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Abstract—This paper presents a comprehensive analysis of
different functional splits (FS) in an Open RAN-based Unmanned
Aerial Vehicle (UAV) Non-Terrestrial Networks (NTN) architec-
ture for Ultra-Reliable Low-Latency Communication (URLLC).
We systematically analyse and compare the effectiveness of differ-
ent FSs, focusing on their impact on UAV computational complex-
ity and overall network latency and reliability for URLLC users.
Through extensive simulations, we assess the trade-offs between
computational complexity, front-haul bandwidth requirements,
and network reliability for various FS options, with a particular
focus on URLLC traffic. Our results demonstrate that FS-
7.2x outperforms other configurations, achieving superior latency
performance and enhanced reliability by efficiently balancing
onboard processing and front-haul bandwidth utilisation. These
findings provide critical insights for network designers in optimis-
ing O-RAN configurations for UAV-based NTN, ensuring robust
and low-latency communication for next-generation wireless
applications.

Index Terms—URLLC, ORAN, DRL, Resource Allocation,
Functional Splits

I. INTRODUCTION

OPEN Radio Access Network (O-RAN) is a transfor-
mative evolution in next-generation wireless network

(NGWN) architecture aimed at disaggregating traditionally
integrated Radio Access Network (RAN) components into
modular, interoperable elements [1]. Unlike traditional RAN
systems, where hardware and software are tightly coupled and
typically supplied by a single vendor, O-RAN promotes an
open, flexible ecosystem.

O-RAN’s architecture is particularly appealing in the con-
text of Non-Terrestrial Networks (NTN), which include the
integration of Unmanned Aerial Vehicles (UAVs) as an emerg-
ing use case [2]. Leveraging O-RAN principles in UAV-
based NTN allows efficient communication across dynamic
and distributed network environments. Open interfaces such
as A1 and E2, coupled with intelligent controllers like the
RAN Intelligent Controller (RIC), facilitate advanced network
management. This enables O-RAN-based UAV networks to
handle complex, real-time data traffic, ensuring scalable and
robust network operations.
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However, integrating UAVs into O-RAN-based NTN en-
vironments presents distinct challenges stemming from the
disaggregated nature of O-RAN components (e.g., the Open
Radio Unit (RU ), Open Distributed Unit (DU), and Open
Centralised Unit (CU)) and the dynamic aerial environment.
The wireless front-haul (FH) links that connect these compo-
nents in UAV NTNs are inherently less stable than in terrestrial
networks (TNs), often constrained by high latency, limited
bandwidth (BW), and interference. Additionally, UAVs are
subject to strict energy limitations, optimising onboard com-
putational workloads while ensuring ultra-reliable, low-latency
communication (URLLC) is critical. These challenges become
more pronounced when supporting heterogeneous services,
such as enhanced Mobile Broadband (eMBB) and URLLC,
which have conflicting quality of service (QoS) demands [2].

Managing these heterogeneous services over an NTN, espe-
cially in remote or challenging environments, requires adaptive
and intelligent resource allocation mechanisms. Here, the
RIC plays a critical role by optimising network resources
through real-time analytics, machine learning, and data-driven
decision-making [1]. Specifically, the RIC must balance the
trade-offs introduced by the choice of functional splits (FS) in
the O-RAN architecture, as FS directly affects the processing
demands, latency, and BW of UAV-based NTNs. Lower-layer
FSs (e.g., FS-7 and FS-8) impose stringent latency and con-
nectivity requirements on the FH, while higher-layer FSs (e.g.,
FS-2) increase BW demands but allow for greater processing
centralisation [3]. To this end, it is evident that selecting the
appropriate FS is critical for optimising the overall network
performance, particularly in UAV NTN scenarios where main-
taining stable and high-performance FH links over wireless
mediums is inherently more complex than in TNs.

Given these challenges, efficient Radio Resource Manage-
ment (RRM) is vital for ensuring robust operation in UAV-
based O-RAN NTNs. Traditional RRM approaches often
fail to meet the stringent latency, reliability, and throughput
demands of URLLC and eMBB services in dynamic and
resource-constrained NTN environments. Deep Reinforcement
Learning (DRL), a subset of machine learning, has emerged
as a promising approach for tackling these challenges [4], [5].
DRL enables real-time optimisation of RRM parameters, such
as spectrum utilisation and power allocation, by dynamically
adapting to the evolving network conditions. This capability
is particularly advantageous in UAV networks, where traffic
patterns are highly variable, and latency requirements for
URLLC are exceptionally stringent [6].

