
Computer Physics Communications 315 (2025) 109690

Available online 3 June 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Massive-scale simulations of 2D Ising and Blume-Capel models on

rack-scale multi-GPU systems

Mauro Bisson a, Massimo Bernaschi b, Massimiliano Fatica a, Nikolaos G. Fytas c, ,∗,
Isidoro González-Adalid Pemartín b, Víctor Martín-Mayor d, Alexandros Vasilopoulos c

a NVIDIA Corporation Santa Clara, CA 95051, USA
b Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
c School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester CO4 3SQ, United Kingdom
d Departamento de Física Téorica, Universidad Complutense, 28040 Madrid, Spain

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Martin Weigel

We present high-performance implementations of the two-dimensional Ising and Blume-Capel models for large
scale, multi-GPU simulations. Our approach takes full advantage of the NVIDIA GB200 NVL72 system, which
features up to 72 GPUs interconnected via high-bandwidth NVLink, enabling direct GPU-to-GPU memory access
across multiple nodes. By utilizing Fabric Memory and an optimized Monte Carlo kernel for the Ising model, our
implementation supports simulations of systems with linear sizes up to 𝐿= 223, corresponding to approximately
70 trillion spins. This allows for a peak processing rate of nearly 1.15 × 105 lattice updates per nanosecond�-
setting a new performance benchmark for Ising model simulations. Additionally, we introduce a custom protocol
for computing correlation functions, which strikes an optimal balance between computational efficiency and
statistical accuracy. This protocol enables large-scale simulations without incurring prohibitive runtime costs.
Benchmark results show near-perfect strong and weak scaling up to 64 GPUs, demonstrating the effectiveness of
our approach for large-scale statistical physics simulations.

Program summary

Program title: cuIsing (optimized)
CPC Library link to program files: https://doi.org/10.17632/ppkwwmcpwg.1
Licensing provisions: MIT license
Programming languages: CUDA C
Nature of problem: Comparative studies of the critical dynamics of the Ising and Blume-Capel models are essential
for gaining deeper insights into phase transitions, enhancing computational methods, and developing more
accurate models for complex physical systems. To minimize finite-size effects and optimize the statistical quality
of simulations, large-scale simulations over extended time scales are necessary. To support this, we provide two
high-performance codes capable of running simulations with up to 70 trillion spins.
Solution method: We present updated versions of our multi-GPU code for Monte Carlo simulations, implementing
both the Ising and Blume-Capel models. These codes take full advantage of multi-node NVLink systems, such as the
NVIDIA GB200 NVL72, enabling scaling across GPUs connected across different nodes within the same NVLink
domain. Communication between GPUs is handled seamlessly via Fabric Memory–a novel memory allocation
technique that facilitates direct memory access between GPUs within the same domain, eliminating the need for
explicit data transfers. By employing highly optimized CUDA kernels for the Metropolis algorithm and a custom
protocol that reduces the computational overhead of the correlation function, our implementation achieves the
highest recorded performance to date.

* Corresponding author.
E-mail address: nikolaos.fytas@essex.ac.uk (N.G. Fytas).

https://doi.org/10.1016/j.cpc.2025.109690
Received 25 February 2025; Received in revised form 19 May 2025; Accepted 26 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0002-9428-1709
https://doi.org/10.17632/ppkwwmcpwg.1
mailto:nikolaos.fytas@essex.ac.uk
https://doi.org/10.1016/j.cpc.2025.109690
https://doi.org/10.1016/j.cpc.2025.109690
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109690&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 315 (2025) 109690

2

M. Bisson, M. Bernaschi, M. Fatica et al.

1. Introduction

We present computer programs specifically developed to simulate
the out-of-equilibrium dynamics of the two-dimensional (2D) Ising and
Blume-Capel models—two paradigmatic systems that belong to the same
equilibrium universality class [1--3]. Our chosen dynamics is the stan
dard Metropolis spinflip algorithm, see, e.g. [4,5], representative of the
so-called model-A dynamic universality class, which describes local dy
namics without conservation laws [6]. Out-of-equilibrium dynamics is
a central theme in Statistical Mechanics and plays a crucial role in the
theoretical, numerical, and experimental study of disordered magnetic
systems (see, e.g., [7--10] for review). Importantly, it is also a vibrant
area of research for non-disordered magnetic systems as well [11], with
increasing interest in recent years (see, e.g., [12--17]). It is important to
emphasize that the physics studied here is specific to model-A dynam
ics. Consequently, simulation algorithms belonging to other dynamic
universality classes—such as cluster methods [18,19] or the Worm algo
rithm [20]�-are not suitable for our purposes, despite their well-known
efficiency in driving systems to thermal equilibrium.

In a typical experimental or computational setting, a system is
quenched at the initial time 𝑡 = 0 from a high temperature down to
a working temperature 𝑇 , where it is then allowed to relax. The chosen
temperature 𝑇 typically lies close to, or below, the critical temperature
𝑇c. The relaxation process involves the time-dependent growth of mag
netic domains, characterized by a linear size 𝜉(𝑡). In a typical experiment
(see, e.g., [10]), the domain size remains much smaller than the overall
system size, i.e., 𝐿≫ 𝜉(𝑡).

To obtain results that are effectively indistinguishable from those in
the large-𝐿 limit, the system size should exceed the correlation length
by at least a factor of (say) 50. As a result, in numerical simulations, the
system size effectively acts as a cutoff that limits the maximum corre
lation length 𝜉(𝑡) attainable during the simulation (because one needs
to ensure that 𝐿 is at least as large as 50 𝜉(𝑡) for all times considered
in the simulation). In fact, simulating a single large system, rather than
performing multiple runs on smaller systems, offers two significant ad
vantages. First, it enables 𝜉(𝑡) to evolve over a broader range without
being affected by finite-size effects. This is particularly important, as
𝜉(𝑡) serves as the fundamental scale variable in the scaling analyses cen
tral to the study of out-of-equilibrium dynamics (see, e.g., [17,21,22]).
Second, statistical errors decrease with increasing system size, scaling
as [𝜉(𝑡)∕𝐿]𝐷∕2, where 𝐷 is the spatial dimensionality (with 𝐷 = 2 in
our case). In practical terms, this means that a single simulation of a
system with size 𝐿′ = 2𝐿 provides statistical precision equivalent to 2𝐷
independent simulations of a system of size 𝐿.

The simplicity of spin models makes them particularly well-suited
for implementation on dedicated hardware. Indeed, several computers
have been purpose-built for the simulation of 2D and 3D spin systems.
In parallel, highly specialized software has been developed for plat
forms such as Graphics Processing Units (GPUs). A portion of this work
focuses on simulation algorithms that do not belong to the model-A dy
namic universality class—for example, implementations on dedicated
machines [23--25] and GPU-based approaches [26--31]. However, con
siderable effort has also been invested in the implementation of model-A
dynamics, both in hardware platforms [32--40] and in GPU-based soft
ware solutions [41].

Most directly related to our work are studies that apply model-A al
gorithms to simulations of the 2D ferromagnetic Ising model. This model
has been simulated on various hardware platforms, including special
purpose machines with Field Programmable Gate Arrays (FPGAs) [42],
Tensor Processing Units (TPUs) [43], the Cerebras Wafer-Scale Engine
(WSE) [44], and Graphics Processing Units (GPUs) [45--50]. In this
work, we update the highly optimized CUDA implementation of the 2D
Ising model previously released in Ref. [45]. The two key innovations
in this version are: 𝑖) the ability to simulate much larger systems than in
the previous version (the importance of this point has already been em

phasized above), and 𝑖𝑖) support for the Blume-Capel model in addition
to the standard Ising model.

Our new implementation of the Ising and Blume-Capel models for
multi-GPU clusters is capable of scaling from a single GPU to the latest
NVIDIA GB200 NVL72 rack-scale architecture. It is designed to lever
age the direct GPU-to-GPU communication across and within the nodes
to realize a single coherent memory space that can be shared by mul
tiple devices to distribute the computations effectively. Moreover, all
communications resulting from devices accessing portions of the mem
ory space residing on remote GPUs are handled transparently through
NVLink eliminating the need for explicit memory transfers.

The rest of this paper is organized as follows: in Sec. 2, we review
the basic features of the Ising and Blume-Capel models. Section 3 details
the new implementation, while Sec. 4 presents performance results. Fi
nally, the paper concludes in Sec. 5 with a discussion of possible future
developments.

