure 7.11 below provide indicative illustrations of the results of our RepL’s

representation. Several interesting remarks can be extracted. First, it is evident that most of the

important patches are again assigned on or very near semantically important regions, such as

mushroom edges or gripper fingers. Second, it is worth noting that that in the case where the

target pixel location is not known to the RepL module, the important patches attend to multiple

mushrooms whereas in the case of drawn pixel, they tend to cluster around the target

mushroom, but not directly on the tracked pixel but rather on the edges of the mushroom. This

is crucial to ensure successful grasping as the tracked pixel can be drifting significantly from the

centre. Finally, we observe that the important patches attention tends to wane towards

irrelevant regions as the episode progresses, particularly after the mushroom is grasped. This is

96

again sensible since after the mushroom is grasped, the agent can purely rely on the

proprioceptive measurements to complete the task, i.e. to twist and lift the mushroom.

Figure 7.10 Screenshots of highest scores for each of the three slots for a single timestep of the

real-world mushroom picking environment. Top: Implementation with target pixel drawn on the

image with a red cross. Bottom: Implementation with target pixel concatenated to the

embedding. For visualisation purposes, we draw the target pixel in blue colour to distinguish it

from the previous case.

Figure 7.11 Screenshots of a single slot across multiple episode steps of the real world mushroom

picking task. Top: Implementation with target pixel drawn on the image with a red cross. Bottom:

Implementation with target pixel concatenated to the embedding. For visualisation purposes, we

draw the target pixel in blue colour to distinguish it from the previous case.

97

7.5 Discussion

The Representation Learning Module presented in this chapter, produces interpretable

representations that allow for transparency with respect to image regions that are important for

solving the task at hand, capturing embeddings directly in terms of pixel coordinates which

means that there are readily interpretable by human users. This representation is also shown to

be amenable to providing post-RepL goal conditioning in a picking task by means of simple pixel-

coordinate tracking. This could enable decoupling of the RepL and the BC module allowing the

latter to be retrained separately for different downstream tasks.

A crucial aspect of the designed RepL module is that it operates directly on the image-based

observation space, making no assumptions about the spatio-temporal structure or the state

composition of the task being carried out. Thus, it can address virtually any visual-based robotic

manipulation task. At the same time, the proposed module is fully differentiable allowing for

straightforward training via standard gradient descent and back propagation. This means that it

can be dropped in practically any Reinforcement or Imitation Learning pipeline, simply by

substituting the image encoder, i.e. the stage at which the observation is translated into an

embedding with lower dimension before it is being process by the policy model.

To validate the versatility of the proposed approach, we tested it on a variety of different robotic

manipulation tasks in both virtual and real settings with diverse challenges. The simulated

environments modelled increasingly more difficult tasks ranging from simple reaching, grasping

and lifting to picking and placing a complex-shaped nut around a peg with precision. The real task

required picking a certain object, in this case a mushroom mock-up, specified by goal-

conditioning through pixel-level annotation, among similarly looking distractors and performing

a twisting motion to break the adhesive holding it to the table. These tests were performed

combination with two significantly different state-of-the-art Behavioural Cloning pipelines, one

relying on Transformer and the other on Diffusion models. The fact that experiments across all

these environments and BC pipelines showed that the patches ranked as highly important by our

RepL module generally captured semantically meaningful regions, shows that our approach can

gracefully generalise with respect to different environments.

Naturally, there is significant room for improvement of our approach. It would be important to

ensure that different slots focus on different features consistently across timesteps. Designing an

inductive bias mechanism to facilitate this would significantly boost transparency and, possibly,

eliminate the slight decrease in performance observed compared to non-interpretable RepL

98

modules. A combination with Hierarchical IL approaches could further increase transparency

allowing for interpretability in terms of policy generation besides embeddings. Finally, as

computational capabilities continue to increase while visual sensor cost decreases, it would be

straightforward to repurpose the module to operate in 3D space, for example, in voxelised

representations of the task space, reconstructed by depth sensing to further boost performance

in robotic manipulation tasks which greatly rely on 3D perception.

99

8 Conclusions and Future Work

8.1 General Discussion

Looking back to the results of our research, a taxonomy of desired features of Imitation Learning

approaches emerges, which can be considered horizontal with respect to industrial applications.

We illustrate it in a simple schematic in Figure 8.1 and explain each term below.

Figure 8.1 Taxonomy of desired features when it comes to Imitation Learning approaches

Task Performance encompasses aspects like accuracy, reliability and robustness to condition

variations, i.e. factors that affect the success rate of the algorithm with respect to the task at

hand. This is naturally the primary metric by which any approach is judged.

Data Efficiency relates to the size of the data volumes required to train the underlying models,

taking into account the effort and cost incurred to gather this data. This is a crucial aspect as it

greatly affects the practicality of the approach and therefore its potential for deployment in real

environments.

Compute Efficiency considers the computational resources required to run the models in

inference mode. This is directly linked to the cost incurred to operate the system as well as energy

efficiency and affects real-time capabilities.

100

Domain Generalisability pertains to the convenience of transferring the Imitation Learning

approach to tangential or radically different domains. This is mainly about the strength of

assumptions being made about the structure of the tasks which can limit the approach to a

certain class of problems.

