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Abstract—As the complexity of deep neural networks esca-
lates, traditional federated learning (FL) frameworks increasingly
struggle since the training overhead of the full model is costly for
resource-limited clients. In addition, the class imbalance among
local datasets and client heterogeneity may lead to significant
deterioration in learning performance. To address these chal-
lenges, we first propose a novel wireless split federated learning
(SFL) framework to enhance learning efficiency and performance
in resource-constrained networks, which adaptively splits the
global model between the clients and server to alleviate the
computation burden for clients. Then, we theoretically analyze
how the client sampling and wireless network parameters impact
on the convergence bound. Based on the analysis, we identify
the extent of class imbalance that significantly impacts learning
performance. Inspired by this, we formulate an optimization
problem to strike a balance between latency and performance
by jointly optimizing the client selection, model splitting, and
bandwidth allocation policies. To solve this problem, we introduce
a latency and class imbalance-aware double greedy algorithm to
obtain client scheduling policy. Additionally, bisection-enabled
optimal bandwidth allocation and model splitting algorithms
are developed to adaptively determine bandwidth allocation and
model splitting policies, respectively. Extensive experimental re-
sults demonstrate that our approach significantly reduces latency
and enhances learning performance.

Index Terms—Split federated learning, resource allocation,
client sampling, model splitting.

I. INTRODUCTION

With the exponential growth of data at network edges,
a variety of advanced machine learning (ML) techniques
are increasingly being implemented for facilitating versatile
applications, such as autonomous driving, the metaverse [2],
and the Internet of Things (IoT) [3]. However, prevailing
ML frameworks predominantly focus on centralized learning
architectures, which often result in significant delays [4] and
resource consumption. In response, federated learning (FL)
[5], a distributed learning framework, is developed as a solu-
tion to mitigate aforementioned issues. FL permits edge clients
to collaboratively train a global model while maintaining data
privacy [6]. Despite its advantages, the application of FL in
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wireless networks meet challenges. Notably, FL is hindered
by substantial client communication and computation burdens,
attributed to the limited computing and communication ca-
pacities of the clients. This complication arises because large-
sized models are transmitted, and the computation-intensive
training process is confined solely to the clients. To address the
aforementioned challenges in FL, another distributed learning
framework called split learning (SL) [7] partitions models into
sub-models, while the server-side sub-models are trained inde-
pendently on server and the client-side sub-models are trained
on distributed clients using local data. This framework lever-
ages the servers superior computational and communication
capacities to offload processing tasks, thereby alleviating the
burden on clients. However, the standard sequential training
method employed by SL can result in underutilization of client
resources. Additionally, when multiple clients are involved, the
training time overhead can escalate significantly.

Split federated learning (SFL) [8] is a promising approach
that aims to mitigate the challenges inherent in both FL and S-
L. This approach has been gaining attention among researchers
who are increasingly exploring its applications. For instance,
SFL is applied in healthcare analytics [9] to minimize reliance
on local hardware, facilitate semi-distributed learning, and
enhance privacy protection. It is worth noting that this paper
primarily focuses image classification tasks under supervised
learning. Other approaches such as self-supervised learning
[10], transfer learning [11], [12] , and adversarial learning [13],
[14] can also be applied to SFL and will be explored in future
work. Despite its advantages, the deployment of SFL in real-
world wireless networks faces three primary challenges: 1)
Limited Wireless Resources: Bandwidth is a critical resource
in wireless communication networks, especially in scenarios
involving intensive data exchanges, such as during the training
of machine learning models. Inefficient use of bandwidth not
only extends the training duration but also increases the energy
consumption and operational costs, particularly affecting scal-
ability and sustainability of machine learning deployments in
large-scale networks. 2) Data Distribution Heterogeneity: In
practical scenarios, the distribution of data across clients is
not uniform, where clients may have abundant examples of
certain classes while lacking in others. This imbalance can
lead to biased models that perform well on data-rich classes
but poorly on underrepresented [15] ones. When data is imbal-
anced, the model’s ability to generalize decreases, potentially
compromising the accuracy and fairness of the outcomes. As
a result, it may exacerbate performance degradation due to
class imbalance among the selected clients [16]. 3) Clients
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Heterogeneity: Clients exhibit significant disparities in compu-
tational and communication capabilities [17]. The variance in
capabilities can lead to bottlenecks in the distributed learning
process. Previous wireless SFL studies often focused on a
fixed model cut layer configuration, requiring all clients to
train identical models in each round. Consequently, clients
with limited capabilities can delay overall aggregation and
slow the learning process. To overcome these issues, the latest
innovative strategies primarily focus on enhancing dynamic
resource allocation and class-balanced client sampling.

Extensive research has focused on addressing the challenge
of limited resources, incorporating strategies such as client
sampling [18], [19] and model compression [20]. In [18],
the client sampling approach determine a subset of clients to
participate in the learning of each round, which helps alleviate
the burden of communication. Research in [19] significantly
mitigated the energy trade-off by exploring integrated de-
vice scheduling and resource management strategies. While
client sampling efficiently alleviates the communication load
in wireless FL, clients with suboptimal channel conditions
face challenges in uploading complete models for aggre-
gation. A model compression technique described in [20]
introduced a gradient sparsification framework that reduces
gradient dimensions to conserve bandwidth. However, despite
its contribution to conserve communication resources, model
compression introduces additional noise during model aggre-
gation, potentially impacting learning performance, while the
issue of high model complexity persists in these approaches,
resulting in significant computation and time consumption for
the clients. Additionally, the majority of these studies focus
on FL, research on resource-limited wirless networks for SFL
remains insufficient.

A limited number of studies addressed the problem of
datasets class imbalance. Recent works [21]–[23] has under-
scored the problem of class imbalance resulting from ran-
dom client sampling in non-IID conditions. Specifically, [21]
describes a probabilistic client sampling algorithm designed
to assemble groups of datasets with the minimal degree of
class imbalance, while [22] develops a method to estimate the
label distribution of client’s dataset by analyzing gradients of
model parameters. In contrast, [23] explores a novel model
aggregation framework that assigns greater weight to clients
with lower class imbalance, aiming to formulate a more
balanced global dataset. However, these estimations of clients
label distributions tend to be inaccurate, while these studies
have not sufficiently considered the associated communication
resource costs. Hence, in SFL networks, no studies address
the issue of high skewness, which refers to class-imbalance.
A high skewness value typically indicates a substantial class
imbalance, which can significantly impair the learning perfor-
mance of ML models.

To demonstrate the impact of skewness, Fig. 1 provides a
comparative analysis of learning performance on the MNIST
dataset. Specifically, Fig. 1(a) illustrates that the learning
performance is substantially better on the dataset without
skewness. Additionally, Fig. 1(b) examines the differences in
learning outcomes between partial participation (10 clients)
and full participation (100 clients) within an imbalanced

(a) (b)

Fig. 1. Learning performance comparison on the MNIST dataset for
demonstrating the impact of skewness: (a) Comparison of datasets with and
without Skewness; (b) Comparison of partial and full clients participation.

dataset. The results indicate that the scheduled non-skewness
client subset achieves higher test accuracy compared to both
the randomly scheduled subset and full participation.

To accommodate the training of client-side models tailored
to the diverse communication and computation capabilities
of various clients, model splitting approaches are developed.
These approaches in [24]–[26] are designed to minimize
resource demands on clients. The approach in [24] introduces a
parallel computing scheme that reduces computational idleness
by offloading workloads from the clients to the server, which
effectively addresses the issue of resource scarcity and reduces
latency compared to traditional SL. [25] explores the impact
of global aggregation frequency on learning performance and
introduces a method for cut layer selection. Additionally, [26]
presents a probabilistic approach to optimal cut layer selection.
Nonetheless, existing works typically have not investigated
dynamic cut layer selection for every round, which accom-
modates changes in the time-varying channel or the dynamic
availability of communication resources.

Previous studies [18]–[20] effectively addressed communi-
cation bottlenecks in wireless networks, yet they often incur
high communication overhead for clients with limited re-
sources. These methods might also preclude clients with poor
channel conditions or low transmit power from participating
in training, thereby reducing learning performance. Moreover,
current client scheduling methods [21]–[23] seldom account
for conditions with limited wireless resources. Additionally,
prevalent model splitting techniques [24]–[26] often over-
look the heterogeneity of clients’ capabilities and channel
variations, opting instead to maintain a uniform cut layer
across all rounds, which may detrimentally affect learning
performance. Furthermore, these studies primarily focus on FL
or SL, frequently neglecting SFL. To enhance SFL learning
performance and conserve wireless resources, we develop a
novel framework, which includes a dynamic model splitting
scheme that adjusts the cut layer based on each client’s com-
puting and communication capabilities, thereby optimizing
learning latency. To tackle heterogeneous data distribution,
we introduce a skewness-aware client sampling scheme that
selects a subset of clients with approximately balanced datasets
for training, alongside a latency-aware sampling scheme that
prioritizes clients with low latency. Furthermore, we introduce



3

an algorithm dynamically allocates bandwidth to accommo-
date clients with limited transmit power and time-varying
channel conditions during each global training round. By inte-
grating these strategies, a latency and skewness-aware (L&S-
aware) algorithm is proposed to enhance learning efficiency
and reduce latency. By addressing three major challenges,
the proposed framework not only enhances learning efficiency
but also promotes a more equitable and balanced participa-
tion among clients, irrespective of their individual resource
capabilities. Furthermore, while our study initially focuses
on SFL, the principles underlying our optimized algorithms
have broader applicability across various forms of distributed
learning systems within wireless communication networks.
The principal contributions of this paper are outlined as
follows:

• To optimize SFL in resource-constrained wireless net-
works, we analyze the convergence bounds for the L&S-
aware client sampling framework with a non-convex
loss function and introduce a novel metric. This metric
elucidates how the degree of class imbalance in clients’
datasets negatively impacts learning performance, and
demonstrates that minimizing this imbalance enhances
SFL learning.

