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Abstract—In this paper, we consider the physical layer security
(PLS) problem for integrated sensing and communication (ISAC)
systems in the presence of hybrid-colluding eavesdroppers, where
an active eavesdropper (AE) and a passive eavesdropper (PE)
collude to intercept the confidential information. To ensure the
accuracy of sensing while preventing the eavesdropping, a base
station transmits a signal consisting of information symbols and
sensing waveform, in which the sensing waveform can be also
used as artificial noise to interfere with eavesdroppers. Under this
setup, we propose an alternating optimization-based two stage
scheme (AO-TSS) for improving the sensing and communication
performance. In the first stage, based on the assumptions that
the perfect channel state information (CSI) of the AE and
statistical CSI of the PE are known, the communication and
sensing beamforming problem is formulated with the objective
of minimizing the weighted sum of the beampattern matching
mean squared error (MSE) and cross-correlation, subject to
the secure transmission constraint. To tackle the non-convexity,
we propose a semi-definite relaxation (SDR) algorithm and
a reduced-complexity zero-forcing (ZF) algorithm. Then, the
scenarios are further extended to more general cases with
imperfect AE CSI and unknown PE CSI. To further improve
the communication performance, the second-stage problem is
developed to optimize the secrecy rate threshold under the radar
performance constraint. Finally, numerical results demonstrate
the superiority of the proposed scheme in terms of sensing and
secure communication.

Index Terms—Integrated sensing and communication (ISAC),
physical layer security (PLS), colluding eavesdropping, secrecy
rate, beamforming.
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I. INTRODUCTION

In recent years, integrated sensing and communication
(ISAC) has been widely recognized as an enabling
technology for the next-generation wireless networks [2],
[3], for applications such as autopilot, unmanned aerial
vehicles, and industrial automation [4]. By leveraging
shared spectrum, waveforms, and hardware resources, the
ISAC can considerably improve the spectral and energy
efficiencies. Nevertheless, the repeated use of signals with
information embedded for radar sensing may lead to
information leaks and potential security challenges in ISAC
[6]. The technology of physical layer security (PLS) can
be adopted to tackle the eavesdropping security problem
[7]–[10]. Built upon the theoretical foundation of information
theory [11], PLS considers the physical characteristics of
wireless channels, including time-varying characteristics,
randomness and reciprocity [12]. The PLS elevates the
signal-to-interference-plus-noise ratio (SINR) of target users
whilst suppressing the SINR of eavesdroppers (Eves) through
techniques such as beamforming and artificial noise (AN)
[13]–[15].

In contrast to communication-only scenarios, the detected
targets may play the role of Eves in secure ISAC systems,
leading to more challenging design [16]. In a multi-antenna
system, secure beamforming technology has been proposed
for increasing the difference in the received signal strength
between the legitimate users (LUs) and Eves [17]–[20]. In
addition to sending communication signals, the transmitter
can also send AN to confuse Eves and prevent confidential
information leaks. The authors introduced the AN at the
transmitter and designed the transmit precoding matrix
to minimize the signal-to-noise ratio (SNR) of the Eve
under the SINR constraint of LUs [21]. For the problem
where the degrees of freedom (DoF) for MIMO radar
waveforms is limited by the number of LUs, [22] and
[23] developed separate communication and radar waveform
precoding matrices in scenarios with multiple Eves. Also,
passive reconfigurable intelligent surface (RIS) was introduced
in [24] to assist communication in the ISAC system, and the
SINR of the radar echo signal was optimized by adjusting
the phase shift matrix and beamformer under the SINR
thresholds constraints of the LUs and Eves. An active RIS
was introduced in [25] to perform secondary empowerment for
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signal transmission. In addition, the symbol-level precoding
was applied in [26] to enhance the signal strength at LUs,
while destructive interference is utilized to degrade the
eavesdropping signal strength at Eves.

Most of the previous works on PLS mainly have
focused on passive eavesdroppers (PEs), which silently
eavesdrop on information. When multiple PEs exist, they
may individually decode the confidential information or work
jointly as colluding eavesdroppers [27], [28]. The colluding
eavesdropping case would be more practical [29], [30] and
has not been considered in related ISAC works. In addition,
the active eavesdroppers (AEs), who attempt to eavesdrop
information and deteriorate the reception of LUs, can be
considered in communication scenarios [31], [32]. These
AEs can destroy communication posing a greater threat to a
system than just PEs [33]–[35]. Therefore, in hybrid-colluding
scenarios where AEs cooperate with PEs to eavesdrop on
confidential information, research on the joint design of
information and sensing beamformers is crucial for secure
ISAC systems.

Motivated by the works above, in this paper, we propose
a joint beamforming design scheme for the ISAC systems
in the presence of hybrid-colluding Eves, where one of the
sensing targets as AE colludes with a PE. Realistically, the
AE will send interference signals to LUs, which lead to AE
being discovered by the base station (BS). The PE hides its
position and eavesdrops the confidential information without
emitting signals. Therefore, it is hard for the BS to acquire
the instantaneous channel state information (CSI). As a result,
we take several scenarios into account in our work, including
perfect and imperfect CSI of the AE, statistical and unknown
CSI of the PE, and the efficient secure designs on the hybrid
beamformers within these contexts are necessary. The main
contributions are listed as follows:
• In a more practical secure ISAC system, the BS

transmits a signal consisting of information symbols
and sensing waveform, where the sensing waveform
can be also used as artificial noise to interfere with
Eves, which enables the DoF for MIMO radar waveform
to not be limited by the number of LUs. Under
this setup, an alternating optimization-based two stage
scheme (AO-TSS) is developed for improving the secure
communication performance.

• In the first stage, the information and sensing
beamforming design based on the assumptions
of the perfect AE CSI and statistical PE CSI is
proposed by minimizing the weighted sum of the
beampattern matching mean squared error (MSE) and
cross-correlation. This problem is formulated subject to
the communication quality of service (QoS) requirement
and the PLS constraint. To tackle the non-convexity, we
conceive the semi-definite relaxation (SDR) algorithm
and low-complexity zero-forcing (ZF) algorithm.
Moreover, considering more realistic scenarios, we
further design the beamformers under the case of
imperfect AE CSI and unknown PE CSI.

• In the second stage, to improve the secure performance
under the optimal radar performance, we further

maximize the secrecy rate threshold by performing
optimization on SINR thresholds under fixed
beamformers. Such a non-convex problem is then
solved by the successive convex approximation (SCA)
algorithm.

• The convergence of the proposed AO-TSS can be
guaranteed, and the analysis is conducted. Then,
simulation results are provided to verify the validity of
the proposed AO-TSS. It is shown that employing
the proposed algorithms for designing sensing
and information beamformers maximizes sensing
performance while ensuring secure communication
requirements. Additionally, we confirm that the AO-TSS
offers advantages over the scheme without two stage.

The remainder of this paper is organized as follows:
Section II gives the system model, and Section III
introduces the performance metrics of sensing and secure
communication. Section IV formulates a two-stage problem
for the beamformers and SINR thresholds designs. Simulation
results are presented in Section V. Finally, we provide the
conclusion in Section VI.