Despite DRL’s potential, significant challenges and research
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gaps remain, particularly in the context of UAV-based O-RAN
NTNs. The interplay between URLLC and eMBB services and
the selection of FSs introduces complex trade-offs in latency,
BW, and processing overhead. While existing studies have
broadly explored DRL applications in TNs, there is a lack
of comprehensive investigations into its applicability for UAV
NTNs. Moreover, no conclusive studies have evaluated the
performance of DRL-based RRM strategies across different FS
configurations for URLLC users in UAV NTNs. Addressing
these gaps is essential for advancing state-of-the-art commu-
nication systems and developing intelligent RRM solutions
that meet the unique demands of UAV-based O-RAN NTNs.
To the best of our knowledge, no studies have conclusively
determined which FS offers the best balance of latency, BW,
and processing overhead for DRL-driven URLLC solutions in
UAV NTN.

This paper provides a comparative analysis of different
FS within O-RAN-based UAV NTN architectures, focusing
on URLLC performance. Specifically, a Thompson Sampling
(TS)-based DRL approach is proposed for RRM and power
allocation for URLLC. The evaluation covers FSs 2, 6, 7.2x,
and 8, assessing their impact on transmission error rates and
latency outages. The study offers valuable insights into how
varying functional splits influence reliability and latency in
UAV-based NTN environments.

II. SPLIT OPTIONS IN ORAN-BASED UAV NTN
The integration of FSs within O-RAN-based UAV NTNs is

crucial for enabling flexible and efficient RAN architectures.
Unlike traditional RAN architectures, FSs in O-RAN disaggre-
gate the radio protocol stack into separate units (i.e., CU, DU,
RU), allowing for optimised distribution of computational and
networking tasks. As shown in Fig. 1a, these FSs allow for
flexible distribution of RAN functions, with higher-layer tasks
centralised in the CU and lower-layer, real-time tasks handled
by the DU and RU. The Physical (PHY) layer in the RAN
is divided into Low-PHY (L-PHY) and High-PHY (H-PHY).
L-PHY manages real-time operations like FFT/IFFT, cyclic
prefix handling, and DAC/ADC conversions for RF signal
processing, while H-PHY handles higher-level tasks such as
modulation, channel coding, and HARQ combining, which are
less time-sensitive but computationally intensive [7]. These
FSs enable the separation of control and user plane tasks,
making them critical for supporting diverse applications like
URLLC and eMBB.

Although FSs have been standardised and evaluated for TNs
in 3GPP Release 15 and subsequent releases, their applicability
in NTNs has not been fully explored and standardised. FSs
for NTNs are expected to be a significant part of the 3GPP
NTN Rel-19 framework, which aims to extend these concepts
to support non-terrestrial and air-borne platforms such as
satellites and UAVs [8]. For TNs, FS-2 has been standardised
by 3GPP, FS-6 by the Small Cell Forum, and FS-7 by
the O-RAN Alliance. These standards serve as a foundation
for understanding how UAV-based NTNs could benefit from
distributed RAN functions.

To better understand how FSs impact the performance
of UAV-based NTNs, it is essential to explore the various

deployment configurations and the appropriate split options
for these deployments. Fig. 1 illustrates various deployment
options for integrating UAVs into O-RAN-based NTNs. Each
subfigure represents a distinct FS configuration that affects
how processing tasks are distributed across the UAV and the
core network, influencing the system’s overall performance in
terms of latency, BW, and computational complexity.

• UAV as a Relay: In the first scenario, depicted in Fig. 1b,
the UAV functions as an RF relay, forwarding analogue
signals between eMBB/URLLC users and a ground-based
gNB over an RF link. No significant baseband processing
is performed onboard, as all RAN functions (RU, DU,
CU) are centralised at the terrestrial entity.

• UAV with RU In another configuration, shown in
Fig. 1c, the UAV hosts the RU, while the DU and CU
remain on the ground and are connected via a FH link.
The RU’s responsibilities can vary based on the UAV’s
capabilities, FS, and FH conditions. It can handle tasks
from basic RF functions to more complex PHY and
MAC operations. For this setup, FSs such as FS-8, FS-
7.x, and FS-6 can be applied. FS-8 leaves most of the
processing centralised at the ground entity, while FS-
7.x offloads more tasks to the UAV, offering a balance
between FH efficiency and onboard complexity. FS-6
pushes even more responsibility onto the UAV, reducing
FH dependency but increasing computational demands.
FSs-5 and 4 offer similar advantages to FS-6 but will
further increase the onboard complexity.