• To address the challenges of limited resources and
heterogeneous client capabilities, we propose adaptive
bandwidth allocation and a dynamic cut layer selection
scheme. These allow clients under poor channel condi-
tions to adaptively gain additional bandwidth, reducing
idle time and accelerating the learning process. Further-
more, we dynamically adjust model split points in each
global round to better accommodate the time-varying
environment and the computational and communication
capacities of clients.

• To leverage the benefits of skewness-aware and latency-
aware strategies, we develop an L&S-aware algorithm
that boosts learning performance and reduces overhead.
This algorithm involves jointly optimizing client sam-
pling, dynamic model splitting, and adaptive bandwidth
allocation for minimizing the weighted sum of skewness
degree and latency. To the best of our knowledge, this
study is the first in SFL to characterize the effects of
datasets’ skewness and dynamic model split points.

• To validate the efficacy and robustness of our algorithms,
we conducted extensive simulations to assess their per-
formance across four distinct datasets: MNIST, Fashion-
MNIST, CIFAR-10, and STL-10. Our results clearly
demonstrate that the proposed algorithms significantly
outperform the baselines in terms of both convergence
speed and test accuracy.

The rest of this paper is organized as follows: In section
II, we introduce the SFL system model and learning latency
model. In section III, we present the convergence analysis
of the SFL framework and problem formulation. Section IV
introduces an optimal bandwidth allocation algorithm and
an optimal model splitting algorithm for adaptive bandwidth
allocation and dynamic model split, along with a L&S-aware
algorithm. Simulations in Section V validate the proposed

TABLE I
NOTATION SUMMARY

Notation Definition
U ;U Set of clients; size of U
M;M Subset of clients; size of M
Du;Du Local dataset of client u; size of Du
D;D Overall dataset in the system; size of D
Q;w Number of classes; model parameter
wc
u,i;w

s
u,i Client/server-side model of client u in round i

L(w); lu(x, y) Average loss function with model w; Loss function
for data sample (x, y)

ηc; ηs Learning rate for client/server-side models
I;J Set of global round; Set of local iteration
αi;αi,j Client sampling decision in round i; scheduling

indicator of client u in round i
su,i;S Cut layer of client u in round i; set of cut layer
fu; fs CPU frequency of client u; CPU frequency of the

server
pu; ps Transmit power of client u; transmit power of the

server
β;ni Wireless bandwidth; the proportion of β allocated

to clients in round i
ϑs
u, ϑ

c
u Smashed data size for one sample; data size of

client-side model
φF,c
u , φB,c

u Computing workload of client u in FP/BP
φF,s
u , φB,s

u Computing workload of the server in FP/BP
au,G(M) Local label distribution of client u; Skewness of

client subset M’s data
∇l(w) Loss function’s gradient

algorithms. In Section VI, we conclude the paper. The main
notations used in this paper are summarized in Table I.

II. SYSTEM MODEL AND LEARNING MECHANISM

In this paper, we adopt the SFL in wireless network, as
shown in Fig 2, where one server and U clients collab-
oratively learn a global model w. Clients are indexed by
U = {1, 2, · · · , U}. Every client u (u ∈ U) possesses a
local dataset with Du samples, i.e., Du = {xu,i, yu,i}Dui=1,
where xu,i ∈ RO represents the O-dimensional vector of
input data, and yu,i ∈ R represents the associated label.
The overall dataset is represented by D =

∑
u∈U Du. Let

l(xu,i, yu,i;w) represent the sample-wise loss function, it
measures the fitting performance of model w on the data pair
(xu,i, yu,i). Thus, the local loss function of client u is given
by Lu(w) = 1

|Du|
∑
{xu,i,yu,i}∈Du lu(xu,i, yu,i;w).

L(w) represents the global loss function, which is defined
as the weighted average of clients’ local loss functions, the
function of L(w) is given by

L(w) =

∑
u∈U |Du|Lu(w)∑

u∈U |Du|
. (1)

The goal of SFL system is to find a global model w with
the aim of minimizing the global loss function L(w) on the
entire dataset D, i.e., minwL(w). Note that the server and
clients collaboratively train the global model without sharing
the local raw data at each client.

A. SFL with Optimal Sampling and Model Split

Traditional SFL encounters significant challenges, including
performance degradation stemming from the class imbalance
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Fig. 2. Illustration of the designed wireless SFL system.

among clients’ datasets and the heterogeneous communication
and computation capabilities among clients. To tackle the
previously mentioned challenges, we propose a novel SFL
framework for efficiently sampling clients to participate in
training, thereby mitigating the issue of skewness. The skew-
ness is calculated locally by each client based solely on the
distribution of labels within their own dataset, while it also
provides the server with necessary information to assess the
degree of imbalance without compromising the underlying
data privacy, since it restricts the server or any other entities to
reconstruct or infer the original label distribution of the client’s
data. In addition, the server dynamically splits the full model
to formulate the sub-models to adapt the different computing
capabilities of clients and dynamic channel characteristics. The
learning process contains I global rounds and executes the
subsequent steps in each round i (i ∈ 0, 1, · · · , I):

1) Client Sampling: A subset of clients Mi ⊆ U is
determined for taking part in the present round of training.
αu,i ∈ {0, 1} represent the scheduling parameter of client u
in the i-th global training round, where αu,i = 1 indicates
client u is scheduled, αu,i = 0 otherwise. For simplicity of
presentation, let αi = {α1,i, α2,i, · · · , αU,i} denote the client
sampling decision in global round i.

2) Model Split: For adapting clients’ heterogenous capabil-
ities and channel condition of current round, the dynamic cut
layer selection scheme determines the personalized cut layer
for each client’s model in every global round dynamically.
Let su,i ∈ S = {2, 3, · · · , S} denote cut layer decision for
client u in i-th round, where S is the model’s total layers.
For ease of presentation, let si = {s1,i, s2,i, · · · , su,i} denote
the collection of cut layer decision for all clients in round i.
Notably, due to privacy preservation consideration for client’s
raw data, the split point cannot be selected at the input layer
and when the cut layer su,i = S, SFL system turns into FL.

3) Client-side Model Downloading: The server transmits
the initial client-side model, denoted by wc

u,i. Each sub-
model is trained for J local iterations, indexed by j ∈ J =
{1, · · · , j, · · · , J}. Let wc

u,i,j denote the client-side model pa-
rameters for client u at iteration j in global round i. Hence, the
initial client-side model is given by wc

u,i,0 ← wc
u,i, while the

corresponding server-side model is given by ws
u,i,0 ← ws

u,i.
4) Model Training: The training process includes forward

propagation (FP) stage and backward propagation (BP) stage.

The FP stage includes client-side FP, smashed data trans-
mission, and server-side FP. For client-side FP, each sched-
uled client randomly drawing a mini-batch of data samples
Bu,i,j ⊆ Du from its dataset, where B = |Bu,i,j | is the mini-
batch size. Let Xu,i,j ∈ RB×O denote the mini-batch data
samples’ input vectors in client u. Subsequently, each client
runs its individual client-side model using the selected data
samples and generates smashed data Au,i,j , namely,

Au,i,j = f(Xu,i,j ;w
c
u,i,j),∀u ∈ U ,∀j ∈ J , (2)

where f(x;w) represents the mapping function from input
data x to its predicted value, determined by model w. Then
each client sends its smashed data to the server for processing
on the server side. After proceeding the smashed data to
server-side model, we have the predicted result is given by

ŷu,i,j = f(Au,i,j ;w
s
u,i,j),∀u ∈ U ,∀j ∈ J , (3)

In BP stage, firstly, the average gradient of the loss func-
tion ∇l(w) is calculated with the predicted results and the
corresponding true labels. Subsequently, the server-side model
is updated through the application of the stochastic gradient
descent (SGD) method:

ws
u,i,j+1 ← ws

u,i,j − ηs∇l(ws
u,i,j),∀u ∈ U ,∀j ∈ J , (4)

where ηs denotes the learning rate for the server-side model.
The model parameters are updated layer-wise, starting from
the final layer and progressing to the cut layer, following
the chain rule for gradient calculation. Subsequently, once the
gradient computation reaches the cut layer, the gradient of the
smashed data for a mini-batch of data samples is transmitted
back to the respective client. Finally, each sub-model of client
is updated after receiving the corresponding smashed data’s
gradient:

wc
u,i,j+1 ← wc

u,i,j − ηc∇l(wc
u,i,j),∀u ∈ U ,∀j ∈ J , (5)

where ηc represents the client-side learning rate.
5) Model Aggregation: After completing J local iterations,

the sub-models of clients are uploaded to the server. Along
with the server-side models, these sub-models are aggregated
to form a new global model. This aggregation process involves
aggregating models from the first to the last layer, as expressed
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by the equation:

wi+1,s =

∑
u∈U |Du|wu,i,s∑

u∈U |Du|
, (6)

where wu,i,s denotes the weights of the s-th layer from the
model of client u in the i-th round.

B. Latency Model

In this subsection, we present the communication and com-
putation latency by taking the i-th round as an example.

1) Communication Latency: This work employs frequen-
cy division multiple access (FDMA) technology with a wire-
less bandwidth of β Hz for clients to transmit smashed datas
and sub-models. Define nu,i ∈ [0, 1] as the bandwidth allocat-
ed to client u in round i, and ni = (n1,i, · · · , nu,i, · · · , nU,i).
For uplink transmission, let pu represent the transmit power
of client u. We postulate that the channel gain hu,i between
client u and the server remains steady within a single round
but changes independently across rounds, incorporating small-
scale fading and path loss. Thus, client u’s transmit rate is

ru,i(nu,i) = nu,iβlog2(1 +
puhu,i
σ2

), (7)

where σ2 denote the variance of Gaussian additive noise. Note
that downlink communication latency is negligible because of
the large transmit power of server. Let ϑsu(su) and ϑcu(su)
represent the smashed data size for one sample and data
size of client-side model, respectively. Hence, the latency of
smashed data transmission is tSDT

u,j =
Bϑs

u(su)
ru(nu)

. Similarly, the

latency of model uploading is tMT
u =

ϑc
u(su)
ru(nu)

. Thus, the overall
communication latency for one round is

TCM
u =

∑J

j=1
tSDT
u,j + tMT

u ,∀u ∈ U . (8)

Note that the latency of model distribution and gradients
transmission are negligible since the server possesses high
transmit power.