Notations: Throughout this paper, vectors and matrices are
denoted by bold lowercase and uppercase letters, respectively.
CM×K denotes the space of M × K matrices with
complex entries. S+M defines the space of M × M positive
semi-definite matrices. IM represents an M × M identity
matrix. For a square matrix A, tr(A) indicates its trace
and A � 0 means that A is positive semi-definite. For
a complex matrix B, rank(B), BT, BH equal its rank,
transpose, conjugate transpose, respectively. E(·) stands for
the stochastic expectation, and CN (x,Y) determines the
circularly symmetric complex Gaussian (CSCG) random
distribution with mean vector x and covariance matrix Y.

II. SYSTEM MODEL

Fig. 1 presents a secure ISAC system, which consists
of a half-duplex BS equipped with M antennas in a fully
digital array, K single-antenna LUs and Q sensing targets in
the presence of colluding Eves. The BS communicates with
users and detects targets simultaneously. We consider Eves
collusion, where a full-duplex AE and a PE work jointly to
decode the confidential information. More specifically, the AE
as a target eavesdrops the information while actively emitting
jamming signals to compromise the links between the BS
and the LUs, and the PE just eavesdrops the confidential
information in the system. Let K = {1, ...,K} denote the
set of LUs, and let Q = {1, ..., Q} denote the set of sensing
targets, the Q-th target is assumed to be the AE.

The discrete-time transmitted signal1 at time slot n is given
by [36]

x(n) = Wss(n) + Wcc(n), for n = 1, ..., N, (1)

1The transmitted signal is composed of communication symbols and
sensing signal. For the communication function, the communication signal
carries information, while the sensing signal serves as artificial noise to
enhance secure communication performance by confusing eavesdroppers. For
the radar function, x(n) is utilized for target detection.
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Fig. 1. The ISAC system model of the secure beamforming with
hybrid-colluding eavesdroppers.

where Ws ∈ CM×M is the sensing beamforming matrix,
s (n) = [s1 (n) , . . . , sM (n)]

T represents the sensing signal,
with E{s(n)sH(n)} = IM , and Wc = [w1,w2, . . . ,wK ] ∈
CM×K indicates the beamforming matrix for message c (n) =
[c1 (n) , . . . , cK (n)]

T, with E{c(n)cH(n)} = IK . N is the
total number of symbols. We assume that s (n) and c (n)
are statistically independent, and abbreviate s (n) and c (n)
as s and c, respectively. Then, the covariance matrix of the
transmitted signal can be obtained as

R = E{x(n)xH(n)} = WcW
H
c + WsW

H
s = Rc + Rs,

(2)

where Rc =
∑K
k=1 Rk with Rk = wkw

H
k being the

covariance matrix of the k-th LU, and Rs =
∑K+M
i=K+1 Ri

is the covariance matrix of the sensing waveform.
Then, the received signal yk at the k-th LU can be expressed

as

yk = hH
kWcc + hH

kWss +
√
Paha,ke+ nk, (3)

where hk ∈ CM×1 denotes the channel vector from a BS
to the k-th LU. In addition, we assume that the jamming
signals emitted by AE are noise signals, Pa equals the transmit
jamming power of the AE, ha,k defines the channel from the
AE to the k-th LU, e means the jamming signal emitted from
the AE with E[|e|2] = 1, and nk is the complex additive white
Gaussian noise (AWGN) with zero mean and variance σ2

c .
For the sensing operation, we consider the Saleh-Valenzuela

geometric model [38], which can accurately capture the
geometric features in sparse channels. Then, the signal
received at the Q-th target (i.e., AE) is

yQ = βQaH(θQ)Wcc + βQaH(θQ)Wss + ns, (4)

where βQ represents the path loss factor, a(θQ) indicates the
steering vector of the transmit antenna array, and ns denotes
the complex AWGN with zero mean and variance σ2

s . More

specifically, for the AE, we consider the worst case that the
self-interference can be eliminated perfectly [39]. Thus the
interference will not affect the received signal yQ at the AE.

Since the PE keeps silent to hide its existence, it is hard for
the BS to acquire the instantaneous CSI. Hence, for practical
implementation, we assume that only the statistical CSI of the
PE is available, which is a generic assumption and has been
adopted in most of the works in PLS [40]–[45]. Moreover, we
assume that the jamming signal from AE can be eliminated
at PE through cooperation relationship [46]. Then, the signal
received at the PE is given by

yp = hH
pWcc + hH

pWss + np, (5)

where hp ∈ CM×1 stands for the channel vector from the BS
to the PE, and np equals the complex AWGN at the PE with
zero mean and variance σ2

p.

III. PERFORMANCE METRICS OF SENSING AND
COMMUNICATION

In this section, we introduce the sensing performance metric
and give a review of the secrecy rate as the communication
performance metric for the considered system.

A. Sensing Performance Metric

As the sensing performance metric, we consider the
weighted sum of the beampattern MSE and cross-correlation.
The beampattern MSE allows us to concentrate the signal
power and maintain a low sidelobe level [47], and the
cross-correlation is adopted to enhance the resolution
capability of the radar system for multiple targets [48]. First,
the transmit beampattern at the angle θ is defined as

P (θ;R)=aH(θ)Ra(θ). (6)

Then, the beampattern MSE which measures the difference
between the actual transmit beampattern P (θl;R) in the
angular domain and the ideal beampattern gain Φ(θl) at θl
is defined by

Lb(R, δ1) =
1

L

L∑
l=1

∣∣δ1Φ(θ̄l)− P (θ̄l;R)
∣∣2, (7)

where δ1 is a scaling factor to be optimized, and {θ̄l}Ll=1

denotes the L sampled angle grids covering the detection
angular range in [−π/2, π/2].

Furthermore, the cross-correlation between the transmitted
signal at any two target directions θ1 and θ2 is expected to
be small, such that the radar system can perform adaptive
localization, i.e.,

Pc(θ1, θ2;R)=aH(θ1)Ra(θ2). (8)

Then, to improve the resolution capability of the radar system,
the mean-squared cross-correlation is computed as

Lc(R)=
2

Q2 −Q
Q−1∑
p=1

Q∑
q=p+1

∣∣aH(θp)Ra(θq)
∣∣2, (9)

where ΩT = {θq}Qq=1 represent the given directions of the
targets.
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Consequently, similar to the approach in [49], as the
sensing performance metric, we adopt the weighted sum of
the beampattern MSE and cross-correlation as

L(R, δ1) = Lc(R) + δ2Lb(R, δ1), (10)

where δ2 ∈ [0, 1] is the weighting factor. As δ2 is close to 1,
the system mainly focuses on the optimization of the quality
of beampattern matching. On the contrary, for a small δ2, the
system tends to optimize the cross-correlation. In practice,
we can determine the specific value of δ2 according to the
system requirements. From (10), the sensing performance
objective is closely related to the covariance matrix R of the
transmitted signal.

