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 Abstract—The operation of traditional multi-object trackers on a 
moving unmanned aerial vehicle (UAV) faces many difficulties 
due to the irregular motion of UAV, the occlusion problem, and 
in particular arbitrarily oriented targets that are densely 
distributed with complex backgrounds. To solve these difficulties, 
this paper proposes a novel multi-object tracking framework, 
namely ArbiTrack, for a moving UAV to effectively detect and 
track arbitrarily oriented targets on the grounds. The proposed 
framework consists of an oriented object detection module to 
capture ground objects, a multi-scale context aggregation (MCA) 
module to improve the detection accuracy of small objects, and 
an adaptive motion switching (AMS) module to deal with the 
nonlinear complexity among UAV and ground objects. Historical 
information from multiple moments is used in this framework to 
learn the spatio-temporal characteristics so that the occlusion 
problem can be solved effectively. Experiments are conducted by 
using our OriDrone dataset and the public dataset UAVDT 
dataset. Results demonstrate that the proposed method achieves 
state-of-the-art tracking performance. 
 
Index Terms—Multi-object tracking, UAV, oriented object 
detection, multi-scale context aggregation, spatio-temporal 
evolutionary memory.    

 

I. INTRODUCTION 
ITH the rapid development of computer vision and 
sensor technologies, multi-object tracking (MOT) 
technology shows great potential in many 

application scenarios, such as intelligent surveillance [1], 
autonomous driving [2], and advanced video analytics [3]. 
Tracking by detection (TBD) [4], [5], is currently the 
mainstream tracking paradigm for MOT, aiming to accurately 
detect objects of interest from video sequences and obtain the 
corresponding motion trajectories based on the temporal and 
spatial information or the visual features of the video data. In 
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recent years, it has attracted the attention of many researchers 
[6], [7], [8], [9] due to the high maneuverability and flexibility 
of Unmanned Aerial Vehicles (UAV) [10], [11]. 

Traditional MOT algorithms can effectively detect and 
track multiple objects in the video captured by fixed or static 
cameras and show impressive performance. However, they 
have many challenges to manage multi-object tracking for a 
moving UAV.  

UAVMOT [12] addresses that in the detection phase, a new 
gradient balanced focal loss to supervise the learning of object 
heat map (GBF loss) is proposed to address the impact on 
target detection accuracy due to the high flight altitude of the 
UAV and the fact that most of the targets in its viewpoint are 
small. In the tracking phase, a local relational filter is designed 
to cope with the frequent ID switching due to the irregular 
motion of the target triggered by the superposition of the 
camera motion due to the movement of the UAV camera. 
However, the limitation of the local relational filter is that the 
number of targets and related positions in the adjacent two 
frames do not change, but in the actual UAV flight situation, 
special circumstances such as occlusion will often occur 
resulting in the change of the number of targets and related 
positions in the adjacent two frames, which leads to the failure 
of the local relational filter. 

In the detection stage, the object image captured from a 
moving UAV is usually non-axial, arbitrary direction, densely 
distributed, and complex background. The traditional object 
detection model focuses on upright or axially symmetrical 
objects. The rectangular bounding box predicted by the 
traditional object detection model cannot accurately describe 
the shape of the object and may lead to inaccurate positioning 
or misjudgment. Furthermore, UAVs fly at high altitudes, and 
the object in their view is small. In the tracking stage, the 
object motion state observed by an UAV is complex and 
nonlinear, which consists of the motion states of UAV and 
ground objects. The traditional Kalman filter cannot be used 
here for motion modeling. 

However, the methods mentioned above have some 
limitations. In this paper, we propose a novel multi-object 
tracking framework for a moving UAV to effectively detect 
and track arbitrarily oriented targets, which is called 
ArbiTrack. To accurately characterize the shape and position 
of an arbitrarily oriented object, Oriented RepPoints [13] is 
used as a detector in our tracking network, which can capture 
geometrical information of an arbitrarily oriented object from 

W 

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3543018

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on February 19,2025 at 14:20:35 UTC from IEEE Xplore.  Restrictions apply. 



2 
MM-019410 
 
a moving UAV. It can provide orientation information in 
addition to the traditional appearance and motion cues for the 
subsequent data correlation stage. The oriented object 
detection algorithm is to replace the traditional detection 
algorithm in MOT tasks. To improve the detection of small-
scale objects, we construct a multi-scale context aggregation 
module (MCA) to fully utilize the contextual information and 
expand the sensory field, which helps us to capture fine-
grained features effectively. 

To solve the problem of inaccurate motion estimation due 
to the irregular motion of UAVs, we propose an Adaptive 
Motion Switching (AMS) module based on motion state 
feedback. It can adaptively select different motion estimation 
filters according to the different motion modes of the UAV to 
provide accurate motion information for the tracker. Moreover, 
it can significantly improve tracking in complex variable-
speed scenarios, while maintaining high tracking accuracy 
relative to static scenarios. In addition, to solve the problem of 
prolonged complete occlusion that occurs during UAV 
tracking, a Spatio-temporal Evolutionary Memory (SEM) 
tracking algorithm is created based on Convolutional Gated 
Recurrent Unit (ConvGRU) [14], which combines the object's 
historical positional and motion information to learn its 
spatiotemporal characteristics, and models its spatio-temporal 
evolution to guide the localization and correlation of the 
objects in the input video sequences. 