2) Computing Latency: The clients conduct client-side
FP and sub-model update, while the server conducts server-
side FP and sub-model update. In FP stage, the latency of
client-side model training stage is tCMT

u,j =
BφF,c

u (su)
fu

, where
φF,cu (su) represents the computational workload (in FLOPs)
of the client-side model’s FP stage for processing a single
data sample, and fu represents the computing capability of
client u, which is quantified as the number of floating-
point operations per second (flops/s). Similarly, the latency
of server-side model training is tSMT

u,j =
B

∑
u∈M φF,s

u (su)

fs
,

where
∑
u∈M φF,su (su) denote the computation workload of

the server, and fs denote the computing capability of the
server (flops/s). In BP stage, let φB,cu (su) and

∑
u∈M φB,su (su)

denote the workload of client-side model updates and server-
side model updates, respectively. Hence, we have latency of
client-side and server-side model update tCMU

u,j =
BφB,c

u (su)
fc

and tSMU
u,j =

B
∑
u∈M φB,s(su)

fs
, respectively.

Counting these components, the computing latency of i-th

round is

TCP
u =

J∑
j=1

(tCMT
u,j + tSMT

u,j + tSMU
u,j + tCMU

u,j ),∀u ∈ U . (9)

With the latency components we analyzed, the latency of one
global round is given by

T (M) = max
u∈M
{TCM

u + TCP
u }, (10)

where T (M) denote the highest latency among scheduled
clients in i-th round. Note that the latency of model aggre-
gation is negligible because of the low computing complexity.
Note that packet loss issues are not considered in this work.
In future research, we will explore methods to enhance the
robustness of the framework, such as the application of Hybrid
Automatic Repeat reQuest (HARQ).

III. CONVERGENCE ANALYSIS AND PROBLEM FORMATION

In this section, we conceptually describe the convergence
characteristics of the studied SFL system under the broad non-
convex loss function framework. Subsequently, we identify a
metric, specifically the degree of class imbalance, to help the
design of the client sampling policy. Furthermore, we construct
an optimization problem for client sampling that balances the
trade-off between dataset skewness and latency in each round.

A. Convergence Analysis

We examine the convergence of the introduced framework
and adopt several assumptions in this subsection.

Our global objective function L (w) > 0 can be split
as L (w) = 1

Q

∑Q
q=1 Lq (w), where Lq (w) represents the

average loss function corresponding to all data from the q-th
class in the global dataset, and Q is the number of classes
in an image classification task. Similarly, the local objective
function for the u-th client Lu (w) can be expressed as
Lu (w) =

∑Q
q=1 a(u,q)L(u,q) (w), where L(u,q) (w) denotes

the average loss function for all data of the q-th class in the
u-th client’s local dataset. Let wi and w0 denote the global
model parameter at the i-th round and the initial global model
parameter, respectively. To facilitate the analysis, we establish
the following standard assumptions:

Assumption 1. (L-smooth) The global loss function
L (wc,ws) and the averaged local loss functions of clients
Lu,q(w

c
u,w

s
u) are continuously differentiable with respect

to wc
u and ws

u. ∇wcLu(wc
u,w

s
u) is Lc-Lipschitz continuous

with wc
u and Lcs-Lipschitz continuous with ws

u, that is,
‖∇wcLu(wc

u,w
s
u)−∇wcLu(wc′

u ,w
s
u)‖ ≤ Lc‖wc

u −wc′

u ‖,
and ‖∇wcLu(wc

u,w
s
u)−∇wcLu(wc

u,w
s′

u )‖ ≤
Lcs‖ws

u −ws′

u ‖. Similarly, ∇wsLu(wc
u,w

s
u) is Ls-Lipschitz

continuous with ws
u and Lsc-Lipschitz continuous with wc

u.

Assumption 2. (Unbiased Gradient and Bounded
Variance) The stochastic gradient ∇̃Lu at each client
serves as an unbiased estimator of the local gradient:
E[∇̃Lu(w|Bu,i)] = ∇Lu(w), with the bounded variance
E[‖∇̃Lu(w|Bu,i)−∇Lu(w)‖2] ≤ κ2, and κ2 ≥ 0.
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Assumption 3. (Bounded Dissimilarity) Two non-negative con-
stants exist δ ≥ 1, ψ2 ≥ 0, such that

∑Q
q=1

1
Q‖∇wLq(w)‖2 ≤

δ‖
∑Q
q=1

1
Q∇wLq(w)‖+ψ2,∀w.

Assumption 4. (Class-wise Similarity) For every u and
q, the divergence between the gradient of the glob-
al average loss function and the local equivalent is
confined within a specified constant in the l2 norm,
specifically, ‖∇wcLq (w)−∇wcLu,q (w)‖2 ≤ ζ2u,q and
‖∇wsLq (w)−∇wsLu,q (w)‖2 ≤ ς2u,q.

Most deep neural networks (NNs) have multiple layers,
which satisfy the L-smooth condition. According to [27], a
deep NN is defined by a composition of functions, which
qualifies as a Lipschitz NN if each function within every layer
is Lipschitz continuous. It has been established in [27], [28]
that convolutional layers, linear layers, and certain nonlinear
activation functions (e.g., Sigmoid and tanh) are Lipschitz
functions. Consequently, most deep NNs exhibit Lipschitz
continuous gradients. In a Lipschitz NN where all layers are
composed of Lipschitz functions, both the client-side and
server-side models, comprised of Lipschitz layers, are also
Lipschitz functions. Therefore, Assumption 1 posits that the
entire NN is Lipschitz continuous is validated. Assumptions
2 and 3 are commonly employed in existing convergence
analysis literature, as seen in references [28]–[31]. Assumption
4 relies on the premise that data from the same class are
similar. As in the conventional setting, we formulate a pivotal
lemma to support our investigation:

Lemma 1. Let Assumption 1 holds, clients’ averaged local
loss function relationship:

Lu

(
wc′

u ,w
s′

u

)
− Lu (wc

u,w
s
u) ≤ 1 + χ

2
Lc

∥∥∥wc′

u −wc
u

∥∥∥2
+
〈
∇wcLu (wc

u,w
s
u) ,wc′

u −wc
u

〉
+

1 + χ

2
Ls

∥∥∥ws′

u −ws
u

∥∥∥2
+
〈
∇wsLu (wc

u,w
s
u) ,ws′

u −ws
u

〉
, (11)

where χ = max {Lcs, Lsc}/
√
LcLs, which quantifies the

relative cross-sensitivity of ∇wcLu (wc
u,w

s
u) with respect to

ws
u and ∇wsLu (wc

u,w
s
u) with respect to wc

u.

The proof is based on Lemma 1 in [31]. Lemma 1 illustrates
the gradient interactions between a neural network’s client-side
and server-side models.

Theorem 1. Let Assumption 1, 2, 3 and 4 hold, ηc ≤ 1
2(1+χ)Lc

and ηs ≤ 1
2(1+χ)Ls

, after I rounds, the disparity between the
global loss function and the optimal loss is bounded by:

L (wI)− L (w∗) ≤ H1
I (L (w0)− L (w∗))

+
1−H1

I

1−H1

{
H2 +

(
ψ1

2ηc + ψ2
2ηs
)
E [G(M)]

}
, (12)

where H1 = 1 − Lcηc(1− 8K1

1−K1
) − Lsηs(1− 8K2

1−K2
) +

(Lcηcδ1 + Lsηsδ2)2BE[G(M)], and H2 = 4ηcζ
2 + 4ηsξ

2 +

(
η3cL

2
cκ

2
1

1−K1
+

η3sL
2
sκ

2
2

1−K2
)4(J − 1) + 1

B
2K1

1−K1
ηcζ

2 + 1
B

2K2

1−K2
ηsξ

2 +

ηc
2Lcκ

2
1(1 + χ) + ηs

2Lsκ
2
2(1 + χ).

Proof: Please see Appendix A.

As the expected value E [G(M)] decreases, both H1 and
1−H1

I

1−H1
simultaneously decrease, resulting in a tighter con-

vergence bound. Theorem 1 substantiates that reducing class
imbalance is advantageous for the SFL system and additionally
provides a convergence guarantee for our algorithm.

B. Skewness Measurement

We use a vector of size Q ≥ 2 to indicate the local label
distribution of a client’s training samples Du, denoted by
au = [a(u,1), · · · , a(u,q), · · · , a(u,Q)], where each a(u,q) ≥ 0

and
∑Q
q=1 a(u,q) = 1. We aim to find a subset M of size

M , such that the grouped dataset DM =
∑
u∈MDu is class-

balanced, where the following vector aM can represent the
label distribution of DM,

aM =

∑
n∈MDuau∑
n∈MDu

= [

∑
n∈MDua(u,1)∑

n∈MDu
, · · · ,∑

n∈MDua(u,q)∑
n∈MDu

, · · · ,
∑
n∈MDua(u,Q)∑

n∈MDu
]. (13)

The term G(M), related to the client sampling policy, mea-
sures the skewness of scheduled client subset M’s datasets:

G(M) =

Q∑
q=1

(∑
u∈MDua(u,q)∑

u∈MDu
− 1

Q

)2

. (14)

For clarity, we define the skewness of a grouped dataset
as G. Specifically, G(M) =

∑Q
q=1(

∑
u∈MDua(u,q)∑

u∈MDu
−∑

u∈U Dua(u,q)∑
u∈U Du

)2 generally quantifies the skewness. Essentially,
G(M) measures the L2 discrepancy between the label distri-
bution of DM and that of an ideal class-balanced dataset with a
uniform label distribution. While other probabilistic distances
are more commonly used than L2, G(M) is selected for its
analytical tractability and computational efficiency.