2. Ising and Blume-Capel models

The 2D spin-1∕2 Ising model (IM) [51], often called the fruitfly
model of statistical physics, is described by the Hamiltonian [52]


(IM) = −𝐽

∑
⟨𝐱,𝐲⟩𝜎𝐱𝜎𝐲, (1)

where 𝜎𝐱 = ±1 represents the spins at the nodes of an 𝐿×𝐿 square lat
tice with periodic boundary conditions. The summation ⟨𝐱,𝐲⟩ runs over
nearest neighbors, and 𝐽 > 0 is the ferromagnetic exchange coupling.

In contrast, the spin-1 Blume-Capel (BC) model [53,54], a general
ization of the Ising ferromagnet, offers a promising platform for investi
gating critical and tricritical phenomena. It has been applied to a broad
range of physical systems, from Mott insulators [55] to multi-component
fluids [56]. Its Hamiltonian is given by


(BC) = −𝐽

∑
⟨𝐱,𝐲⟩𝜎𝐱𝜎𝐲 +Δ

∑
𝐱
𝜎2𝐱 , (2)

where, as in the Ising model, 𝐽 > 0. The key differences in the Blume
Capel model stem from the possibility of vacancies, so that the spin
components can take values 𝜎𝐱 ∈ {−1,0,+1}, and from the presence of
a chemical potential Δ, known as the crystalfield coupling, which con
trols the density of vacancies (𝜎𝐱 = 0). For Δ→ −∞, vacancies are sup
pressed, and the model reduces to the Ising ferromagnet (1). The phase
boundary of the Blume-Capel model in the crystalfield-temperature (Δ,
𝑇) plane separates the ferromagnetic and paramagnetic phases [57], fea
turing a tricritical point at (Δt , 𝑇t) = [1.9660(1), 0.6080(1)] [58]. This
point distinguishes first-order transitions (at low 𝑇 and high Δ) from
second-order transitions (at high 𝑇 and low Δ). In particular, second
order transitions follow the Ising universality class [57--63].

In Ref. [17], we compared the critical dynamics of these two mod
els belonging to the same static universality class: the square-lattice
Ising model and the Blume-Capel model, specifically in its second-order
transition regime, with a focus on the critical point corresponding to
Δ = 0. In this work, we provide a detailed description of the numeri
cal framework that enabled us to reach those groundbreaking physical
conclusions, achieved through simulations effectively at the thermody
namic limit.

3. Implementation

As the foundation for this work, we build upon the optimized GPU
implementations presented in Ref. [45], which is a single-node/multi
GPU code that employs multi-spin coding [64] (MSC). We also leverage
CUDA Unified Memory to enable direct memory access between devices
connected to the same machine via high-speed NVLink, eliminating the
need for explicit data transfers.

The total size of the systems that can be simulated depends on two
factors: the number of spins that can be stored in the memory of each

Computer Physics Communications 315 (2025) 109690

3

M. Bisson, M. Bernaschi, M. Fatica et al.

GPU and the total number of GPUs available for the simulation. To
increase the system size per GPU in the Ising model, we reduced the
bits-per-spin count from 4 to 1, effectively quadrupling the lattice size
that can be stored within the same memory capacity. In contrast, for the
Blume-Capel model, we retained the 4-bit spin representation, as each
spin can take three distinct values. We found that a 2-bit spin represen
tation does not provide an advantage from the performance viewpoint
since the operations remain the same as in the case of the 4-bit repre
sentation.

Additionally, to increase the pool of GPUs available for a single sim
ulation, we modified the code to enable scaling across multiple nodes.
This required replacing Managed Memory with Fabric Memory, a new
type of allocation that allows memory buffers to span multiple nodes
while providing functionality equivalent to Managed Memory on single
node systems.

Reducing the Ising spin representation to a single bit enabled further
optimization of the Monte Carlo kernel using a technique described in
Ref. [46], which employs a lookup table to generate non-uniform ran
dom bits efficiently. In our original implementation, a uniform random
number was used per spin to determine flips based on the acceptance
probability. By leveraging the lookup table approach, a single uniform
random number can now generate multiple non-uniform random bits,
enabling parallel flipping of multiple spins. This strategy significantly
reduces the number of random numbers required, addressing one of the
most significant bottlenecks in Ising model simulations. However, for
the Blume-Capel model, the probability exponential function is consid
erably more complex than in the Ising case, making the lookup table
approach impractical.

Finally, we designed a custom protocol, applicable to both mod
els, for computing the correlation function that reduces computational
burden while preserving statistical significance. At specific time steps
during the simulation, we compute the spin-spin correlation from each
lattice site at multiple distances along the two lattice dimensions. Ideally,
this would be computed for all distances up to half the system’s linear
size, 𝐿∕2, but doing so would incur a computational cost of 𝑂(𝐿3), lead
ing to an impractical increase in computation time for large values of
𝐿. In our protocol, we downsample the correlation function using two
distance thresholds. The first sets the maximum distance for which the
correlation is computed from each site, while the second specifies the
point beyond which sampling follows a logarithmic scale, extending up
to 𝐿∕2.

3.1. Workload distribution via fabric memory

As is common practice, the spin system is stored in memory using two
separate buffers arranged in a checkerboard pattern.1 This partitioning
ensures that all spins of one color can be updated in parallel. Since each
spin’s flipping decision depends entirely on its neighbors in the oppo
site buffer, each simulation step consists of two update phases—one for
each color. The workload is distributed across GPUs according to a 1D
decomposition, that is by partitioning each buffer into horizontal slabs,
which are stored in device memory. This approach minimizes inter-GPU
communication during spin updates, restricting it to just two rows: the
last row of the slab on the preceding GPU and the first row of the slab
on the next GPU. Notably, due to the periodic boundary conditions, the
first and last GPU slabs are also connected. In our original code, this
slab-based partitioning was easily implemented via Unified Memory. For
each color, the host process simply called cudaMallocManaged once
to request an allocation for the entire buffer. Then, cudaMemAdvise
was called once per GPU to assign each slab (a specific address range)
to its corresponding device’s global memory. This allows the GPUs to di
rectly access any spin in the system by indexing the global buffers. The

1 The checkerboard lattice decomposition is crucial in numerical simulations
and pure theoretical settings. For instance, the lattice decomposition in two sub
lattices played a significant role in [65].

system automatically handles data transfers between devices by migrat
ing memory pages as needed.

While Managed Memory is an effective method for achieving multi
GPU parallelism, it is limited to single-node systems, as it relies on
underlying operating system support to provide its functionalities. For
tunately, the features of Unified Memory that our code depends on can
be implemented using the Virtual Memory Management API (VMM)2,
a low-level interface for directly managing the GPU’s virtual address
space. Specifically, VMM introduces a new type of allocation called fab

ric memory, which, in multi-node NVLink systems, allows the memory
of remote GPUs to be mapped into the address space of any other GPU.

VMM API calls can be seamlessly integrated into an existing pro
gram to configure memory allocations that require low-level tuning,
without modifying other parts of the code. For instance, they can
be used alongside standard runtime functions like cudaMalloc or
cudaMallocManaged. This flexibility allowed us to introduce support
for Fabric Memory in our code by simply replacing the two managed
memory calls used for allocating the two color buffers (and the corre
sponding Unified Memory advise calls) with calls to a custom allocation
function. This function encapsulates all the necessary VMM API calls
to implement the shared buffer, keeping these details separate from
the main code. Moreover, it allows for switching between the single
node/managed-memory and multi-node/Fabric-Memory versions using
a compile-time directive that determines which allocation calls to use.
Finally, to enable multi-node execution, we used the MPI library to
launch and coordinate processes across the nodes. Each MPI process was
assigned to a node, where it managed all GPUs connected to that node,
following a similar approach to the one used in the original single-node
implementation.