Model Transparency entails characteristics such as explainability and is a major factor with

respect to user trust. It is currently being raised as a crucial aspect for the deployment of AI

models in general and new regulations are continuously being pushed with regards to it.

Engineering Efficiency relates to the amount of engineering effort required to implement and

fine-tune the Imitation Learning pipeline. End-to-end approaches stand on one end of this

spectrum, with engineering effort being minimal while highly tailored pipelines with custom pre-

processing steps stand on the other.

These features most often than not, clash with each other requiring careful trade-offs. In the next

section we analyse our work with respect to the taxonomy above.

8.2 Retrospective Analysis of our Work

This thesis explored Imitation Learning within the scope of robotic harvesting, an application of

crucial importance for the agricultural sector. Automating this process would directly mitigate

the challenges caused by labour shortages, caused by demographic shifts, seasonal workforce

limitations, and the physically demanding nature of the job. Enabling robots to accurately and

reliably carry out harvesting tasks, also contributes to ensuring consistent, high-quality harvests,

thanks to timely picking, while increasing productivity laying the groundwork for more

sustainable and resilient agricultural practices.

Our work was motivated by the mushroom picking case which on top of the complexity of the

harvesting motions presents some additional unique challenges. The common cultivation

practice of mushrooms places severe physical limitations; mushroom growing beds are stacked

vertically to significant heights and with very little space between them making it extremely

difficult for a robotic solution to cover multiple growing beds. This means that multiple robotic

platforms are required which places a significant pressure on cost effectiveness. Additionally,

unlike other crops where each piece to be harvested is determined solely based on its health and

ripeness, picking a mushroom significantly affects the growth of the mushrooms around it. This

requires the Imitation Learning algorithms to ideally allow for goal-conditioning so that the right

mushrooms are picked in the right order.

101

Our research was structured in phases, experimenting with different Representation and

Supervised Learning approaches with low cost, in terms of sensing modalities and computing

resources, considered a hard requirement. We also focused on visual-based, end-to-end

approaches to minimise the need for custom pre-processing approaches that would minimise

transferability to other crops.

First, we implemented and tested relatively simple Imitation Learning pipelines in a simulated

environment, built according to extensive data collection sessions involving human expert

pickers. In these sessions, we were able to record visual streams and measure the force

interactions during picking, obtaining crucial insights regarding the particularities of this task. We

then adjusted our initial approach to ensure transfer to a real-world setting with a real robotic

arm and physical mushroom mock-ups in arrangements that qualitatively emulated the dynamics

of mushroom picking. We showed that implementing Vector Quantisation as an intermediate

step in the Representation Learning module significantly boosted the overall performance,

allowing lean policy generation models to reach high success rates. These implementations

where described in Sections 4 and 5.

Next, we drew the lessons learned from using VQ and applied them to a different approach which

took advantage of the nature of the mushroom picking task as consisting of a reaching-grasping

and a manipulation phase with the latter being practically the same across all harvesting

instances. This allowed us to implement a pipeline that required a single expert demonstration

and a small dataset of auxiliar data, enabling huge gains in terms of Data Efficiency and reaching

very high success rates even as it was being tested on a soft, bio-mimetic gripper which added

new challenges due to hysteresis and lack of proprioceptive sensing. This was described in detail

in Section 6.

Finally, we developed a Representation Module that produced interpretable representations

that not only shed light into where the models focus on with respect to the image but also

allowed for goal-conditioning of the tasks. The latter feature is crucial as it allows external

instructions with respect to which mushroom should be gathered next, during runtime. However,

this gain in Model Transparency came at the expense of a slight drop in task performance.

Nevertheless, it is our firm belief that this approach has significant room for improvement, paving

the way for a new class of interpretable Imitation Learning pipelines for robotic manipulation. To

assess this, we also tested in generic robotic manipulation tasks in well-trusted simulated

benchmarks. This was analysed in Section 7.

102

Figure 8.2 Mapping of our implementations with respect to the aforementioned taxonomy

In Figure 8.2 we map the approaches summarised above on to the taxonomy laid out in the

previous section. Our initial attempts made no assumptions about the structure of the task at

hand and where thus easily generalisable while keeping computational cost at a minimum.

However, once we introduced strong assumptions about the harvesting process and the nature

of its phases, we were able to achieve very high data efficiency, and task performance at the

expense of transferability to other domains. None of these approaches took model transparency

into account. The last implementation focused on this aspect while eliminating strong

assumptions with respect to the task structure.

8.3 Directions for Future Work

In broader terms, the advent of Imitation Learning, the range of robot capabilities are mainly

bound by the power of the AI models underpinning the learning of the expert behaviour. As this

power grows, the engineering load associated with designing and implementing complicated

rule-based control schemes is gradually diminished, while the range of tasks becoming feasible

to solve by autonomous robots greatly expands. It is our firm belief that Imitation Learning holds

the key to unlocking the next generation of automation not only in robotic harvesting but across

virtually every industrial sector.

In the short-to-medium term we believe that the natural next step would be to combine the

lessons learned from the approaches developed within the scope of this thesis towards better

103

reconciling data efficiency with transparency. This could be achieved by investigating the use of

the interpretable representation module tackling the visual servoing phase of the harvesting

motion. The patch-based approach is also amenable to more powerful representation structures

such as graphs which have recently gained traction in the field of Imitation Learning thanks to

their capacity of capturing richer information such as spatiotemporal relationships between

regions. Indicative works which could be leveraged towards this end are [124], [125]. To broaden

the transferability of such an approach, investigating automated task sequence segmentation

could be explored. Further tapping into Object Centric learning approaches could also boost

explainability.