Hence, we aim to further reduce G(M) and expedite
learning convergence by selecting a subset of clients and
adjusting pre-client stepsizes λu(u ∈ Mi) in each global
round i. This approach aims to create a partial participants’
grouped dataset that closely resembles the full dataset. To
achieve this, we introduce a mapping function Z : U →Mi,
which assigns each client u ∈ U to a scheduled client
Z(u) ∈ Mi, ensuring that the data distribution of client
u is approximated by Z(u). For each client m ∈ Mi, let
Ωm = u : u ∈ U ,Z(u) = m represent the set of clients whose
data distribution is approximated by client m, with λu = |Ωm|.
For each type of data sample, we have

1

U

U∑
u=1

a(u,b) =
1

U

U∑
u=1

(a(u,b) − a(∂(u),b) + a(∂(u),b))

=
1

U

U∑
u=1

(a(u,b) − a(∂(u),b)) +
1

U

∑
u∈Mi

λua(∂(u),b). (15)

By rearranging this function and taking norm, we have

1

U
‖
∑U

u=1
a(u,b) −

∑
u∈Mi

λua(Z(u),b)‖
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=
1

U
‖
U∑
u=1

(a(u,b) − a(Z(u),b))‖
(a)

≤ 1

U

U∑
u=1

‖a(u,b) − a(Z(u),b)‖

(16)

where (a) follows triangular inequality. A function’s upper-
bound is reduced when Z maps u ∈ U to a client in Mi

with minimal Euclidean distance between local label distri-
butions. That is, Z(u) = arg minm∈Mi‖a(u,b) − a(Z(u),b)‖.
Consequently, the approximation error in formula (16) is

‖
∑U

u=1
a(u,b) −

∑
u∈Mi

λua(Z(u),b)‖

≤
∑U

u=1
minm∈Mi‖a(u,b) − a(m,b)‖. (17)

Hence, the approximation error can be reduced by minimizing
the second term. By minimizing the upper bound of the ap-
proximation error, the performance of training is boosted. We
define our target G(Mi) =

∑U
u=1 minm∈Mi

‖a(u,b) − a(m,b)‖
to quantify the approximate error of a client sampling strategy.

C. Problem Formulation

This study aims to boost the effectiveness of the proposed
framework through jointly optimizing the client sampling,
model splitting, and bandwidth allocation policies under la-
tency and wireless resource constraints. According to our
convergence analysis, reducing skewness is shown to direct-
ly improve learning performance. Additionally, minimizing
overall latency is crucial for accelerating the training process.
To expedite learning convergence, we strategically schedule
clients that exhibit the lowest latency, which is enabled by
favorable channel characteristics and robust computational
capabilities, as well as minimal dataset skewness. To this end,
we attempt to enhance SFL learning performance by balancing
the trade-offs between skewness and latency, as demonstrated
in prior research (e.g., [32]). We introduce two weight factors,
ρ1 ≥ 0 and ρ2 ≥ 0, to capture the Pareto-optimal trade-offs
between skewness and latency, with their values adjusted to fit
particular scenarios. A larger ρ1 combined with a smaller ρ2
emphasizes class imbalance, whereas the reverse setup priori-
tizes minimizing client latency. We optimize SFL performance
per round, considering the independence of bandwidth and
clients, rather than seeking a multi-round optimization under
long-term resource constraints [33]. The problem is formulated
as follows:

P : min
si,Mi,ni

ρ1G(Mi) + ρ2T (Mi) (18)

s. t.
∑

u∈Mi

nu,i ≤ 1,∀u ∈ U ,∀i, (18a)

0 ≤ nu,i ≤ 1,∀u ∈ U ,∀i, (18b)
su,i ∈ S,∀u ∈ U ,∀i, (18c)
αu,i ∈ {0, 1},∀u ∈ U ,∀i, (18d)

where (18a) stipulates that the total bandwidth allocated to
the clients is not allowed to surpass the accessible bandwidth.
(18b) enforces limits on the bandwidth assigned to each
individual client. (18c) mandates model split point. (18d) de-
termines the participants for each round. Notably, we employ
’virtual clients’ to manage strict latency constraints effectively.

Problem P presents significant challenges due to its combina-
torial nature, involving optimization over a multi-dimensional
space that includes both discrete and continuous variables. In
the subsequent section, we explore two specific instances of
P: skewness-aware and latency-aware client sampling. These
are submodular maximization problems and are NP-hard, thus
establishing the NP-hardness of problem P .

IV. OPTIMAL CLIENT SAMPLING, MODEL SPLITTING,
AND BANDWIDTH ALLOCATION

In this section, we develop efficient algorithms for solving
P in polynomial time. We first design an optimal bandwidth
allocation algorithm and an optimal model splitting algorithm.
Then based on two exceptional examples, we demonstrate that
P is a non-monotonic submodular optimization issue. Addi-
tionally, we propose a L&S-aware client sampling algorithm
to solve P and yield optimal client sampling, model splitting,
and bandwidth allocation policies.

A. Optimal Bandwidth Allocation

To determine the optimal bandwidth allocation policy for
any client sampling subset Mi and model splitting strategy
si, we decompose the subproblem of optimal bandwidth
allocation from P as follows:

P1 : min
ni

max
u∈Mi

{TCM
u,i + TCP

u,i }

s. t. (18a), (18b). (19)

Both the target function and the constraints meet the criteria
for convexity. Hence, P1 is a standard convex optimization
problem, and we utilize Lemma 2 to find its optimal solution:

Lemma 2. The optimal bandwidth allocation strategy adheres
to:

nu,i =
νu,i

(T ∗i (Mi)− TCP
u,i )βlog2(1 +

puhu,i
σ2 )

, (20)

where T ∗i (Mi) represents the ideal latency for the sampled
client subset Mi in round i, and its value is defined by∑
u∈Mi

nu,i = 1. In addition, νu,i=JBϑsu,i(su) + ϑcu,i(su)
is the total datasize in one round communication.

Proof: Please see Appendix B.
According to Lemma 2, the bandwidth allocation approach

includes an unknown variable T ∗i (Mi). The bisection method
is utilized to seek the optimal bandwidth allocation strategy,
as nu,i decreases monotonically with respect to Ti(Mi). To
achieve this, we establish the lower and upper bounds of
Ti(Mi). For the lower bound, the minimum bandwidth allo-
cated to clients in Mi is less than 1

|Mi| , or minu∈Mi
nu,i ≤

1
|Mi| . Thus,

min
u∈Mi

νu,i

βlog2(1+
puhu,i

σ2
)

max(Ti(Mi)− TCP
u,i )

≤ 1

|Mi|
,∀u ∈Mi, (21)

we have the lower bound of Ti(Mi):

Ti,lb(Mi) = min
u∈Mi

|Mi|νu,i
βlog2(1 +

puhu,i
σ2 )

+ min
u∈Mi

TCP
u,i . (22)
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Algorithm 1 Optimal Bandwidth Allocation Algorithm
1: Initialization: Scheduled client subset Mi, model splitting

decision value si, bandwidth allocation policy ni, the lower
bound (Ti,lb) and the upper bound (Ti,ub) of latency, precision
requirements ε > 0.

2: repeat
3: Set T = (Ti,lb + Ti,ub)/2.
4: For each client u ∈ Mi, compute the required bandwidth

allocation ratio nu,i(T ) derived from (20).
5: Compute total required bandwidth allocation proportion∑

u∈Mi
nu,i(T ).

6: if
∑
u∈Mi

nu,i(T ) > 1 then
7: Halve the searching region by setting Ti,lb = T and

Ti,ub = Ti,ub.
8: else if 0 <

∑
u∈Mi

nu,i(T ) < 1− ε then
9: Halve the searching region by setting Ti,lb = Ti,lb and

Ti,ub = T .
10: else
11: Break the loop.
12: until |Ti,ub − Ti,lb|< ε
13: return The optimal latency T ∗i = T , the optimal bandwidth

allocation policy n∗i .

For the upper bound, the maximum bandwidth allocated to
clients inMi exceeds 1

|Mi| , with maxu∈Mi nu,i ≥ 1
|Mi| . The

upper bound is derived similarly to the lower bound:

Ti,ub(Mi) = max
u∈Mi

|Mi|νu,i
βlog2(1 +

puhu,i
σ2 )

+ max
u∈Mi

TCP
u,i . (23)

Leveraging the lower and upper bounds, a bisection algorithm
is employed for identifying the ideal latency T ∗i (Mi). To en-
hance comprehension, the procedure of allocating bandwidth
optimally is introduced in Algorithm 1. This algorithm pro-
gressively reduces the search interval with each iteration, ceas-
ing when the required precision (i.e., ε) is achieved. For time
complexity, each iteration of this algorithm involves a half-
interval search, which logarithmically reduces the search space
O(log2

Ti,ub(Mi)−Ti,lb(Mi)
ε ). For each interval halving, it com-

putes the bandwidth allocation for M clients in subset Mi,
thus the total complexity is O(M log2

Ti,ub(Mi)−Ti,lb(Mi)
ε ).

From the preceding analysis, we derive the following remark.

Remark 1. According to (20), the fraction of wireless band-
width, i.e., nu,i, allotted to client u(u ∈ U) decreases
monotonically with CPU frequency fu and channel gain hu,i.
Thus, clients with inadequate computing capabilities and weak
channel conditions require additional bandwidth.

B. Optimal Model Splitting

In this subsection, we determine the optimal model split-
ting solution for a specified client sampling policy Mi and
bandwidth allocation policy ni. The optimal model splitting
subproblem is

P2 : min
si
{TCM

u,i + TCP
u,i }

s. t. (18c). (24)

The target is constructed to be a summation of affine functions
of the decision variables su,i. Since an affine function main-
tains the property of convexity, we have the target function is
convex in terms of the splitting point variables su,i. The linear
constraint (18c) renders P2 a convex optimization problem.

