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Not-So-Average After All:
Individual vs. Aggregate Effects in Substantive Research

MARIUS RADEAN∗ and ANDREAS BEGER†

ABSTRACT

In nonlinear models, the effect of a given variable cannot be gauged directly from the associated
coefficient. Instead, researchers typically compute the average effect in the population to assess
the substantive significance of the variable of interest. Based on the average response, analysts
often make policy recommendations that are to be implemented at the individual level. Such ex-
trapolations, however, can lead to gross generalizations or incorrect inferences. Particularly when
cases carry special meaning (e.g., countries), the political and socioeconomic relevance of research
findings should be assessed at the individual level. Put differently the real-world applicability of
the average effect is often limited. This paper outlines the conditions under which aggregation to
mean is problematic, and advocates for a case-centered approach to model evaluation. Our ap-
proach allows researchers to draw more meaningful inferences, and makes the connection between
research and practical applications more realistic.
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1 Introduction

In nonlinear models, the effect of a given factor cannot be gauged directly from the associated

coefficient. Instead, researchers typically compute the average effect in the population to assess

the substantive significance of the variable of interest. Based on the average response, analysts

often make policy recommendations that are to be implemented at the individual level.1 As an

illustration, if economic development is found to have—on average—a negative effect on civil war

onset, the recommendation to a country seeking to stave off civil war would be to implement sound

economic policies. However, policy recommendations for individual cases based on the average

response can lead to gross generalizations or incorrect inferences. Specifically, the mean may ob-

scure a large variation in individual effects, in which case the real-world applicability of the average

effect is limited. Correctly interpreting the average effect may prevent unwarranted extrapolations,

but does not solve the problem of the lack of practical relevance. We outline the conditions under

which aggregation to mean is not advised, and advocate for a case-centered approach to model

evaluation. Particularly when cases carry special meaning (e.g., countries, supreme court justices),

we advise researchers to compute and report the effect for each case in the data. Only by seeing the

full spread of cases can the reader assess how well the average summarizes the population. In sum,

1 To provide one example, Graham, Miller and Strøm (2017) explicitly link their results to

policy recommendations (e.g., “our findings have policy implications for democracy promoters and

international peacekeepers” p. 687), and name half a dozen countries to which the study’s findings

should apply. The policy advice, however, is based on the average population effect (no individual

effects are reported). The authors also extrapolate to cases not included in the estimation sample

(e.g., democratic Burma). For these cases, it is not even possible to estimate individual responses

since the necessary information does not exist in the data (i.e., the value of relevant covariates).

In the upcoming Democratic survival in post-civil war settings section, we discuss in more detail

how closely the average value reflects the underlying cases for one of their analyses.
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our approach allows researchers to draw more meaningful inferences, and makes the connection

between research and practical applications more realistic.

Translating research results into meaningful practical recommendations is not straightfor-

ward. For example, Ward, Greenhill and Bakke (2010) warn about the perils of “policy by p-value,”

that is, a policy informed by predicted effects that are statistically significant but too small to be

substantively meaningful. In this paper, we caution against the perils of policy by average effect.

There are both practical and substantive concerns to automatically using the mean to summarize

the population. Practically, there are distributional forms that render measures of central tendency

less useful (e.g., uniform, bimodal, skewed distribution). Distributional form aside, “the concept of

a ‘central value’ is less meaningful” when the observations are spread out, “in which case no single

central value can be representative” (Gelman and Hill, 2007, 467). These conditions are common

in political science research. Many social science outcomes follow non-normal distributions (e.g.,

the probability of civil war onset, the household income in developed countries), and the disper-

sion of individual responses (e.g., predicted probabilities, marginal effects) has no predetermined

pattern and may vary from one analysis to the next.

Substantively, focusing solely on the average response is problematic when our cases are of

immediate interest. Using Hanmer and Kalkan’s (2013, 267) taxonomy, we have two types of data:

With large n studies, such as those based on survey data, [. . . ] any individual case is anonymous and
does not carry any special meaning. With studies based on a legislative body, a set of countries, and
so on, the individual cases are entities in which we might have a special interest. For example, we
might want to predict what could have influenced the probability that Hillary Clinton (in her time as a
senator) would have supported an immigration bill, the number of environmental regulations Ireland
will enforce, which countries are likely to fall into a civil war [. . . ].

When cases carry special meaning, the practical relevance of our findings (i.e., the social, politi-

cal, or economic significance) should be assessed at the individual level. Discussions of specific

cases, in turn, ought to be based on what the model says about that particular case rather than on

conjectures derived from the average response.
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These concerns are laid bare in nonlinear model analyses where individual cases’ charac-

teristics play a big role. Specifically, in models with a limited dependent variable (e.g., binomial,

ordered, or multinomial logit, etc.), the idiosyncratic features of individual observations have a

significant impact on the magnitude of estimated effects. The higher the heterogeneity of the cases

in the data, the less meaningful the average effect is. Some may argue researchers are well aware of

the non constant nature of effects in nonlinear models, and of the fact that extrapolations from the

population average to individual cases are tenuous. This knowledge, however, is not reflected in

practice. Most studies report only the average effect, which obfuscates the underlying distribution

of cases. At the very least, the current practice places an undue burden on nontechnical readers

who are expected to know about classes of models associated with non constant effects.2

Consider the real data results from a logistic regression on civil war onset, which we discuss

in more detail below. The average probability of war onset is 1.6% (1.3, 1.9), and the average effect

of doubling GDP per capita is -0.3 percentage points (-0.5, -0.1). The numbers in parentheses

indicate the respective 95% confidence intervals (CIs). What can we infer from these quantities of

interest? The low onset probability suggests that civil wars are unlikely to occur, and thus countries

should not be particularly concerned. Similarly, doubling a country’s GDP, which is no small feat,

does not seem effective in preventing violent civil unrest. Arguably, a risk reduction of less than

half of a percentage point (i.e., from 1.6% to 1.3%), does not justify acting in practice.

These conclusions are hard to square with the extensive literature on civil wars, which argues

they are the most common type of conflict, are very costly, and should not to be ignored (Pettersson,

Högbladh and Öberg, 2019). At the domestic level, their destructive nature is reflected in the high

death toll for the combatants, as well as the high number of terrorist attacks on civilians (Lacina,

2006; Polo and Gleditsch, 2016). At the international level, peacekeeping and state-building efforts

2 Along these lines, King, Tomz and Wittenberg (2000, 348) also argue that “students, public

officials, and scholars should not need to understand phrases like ‘coefficient,’ ‘statistically signif-

icant,’ and ‘the 0.05 level’ to learn from the research.”
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entail high financial and personnel costs (Fortna, 2004; Gilligan and Stedman, 2003).

The interest of scholars and policy-makers in understanding and preventing civil wars starts

to make sense only when we unpack the average response and consider individual cases. Specifi-

cally, there are countries with a probability of civil war onset higher than 50%, for which improved

economic performance can reduce the risk by up to 10 percentage points. Indonesia in 1950 is one

such example. The onset probability for this case is 53% (significantly higher than the 1.6% pop-

ulation average), while the expected decrease in the probability of civil war onset is 9 percentage

points (compared to the -0.3 average value). It is precisely the countries on the brink of civil, such

as 1950 Indonesia, which are the focus of international efforts. Thus, there are contexts where the

interest lies not with the average response, but with cases otherwise labeled as “outliers.” In these

contexts, policy initiatives based on the average effect are counterproductive.