In the long term, the rapid advancement of Generative AI should be incorporated more deeply

into Imitation Learning pipelines. There is now a considerable body of work investigating the use

of Large Language Models and capabilities such as Chain of Thought [126] or Tree of Thought

[127] to drive a systematic breakdown of long and complex tasks into shorter and simple

constituents. Indeed, several attempts have already been made towards approaches with multi-

modal Vision-Language-Action models [128], however these are still only accessible to

organisations and institutions with vast computational resources. However there seems to be a

clear trend towards reducing the computational cost of fine-tuning such models via techniques

such as Low-Rank Adaptation. Eventually, it will be possible to harness the power of this AI model

behemoths towards niche Imitation Learning applications. In addition, language can also be

leveraged as a tool to provide explanations in an intuitive manner. Interpreting intermediate

representations such as ours could become much simpler via a natural language interface. This

could build on approaches that have shown great promise in other domains such as

recommendation systems [129].

We stand on the brink of a future where robotic systems become capable of accomplishing tasks

that seemed impossible mere years ago. It is our duty to ensure that the process of bringing about

these new levels of automation comprehensively takes into account the socioeconomic

implications, never losing sight of the noble causes that should be driving this revolution; an

increasingly sustainable and inclusive future.

104

References

[1] Publications Office of the European Union, “EU Agricultural Outlook 2018,” 2018.

[2] Publications Office of the European Union, “EU Agricultural Outlook 2023-25,”

2023.

[3] U. D. of A. Economic Research Service, “Farm labor,” 2022.

[4] Eurostat, “Farms and farmland in the European Union: Statistics,” 2022.

[5] United States Department of Agriculture, “Farms and Land in Farms - 2021

Summary,” 2022.

[6] Donal Gernon, “Irish Mushroom Production - Factsheet,” 2020.

[7] The Indepedent (Ireland), “Mushroom Growers Face ''massive crisis",” 2018.

[8] D. J. Royse, J. Baars, and Q. Tan, “Current Overview of Mushroom Production in the

World,” Edible and Medicinal Mushrooms: Technology and Applications, pp. 5–13,

Aug. 2017, doi: 10.1002/9781119149446.CH2.

[9] Teagasc Mushroom Stakeholder Consultative Group, “Mushroom Sector

Development Plan,” 2013.

[10] M. Huang, L. He, D. Choi, J. Pecchia, and Y. Li, “Picking Dynamic Analysis for Robotic

Harvesting of Agaricus 2 Bisporus Mushrooms 3,” 2021.

[11] J. Carrasco, D. C. Zied, J. E. Pardo, G. M. Preston, and A. Pardo-Giménez,

“Supplementation in mushroom crops and its impact on yield and quality,” AMB

Express, vol. 8, no. 1, pp. 1–9, Dec. 2018, doi: 10.1186/S13568-018-0678-

0/FIGURES/2.

[12] S. Yang, J. Ji, H. Cai, and H. Chen, “Modeling and Force Analysis of a Harvesting Robot

for Button Mushrooms,” IEEE Access, vol. 10, pp. 78519–78526, 2022, doi:

10.1109/ACCESS.2022.3191802.

[13] M. G. M. M. G. Mohanan and A. S. A. Salgaonkar, “Robotic Mushroom Harvesting

by Employing Probabilistic Road Map and Inverse Kinematics,” BOHR International

Journal of Internet of things, Artificial Intelligence and Machine Learning, vol. 1, no.

1, pp. 1–10–1–10, Dec. 2022, doi: 10.54646/bijiam.001.

105

[14] SureHarvest, “The Mushroom Sustainability Story: Water, Energy and Climate

Environmental Metrics,” 2017.

[15] Hannah Ritchie, “The carbon footprint of foods: are differences explained by the

impacts of methane?,” Our World in Data.

[16] J. M. Hess, Q. Wang, C. Kraft, and J. L. Slavin, “Impact of Agaricus bisporus

mushroom consumption on satiety and food intake,” Appetite, vol. 117, pp. 179–

185, Oct. 2017, doi: 10.1016/J.APPET.2017.06.021.

[17] E. P. AGRI Committee, “The EU farming employment: current challenges and future

prospects,” 2019.

[18] Michael Ryan, “Labour and skills shortages in the agro-food sector,” OECD Food,

Agriculture and Fisheries Papers, no. 189, 2023.

[19] Y. Duan, X. Chen, C. X. B. Edu, J. Schulman, P. Abbeel, and P. B. Edu, “Benchmarking

Deep Reinforcement Learning for Continuous Control,” Jun. 11, 2016, PMLR.

Accessed: Sep. 14, 2023. [Online]. Available:

https://proceedings.mlr.press/v48/duan16.html

[20] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent Advances in

Robot Learning from Demonstration,” https://doi.org/10.1146/annurev-control-

100819-063206, vol. 3, pp. 297–330, May 2020, doi: 10.1146/ANNUREV-CONTROL-

100819-063206.