B. Communication Performance Metrics

For the LUs, according to (3), the average SINR of the k-th
LU (k ∈ K) is written as

γu,k =
hH
kRkhk

hH
k (R−Rk)hk + Pa|ha,k |2 + σ2

c

, (11)

where hH
k (R−Rk)hk represents the radar and multi-user

interference (MUI). Then, the corresponding achievable rate
of the k -th LU can be expressed as

Ru,k = log2(1 + γu,k). (12)

For the AE and PE, we assume that all the information for
the K LUs is the desired. Then, according to (4), the received
SINR of the AE is given by [50], [51]

γa =
|βQ |2aH(θQ)Rca(θQ)

|βQ |2aH(θQ)Rsa(θQ) + σ2
s

. (13)

In practice, since the AE is one of targets in the ISAC
system, we assume that the BS can acquire perfect CSI of the
AE. However, for the PE, we only know its statistical CSI.
Then, from (5), the received SINR of the PE is obtained by

γp=
hH
pRchp

hH
pRshp + σ2

p

. (14)

Further, when the single-antenna AE and PE cooperate, they
can be seen as one Eve with multiple antennas, which could
enhance the eavesdropping capability. By performing maximal
ratio combining, the SINR of AE and PE can be summed up
[52]. Then, the achievable rate of Eve is expressed as

Re = log2(1 + γa + γp). (15)

Therefore, the secrecy rate is defined as [53]

Cs = min
k∈K

(Ru,k −Re)
+, (16)

where (x)+ = max{0, x}. As a fairness performance
metric, the secrecy rate Cs guarantees that each LU can
obtain satisfactory security [54], and quantifies the maximum
achievable data rate for reliably transmitting confidential
messages from the BS to LUs, ensuring that Eves cannot
intercept confidential messages, even if they possess infinite
computational power to intercept the signals.

IV. THE BEAMFORMING DESIGN FOR
HYBRID-COLLUDING EAVESDROPPERS

In this section, we propose the AO-TSS to maximize the
sensing and communication performance. By obtaining the
information and sensing beamforming matrices with a given
communication SINR thresholds, the first-stage problem based
on the assumptions of the perfect AE CSI and statistical PE
CSI is to minimize the difference between the desired transmit
beampattern and the actual beampattern. Subsequently, we
design the secure ISAC waveforms under scenarios where the
AE CSI is imperfectly known and the PE CSI is unknown.
Then, under the condition of the known transmit beamforming
matrices, the second-stage problem maximizes the secrecy rate
by adjusting the communication SINR thresholds of LUs, AE
and PE. The optimization problems of these two stages are
optimized alternately until convergence.

A. Transmit Beamforming Design with perfect AE CSI and
statistical PE CSI

We jointly optimize the transmit information covariance
matrix Rk (k ∈ K) and the sensing covariance matrix
Rs, with the objective of minimizing the weighted sum of
the beampattern MSE and cross-correlation, subject to the
communication QoS requirement of each LU, PLS level
constraints as well as the transmit power budget constraint.
Accordingly, the optimization problem can be formulated as

P1 : min
{Rk},R,δ1

L(R, δ1) (17a)

s.t. γu,k ≥ εu,k,∀k, (17b)
γa ≤ εa, (17c)
Pr (γp ≤ εp) ≥ τ , (17d)
tr(R)=P0, (17e)

Rk ∈ S+M , rank(Rk) = 1,∀k, (17f)

Rs ∈ S+M , δ1 ≥ 0, (17g)

where the constraint (17b) ensures the reliability of
communication services for LUs, εu,k represents the SINR
threshold of the k-th LU, and P0 is the power budget. For
secure communication, the constraint (17c) requires that the
received SINR of the AE should be less than the threshold εa.
The constraint (17d) sets the minimum outage requirement for
the PE. Specifically, the received SINR of the PE is required
to be smaller than the threshold εp with at least probability τ .
(17f) and (17g) require that the covariance matrices of each
LU and sensing waveform are positive semi-definite, and the
rank of the covariance matrix for each LU is 1.
Remark 1. It is worth noting that the proposed design can be
applied to more scenarios, including those with only PE or
only AE. Specifically, in this scenario, without AE, we just
need to remove the SINR constraint (17c) related to the AE
in P1. Additionally, without PE, we just need to remove the
minimum outage requirement (17d) for the PE in P1.

Here, the probabilistic constraint (17d) involves the
non-convex optimization variables. To make the problem
tractable, we convert (17d) to a convex constraint according
to the following Lemma.
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Lemma 1 : Let us assume that the channel of the PE
is modeled as independent and identical distributed (i.i.d.)
Rayleigh variables as hp = [hp,1, ..., hp,M ]T ∼ CN (0, cIM ).
Then the probabilistic constraint (17d) is conservatively
transformed as

λmax (Rc − εpRs) ≤ Φ−1M (1− τ)
εpσ

2
p

c
, (18)

where Φ−1M (·) denotes the inverse cumulative distribution
function (CDF) of an inverse central chi-square random
variable with 2M DoF.

Proof: Please refer to Appendix A.
For the constraints (17b)−(17d), which involve intricate

fractional operations, we employ straightforward mathematical
transformations to simplify these three constraints as(

1 +
1

εu,k

)
hH
kRkhk ≥ hH

kRhk + Pa|ha,k|2 + σ2
c ,∀k,

(19)

(
1 +

1

εa

)
aH(θQ)Rca(θQ) ≤ aH(θQ)Ra(θQ) +

σ2
s

|βQ|2
,

(20)

λmax ((1 + εp)Rc − εpR) ≤ Φ−1M (1− τ) εpσ
2
p. (21)

It can be observed that (19)−(21) are convex affine constraints.
Accordingly, the optimization problem is reformulated as

P2 : min
{Rk},R,δ1

L(R, δ1)

s.t. (19)− (21),
tr(R)=P0,
Rk ∈ S+M , rank(Rk) = 1,∀k,
Rs ∈ S+M ,
δ1 ≥ 0.

(22)

Still problem P2 is non-convex. To solve this, we present
the following two algorithms.

1) SDR algorithm: we initially obtain the optimal solution
Ξ̂ = {R̂k} without considering the rank-1 constraint. Then
we restore the solution Ξ̃ = {R̃k} that satisfies the rank-1
condition from Ξ̂. Neglecting the rank-1 constraint in P2, we
formulate a convex relaxation problem as

P3 : min
{Rk},R,δ1

L(R, δ1)

s.t. (19)− (21),
tr(R)=P0,
Rk ∈ S+M ,∀k,
Rs ∈ S+M ,
δ1 ≥ 0.

(23)

Here P3 is a standard quadratic semi-definite program (QSDP)
problem, and the optimal solution Ξ̂ can be obtained by
a standard convex optimization toolbox such as CVX [55].
If R̂k is not rank-1, the following proposition addresses
that the optimal solutions R̃k to P2 can be calculated and
approximated.

Proposition 1: Based on the obtained optimal solution Ξ̂ to
the QSDP problem P3, we can always construct the optimal

solution Ξ̃ with rank 1 to the original non-convex problem P2
as

w̃k =
(
hH
k R̂khk

)−1/2
R̂khk, (24)

and

R̃k = w̃kw̃
H
k . (25)

Proof: Please refer to Appendix B.
Proposition 1 validates the solution R̃ and {w̃k}k∈K to P2

obtained by the SDR algorithm are tight. Therefore, we can
obtain the global optimum for ISAC secure transmission by
the proposed SDR algorithm.