For analyses where aggregation to mean is problematic, we advise a case-centered approach.

Examining the quantity of interest at the case level provides greater leverage and helps avoid two

common problems. First, depicting a wide range of effects by a single value can lead to gross

generalizations or incorrect inferences. By gross generalizations we mean that the magnitude

of individual effects is (severely) misrepresented by at least an order of magnitude. Incorrect

inferences refers to cases where individual effects have the opposite sign than that of the average

effect, or when subgroups exhibit opposite trends (e.g., the effect size increases with x for some

cases, but decreases for others).

Second, aggregate effects may obscure the link between research and practical applications.

The aforementioned average effect of GDP/capita on civil war onset, which indiscriminately pools

stable and less stable countries, is of little practical relevance. In fact, its interpretation is as

simple as it is uninformative. The 0.3 reduction in the onset probability indicates that, on average,

doubling the GDP of all countries in the world reduces the global risk of civil war by less than

half of a percentage point. Crucially, the average does not represent a reasonable value for the

change in the individual risk of civil war of a given country, based solely on its own economic
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performance. Yet this is the relevant information for practical applications, since governments do

not control other countries’ economic policies. The limited real-world applicability of the average

effect brings into question its substantive significance.

2 Technical considerations

The mean value is not necessarily representative for the observations at large or specific subgroups.

This is particularly the case for marginal effects in nonlinear models, where the effect magnitude

is case-specific and can vary a lot without us realizing it.3 We illustrate this point using logistic

regression results from several Monte Carlo experiments. Our generic model is y = β0 + xβx +

zβz + (x × z)βxz + ε, which allows us to have model specifications with varying degrees of

complexity. x is the variable of interest and z represents the other covariates (if any). x and z

are randomly drawn from a normal distribution, N (0, 1), and are independent, ρ(x, z) = 0. The

coefficient of the intercept, β0, is set to 0, and the error term ε is drawn from the standard logistics

distribution with mean 0 and standard deviation π/
√

3. βx equals 1 is all models specifications,

whereas βz and βxz take on several values (including zero). Next we discuss several scenarios,

determined by different combinations of coefficient values.

A bivariate case

Table 1, Model a shows the regression results for a bivariate model where x is the sole covariate

(i.e., βz = 0 and βxz = 0). Using these estimates, in Figure 1a we plot the predicted probabilities

(i.e., Pr(y = 1|x) = Λ (β0 + xβx), where Λ is the logistic link function) for all our 1,000 simulated

observations. Since βx is positive, the probability increases as x increases. Besides the individual

probabilities (the solid dots), we also graph the sigmoid logistic curve, whose distinct shape ex-

plains the non constant effects. Specifically, the line is almost flat close to the two extremes of the

3 In this paper, we use the terms marginal effect and discrete effect interchangeably. Technically,

however, all the effects that we report in this study are due to a discrete increase in x.
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Table 1: Logistic regression results with simulated data

(a) (b) (c) (d) (e)

βx = 1 βx = 1 βx = 1 βx = 1 βx = 1
βz = 0 βz = 1

3 βz = 3 βz = 3 βz = 1
3

Regressor βxz = 0 βxz = 0 βxz = 0 βxz = 0 βxz = 3

x 1.22*** 1.21*** 1.33*** 0.97*** 1.24***
(0.09) (0.09) (0.12) (0.03) (0.13)

z
—

0.47*** 3.10*** 2.97*** 0.41***
(0.08) (0.20) (0.06) (0.12)

x× z
— — — —

3.24***
(0.24)

Constant 0.07 0.05 −0.03 0.01 0.08
(0.07) (0.07) (0.10) (0.03) (0.08)

Log likelihood −563.25 −555.05 −341.18 −3501.10 −428.65
Number of observations 1000 1000 1000 10000 1000

* p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed test)

probability space (0 and 1). This in turn compresses the effects in those regions. For concreteness,

consider the marginal effects associated with the three values of x highlighted in the plot: -3.73,

-0.56, and 3.88. The arrows show the change in Pr(y), and the respective percentage point increase

are 3, 30, and 1. Thus, conditional on the starting probability, the same unit increase can have

dramatically different effects for individual cases.

Figure 1b shows the effect of a 1-unit increase in x for all observations.4 For reference, the

4 Following Hanmer and Kalkan’s (2013) recommendation, we employ the observed-value ap-

proach to compute the effect of the counterfactual increase in x. This entails computing the effect

for each case in the data, with the covariates set at their observed values. The mean of the individ-

ual effects is the average effect. The alternative, which until recently was the prevalent approach, is

to compute the average case effect. This entails computing a single effect while the covariates are

set at their mean value. Since it glosses over the differences between individual observations, the

average case effect is often unrepresentative of many of the underlying cases (p. 268). In Online

appendix A.1, we present the formulas for the two types of effect, as well as worked examples of
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Figure 1: The effect of x and the impact of the logistic link function

(a) βz = 0; βxz = 0 (predicted probabilities)
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(b) βz = 0; βxz = 0 (marginal effects)
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Note: In Figure 1a, the solid line is the S-shaped logit curve, and the solid circle marks indicate the individual predicted
probabilities for all cases. In Figure 1b, the solid line indicates the average marginal effect and the dashed lines
are the 95% CI. The solid circle marks indicate the individual marginal effects. The dotted vertical lines delineate
the marginal effects when x is approximately 0.5. The predicted probabilities were computed using the predict
command, whereas the marginal effects were computed using margins,contrast (StataCorp, 2023).

three cases discussed above are highlighted in this plot as well. Here the dots represent the 1,000

individual marginal effects. The color indicates where the baseline probability falls on the [0, 1]

probability spectrum; the darker the hue, the closer to 1 the starting probability is. The solid line

indicates the average effect and the dashed lines are the 95% CI. Since x is the sole covariate, there

is no noise and the individual effects are nicely arranged along the average effect line. Because of

compression, large marginal effects correspond to midrange initial probabilities, i.e., the gray dots.

Conversely, the lighter or darker the hue, the smaller the marginal effects.

Multivariate and alternative model specifications

Model 1b shows the regression results from an additive multivariate model (βxz = 0), where the

input of the extra covariate is relatively small (βz = 1
3
βx). Using these estimates, Figure 2a plots

the effect of a 1-unit increase in x for this scenario. Now the individual effects start to deviate from

the average line, which is due to z also affecting the predicted probability. Model 1c shows the

results for a scenario where the input of z is relatively large (βz = 3βx), and Figure 2b graphs the

how to compute the respective effects.
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Figure 2: The effect of x conditional on the input of the other covariate z

(a) βz = 1
3 ; βxz = 0 (marginal effects)
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(b) βz = 3; βxz = 0 (marginal effects)
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(c) βz = 1
3 ; βxz = 3 (conditional effects)
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(d) βz = 1
3 ; βxz = 3 (interaction effects)
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Note: The solid lines indicate the average effect and the dashed lines are the 95% CI. The solid circle marks indicate
the individual effects for all cases. The dotted vertical lines delineate the effects when x is approximately 0.5 (-
0.5 in Figure 2c). The marginal and conditional effects were computed using the margins,contrast command
(StataCorp, 2023), and the interaction effects using the ginteff software (Radean, 2023a).

associated marginal effects. In this scenario, the individual effects do not follow the average line

and are dispersed without a discernible pattern. As before, small effects correspond to low or high

initial probability (see the cluster of light and dark dots at the bottom of the graph). The difference

is that the value of x is no longer the determinant factor for the initial probability.