[21] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain

mechanisms.,” Buffalo NY, 1961.

[22] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” Int J

Res Appl Sci Eng Technol, vol. 10, no. 12, pp. 943–947, Nov. 2015, doi:

10.22214/ijraset.2022.47789.

[23] A. Van Den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete representation

learning,” Adv Neural Inf Process Syst, vol. 2017-Decem, no. Nips, pp. 6307–6316,

2017.

[24] A. Ramesh et al., “Zero-Shot Text-to-Image Generation,” Proc Mach Learn Res, vol.

139, pp. 8821–8831, Feb. 2021, Accessed: Aug. 03, 2024. [Online]. Available:

https://arxiv.org/abs/2102.12092v2

106

[25] I. Tolstikhin et al., “MLP-Mixer: An all-MLP Architecture for Vision,” Adv Neural Inf

Process Syst, vol. 29, pp. 24261–24272, May 2021, Accessed: Aug. 04, 2024.

[Online]. Available: https://arxiv.org/abs/2105.01601v4

[26] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale,” ICLR 2021 - 9th International Conference on Learning

Representations, Oct. 2020, Accessed: Aug. 04, 2024. [Online]. Available:

https://arxiv.org/abs/2010.11929v2

[27] A. Trockman and J. Z. Kolter, “Patches Are All You Need?,” Transactions on Machine

Learning Research, Accessed: Aug. 04, 2024. [Online]. Available:

https://github.com/locuslab/convmixer.

[28] A. Y. Ng and S. J. Russel, “Algorithms for Inverse Reinforcement Learning,” in ICML

’00: Prcoeedings of the Seventeenth International Conference on Machine Learning,

2000, pp. 663–670.

[29] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep Inverse Optimal

Control via Policy Optimization,” Jun. 11, 2016, PMLR.

[30] N. Das, S. Bechtle, T. Davchev, D. Jayaraman, A. Rai, and F. Meier, “Model-Based

Inverse Reinforcement Learning from Visual Demonstrations,” Oct. 04, 2021, PMLR.

[31] S. Haldar, V. Mathur, D. Yarats, and L. Pinto, “Watch and Match: Supercharging

Imitation with Regularized Optimal Transport,” Jun. 2022, doi:

10.48550/arxiv.2206.15469.

[32] P. Sermanet et al., “Time-Contrastive Networks: Self-Supervised Learning from

Video,” in Proceedings - IEEE International Conference on Robotics and Automation,

Institute of Electrical and Electronics Engineers Inc., Sep. 2018, pp. 1134–1141. doi:

10.1109/ICRA.2018.8462891.

[33] J. H. Openai and S. Ermon, “Generative Adversarial Imitation Learning,” Adv Neural

Inf Process Syst, vol. 29, 2016.

[34] I. Goodfellow et al., “Generative Adversarial Networks,” Commun ACM, vol. 63, no.

11, pp. 139–144, Jun. 2014, doi: 10.48550/arxiv.1406.2661.

107

[35] R. Dadashi, L. Hussenot, M. Geist, O. Pietquin, and O. P. P. Wasserstein, “Primal

Wasserstein Imitation Learning,” in ICLR 2021 - Ninth International Conference on

Learning Representations, May 2021.

[36] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural Network,” Adv

Neural Inf Process Syst, vol. 1, 1988.

[37] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S. Levine, “Vision-based multi-task

manipulation for inexpensive robots using end-to-end learning from

demonstration,” Proc IEEE Int Conf Robot Autom, pp. 3758–3765, Sep. 2018, doi:

10.1109/ICRA.2018.8461076.

[38] P. Florence et al., “Implicit Behavioral Cloning,” in Proceedings of the 5th Conference

on Robot Learning, PMLR, Jan. 2022, pp. 158–168.

[39] M. Janner, Q. Li, and S. Levine, “Offline Reinforcement Learning as One Big

Sequence Modeling Problem,” Adv Neural Inf Process Syst, vol. 2, pp. 1273–1286,

Jun. 2021, doi: 10.48550/arxiv.2106.02039.

[40] L. Shafiullah, N. M., Cui, Z., Altanzaya, A. A., & Pinto, “Behavior Transformers:

Cloning $ k $ modes with one stone,” in Advances in neural information processing

systems, May 2022, pp. 22955–22968.

[41] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language

Understanding by Generative Pre-Training.” Accessed: Aug. 04, 2024. [Online].

Available: https://gluebenchmark.com/leaderboard

[42] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-Grained Bimanual

Manipulation with Low-Cost Hardware,” in Proceedings of Robotics: Science and

Systems, Apr. 2023.

[43] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-Actor: A Multi-Task Transformer for

Robotic Manipulation,” in Proceedings of the 6th Conference on Robot Learning

(CoRL), Sep. 2022. doi: 10.48550/arxiv.2209.05451.

[44] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Adv Neural

Inf Process Syst, vol. 2020-Decem, no. NeurIPS 2020, pp. 1–25, 2020.

[45] T. Pearce et al., “Imitating Human Behaviour with Diffusion Models,” pp. 1–24,

2023.

108

[46] C. Chi et al., “Diffusion Policy: Visuomotor Policy Learning via Action Diffusion,”

2023, doi: 10.15607/rss.2023.xix.026.