The VMM API decouples addresses from memory, enabling applica
tions to manage them independently and map different memory types
and locations to a virtual address range. Our Fabric Memory function
is called by all MPI processes. Each process first requests a physi
cal memory allocation for each of its local GPUs, with the allocation
size matching the slab size and suitable for sharing with other GPUs
within the same NVLink fabric (both local and remote). This is done
using the cuMemCreate function, which returns a handle to the al
located physical memory. At this point, the memory is reserved but
not yet associated with an address, making it inaccessible. Next, the
handles must be distributed across the processes so that each pro
cess can map remote allocations to local address ranges. However,
since handles cannot be shared directly, they are first exported to OS
specific types using the cuMemExportToShareableHandle function.
The exported handles are then distributed using the MPI_Allgather
collective. Once received, the remote handles are imported with
cuMemImportFromShareableHandle, making them ready for map
ping to local addresses. Each process then reserves a new virtual address
range, large enough to accommodate the entire memory allocation
across all devices, using the cuMemAddressReserve function. Next,
each memory handle is mapped to consecutive chunks (each of slab
size) within the newly reserved address range using cuMemMap. Access
to the address range, as well as the underlying memory, is enabled via
cuMemSetAccess. To ensure that the same offset in the address range
of each process corresponds to the same physical memory location (on
the same GPU), all processes map the handles in a consistent order: first
across MPI ranks (from the first to the last), and then, within each rank,
from the first GPU to the last.

Note that, unlike managed memory, the beginning of the virtual ad
dress range [startPtr , startPtr+totSize) may differ for each
process, even though the underlying memory it maps to remains iden
tical. This behavior is common in many shared memory mechanisms

2 For a complete description, see: https://docs.nvidia.com/cuda/cuda-driver-
api/group__CUDA__VA.html.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html

Computer Physics Communications 315 (2025) 109690

4

M. Bisson, M. Bernaschi, M. Fatica et al.

Fig. 1. Distribution of the shared spin buffer across the GPUs connected to the
nodes.

where there is a decoupling between memory allocation and address
ing. The allocation function then returns startPtr to the caller.

In this way, we have implemented a shared buffer spanning multiple
GPUs across different nodes, as illustrated in Fig. 1. On each node, the
address startPtr points to the same contiguous buffer, with consec
utive chunks of equal size (matching the size of a spin slab) physically
distributed across the memory of consecutive GPUs across all nodes. As
a result, startPtr+i consistently refers to the same memory location
within the memory of a particular GPU, regardless of the process access
ing it within the system.

From the application’s perspective, there is no difference compared
to memory allocation using cudaMallocManaged. Each process pro
vides the same buffer pointer to the kernels launched on its local devices,
enabling GPU threads to access any location directly. Accesses to loca
tions mapped to remote memory are automatically handled via NVLink
transfers, transparently managed by the system. This approach elimi
nates the need for explicit data transfers between GPUs and maximizes
the size of the systems that can be simulated, as remote data can be ac
cessed directly without the need to reserve additional memory for local
copies.

3.2. Optimized Monte Carlo implementation

The original implementation of our spin update kernel employed
Multiple Spin Coding (MSC) by using four bits per spin to sum the val
ues of neighboring spins for multiple consecutive spins (of the same
color) in parallel, within the same addition instructions. In the updated
version, we reduced the bits per spin to one in order to maximize the
size of the spin slab per device. This required a significant rewrite of
the kernel, as integer additions could no longer be used to sum spin
values in parallel—any sum involving more than one value of 1 would
overflow into the next site. As mentioned earlier, using one bit per spin
also allowed us to improve kernel efficiency by reducing the number
of random numbers required to flip spins according to the acceptance
probability. This improvement is achieved through the LUT-based ap
proach described in Ref. [46], Section II.A.1. We recall that a spin is
flipped with probability 𝑒−4𝛽 if it shares its value with exactly three
neighbors, with probability 𝑒−8𝛽 if it shares its value with exactly four
neighbors, and with probability 1 in all other cases. Since we are using
one bit per spin, we pack multiple spins into a single unsigned word (the
word bit-length will be discussed later).

To explain how we revised the update kernel, let us assume we have
the words src, eq4 and eq3, where (for clarity, we use array indexing
to denote a specific bit within a word):

• src contains the input spins;
• eq4[i] == 1 ⟺ exactly four neighbors of spin 𝑖 have the same

value as src[i];
• eq3[i] == 1 ⟺ exactly three neighbors of spin 𝑖 have the same

value as src[i].

Clearly, ``eq4 & eq3'' is equal always to zero. Let us also define a func
tion nonUniformRandBits() that returns a word in which each bit is
set independently with probability 𝑒−4𝛽 . With these definitions, we can
update the source spins in parallel as follows:

exp4 = nonUniformRandBits();
exp8 = nonUniformRandBits();
exp8 = exp8 & exp4;
flip = (eq4 & exp8) | (eq3 & exp4) | (~eq4 & ~eq3);
dst = src ^ flip;

The words eq4 and eq3 can be computed starting from the source spin
word and the words containing the four neighboring spins in several
ways. Let the neighboring words be labeled neighN, neighS, neighW
and neighE. We obtain them using the following method:

neighN ^= ~src;
neighS ^= ~src;
neighW ^= ~src;
neighE ^= ~src;

tmp = neighW; neighW &= neighE; neighE |= tmp;
tmp = neighS; neighS &= neighW; neighW |= tmp;
tmp = neighN; neighN &= neighS; neighS |= tmp;
tmp = neighW; neighW &= neighE; neighE |= tmp;
tmp = neighS; neighS &= neighW; neighW |= tmp;

eq4 = neighN;
eq3 = ~neighN & neighS;

The first four lines replace the values of the neighboring spins with a
bit indicating whether each neighbor matches the corresponding source
spin (a value of 1 means they match). Then, we independently sort
these ``difference'' bits within the word sequence [neighN , neighS ,
neighW , neighE]. Specifically, bits with a value of 0 are compacted to
ward neighN (while bits with a value of 1 are shifted toward neighE).
This is accomplished by swapping adjacent bits, starting from the end
of the sequence, until the lowest values are moved into the first two ele
ments. Since we are sorting four elements and begin from the end, only
five swaps are needed. If a spin shares its value with four neighbors, the
corresponding bit in neighN is set to 1. If it shares its value with exactly
three neighbors, the corresponding bits in neighN and neighS are set
to 0 and 1, respectively. The final two lines store this information in the
words eq4 and eq3.

In our code, each GPU thread manages 128 spins, enabling effi
cient memory access by performing 128-bit loads and stores using the
ulonglong2 vector type. Accordingly, we use two 64-bit unsigned long
long integers for each spin word in the above description (specifically,
the .x and .y fields of the vector type).

Finally, the nonUniformRandBits() function generates non
uniform random bits. It is based on an algorithm that produces 𝑁
random bits by performing a binary search on a 32-bit random number
within a sorted table of length 2𝑁 . The table is generated at the begin
ning of the run and remains unchanged throughout the simulation. The
probability distribution of the bits [𝑝(0) = 1 − 𝑒−4𝛽 and 𝑝(1) = 𝑒−4𝛽] is
encoded in the content of the table. A detailed description of how it is
generated can be found in Ref. [46]. In our case, 𝑁 = 4, so we generate
four random bits per lookup. The function nonUniformRandBits()
is implemented as follows:

function nonUniformRandBits() {
uint64 ret = 0
for(int k = 0; k < 64; k += 4) {

uint32 rndNum = philox_32_10();
uint64 rndBits = getMaxLE(table , rndNum)
ret |= rndBits < < k;

Computer Physics Communications 315 (2025) 109690

5

M. Bisson, M. Bernaschi, M. Fatica et al.

}

return ret
}

The 32-bit uniform random number is generated using the Philox4
_32_10 generator from the cuRAND library’s device API [66], as in our
original code. The function getMaxLE() returns the index (from 0 to
15) of the table corresponding to the largest element less than or equal
to rndNum. For each 64-bit word (representing 64 spins), we generate
16 random numbers. Since two random bit words (exp8 and exp4) are
needed for each spin word, the total number of calls to the random
number generator is 32. This reduces the number of calls by a factor of
2 compared to our original implementation, where each spin required a
separate 32-bit random number.

3.3. Correlation protocol

As discussed in Sec. 1, we developed a custom protocol to reduce
the computational time for calculating the correlation function with
out compromising statistical reliability. Ideally, the correlation function
would be computed at every site and for all distances 𝑟 up to half the
system’s linear dimension. However, this would result in prohibitively
long runtimes for large systems. Using a Fast Fourier Transform (FFT)
is not a feasible alternative for two reasons. First, in the Blume-Capel
model, the FFT would require unpacking the spin configuration. Sec
ond, and more critically, we are already close to exhausting the device’s
memory with the spin configurations.