Since the bounding box obtained by the oriented object 
detector carries orientation information, its labeling differs 
from that of the traditional bounding box and the existing 
dataset cannot meet the requirements. Therefore, we built our 
oriented object dataset, OriDrone. Then, our algorithm is 
evaluated by conducting experiments on OriDrone and the 
public dataset UAVDT [15]. The main contributions of this 
article are summarized as follows: 

 An MCA module is constructed to aggregate local 
and global contextual information, enhancing the 
feature representation of small-scale objects. An 
oriented object detector, unlike the traditional non-
oriented rectangular bounding boxes, is employed to 
capture objects from the UAV perspective. This 
detector is not constrained to only upright or axially 
symmetrical objects but is adaptable to targets of any 
orientation and shape. 

 An AMS module is developed to switch motion 
estimation filters according to different motion 
modes of UAV, which can provide accurate motion 
information for the tracker; 

 A SEM tracking algorithm is designed to model the 
spatio-temporal evolution of the object and to guide 
the localization and association of objects in the input 
video sequences, addressing the issue of occlusion 
from the UAV perspective. Thus, the number of 
objects and their relative positions can vary between 
adjacent frames. 

 A dataset OriDrone is constructed for oriented object 
tracking of a moving UAV in many different 
scenarios. Different from the existed UAV-based 

datasets, its bounding boxes are labeled with an 
orientation, which can significantly contribute to 
developing oriented object detection algorithms in 
MOT. 

The rest of the paper is organized as follows. Section II 
reviews some related research work on the detection and 
tracking framework and then discuss the approach taken in the 
data association stage. In section III, the main framework of 
ArbiTrack is first described and then three key modules are 
described: the multi-scale context aggregation network, the 
adaptive velocity estimation module, and the data association 
method for learning spatio-temporal features of the object by 
combining the entire history information of the object. 
Experiments are conducted in Section IV to verify the 
feasibility and performance of the proposed framework. 
Finally, a brief conclusion and future work are given in 
Section V. 

II. RELATED WORK 

A. Tracking-by-Detection 
The tracking by detection (TBD) paradigm divides the 

MOT task into three stages: object detection, feature 
extraction, and data association [16]. Specifically, the tracker 
in the TBD paradigm associates objects detected in different 
video frames with existing trajectories according to their 
similarity or initializes a new trajectory to deal with the list of 
emerging objects. The early MOT algorithm SORT [17] used 
Faster RCNN [18] as the object detection model, Kalman filter 
(KF) [19] for object trajectory prediction and Hungarian 
Algorithm [20] for object and trajectory matching. It has real-
time performance, but no be able to solve practical problems 
due to the frequent switching of object and trajectory during 
tracking.  

Subsequently, Wojke et al. proposed the Deep Sort 
algorithm [21] based on SORT, which used the Re-
identification Network (Re-ID) to obtain the appearance 
information for data matching. They proposed the idea of 
cascade matching further to improve the accuracy of the 
algorithm tracking and matching. Lee et al. [22] designed a 
ReID network combined with Feature Pyramid Network (FPN) 
[23] to enrich the obtained information by fusing different 
levels of features. Sun et al. [24] proposed a deep affinity 
network for estimating object embeddings and predicting 
affinities between objects. These trackers performed well in 
crowded scenes and have good tracking accuracy. 

To balance the accuracy and speed requirements of MOT, 
researchers began to propose a single-stage MOT algorithm. 
The main framework of the single-stage MOT algorithm was 
to add an embedded vector to the head of the detector for 
ReID learning and later data association. For example, JDE 
[25] first extracted feature vectors from the feature mapping of 
YOLOv3 [26] and applied automatic balance loss [27] to 
balance the importance of classification, regression, and Re-ID 
in the network. JDE was the first real-time single-stage MOT 
tracker, but its tracking accuracy of JDE does not show a 
significant advantage in comparison with the previous two-
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stage method. 

Based on the anchor-free detector CenterNet [28], Zhang et 
al. [29] added the learning of embedded vectors to form the 
FairMOT Multi-object tracker, which balances the detection 
and Re-ID tasks by learning low-dimensional Re-ID features. 
At the same time, it effectively reduced the risk of over-fitting 
and achieves good accuracy and speed. CenterTrack [30] 
directly predicted the displacement of the center point of the 
object. It can simultaneously predict the position of the object 
and ReID learning in a unified network, avoiding many      
repeated calculations, thus improving the tracking speed. 
These methods were based on traditional object detectors and 
focused on vertical or axial objects from fixed cameras to 
achieve good tracking results. However, non-axial objects are 
densely distributed in aerial images with the complex 
background, which will bring difficulties in object detection 
and thus affect the tracking effect.  

The thermal infrared target tracking is also investigated in 
recent years and it is not affected by illumination changes to 
track targets in some extreme weather [31]. There are many 

thermal infrared tracking methods are widely used, such as 
machine learning, Siamese Network, discriminative prediction 
model, multimodal tracks. Although some progress has been 
made, thermal infrared target tracking still faces many 
unresolved challenges, e.g., similarity interference, intensity 
change, deformation, occlusion.  