2) Low complexity ZF algorithm: The computational
burden to solve P3 with the SDR algorithm arises
from the presence of multiple semi-definite constraints.
Furthermore, the number of semi-definite constraints increases
with LUs. Taking this into consideration, we propose
a reduced-complexity ZF algorithm. The ZF constraints
encompass both communication and radar. Under the condition
of zero communication MUI, Wc should satisfy

HuWc = diag(
√
ρ1, ...,

√
ρK), (26)

where Hu = [h1, ...,hK ]
H ∈ CK×M denotes the channel

matrix from the BS to LUs, ρk represents the required transmit
power for sending information to the k-th LU. Similarly,
under the condition of zero radar interference, the sensing
beamforming matrix Ws should meet

HuWs = 0K×M . (27)

Accordingly, we have

HuRHH
u = HuRcH

H
u + HuRsH

H
u = diag (ρ1, ..., ρK) ,

(28)

and

HuRsH
H
u = HuWsW

H
s H

H
u = 0. (29)

After imposing the ZF constraints, the individual matrix
variable Rk can be removed from the SINR constraints of
LUs. Then, (19) can be reformulated as

ρk ≥ εu,k
(
Pa|ha,k|2 + σ2

c

)
. (30)

It can be seen that the covariance matrix constraint of each
LU is converted to the transmit power constraint. Finally, the
problem can be rewritten as

P4 : min
Rc,R,ρ,δ1

L(R, δ1)

s.t. (20), (21), (30),
HuRcH

H
u = diag (ρ1, ..., ρK),

Hu(R−Rc)H
H
u = 0,

Rc ∈ S+M ,Rs ∈ S+M ,
δ1 ≥ 0.

(31)

Obviously, P4 is a QSDP problem, which can be solved by
CVX. Therefore, next we need to recover the beamforming
matrix W̃c from the optimal solutions R̃ and R̃c.

Inspired by [36], we propose the following processes to
construct the sensing covariance matrix and communication
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beamforming matrices. First, exploiting the properties
of semi-definite matrices, we consider the Cholesky
decomposition of R̃c as

R̃c = DDH, (32)

where D ∈ CM×M is a lower triangular matrix. Then, we
perform QR decomposition for HuD ∈ CK×M as

HuD =

 U1

[
BU

0(K−M)×M

]
, if K ≥M[

BL,0K×(M−K)

]
U2, if K < M

, (33)

where U1 ∈ CK×K and U2 ∈ CM×M are unitary matrices,
BU ∈ CM×M represents an upper triangular matrix, and BL ∈
CK×M indicates a lower triangular matrix. For simplicity, we
only consider the case of K < M . the case of K ≥M can be
obtained by using the same method. Denoting UH

2 =
[
Ũ, Û

]
,

where Ũ is the matrix composed of the first K columns of
UH

2 , the communication beamforming matrix can be expressed
as

W̃c = DŨ. (34)

Besides, the radar covariance matrix can be obtained as

W̃sW̃
H
s = R̃− W̃cW̃

H
c . (35)

Next, we will analyze the feasibility and effectiveness of
the proposed beamforming design method by introducing the
following proposition.

Proposition 2: With the optimal solutions R̃ and R̃c of
problem P4, W̃c and W̃s computed in (34) and (35) are also
the optimal beamforming matrices of P4, and satisfy the ZF
constraints.
Proof: Please refer to Appendix C.

Proposition 2 illustrates that R̃ is the global optimum to
P4, and W̃c obtained by the ZF algorithm is also globally
optimal to P4. The detailed procedures of ZF algorithm are
summarized in Algorithm 1.

Algorithm 1 Solving the beamforming problem P4 via ZF

1. Based on (28) and (29), transform (19) into (30).
2. Construct the optimization problem P4.
3. Compute the optimal solution of P4 via CVX.
4. Compute the Cholesky decomposition of R̃c.
5. Compute w̃1, ..., w̃K by (34).

3) Complexity analysis: We analyze the worst-case
computational complexity of the SDR and ZF algorithms
via the interior-point method [56]. The primary computation
burden of these two algorithms originates from solving the
QSDP problems P3 and P4. Specifically, P3 is a convex
problem with φ1 = (K + 1)M2 + 1 optimization variables,
(K + 4) affine constraints and (K + 1) linear matrix
inequality (LMI) constraints. The number of iterations in the
interior-point method equals I1 = O(

√
M(K + 1) ln(1/ε)),

where ε represents the accuracy of the tolerable maximum
duality gap to guarantee the optimality. Then, the cost
per-iteration equals O(φ1((K + 1)M3 + φ1(K + 1)M2 +
φ21)). Finally, the total computational complexity becomes
O(
√
M(K + 1) ln(1/ε)φ1((K+1)M3+φ1(K+1)M2+φ21)).

Similarly, the number of optimization variables φ2 in P4 is
2M2 + 2, and P4 involves 2KM + K + 3 affine constraints
and 2 LMI constraints with size M . The number of iterations
in the interior-point method equals I2 = O(

√
2M ln(1/ε)).

Then, the cost per-iteration is O(φ2(2M3 + 2φ2M
2 +

φ22)). Finally, the total computational complexity becomes
O(
√

2M ln(1/ε)φ2(2M3 + 2φ2M
2 + φ22)).

The computational complexity of these algorithms is listed
in Table I. From Table I, we observe that the complexity of the
SDR algorithm increases with the number of LUs due to the
semi-definite programs associated with communication SINR
constraints. In contrast to the SDR, the number of variable
elements and LMI constraints is significantly lowers in the
ZF algorithm. Moreover, the complexity of the ZF algorithm
does not increase with the number of LUs. Therefore, the ZF
algorithm may be more suitable for large-scale systems.

TABLE I
COMPUTATIONAL COMPLEXITY FOR THE SDR AND ZF ALGORITHMS

Algorithm Computational complexity

SDR O(I1φ1((K + 1)M3 + φ1(K + 1)M2 + φ21))

ZF O(I2φ2(2M3 + 2φ2M2 + φ22))

B. Beamforming Design with Imperfect AE CSI and Unknown
PE CSI

Considering complex real-world issues such as clutter
interference and the hidden characteristic of PE, obtaining
perfect CSI of AE and statistical CSI of PE may be
challenging. Thus, for the AE (the Q-th target), we assume
that the direction of the Q-th target is approximately known
by the BS within an angular interval of [θQ −∆, θQ + ∆]
[57], where ∆ represents the associated angle uncertainty.
Furthermore, for the PE, we consider a scenario where CSI
of the PE is unknown. In this scenario, we aim to design a
relaxed beamforming scheme to ensure secure transmission.

1) Design with uncertainty in the direction of AE: The
direction uncertainty of the AE affects both the sensing
performance and the PLS constraint of AE in P2. To
improve the sensing performance, taking into account angular
uncertainty, the BS should form wide main-lobe to encompass
all potential directions of the AE by broadening the beamwidth
of the ideal beampattern Φ(θl) in (7). Moreover, for the secure
communication, since the AE may be located in any direction
θ̂Q within the angular interval, we need to ensure a satisfactory
secrecy rate for every potential direction. Consequently, the
SINR constraint (17c) should be modified according to

|βQ|2aH(θ̂Q)Rca(θ̂Q)

|βQ|2aH(θ̂Q)Rsa(θ̂Q) + σ2
s

≤ εa,∀θ̂Q ∈ [θQ −∆, θQ + ∆] .