Our approach computes the spin-spin correlation for each spin in the
system only up to a limited threshold, 𝑟 ≤ 2𝑅. Beyond this threshold, we
apply downsampling. Specifically, we reduce the number of source spins
by a factor of 𝑅2 by selecting a single spin per 𝑅 ×𝑅 square (e.g., the
spin in the top-left corner). This downsampling comes with almost no
penalty in statistical errors as soon as the coherence length 𝜉(𝑡) exceeds
𝑅.3 Despite this downsampling, calculating the correlation for every
distance up to 𝐿∕2 would still result in excessive runtimes for large
systems [we simulated systems with linear dimensions on the order of
𝑂(106)].

To further optimize performance, we introduce an additional level
of downsampling by defining a second distance threshold, 𝑟c(𝑡), beyond
which correlation values are sampled using a logarithmic scale. How
ever, in order to compute the coherence length safely, both 𝑟𝑐(𝑡) and
the statistical errors must meet two separate conditions. First, 𝑟c(𝑡) must
be larger than a fixed multiple of the coherence length 𝜉(𝑡). Since the
growth of 𝜉(𝑡) is slightly slower than

√
𝑡, we found it sensible to have

𝑟c(𝑡) grow linearly with
√
𝑡, as explained below. Additionally, we re

quire full details of the correlation function up to the largest distance
where the signal-to-noise ratio remains above a prescribed threshold (3
in our case). With these conditions in mind, statistical errors decay with
system size as 1∕𝐿, which implies that 𝑟c(𝑡) should increase with sys
tem size (though not by much, since the correlation function decays at
long distances as 𝐶(𝑟) ∼ e−[𝑟∕𝜉(𝑡)]2). Our prescription, described below,
was calibrated using preliminary simulations of 100 independent runs
of the Blume-Capel system with sizes 𝐿 = 216. This calibration extends
to larger systems, as discussed. Specifically, we compute the correlation
function 𝐶(𝑟, 𝑡) as follows:

• for all spins, for 𝑟 ≤ 2𝑅;
• for one spin per 𝑅×𝑅 square, for 2𝑅< 𝑟 ≤ 𝑟c(𝑡);
• for one spin per 𝑅 × 𝑅 square, for 𝑟 ∈ {⌊2𝑥∕32⌋ ∶ 𝑟c(𝑡) < 𝑥 ≤

32[𝑙𝑜𝑔2(𝐿) − 1]}, meaning 32 values of 𝑟 for each power of two,
up to 𝐿∕2;

3 In fact, the number of statistically independent source spins in a lattice of
dimension 𝐿 is roughly [𝐿∕𝜉(𝑡)]2.

with:

𝑅 = 16, 𝑟c(𝑡) = max{256,⌊𝑔(𝐿)√𝑡+ 0.5⌋},
𝑔(𝐿) = 6

√
log(𝐿∕216)

3.32
+ 1.0

Even with this protocol, calculating the correlation function at every
timestep would still significantly impact the overall simulation runtime.
To mitigate this, we compute the function at timesteps spaced evenly
on a logarithmic scale, a natural choice for studying a power-law time
growth phenomenon:

{𝑡 ∶ 𝑡 = ⌊(20.125)𝑥 + 0.5⌋ , 𝑥 a positive integer }.

This approach evaluates the correlation function less frequently as the
simulation progresses, striking a balance between accuracy and compu
tational efficiency. For instance, in our large Ising simulations presented
in Ref. [17], we ran 524,288 timesteps on systems with 𝐿 = 222, with
each run lasting a total of 24.1 hours. The correlation function compu
tation accounted for approximately 3.3% of the total runtime.

4. Results

In this section, we present performance results for both single-GPU
and multi-GPU configurations. Our tests were conducted on an NVIDIA
GB200 NVL72 system, which consists of 18 computing nodes. Each node
is equipped with two Grace CPUs (each featuring 72 ARM Neoverse
V2 cores) and four Blackwell GPUs, for a total of 72 GPUs. All GPUs
are connected within a single NVLink domain, providing a GPU-to-GPU
bandwidth of 1.8 TB/s and an aggregate NVLink bandwidth of 130 TB/s.
Each GB200 GPU is equipped with 192 GB of HBM3e memory, deliver
ing a bandwidth of 8 TB/s. This results in a total device memory of 13.5
TB and an aggregated memory bandwidth of 576 TB/s.

While this work emphasizes the performance of our Ising and Blume
Capel implementations, these codes have already been applied in large
scale numerical studies demonstrating the universality of critical dy
namics. The results of these studies, available in Ref. [17], confirm
the correctness of our implementations. Additionally, we have used the
Schwinger-Dyson equation as a practical and straightforward program
sanity check [67]. For both the Ising and Blume-Capel models, the fol
lowing identity holds in thermal equilibrium:

1 = 1
𝐿2

∑
𝐱
⟨e−2𝐽𝛽𝜎𝐱ℎ𝐱 ⟩ , 𝛽 = 1

𝑘B𝑇
, ℎ𝐱 =

∑
‖𝐱−𝐲‖=1 𝜎𝐲 . (3)

The identity was originally derived for the Ising model, but it straight
forwardly extends to the Blume-Capel model. Note that evaluating the
right-hand side (r.h.s.) of the above equation is similar to an energy
computation using a short look-up table. Specifically, the exponential
term takes only five distinct values for the Ising model and nine for the
Blume-Capel model. Although our simulations do not run long enough
to reach full thermal equilibrium, Eq. (3) holds with very high accuracy
as soon as 𝜉(𝑡) becomes significantly larger than one (i.e., when the sys
tem reaches quasi-equilibrium locally).4 Failure to meet this condition
is a clear indication that something is wrong with the simulation.

We assess the performance improvement of our current Monte Carlo
implementation by comparing it to the previous version released in [45].
Both codes were executed on a single GB200 GPU, using the largest sys
tem size supported by the earlier implementation, 𝐿 = 219. That version
stored 4 bits per spin, requiring 128 GB of memory for the full lattice.
The previous code achieved a speed of 1070 updates/ns, while the new
implementation reaches 1800 updates/ns �- an improvement of approx
imately 1.7×.

4 After just 128 time steps, we observed deviations from Eq. (3) on the order
of ∼ 5 × 10−4 for 𝐿 = 223 Ising systems, and as small as 2 × 10−5 for 𝐿 = 223
Blume Capel systems (at their respective critical temperatures).

Computer Physics Communications 315 (2025) 109690

6

M. Bisson, M. Bernaschi, M. Fatica et al.

Fig. 2. Plot showing the spin update throughput data from Table 1.

Table 1
Spin updates per nanosecond for the
Ising code on a single GB200 GPU, with
varying system sizes and memory re
quirements ranging from 8 MB to 128
GB.

𝐿 updates/ns
213 1051
214 1530
215 1741
216 1784
217 1797
218 1801
219 1802
220 1802

Table 2
Spin updates per nanosecond for the
Blume-Capel code on a single GB200
GPU, with varying system sizes and
memory requirements ranging from 8
MB to 128 GB.

𝐿 updates/ns
212 304
213 633
214 839
215 922
216 941
217 947
218 949
219 948

Tables 1 and 2 present the single-GPU performance of the Ising and
Blume-Capel codes on an NVIDIA GB200 GPU, varying the system’s lin
ear size and covering total memory usage from 8 MB to 128 GB. The
data from the tables are plotted in Figs. 2 and 3. For the Ising code,
experiments were conducted with system sizes ranging from 𝐿 = 213
to 𝐿 = 220. Since each spin in the Blume-Capel code requires four bits
instead of one, the runs for this case started at 𝐿 = 212 and went up
to 𝐿 = 219. Peak performance for the Ising code is reached at 𝐿 = 216
(1.0 GB), exceeding 99% of the absolute maximum performance of 1802
updates/ns, which is achieved at 𝐿 = 220. For the Blume-Capel code,
peak performance occurs at 𝐿 = 216, exceeding 99% of the maximum
performance of 948 updates/ns, which is attained at 𝐿 = 219.

Table 3 summarizes the strong scaling measurements for both codes.
For each model, we ran the same system using between 1 and 64 GPUs

Table 3
Strong scaling measurements of the Blume-Capel and Ising codes for
the Monte Carlo kernel, using up to 64 GB200 GPUs with fixed-size
systems, are presented. The Blume-Capel code was run with 𝐿= 219
(∼ 2.8 × 1011 spins), while the Ising code with 𝐿 = 220 (∼ 1.1 × 1012
spins), resulting in a total memory usage of 128 GB in both cases.
Each experiment was run for 128 time steps. The runtime column
includes both the Monte Carlo simulation time and the time spent on
consistency checks, such as verifying that the total number of spins
remains unchanged and computing the Schwinger-Dyson values.

