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We present high-performance implementations of the two-dimensional Ising and Blume-Capel models for large
scale, multi-GPU simulations. Our approach takes full advantage of the NVIDIA GB200 NVL72 system, which 
features up to 72 GPUs interconnected via high-bandwidth NVLink, enabling direct GPU-to-GPU memory access 
across multiple nodes. By utilizing Fabric Memory and an optimized Monte Carlo kernel for the Ising model, our 
implementation supports simulations of systems with linear sizes up to 𝐿= 223, corresponding to approximately 
70 trillion spins. This allows for a peak processing rate of nearly 1.15 × 105 lattice updates per nanosecond�-
setting a new performance benchmark for Ising model simulations. Additionally, we introduce a custom protocol 
for computing correlation functions, which strikes an optimal balance between computational efficiency and 
statistical accuracy. This protocol enables large-scale simulations without incurring prohibitive runtime costs. 
Benchmark results show near-perfect strong and weak scaling up to 64 GPUs, demonstrating the effectiveness of 
our approach for large-scale statistical physics simulations.
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1. Introduction

We present computer programs specifically developed to simulate 
the out-of-equilibrium dynamics of the two-dimensional (2D) Ising and 
Blume-Capel models—two paradigmatic systems that belong to the same 
equilibrium universality class [1--3]. Our chosen dynamics is the stan
dard Metropolis spinflip algorithm, see, e.g. [4,5], representative of the 
so-called model-A dynamic universality class, which describes local dy
namics without conservation laws [6]. Out-of-equilibrium dynamics is 
a central theme in Statistical Mechanics and plays a crucial role in the 
theoretical, numerical, and experimental study of disordered magnetic 
systems (see, e.g., [7--10] for review). Importantly, it is also a vibrant 
area of research for non-disordered magnetic systems as well [11], with 
increasing interest in recent years (see, e.g., [12--17]). It is important to 
emphasize that the physics studied here is specific to model-A dynam
ics. Consequently, simulation algorithms belonging to other dynamic 
universality classes—such as cluster methods [18,19] or the Worm algo
rithm [20]�-are not suitable for our purposes, despite their well-known 
efficiency in driving systems to thermal equilibrium.

In a typical experimental or computational setting, a system is 
quenched at the initial time 𝑡 = 0 from a high temperature down to 
a working temperature 𝑇 , where it is then allowed to relax. The chosen 
temperature 𝑇 typically lies close to, or below, the critical temperature 
𝑇c. The relaxation process involves the time-dependent growth of mag
netic domains, characterized by a linear size 𝜉(𝑡). In a typical experiment 
(see, e.g., [10]), the domain size remains much smaller than the overall 
system size, i.e., 𝐿≫ 𝜉(𝑡).

To obtain results that are effectively indistinguishable from those in 
the large-𝐿 limit, the system size should exceed the correlation length 
by at least a factor of (say) 50. As a result, in numerical simulations, the 
system size effectively acts as a cutoff that limits the maximum corre
lation length 𝜉(𝑡) attainable during the simulation (because one needs 
to ensure that 𝐿 is at least as large as 50 𝜉(𝑡) for all times considered 
in the simulation). In fact, simulating a single large system, rather than 
performing multiple runs on smaller systems, offers two significant ad
vantages. First, it enables 𝜉(𝑡) to evolve over a broader range without 
being affected by finite-size effects. This is particularly important, as 
𝜉(𝑡) serves as the fundamental scale variable in the scaling analyses cen
tral to the study of out-of-equilibrium dynamics (see, e.g., [17,21,22]). 
Second, statistical errors decrease with increasing system size, scaling 
as [𝜉(𝑡)∕𝐿]𝐷∕2, where 𝐷 is the spatial dimensionality (with 𝐷 = 2 in 
our case). In practical terms, this means that a single simulation of a 
system with size 𝐿′ = 2𝐿 provides statistical precision equivalent to 2𝐷
independent simulations of a system of size 𝐿.

The simplicity of spin models makes them particularly well-suited 
for implementation on dedicated hardware. Indeed, several computers 
have been purpose-built for the simulation of 2D and 3D spin systems. 
In parallel, highly specialized software has been developed for plat
forms such as Graphics Processing Units (GPUs). A portion of this work 
focuses on simulation algorithms that do not belong to the model-A dy
namic universality class—for example, implementations on dedicated 
machines [23--25] and GPU-based approaches [26--31]. However, con
siderable effort has also been invested in the implementation of model-A 
dynamics, both in hardware platforms [32--40] and in GPU-based soft
ware solutions [41].

Most directly related to our work are studies that apply model-A al
gorithms to simulations of the 2D ferromagnetic Ising model. This model 
has been simulated on various hardware platforms, including special
purpose machines with Field Programmable Gate Arrays (FPGAs) [42], 
Tensor Processing Units (TPUs) [43], the Cerebras Wafer-Scale Engine 
(WSE) [44], and Graphics Processing Units (GPUs) [45--50]. In this 
work, we update the highly optimized CUDA implementation of the 2D 
Ising model previously released in Ref. [45]. The two key innovations 
in this version are: 𝑖) the ability to simulate much larger systems than in 
the previous version (the importance of this point has already been em

phasized above), and 𝑖𝑖) support for the Blume-Capel model in addition 
to the standard Ising model.