Tracking in the UAV scenarios is one of the main 
components of target-tracking tasks. Apart from the 
aforementioned methods, Yuan et al. recently proposed 
ASTCA [32]. This approach used spatial-temporal context to 
improve the tracking robustness in UAV scenarios. While it is 
effective for object detection in small-scale and occlusion-
heavy scenes, it focuses primarily on correlation filtering and 
lacks a mechanism to handle highly nonlinear motion patterns 
resulting from UAV maneuvers. 

Therefore, this paper introduces an oriented object detector 
to obtain an accurate object box, which can provide a better 
object description and a more accurate initial tracking result, 
thereby improving the overall tracking performance. 

 

 
Fig. 1.   Architecture of ArbiTrack Network

 
B. Data association 

Data association [33] is a crucial step in MOT, especially in 
the TBD paradigm. It associates objects detected in different 
frames and assigns a unique ID number to each object based 
on the similarity between the trajectory and the detection 
frame. Data association follows two key cues: motion laws 
and object features. The object motion laws are commonly 
used in close-range matching and are characterized using 
position and motion similarity. Traditional methods [17], [21], 
[34] mostly used conventional Kalman filters to estimate 
object position and motion information. Some recent 
approaches [35], [36], [37] obtained better results with camera 
motion or low frame rates by designing neural networks to 
learn object motion. 

Nonetheless, the methods discussed previously exhibit 
certain constraints when viewed from the context of UAV As 
the object motion law is the composition of the motion states 
of UAV and ground objects, the traditional Kalman filter 
cannot accurately estimate such a complex nonlinear motion. 
At the same time, learning object motion through a neural 
network could bring a non-negligible computational burden to 

the tracking network. The AMS module designed in this paper 
can accurately estimate the motion of the object without 
introducing a new neural network. 

For object appearance, similar to the ReID task [37], most 
methods extracted the Re-ID features of each object and 
measured the appearance similarity by the cosine similarity of 
the Re-ID features to distinguish different objects. For 
example, MOTDT [39] first used appearance similarity to 
match and then uses IoU similarity to match unmatched 
trajectories. QDTrack [40] converts appearance similarity into  
probability by bidirectional softmax operation and uses nearest 
neighbor search to complete matching. Appearance similarity 
is helpful for remote matching and is often used to deal with 
occlusion problems. However, appearance features are often 
unreliable, such as motion blur, occlusion, and objects with 
high appearance similarity. 

Recently, as the transformer has demonstrated its power in 
many computer vision tasks, several researchers [41], [42] 
have attempted to utilize it for MOT tasks. In the transformer-
based MOT methodology each tracked object’s ID features 
and geometric features were treated as a query propagated 
between frames. For example, Sun et al. proposed TransTrack 
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[35] based on DETR [43]. This was the first time that the 
transformer technique was applied to MOT. TransTrack used 
IOU to match detection and track boxes from two decoders. 
Meinhardt et al. [41] proposed a tracking query that can follow 
changes in the object's position, but the information came only 
from the previous frame of the image. 

A significant limitation of these methods is that they are 
entirely independent of the previous history and only refer to 
the previous frame for data correlation. Our proposed SEM 
tracking module uses ConvGRU [14] to combine the entire 
history of the object with learning the spatio-temporal 
characteristics of the object and modeling its spatio-temporal 
evolution, thus predicting both partially and fully occluded 
object locations and obtaining a more reliable similarity metric. 

III. METHODOLOGY 
The main framework of ArbiTrack is first described in Section 

A. The proposed ArbiTrack consists of three key modules: the 
multi-scale context aggregation network constructed in Section B, 
the adaptive velocity estimation module designed in Section C, 
and the data association method for learning spatio-temporal 
features of the object by combining the entire history information 
of the object as described in Section D. 

A. Overall Framework 
In this paper, deformable convolution is used to obtain the set 

of adaptive points as a fine-grained representation in Oriented 
RepPoints. The detector can capture the critical geometric 
features of arbitrary direction, clutter, and non-axis aligned 
objects and proposes an effective method to learn high-quality 
adaptive points. In the architecture of ArbiTrack Network, shown 
in Fig. 1, the video sequences from the UAV perspective are used 
as inputs, and the features are extracted through the backbone 
network. To obtain richer context information to enhance the 
ability of small object detection, an MCA module is constructed 
to replace the feature pyramid structure (FPN) in the original 
detector. 

After passing the detection head, the ID feature map is 
obtained, and the position of each object in the current frame and 
the angle of the bounding box are encoded. Subsequently, an 
adaptive motion switching module (AMS) is designed to 
accurately estimate the complex motion of the object from the 
perspective of the UAV. Finally, three components (the ID 
feature maps corresponding to each time step, the motion 
information obtained by the AMS module, and the history state of 
the previous frame) are input into the Spatio-Temporal Evolution 
Memory (SEM) module to model its spatio-temporal evolution to 
cope with the long-time occlusion problem. 

B. Multi-scale Context Aggregation 
The object image captured by a moving UAV is small due to 

its wide field of view and high altitude. The existing Feature 
Pyramid Network (FPN) is a valid solution to the problem of 
small object detection. It manages multi-scale object detection 
tasks by assigning different scale instances to various levels of 
feature layers. However, this network may have the problem of 

misassigning instances of similar sizes to various levels. 
Furthermore, the importance of features may not be strongly 
correlated with the level to which they belong, and the detecting 
loses the opportunity to gather more diverse information at a 
single feature level. Meanwhile, the multiple branches in FPN 
increase the computational cost and leads to substantial runtime 
delays. 