The average effect deflation as βz increases (i.e., the effect line in Figure 2b is flatter com-

pared to the one in Figure 2a), is due to the vertical variation in marginal effects. Specifically,

for the same x value, a 1-unit increase can lead to a change in y ranging from virtually 0 or 32
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percentage points. As an illustration, let us consider the marginal effects when x is approximately

0.5, or more precisely x ∈ [0.45, 0.55].5 35 observations fall within this range, which is delineated

in the graphs by dotted vertical lines. Table 2 reports, by scenario, the standard deviation and range

of effects for the entire sample as well as the narrow interval. The smaller the variation and range,

the better the average describes the population.

When x is the only covariate (βz = 0), the difference between the minimum (min) and maxi-

mum (max) effects in the entire sample is 28.9 percentage points (see the first row in Table 2). By

contrast, the difference is roughly 0 when x ' 0.5, and so is the standard deviation. This means

that the variation in marginal effects is mainly horizontal (i.e., across the range of x), with virtually

no vertical variation (i.e., for a given value of x). For the βz = 3βx scenario, however, the variation

and range of effects at x ' 0.5 are virtually the same as those for the entire sample. Since the

spread of effects is very similar, is makes as much sense to talk about a single effect when x '

0.5, as would be to presume that the effect of x is constant across its entire range, [-3.73, 3.88]. Of

course, assuming constant effects in nonlinear models is problematic.

What explains the vertical variation in marginal effects at x ' 0.5? Since the value of x is

fixed, the variation is driven by the values of z. Recall that z represents the other model covariates,

or the case-specific characteristics that discriminate between observations with the same x value.

Since the average effect for a given x value conceals the vertical variation, analysts implicitly

assume that cases are similar on all other characteristics. In this sense, the average effect retains

some of the flaws associated with the average case approach to computing substantive effects.

So far, all our simulations had the same sample size, i.e., N = 1,000. This allows us to

attribute any changes in the results to βz taking different values, since this is the only difference

across scenarios. But are the findings driven by having a relatively small sample? In other words,

does the average value become more representative asymptotically? To answer this question, we

5 We look at a narrow range rather than a fix value (i.e., x ' 0.5 vs. x = 5), because there are

no two observations with the same value of x.
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Table 2: The effect of a 1-unit increase in x on y

Individual effects
Average vs.

individual effects (%)

Scenario x range Obs. Mean Std. Dev. Min Max Within CI Diff. Sign

βz = 0;βxz = 0
[−3.73, 3.88] 1,000 0.215 0.073 0.006 0.295 100 0
[ 0.45, 0.55] 35 0.206 0.004 0.199 0.212 100 0

βz =
1
3 ;βxz = 0

[−3.73, 3.88] 1,000 0.211 0.074 0.005 0.295 54.30 0
[ 0.45, 0.55] 35 0.215 0.041 0.107 0.279 25.71 0

βz = 3;βxz = 0
[−3.73, 3.88] 1,000 0.141 0.113 0.000 0.320 6.00 0
[ 0.45, 0.55] 35 0.161 0.114 0.001 0.320 2.86 0

βz = 3;βxz = 0
[−3.75, 4.04] 10,000 0.107 0.084 0.000 0.239 2.87 0
[ 0.45, 0.55] 359 0.109 0.084 0.000 0.239 3.34 0

βz =
1
3 ;βxz = 3 [−3.75, 4.04] 1,000 0.094 0.304 −0.890 0.974 7.30 31.80(∆Pr(y)

∆x

)
[−0.45, −0.55] 29 0.296 0.524 −0.735 0.974 3.45 27.59

βz =
1
3 ;βxz = 3 [−3.75, 4.04] 1,000 0.148 0.263 −0.162 0.766 6.60 42.80(∆2Pr(y)

∆x∆z

)
[ 0.45, 0.55] 35 0.063 0.196 −0.162 0.382 2.86 54.29

conduct an additional simulation for the most problematic case (i.e., βz = 3βx), while increasing

the number of observations from 1,000 to 10,000. The regression results for this simulation are

presented in Model 1d, and the variation in individual effects is detailed in the fourth row of

Table 2. As it turns out, having more observations does not alleviate the problem. Once again, the

variation and range of effects at x ' 0.5 are indistinguishable from those for the entire sample.

Thus, collecting more data is not a solution to the problem we highlight in this paper.

Lastly, we consider a scenario entailing interaction effects, for which βz = 1
3

and βxz = 3.

The associated regression estimates are shown in Model 1e. When x and z interact in influencing

Pr(y), there are two types of effects that may be of interest. The first is the conditional effect of

x at specific levels of z. These are the estimates plotted in the standard conditional effect graph,

which shows the effect of x over the range of z, ∆Pr(y)
∆x

= Pr(y|x + n, z = [min, . . . ,max])−

Pr(y|x, z = [min, . . . ,max]). The other effect is the interaction effect associated with a discrete

change in both x and z (Ai and Norton, 2003; Clark and Golder, 2023; Radean, 2023a). While
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the conditional effect is the difference between two predicted probabilities (a first difference), the

interaction effect is the double (or second) difference and entails four probabilities (Norton, Wang

and Ai, 2004, 157), ∆2Pr(y)
∆x∆z

=
[
Pr(y|x+nx, z+nz)−Pr(y|x, z+nz)

]
−
[
Pr(y|x+nx, z)−Pr(y|x, z)

]
,

where n∗ indicates the respective unit increase.

Figure 2c shows the conditional effect of a 1-unit increase in x over its entire range, while z

is set at its observed values.6 The first thing to note is that the individual effects occupy the entire

space of plausible values, [-1, 1]. By contrast, the average effect is positive throughout and has

a much narrower range, [0.003, 0.23]. This has important practical consequence in term of the

average value’s representativeness. Regardless whether we consider the full sample or the case

when x ' -0.5, we now have a significant share of individual effects with the opposite sign than

that of the average effect (32% and 28%, respectively – see the last column of Table 2).

Figure 2d shows the effect of a 1-unit increase in both x and z, that is, the interaction effect.

As with the conditional effects, the spread of individual effects is significantly larger than the one

from additive models. In the full sample, 43% of individual effects have the opposite sign than that

of the average effect, and a full majority when x ' 0.5, 54%. The reason why the average effect is

positive despite a majority of individual effects being negative, is that the positive effects are large

whereas the negative ones are small (they are all clustered just below the zero line). The fact that

the average effect may have the opposite sign than the majority of observations, further challenges

the idea that the mean value is necessarily representative for a large share of observations.