• UAV with RU and DU In this configuration (Fig. 1d),
the UAV hosts both the RU and DU, with the CU
remaining on the ground, connected via a midhaul link.
This shifts substantial baseband processing to the UAV,
including H-PHY and MAC operations. FS-2 is ideal
for this setup, as it enables most RAN functions (e.g.,
MAC, RLC, and scheduling) to be processed locally,
resulting in significantly reducing midhaul BW demands
and improving UAV autonomy. However, this increases
onboard computational complexity, requiring enhanced
processing resources for real-time tasks like HARQ and
scheduling. Additionally, FSs-3 and 1 can also be applied,
further lowering midhaul traffic while distributing compu-
tational load differently. FS-3 offloads lower-layer MAC
and RLC functions to the UAV, introducing moderate
computational requirements with reduced real-time pro-
cessing compared to FS-2. FS-1 centralises only control-
plane tasks at the CU, while user-plane data is processed
on the UAV, further reducing midhaul BW but adding
complexity in managing both planes onboard.

• UAV with RU, DU, and CU: The deployment shown
in Fig. 1e is the most autonomous, as the UAV hosts
the full suite of RAN functions, including the RU,
DU, and CU, making it fully autonomous in terms of
processing capabilities. This setup eliminates the need
for a dedicated FH or midhaul link, as all RAN layers
are processed onboard the UAV. While this drastically
reduces latency and FH BW requirements, it significantly
increases computational and energy demands, limiting
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scalability for larger networks or diverse traffic patterns.

A. Performance Implications of FS in UAV-based NTNs

In UAV-based NTNs, FSs impact the computational com-
plexity on the UAV as well as the BW and latency demands
on the FH. Lower-layer FSs increase the processing burden
on the UAV but reduce FH BW and latency requirements.
Conversely, higher-layer FSs place more demands on the FH,
requiring higher BW and lower latency while reducing the
UAV’s computational load. The following sections analyse the
major FS options in terms of these key trade-offs.

Option 8 places minimal computational demands on the
UAV, as all baseband functions, such as modulation, HARQ,
and beamforming, are processed by the DU. However, it
imposes significant FH BW requirements because raw IQ
samples are transmitted over the FH, resulting in heavy data
loads that scale with antenna numbers. While propagation
delays are negligible over short UAV heights, the large volume
of data can lead to transmission delays and queuing at the
DU, making this FS prone to latency issues. The primary
contributors to overall latency are the high processing delays
in the DU and the large data volume traversing the FH.
Furthermore, the reliability of the system is fragile due to the
heavy dependence on the FH link, where any instability or
congestion can exacerbate delays.

Option 7.1 reduces FH BW compared to FS-8 by trans-
mitting subcarriers after RE mapping. This shifts basic RF
functions to the UAV while centralising most real-time opera-
tions at the DU. The UAV’s computational complexity remains
low, as tasks such as scheduling, HARQ, and error correc-
tion are still centralised. Regarding overall latency, although
transmission delays over the FH are minimal, processing
delays at the DU, including queuing and scheduling, are the
main contributors. The system’s reliability remains tied to the
availability of high BW and low-latency FH links.

Option 7.2x offers greater efficiency for UAV-based NTNs
by offloading more L-PHY tasks, such as digital beamforming
and IFFT, to the UAV. This reduces the amount of data trans-
mitted over the FH but increases the computational complexity
on the UAV. Specifically, by moving digital beamforming
to the UAV’s DU, the bit rate now scales with the number
of MIMO layers rather than antenna ports, reducing overall
data transmission requirements, though the bit rate remains
relatively high and constant. While latency requirements (i.e.,
up to 0.25 ms) are still significant, they are slightly more
relaxed than FS-7.1. Overall latency in FS-7.2x is primarily
determined by the UAV’s ability to handle the additional
processing load and the efficiency of coordination between the
UAV and the ground-based DU. Although the FH data load
is reduced, delays can still arise from processing overhead at
both the UAV and the DU, particularly in real-time operations.
Furthermore, reliability improves with the reduced FH data
load, but stable FH performance is still essential to maintain
seamless coordination.