In this paper, a multi-scale context aggregation method is 
designed to deal with the problem of object-scale variation and 
small object detection from the perspective of UAV. The 
proposed MCA uses cross-attention to capture local contextual 
information from neighboring feature layers and global average 
pooling to obtain global contextual feature vectors. Therefore, it 
aggregates local and global contextual information from multiple 
scales to generate features more conducive to identifying small 
objects. Inspired by [44], [45], fusion factors are used to weigh 
different input features according to their importance in this 
method, and the differentiated fusion of these features can deal 
with the multi-scale variation. The network structure of MCA is 
shown in Fig. 2. 

 
Fig. 2.  Architecture of MCA module. 

 
In MCA, the multiscale feature maps C2, C3, C4, and C5 are the 

module’s inputs which are outputs from the backbone network 
stage2, stage3, stage4, and stage5. After top-down feature 
aggregation, Cross Attention modules are designed to obtained 
local context information. F2 and F4 are reshaped to the same size 
as F3, and then the transpose of F2 is multiplied by F3, while 
multiplying F3 with the transpose of F4 in another branch. Then 
the cross-relation weight maps 

2FW and 
4FW are calculated 

through the softmax as follows: 
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where x
nF and 3

yF  denote the x-th and y-th channels of nF or 
F3, respectively. 

n

xy
FW  represents the element of 

nFW  at the 
position (x, y), which expresses the correlation between the x-
th channel of nF and the y-th channel of F3. 

Finally, out ( 2,3, 4,5)iC i =  are outputs separately in traditional 
FPN. Unlike this, fusion factors are introduced to adapt and 
fuse features from different layers in our MCA, as shown in 
the following equation: 
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where outC  is the final output feature, iw (i =1,2,3,4) are the 
learnable weights and satisfies 0 1iw≤ ≤ .   is a small value to 
avoid numerical instability and is usually taken to be 0.0001, 
and Conv is usually a convolution operation for feature 
processing. 

As the network deepens, the features of small objects will 
be lost. We believe that localized information around the 
object is beneficial for small object detection, like a small 
object on the surface of the water with a high probability of 
being a boat. Therefore, cross-attention is used to capture the 
local context information between neighboring layers. After 
that, the global context feature vector by applying a global 
average pooling on the C5 feature map. Finally, the four 
generated feature maps are aggregated. By using local and 
global contextual information, MCA effectively improves the 
representation of feature maps, which is more conducive to 
coping with scale variations and small object detection 
problems. Unlike traditional FPN, MCA only output the fused 
features that combine all the levels for subsequent prediction 
and no longer need to detect the different feature layers 
separately. 

C. Adaptive Motion Switching Module 
When the camera is fixed on a moving UAV, its motion 

brings new challenges to the multi-object tracking algorithms 
as the motion of ground objects is not a simple linear motion 
but a nonlinear motion against the motion states of UAV. The 
traditional Kalman filter gives the minimum error covariance 
estimation based on all available observations at the current 
time step under linear motion. Therefore, the traditional 
Kalman filter is difficult to deal with this complex 
superposition motion caused by UAV motion. A novel AMS 
module is proposed, which is shown in Fig. 3. 

 

 
Fig. 3.  Architecture of AMS module. 

 
Motion Mode Selection. According to the linear-nonlinear 

characters of the motion, the motion state can be categorized 
into two types: normal mode and abnormal mode. 

 Normal motion mode: If the UAV flies smoothly in 
the air at a fixed speed, or the object’s speed does not 
vary suddenly, the motion of the object can be 
regarded as approximately linear motion. This case 
can be seen as normal motion mode.  

 Abnormal motion mode: if the UAV is droved at a 
varied speed, such as sudden acceleration, the motion 
of ground objects shows a complex nonlinear motion 
from the perspective of the UAV. This case can be 
seen as abnormal motion mode.  

To deal with these two modes, an acceleration threshold τa 
is presented. When the acceleration of the tracked object is 
less than τa, it is considered that the motion state does not 
change drastically and is in the normal mode, and vice versa. 
Then, Kalman filtering (KF) and Unscented Kalman Filtering 
(UKF [46]) are employed in the normal mode and abnormal 
mode to estimate the motion states of the tracked objects, 
respectively, as shown in Algorithm1. 

Algorithm 1 Adaptive motion switching algorithm 
Input:  Kalman Filter KF; Unscented Kalman Filter 

UKF; Acceleration threshold τa; The set of  
tracked objects T in each frame of UAV video 

Output: the velocity and acceleration of the tracked 
object{v, a} 

/*Motion mode judgment, using different Kalman 
filters to estimate the motion information of tracked 
objects*/ 

1: for t int T do            //For each tracked object t int set T 
2:     if t.a < τa then     //normal mode 
3:          t←KF(t) 
4:     else                      //abnormal mode 
5:          t←UKF(t) 
6:     end if 
7: end for 
8: return{v, a}          //Output motion information{v, a} 

of tracked objects 
 

D.  Spatio-temporal Evolutionary Memory 
In aerial imagery, the trajectories of the tracked objects are 

usually complex and irregular and may sometime be obscured 
by the other objects. For this situation, most traditional MOT 
algorithms are difficult to deal with these complex trajectories 
and occlusion problems, resulting a non-continuous and 
unstable tracking behavior. Currently, more spatio-temporal 
feature is helpful. Therefore, the spatio-temporal feature 
extraction is the key to solving the problem for the tracked 
objects in our ArbiTrack. 