6 We plot the conditional effect of x over its range rather than over z’s, to keep the x-axis the

same in all graphs. This makes the comparison between various scenarios more straightforward.

For completeness, we present the conventional conditional effect plot (with z on the x-axis) in

Figure B1 from Online appendix B. The figure illustrates that the reason some of the individual

effects of x are negative, is because of the strong influence of z when z is negative.
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Potential criticisms

Researchers often acknowledge the horizontal variation in effects (over the range of x), but not

the vertical variation (the spread of effects due to the values of z). Faced with two sources of

variation, some may argue that averaging on the vertical dimension is a necessary simplification.

Were this the case, it is not immediately obvious why disaggregating on the horizontal dimension

is a necessary complication. Technically, this information is not necessary to assess a hypothesis

positing that x has a positive (negative) effect on y.7 Moreover, as discussed above, the horizontal

variation is not necessarily larger than the vertical variation. Thus, it is not a matter of prioritizing

the source of the largest variation. Ultimately, if averaging is an acceptable cost of simplifying

results presentation, why not take the average on both vertical and horizontal dimensions and report

a single average effect? To clarify, we believe that researchers should acknowledge the variation

in the effect of x. This reductio ad absurdum argument is to stress the need to acknowledge all

sources of variation.

Others may point out that by using the average value as a fixed reference point, we neglect

its variance. The argument would be that, while the point estimate of the mean does not match

individual observations, the CI around it must contain a significant share of cases. Yet there is

no theoretical reason to expect that it does. The CI captures uncertainty in the estimation of the

average effect due to sampling uncertainty, not variation of cases around the mean. Other factors,

such as sample size, also affect the CI width. The second to last column in Table 2 provides strong

evidence for this. While all observations fall within the CI of the average effect when x is the

sole covariate, that is no longer the case for the multivariate models. Specifically, the percent of

7 Examining whether the effect magnitude changes over the range of x, is the test for a different

hypothesis. Such a conditional hypothesis, however, should be driven by theory not the choice of

empirical model. The following is not a theoretically derived hypothesis: “The effect of x on y

varies with the values of x if we use a nonlinear model, but it is constant if we use a linear model.”
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observations within the CI is 54.3% when βz = 1
3
βx, and just 6% when βz = 3βx. The percent is

in single digits for both the conditional and interaction effect scenarios (7.3% and 6.6%). Without

the added case points in the plot, it is easy to treat the CI as describing the spread of cases.8

One may also argue that by de-emphasizing the average effect we place too much weight on

outliers. First, thinking of observations in terms of outliers is theoretically problematic when cases

are of individual relevance. Going back to the civil war example, should we dismiss countries with

high risk of conflict as noise? Second, there are analyses where “outliers” are more representative

for the cases at large than the mean. Using the data from the model where βz = 3βx, we calculate

the percent of observations within one standard deviation below and above the mean, as well as

the percent of observations within one standard deviation from the smallest and largest marginal

effects. The number of observations within two standard deviations around the mean is almost six

times lower than the number of cases within one standard deviation from the min and max marginal

effects (5.4% vs. 29.7%). Thus, extreme values are not necessarily outliers.

3 Real data examples

Making inferences about individual cases based on the average response (under the assumption

that the mean summarizes the population well), is not a theoretical problem but rather a practical

issue with substantive implications. Using real data from three published studies, we showcase

that reporting solely the average effect can lead to gross generalizations or incorrect inferences.

The upcoming analyses are meant to exemplify some of the practical problems associated with the

average effect, not to single out the respective studies.

8 In Online appendix C, we provide additional evidence that the CI of the mean is not a good

indicator of individual case variation. The appendix example employs a linear model to convey the

point that this not an idiosyncratic feature of nonlinear models, but rather a more general issue.
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3.1 Wealth and the risk of civil war

The first example reproduces Muchlinski et al.’s (2016) analysis of civil war onset, which we

referenced in the introduction. The data consist of country-years between 1945 and 2000. The

dependent variable, Civil war onset, is a dummy coded 1 when a civil war breaks out, and 0 other-

wise. Following Muchlinski et al., we control for a host of potential determinants: ln(GDP/capita)

records countries’ gross domestic product per capita, log-transformed; ln(Population) indicates the

size of the population; ln(% Mountainous terrain) captures countries’ terrain ruggedness; Prior

war is coded 1 if a country had experienced another war in the past; Non-contiguous territory is a

dummy variable identifying countries that have nonadjacent territories; Oil exports/GDP captures

countries’ reliance on oil as a proportion of the GDP; New state is a dummy identifying states that

are less then two years old; Political instability is coded 1 if Polity records a change to 77 or 88

in the previous three years; Democracy is a regime dummy that equals 1 if the Polity score for a

given country-year is a 6 or above; lastly, Ethnic fractionalization and Religious fractionalization

are indexes that capture countries’ heterogeneity on the respective dimensions.

Table 3 reports the results from a logistic regression. Using the coefficient estimates and co-

variates’ observed values, we compute two of the most common substantive quantities of interest,

that is, predicted probabilities and marginal effects (see Figure 3). Specifically, the solid line in Fig-

ure 3a graphs the average predicted probability and its 95% CI over the range of ln(GDP/capita).

Departing from the standard approach, we also plot the individual probabilities for all cases in the

data. These are indicated by solid circle marks. There are a couple of points worth noting. First,

the spread of individual probabilities is substantively wider than what the average value and its CI

imply. While the average predicted probability is 1.6% (1.3, 1.9), the individual probabilities range

from 0.1% to 53.2%. Moreover, the 95% CI of the average probability includes only 26% of the

cases. Put differently, 74% of the observations lie outside of the mean’s CI.

For the marginal effect plot, Figure 3b, we compute the effect of a 1-unit increase in ln(GDP/
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Table 3: The determinants of civil war onset

Regressor Logistic regression

ln(GDP/capita) −0.36 ***
(0.12)

ln(Population) 0.20***
(0.07)

ln(% Mountainous terrain) 0.18**
(0.08)

Prior war 0.03
(0.25)

Non-contiguous territory 0.22
(0.28)

Oil exports/GDP 0.36
(0.30)

New state 1.79***
(0.32)

Political instability 1.30***
(0.21)

Democracy −0.37
(0.28)

Ethnic fractionalization 0.44
(0.42)

Religious fractionalization 0.58
(0.51)

Constant −8.42 ***
(1.11)

Log likelihood −528.65
Number of observations 7140

* p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed test)

capita), while the other variables are set at their observed values. As an indicator of state capac-

ity, GDP is one of the best predictors of civil war onset (its coefficient is large and statistically

significant), and one that is actionable (in contrast to ethnic and religious fractionalization, ter-

rain ruggedness, etc.). The average marginal effect is -0.5 percentage points (-0.7, -0.2). While

statistically significant, this is not a substantively meaningful effect. Arguably, a decrease in the

probability of war onset from 1.6% to 1.1%, does not warrant acting in practice. Notably, a 1-unit

increase on the logged scale corresponds to tripling GDP per capita on the untransformed scale:
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Figure 3: Conventional predicted probability and marginal effect plots
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(b) Individual marginal effects and
the average marginal effect with the 95% CI
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Note: The solid line indicates the average predicted probability (Figure 3a) or average marginal effect (Figure 3b),
and the dashed lines are the 95% CI. The solid circle marks indicate the individual probabilities or marginal effects,
respectively, for all cases.

ln(GDP/capita) + 1 = ln(GDP/capita) + ln(e1) = ln(GDP/capita× 2.7). Thus, the meager effect

is not an artefact of a small increase in wealth. In terms of the number of cases within the 95% CI

of the average effect, less than half of the observations are included (43%).