Option 7.3 improves FH efficiency by offloading additional
PHY tasks, such as layer mapping and precoding, to the UAV
(RU). Since modulation is performed at the ground-based DU,

the bit rate on the FH becomes variable and is significantly
lower than in FS-7.2. While the reduced FH data load enhances
BW efficiency, the increased computational burden on the
UAV requires robust real-time processing capabilities. The
overall latency in FS-7.3 is influenced by the processing
delays at both the UAV and the DU. Although FH latency
requirements remain similar to previous FSs, the system’s
efficiency depends heavily on the UAV’s ability to handle
its increased processing load and the coordination between
the UAV and the ground-based DU. While the reduced FH
dependency improves reliability, the trade-off is the need for
more robust onboard processing capabilities to manage real-
time operations efficiently.

Option 6 reduces FH BW by transmitting only transport
blocks, making it suitable for BW-constrained UAV-based
NTNs. However, this comes with increased control-plane over-
head, as close coordination between the MAC and PHY layers
is needed for scheduling. The UAV assumes additional PHY
processing responsibilities while the DU manages scheduling,
creating a trade-off between FH BW efficiency and onboard
computational demands. Overall latency is influenced by pro-
cessing delays at both the RU and DU. Ensuring real-time
coordination between the UAV and DU is essential to avoid
synchronisation issues that could degrade system reliability.
Task coordination between MAC and PHY layers directly
impacts reliability, and any misalignment can lead to increased
latency or degraded performance.

Option 2 or the RLC/PDCP FS reduces the FH BW as the
DU handles H-PHY, MAC, and RLC functions co-located with
the RU. Only PDCP and network layer functions are processed
at the CU, making this FS ideal for BW-constrained midhaul
scenarios. This configuration reduces FH load significantly but
increases onboard energy consumption due to real-time task
handling at the UAV. The trade-off between FH efficiency and
UAV complexity is significant. Reduced BW comes at the cost
of higher computational load and energy demand on the UAV,
which must manage real-time tasks at the DU. Regarding mid-
haul latency, FS-2 offers relatively relaxed sensitivity (up to
10 ms). However, the overall delay is affected by processing at
the DU, mid-haul transmission, and synchronisation between
CU and DU/RU.

III. JOINT POWER AND RRM IN NTN FOR URLLC

A. Network Model

We model a network that provides two services, namely
eMBB and URLLC, within the O-RAN framework in the
context of UAV-NTN. In this architecture, several edge cloud
servers are strategically deployed at the near-RT-RIC, estab-
lishing connections with a regional cloud server located at
the non-RT-RIC. This configuration enables efficient resource
allocation and management for the two services, leveraging
the capabilities of UAVs for enhanced connectivity and per-
formance in diverse environments. NTNs present a challenging
environment due to their long propagation delays, highly
dynamic channels, and unpredictable traffic conditions. We
consider an NTN with UAV-based access to provide enhanced
mobile broadband (eMBB) and URLLC services. The system
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Fig. 1: Deployment options, (a) Functional Split Options (b) UAV act as a relay (c) UAV act as an NT RU (d) UAV act as an
NT RU and DU (e) UAV act as an NT gNB

must efficiently allocate resources across users with differ-
ent service requirements while adhering to stringent URLLC
constraints. The eMBB focuses on a high data rate, requiring
efficient BW utilisation with relatively lenient latency and
reliability constraints.

However, URLLC targets ultra-low latency (≤ 1ms) and
extreme reliability (≥ 99.999%), which is critical for au-
tonomous driving and telemedicine applications. We use Nu-
merology 1 for eMBB traffic and Numerology 2 for URLLC.
Numerology 1 has a sub-carrier spacing of 30 KHz, which
is beneficial for high throughput, while Numerology 2 offers
a sub-carrier spacing of 60 KHz, enabling faster and more
reliable transmissions for URLLC. The system uses a dynamic
frame structure, where eMBB slots are punctured to accommo-
date urgent URLLC traffic. This flexibility allows the system
to meet the stringent URLLC latency requirements while
maximising throughput for eMBB users. The challenge lies
in puncturing the eMBB slots without significantly affecting
their throughput while ensuring that URLLC packets are
delivered within their latency bounds. This paper outlines a
comprehensive system model that integrates RAN intelligent
controller (RIC) and O-RAN functionalities to optimise the
performance of both eMBB and URLLC services. The RIC
leverages O-RAN FS, enabling flexible resource allocation and
improved system efficiency.