Algorithm 2 Optimal Model Splitting Algorithm
1: Initialization: Scheduled client subset Mi, optimal bandwidth

allocation policy n∗i from Algorithm 1, model splitting decision
value si.

2: for u ∈Mi do
3: for each split point su,i ∈ S do
4: Calculate the expected learning latency
5: T̃ (su,i) = {TCM

u,i + TCP
u,i }.

6: end for
7: s∗u,i = argminsu,i∈S T̃ (su,i)

8: end for
9: Set s∗i = s

(τ)
i as the optimal model splitting strategy.

10: return The optimal model splitting policy s∗i .

We utilize the SAA method [34] in the Algorithm 2 for
efficiently solving optimal model splitting problem.

As aforementioned, we decompose the optimal bandwidth
allocation problem P1 and optimal model splitting prob-
lem P2 from P , which are efficiently solved with pro-
posed algorithms. Accordingly, Algorithm 2 utilize the re-
sult of optimal bandwidth allocation policy from Algorith-
m 1. Therefore, the time complexity of this algorithm is
O(MS log2

Ti,ub(Mi)−Ti,lb(Mi)
ε ). To adapt the time-varying

communication and training conditions, both of the two al-
gorithms are designed to be executed at each round, which
enables the optimal resource allocation strategy that best aligns
with the current environment.

C. Latency and Skewness-Aware Client Sampling Strategy

In this subsection, we explore two specific instances of
problem P , i.e., the latency and skewness-aware client sam-
pling issues. Based on them, we propose a L&S-aware client
sampling algorithm.

To formulate the latency-aware client sampling problem,
set ρ1 = 0 and ρ2 = 1 in problem P . The ideal bandwidth
allocation and model splitting strategy for any scheduled client
subset Mi are determined by executing Algorithm 1 and 2.
The related optimal latency is T ∗i (Mi). Substituting T ∗i (Mi)
into problem P yields the corresponding problem:

P3 : min
Mi

T ∗(Mi) (25)

s. t. |Mi|= M, (18b). (25a)

In P3, we add a constraint (25a), while the empty client set
can be utilized as the solution for the problem without it.

To address problem P3, an intuitive approach involves
computing the optimal latency for all potential client sampling
strategies and selecting the client with the lowest latency.
Nevertheless, with a total of CMU potential strategies, and
considering that the overall amount of clients is typically
large while the clients participate in each round are fewer,
the number of potential client subsets becomes extensive.
Consequently, evaluating the latency for all potential strategies
is impractical due to the prohibitive computational complexity.

To formulate the skewness-aware client sampling problem,
set ρ1 = 1 and ρ2 = 0 in problem P:

P4 : min
Mi

G(Mi) (26)

s. t. |Mi|= M. (26a)
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Algorithm 3 L&S-Aware Client Sampling Algorithm
1: Initialize M1 ← ∅, M2 ← U
2: for u ∈ U do
3: Let xu ← (maxF(M1)−F(M1 ∪ {u}, 0))
4: Let yu ← (maxF(M2)−F(M2 \ {u}, 0))
5: If xu = yu = 0, let xu

xu+yu
= 1

6: With probability xu
xu+yu

do M1 ←M1 ∪ {u} and M2 ←
M2

7: Otherwise M1 ←M1 and M2 ←M2 \ {u}
8: end for
9: Let Mi =M1 (or Mi =M2).

10: return The sampled client subset Mi.

As in problem P3, a client set constraint is employed in
problem P4 due to its monotone objective function with regard
to client set size. Without limitations (26a), problem P3 can
be solved by involving each client (i.e., Mi = U).

According to [15], by proving that problem P3 and P4 are
submodular set cover problems, we adopt a near-optimal solu-
tion for both problem P3 and P4 by utilizing greedy algorithm.
To this end, deriving from the submodular function’s definition
in [35], the Lemma 3 is introduced for ideal latency T ∗i (Mi)
and skewness function G(Mi) as follows:

Lemma 3. For each set M1 ⊆ M2, the optimal latency
function T ∗i (Mi) is monotonically increasing, while the objec-
tive function G(Mi) is monotonically decreasing. Specifically,
for any set M1 ⊆ M2 ⊆ U and m ∈ U \ M2, we have
T ∗i ({m} ∪M1) − T ∗i (M1) ≤ T ∗i ({m} ∪M2) − T ∗i (M2),
and G({m} ∪M1)−G(M1) ≤ G({m} ∪M2)−G(M2).

Proof: Please see Appendix C.
Lemma 3 states that P3 and P4 are NP-Hard cardinality

constraint submodular maximization problems. We use greedy
algorithm [36] to discover a near-optimal solution for them.
For P3, the algorithm starts from Mi = ∅ and adds one
client m ∈ U \ Mi with the biggest marginal gain in each
step, i.e. u = arg minu∈U\Mi

(T ∗i ({u} ∪Mi)− T ∗i (Mi)). In
addition, for P4, the greedy algorithm begins with Mi = ∅
and selets one client u with highest marginal gain, i.e.,
u = arg minu∈U\Mi

(G({u}∪Mi)−G(Mi)) in each iteration.
However, clients have time-varying computation capability,

channel conditions, and data skewness. To accelerate learning
convergence, the client sampling mechanism should consider
latency and skewness simultaneously. Leveraging latency and
dataset skewness features, we design an efficient solution to
balance clients’ latency and skewness in problem P .

Based on Lemma 2, the optimal latency for any client sam-
pling subset Mi ⊆ U can be determined through Algorithm
1, denoted T ∗i (Mi). Substituting T ∗i (Mi) into P yields the
corresponding problem:

P̃ : min
Mi

F(Mi) = ρ1G(Mi) + ρ2T ∗i (Mi)

s. t. (18d). (27)

Remark 2. According to Lemma 3, −T ∗i (Mi) and −G(Mi)
are both monotonic submodular functions. Hence, the nega-
tion of the objective function of problem P̃ , specifically,
−ρ1G(Mi) − ρ2T ∗i (Mi), constitutes a non-monotone sub-
modular function. Consequently, problem P̃ is classified as an

unconstrained non-monotone submodular maximization prob-
lem, generally acknowledged as NP-Hard.

In accordance with Remark 2, for seeking a suboptimal
solution for P̃ , we employ the double greedy algorithm
[37]. For clarity, we recapitulate the detailed steps in Al-
gorithm 3, which requires solving 2U times model splitting
and bandwidth allocation problem for finding the scheduled
client subset. Therefore, each decision involves invoking these
algorithms 2U times, and the complexity per client deci-
sion is O(2US log2

Ti,ub(Mi)−Ti,lb(Mi)
ε ). It is worth noting

that the complexity primarily grows linearly with U , while
the brute-force approach results in an overall complexity of
O(2US log2

Ti,ub(Mi)−Ti,lb(Mi)
ε ). As U increases, the dif-

ference in computational load between brute-force and our
algorithm becomes starkly apparent, because the brute-force
method grows exponentially, while the linear growth of our
algorithms are acceptable. Hence, our proposed algorithm-
s significantly reduce computational demands as networks
scale. The server initializes two client subsets, M1 = ∅
and M2 = U , and then sequentially passes through the
clients in U . The algorithm determines whether to add client
u(u ∈ U) to M1 or remove it from M2. To implement the
suggested algorithm, the server needs to gather clients’ channel
information to calculate appropriate model splitting strategies,
bandwidth allocation policies, and latency. In addition, [37]
indicates that the double greedy algorithm attain a close 1/2
approximation to the optimum solution.

V. NUMERICAL RESULTS

In this section, we examine the effects of various cut
layers in the second subsection. Furthermore, we assess the
superiority of the proposed skewness-aware and L&S-aware
algorithms over baseline approaches for image classification
tasks in the third and forth subsections, respectively.

TABLE II
SYSTEM PARAMETERS

Parameter Value Parameter Value
U 100 M 10
β 1MHz B 64
σ2 -174dBm h0 -30dBm
fs 20 η 0.01
J 5 I 200

(a) Communication overhead (b) Computing workload

Fig. 3. The client’s communication overhead and computing workload in
SFL with varying split point for MLP and CNN.
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(a) 5 clients on MNIST (b) 10 clients on MNIST (c) 5 clients on CIFAR-10 (d) 10 clients on CIFAR-10

Fig. 4. Comparison of learning performance for different model splitting strategies on MNIST and CIFAR-10.

A. Simulation Settings

Wireless setting: The simulation assumes an server at the
center of a 500m-radius circular area serving U = 100
randomly distributed clients. To simulate client heterogene-
ity, the transmit power for each client is randomly picked
from {0.01, 0.02, 0.03, 0.05}W, while the CPU frequency is
randomly choosen from {0.5, 0.8, 1.0, 1.2, 1.6}GHz. Channel
gain is modeled as hu,i = h0ρu,i(t)d

−2
u , where h0 is the

constant of path loss, du is client-server distance, and ρu,i(t) ∼
Exp(1) is Rayleigh fading gain [31]. Table II shows the default
system settings if not specified.

Datasets and Models: We assess the proposed mechanism
on a variety of datasets, including MNIST handwritten dig-
its, Fashion-MNIST clothing classification, CIFAR-10 picture
classification tasks, and STL-10 image recognition tasks. Each
client is randomly assigned a local dataset to simulate realistic
data distribution scenarios. For MNIST, we utilize a multi-
layer perceptron (MLP) model featuring a 784-unit input layer,
seven hidden layers with 512, 512, 256, 128, 128, and 64
units, and a 10-unit softmax output layer. Activation across
the input and four hidden layers is managed by the ReLU
function. This MLP model comprises 900,010 parameters,
corresponding to the number of FLOPs required for gradient
computation of a single data sample. The Fashion-MNIST
dataset is also trained using the same MLP neural network
as used for MNIST. For CIFAR-10, we configure a CNN with
three 3×3 convolution layers, a 2×2 max-pooling layer, five
fully connected layers (2048, 512, 256, 128, and 64 units),
and a 10-unit softmax output layer, with activation by the
ReLU function in each convolution and fully connected layer.
The CNN holds 1314272 parameters, with 5644928 FLOPs
necessary for processing one data sample. For the STL-10
dataset, which contains higher-resolution images, we employ
a more complex AlexNet neural network. AlexNet for STL-10
is configured with five convolutional layers with 64, 192, 384,
256, and 256 filters and kernel sizes of 11 × 11, 5 × 5, and
3×3 respectively, followed by three max-pooling layers with a
3×3 kernel and stride of 2, an adaptive average pooling layer
resizing to 6×6, and a classifier section comprising a dropout-
augmented sequence of fully connected layers with 4096,
1024, 512, 256 units, culminating in a 10-unit output layer.
Activation is achieved through the ReLU function throughout
the network. As split point moves deeper, the part of the
model residing on the client-side becomes larger. Hence,

Fig. 3 illustrates the increasing trend of communication and
computing workload for MLP and CNN models.