Substantive considerations

For any given value of wealth, there can be quite a spread in the quantity of interest; this is the

vertical variation we discussed in the technical section. For instance, Indonesia in 1950 has the

highest risk of civil war onset, 53%, as well as the largest marginal effect, -9 percentage points.

Indonesia’s high risk of civil war is not a deterministic outcome of its relative low level of wealth,

but rather a consequence of its particular characteristics captured by the other covariates. Indeed,

there are many cases that feature similar levels of wealth, for which the probability of war onset

and the effect of wealth are near 0. For instance, in 1950, Myanmar was poorer than Indonesia.

But its risk of civil war is about 0.5%, and the counterfactual 1-unit increase in ln(GDP) decreases

the risk by only 1.8 percentage points. These two cases are highlighted in Figure 3.

Given the wide variation in individual effects, the average marginal effect does not represent
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a reasonable value for the change in the risk of civil war for any given country—not even on

average. Specifically, it is not the case that if we were to repeatedly increase GDP in a long

sequence of counterfactual experiments, the mean prediction for individual cases would be close

to -0.5 (the population average). In fact, the mean prediction for our cases are the scattered values

outlined in the marginal effect plot (e.g., -9 for 1950 Indonesia). An insidious problem stemming

form a deflated mean is that it may lead policy makers to overlook an effective strategy simply

because it is not optimal in different country contexts. A medical analogy would be the case of a

patient forgoing a personalized treatment based on their genetic profile, because the effectiveness

of that treatment in the population at large is relatively low.

The correct interpretation of the average effect may prevent unwarranted extrapolations, but

does not solve the problem of the lack of practical relevance. Specifically, the worldwide propen-

sity of civil war, which indiscriminately pools stable and less stable countries, is of little real-world

relevance. For concreteness, the mean value represents the average change in the global risk of

civil war, if all countries were to increase their wealth by the same amount. While convenient

for practical calculations, such a concerted effort is not a realistic counterfactual. Moreover, it is

not the case that one country can offset another country’s (in)action. Specifically, the average risk

would be different if two countries, A and B, increase their wealth by the same amount n, com-

pared to when A’s wealth increases by 2×n while B’s wealth stays the same. Ultimately, from

the average effect we cannot infer a country’s risk of civil war conditional solely on its economic

performance. Yet this is the relevant information for practical applications, since governments do

not have control over economic policies in other countries.

In sum, the average can obscure a large variation in the values that created that score. On

the one hand, one cannot really criticize the mean for not showing the full spread of the underlying

data points. On the other hand, we need to acknowledge that the mean does not always summarize

the population well. This can be of significant relevance for practical case applications, especially

when cases carry special meaning.
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3.2 Wealth, weather shocks, and political violence

In the previous section, we showed that the mean value can lead to gross generalizations (i.e., the

average response misrepresents individual effects by several orders of magnitude). More problem-

atically, the average value can also lead to incorrect inferences (i.e., individual effects having the

opposite sign than that of the average effect, or subgroups of cases exhibiting opposite trends). We

illustrate this problem using a model of peace, repression, and civil war from Bagozzi et al. (2015),

which in turn is a replication of Besley and Persson (2009).

The dependent variable, Political Violence, is a three-category ordinal variable. Specifically,

it equals 0 when the level of violence is low, 1 when the government engages in violent repression,

and 2 when both the government and rebels resort to violence (i.e., civil war). The explanatory

variables are the same as in Bagozzi et al. (2015): ln(GDP/capita) is the standard indicator for

economic development; Weather shock is a count of the number of floods and heat waves that

countries experience each year; Parliamentary democracy captures the institutional setup; Large

primary exporter equals 1 if, in a given year, more than 10% of a country’s GDP is generated

by product exports, and 0 otherwise; lastly, Large oil exporter equals 1 if more than 10% of a

country’s GDP is generated by oil exports.

Table 4 reports the results from an ordered logistic analysis. A key finding in Besley and

Persson (2009) is that wealth decreases the probability of violence. This finding is illustrated by the

average effect plots in Figure 4, which show the effect of a 1-unit increase in ln(GDP/capita) while

holding the other covariates at their observed value. More specifically, the solid lines outline the

mean effect and the dashed lines are the 95% CI. Specifically, Figure 4a indicates that, on average,

wealth has a positive effect on the probability of peace. Conversely, increasing GDP decreases

the probability of both repression, Figure 4b, and civil war, Figure 4c. In all three scenarios, the

magnitude of the effect decreases as wealth increases.9

9 The average effects in Figure 4a-4c are similar to those reported by Bagozzi et al. (2015, 742)
in the first row of Figure 2. To keep things concise, we do not discuss their ZiOP results. However,
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Table 4: The determinants of political violence

Regressor Ordered logit

ln(GDP/capita) −0.33 ***
(0.06)

Weather shock 0.39***
(0.05)

Parliamentary democracy −1.02 ***
(0.19)

Large oil exporter 1.54***
(0.62)

Large primary exporter −0.68
(0.45)

τ1 −1.59 ***
(0.44)

τ2 −0.09
(0.44)

Log likelihood −1435.44
Number of observations 1984

* p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed test)

Besides the average effect, we also plot the effect for all cases in the data (the gray dots).

The wide variation in individual effects provides a more nuanced picture of the effect of wealth

on political violence. As an illustration, let us consider the effect of wealth on the probability of

civil war for ln(GDP/capita) values higher than 9.96. This is the area to the right of the vertical

dotted line in Figure 4c. We focus on this wealth interval because the CI is at its narrowest, which

would suggest that the uncertainty around the average value is low. The average effect for the 13

cases within this interval is -3.3 (-4.0, -2.5). But the observations are spread out (the range is [-8,

-0.4] percentage points), and only one is contained by the average effect’s 95% CI. What is more,

the subsample’s standard deviation is twice the size of the one for the entire sample, 2.58 vs 1.25.

Importantly, we would not be aware of the magnitude of the vertical variation in individual effects,

if we had plotted only the average effect.