B. Open Challenges

The primary challenge addressed in this paper is the simul-
taneous provisioning of eMBB and URLLC services within an
NTN environment, ensuring that the distinct QoS requirements
for each are met effectively. The immediate scheduling of
URLLC users can affect the rate of eMBB users. To address

this, a puncturing decision variable is introduced, which allows
the system to puncture the eMBB transmission to accommo-
date URLLC users [9].

To maintain the quality of service for both eMBB and
URLLC users, we must address the outage probabilities (OP)
associated with each service type. For URLLC, the reliability
must be extremely high, often quantified as a packet error
rate of 10−5. The URLLC xApp scheduler on RIC manages
the OP by dynamically adjusting the HARQ processes based
on real-time conditions to ensure that URLLC users receive
reliable service. Latency is another critical factor, particularly
for URLLC, whose goal is to keep end-to-end latency below
1 ms. The network must minimise the total transmission delay
while accommodating the HARQ round-trip time. The main
objectives can be summarised as :

• Maximise eMBB Throughput: The primary goal is to
maximise the data rate for eMBB users while ensuring
that the prioritisation of URLLC traffic does not sig-
nificantly degrade their service. This requires efficient
resource allocation strategies adapting to varying network
conditions and user demands.

• Meet URLLC QoS Requirements: URLLC users require
ultra-reliable communication with minimal latency. To
satisfy these stringent requirements, we must ensure that
the OP for both reliability and latency are kept within
acceptable bounds. Specifically, the reliability of URLLC
must remain above a threshold (e.g., 99.999%), and
latency must be maintained below 1 ms.

• Dynamic Resource Management: Effective resource man-
agement is essential for balancing the competing needs
of eMBB and URLLC users. This involves dynamically
allocating resources such as power and BW based on
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real-time traffic conditions and user requirements.
• Implement O-RAN FS: We aim to create a flexible

network architecture that allows seamless communication
between different network components by leveraging O-
RAN FS. This flexibility is essential for rapidly adapting
to changing network conditions and user demands.

C. URLLC frame structure

The traditional LTE frame structures are unsuitable for
URLLC due to excessive user plane latency, often exceeding
1 ms because of retransmission delays and HARQ round-trip
times (RTT). To address this, 5G introduces wider subcarrier
spacings (e.g., 60 kHz) and mini-slot designs, which are
essential for NTN applications where large propagation delays
and communication interruptions occur due to atmospheric
conditions or handovers. For URLLC in NTNs, a 60 kHz sub-
carrier spacing ensures ultra-low latency and high reliability.
Each OFDM symbol duration is 17.85 µs, leading to a mini-
slot duration of 35.71 µs (2 symbols × 17.85 µs). This enables
multiple mini-slots within a single transmission time interval
(TTI), allowing for rapid HARQ feedback within or imme-
diately after a mini-slot. Considering HARQ retransmissions,
the maximum allowable latency is 0.21 ms (6 × 0.0357 ms),
effectively meeting URLLC’s strict latency requirements [5].

IV. DRL-BASED SOLUTION IN NTN AND O-RAN
To effectively tackle the challenges presented by URLLC in

NTN, it is crucial to customise the DRL framework to align
with the unique characteristics of these applications. URLLC’s
stringent requirements for ultra-low latency (≤ 1ms) and
extreme reliability (≤ 99.999%) in the dynamic NTN environ-
ment demand intelligent resource allocation mechanisms. This
involves defining states, actions, and rewards that encapsulate
the intricacies of URLLC performance metrics while adapting
to fluctuating channel conditions.

In the context of decision-making problems addressed by
DRL, an ϵ-greedy approach is often employed to select actions.
Here, the parameter ϵ represents the probability of the agent
choosing a random (exploration) action rather than the one
currently deemed optimal (exploitation). When ϵ is small,
the agent primarily exploits known actions, while a larger ϵ
encourages exploration through random selections. Although
this method can yield effective results, it may not always guide
the agent toward a globally optimal solution, as the agent
may become trapped in a sub-optimal solution by repeatedly
choosing the action with the highest estimated reward.