(36)

It can be observed that the angular uncertainty introduces more
constraints similar to (17c) over the associated angular interval.
Obviously, the SDR and ZF algorithms are also capable of
handling the modified constraints (36).
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2) Design with unknown PE CSI: In practice, the BS may
be unaware of the existence of PE, resulting in the inability to
acquire its CSI knowledge. In such case, we try to guarantee
the secure performance by limiting the SINR of PE in each
possible direction θ̂p [58]. Let Ω̄P be the grid sampled in the
range of possible PE directions which satisfies Ω̄P ∩ΩT = ∅.
Consequently, the secure outage constraint (17d) should be
modified as

|βp|2aH(θ̂p)Rca(θ̂p)

|βp|2aH(θ̂p)Rsa(θ̂p) + σ2
p

≤ εp,∀θ̂p ∈ Ω̄P. (37)

Similarly, (37) can also be handled by the SDR/ZF algorithm.

In terms of the computational complexity, compared to
the beamforming design in Subsection VI-A, the designs
in the relaxed cases involve adding NA and NP LMI
constraints with size M , respectively, where NA and
NP represent the number of the AE SINR constraints
(36) and the PE SINR constraints (37), respectively.
Moreover, the number of iterations for the SDR algorithm
in these cases equals I3 = O(

√
M(K +NA) ln(1/ε))

and I4 = O(
√
M(K +NP + 1) ln(1/ε)), respectively.

When using the ZF algorithm, the number of
iterations is I5 = O(

√
M(1 +NA) ln(1/ε)) and

I6 = O(
√
M(2 +NP) ln(1/ε)). Subsequently, the increased

computational complexity is listed in Table II.

TABLE II
ADDITIONAL COMPUTATIONAL COMPLEXITY UNDER THE RELAXED

TWO CASES

AE PE

SDR O
(
φ1NAM

2 (I3M + 1)
)

O
(
φ1NPM

2 (I4M + 1)
)

ZF O
(
φ2NAM

2 (I5M + 1)
)

O
(
φ2NPM

2 (I6M + 1)
)

C. Secrecy Rate Maximization

So far, we have derived the optimal covariance matrix R̃ and
beamforming matrix W̃c for the transmitted signal under fixed
SINR thresholds. It can be observed that the secrecy rate is not
maximized. Subsequently, we need to individually adjust each
SINR threshold to enhance secure performance under fixed
R̃ and W̃c. Therefore, according to (16), the optimization
objective for the second-stage problem can be formulated as

max
{εu,k},εa,εp

min
k

log2(1 + εu,k)− log2(1 + εa + εp). (38)

To ensure the secure performance, we add QoS constraint (19)
and PLS constraints ((20), (21)) to restrict the range of SINR
thresholds, where R̃ and W̃c are given. And we construct the

second-stage optimization problem as

P5 : max
{εu,k},εa,εp

min
k

log2(1 + εu,k)− log2(1 + εa + εp)

(39a)

s.t. (1 + 1/εu,k)hH
k R̃khk ≥ hH

k R̃hk + Pa|ha,k |2 + σ2
c ,∀k,

(39b)

(1 + 1/εa)aH(θQ)R̃ca(θQ) ≤ aH(θQ)R̃a(θQ) +
σ2
s

|βQ |2
,

(39c)

λmax

(
(1 + εp) R̃c − εpR̃

)
≤ Φ−1M (1− τ) εpσ

2
p.

(39d)

The optimization problem is non-convex due to the second
term in the objective. By introducing an auxiliary variable εe =
εa+εp and exploiting the first-order Taylor expansion at point
ε
(r)
e , which is the optimal value of εe at the r-th iteration, we

have

log2(1 + εe) ≤ log2(1 + ε(r)e ) +
1

(1 + ε
(r)
e ) ln 2

(εe − ε(r)e ).

(40)

Thus, P5 can be approximated by

P6 : max
{εu,k},εa,εp,εe

min
k

log2(1 + εu,k)− εe
(1+ε

(r)
e ) ln 2

s.t. (39b)− (39d),
εe = εa + εp.

(41)

Then, by introducing a variable ω, P6 is reformulated as

P7 : max
{εu,k},εa,εp,εe,ω

ω

s.t. log2(1 + εu,k)− εe
(1+ε

(r)
e ) ln 2

≥ ω,∀k,
(39b)− (39d),
εe = εa + εp.

(42)

P7 is now convex and can be efficiently solved by the CVX
toolbox.

We can observe that P7 just involves 2K + 3 affine
constraints and the total computational complexity equals
O(
√

2K ln 1
εφ3(2K(φ3 + 1) + φ23)), where φ3 = K + 4

represents the number of optimization variables. Obviously,
in the optimization process of the two-stage problem, the
computational complexity of the second-stage problem solved
is much lower than that of the first-stage problem solved by
the SDR/ZF algorithm.

The proposed AO-TSS is presented in Algorithm 2, where
the first and second stage correspond to steps 4-5 and steps
6-12, respectively.

D. Convergence Analysis of the AO-TSS

In the following, we analyze the convergence of Algorithm
2 including a two-stage optimization. For the first stage,
i.e., step 4 to step 5 in Algorithm 2, under the fixed
SINR thresholds ({εu,k} , εa, εp), we can obtain the optimal
beamformers R̃ and {w̃k}k∈K by using the SDR/ZF
algorithm. In the r1-th iteration, although the SINR thresholds
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Algorithm 2 The proposed AO-TSS

Initialization:
{
εu,k

}
, εa, εp, ι1, ι2.

1. Set r1 ← 0.
2. repeat
3. r1 ← r1 + 1

4. Obtain
(
R̃(r1),

{
w̃

(r1)
k

}
k∈K

)
via the SDR/ZF algorithm.

5. Update
(
R̃, {w̃k}k∈K

)
←
(
R̃(r1),

{
w̃

(r1)
k

}
k∈K

)
.

6. Set r2 ← 0.
7. repeat
8. r2 ← r2 + 1
9. Transform the non-convex problem P5 into P7.
10. Compute the optimal solution of P7 via CVX.
11. Update ε(r2)e by solving P7 with ε(r2+1)

e .
12. until

∣∣∣ε(r2+1)
e − ε(r2)e

∣∣∣ ≤ ι2.

13. Update
({
εu,k

}
, εa, εp

)
←
({
ε
(r2+1)
u,k

}
, ε

(r2+1)
a , ε

(r2+1)
p

)
.

14. Compute C(r1)
s = min

k
log2

(
1 + εu,k

)
− log 2 (1 + εa + εp).

15. until
∣∣∣C(r1+1)

s − C(r1)
s

∣∣∣ ≤ ι1.

Output:
(
R̃, {w̃k}k∈K,

{
εu,k

}
, εa, εp

)
.

{
ε
(r1−1)
u,k

}
, ε(r1−1)a , ε(r1−1)p influence the size of the feasible

region of the first-stage optimization problem, R̃(r1−1) and{
w̃

(r1−1)
k

}
k∈K

are still in the feasible region. In other words,

the optimal objective function value L
(
R(r1), δ

(r1)
1

)
of the

first stage in the r1-th iteration will not exceed that obtained
in the (r1 − 1)-th iteration.