GRU [47] is a gated recurrent neural network and exhibits 
good memory performance but with lower memory 
requirements compared to LSTM [48]. It has the advantage of 
being adaptive and capable of modeling non-fixed-length time 
series. In the basic structure of GRU, a reset gate and an 
update gate are designed, and the reset gate can control the 
degree of forgetting of historical information, while the update 
gate can control the retention of current information. 
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In SEM, ConvGRU [14] was used in the tracker part. It is 
an extension of classical GRU, which replaces 1D state 
vectors with 2D feature maps and uses convolution to compute 
a fully connected layer of state updates. At each time step t, 
the corresponding detector outputs ID feature map IDFt, which 
was then passed to the ConvGRU with the previous state St-1. 
Different from the method in [49], the output motion 
information (v, a) of AMS was inputted into the ConvGRU as 
a matrix Mt. It guides the object position prediction of the 
ConvGRU. Consequently, the state update can be expressed as 

1( , , )t t t tS GRU S IDF M−= . The state matrix tS  includes the 
positions of the multiple objects 1 2{ , ,......}O O observed in time 
series{1,2,....., }t .  

Specifically, the detector transmits the position, orientation, 
and their confidence value of each detected object to the 
tracker. The position is represented by an Oriented RepPoints 
point set, the orientation is the rotation angle of the object's 
bounding box, and the confidence value is the probability that 
the object is a natural object. Motion information can be used 
in ConvGRU, and the tracking accuracy and robustness are 
improved. Thus, in SEM tracker network, the previous 
historical information is used to learn the spatio-temporal 
characteristics of the object, model its spatio-temporal 
evolution, and guide the localization and association of objects 
in the input video sequence. In addition, it can predict the 
location of objects seen in the past but currently occluded. 
When they reappear, they can still be matched into the original 
tracking trajectory again. 

To learn the spatio-temporal features of objects, L1 loss is 
used as the location prediction loss Lt in the tracker network, 
as follows: 

 1
1

t
N t

ii
pL y

N =
= −∑ ∣ ∣  (3) 

where t
ip is the center point coordinate of object Oi at moment 

t as predicted by the tracker based on historical information, 
and y is the valid center point coordinate of that object. 

Matching algorithms. With a sufficiently accurate 
prediction of the object location, inspired by [30], a simple 
greedy matching algorithm is constructed. The algorithm idea 
is shown below: 
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2 2
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where (x1, y1) is the center position of the object predicted by 
the tracker, and (x2, y2) is that detected by the detector in the 
current frame. Threshold k is computed from the width and the 
height of the object’s bounding box.  

If there is corresponding prediction within a radius k for the 
tracker, the predicted position is greedily associated with the 
closest detected position. Otherwise, a new trajectory is 
generated. The simplicity of this greedy matching algorithm 
once again highlights the advantages of our tracker. Simple 

position prediction is enough to link objects across time. No 
complex feature distance measurement or feature similarity 
matching is required. 

When the object is occluded, the ConvGRU prediction is 
directly stored in the state matrix S, which is used as the 
tracking result to predict the object position of the next frame. 
The object’s position and orientation are saved if it is occluded 
in the previous frame. When the object is recaptured by the 
detector near the center position of the object predicted by the 
tracker, the current detection result is checked for match with 
the ConvGRU prediction. Firstly, the distance to the center 
coordinate position is judged. Then, the probability of 
bounding-box matching is reflected using similarity corQ : 

 ( ), ttcor jQ b b=   (6) 

where t  denotes the CIoU between the detection box jb  and 
the tracker's prediction box tb . The CIoU improves the 
accuracy and robustness of the matching task by considering 
the bounding box’s aspect ratio instead of judging its 
similarity based on the overlap area alone in IoU function. 

IV. EXPERIMENTS 

A. Datasets and Metrics 
Datasets. To validate the effectiveness of ArbiTrack, we 

conducted a series of experiments on our self-built OriDrone 
dataset and the public UAVDT dataset [15]. 

The annotation method for our OriDrone dataset was 
different from the existing UAV tracking datasets. Since 
ArbiTrack introduced the oriented object detection algorithm 
as a detector, a novel UAV-tracking dataset was required with 
the oriented object box annotation. The object tracking dataset 
was collected based on the DJI Spirit UAV Phantom 4 Pro, 
equipped with a 20-million-pixel CMOS camera. Many 
tracking experiments were conducted under different road 
conditions, different heights, and different UAV-speed and 
abundant object tracking data was obtained from the 
perspective of the UAV. The video resolution of the camera 
was 1280 × 720 and specialized for vehicle objects. In MOT 
task, it was divided into a training set (30 sequences) and a test 
set (10 sequences) consisting of various common scenarios, 
including parking lots, intersections, and viaducts. Each object 
was annotated by an oriented bounding box, category, and 
tracking ID in each frame.  