GPUs Blume-Capel (𝐿 = 219) Ising (𝐿 = 220)
updates/ns runtime (sec) updates/ns runtime (sec)

1 948 37.26 1802 78.87
2 1890 18.69 3604 39.44
4 3778 9.35 7196 19.75
8 7547 4.68 14349 9.91
16 15054 2.35 28678 4.96
32 29910 1.18 57201 2.48
64 59138 0.60 113813 1.25

over 128 time steps. The lattice sizes were selected to maximize memory
usage on a single GPU, with 238 spins (𝐿 = 219) for the Blume-Capel
model and 240 spins (𝐿 = 220) for the Ising model. Each experiment
produced identical numerical results (within each model), regardless of
the number of GPUs used. Fig. 4 illustrates the corresponding speedup
graph. The codes demonstrate near-perfect linear speedup, benefiting
from the minimal inter-GPU communication required during the spin
update step (each GPU exchanges 0.25 MB and 0.5 MB of data with its
two neighbors for the Ising and Blume-Capel models, respectively).

Table 4 showcases the weak scaling measurements, where the sys
tem size per GPU is kept fixed while scaling from 1 to 64 GPUs. As in
the strong scaling experiments, the lattice size per GPU was chosen to
maximize memory usage. Specifically, for the Blume-Capel model, the
system size per GPU was maintained at 238 spins, while for the Ising
model, it was set to 240 spins. Fig. 5 shows the corresponding efficiency
plot. As in the strong scaling case, the flip update rate was measured
over 128 simulation steps. Although increasing the number of GPUs re
sults in larger system boundaries (two rows of 𝐿 spins) while keeping
the number of spins per device constant, the relative ratio of boundary
to total spins remains small (with 64 GPUs, each device exchanges 2 MB
and 4 MB of data with its two neighbors for the Ising and Blume-Capel
models, respectively). Consequently, access to remote GPU memory has
no significant impact on performance.

The highest spin update rates we measured with our codes are
114729 and 60381 updates/ns for the Ising and Blume-Capel imple

Computer Physics Communications 315 (2025) 109690

7

M. Bisson, M. Bernaschi, M. Fatica et al.

Fig. 3. Plot showing the spin update throughput data from Table 2.

Table 4
Weak scaling measurements of the Blume-Capel and Ising codes for the Monte Carlo kernel, using
up to 64 GB200 GPUs while keeping the system size per GPU fixed, are presented. The Blume
Capel code was run with 238 spins per GPU, and the Ising code with 240 spins per GPU, resulting in
a total of ∼ 1.8 × 1013 spins for the Blume-Capel model and ∼ 7.0 × 1013 spins for the Ising model
(with 64 GPUs). Each experiment was run for 128 time steps. The runtime column includes both
the Monte Carlo simulation time and the time spent on consistency checks, such as verifying that
the total number of spins remains unchanged and computing the Schwinger-Dyson values.

GPUs Blume-Capel Ising
𝐿 size (GB) upd/ns runtime (sec) 𝐿 size (GB) upd/ns runtime (sec)

1 219 128 948 37.68 220 128 1802 78.87
4 220 512 3789 37.76 221 512 7199 78.97
16 221 2048 15113 37.82 222 2048 28722 79.17
64 222 8192 60381 37.89 223 8192 114729 79.29

Fig. 4. Plot showing the strong scaling performance of the Blume-Capel and
Ising codes, based on the data from Table 3.

mentations, respectively. To the best of our knowledge, the previous
highest Ising flip rate was reported in Ref. [44], where the authors
achieved 61853 updates/ns by running 754 parallel simulations on
a WSE, each with a size of 11586 × 16384. Our results demonstrate
that a GB200 NVL72 system—comparable to the WSE—delivers nearly
twice the performance for Ising simulations (∼ 1.85×). Additionally, the
GB200 NVL72 enables the study of significantly larger systems (up to
∼ 370000× larger), offering much higher statistical quality, since sta

Fig. 5. Plot showing the weak scaling performance of the Blume-Capel and Ising
codes, based on the data from Table 4.

tistical errors scale inversely with system size in these simulations. For
example, a single run on a system of size 𝐿 = 222 is free of finite-size
artifacts, provided the coherence length remains below 𝜉(𝑡) ≈ 218. In
Ref. [17], we simulated up to 𝜉(𝑡) ∼ 210, which would likely cause incip
ient finite-size artifacts in a system of linear dimensions 11586 × 16384.
Furthermore, the statistical errors for a single run of 𝐿 = 222 are roughly
equivalent to those obtained from 244∕(11586 × 16384) ≈ 92675 inde
pendent runs of a 11586 × 16384 system.

Computer Physics Communications 315 (2025) 109690

8

M. Bisson, M. Bernaschi, M. Fatica et al.

It is worth noting that, with regard to the Blume-Capel model, we
are unaware of any performance-focused implementations in the liter
ature. To the best of our knowledge, this work presents the first high
performance implementation of the model.

5. Conclusions

In this study, we presented high-performance implementations of the
two-dimensional Ising and Blume-Capel models, optimized for large
scale multi-GPU simulations. These implementations leverage multi
node NVLink systems, such as the NVIDIA GB200 NVL72. By employ
ing advanced memory management techniques and optimizing Monte
Carlo kernels, our implementations achieve unprecedented simulation
scales, handling up to 246 spins for the Ising model and 244 spins
for the Blume-Capel model. Our benchmarks demonstrate near-perfect
strong and weak scaling up to 64 GPUs, highlighting the effective
ness of the NVLink interconnect in enabling memory sharing across
multiple compute nodes. The Ising model achieves a peak update rate
of 114729 updates/ns, significantly surpassing previous performance
records. Meanwhile, the Blume-Capel model reaches 60381 updates/ns,
marking the first high-performance implementation of this model to our
knowledge. These results further demonstrate the versatility of GPUs as
general-purpose accelerators, showing their ability to scale seamlessly
to rack-level configurations. Advances in high-speed interconnects, uni
fied memory architectures, and parallel programming frameworks now
allow programmers to treat distributed GPUs as a unified compute re
source.

A natural direction for future developments would be to extend the
codes to support 3D systems. Although the shared buffer based on fabric
memory and the optimized random bit generation could be reused with
minimal modifications, the spin processing kernels would likely require
substantial changes. A 3D lattice may benefit from a different spin layout
in memory, which would necessitate a new memory access pattern for
reading neighboring spins. Furthermore, careful consideration should
be given to the domain decomposition strategy to minimize intra-GPU
communications when computing correlations.

Beyond raw performance, our implementations enable simulations
of significantly larger systems than previously possible, improving the
statistical reliability of results and minimizing finite-size effects. The
custom correlation function protocol and Schwinger-Dyson checks fur
ther ensure the correctness and consistency of our simulations. These ad
vances open up new opportunities for large-scale statistical physics stud
ies, including investigations of critical dynamics, universality classes,
and non-equilibrium phenomena at previously unattainable scales.

CRediT authorship contribution statement

Mauro Bisson: Writing -- review & editing, Writing -- original draft,
Visualization, Validation, Software, Resources, Methodology, Investiga
tion, Formal analysis, Data curation. Massimo Bernaschi: Writing --
review & editing, Writing -- original draft, Validation, Supervision, Soft
ware, Resources, Project administration, Methodology, Investigation,
Conceptualization. Massimiliano Fatica: Writing -- review & editing,
Writing -- original draft, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Conceptualization.
Nikolaos G. Fytas: Writing -- review & editing, Validation, Super
vision, Conceptualization. Isidoro González-Adalid Pemartín: Writ
ing -- review & editing, Validation, Software, Methodology, Investiga
tion, Formal analysis. Víctor Martín-Mayor: Writing -- review & edit
ing, Validation, Supervision, Methodology, Investigation, Conceptual
ization. Alexandros Vasilopoulos: Visualization, Validation, Method
ology, Formal analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was partially supported by MCIN/AEI/10.13039/
501100011033 and by ``ERDF A way of making Europe'' through
Grant No. PID2022-136374NB-C21. The work of Nikolaos G. Fytas and
Alexandros Vasilopoulos was supported by the Engineering and Physi
cal Sciences Research Council (grant EP/X026116/1 is acknowledged).
Isidoro González-Adalid Pemartín and Massimo Bernaschi acknowledge
the support of the National Center for HPC, Big Data and Quantum
Computing, Project CN_00000013 -- CUP E83C22003230001 and CUP
B93C22000620006, Mission 4 Component 2 Investment 1.4, funded by
the European Union -- NextGenerationEU.