The discrepancy between the average and individual effects is most striking in the repression

since the ZiOP estimates are still average effects, the issues highlighted here apply nonetheless.
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Figure 4: The effect of ln(GDP/capita) on the probability of political violence
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(b) Pr(Repression)
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(c) Pr(Civil War)
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(d) Pr(Repression) with highlighted scenarios
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Note: The solid line indicates the average marginal effect and the dashed lines are the 95% CI. The solid marks indicate
the individual effects for all cases in the data.

scenario, Figure 4b. While the average effect is always negative, there are cases with positive

marginal effects at both low and high values of wealth. For a concrete example, consider India and

Madagascar which had similar GDP/capita levels in 1985. Because of country specific attributes,

increasing wealth decreases the risk of government repression in Madagascar by 4.3 percentage

points. By contrast, the same economic boost increases the risk in India by 3.7 points. These

diametrically different effects are both statistically significant (p < 0.01). More generally, for the

level of wealth India had in 1985, the average effect is -3.8 percentage points. Given the opposite
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direction, it is ill-advised to make policy recommendation for India based on the average effect.10

Opposite effects aside, there are subgroups of cases with a different effect pattern than the

average trend. Figure 4d highlights four such subgroups. The cases in the respective subgroups

differ solely in their experience with natural disasters (i.e., they have identical values on all other

attributes). Recall that Weather shock is a count of the number of floods and heat waves that

countries experience in a given year. As a reference point, the black dots indicate the cases that

were spared by extreme weather events. Since these observations represent about 40% of the data,

the average effect line closely follows their trajectory. For this subgroup, increasing GDP/capita

reduces the probability of repression, and the magnitude of the effect decreases as wealth increases.

The average pattern, however, is not representative for the subgroup of countries that have

experienced natural disasters. Specifically, in red with diamond marks are the countries that ex-

perienced 2 weather shocks; in blue with triangle marks are the countries with a score of 3; and,

in orange with square marks are the countries with a score of 4. In contrast to the diminishing

10 Ordered models allow for both monotonic and disparate marginal effects. The counterfactual

increase in ln(GDP/capita) has a monotonic effect with respect to the probability of the end cate-

gories. Specifically, it decreases the probability of the highest category (Civil War), and increases

the probability of the lowest category (No Violence) for all cases. But the effect is not monotonic

for the intermediary category (Repression). The probability for the interior category is a function of

the threshold parameters delineating that category, and the cases’ individual characteristics. Since

the threshold parameters are fixed, it is the case-specific attributes that explain why the effect on

repression is negative for Madagascar but positive for India. For completeness, let us look at the

three scenario-specific effects for both countries. For Madagascar, the effect of increasing wealth

on Pr(No Violence), Pr(Repression), and Pr(Civil War), are 0.071 (0.045 0.097), -0.043 (-0.058

-0.027), and -0.028 (-0.039 -0.017). For India, the respective effects are 0.044 (0.019 0.070), 0.037

(0.011, 0.063), and -0.081 (-0.108, -0.054). Notably, the three probabilities are linked, with the

change in one probability being reflected in the probability of the remaining categories.
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magnitude of the average effect, the size of the effect increases with the levels of ln(GDP/capita)

in countries affected by natural disasters. Moreover, the rate of change (i.e., the slope of the ef-

fect line) becomes steeper with the frequency of weather shocks. By looking solely at the average

effect, we would be aware of neither opposite effects nor opposite trends in our data.

3.3 Democratic survival in post-civil war settings

In this section, we replicate an analysis from Graham, Miller and Strøm (2017) on the impact of

inclusive institutions on democratic survival, conditional on states’ experience with civil conflict.

The dependent variable, Democracy, equals one if the executive and legislature are fairly elected,

and a majority of adults have the right to vote. It is coded zero otherwise. Besides a number of

control variables (Ethno-linguistic fractionalization, Regional polity, GDP/capita, GDP growth,

Fuel dependence, Population, Past democratic breakdowns, and Democracy age), the analysis

includes three two-way interactions between Post-civil war and Inclusive, Dispersive, and Con-

straining powersharing. The estimation model is a probit, and the regression results are presented

in Table 4, Model 1 (p. 699). According to the authors, the findings show that constraining power-

sharing helps democratic survival generally, inclusive powersharing only in post-civil war settings,

whereas dispersive powersharing may be detrimental for democracy.

Figure 5a shows the average effect of postconflict status on the probability of democratic

survival across the range of inclusive powersharing (from the 5th to the 95th percentile). More

specifically, this figure shows the difference in the predicted probability of democratic survival

for countries with and without a recently ended civil war, which the authors report in the top plot

of Figure 3 (p. 700).11 The difference in probability allows us to directly assess at what levels

of inclusiveness the conditional effect is statistically significant. When examining the individual

11 We were able to replicate Graham, Miller and Strøm’s regression results perfectly (Table 4,

Model 1, p. 699), but not the predicted probability estimates (Figure 3, p. 700). However, our

results are close to theirs and the substantive inferences are the same.
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Figure 5: The conditional effect of past civil war experience on democratic survival
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(b) The average and individual effects
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Note: The solid line indicates the average conditional effect and the dashed lines are the 95% CI. The solid marks in
Figure 5b indicate the individual effects for the data cases. The the dotted vertical line delineates the below and above
average inclusiveness levels.

probabilities side by side, we cannot tell whether the two are distinct when their CIs overlap (Gel-

man and Stern, 2006; Radean, 2023b). The average conditional effect is small and statistically

insignificant at low levels of inclusive powersharing, but increases quickly with inclusiveness.

Figure 5b shows the same effect with the individual effects superimposed. As a reference

point, we identify the Pakistan case that the authors reference. The dotted vertical line delineates

the below and above average inclusiveness levels.12 There are a couple of things worth noting.

First, with the highest value of 6 percentage points, the average effect absconds substantively large

effects in the population (min=-21, max=53). In fact, the putative null effect at low levels of

inclusiveness (with a nominal level of less than 1 percentage point) is an artefact of large positive

and negative effects (some as high as |21| percentage points) canceling each other out. Second,

30% of individual effects have the opposite sign than that of the average. We highlight four such

12 Taking the average level as a useful heuristic, the authors note that “within our sample, only

two post-civil war democracies with an above average level of inclusive powersharing have broken

down (Lebanon 1976, Pakistan 1999)” (p. 699). As a side note, the authors use the term ‘average

level’ to indicate the median value not the mean.
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observations, representing conflict-free and postconflict states (names in italics) at below and above

average level of inclusive powersharing. Given the high share of observations that buck the trend,

policy recommendations based on the average effect are tenuous.

On the basis of the average response in the population, the authors make policy recommen-

dations for both domestic institution-builders and international organizations. More specifically,

they name half a dozen countries to which the study’s findings should apply, but no individual

effects are reported. This includes out of sample cases, for which it is not even possible to esti-

mate individual responses since we do not have the necessary information (i.e., the value of model

covariates). As an example, the authors argue that, considering the efforts to “stabilize democratic

transition in Burma,” international actors should rethink their push for inclusive powersharing and

decentralized institutions (p. 702). Yet Burma is a dictatorship for the entire timeframe of the

study (1975 to 2010). Given the available information, we cannot use the model estimates to as-

sess democratic Burma’s odds of survival. While some country attributes are not affected by the

democratization process (e.g., ethno-linguistic fractionalization), others are bound to change. At

the very least, the constraining dimension of powersharing (i.e., the extent institutions constrain

political leaders) would change as Burma transitions form dictatorship to democracy. Of course,

one may impute not-yet-observed values using valuations of country experts, or by employing

some other technique. But this would then be a forecasting exercise, which is not the case here.