The public UAVDT dataset is dedicated to vehicle detection 
and tracking, which consists of three categories: cars, trucks, 
and buses. It is divided into a training set (30 sequences) and a 
test set (20 sequences). The resolution of the video is 1080 × 
540, including various familiar scenes such as squares, main 
streets, and toll stations. 

Metrics. To comprehensively evaluate ArbiTrack with 
other state-of-the-art methods, several metrics were used to 
evaluate the performance of tracking [50], such as multi-object 
tracking accuracy (MOTA), Multi-object tracking precision 
(MOTP), ID switching (IDs). MOTA was the most critical 
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metric. MOTA considered various errors in the tracking 
process as defined below: 

 
FN FP IDsMOTA 1

GT
+ +

= −  (7) 

B. Implementation Details 
Training. In the detector part, the original settings of 

Oriented RepPoints are maintained. Here, we provided 
hyperparameter values about the tracker network referring to 
[48], ConvGRU had a feature dimension of 256 and used 7 × 7 
convolutions. Sequences of captured video frames were used 
to train the network. Specifically, they were divided into 
segments at a fixed time step and labeled to obtain the 
information sequences of the bounding boxes, which was used 
for training. The Adam optimizer was used to train the model 
for 30 epochs with a batch size 6 on information sequences. 
The learning rate was set to 1.25e-4, which was decayed by a 
factor of 10 at 10 epochs and 20 at 20 epochs, respectively. 
The ArbiTrack was trained and evaluated on a single GeForce 
RTX 3090 GPU. 

C. Comparison with State-of-the-arts 
OriDrone dataset. Due to the specificity of our dataset, the 

representation of its object boxes is oriented and different 
from the representation of regular rectangular object boxes. To 

obtain more unbiased results, our dataset was labeled with 
normal object boxes to facilitate the training of other methods. 
Then, we compared it with the existing methods in the test set  
of our dataset. The results of our method evaluated on the 
dataset are shown in Table I, where our method achieved 44.6% 
in MOTA and 56.9% in IDF1. ArbiTrack surpasses the 
previously representative tracker FairMOT [29] by 2.4% on 
MOTA and 2.1% on IDF1. Compared to TrackFormer [41], a 
tracker using transform, our method outperforms it by 6.7% on 
MOTA and 11.7% on IDF1. Meanwhile, ArbiTrack 
outperformed other trackers on IDs, showing that our method 
achieved better tracking performance in the face of the 
complexity of the UAV view. In addition, our tracker also 
achieved the best result on MT, demonstrating the high 
completeness of the tracking trajectory of our method and 
proving its strong robustness.  

UAVDT dataset. To further validate the effectiveness of 
our ArbiTrack, we compared ArbiTrack to other methods on 
the UAVDT test set for MOT task. We relabeled the training 
set of the UAVDT so that it could be used to train our network. 
As can be seen, our method achieved 47.6% on MOTA and 
67.4% on IDF1. ArbiTrack outperformed the previous most 
representative tracker FairMOT by 2.7% on MOTA and 6.5%

 
TABLE I 

QUANTITATIVE COMPARISON OF ARBITRACK WITH OTHER METHODS ON THE ORIDRONE TEST SET 
Method MOTA (%) MOTP (%) IDF1 (%) MT ML FP FN IDs FM 

MOTDT[39] -1.2 66.3 20.3 85 1298 63080 266317 1562 3725 
IOUT[53] 26.7 71.2 38.4 453 780 39251 197869 2597 3746 
GOG[54] 27.2 75.4 37.0 381 865 28429 207584 2068 2694 

CMOT[55] 28.4 72.4 42.4 497 824 43446 189547 1221 3456 
SORT[17] 38.6 71.4 43.6 482 568 18624 180831 1344 5874 

DSORT[21] 39.8 70.8 48.3 527 524 27120 168629 1126 6580 
JDE[25] 38.3 72.1 53.4 541 462 26896 173257 1628 7598 

FairMOT[29] 42.2 72.5 54.8 563 427 24875 162587 1564 5862 
TrackFormer[41] 37.9 73.7 45.2 425 536 25698 172298 942 6235 

ours 44.6 74.3 56.9 593 520 24366 156025 786 5632 

 

TABLE II 
QUANTITATIVE COMPARISON OF ARBITRACK WITH OTHER METHODS ON THE UAVDT TEST SET 

Method MOTA (%) MOTP (%) IDF1 (%) MT ML FP FN IDs FM 

CEM[51] -6.8 70.4 10.1 94 1062 64373 298090 1530 2835 
SMOT[52]  33.9 72.2 45.0 524 367 57112 166528 1752 9577 
GOG[54] 35.7 72 0.3 627 374 62929 153336 3104 5130 
IOUT[53] 36.6 72.1 23.7 534 357 42245 163881 9938 10463 
CMOT[55] 36.9 74.7 57.5 664 351 69109 144760 1111 3656 
SORT[17] 39.0 74.3 43.7 484 400 33037 172628 2350 5787 

DSORT[21] 40.7 73.2 58.2 595 358 44868 155290 2061 6432 
JDE[25] 39.5 73.5 55.3 624 442 - - 3124 8536 

FairMOT[29] 44.9 72.7 60.9 672 365 - - 2279 7163 
MDP[56]  43.0 73.5 61.5 647 324 46151 147735 541 4299 

ours 47.6 73.4 67.4 657 265 60435 117760 494 5687 
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higher on IDF1. It also outperformed other trackers on IDs, 
showing that our method can effectively reduce ID switching 
and has better robustness in complex scenarios. 