Data availability

Data will be made available on request.

References

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, fourth edition,
Clarendon Press, Oxford, 2005.

[2] G. Parisi, Statistical Field Theory, Addison-Wesley, 1988.
[3] D.J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical

Phenomena, third edition, World Scientific, Singapore, 2005.
[4] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics,

second edition, Cambridge University Press, Cambridge, 2005.
[5] A.D. Sokal, Monte Carlo methods in statistical mechanics: foundations and new al

gorithms, in: C. DeWitt-Morette, P. Cartier, A. Folacci (Eds.), Functional Integration:
Basics and Applications, 1996 Cargèse School, Plenum, N. Y., 1997.

[6] P. Hohenberg, B. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys.
49 (Jul 1977) 435--479.

[7] E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, L.F. Cugliandolo, Slow dynamics
and aging in spin glasses, in: M. Rubí, C. Pérez-Vicente (Eds.), Complex Behavior of
Glassy Systems, in: Lecture Notes in Physics., vol. 492, Springer, 1997.

[8] A.P. Young, Spin Glasses and Random Fields, World Scientific, Singapore, 1998.
[9] Patrick Charbonneau, Enzo Marinari, Marc Mézard, Giorgio Parisi, Federico Ricci

Tersenghi, Gabriele Sicuro, Francesco Zamponi (Eds.), Spin Glass Theory and Far
Beyond, World Sientific, 2023.

[10] D.E. Dahlberg, Gonzáled-Adalid Pemartín, E. Marinari, V. Martin-Mayor, J. Moreno
Gordo, R.L. Orbach, I. Paga, G. Parisi, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo, D.
Yllanes, Spin-glass dynamics: experiment, theory and simulation, arXiv:2412.08381,
2024.

[11] A.J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43 (1994) 357.
[12] Jeferson J. Arenzon, Alan J. Bray, Leticia F. Cugliandolo, Alberto Sicilia, Exact results

for curvature-driven coarsening in two dimensions, Phys. Rev. Lett. 98 (Apr 2007)
145701.

[13] A. Gal, O. Raz, Precooling strategy allows exponentially faster heating, Phys. Rev.
Lett. 124 (Feb 2020) 060602.

[14] Isidoro González-Adalid Pemartín, Emanuel Mompó, Antonio Lasanta, Víctor Martín
Mayor, Jesús Salas, Slow growth of magnetic domains helps fast evolution routes for
out-of-equilibrium dynamics, Phys. Rev. E 104 (Oct 2021) 044114.

[15] Isidoro González-Adalid Pemartín, Emanuel Mompó, Antonio Lasanta, Víctor Martín
Mayor, Jesús Salas, Shortcuts of freely relaxing systems using equilibrium physical
observables, Phys. Rev. Lett. 132 (Mar 2024) 117102.

[16] Gianluca Teza, John Bechhoefer, Antonio Lasanta, Oren Raz, Marija Vucelja,
Speedups in nonequilibrium thermal relaxation: Mpemba and related effects, arXiv:
2502.01758, 2025.

[17] M. Bisson, A. Vasilopoulos, M. Bernaschi, M. Fatica, N.G. Fytas, I. González-Adalid
Pemartín, V. Martín-Mayor, Universal exotic dynamics in critical mesoscopic sys
tems: simulating the square root of Avogadro’s number of spin, arXiv:2503.14688,
2025.

[18] Robert H. Swendsen, Jian-Sheng Wang, Nonuniversal critical dynamics in Monte
Carlo simulations, Phys. Rev. Lett. 58 (Jan 1987) 86--88.

[19] Ulli Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62 (Jan
1989) 361--364.

[20] Nikolay Prokof’ev, Boris Svistunov, Worm algorithms for classical statistical models,
Phys. Rev. Lett. 87 (Sep 2001) 160601.

[21] Luis Antonio Fernández, Víctor Martín-Mayor, Testing statics-dynamics equivalence
at the spin-glass transition in three dimensions, Phys. Rev. B 91 (May 2015) 174202.

http://refhub.elsevier.com/S0010-4655(25)00192-4/bib5E0A92E14F9F93459CAC24671ABDD0B1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib5E0A92E14F9F93459CAC24671ABDD0B1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib028620B66AEB3FED88A4C362A7330F30s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC1822010E100A9F416BCBF6ED9897779s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC1822010E100A9F416BCBF6ED9897779s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib67D6DB09932DBE5257D78E011D1372F0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib67D6DB09932DBE5257D78E011D1372F0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA8C490544C005F718020C21A3E7D44Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA8C490544C005F718020C21A3E7D44Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA8C490544C005F718020C21A3E7D44Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib0AA3E95FCAD953701093C65F1FA10E8Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib0AA3E95FCAD953701093C65F1FA10E8Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA20BE98861ACC510E1527949A12E17Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA20BE98861ACC510E1527949A12E17Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibDA20BE98861ACC510E1527949A12E17Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib44ECC2D537B9C8F180C064ED0CE1E385s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibD0B17E6918FD9FCC867BCC8C8BB860D4s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibD0B17E6918FD9FCC867BCC8C8BB860D4s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibD0B17E6918FD9FCC867BCC8C8BB860D4s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7743C29F8C05B4C0DE7F0C6C19A9A0ADs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7743C29F8C05B4C0DE7F0C6C19A9A0ADs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7743C29F8C05B4C0DE7F0C6C19A9A0ADs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7743C29F8C05B4C0DE7F0C6C19A9A0ADs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib44A466F79976A2323598C5E2CCAA9E69s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib805F27CF4583E27B1887AE900E001BEDs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib805F27CF4583E27B1887AE900E001BEDs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib805F27CF4583E27B1887AE900E001BEDs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib960E228A56DA6DD580D00405E4A3E4A9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib960E228A56DA6DD580D00405E4A3E4A9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib54C7411CA9C5FEE36635114F6873BE7Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib54C7411CA9C5FEE36635114F6873BE7Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib54C7411CA9C5FEE36635114F6873BE7Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7B19A9A9CB6087F633BB4E7A2C8A7AC0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7B19A9A9CB6087F633BB4E7A2C8A7AC0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7B19A9A9CB6087F633BB4E7A2C8A7AC0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA852AD898F6560C69492F76D5CE6489Ds1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA852AD898F6560C69492F76D5CE6489Ds1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA852AD898F6560C69492F76D5CE6489Ds1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib13BE0FE020B16C12327548D099D88277s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib13BE0FE020B16C12327548D099D88277s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib13BE0FE020B16C12327548D099D88277s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib13BE0FE020B16C12327548D099D88277s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib9A45C760762670DFF1869CBD0FCB98B1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib9A45C760762670DFF1869CBD0FCB98B1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib397F5BCA3AAC32A8E940282B07E2116Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib397F5BCA3AAC32A8E940282B07E2116Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE9EFEA92B7AA2CE820E6CCA898B3D88Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE9EFEA92B7AA2CE820E6CCA898B3D88Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA6B799E73DF2C60B156613515A40A1DAs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA6B799E73DF2C60B156613515A40A1DAs1

Computer Physics Communications 315 (2025) 109690

9

M. Bisson, M. Bernaschi, M. Fatica et al.

[22] M. Baity-Jesi, E. Calore, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion, A. Gordillo
Guerrero, D. Iñiguez, A. Maiorano, E. Marinari, V. Martin-Mayor, J. Moreno-Gordo,
A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, F. Ricci-Tersenghi, J.J.
Ruiz-Lorenzo, S.F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, D. Yllanes, Ag
ing rate of spin glasses from simulations matches experiments, Phys. Rev. Lett. 120
(Jun 2018) 267203.

[23] A.L. Talapov, L.N. Shchur, V.B. Andreichenko, V.L.S. Dotsenko, Cluster algorithm
special purpose processor, Mod. Phys. Lett. B 06 (18) (1992) 1111--1119.

[24] A.L. Talapov, V.B. Andreichenko, V.S. Dotsenko, L.N. Shchur, Special-purpose com
puters for the random Ising model, in: David P. Landau, K.K. Mon, Heinz-Bernd
Schüttler (Eds.), Computer Simulation Studies in Condensed-Matter Physics IV,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993, pp. 79--89.