4 Conclusion

To convey the substantive importance of their research findings, political scientists commonly

compute the average effect in the population. There are instances, however, when a single value is

too generic to be meaningful when applied to specific cases. In particular, the mean can obscure a

large variation in individual effects, and may lead to gross generalizations or incorrect inferences.

Crucially, we cannot tell a priori whether individual responses are close to the mean or dispersed,

and often used heuristics can be misleading (e.g., the CI width of the average effect).
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To improve empirical practice, we make two recommendations to substantive researchers:

1. Compute the desired quantity of interest for all cases and report the full distribution.

Canned commands typically compute the mean response, making it easy to skip this step.

But it is a necessary one to notice any discrepancies. In some situations discussing the

average response may suffice. In others, a more personalized approached may be suited to

highlight features obfuscated by the average trend. Ultimately, unless readers see the spread

of cases, they cannot assess how well the average summarizes the data.13

2. Do not extrapolate from the average response to individual cases. While others have

warned about the perils of policy by p-value (Ward, Greenhill and Bakke, 2010), we cau-

tion against the perils of policy by average effect. Because of case-specific characteristics,

individual effects can be substantively different than the average effect. For instance, the

magnitude of individual effects can differ by an order of magnitude or more. More prob-

lematically, case effects may exhibit different trends or have the opposite sign than that of

the average effect. Indeed, we can have opposite effects in a variety of models and model

specifications (e.g., binomial logit with interaction, ordered logit). Plotting the individual

effects helps the analyst identify all such instances, without requiring prior knowledge about

the specific features of various models.

The problem we highlight in this paper is not a small sample issue, and collecting more data would

not necessarily help. Similarly, correctly interpreting the average effect may prevent unwarranted

13 To help with the implementation, in Online appendix A we present the formulas for the aver-

age and individual-level quantities of interest discussed in the paper (i.e., predicted probabilities,

marginal effects, conditional effects, and interaction effects). The companion replication file con-

tains all the commands we used to compute these quantities of interest. It also includes the code

for all figures, thus illustrating how one may graph these estimates. Since it contains the step-by-

step command sequence (from model estimation to computing and graphing the aforementioned

quantities of interest), the replication code is a template that other researchers may also use.
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extrapolations, but does not solve the problem of the lack of practical relevance. Case in point, what

practical recommendations can we draw from the finding that doubling the GDP of all countries

in the world reduces the global risk of civil war by less than half of a percentage point?

Our recommendations are particularly relevant for analyses where cases carry special mean-

ing. In such instances, discussions about practical or substantive significance ought to take place

at the individual level. This type of analyses is common in political science. In international rela-

tions, the canonical data comprise countries extant at a given time. In American state politics, the

unit of analysis are the fifty U.S. states. This is also the case in comparative politics research that

focuses on party politics or legislative behaviour.

A good rule of thumb when deciding the appropriate level for model evaluation, is to think

about the level at which policy recommendations make sense (e.g., individual, subgroup, popula-

tion). If the study is about the effect of an initiative to increase voter turnout, we cannot and should

not focus on the idiosyncratic responses of individual voters. In this case, it is the average response

that is of immediate interest. Conversely, if we assess the effect of wealth on the likelihood of civil

war onset, we are interested in individual responses—particularly those of countries on the brink

of civil war. In this case, the average response is not particularly informative.

Lastly, we address a couple of possible concerns. One potential criticism is that researchers

are well aware of the limitations of the average effect. If that were the case, making policy rec-

ommendations based on the average response would be the exception; yet it is the norm. Another

concern is that case-level estimates are less reliable, since they are more sensitive to model spec-

ifications than the average value. That is a valid concern. However, using a robust but disparate

average value, possibly with an opposite sign, is not the solution. The better approach is to conduct

sensitivity analyses checking whether the case effect of interest is robust, and we urge researchers

to do so. The appropriate robustness test for practical relevance is the effect strength stability, not

the standard significance-robustness test. This means testing whether the estimated effect size is

substantively different across various model permutations, rather than whether the estimated effect
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keeps its sign and significance status (Neumayer and Plümper, 2017).

Some may also point out that not all researchers are interested in discussing specific cases.

But analysts who present evaluations of substantive effects or policy recommendations, implicitly

demonstrate an interest in making a connection between research and practical applications. Our

recommendations help assess the distance between theory and practice, and make applications to

specific cases more realistic. While rooted in technical considerations, our concerns are substantive

in nature. In analyses where the mean is not a representative central value, its practical significance

is brought into question. Due to a lack of substantive relevance, researchers have been advised

against making big claims about small and practically inconsequential effects—even if they are

statistically significant (Esarey and Danneman, 2015; Gross, 2015; Rainey, 2014). Pushing the

argument further, we argue that the substantive significance concern extends to situations where

researchers focus on non actionable average effects.
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Appendix A : Technical appendix

In the main text, we encourage researchers to report both the average and individual values of

their quantity of interest, whatever that may be. In what follows, we review what this formally

means for the four most common quantities of interest in political science applications (i.e., pre-

dicted probabilities, discrete (marginal) effects, conditional effects, and interaction effects). In the

upcoming formulas, N is the number of observations, F is the link function, and X is a set of inde-

pendent variables including the constant term. For researchers interested in how to compute these

quantities of interest in practice, the companion replication file contains all the commands we used

to compute and graph each of these estimates. In brief, we use the predict command to com-

pute predicted probabilities, margins,contrast to compute marginal and conditional effects

(StataCorp, 2023), and the ginteff software to compute interaction effects (Radean, 2023a).

Predicted probabilities

Formally, the individual and average predicted probabilities are defined as follows:

IndPri = F (Xiβ) ∀ i ∈ N (A1)

AvgPr =

∑N
i=1 IndPri
N

. (A2)

Discrete (marginal) effects

The individual and average discrete effects are defined as follows:

IndEffi = F (xcβx + Xiβ)− F (xbβx + Xiβ) ∀ i ∈ N (A3)

AvgEff =

∑N
i=1 IndEffi
N

, (A4)

where xb is the base level of x, and xc is the counterfactual value. The base level may be x’s

observed values (xi), its mean (x̄), or some other theoretically relevant level. xc = xb + nx, with

nx being the respective n-unit increase in x.

Conditional effects

The individual and average conditional effects are defined as follows:
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IndCondEffi = F (xcβx + ziβz + Xiβ)− F (xbβx + ziβz + Xiβ) ∀ i ∈ N (A5)

AvgCondEff =

∑N
i=1 IndCondEffi

N
. (A6)

Interaction effects

The individual and average interaction effects are defined as follows:

IndIntEffi =
[
F (xcβx + zcβz + Xiβ)− F (xbβx + zcβz + Xiβ)

]
−
[
F (xcβx + zbβz + Xiβ)− F (xbβx + zbβz + Xiβ)

]
∀ i ∈ N (A7)

AvgIntEff =

∑N
i=1 IndIntEffi

N
, (A8)

where zb is the base level of z, and zc = zb + nz is the counterfactual value.