D. Ablation Study 
A series of ablation experiments were conducted in the 

OriDrone test set to validate the effectiveness of each module 
in our approach. In the ablation experiments, Oriented 
RepPoints and Sort were used as baseline models, and 
Resnet50 was used as the backbone network. 

TABLE III 
ABLATION EXPERIMENTS ON THE ORIDRONE TEST SET 

Baseline KF UKF AMS MOTA (%) IDS FPS 
√ √   43.2 1126 12 

√  √  44.8 563 5 

√   √ 44.6 786 10 

 

As shown in Table III, AMS employs KF and UKF to 
estimate the motion state of the tracked target in different 
motion modes, respectively. We report three key metrics for 
each module in the test set. Using our AMS module on MOTA 
is 44.6%, IDs are 786, and FPS is 10. When the motion state 
estimator uses the KF module, MOTA decreases to 43.2%, 
IDs become 1340, and FPS improves to 12. When the motion 
state estimator uses the UKF module, MOTA improves to 
44.8%, IDs become 563, and FPS decreases to 5. Although the 
FPS (frames per second) using the KF module as the motion 
estimation module is the highest at 12 FPS, indicating fast 
processing speed; however, it has the lowest MOTA (multi-
target tracking accuracy) at 43.2% and the highest number of 
ID switches at 1,340. This indicates that the KF module, 
although fast, performs poorly in terms of tracking accuracy 
and stability. The UKF module, when used as a motion 
estimation module, has the best performance in MOTA and 
the least number of ID switches, but it has the lowest FPS of 
5FPS, which is slow in processing speed. The AMS module 
ensures high tracking accuracy while taking into account the 
processing speed and tracking stability, thus providing a better 
balance between performance and speed. This makes it ideal 
for use in processing complex motion estimation, especially in 
UAV application scenarios where both real-time and accuracy 
need to be considered. 

TABLE IV 
ABLATION EXPERIMENTS ON THE ORIDRONE TEST SET 

 
Baseline MCA AMS SEM MOTA (%) IDF1 (%) IDS 

√    38.4 44.6 2075 

√ √   42.8 46.3 1340 

√ √ √  43.2 53.2 985 

√ √ √ √ 44.6 56.9 593 

As shown in Table IV, ArbiTrack contains three core 
components: the MCA module, the AMS module, and the 
SEM tracking algorithm. Three critical metrics are shown for 
each module in the test set. The baseline model is 38.4% on  

MOTA, 44.6% on IDF1, and 2075 on IDs. Adding the MCA 
module to the baseline model improves MOTA to 42.8%, 
decreases IDs to 1340, and reaches 46.3% on IDF1. Adding 
the MCA module and the AMS module to the baseline model, 
the MOTA improves to 43.2%, the IDF1 improves to 53.2%, 
and the IDs decrease from 1340 to 985. Adding all three 
modules, our MOT model reaches 44.6% on the MOTA and 
56.9% on the IDF1.  

The advantages of our ArbiTrack in terms of MOTA and 
IDF1 come from the three proposed modules. Specifically, the 
oriented object detector with the MCA module enables our 
tracker to accurately detect the object under complex UAV 
viewpoints, while the AMS module enhances the tracking 
effectiveness of ArbiTrack under complex UAV motions. The 
synergy of AMS and SEM improves the tracking stability of 
ArbiTrack under occlusion or complex UAV motions, which 
reduces the ID switching occurrences, and ensures the 
integrity of the output tracking trajectory. 

E. Visualization 
The tracking results are visualized, and the qualitative 

results were analyzed. We selected FairMOT [29], the next 
best tracking method in UAVDT and OriDrone. The yellow 
corner marker in the upper left corner of the image denotes the 
frame number of the tracking sequence where the image is 
located. To facilitate the observation of the object motion 
trajectory, the tracking trajectory is output while tracking the 
object in the resulting image of our method. Fig. 4 presents the 
tracking results of FairMOT and our method ArbiTrack for 
four different sets of scenarios in the UAVDT dataset. 

 
(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Fig. 4.  Visualization results of UAVDT dataset. Red boxes indicate areas 
where many objects are lost, or ID switches occur. 
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In Fig. 4(a), the object position in its perspective rotates 
while the UAV suddenly rotates rapidly to the left during 
flight, and the original motion pattern will be disrupted. In this 
special scenario, FairMOT experienced object loss during the 
tracking process (as shown in the red box). Furthermore, ID 
switching occurred (as shown in the red box) after the 
perspective stabilized. However, ArbiTrack can accurately 
track objects without being affected by UAV rotations. In Fig. 
4 (b), a dense vehicle intersection is monitored while the UAV 
is hovering in the air. In this case, vehicles that are farther 
away from the UAV appear to be objects with small size in the 
image captured from the UAV's viewpoint (marked by the red 
rectangular box at the top of the image), which cannot be 
tracked in FairMOT, but can be accurately tracked in 
ArbiTrack. 