[25] H.EN. K W.J. Blöte, Lev.N. Shchur, Andrei L. Talapov, The cluster processor: new
results, Int. J. Mod. Phys. C 10 (06) (1999) 1137--1148.

[26] T. Yavors’kii, M. Weigel, Optimized GPU simulation of continuous-spin glass models,
Eur. Phys. J. Spec. Top. 210 (1) (08 2018) 159--173.

[27] Martin Weigel, Connected-component identification and cluster update on graphics
processing units, Phys. Rev. E 84 (Sep 2011) 036709.

[28] Martin Weigel, Performance potential for simulating spin models on GPU, J. Comput.
Phys. 231 (8) (2012) 3064--3082.

[29] Martin Weigel, Simulating spin models on GPU: a tour, Int. J. Mod. Phys. C 23 (08)
(2012) 1240002.

[30] Michal Borovský, Martin Weigel, Lev Yu. Barash, Milan Žukovič, GPU-accelerated
population annealing algorithm: frustrated Ising antiferromagnet on the stacked tri
angular lattice, EPJ Web Conf. 108 (2016) 02016.

[31] Lev Yu. Barash, Martin Weigel, Michal Borovský, Wolfhard Janke, Lev N. Shchur,
GPU accelerated population annealing algorithm, Comput. Phys. Commun. 220
(2017) 341--350.

[32] A. Hoogland, J. Spaa, B. Selman, A. Compagner, A special-purpose processor for
the Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 51 (2) (1983)
250--260.

[33] R.B. Pearson, J.L. Richardson, D. Toussain, A fast processor for Monte-Carlo simula
tion, J. Comput. Phys. 51 (2) (1983) 241--249.

[34] V.B. Andreichenko, V.L.S. Dotsenko, L.N. Shchur, A.L. Talapov, Special-purpose Ising
model random lattice processor, Int. J. Mod. Phys. C 02 (03) (1991) 805--816.

[35] J.H. Condon, A.T. Ogielski, Fast special purpose computer for Monte Carlo simula
tions in statistical physics, Rev. Sci. Instrum. 56 (9) (09 1985) 1691--1696.

[36] Andrew T. Ogielski, Ingo Morgenstern, Critical behavior of three-dimensional Ising
spin-glass model, Phys. Rev. Lett. 54 (Mar 1985) 928--931.

[37] A.L. Talapov, V.B. Andrechenko, Vl S. Dotsenko, L.N. Shchur, Dedicated processor
for studying using model on random, JETP Lett. 51 (3) (1990).

[38] A. Cruz, J. Pech, A. Tarancón, P. Téllez, C.L. Ullod, C. Ungil, SUE: a special purpose
computer for spin glass models, Comput. Phys. Commun. 133 (2) (2001) 165--176.

[39] F. Belletti, M. Cotallo, A. Cruz, L.A. Fernandez, A. Gordillo, A. Maiorano, F. Manto
vani, E. Marinari, V. Martín-Mayor, A. Muñoz Sudupe, D. Navarro, S. Perez-Gaviro,
J.J. Ruiz-Lorenzo, S.F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J.L. Ve
lasco, Simulating spin systems on JANUS, an FPGA-based computer, Comput. Phys.
Commun. 178 (2008) 208--216.

[40] M. Baity-Jesi, R.A. Baños, Andres Cruz, Luis Antonio Fernandez, Jose Miguel Gil
Narvion, Antonio Gordillo-Guerrero, David Iniguez, Andrea Maiorano, F. Manto
vani, Enzo Marinari, Victor Martín-Mayor, Jorge Monforte-Garcia, Antonio Muñoz
Sudupe, Denis Navarro, Giorgio Parisi, Sergio Perez-Gaviro, M. Pivanti, F. Ricci
Tersenghi, Juan Jesus Ruiz-Lorenzo, Sebastiano Fabio Schifano, Beatriz Seoane,
Alfonso Tarancon, Raffaele Tripiccione, David Yllanes, Janus II: a new generation
application-driven computer for spin-system simulations, Comput. Phys. Commun.
185 (2014) 550--559.

[41] Martin Weigel, Simulating spin models on GPU, in: Computer Physics Communica
tions Special Edition for Conference on Computational Physics Trondheim, Norway,
June 23-26, 2010, Comput. Phys. Commun. 182 (9) (2011) 1833--1836.

[42] F. Ortega-Zamorano, M.A. Montemurro, S.A. Cannas, J.M. Jerez, L. Franco, FPGA
hardware acceleration of Monte Carlo simulations for the Ising model, IEEE Trans.
Parallel Distrib. Syst. 27 (2016) 2618--2627.

[43] K. Yang, Y. Chen, G. Roumpos, C. Colby, J. Anderson, High performance Monte
Carlo simulation of Ising model on TPU clusters, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’19, Association for Computing Machinery, New York, NY, USA, 2019.

[44] D. Van Essendelft, H. Almolyki, W. Shi, T. Jordan, M. Wang, W.A. Saidi, Record
acceleration of the two-dimensional Ising model using high-performance wafer scale
engine, 2024.

[45] J. Romero, M. Bisson, M. Fatica, M. Bernaschi, High performance implementations
of the 2D Ising model on GPUs, Comput. Phys. Commun. 256 (2020) 107473.

[46] M. Bernaschi, I. González-Adalid Pemartín, V. Martín-Mayor, G. Parisi, The QISG
suite: high-performance codes for studying quantum Ising spin glasses, Comput.
Phys. Commun. 298 (2024) 109101.

[47] M. Bernaschi, M. Fatica, G. Parisi, L. Parisi, Multi-GPU codes for spin systems simu
lations, Comput. Phys. Commun. 183 (7) (2012) 1416--1421.

[48] T. Preis, P. Virnau, W. Paul, J.J. Schneider, GPU accelerated Monte Carlo simulation
of the 2D and 3D Ising model, J. Comput. Phys. 228 (12) (2009) 4468--4477.

[49] B. Block, P. Virnau, T. Preis, Multi-GPU accelerated multi-spin Monte Carlo simula
tions of the 2D Ising model, Comput. Phys. Commun. 181 (9) (2010) 1549--1556.

[50] Benjamin Block, Peter Virnau, Tobias Preis, Multi-GPU accelerated multi-spin Monte
Carlo simulations of the 2D Ising model, Comput. Phys. Commun. 181 (9) (2010)
1549--1556.

[51] E. Ising, Contribution to the theory of ferromagnetism, Z. Phys. 31 (1925) 253--258.
[52] M. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon

Press, Oxford, 1999.
[53] M. Blume, Theory of the first-order magnetic phase change in UO2 , Phys. Rev. 141

(Jan 1966) 517--524.
[54] H.W. Capel, On the possibility of first-order phase transitions in Ising systems of

triplet ions with zerofield splitting, Physica 32 (1966) 966.
[55] N. Lanatà, Y. Yao, X. Deng, V. Dobrosavljević, G. Kotliar, Slave boson theory of

orbital differentiation with crystal field effects: application to UO2 , Phys. Rev. Lett.
118 (Mar 2017) 126401.

[56] N.B. Wilding, P. Nielaba, Tricritical universality in a two-dimensional spin fluid,
Phys. Rev. E 53 (Jan 1996) 926--934.

[57] J. Zierenberg, N.G. Fytas, M. Weigel, W. Janke, A. Malakis, Scaling and universality
in the phase diagram of the 2D Blume-Capel model, Eur. Phys. J. Spec. Top. 226 (4)
(2017) 789--804.

[58] W. Kwak, J. Jeong, J. Lee, D.-H. Kim, First-order phase transition and tricritical scal
ing behavior of the Blume-Capel model: a Wang-Landau sampling approach, Phys.
Rev. E 92 (Aug 2015) 022134.

[59] C.J. Silva, A.A. Caparica, J.A. Plascak, Wang-Landau Monte Carlo simulation of the
Blume-Capel model, Phys. Rev. E 73 (Mar 2006) 036702.

[60] A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, Strong violation of critical
phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel
model under bond randomness, Phys. Rev. E 79 (Jan 2009) 011125.

[61] A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, T. Papakonstantinou, Multi
critical points and crossover mediating the strong violation of universality: Wang
Landau determinations in the random-bond 𝑑 = 2 Blume-Capel model, Phys. Rev. E
81 (Apr 2010) 041113.