Therefore, the sensing objective function is non-increasing
over iterations as

L
(
R(r1), δ

(r1)
1

)
≤ L

(
R(r1−1), δ

(r1−1)
1

)
. (43)

For the optimization in the second stage including the inner
and outer iteration loop, i.e., step 6 to step 12 in Algorithm
2, the SINR thresholds are designed to maximize the secrecy
rate under the fixed optimal beamformers. In the inner loop,
the optimized secrecy rate satisfies

C(r2)
s ≥ C(r2−1)

s . (44)

For the outer loop, the optimal point sequence({
ε
(r1)
u,k

}
, ε

(r1)
a , ε

(r1)
p

)
always results in a larger

secrecy rate than the previous point sequence({
ε
(r1−1)
u,k

}
, ε

(r1−1)
a , ε

(r1−1)
p

)
. Thus, we have

C(r1)
s ≥ C(r1−1)

s . (45)

As a result, the objective L (R, δ1) decreases and Cs increases
over iterations. Therefore, we can conclude that Algorithm 2
converges.

V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate
the proposed two-stage optimization problem for the secure
ISAC system. The BS is equipped with a uniform linear array
(ULA), where the number of antennas is M = 10, and the
antenna spacing is half wavelength, with the total transmit
power 1 W. Angles at the radar are uniformly sampled with
the resolution of 1◦ in the range of [−90◦, 90◦]. There are

Q = 4 targets located at angles −60◦, −20◦, 20◦ and 60◦,
among which the target located at 60◦ is identified as AE. We
set the noise power for all LUs and Eves as σ2

c = σ2
s = σ2

p =
0.01 W. The interference power from the AE to LUs is fixed
as 0.01 W. The received SINR threshold of each LU equals
εu = εu,k,∀k. For the PE, the probability parameter τ is set as
0.95. Each element of the k-th channel vector hk is assumed
to obey complex Gaussian distribution, i.e. hk ∼ CN (0, IM ).
The channel from the AE to the k-th LU is modeled as ha,k ∼
CN (0, 1). Additionally, we consider that the PE is located
farther away from the BS than LUs, and the variance of each
entry in hp is 0.001.2

Besides, we compare the proposed algorithms with a
baseline scheme in [23]. The only secure threat in [23] comes
from targets disguised by PEs. As a result, the baseline scheme
is insufficient to resist multiple hybrid-colluding Eves, leading
to a poor secrecy rate. However, under the same resource
settings, it may achieve higher sensing performance.

In the subsequent simulations, we first evaluate the
radar performance under perfect AE CSI and statistical
PE CSI in Subsection V-A and further analyze the radar
performance under relaxed CSI in Subsection V-B. Then, the
communication performance is validated in Subsection V-C.

A. Radar Performance Evaluation under Perfect AE CSI and
Statistical PE CSI

Fig. 2 displays the two-dimensional3 beampatterns of the
proposed SDR and ZF algorithms, in which the SINR
thresholds are set as εu = 16 dB, εa = 2 dB, εp = 2 dB.
The solid circles indicate the target angles, among which
the red one denotes the AE. To reveal more insights, we
also plot waveform diagrams obtained by the baseline. It
is observed that the proposed SDR and ZF algorithms are
capable of forming beampatterns which are close to the
radar-only beampattern. In particular, the mainlobe power of
the ZF beamforming is lower than that of SDR beamforming,
implying the sensing performance loss of ZF beamforming
compared with SDR beamforming. Although the proposed
algorithms impose a slightly performance degradation on the
transmit beampattern compared to the baseline, the secure
communication can still be guaranteed, especially in the
complex hybrid-colluding eavesdropping scenarios.

Fig. 3 plots the sensing performance objective L(R, δ1)
with respect to the SINR threshold of LUs. All simulation
results represent averaged values over 1000 Monte Carlo trials.
In Fig. 3, we can observe that L(R, δ1) of each algorithm
increases with εu, implying that the increased communication
requirements deteriorate the sensing performance. Specifically,
the sensing curve of ZF algorithm experiences a slight
increase. This is because the ZF algorithm can eliminate MUI
and radar interference, resulting in a higher SINR. Moreover,
the SDR algorithm achieves improved sensing performance

2Due to the leakage during the baseband conversion of the received signal,
the PE may be detected and removed by the BS. Thus, the PE may choose a
location far from the BS to reduce the probability of being detected, resulting
in greater signal attenuation compared with LUs.

3The array elements of ULA are uniformly arranged in a straight line, and
the array can adjust the beam direction in a two-dimensional plane.
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Fig. 2. The transmit beampatterns with angles with respect to K = 2,
εu = 16 dB, εa = 2 dB and εp = 2 dB.

compared with the ZF algorithm, and the sensing performances
of the SDR and ZF algorithms tend to become close for a high
εu. In addition, the baseline consistently exhibits a slightly
low L(R, δ1) because it only considers the scenario where the
targets are potential PEs, so that the security of information is
not fully taken into account. Besides, Fig. 3 also demonstrates
the impact of the number of LUs K on sensing performance.
It can be found that the more users the system serves, the
higher L(R, δ1) becomes. Compared with the SINR threshold
of LUs, the number of LUs K has a greater impact on the
sensing performance. This implies that serving more downlink
users is more restrictive than increasing the LU SINR level.

Fig. 3. The sensing objective L(R, δ1) with respect to the SINR threshold of
LUs under different number of LUs K (M = 10, εa = 2 dB and εp = 2 dB).

Fig. 4 plots the sensing performance objective L(R, δ1)
with respect to the SINR threshold of LUs for M = 10 and
16. Similar to Fig. 3, as the SINR threshold increases, the
sensing performance deteriorates. Additionally, the sensing
performance with 16 transmit antennas is better than with 10
antennas.

Fig. 5 presents the sensing performance of the SDR and
ZF algorithms including the beampattern MSE, the weighted
sum L(R, δ1) with respect to the weighting factor δ2. It can

Fig. 4. The sensing objective L(R, δ1) with respect to the SINR threshold
of LUs under different number of transmit antennas M (K = 2, εa = 2 dB
and εp = 2 dB).

be found that with the increase of δ2, the beampattern MSE
increases, while the weighted sum increases first and then
decreases. When δ2 = 0 or δ2 = 0.4, the weighted sum
coincides with beampattern MSE. Besides, no matter what δ2
is, the weighted sum values of the ZF algorithm are higher
than the SDR algorithm. This shows that under the same
simulation conditions, the SDR algorithm can achieve better
sensing performance than the ZF algorithm, although the latter
has the advantage of reducing computational complexity.

Fig. 5. The sensing performance metric with respect to the weighting factor
δ2 (εu = 12 dB, εa = 2 dB, εp = 2 dB).

Furthermore, we also show the actual angle estimation
performance of multiple targets at the BS to validate the
efficiency of our proposed joint transmit beamforming design.
In the simulation, the angles {θq}Qq=1 are estimated based on
the received signals y (n) = Ax (n) + ny via the maximum
likelihood estimation (MLE) technique [60], in which the
target response matrix equals A =

∑Q
q=1 a (θq)a

H (θq).
Specifically, the estimation of the angles is obtained by
maximizing the log-likelihood function tr (PARy), where
PA = A

(
AHA

)−1
AH is the projection operator onto
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the space spanned by the columns of the matrix A, and
Ry = 1

N

∑N
n=1 y (n)yH (n) represents the sample covariance

matrix. Moreover, the angle estimation performance is
evaluated by the root mean squared error (RMSE), defined
as

RMSE =

√
1

Q

∑Q

q=1

(
θ̃q − θq

)2
, (46)

where θ̃q denotes the estimate of θq .
In Fig. 6, the RMSE curves are illustrated for different

SNR at the BS, with N = 100 and 500 Monte Carlo
trials. It is shown that the RMSE decreases with increasing
SNR and the ZF algorithm performs worse than the SDR
algorithm and the baseline, especially in the low SNR region.
Furthermore, we can observe that the baseline obtains slightly
better multi-target angle estimation performance, since the
PLS aspects of confidential information protection is not fully
taken into account in this algorithm.