Datasets Allocation Schemes: Two primary types of data
heterogeneity scenarios are considered to evaluate the per-
formance of the proposed framework in varied and realistic
environments: For the first scenario, we model the datasets
exhibit a significant degree of heterogeneity. Half of the biased
clients possess datasets that contain Q/2 categories, selected
randomly from Q categories, while the remaining half of the
clients are unbiased and have datasets that encompass all Q
categories. The second data heterogeneity scenario utilizes a
Dirichlet distribution to allocate data across clients.

B. Impact of Different Cut Layer

To investigate the effect of varying cut layers on learning
performance, we assess accuracy across four distinct model
splitting schemes. Fig. 4 juxtaposes the performance of the
dynamic model splitting algorithm against three baseline s-
trategies: (1) Random model split: the model split point is
chosen randomly for each global round. (2) Fixed cut layers
s = 3. (3) Fixed cut layers s = 5.

Fig. 4(a) examines the accuracy when 5 clients are trained
on the MNIST dataset. Setting a target accuracy of 80%, the
dynamic model splitting algorithm achieves this goal in 22.3
seconds, compared to 35.7 seconds, 32.14 seconds, and 38.02
seconds required by the random splitting, fixed cut layer s = 3,
and s = 5 strategies, respectively. Consequently, the proposed
algorithm yields time savings of 37.5%, 30.5% and 41.3%
over the random splitting, fixed cut layer s = 3, and s =
5, respectively. Additionally, Fig. 4(b) evaluates performance
with 10 clients targeting an accuracy of 80%, the proposed
algorithm reduces training time by 24.1%, 30.1%, and 30.4%
compared to the random splitting, fixed cut layer s = 3, and s
= 5, respectively.

Fig. 4(c) assesses the accuracy with 5 clients on the CIFAR-
10 dataset. When targeting an accuracy of 30%, our algorithm
achieves a reduction in training time of 75.7%, 60.8%, and
82.5% compared to random splitting, fixed cut layer s = 3, and
s = 5, respectively. Furthermore, Fig. 4(d) illustrates that with
10 clients and a target accuracy of 40%, our proposed algorith-
m reduces training time by 61.7%, 33.7%, and 70.3% relative
to the three other approaches. The experimental findings
convincingly display that our algorithm significantly surpasses
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(a) On MNIST (b) On CIFAR-10

Fig. 5. Learning performance of three client sampling schemes on MNIST
and CIFAR-10.

TABLE III
ACCURACY IMPROVEMENT

Dataset M Proposed Best Baseline Improvement
MNIST 5 93.14% 79.42% 13.72%
MNIST 10 94.86% 84.24% 10.62%
MNIST 20 95.62% 86.55% 9.07%
CIFAR-10 5 46.93% 39.13% 7.8%
CIFAR-10 10 52.24% 45.51% 6.73%
CIFAR-10 20 56.71% 47.11% 9.6%

the established baselines in both accuracy and convergence
speed.

C. Performance of Skewness-Aware Client Sampling

For measuring the efficacy of the skewness-aware clien-
t sampling algorithm introduced in Section IV-C, Fig. 5
contrasts the learning outcomes of the proposed algorithm
with those of traditional SFL and SL, both utilizing random
sampling methods, across client subsets sizes of M = 5,
M = 10, and M = 20. Note that M represents the number of
clients in subset M, which directly influences skewness.

In Table III, we present the test accuracy enhancements
achieved by our skewness-aware algorithm compared to the
best baseline, for client subset sizes of M = 5, M = 10,
and M = 20. The results indicate that the proposed algorithm
secures significant improvements over the best baselines, with
the highest accuracy observed when M = 20.

In Fig. 5(a), by the 90th round, the proposed algorithm
achieves a test accuracy of 93.14%, 94.86%, 95.62%, when
M = 5, M = 10, M = 20, respectively. The best baseline
accuracies are 79.42%, 84.24%, 86.55%, when M = 5,
M = 10, M = 20, respectively. Thus, the proposed algorithm
exceeds the best baseline of traditional SFL and SL by margins
of 13.72%, 10.62%, and 9.07%, respectively. Additionally,
Fig. 5(b) compares the learning performance of our algorithm
against conventional methods on the CIFAR-10 dataset, assess-
ing accuracy by the 140th round. With five clients (M = 5),
the Skewness-aware SFL achieves an accuracy of 46.93% by
the 140th round, which surpasses the highest baseline accuracy
of 39.13% by 7.8%. Furthermore, when operating with ten
and twenty clients (M = 10 and M = 20, respectively),
the proposed algorithm records accuracies of 52.24% and
56.71%. These results represent improvements of 6.73% and

9.6% over the best baseline accuracies of 45.51% and 47.11%,
respectively.

D. Performance Evaluation of L&S-Aware Client Sampling

In this subsection, we evaluate the effectiveness of the pro-
posed L&S-aware client sampling algorithm against five dis-
tinct baselines: (1) Skewness-aware: our proposed skewness-
aware client sampling algorithm within the SFL framework.
(2) Latency-aware: our proposed latency-aware client sampling
algorithm in SFL. (3) Optimal B&MS: a scheme combin-
ing optimal bandwidth allocation, model splitting, and ran-
dom client sampling within SFL. (4) Equal B&MS: equal
bandwidth allocation with random model splitting and client
sampling in SFL. and (5) Traditional FL: traditional federated
learning approach using equal bandwidth allocation and ran-
dom client sampling.

Fig. 6 and Fig. 7 evaluates the learning performance of
our proposed client sampling algorithms against conventional
schemes. We depict the best and worst performance for M = 5
and M = 10 by sequentially selecting ρ1 and ρ2 from 0.1 to
1.0.

Fig. 8 depicts the latency benefits of our proposed SFL
framework compared to traditional FL across various client
computational capabilities. This comparison is conducted for
both MLP and CNN models. Notably, the SFL framework con-
sistently outperforms traditional FL, demonstrating substantial
time efficiencies under all tested conditions of computational
capacity for the MLP and CNN models. Furthermore, Table IV
details the time required to reach a designated accuracy level,
comparing the proposed algorithm against the most effective
baseline.

(a) Latency for MLP (b) Latency for CNN

Fig. 8. Latency comparison between proposed SFL framework and conven-
tional FL across varying client computing capabilities.

TABLE IV
REQUIRED TIME TO REACH A TARGET ACCURACY

Dataset M Target
Accuracy

Proposed Best
Baseline

Saved
Time

MNIST 5 80% 11.27 22.33 49.5%
MNIST 10 80% 17.93 26.1 31.3%
FMNIST 5 70% 11.66 23.5 50.4%
FMNIST 10 75% 26.2 42.07 37.7%
CIFAR-10 5 40% 35.07 62.48 43.8%
CIFAR-10 10 45% 126.25 256.94 50.9%
STL-10 5 45% 1020.15 1808.8 43.6%
STL-10 10 45% 1524.46 2439.9 37.5%
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(a) 5 clients on MNIST (b) 10 clients on MNIST (c) 5 clients on Fashion-MNIST (d) 10 clients on Fashion-MNIST

Fig. 6. Comparison of the learning performance for different clients sampling schemes on the MNIST dataset and Fashion-MNIST dataset.

(a) 5 clients on CIFAR-10 (b) 10 clients on CIFAR-10 (c) 5 clients on STL-10 (d) 10 clients on STL-10

Fig. 7. Comparison of the learning performance for different clients sampling schemes on the CIFAR-10 dataset and STL-10 dataset.

Specifically, Fig. 6(a) evaluates accuracy on the MNIST
dataset with 5 clients, setting ρ1 = 0.8 and ρ2 = 1. For
reaching a target accuracy of 80%, the L&S-aware algorithm
requires only 11.27 seconds, whereas the skewness-aware
approach takes 22.33 seconds. Compared to the skewness-
aware algorithm, the L&S-aware algorithm achieves a 49.5%
reduction in training time, and a significant 90.5% reduction
compared to the latency-aware algorithm. Additionally, Fig.
6(b) depicts a scenario with 10 clients where the L&S-aware
algorithm takes 17.93 seconds to reach the 80% accuracy tar-
get, whereas the skewness-aware and latency-aware algorithms
require 26.1 seconds and 101.27 seconds, respectively. Thus,
the L&S-aware algorithm reduces training time by 31.3% and
82.3% compared to the skewness-aware and latency-aware
algorithms, respectively.

For Fashion-MNIST, Fig. 6(c) demonstrates that it only
takes 11.66 seconds to reach a 70% target when 5 clients par-
ticipate in training. Compared to the best baseline that needs
23.5 seconds to achieve this target, the proposed approach
saves 50.4% time. In Fig. 6(d), with 10 clients participating
and aiming for a 75% accuracy target, the proposed algorithm
costs 26.2 seconds to achieve the target, while the best baseline
takes 42.07 seconds, thus 37.7% training time is saved by
implement proposed algorithm.