In Fig. 4(c), the object size in the UAV view becomes 
smaller when the UAV altitude keeps increasing. At the same 
time, there are more complex background information in the 
image. In this scenario, our ArbiTrack can accurately track the 
object against the complex background, while FairMOT 
cannot track all the objects due to the interference of the 
complex background. Fig. 4 (d) shows that when the UAV 
turns right during flight, the object motion trend under its 
perspective is a complex nonlinear motion that superimposes 
the UAV's motion and its own motion. At the same time, 
when turning right, the scene in the image undergoes rapid 
changes. In this scenario, our ArbiTrack can quickly adapt to 
scene changes and accurately track all moving objects in the 
image, while FairMOT can potentially lose objects. 

To further demonstrate the superiority of our ArbiTrack, 
four more challenging scenarios are selected for UAV tracking 
in comparison with the FairMOT method. The visualization 
results are shown in Fig. 5. 

 
(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Fig. 5.  Visualization results in the OriDrone dataset. The red boxes represent 
areas where many objects are missing, while the green boxes represent the 
objects that need attention. 

• Scenario 1 -- the object undergoes occlusion. As shown 
in Fig. 5(a), three objects experienced occlusion (as 
shown in the green box) during the tracking. The vehicle 
with ID 58 undergone occlusion at frame 249 and was 
recaptured at frame 302 when it appeared once again (the 
occlusion time was around 2.5s). The two vehicles with 
IDs 56 and 63 undergone occlusions at frame 315 and 
were recaptured at frame 361 (the occlusion time was 
around 1.8s). For these occlusions at various times, our 
ArbiTrack has shown excellent tracking results benefited 
from the SEM module. However, FairMOT cannot 
effectively deal with the occlusion scene in this scenario 
in which three vehicles have switched their IDs after they 
are occluded. 

• Scenario 2 -- UAV rotates rapidly to the right. Fig. 5 (b) 
shows the visualization results obtained in the scene when 
the UAV rotated rapidly to the right. It can be seen from 
the output trajectory points, our ArbiTrack can accurately 
track the object and ensure the integrity of the trajectory 
when the position and motion trend of the objects change 
drastically in response to the rapid rotation of the UAV. 
On the contrary, FairMOT lost many objects during 
rotation, resulting in many IDs switching. 

• Scenario 3 -- UAV performs acceleration motion. Fig. 
5 (c) shows the visualization results obtained in the UAV 
accelerated motion scene. The UAV is rapidly moving in 
the opposite direction along the road. In this scene, the 
scene changed rapidly from the UAV viewpoint while the 
objects moved at different speeds and movement law of 
the objects is complex. For example, the vehicle with ID 
183 (shown in the green box) was captured in frame 775. 
Its motion direction and speed were different from most 
objects in the image and obscured by trees in frames 775 
to 783. However, it was still accurately captured when it 
appeared in frame 783. Our method achieved good 
robustness in complex scenes, while FairMOT lost many 
objects during object tracking. 

• Scenario 4 -- The UAV camera rotates up and down. 
Fig. 5 (d) shows the visualization results obtained in a 
scene where the camera rotated up and down rapidly 
when the UAV was hovering. In this scene, the object 
position in the UAV's viewpoint and the surrounding 
scene changed rapidly. It can be seen from the output 
trajectory points; our method tracked the whole trajectory 
for the objects under this scenario. In contrast, FairMOT 
lost many objects with a lot of IDs switching in this 
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scenario. 

From the visualization results in Figure 4 and Figure 5, our 
ArbiTrack achieved good detection results for objects in 
complex backgrounds due to the proposed MCA module and 
the oriented object detector. Furthermore, based on the AMS 
and the SEM modules, our ArbiTrack can ensure the integrity 
and accuracy of the tracking trajectory in many scenarios such 
as occlusion, complex UAV motions. It significantly reduced 
the times of ID switching. Therefore, our ArbiTrack is valid in 
coping with tracking scenarios from the UAV viewpoint. 

V. CONCLUSION 
The primary motivation of this work is to design a multi-

object tracker for a moving UAV. Our research is focused on 
the arbitrarily oriented object detection and tracking under 
UAV scenarios. A novel ArbiTrack framework was proposed 
for multi-object tracking of a moving UAV in this paper. An 
oriented object detector was used, and a multi-scale-context-
aggregation module MCA was designed to aggregate local and 
global context information and enhance the feature 
representation of small-scale objects. To adapt to the complex 
UAV motion, an AMS module was proposed based on motion 
state feedback. According to the different motion modes of the 
UAV, two motion filters were adaptively selected and 
switched to provide accurate motion information for the 
tracker. Besides, a SEM tracking algorithm was presented to 
solve the problem of long-term complete occlusion during 
UAV tracking. In SEM, the historical position and motion 
state of the object were combined to learn the spatio-temporal 
characteristics of the objects. Its spatio-temporal evolution 
was modeled to guide the positioning and association of 
objects for the input video sequences. At last, a series of 
experiments were conducted using our OriDrone dataset and 
the public UAVDT dataset. The experimental results 
demonstrated that the proposed ArbiTrack framework can 
accurately track multiple objects by a moving UAV. 

Our future work will further explore multiple-object 
tracking of UAV at night or in dark scenes by fusing visible 
and infrared images. 
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