[47] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning

with a General Conditioning Layer,” 32nd AAAI Conference on Artificial Intelligence,

AAAI 2018, pp. 3942–3951, Sep. 2017, doi: 10.1609/aaai.v32i1.11671.

[48] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-Efficient

Generalization of Robot Skills with Contextual Policy Search,” Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 27, no. 1, pp. 1401–1407, Jun. 2013,

doi: 10.1609/AAAI.V27I1.8546.

[49] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy search for

robotics,” Proc IEEE Int Conf Robot Autom, pp. 3876–3881, Sep. 2014, doi:

10.1109/ICRA.2014.6907421.

[50] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal Value Function

Approximators,” Jun. 01, 2015, PMLR. Accessed: Apr. 17, 2024. [Online]. Available:

https://proceedings.mlr.press/v37/schaul15.html

[51] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat, and G. Neumann,

“Model-based contextual policy search for data-efficient generalization of robot

skills,” Artif Intell, vol. 247, pp. 415–439, Jun. 2017, doi:

10.1016/J.ARTINT.2014.11.005.

[52] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-Shot Visual Imitation Learning

via Meta-Learning,” in Proceedings of the 1st Annual Conference on Robot Learning,

2017, pp. 78:357-368.

[53] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks,” in Proceedings of the 34th International Conference

on Machine Learning, PMLR, Jul. 2017, pp. 70:1126-1135. Accessed: Apr. 16, 2024.

[Online]. Available: https://proceedings.mlr.press/v70/finn17a.html

[54] S. James, M. Bloesch, and A. J. Davison, “Task-Embedded Control Networks for Few-

Shot Imitation Learning,” in Proceedings of The 2nd Conference on Robot Learning,

PMLR, Oct. 2018, pp. 87:783-795. Accessed: Apr. 16, 2024. [Online]. Available:

https://proceedings.mlr.press/v87/james18a.html

109

[55] E. Jang et al., “BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning,”

in Proceedings of the 5th Conference on Robot Learning, PMLR, Jan. 2022, pp.

164:991-1002. Accessed: Apr. 16, 2024. [Online]. Available:

https://proceedings.mlr.press/v164/jang22a.html

[56] Z. Mandi, F. Liu, K. Lee, and P. Abbeel, “Towards More Generalizable One-shot Visual

Imitation Learning,” Proc IEEE Int Conf Robot Autom, pp. 2434–2444, 2022, doi:

10.1109/ICRA46639.2022.9812450.

[57] D. Pathak et al., “Zero-shot visual imitation,” IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, vol. 2018-June, pp. 2131–

2134, Dec. 2018, doi: 10.1109/CVPRW.2018.00278.

[58] S. Bahl, A. Gupta, and D. Pathak, “Human-to-Robot Imitation in the Wild,” Robotics:

Science and Systems, Jul. 2022, doi: 10.15607/RSS.2022.XVIII.026.

[59] E. Johns, “Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single

Demonstration,” Proc IEEE Int Conf Robot Autom, vol. 2021-May, pp. 4613–4619,

May 2021, doi: 10.1109/ICRA48506.2021.9560942.

[60] P. Vitiello, K. Dreczkowski, and E. Johns, “One-Shot Imitation Learning: A Pose

Estimation Perspective,” Proc Mach Learn Res, vol. 229, Oct. 2023, Accessed: Apr.

24, 2024. [Online]. Available: https://arxiv.org/abs/2310.12077v1

[61] E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns, “Demonstrate Once, Imitate

Immediately (DOME): Learning Visual Servoing for One-Shot Imitation Learning,”

IEEE International Conference on Intelligent Robots and Systems, vol. 2022-October,

pp. 8614–8621, Apr. 2022, doi: 10.1109/IROS47612.2022.9981982.

[62] Davide Castelvecchi, “Can we open the black box of AI? : Nature News & Comment,”

Nature | News Feature. Accessed: Apr. 17, 2024. [Online]. Available:

https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

[63] High-Level Expert Group on Artificial Intelligence, “Ethics guidelines for trustworthy

AI | Shaping Europe’s digital future,” 2019. Accessed: Apr. 17, 2024. [Online].

Available: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-

trustworthy-ai

110

[64] T. Speith, “A Review of Taxonomies of Explainable Artificial Intelligence (XAI)

Methods,” ACM International Conference Proceeding Series, pp. 2239–2250, Jun.

2022, doi: 10.1145/3531146.3534639.

[65] A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts,

taxonomies, opportunities and challenges toward responsible AI,” Information

Fusion, vol. 58, pp. 82–115, Jun. 2020, doi: 10.1016/J.INFFUS.2019.12.012.

[66] S. M. Lundberg and S. I. Lee, “A Unified Approach to Interpreting Model

Predictions,” Adv Neural Inf Process Syst, vol. 2017-December, pp. 4766–4775, May

2017, Accessed: Apr. 17, 2024. [Online]. Available:

https://arxiv.org/abs/1705.07874v2

[67] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the

Predictions of Any Classifier,” NAACL-HLT 2016 - 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Proceedings of the Demonstrations Session, pp. 97–101,

Feb. 2016, doi: 10.18653/v1/n16-3020.

[68] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K. R. Müller, “Layer-Wise

Relevance Propagation: An Overview,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 11700 LNCS, pp. 193–209, 2019, doi: 10.1007/978-3-030-28954-6_10/COVER.