A.1 The average case effect and the observed-value average effect

Discrete effects are simply differences in predicted probabilities. Formally, the average case prob-

ability and the observed-value average probability are defined as

AvgCasePr = F (Xiβ) (A9)

AvgPr =

∑N
i=1 F (Xiβ)

N
, (A10)

where X indicates the average value of the respective variables,
∑N
i=1 Xi

N
.

For a practical example, let us say we have the following logistic regression: y = β0 +

kβ1 + vβ2. Thus, besides the constant, X contains two additional covariates, k and v. Given

the chosen empirical estimator, the link function F is the cumulative standard logistic distribution

Λ(βX) = 1
1+e−βX

. Finally, let us assume that N = 2, β0 = 0.3, β1 = 0.2, and β2 = 0.4. The

independent variables’ values for the two observations are: k1 = 1 and v1 = 2, and k2 = 3

and v2 = 5. Now we have all the information we need to compute the average case probability

(AvgCasePr), and the observed-value average probability (AvgPr).

AvgCasePr = F (Xiβ)

= Λ(β0 + k̄iβ1 + v̄iβ2)
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= Λ

(
β0 +

∑2
i=1 ki
2

β1 +

∑2
i=1 vi
2

β2

)
= Λ

(
0.3 +

1 + 3

2
× 0.2 +

2 + 5

2
× 0.4

)
= Λ(0.3 + 2× 0.2 + 3.5× 0.4)

= Λ(2.1)

= 0.891 (A11)

AvgPr =

∑N
i=1 F (Xiβ)

N

=

∑2
i=1 Λ(Xiβ)

2

=
Λ(β0 + k1β1 + v1β2) + Λ(β0 + k2β1 + v2β2)

2

=
Λ(0.3 + 1× 0.2 + 2× 0.4) + Λ(0.3 + 3× 0.2 + 5× 0.4)

2

=
Λ(1.3) + Λ(2.9)

2

=
0.786 + 0.948

2

= 0.867 (A12)

Thus, the average case probability and the observed-value average probability do not have

the same value. This difference is reflected in all quantities of interest that are computed using

predicted probabilities. As an illustration, let us compute the average case effect and the observed-

value average effect, associated with a 1-unit increase in k from its observed values. Since discrete

effects are differences in predicted probabilities, we can compute the two effects as follows:

AvgCaseEff = F ((k̄i + 1)βk + Xiβ)− F (k̄iβk + Xiβ)

= F ((k̄i + 1)βk + β0 + v̄iβv)− F (k̄iβk + β0 + v̄iβv)

= Λ(2.3)− Λ(2.1)

= 0.909− 0.891

= 0.018 (A13)
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AvgEff =

∑N
i=1[F ((ki + 1)βk + Xiβ)− F (kiβk + Xiβ)]

N

=

∑2
i=1[F ((ki + 1)βk + β0 + viβv)− F (kiβk + β0 + viβv)]

2

=
{

[F ((k1 + 1)βk + β0 + v1βv)− F (k1βk + β0 + v1βv)]+

[F ((k2 + 1)βk + β0 + v2βv)− F (k2βk + β0 + v2βv)]
}
/2

=
[Λ(1.5)− Λ(1.3)] + [Λ(3.1)− Λ(2.9)]

2

=
0.032 + 0.009

2

= 0.021 (A14)
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Appendix B : The conditional effect of x on y over the range of z

In the main text, Figure 2c shows the conditional effect of x over its range (rather than over z’s),

to keep the x-axis the same in all graphs of Figure 2. Here we present the conventional plot, with

Figure B1 showing the effect of a 1-unit increase in x over the range of z. While we hinted at

this in Footnote 6, now it is easy to see that the sign of the individual conditional effects is largely

determined by z (i.e., the effect of x is typically negative when z is negative, and vice versa).

Figure B1: The conditional effect of x over the range of z
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Note: The solid line indicates the average conditional effect and the dashed lines are the 95% CI. The solid circle
marks indicate the individual conditional effects for all cases. The color indicates where the baseline probability falls
on the [0, 1] probability spectrum; the darker the hue, the closer to 1 the starting probability is.

Notably, the average effects reported in Figure 2c and B1 are not the same, even though they

are both observed-value effects due to a 1-unit increase in x. The difference stems from the fact

that we have different x-axis variables, each with a distinct range of values. An example may help

illustrate the root of the discrepancy. In Figure 2c, the average effect when x is at its minimum, is

the mean of the difference between the predicted probability when x = min and x = (min +1),

across the 1,000 observed values of z. In Figure B1, the average effect when z is at its minimum,

is the mean of the difference between the predicted probability across the 1,000 observed values of

x, and that associated with an increase of 1 in all 1,000 values of x, while z = min in both cases.
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But the individual conditional effects are the same in both Figure 2c and B1. Consequently,

the discussion from the main text about the significant spread of cases around the mean (as mea-

sured by the standard deviation and the difference between the min and max values), still applies.

Lastly, while there are no individual effects with opposite sign, it is still the case that only a minor-

ity number of cases (22.6%) fall within the average effect’s CI.
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Appendix C : Variation in cases around the mean

In the main text, we emphasize the fact that the confidence interval of the average response is not

necessarily a good indicator of individual case variation. Theoretically, there is no reason to expect

that it would be. The CI captures the uncertainty in the estimation of the average response due

to sampling uncertainty, not variation of cases around the mean. We illustrate this point further

with a linear regression example. The example entails two alternative datasets which differ on two

accounts: (i) the number of observations (i.e., N1 = 500 and N2 = 100), and (ii) the spread of

the dependent variable, such that the outcome variable in the larger sample has a higher variance.

Specifically, y1 and y2 are continuous variables with mean 15, but the standard deviation of y1 is

roughly twice as large as the one of y2 (5 vs. 2.6). Both x1 and x2 are continuous variables drawn

from a uniform distribution within the [-5, 5] range, and βx1 = βx2 = 0.5. The results of the two

bivariate regressions are presented in Table C1.

Table C1: Linear Regression Results with Simulated Data

Scenario

Regressor y1 y2

x1 0.52***
—

(0.08)
x2 —

0.51***
(0.07)

Constant 15.21*** 15.22***
(0.21) (0.21)

Number of observations 500 100

* p < 0.10; ** p < 0.05; *** p < 0.01 (two-tailed test)

Using these estimates, in Figure C1a and C1b, we plot the average expected value (the solid

line) with the 95% CI, as well as the actual y values for the individual cases (the gray dots). While

the respective means and CIs are similar in both the high and low variance scenarios, the residual

variation around the two group means is very different. Thus, inferring case variation from the
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Figure C1: Residual variance and the CI width

(a) High residual variance
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(b) Low residual variance
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Note: The solid line indicates the average expected value with the 95% CI. The dots indicate the actual values of y.

CI width of the average response is not warranted. In practice, however, the CI of the mean is

often wrongly assumed to contain some large fraction of cases. Soyer and Hogarth (2012) show

that even experts (i.e., academic economists) are prone to this kind of misinterpretation (see also

Greenland et al., 2016). One can only assume that non-experts are even more likely to interpret the

CI in this manner.
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