For CIFAR-10, Fig. 7(a) illustrates a learning scenario
with five clients scheduled, where the L&S-aware algorithm
requires 35.07 seconds to achieve a 40% accuracy target. In
comparison, the skewness-aware and latency-aware algorithms
require 62.48 seconds and 112.6 seconds, respectively. The
proposed mechanism achieves a 43.8% reduction in learning

time relative to the skewness-aware algorithm and a 68.9%
reduction compared to the latency-aware algorithm. In Fig.
7(b), with ten clients participating and aiming for a 45%
accuracy target, the L&S-aware algorithm reduces learning
time by 50.9% compared to the skewness-aware and 63.7%
compared to the latency-aware algorithms. It is noteworthy
that the proposed algorithm not only converges significantly
faster but also attains markedly higher accuracy in less time
than three other baseline approaches: optimal bandwidth and
model splitting (B&MS), equal bandwidth allocation, and FL.

For STL-10, Fig. 7(c) runs under the setting of 5 partic-
ipants. When set the target accuracy as 45%, the proposed
algorithm spends 1020.15 seconds to reach this target, while
the best baseline needs 1808.8 seconds. As a result, our
algorithm is able to save at least 43.6% time compare to
other approaches. In Fig. 7(d), with 10 participants, time
consumption is 1524.46 seconds for our algorithm to reach
45% accuracy, while the best baseline needs 2439.9 seconds.
Hence, our algorithm saves minimum 37.5% time compared
to other baselines.

E. Performance Evaluation under Extreme Conditions

In this subsection, we evaluate the effectiveness of our
proposed SFL framework when some clients possess extreme-
ly low computational resources or poor network conditions.
To this end, we have extended our experimental setup to
include clients with notably low communication and com-
putational capacities, where the set of random values for
the clients’ transmit power in our experimental setup to
include {0.005, 0.01, 0.02, 0.03, 0.05}W. Simultaneously, the
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10 (d) STL-10

Fig. 9. Comparison between proposed SFL framework and baselines under extreme conditions on four distinct datasets (M = 10).

set of random values for the CPU frequency was extended
to {0.01, 0.5, 0.8, 1.0, 1.2, 1.6}GHz. As suggested, we have
added experimental simulation on MNIST, Fashion-MNIST,
CIFAR-10, and STL-10 towards the new setup.

In Fig. 9, we demonstrate the comparison between proposed
SFL framework and three representative baselines on four
distinct datasets. Fig. 9 illustrates the superior performance
of our proposed framework under extreme conditions, notably
in scenarios characterized by low computational resources or
poor network conditions. Our L&S-aware algorithm markedly
outpaces baselines skewness-aware, Equal B&MS, and Tra-
ditional FL in both convergence speed and test accuracy
with configurations M = 10. The distinct advantage in time
efficiency observed with our framework, especially under
challenging conditions, underscores its capacity to excel in
extreme scenarios, affirming its effectiveness and adaptability
in real-world applications.

VI. CONCLUSION

In this work, we designed a novel learning mechanism
that enhances learning accuracy and expedites convergence.
Addressing the challenges of limited communication resources
and heterogeneous clients’ computing capabilities, we intro-
duced both optimal bandwidth allocation algorithm and opti-
mal model splitting algorithm to achieve adaptive bandwidth
allocation and dynamic model split for reducing learning
duration. Furthermore, we found a new metric called dataset
skewness that affects learning. Thus, by proving the submodu-
larity of skewness and latency-aware algorithms, we proposed
a L&S-aware algorithm to solve the issue of heterogeneous
clients’ data, while reduce the learning time. Experiments
shows our approach enhances learning performance.

APPENDIX

A. Proof of Theorem 1

Suppose the full model denotes w = [wc,ws]. Let
wu,i,j represent the model parameters of client u following
j local iterations in the i-th global round, and wi,0 rep-
resent the global model parameters at the start of the i-
th round. We can define the following auxiliary variables
in the scenario where FedAvg is employed as the SFL
optimizer, and all clients perform j local iterations dur-
ing each global round i. We have the local loss function

Lu(w) = Lu(wc,ws) = 1
|Du|

∑
{x,y}∈Du lu(x, y;w); The

global loss function denote L(w) = L(w1,w2, ...,wU ) =
L([wc

1,w
s
1], [wc

2,w
s
2], ..., [wc

U ,w
s
U ]) = 1

|D|
∑U
u=1DuLu(w).

Averaged Cumulative Stochastic Gradient is given by

hu,i =
1

J

∑J−1

j=0
∇Lu(wu,i,j), (28)

Averaged Class-wise Gradient is given by

hu,i,q =
1

J

∑J−1

j=0
∇Lu,q(wu,i,j), (29)

It is easy to verify that: hu,i =
∑Q
q=1 a(u,q)hu,i,q , and under

Assumption 1, it can be demonstrated that E[hu,i−hu,i] = 0
. Moreover, as clients process independently, we derive that
E〈hu,i − hu,i,hu′,i − hu′,i〉 = 0,∀u 6= u′. Recall that the
update formula for the global model is expressed as follows:

wi+1,0 −wi,0 = −η
∑
u∈MDuh̃u,i∑
u∈MDu

, (30)

Because of Lipschitz-smooth assumption for global loss func-
tion, we have

E
[
L
(
wc
i+1,0,w

s
i+1,0

)]
− L

(
wc
i,0,w

s
i,0

)
≤ −ηc E

[〈
∇wcL

(
wc
i,0,w

s
i,0

)
,

∑
u∈MDuh̃

c
u,i∑

u∈MDu

〉]
︸ ︷︷ ︸

A1

+ ηc
2 1 + χ

2
Lc E

∥∥∥∥∥
∑
u∈MDuh̃

c
u,i∑

u∈MDu

∥∥∥∥∥
2


︸ ︷︷ ︸
A2

− ηs E

[〈
∇wsL

(
wc
i,0,w

s
i,0

)
,

∑
u∈MDuh̃

s
u,i∑

u∈MDu

〉]
︸ ︷︷ ︸

A3

+ ηs
2 1 + χ

2
Ls E

∥∥∥∥∥
∑
u∈MDuh̃

s
u,i∑

u∈MDu

∥∥∥∥∥
2


︸ ︷︷ ︸
A4

, (31)

We first bound the A1 , and we should notice that

A1
(a)
=

1

2

∥∥∇wcL
(
wc
i,0,w

s
i,0

)∥∥2 +
1

2
E

[∥∥∥∥
∑
u∈MDuh

c
u,i∑

u∈MDu

∥∥∥∥2
]
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− 1

2
E

[∥∥∥∥∇wcL
(
wc
i,0,w

s
i,0

)
−
∑
u∈MDuh

c
u,i∑

u∈MDu

∥∥∥∥2
]
, (32)

Where (a) is obtained by adding and subtracting
∑
u∈MDuh

c
u,i∑

u∈MDu

into
∑
u∈MDuh̃

c
u,i∑

u∈MDu
, and by applying the equation that 2〈a, b〉 =

‖a‖2 + ‖b‖2 − ‖a− b‖2. Next, we focus on bounding A2,

A2

(a)

≤ 2κ21E

[ ∑
u∈MD2

u(∑
u∈MDu

)2
]

+ 2E

[∥∥∥∥
∑
u∈MDuh

c
u,i∑

u∈MDu

∥∥∥∥2
]

(b)

≤ 2κ21 + 2E

[∥∥∥∥
∑
u∈MDuh

c
u,i∑

u∈MDu

∥∥∥∥2
]
, (33)

where (a) follows assumption 2 and the fact ‖a+ b‖2 ≤
2‖a‖2 + 2‖b‖2, (b) comes from E[

∑
u∈MDu

2

(
∑
u∈MDu)

2 ] = 1. A3

and A4 similar with A1 and A2, respectively. Substituting
A1, A2, A3, A4 back into (31), and set ηc ≤ 1

2(1+χ)Lc

and ηs ≤ 1
2(1+χ)Ls

, we have E[L(wc
i+1,0,w

s
i+1,0)] −

L(wc
i,0,w

s
i,0) ≤ − 1

2ηc‖∇wcL(wc
i,0,w

s
i,0)‖2 + ηc

2κ21(1 +

χ)Lc + 1
2ηcE[‖∇wcL(wc

i,0,w
s
i,0)−

∑
u∈MDuh

c
u,i∑

u∈MDu
‖2] −

1
2ηs‖∇wsL(wc

i,0,w
s
i,0)‖2 + ηs

2κ22(1 + χ)Ls +
1
2ηsE[‖∇wsL(wc

i,0,w
s
i,0)−

∑
u∈MDuh

s
u,i∑

u∈MDu
‖2]. Now we

focus on bounding

E

[∥∥∥∥∇wcL
(
wc
i,0,w

s
i,0

)
−
∑
u∈MDuh

c
u,i∑

u∈MDu

∥∥∥∥2
]

(a)
= 2E

∥∥∥∥∥
Q∑
q=1

(
1

Q
−
∑
u∈MDua(u,q)∑

u∈MDu
)∇wcLq

(
wc
i,0,w

s
i,0

)∥∥∥∥∥
2


︸ ︷︷ ︸
B1

+ 2E


∥∥∥∥∥∥∥
Q∑
q=1

∑
u∈M

Dua(u,q)[∇wcLq
(
wc
i,0,w

s
i,0

)
− hc

u,i,q]∑
u∈MDu

∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
B2

,

(34)

where (a) is based on the principle that ‖a+ b‖2 ≤ 2‖a‖2 +

2‖b‖2. And E[‖∇wsL(wc
i,0,w

s
i,0)−

∑
u∈MDuh

s
u,i∑

u∈MDu
‖
2

] has the
similar derivation process. For B1, according to Cauchy-
Schwarz inequality and Assumption 3, we have

B1

(a)

≤ Qδ1
∥∥∇wcL

(
wc
i,0,w

s
i,0

)∥∥2E [G(M)] + ψ1
2E [G(M)] ,

(35)

where (a) follows Assumption 3 and Cauchy-Schwarz in-
equality. For B2, according to our Assumption 4, we have

B2

(a)