A. Thompson Sampling (TS) for URLLC

In previous studies, TS has demonstrated its effectiveness
in the intelligent resource scheduling of URLLC users [9].
In NTN contexts where uncertainties in the communication
environment are prevalent, TS is particularly valuable. For re-
source allocation tasks, TS dynamically adapts to fluctuations
in channel conditions by continually fine-tuning its probability
distributions.

Using Bayesian inference, TS begins by modelling the un-
certainty associated with each action’s true underlying reward

Fig. 2: Distributed DRL Framework for RRM in NTN

distribution. This is particularly useful in NTN environments,
where channel conditions are highly variable, and accurate
resource allocation is critical. The ability of TS to adapt its
probability distributions in real-time ensures efficient handling
of URLLC’s stringent requirements, such as minimising la-
tency outages and maintaining transmission reliability under
fluctuating conditions.

B. TS-based Twin-Delayed Deep Deterministic Policy Gradi-
ent (TD3) Solution

The TD3 algorithm builds upon the Deep Deterministic
Policy Gradient (DDPG) algorithm, specifically addressing
its inherent overestimation bias that can compromise policy
performance [10]. Introducing twin critics within TD3 en-
hances stability during the learning process, which is par-
ticularly essential in the dynamic environments of URLLC.
By embedding TS within the TD3 architecture, we introduce
a probabilistic exploration mechanism that complements the
deterministic policy updates of TD3. Twin critics ensure
stability in policy learning by mitigating overestimation biases,
which is crucial for maintaining consistent performance in the
dynamic and uncertain environments of URLLC applications.
This integration enables the framework to dynamically allocate
spectrum, power, and scheduling resources while adhering to
strict URLLC latency and reliability thresholds.

As illustrated in Figure 2, the distributed framework desig-
nates each UAV as a DRL agent operating within the near-RT
RIC. This setup allows each UAV to make autonomous, real-
time decisions based on localised data, significantly reducing
the dependency on the central non-RT RIC for immediate
decisions. Offline training conducted at the central server
ensures that agents can learn from aggregated data on all
UAVs, improving generalisation and speeding up convergence.

V. DRL-POWERED RRM: A CASE STUDY

In this section, we validate the effectiveness of the pro-
posed Multi-Agent TD3-based resource allocation approach
for multi-UAV networks through comprehensive simulations.
The multi-UAV network is deployed within a disc radius of
500 m. Ground users are randomly and uniformly distributed
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(a) Percentage of users not meeting a 1 ms latency requirement at
the 10−4 percentile

(b) CDF of URLLC transmission error probability at 5 packets/slot

Fig. 3: URLLC latency and reliability analysis for different
FSs.

throughout this area, allowing us to assess the performance
of our algorithm under various traffic conditions. All UAVs
are assumed to operate at a fixed altitude of 200m and
are connected with a gNB and a core network. We analyse
the performance of different FSs with varying eMBB and
URLLC requests. The proposed DRL approach is trained
using diverse communication configurations, including varying
URLLC arrival rates.

In Fig. 4, we investigate the URLLC latency and reliability
obtained by the proposed DRL scheme and compare the
performance with the different FSs of O-RAN in NTN. Fig. 3a
shows that even as the URLLC packet arrival rate increases,
the FS-7.2x and FS-6 configurations effectively maintain OP
well below the 10−4 threshold for all tested packet arrival
rates. This is likely due to improved synchronisation and
resource allocation between the CU and DU, reducing process-
ing delays and more optimal use of available radio resources.
Additionally, 7.2x likely benefits from more parallelism in
handling data flows, minimising queueing and processing la-
tency. This characteristic is critical for applications demanding
near-zero latency, such as autonomous vehicles and remote
surgery, where failure to meet the latency requirement could

lead to catastrophic outcomes. In contrast, FS-2 shows a sharp
increase in OP as the packet arrival rate increases, surpassing
the 10−4 threshold at relatively low arrival rates, particularly
evident at 4 packets per slot, where it approaches approxi-
mately 15% of UEs not satisfying the latency requirement.
This is primarily due to its increased complexity, which is
likely to incur a higher processing overhead, leading to delays
in packet scheduling and transmission. This behaviour un-
derscores FS-2’s inadequacy in high-demand scenarios, illus-
trating its inability to support low-latency applications. FS-8,
while slightly better than FS-2, still exhibits a worrying trend
as it approaches the critical threshold, especially as the traffic
load increases. Thus, the results reinforce the importance of
selecting a robust FS configuration to ensure compliance with
the 10−4 percentile requirement. The performance of FS-7.2x
stands out as it provides a resilient solution capable of handling
increasing traffic without compromising latency guarantees.