Fig. 6. RMSE for angle estimation with respect to the received SNR for
sensing.

B. Radar Performance Evaluation under Relaxed CSI
Knowledge

In Fig. 7, we evaluate the impact of the direction
uncertainties on the optimization performance. The SINR
threshold of LUs and the Eves are set to εu = 12 dB,
εa = 2 dB, εp = 2 dB, respectively. “Perfect, ∆ = 0” means
the case of perfect CSI of AE. We can observe that the increase
in uncertainty of the AE introduces additional constraints to
the optimization problem, consequently diminishing sensing
performance. As demonstrated in Fig. 7, the sensing objective
increases with the AE uncertainty interval. In addition, the
performance gaps between the two algorithms notably become
smaller at high LU SINR constraints.

Fig. 8 presents the performance of the proposed joint
transmit beamforming design under different settings of εp
when CSI of PE is unknown. “Statistical, εp = 2 dB” means
the case of the statistical CSI of PE with εp = 2 dB. Not
surprisingly, it can be observed that the sensing performance
degrades significantly due to the anti-eavesdropping design
for multiple angles. Furthermore, as the SINR εp of PE

decreases, the secure performance enhances at the expense of
deteriorating sensing performance.

Fig. 7. The sensing objective L(R, δ1) comparison with different angular
uncertainties of the AE (K = 2, εu = 12 dB, εa = 2 dB, εp = 2 dB).

Fig. 8. The sensing objective L(R, δ1) comparison with unknown CSI of
the PE (K = 2, εu = 12 dB, εa = 2 dB).

C. Secure Communication Performance

We validate the effectiveness of the algorithm for
maximizing the secrecy rate threshold, which is the objective
function of the second-stage problem. The convergence rate is
given in Fig. 9. Obviously, for different system parameters, the
secrecy rate thresholds increase quickly and remain constant,
indicating fast convergence. Furthermore, when the first-stage
problem is solved with the ZF algorithm, the converged
secrecy rate in the second-stage problem is higher than the
SDR algorithm. This is because the interference is eliminated
and the feasible region of the SINR thresholds is extended.

We further plot the average system secrecy rate with respect
to the SINR threshold of LUs in Fig. 10. As we can see, the
average system secrecy rate increases as the SINR threshold
grows, and the proposed two-stage scheme achieves a higher
secrecy rate compared with the scheme without two stage,
especially at low SINR threshold. However, this enhancement
becomes less conspicuous as the threshold increases, primarily
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Fig. 9. The secrecy rate thresholds with respect to the number of iterations
with different SINR thresholds of Eves.

due to the reduction in the feasible region of optimization
variables. Furthermore, due to the elimination of interference,
the ZF algorithm achieves higher average secrecy rates than
the SDR algorithm, while the performance of the SDR and ZF
algorithms tends to become similar at high SINR. Besides, the
secure performance of the baseline is relatively poor, because
it only focuses on the simple eavesdropping scenarios where
the PEs disguise themselves as targets, which is insufficient
for the case of multiple hybrid-colluding Eves.

Fig. 10. The average system secrecy rate with respect to the SINR threshold
of LUs (εa = 2 dB, εp = 2 dB, K = 2).

Table III shows the sensing gaps between the scheme with
and without two stage. It can be seen that under each SINR
threshold, the gaps are negligible. From Fig. 10 and Table III,
we can conclude that the secure communication performance
of the proposed two-stage problem can be improved under the
condition of ensuring the optimal radar performance.

TABLE III
THE SENSING GAPS BETWEEN THE SCHEME WITH AND WITHOUT TWO

STAGE

εu 6 (dB) 10 (dB) 14 (dB)

SDR 3.27× 10−5 7.56× 10−5 9.44× 10−5

ZF 7.99× 10−5 7.65× 10−5 5.02× 10−5

Baseline 4.51× 10−5 3.02× 10−5 7.49× 10−5

VI. CONCLUSION

This paper has studied the PLS problem for ISAC system
that consists of a BS, multiple LUs, an external PE and
multiple sensing targets, where one sensing target is disguised
as the AE. We have considered the case that AE and PE
collude, and proposed the AO-TSS to optimize the system
performance. In the first stage, we have assumed that the
BS could obtain the perfect AE CSI and statistical PE
CSI. Based on this, we have formulated the non-convex
optimization problem to ensure the accuracy of target sensing
and security of information transmission by jointly designing
the information and sensing beamforming, while meeting the
secure communication constraints. Then, we have proposed
the SDR algorithm and reduced complexity ZF algorithm
to solve the non-convex problem. Besides, we have also
designed the beamformers for the cases of imperfect AE
CSI and unknown PE CSI, respectively. Moreover, we have
formulated the second-stage max-min optimization problem
to enhance the system secure performance while ensuring the
radar performance. Finally, the superior performance in the
sensing and secure communication has been illustrated via
extensive numerical results.

APPENDIX A

By exploiting some mathematical manipulations, the
probability in (17d) can be rewritten as

Pr

(
hH
pRchp

hH
pRshp + σ2

p

≤ εp

)
= Pr

(
Tr(HpRc)

Tr(HpRs) + σ2
p

≤ εp
)
,

(47)

where Hp = hH
p hp with hp ∼ CN (0, cIM ). Thus, constraint

(17d) is expressed as

Pr

{
Tr(HpRc)

Tr(HpRs) + σ2
p

≤ εp
}
≥ τ. (48)

Then, (48) can be further expressed as

Pr
{

Tr (Hp (Rc − εpRs)) ≤ εpσ2
p

}
≥ τ. (49)

The probability in (49) cannot be computed directly unless
specific properties of Hp (Rc − εpRs) are satisfied. We then
replace the probability constraint to its upper bound as

Tr(Hp(Rc − εpRs))
(a)

≤
M∑
m=1

λm(Hp)λm(Rc − εpRs)

(b)
= λmax(Hp)λmax(Rc − εpRs)
(c)
= Tr(Hp)λmax(Rc − εpRs),

(50)



12

where λm(·) is the m-th eigenvalue of the matrix, and its orders
are arranged as λmax(·) = λ1(·) ≥ · · · ≥ λM (·). In addition,
(a) is from the properties of positive Hermitian matrix. (b)
and (c) are obtained because Hp is a semi-definite Hermitian
matrix of rank-1. Subsequently, the condition for Rc − εpRs

to be a semi-definite matrix can be omitted. Substituting (50)
into (49), we obtain the inequality as

Pr
{

Tr (Hp (Rc − εpRs)) ≤ εpσ2
p

}
≥ Pr

{
Tr(Hp)λmax(Rc − εpRs) ≤ εpσ2

p

}
.

(51)

Then, we have

Pr

{
Tr(HpRc)

Tr(HpRs) + σ2
p

≤ εp
}

≥ Pr
{

Tr(Hp)λmax(Rc − εpRs) ≤ εpσ2
p

}
≥ τ.