[69] E. Puiutta and E. M. S. P. Veith, “Explainable Reinforcement Learning: A Survey,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 12279 LNCS, pp. 77–95, 2020,

doi: 10.1007/978-3-030-57321-8_5/FIGURES/7.

[70] D. Hein, A. Hentschel, T. Runkler, and S. Udluft, “Particle swarm optimization for

generating interpretable fuzzy reinforcement learning policies,” Eng Appl Artif

Intell, vol. 65, pp. 87–98, Oct. 2017, doi: 10.1016/J.ENGAPPAI.2017.07.005.

[71] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for reinforcement

learning by genetic programming,” Eng Appl Artif Intell, vol. 76, pp. 158–169, Nov.

2018, doi: 10.1016/J.ENGAPPAI.2018.09.007.

111

[72] Y. Coppens, K. Efthymiadis, T. Lenaerts, and A. Nowé, “Distilling Deep

Reinforcement Learning Policies in Soft Decision Trees,” in Proceedings of the IJCAI

2019 Workshop on Explainable Artificial Intelligence, 2019, pp. 1–6. Accessed: Nov.

25, 2021. [Online]. Available:

https://drive.google.com/file/d/1drMQs5XPTEPovKdBtCOfnJ2eentEoyt4/view%0A

https://cris.vub.be/files/46718934/IJCAI_2019_XAI_WS_paper.pdf

[73] V. G. Costa, J. Pérez-Aracil, S. Salcedo-Sanz, and C. E. Pedreira, “Evolving

interpretable decision trees for reinforcement learning,” Artif Intell, vol. 327, p.

104057, Feb. 2024, doi: 10.1016/J.ARTINT.2023.104057.

[74] N. Bougie, T. Onishi, and Y. Tsuruoka, “Interpretable Imitation Learning with

Symbolic Rewards,” ACM Trans Intell Syst Technol, vol. 15, no. 1, Dec. 2023, doi:

10.1145/3627822.

[75] W. Liu, D. Li, E. Aasi, R. Tron, and C. Belta, “Interpretable Generative Adversarial

Imitation Learning,” Proc Mach Learn Res, vol. vvv, pp. 1–13, Feb. 2024, Accessed:

Apr. 17, 2024. [Online]. Available: https://arxiv.org/abs/2402.10310v1

[76] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable Reinforcement

Learning through a Causal Lens,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 03, pp. 2493–2500, Apr. 2020, doi:

10.1609/AAAI.V34I03.5631.

[77] Z. Yu, J. Ruan, and D. Xing, “Explainable Reinforcement Learning via a Causal World

Model,” IJCAI International Joint Conference on Artificial Intelligence, vol. 2023-

August, pp. 4540–4548, 2023, doi: 10.24963/IJCAI.2023/505.

[78] T. Zhao et al., “Interpretable Imitation Learning with Dynamic Causal Relations,” in

WSDM ’24: Proceedings of the 17th ACM International Conference on Web Search

and Data Mining, Association for Computing Machinery (ACM), Mar. 2024, pp. 967–

975. doi: 10.1145/3616855.3635827.

[79] Y. Li, J. Song, and S. Ermon, “InfoGAIL: Interpretable Imitation Learning from Visual

Demonstrations,” Adv Neural Inf Process Syst, vol. 30, 2017, Accessed: Apr. 17,

2024. [Online]. Available: https://github.com/ermongroup/InfoGAIL.

112

[80] D. Zhang, Q. Li, Y. Zheng, L. Wei, D. Zhang, and Z. Zhang, “Explainable Hierarchical

Imitation Learning for Robotic Drink Pouring,” IEEE Transactions on Automation

Science and Engineering, vol. 19, no. 4, pp. 3871–3887, Oct. 2022, doi:

10.1109/TASE.2021.3138280.

[81] Y. Tang, D. Nguyen, and D. Ha, “Neuroevolution of Self-Interpretable Agents,”

GECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation

Conference, pp. 414–424, Mar. 2020, doi: 10.1145/3377930.3389847.

[82] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[83] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning

with a General Conditioning Layer,” 32nd AAAI Conference on Artificial Intelligence,

AAAI 2018, pp. 3942–3951, Sep. 2017, doi: 10.1609/aaai.v32i1.11671.

[84] X. Chen et al., “An Empirical Investigation of Representation Learning for Imitation,”

Nov. 11, 2021.

[85] J. Park et al., “Object-Aware Regularization for Addressing Causal Confusion in

Imitation Learning,” Adv Neural Inf Process Syst, vol. 34, pp. 3029–3042, Dec. 2021.

[86] K. Kujanpää, J. Pajarinen, and A. Ilin, “Hierarchical Imitation Learning with Vector

Quantized Models,” in International Conference on Machine Learning, Jan. 2023.

[87] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep Object-Centric Representations

for Generalizable Robot Learning,” Proc IEEE Int Conf Robot Autom, pp. 7111–7118,

Aug. 2017, doi: 10.1109/ICRA.2018.8461196.

[88] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki, “Graph-Structured Visual

Imitation,” Proc Mach Learn Res, vol. 100, pp. 979–989, Jul. 2019, Accessed: Sep.