≤ 2ζ2+

2E


∥∥∥∥∥∥∥
Q∑
q=1

∑
u∈M

Dua(u,q)[∇wcLu,q
(
wc
i,0,w

s
i,0

)
− hcu,i,q]∑

u∈MDu

∥∥∥∥∥∥∥
2

︸ ︷︷ ︸
C1

,

(36)

where (a) is derived by the operations including adding
and subtracting ∇wcLu,q

(
wc
i,0,w

s
i,0

)
, using ‖a+ b‖2 ≤

2‖a‖2 + 2‖b‖2, and
∑Q
q=1

∑
u∈MDua(u,q)∑

u∈MDu
= 1. B4 has

the similar result to B2. where ζ = max{u,q}ζ{u,q} and
ς = max{u,q}ς{u,q}. For C1, we have

E[‖∇wcL(u,q)(w
c
i,0,w

s
i,0)− hc

u,i,q‖
2
]

(a)
= E[‖ 1

J

∑J−1

j=0
(∇wcL(u,q)(w

c
i,0,w

s
i,0)−∇L(u,q)(w

c
u,i,j))‖2]

(b)

≤ L2
c

J

∑J−1

j=0
{E[‖wc

i,0 −wc
u,i,j‖

2
]}, (37)

where (a) is derived by substituting hcu,i,q with
1
J

∑J−1
j=0 ∇L(u,q)(w

c
u,i,j) , (b) uses Jensens Inequality

and Assumption 1. Now we shift our focus to bounding the
difference between global model and local model. We focus
on E[‖wi,0 −wu,i,j‖2] , plugging into the update rule:

E[‖wi,0 −wu,i,j‖2] = η2cE[‖∇̃L(u,q)(w
c
u,i,j)‖2]

≤ 2η2cκ
2
c + 2η2cE[‖∇L(u,q)(w

c
u,i,j)‖2]. (38)

We can bound the second term by the subsequent inequality:

E
[∥∥∇Lu(wc

u,i,j)
∥∥2]

≤ 2L2
cE
[∥∥wc

i,0 −wc
u,i,j

∥∥2]+ 2E
[∥∥∇Lu(wc

i,0)
∥∥2] . (39)

Substituting (39) into (38), and finishing minor rearranging, it
follows that
1

J

∑J−1

j=0

{
E
[∥∥wc

i,0 −wc
u,i,j

∥∥2]} ≤ 2η2cκ
2
1(J − 1)

1− 4η2cL
2
cJ(J − 1)

+
4η2cJ(J − 1)

1− 4η2cL
2
cJ(J − 1)

E
[∥∥∇L(u,q)(w

c
i,0)
∥∥2] . (40)

Define K1 = 4ηc
2Lc

2J (J − 1), and according to the proof
C.5 in [16], we have

E
[∥∥∇wcLu,q

(
wc
i,0,w

s
i,0

)
− hc

u,i,q

∥∥2]
≤ L2

c

J

∑J−1

j=0
E
[
‖wi,0 −wu,i,j‖2

] (a)

≤ 2η2cL
2
cκ

2
1

1−K1
(J − 1)

+
2K1

1−K1
E
[∥∥∇wcL

(
wc
i,0,w

s
i,0

)∥∥2]+
1

Q

2K1

1−K1
ζ2,

(41)

where Lc = max{u,q}Lc,{u,q}, (a) comes from Assump-
tion 4 and using ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Combine
(35), (36), (41), and server-side formulas. Plugging into
E[L(wc

i+1,0,w
s
i+1,0)]−L(wc

i,0,w
s
i,0), it is easy to derive that

E
[
L
(
wc
i+1,0,w

s
i+1,0

)]
− L

(
wc
i,0,w

s
i,0

)
≤ −ηc(

1

2
−Bδ1E [G(M)]− 4K1

1−K1
)
∥∥∇wcL

(
wc
i,0,w

s
i,0

)∥∥2
+

4η3cL
2
cκ

2
1

1−K1
(J − 1) +

1

B

2K1

1−K1
ηcζ

2 + ηc
2κ21(1 + χ)Lc

+ ψ1
2ηcE [G(M)] + 4ηcζ

2 + 4ηsς
2 + ηs

2κ22(1 + χ)Ls

− ηs(
1

2
−Bδ2E[G(M)]− 4K2

1−K2
)‖∇wsL(wc

i,0,w
s
i,0)‖2
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+
1

B

2K2

1−K2
ηsς

2 +
4η3sL

2
sκ

2
2

1−K2
(J − 1) + ψ2

2ηsE[G(M)].

(42)

Now we denote L (wi) the global model at i-th global round,
and subtracting L (w∗) into both L (wi+1) and L (wi). By u-
tilizing the L-smooth of loss functions, changing the notations
and substituting them into (42):

L (wi+1)− L (w∗) ≤ H1 (L (wi)− L (w∗)) +H2

+ (ψ1
2ηc + ψ2

2ηs)E[G(M)], (43)

where H1 = 1 − Lcηc(1− 8K1

1−K1
) − Lsηs(1− 8K2

1−K2
) +

(Lcηcδ1 + Lsηsδ2)2BE[G(M)], and H2 = 4ηcζ
2 + 4ηsξ

2 +

(
η3cL

2
cκ

2
1

1−K1
+

η3sL
2
sκ

2
2

1−K2
)4(J − 1) + 1

B
2K1

1−K1
ηcζ

2 + 1
B

2K2

1−K2
ηsξ

2 +

ηc
2Lcκ

2
1(1+χ)+ηs

2Lsκ
2
2(1+χ). By applying Inequalities It-

eratively, we have L(wI)−L(w∗) ≤ HI
1 (L(w0)− L(w∗))+∑I−1

i=0 H
i
1{H2 + (ψ1

2ηc + ψ2
2ηs)E[G(M)]}.

∑I−1
i=0 H

i
1 is ge-

ometric series, if H1 6= 1 ,
∑I−1
i=0 H

i
1 =

1−HI1
1−H1

. The global loss
after I rounds is L(wI)− L(w∗) ≤ HI

1 (L(w0)− L(w∗)) +
1−HI1
1−H1

{H2 + (ψ1
2ηc + ψ2

2ηs)E[G(M)]}, we set function

f(H1) =
1−HI1
1−H1

(I ≥ 1), for proving that when H1 6= 1, as
H1 increases, the value of the entire function increases. The
differentiation of the original function is given by f ′(H1) =
IHI1 (H1−1)−H1(H

I
1−1)

H1(H1−1)2
, where H1(H1 − 1)2 is positive for

H1 > 1 and 0 < H1 < 1. This general proof outlines the
intuitive reasoning behind why f(H1) is monotonically in-
creasing with an increase in H1. As a result, G(M) increases,
H1 increases as well, the right part of (43) will increase, vice
versa. Proof complete.

B. Proof of Lemma 2

It is evident from (8) that TCM
u,i is a monotonically decreas-

ing function with respect to nu,i. Each client needs different
time consumption for learning due to heterogenous communi-
cation and computing capability, thus, the one-round latency
is dictated by the slowest client. For the clients complete
the local gradient computation earlier than others, we can
redistribute some of their bandwidth to the slower clients until
all clients finish learning simultaneously. Consequently, the
optimal solution for P1 is realized when the total bandwidth is
distributed among all scheduled clients to ensure they complete
together. Thus, the optimal bandwidth allocation policy fulfills{

TCM
u,i + TCP

u,i = T ∗i (Mi), ∀u ∈Mi,∑
u∈Mi

nu = 1,
(44)

where T ∗i (Mi) is the optimal latency in round i. By solving
(44), the proof is completed.

C. Proof of Lemma 3

To simplify the explanation, we initially define the smashed
data and client-side model uploading latency for client u as
TCP,min
u,i =

νu,i

βlog2(1+
puhu,i

σ2
)
, which is calculated assuming

client u utilizes the entire bandwidth for transmission. We then
demonstrate that the optimal latency T ∗i (M) is a function that
increases monotonically in relation to the client subset M.

Based on Lemma 2, for client subsets M1 ⊆ M2 ⊆ U ,
we have

∑
u∈M1

TCM,min
u,i

T ∗i (M1)−TCP
u,i

=
∑
u∈M1

TCM,min
u,i

T ∗i (M2)−TCP
u,i

+∑
u∈M2\M1

TCM,min
u,i

T ∗i (M2)−TCP
u,i
. By rearranging this equation, we

have∑
u∈M1

(
TCM,min
u,i

T ∗i (M1)− TCP
u,i

−
TCM,min
u,i

T ∗i (M2)− TCP
u,i

)

=
∑

u∈M2\M1

TCM,min
u,i

T ∗i (M2)− TCP
u,i

> 0. (45)

Thus, we have T ∗i (M1) ≤ T ∗i (M2). That is, T ∗i (M) increas-
es monotonically with the selected client setM. Likewise, for
client m ∈ U \M2, we have∑

u∈M1

(
TCM,min
u,i

T ∗i (M1 +m)− TCP
u,i

−
TCM,min
u,i

T ∗i (M1)− TCP
u,i

)

+
TCM,min
m,i

T ∗i (M1 +m)− TCP
u,i

= 0. (46)

By rearranging the above equation, we have T ∗i (M1 +

m)−T ∗i (M1) =
TCM,min
m,i

1+
∑
u∈M1

T
CM,min
u,i

T ∗
i

(M1)−TCP
u,i

TCP
u,i
−TCP

m,i

T ∗
i

(M1+m)−TCP
u,i

. Since

T ∗i (M1 + m) < T ∗i (M2 + m), based on (45), we have
T ∗i (M1 +m)− T ∗i (M1) < T ∗i (M2 +m)− T ∗i (M2).

In addition, for G(Mi), following the proof of Lemma
3 in [15], we have minm∈M1‖∇Lu(wi) − ∇Lm(wi)‖≥
minm∈M2‖∇Lu(wi)−∇Lm(wi)‖. Hence, G({m}∪M1)−
G(M1) ≤ G({m} ∪M2)− G(M2), the proof is completed.
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