[62] N.G. Fytas, Wang-Landau study of the triangular Blume-Capel ferromagnet, Eur.
Phys. J. B 79 (1) (2011) 21--28.

[63] J. Zierenberg, N.G. Fytas, W. Janke, Parallel multicanonical study of the three
dimensional Blume-Capel model, Phys. Rev. E 91 (Mar 2015) 032126.

[64] L. Jacobs, C. Rebbi, Multi-spin coding: a very efficient technique for Monte Carlo
simulations of spin systems, J. Comput. Phys. 41 (1981) 203.

[65] Mustansir Barma, B. Sriram Shastry, d-dimensional Hubbard model as a (d + 1)
dimensional classical problem, Phys. Lett. A 61 (1) (1977) 15--18.

[66] NVIDIA Corp., cuRAND library, http://docs.nvidia.com/cuda/curand.
[67] H.G. Ballesteros, V. Martín-Mayor, Test for random number generators: Schwinger

Dyson equations for the Ising model, Phys. Rev. E 58 (Nov 1998) 6787--6791.

http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib87A401F3D9F11E97A4887023A6BDC7A1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib964A59930332EC040CEBCF588EECE127s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib964A59930332EC040CEBCF588EECE127s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1EADDF2AB447F850AFCC2AD86688BE99s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1EADDF2AB447F850AFCC2AD86688BE99s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1EADDF2AB447F850AFCC2AD86688BE99s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1EADDF2AB447F850AFCC2AD86688BE99s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF44D65416D4C79CEF9C293FFF99A00C2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF44D65416D4C79CEF9C293FFF99A00C2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibD35ECCA11B522ADA4FC879371A3E2BFFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibD35ECCA11B522ADA4FC879371A3E2BFFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC7CF26AAB3EC4B50B15993AC586387AFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC7CF26AAB3EC4B50B15993AC586387AFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib598F94910D7EA0F409F7370FFA8DD93Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib598F94910D7EA0F409F7370FFA8DD93Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF943B092067F295E0C469EDD78171B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF943B092067F295E0C469EDD78171B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF555FC851FD872EE16CFB1060A3FFE3Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF555FC851FD872EE16CFB1060A3FFE3Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF555FC851FD872EE16CFB1060A3FFE3Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF1111F304F38C3AE71CF55FA413DE4D9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF1111F304F38C3AE71CF55FA413DE4D9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF1111F304F38C3AE71CF55FA413DE4D9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib4B3332BB9053C9AC7C47DCF48E6752D8s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib4B3332BB9053C9AC7C47DCF48E6752D8s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib4B3332BB9053C9AC7C47DCF48E6752D8s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib12C5883EC644BED4BC9863512B2C41E9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib12C5883EC644BED4BC9863512B2C41E9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib5F3EB94503D796B0FA348C4F6E650427s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib5F3EB94503D796B0FA348C4F6E650427s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib526DCBC5779F7F6EC34CB3E60543DE23s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib526DCBC5779F7F6EC34CB3E60543DE23s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib394D269E8B866822D3AE1D39DDA13286s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib394D269E8B866822D3AE1D39DDA13286s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF700A69796898D25A9C0BD3A26E5AF08s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF700A69796898D25A9C0BD3A26E5AF08s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7AB21F02A52A0C31B5AFE380F09AEB11s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7AB21F02A52A0C31B5AFE380F09AEB11s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib26EDF333654F200085EAD11A8BC4FFF1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib26EDF333654F200085EAD11A8BC4FFF1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib26EDF333654F200085EAD11A8BC4FFF1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib26EDF333654F200085EAD11A8BC4FFF1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib26EDF333654F200085EAD11A8BC4FFF1s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib01D410F85DFDEB6295495C3856C41B86s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib88B86A2405C8730F51918C4B5D0EBB47s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib88B86A2405C8730F51918C4B5D0EBB47s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib88B86A2405C8730F51918C4B5D0EBB47s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA1B5C56EAC8D96BC8D1C7E941A18DBF7s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA1B5C56EAC8D96BC8D1C7E941A18DBF7s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA1B5C56EAC8D96BC8D1C7E941A18DBF7s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF3F544E29908F35FDAF0E13D4C0047F2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF3F544E29908F35FDAF0E13D4C0047F2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF3F544E29908F35FDAF0E13D4C0047F2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibF3F544E29908F35FDAF0E13D4C0047F2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib20ED44D24666B1F2DFB16A5447C16DB0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib20ED44D24666B1F2DFB16A5447C16DB0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib20ED44D24666B1F2DFB16A5447C16DB0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib2EA547E55FC2B22728E368168919B492s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib2EA547E55FC2B22728E368168919B492s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE5770C7AC667FF412F671D485E7E90D6s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE5770C7AC667FF412F671D485E7E90D6s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE5770C7AC667FF412F671D485E7E90D6s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib106A290DBA7591119B078C2D3DEE7D2Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib106A290DBA7591119B078C2D3DEE7D2Fs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE87CA756C423E020A3C6C7F5C1EC7F55s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibE87CA756C423E020A3C6C7F5C1EC7F55s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC220F09A33B4F8A1BB81A7C8AB1A61ECs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibC220F09A33B4F8A1BB81A7C8AB1A61ECs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1C19040DB6F86E8F3F8A1EED6F298B43s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1C19040DB6F86E8F3F8A1EED6F298B43s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib1C19040DB6F86E8F3F8A1EED6F298B43s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib0E0AC4FCC70A764AF76EB5DB33CB1375s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibFA5261E8D86E014E4C0CE4E5D1BEBAB2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibFA5261E8D86E014E4C0CE4E5D1BEBAB2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib43B93DB770D0D0563A64E0FD3BD51840s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib43B93DB770D0D0563A64E0FD3BD51840s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibFDB0ECD3833E2B7556D76D2ADA5B9BEFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibFDB0ECD3833E2B7556D76D2ADA5B9BEFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7D75FADF516BF8D192C4E697E4A1341Cs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7D75FADF516BF8D192C4E697E4A1341Cs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib7D75FADF516BF8D192C4E697E4A1341Cs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib4925DDE95B7AA27B00D511250DDF28C0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib4925DDE95B7AA27B00D511250DDF28C0s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib364E6905C65FC8BC4BFD9BBA61F637E9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib364E6905C65FC8BC4BFD9BBA61F637E9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib364E6905C65FC8BC4BFD9BBA61F637E9s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib3310485F027CF4187C6D3B35ADB9AB68s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib3310485F027CF4187C6D3B35ADB9AB68s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib3310485F027CF4187C6D3B35ADB9AB68s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibAD82E79B9570D50BB4A09C4EEC37BEB2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibAD82E79B9570D50BB4A09C4EEC37BEB2s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA507DDA60BA933F7BDDE8230AC40B7DCs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA507DDA60BA933F7BDDE8230AC40B7DCs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibA507DDA60BA933F7BDDE8230AC40B7DCs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibB8A6ABF25A995FDC9343BB645A25259Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibB8A6ABF25A995FDC9343BB645A25259Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibB8A6ABF25A995FDC9343BB645A25259Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bibB8A6ABF25A995FDC9343BB645A25259Bs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib8E39679A828CD66C25B260370064EA36s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib8E39679A828CD66C25B260370064EA36s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib28289DD7821B4AE9B6B3E56F73F5ADAFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib28289DD7821B4AE9B6B3E56F73F5ADAFs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib310A2D4470EA23AE31B7A17409E0F54Cs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib310A2D4470EA23AE31B7A17409E0F54Cs1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib3DBFF1AAB334D6057BAA111868EA1B1Es1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib3DBFF1AAB334D6057BAA111868EA1B1Es1
http://docs.nvidia.com/cuda/curand
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib93CFF1802B1064994406F2F34B6DCE54s1
http://refhub.elsevier.com/S0010-4655(25)00192-4/bib93CFF1802B1064994406F2F34B6DCE54s1

	Massive-scale simulations of 2D Ising and Blume-Capel models on rack-scale multi-GPU systems
	1 Introduction
	2 Ising and Blume-Capel models
	3 Implementation
	3.1 Workload distribution via fabric memory
	3.2 Optimized Monte Carlo implementation
	3.3 Correlation protocol

	4 Results
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