16, 2024. [Online]. Available: https://arxiv.org/abs/1907.05518v2

[89] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “VIOLA: Imitation Learning for Vision-Based

Manipulation with Object Proposal Priors,” Proc Mach Learn Res, vol. 205, pp. 1199–

1210, Oct. 2022, Accessed: Sep. 16, 2024. [Online]. Available:

https://arxiv.org/abs/2210.11339v2

113

[90] F. Locatello et al., “Object-Centric Learning with Slot Attention,” Adv Neural Inf

Process Syst, vol. 33, pp. 11525–11538, 2020, Accessed: Sep. 16, 2024. [Online].

Available: https://github.com/google-research/

[91] Y. Zhang, D. W. Zhang, S. Lacoste-Julien, G. J. Burghouts, and C. G. M. Snoek,

“Unlocking Slot Attention by Changing Optimal Transport Costs,” Proc Mach Learn

Res, vol. 202, pp. 41931–41951, Jan. 2023, Accessed: Sep. 16, 2024. [Online].

Available: https://arxiv.org/abs/2301.13197v2

[92] A. Porichis, K. Vasios, M. Iglezou, V. Mohan, and P. Chatzakos, “Visual Imitation

Learning for robotic fresh mushroom harvesting,” 2023 31st Mediterranean

Conference on Control and Automation, MED 2023, pp. 535–540, 2023, doi:

10.1109/MED59994.2023.10185745.

[93] G. E. Uhlenbeck and L. S. Ornstein, “On the Theory of the Brownian Motion,”

Physical Review, vol. 36, no. 5, p. 823, Sep. 1930, doi: 10.1103/PhysRev.36.823.

[94] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 4th

International Conference on Learning Representations, ICLR 2016 - Conference Track

Proceedings, Sep. 2015.

[95] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes”.

[96] X. Chen et al., “An Empirical Investigation of Representation Learning for Imitation,”

Nov. 11, 2021.

[97] E. Coumans and Bai Yunfei, “Pybullet, a python module for physics simulation for

games, robotics and machine learning.” Accessed: Feb. 15, 2023. [Online]. Available:

https://pybullet.org/wordpress/

[98] M. Breyer, E. Zürich, J. J. Chung, L. Ott, R. Siegwart, and J. Nieto, “Volumetric

Grasping Network: Real-time 6 DOF Grasp Detection in Clutter,” in Proceedings of

the 2020 Conference on Robot Learning, PMLR, Oct. 2021, pp. 1602–1611.

[99] J. Bohdziewicz, G. Czachor, and P. Grzemski, “Anisotropy of mechanical properties

of mushrooms (Agaricus bisporus (J.E. Lange) Imbach),” Inżynieria Rolnicza, vol. R.

17, nr, no. 148, pp. 15–23, 2013.

114

[100] J. Hua, L. Zeng, G. Li, and Z. Ju, “Learning for a Robot: Deep Reinforcement Learning,

Imitation Learning, Transfer Learning,” Sensors 2021, Vol. 21, Page 1278, vol. 21,

no. 4, p. 1278, Feb. 2021, doi: 10.3390/S21041278.

[101] A. Kumar, J. Hong, A. Singh, and S. Levine, “When Should We Prefer Offline

Reinforcement Learning Over Behavioral Cloning?,” ICLR 2022 - 10th International

Conference on Learning Representations, Apr. 2022, Accessed: Jan. 19, 2025.

[Online]. Available: https://arxiv.org/abs/2204.05618v1

[102] A. Porichis, K. Vasios, M. Iglezou, V. Mohan, and P. Chatzakos, “Visual Imitation

Learning for robotic fresh mushroom harvesting,” 2023 31st Mediterranean

Conference on Control and Automation, MED 2023, pp. 535–540, 2023, doi:

10.1109/MED59994.2023.10185745.

[103] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-generation

Hyperparameter Optimization Framework,” Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631,

Jul. 2019, doi: 10.1145/3292500.3330701.

[104] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[105] S. K. Saksena, B. Navaneethkrishnan, S. Hegde, P. Raja, and R. M. Vishwanath,

“Towards Behavioural Cloning for Autonomous Driving,” Proceedings - 3rd IEEE

International Conference on Robotic Computing, IRC 2019, pp. 560–567, Mar. 2019,

doi: 10.1109/IRC.2019.00115.

[106] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep

Learning,” J Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi: 10.1186/S40537-019-

0197-0/FIGURES/33.

[107] R. Alghonaim and E. Johns, “Benchmarking Domain Randomisation for Visual Sim-

To-Real Transfer,” Proc IEEE Int Conf Robot Autom, vol. 2021-May, pp. 12802–

12808, 2021, doi: 10.1109/ICRA48506.2021.9561134.

115

[108] S. A. Mehta, Y. U. Ciftci, B. Ramachandran, S. Bansal, and D. P. Losey, “Stable-BC:

Controlling Covariate Shift with Stable Behavior Cloning,” Aug. 2024, Accessed: Jan.

27, 2025. [Online]. Available: https://arxiv.org/abs/2408.06246v1

[109] A. Porichis, M. Inglezou, N. Kegkeroglou, V. Mohan, and P. Chatzakos, “Imitation

Learning from a Single Demonstration Leveraging Vector Quantization for Robotic

Harvesting,” Robotics, vol. 13, no. 7, p. 98, Jul. 2024, doi:

10.3390/ROBOTICS13070098/S1.