(52)

Next, we introduce
^

Hp =
^

hp

^

h
H

p with
^

hp ∼ CN (0, IM ).
Utilizing the the positive definiteness of the matrix Hp, we
obtain the inequality as

Pr

{
1

Tr(Hp)
≤ λmax(Rc − εpRs)

εpσ2
p

}
≤ 1− τ, (53)

where the trace of Hp can be expanded as

Tr(Hp) = h2p,1 + h2p,2 + · · ·+ h2p,M

= c[
h2p,1
c

+
h2p,2
c

+ · · ·+
h2p,M
c

]

= c(
^

h
2

p,1 +
^

h
2

p,2 + · · ·+
^

h
2

p,M )

= cTr(
^

Hp).

(54)

Thus, (53) can be further converted to

Pr

{
1

Tr(
^

Hp)
≤ cλmax(Rc − εpRs)

εpσ2
p

}
≤ 1− τ. (55)

By applying the lemma in [61, Lemma 1], it follows

λmax(Rc − εpRs) ≤ Φ−1M (1− τ)
εpσ

2
p

c
. (56)

This thus completes the proof.

APPENDIX B

We now prove that Ξ̃ is the globally optimal solution to the
optimization problem P2. Because the optimization objective
L(R, δ1) in (22) is determined by the covariance matrix R
of the transmitted signal, we only need to verify that Ξ̃ is
the viable solution to P3, i.e. Ξ̃ satisfies all the constraints in
P3. Following [36], we know the radar waveform covariance
matrix R̃−

∑K
k=1 R̃k is semi-definite Hermitian matrix, where

R̃ = R̂. Accordingly, we just need to verify the other three
constraints ((19)–(21)).

First, we can derive that

hH
k R̃khk=hH

k w̃kw̃
H
k hk

=hH
k

(
hH
k R̂khk

)−1/2
R̂khk

((
hH
k R̂khk

)−1/2
R̂khk

)H

hk

=
(
hH
k R̂khk

)−1
hH
k R̂khkh

H
k R̂khk

=hH
k R̂khk.

(57)

Utilizing (57) and (19), we obtain the inequality as(
1+

1

εu,k

)
hH
k R̃khk =

(
1+

1

εu,k

)
hH
k R̂khk

≥ hH
k R̂hk + Pa|ha,k|2 + σ2

c

= hH
k R̃hk + Pa|ha,k|2 + σ2

c .

(58)

For the SINR constraint of AE, i.e. (20), it follows

aH(θQ)R̃ka(θQ) =
(
hH
k R̂khk

)−1∣∣∣a(θQ)
H
R̂khk

∣∣∣2
(a)

≤
(
hH
k R̂khk

)−1 (
hH
k R̂khk

)(
a(θQ)

H
R̂ka(θQ)

)
= aH(θQ)R̂ka(θQ),

(59)

where (a) is due to Cauchy-Schwartz inequality [23]. Then,
substituting (59) into (20), we calculate

aH(θQ)R̃a(θQ) +
σ2
s

|βQ|2
= aH(θQ)R̂a(θQ) +

σ2
s

|βQ|2

≥
(

1+
1

εa

)
aH(θQ)

∑K
k=1 R̂ka(θQ)

≥
(

1+
1

εa

)
aH(θQ)

∑K
k=1 R̃ka(θQ).

(60)

Similarly, we need to verify that Ξ̃ satisfies the SINR constraint
of PE, i.e. (18), and can show

hH
p R̃khp = hH

p w̃kw̃
H
k hp

=
(
hH
k R̂khk

)−1
hH
p R̂khkh

H
k R̂khp

=
(
hH
k R̂khk

)−1∣∣∣hH
p R̂khk

∣∣∣2. (61)

By utilizing Cauchy-Schwartz inequality, we can compute∣∣∣hH
p R̂khk

∣∣∣2 ≤ hH
k R̂khkh

H
p R̂khp. (62)

Then, substituting (61) into (18), we have

λmax

(
(1 + εp)

∑K
k=1 R̃k − εpR̃

)
≤ Φ−1M (1− τ) εpσ

2
p.

(63)

This thus completes the proof.

APPENDIX C

The proof process is divided into three parts. In the first part,
we will prove that the radar covariance matrix R̃− W̃cW̃

H
c

is a semi-definite Hermitian matrix, which can be expanded
as

R̃− W̃cW̃
H
c

= R̃− R̃c + R̃c − W̃cW̃
H
c

= R̃− R̃c + D
(
I− ŨŨH

)
DH.

(64)

Here, R̃ − R̃c is semi-definite and it can be decomposed
by the Cholesky decomposition. Since Ũ is the sub-matrix
containing the first K columns of unitary matrix, I− ŨŨH is
a positive semi-definite matrix. Thereby the last term of (64)
is also positive semi-definite.
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In the second part, we aim to prove that W̃c and W̃s satisfy
the ZF constraints. According to ((28), (29)), we compute

HuR̃cH
H
u = HuDDHHH

u = BLB
H
L = diag (ρ1, ..., ρK) .

(65)

Noting that BLB
H
L is the Cholesky decompositions of the

matrix diag (ρ1, ..., ρK), it follows

HuW̃c = HuDŨ=
[
BL,0K×(M−K)

]
U2Ũ= BL. (66)

Thus, HuW̃cW̃
H
c H

H
u = diag (ρ1, ..., ρK) is satisfied.

Moreover, for the sensing beamforming matrix, we arrive at

HuW̃sW̃
H
s H

H
u = Hu

(
R̃− W̃cW̃

H
c

)
HH

u = 0. (67)

From this we can readily obtain HW̃s = 0.
In the third part, we will prove that W̃c and W̃s satisfy the

two eavesdropping constraints((20), (21)). According to the
properties of the semi-definite matrix, for any nonzero vector
y, we can show

yH
(
I− ŨŨH

)
y ≥ 0. (68)

For the AE, let y = DHa(θQ), we can calculate

aH(θQ)D
(
I− ŨŨH

)
DHa(θQ)

= aH(θQ)R̃ca(θQ)− aH(θQ)W̃cW̃
H
c a(θQ)≥ 0.

(69)

Then, substituting (69) into (20), we can obtain

aH(θQ)R̃a(θQ) +
σ2
s

|βQ|2
≥
(

1+
1

εa

)
aH(θQ)R̃ca(θQ)

≥
(

1+
1

εa

)
aH(θQ)W̃cW̃

H
c a(θQ).

(70)

The same goes for constraints on PE, letting y = DHhp, and
this yields

hH
pD

(
I− ŨŨH

)
DHhp

= hH
p R̃chp − hH

p W̃cW̃
H
c hp≥ 0.

(71)

Substituting (71) into PE constraint, we can obtain

Pr
(
hH
p

(
(1 + εp)W̃cW̃

H
c − εpR̂

)
hp ≤ εpσ2

p

)
≥ Pr

(
hH
p

(
(1 + εp) R̃c − εpR̃

)
hp ≤ εpσ2

p

)
≥ τ.

(72)

It can be observed that the constructed beamforming matrices
W̃c and W̃s satisfy all constraints in (P4) and they are the
optimal beamforming matrices of (P4).
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