The reliability results depicted in Fig. 3b highlight the
URLLC transmission error rates at five packets per slot
across different FS configurations, focusing on maintaining
performance under the stringent threshold of 0.032. This value
reflects an acceptable reliability limit, informed by previous
work and relevant performance benchmarks for URLLC in
NTN and O-RAN environments [5]. From the graph, it is
evident that FSs 7.2x, 6, and 2 remain within acceptable
limits, while FS-8 exhibits significant deviation, exceeding the
error rate threshold. FS-7.2x, represented by the solid blue
line, consistently demonstrates the best performance, with its
cumulative probability curve staying well below the threshold,
showcasing its superior reliability for URLLC traffic. This
indicates that FS-7.2x is the most suitable candidate for en-
suring low-latency, ultra-reliable communication, as URLLC
standards require. FSs-6 and 2, represented by the dashed
red line and the dash-dot magenta line, respectively, display
better behaviour, approaching the error threshold but never
breaching it, making them acceptable choices for scenarios
where reliability is crucial but less stringent than those re-
quiring the highest performance. In contrast, FS-8, repre-
sented by the dotted orange line, underperforms significantly,
with a substantial portion of its cumulative probability curve
exceeding the threshold. This is because RU reliance on
DU for essential functions like scheduling, channel coding,
and modulation can result in contention issues, particularly
under high load conditions, leading to resource blocking and
decreased reliability. This places FS-8 in the violated region,
signalling that it is unsuitable for critical URLLC applications
where maintaining a low error rate is essential.

The deviation seen in FS-8 highlights the risks of choosing
inappropriate configurations for high-reliability communica-
tion scenarios, as its transmission error rates exceed accept-
able limits, compromising system performance. Overall, the
results demonstrate that while FSs-6 and 2 provide adequate
reliability, FS-7.2x offers the best balance between error rates
and performance, making it the optimal choice for URLLC
systems. Therefore, the analysis supports the recommendation
of prioritising FS-7.2x in URLLC systems to ensure that
reliability constraints are consistently satisfied, especially in
environments demanding ultra-reliable, low-latency communi-
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Fig. 4: Covergence behaviour of distributed DRL framework
by FS for RRM in NTN

cation. The introduction of TS in TD3 helps the agent explore
the action space better, leading to improved decision-making
and reduced OP for URLLC. This approach is especially ben-
eficial in environments with high uncertainty or non-constant
reward distribution, which is common in URLLC scenarios.

In Fig. 4, the convergence performance of the DRL-based
resource allocation framework is evaluated for different O-
RAN FS in the NTN scenario. The results indicate that FS-7.2x
achieves the highest reward, demonstrating superior learning
efficiency and performance stability. This is attributed to its
balanced trade-off between onboard processing and front-
haul dependency, enabling efficient resource utilisation. FS-6
and FS-8 show moderate convergence, with FS-8 exhibiting
slightly lower rewards due to increased front-haul bandwidth
requirements. FS-2, which relies more on onboard processing,
converges at the lowest reward level, reflecting its limited
flexibility in adapting to dynamic network conditions. These
findings highlight the importance of functional split selection
in optimising URLLC within UAV-based NTNs.

VI. CONCLUSION

In this paper, we employ the DRL technique to investigate
the performance of various FSs within the O-RAN framework
for URLLC. We specifically compared the performance of
different FS configurations, revealing significant disparities
in their ability to meet the 10−4 OP threshold essential for
URLLC. The analysis highlighted that FS-7.2x consistently
outperformed the other configurations, effectively support-
ing higher packet arrival rates while ensuring compliance
with latency requirements. Overall, our findings emphasise
the importance of optimising FS configurations in O-RAN
for URLLC applications, particularly in contexts requiring
ultra-low latency and high reliability. As the demand for
URLLC applications continues to rise, our work serves as a
foundational study for future research aimed at refining O-
RAN architectures and ensuring robust performance across
various applications. This research paves the way for further
exploration into advanced communication systems capable
of meeting the challenges posed by next-generation wireless
technologies.
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