[110] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput, vol.

9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735.

[111] P. Mavridis, N. Mavrikis, A. Mastrogeorgiou, and P. Chatzakos, “Low-cost, accurate

robotic harvesting system for existing mushroom farms,” IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, AIM, vol. 2023-June, pp. 144–

149, 2023, doi: 10.1109/AIM46323.2023.10196219.

[112] N. Pagliarani, G. Picardi, R. Pathan, A. Uccello, H. Grogan, and M. Cianchetti,

“Towards a Bioinspired Soft Robotic Gripper for Gentle Manipulation of

Mushrooms,” 2023 IEEE International Workshop on Metrology for Agriculture and

Forestry, MetroAgriFor 2023 - Proceedings, pp. 170–175, 2023, doi:

10.1109/METROAGRIFOR58484.2023.10424253.

[113] G. Jocher et al., “ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance

Segmentation,” Nov. 2022, Zenodo. doi: 10.5281/zenodo.7347926.

[114] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-Actor: A Multi-Task Transformer for

Robotic Manipulation,” in Proceedings of the 6th Conference on Robot Learning

(CoRL), Sep. 2022. doi: 10.48550/arxiv.2209.05451.

[115] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine

Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008, Accessed: Apr. 30, 2024.

[Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html

[116] B. Jamil, G. Yoo, Y. Choi, and H. Rodrigue, “Proprioceptive Soft Pneumatic Gripper

for Extreme Environments Using Hybrid Optical Fibers,” IEEE Robot Autom Lett, vol.

6, no. 4, pp. 8694–8701, Oct. 2021, doi: 10.1109/LRA.2021.3111038.

116

[117] H. Godaba, I. Vitanov, F. Aljaber, A. Ataka, and K. Althoefer, “A bending sensor

insensitive to pressure: Soft proprioception based on abraded optical fibres,” 2020

3rd IEEE International Conference on Soft Robotics, RoboSoft 2020, pp. 104–109,

May 2020, doi: 10.1109/ROBOSOFT48309.2020.9115984.

[118] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G. Z. Yang, “XAI—Explainable

artificial intelligence,” Sci Robot, vol. 4, no. 37, Dec. 2019, doi:

10.1126/SCIROBOTICS.AAY7120.

[119] H. J. Escalante et al., Eds., “Explainable and Interpretable Models in Computer Vision

and Machine Learning,” 2018, doi: 10.1007/978-3-319-98131-4.

[120] A. Mandlekar et al., “What Matters in Learning from Offline Human Demonstrations

for Robot Manipulation,” Proc Mach Learn Res, vol. 164, pp. 1678–1690, Aug. 2021,

Accessed: Oct. 04, 2024. [Online]. Available: https://arxiv.org/abs/2108.03298v2

[121] M. Cuturi, “Sinkhorn Distances: Lightspeed Computation of Optimal Transport,” Adv

Neural Inf Process Syst, vol. 26, 2013.

[122] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boosting,”

BMVC 2006 - Proceedings of the British Machine Vision Conference 2006, pp. 47–56,

2006, doi: 10.5244/C.20.6.

[123] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source

multi-robot simulator,” 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), vol. 3, pp. 2149–2154, 2004, doi:

10.1109/IROS.2004.1389727.

[124] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki, “Graph-Structured Visual

Imitation,” in Proceedings of the Conference on Robot Learning, PMLR, May 2020,

pp. 979–989. Accessed: Oct. 06, 2024. [Online]. Available:

https://proceedings.mlr.press/v100/sieb20a.html

[125] F. Di Felice, S. D’Avella, A. Remus, P. Tripicchio, and C. A. Avizzano, “One-Shot

Imitation Learning with Graph Neural Networks for Pick-and-Place Manipulation

Tasks,” IEEE Robot Autom Lett, vol. 8, no. 9, pp. 5926–5933, Sep. 2023, doi:

10.1109/LRA.2023.3301234.

117

[126] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models,” Adv Neural Inf Process Syst, vol. 35, Jan. 2022, Accessed: Oct. 06, 2024.

[Online]. Available: https://arxiv.org/abs/2201.11903v6

[127] S. Yao et al., “Tree of Thoughts: Deliberate Problem Solving with Large Language

Models,” Adv Neural Inf Process Syst, vol. 36, May 2023, Accessed: Oct. 06, 2024.

[Online]. Available: https://arxiv.org/abs/2305.10601v2

[128] A. Brohan et al., “RT-2: Vision-Language-Action Models Transfer Web Knowledge to

Robotic Control,” in Proceedings of The 7th Conference on Robot Learning, PMLR,

Dec. 2023, pp. 2165–2183. Accessed: Oct. 07, 2024. [Online]. Available:

https://proceedings.mlr.press/v229/zitkovich23a.html

[129] S. Lubos, T. N. T. Tran, A. Felfernig, S. Polat Erdeniz, and V. M. Le, “LLM-generated

Explanations for Recommender Systems,” UMAP 2024 - Adjunct Proceedings of the

32nd ACM Conference on User Modeling, Adaptation and Personalization, pp. 276–

285, Jun. 2024, doi: 10.1145/3631700.3665185.