Our new implementation of the Ising and Blume-Capel models for 
multi-GPU clusters is capable of scaling from a single GPU to the latest 
NVIDIA GB200 NVL72 rack-scale architecture. It is designed to lever
age the direct GPU-to-GPU communication across and within the nodes 
to realize a single coherent memory space that can be shared by mul
tiple devices to distribute the computations effectively. Moreover, all 
communications resulting from devices accessing portions of the mem
ory space residing on remote GPUs are handled transparently through 
NVLink eliminating the need for explicit memory transfers.

The rest of this paper is organized as follows: in Sec. 2, we review 
the basic features of the Ising and Blume-Capel models. Section 3 details 
the new implementation, while Sec. 4 presents performance results. Fi
nally, the paper concludes in Sec. 5 with a discussion of possible future 
developments.

2. Ising and Blume-Capel models

The 2D spin-1∕2 Ising model (IM) [51], often called the fruitfly 
model of statistical physics, is described by the Hamiltonian [52]


(IM) = −𝐽

∑
⟨𝐱,𝐲⟩𝜎𝐱𝜎𝐲, (1)

where 𝜎𝐱 = ±1 represents the spins at the nodes of an 𝐿×𝐿 square lat
tice with periodic boundary conditions. The summation ⟨𝐱,𝐲⟩ runs over 
nearest neighbors, and 𝐽 > 0 is the ferromagnetic exchange coupling.

In contrast, the spin-1 Blume-Capel (BC) model [53,54], a general
ization of the Ising ferromagnet, offers a promising platform for investi
gating critical and tricritical phenomena. It has been applied to a broad 
range of physical systems, from Mott insulators [55] to multi-component 
fluids [56]. Its Hamiltonian is given by


(BC) = −𝐽

∑
⟨𝐱,𝐲⟩𝜎𝐱𝜎𝐲 +Δ

∑
𝐱
𝜎2𝐱 , (2)

where, as in the Ising model, 𝐽 > 0. The key differences in the Blume
Capel model stem from the possibility of vacancies, so that the spin 
components can take values 𝜎𝐱 ∈ {−1,0,+1}, and from the presence of 
a chemical potential Δ, known as the crystalfield coupling, which con
trols the density of vacancies (𝜎𝐱 = 0). For Δ→ −∞, vacancies are sup
pressed, and the model reduces to the Ising ferromagnet (1). The phase 
boundary of the Blume-Capel model in the crystalfield-temperature (Δ, 
𝑇 ) plane separates the ferromagnetic and paramagnetic phases [57], fea
turing a tricritical point at (Δt , 𝑇t ) = [1.9660(1), 0.6080(1)] [58]. This 
point distinguishes first-order transitions (at low 𝑇 and high Δ) from 
second-order transitions (at high 𝑇 and low Δ). In particular, second
order transitions follow the Ising universality class [57--63].

In Ref. [17], we compared the critical dynamics of these two mod
els belonging to the same static universality class: the square-lattice 
Ising model and the Blume-Capel model, specifically in its second-order 
transition regime, with a focus on the critical point corresponding to 
Δ = 0. In this work, we provide a detailed description of the numeri
cal framework that enabled us to reach those groundbreaking physical 
conclusions, achieved through simulations effectively at the thermody
namic limit.

3. Implementation

As the foundation for this work, we build upon the optimized GPU 
implementations presented in Ref. [45], which is a single-node/multi
GPU code that employs multi-spin coding [64] (MSC). We also leverage 
CUDA Unified Memory to enable direct memory access between devices 
connected to the same machine via high-speed NVLink, eliminating the 
need for explicit data transfers.

The total size of the systems that can be simulated depends on two 
factors: the number of spins that can be stored in the memory of each 
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GPU and the total number of GPUs available for the simulation. To 
increase the system size per GPU in the Ising model, we reduced the 
bits-per-spin count from 4 to 1, effectively quadrupling the lattice size 
that can be stored within the same memory capacity. In contrast, for the 
Blume-Capel model, we retained the 4-bit spin representation, as each 
spin can take three distinct values. We found that a 2-bit spin represen
tation does not provide an advantage from the performance viewpoint 
since the operations remain the same as in the case of the 4-bit repre
sentation.

Additionally, to increase the pool of GPUs available for a single sim
ulation, we modified the code to enable scaling across multiple nodes. 
This required replacing Managed Memory with Fabric Memory, a new 
type of allocation that allows memory buffers to span multiple nodes 
while providing functionality equivalent to Managed Memory on single
node systems.

Reducing the Ising spin representation to a single bit enabled further 
optimization of the Monte Carlo kernel using a technique described in 
Ref. [46], which employs a lookup table to generate non-uniform ran
dom bits efficiently. In our original implementation, a uniform random 
number was used per spin to determine flips based on the acceptance 
probability. By leveraging the lookup table approach, a single uniform 
random number can now generate multiple non-uniform random bits, 
enabling parallel flipping of multiple spins. This strategy significantly 
reduces the number of random numbers required, addressing one of the 
most significant bottlenecks in Ising model simulations. However, for 
the Blume-Capel model, the probability exponential function is consid
erably more complex than in the Ising case, making the lookup table 
approach impractical.

Finally, we designed a custom protocol, applicable to both mod
els, for computing the correlation function that reduces computational 
burden while preserving statistical significance. At specific time steps 
during the simulation, we compute the spin-spin correlation from each 
lattice site at multiple distances along the two lattice dimensions. Ideally, 
this would be computed for all distances up to half the system’s linear 
size, 𝐿∕2, but doing so would incur a computational cost of 𝑂(𝐿3), lead
ing to an impractical increase in computation time for large values of 
𝐿. In our protocol, we downsample the correlation function using two 
distance thresholds. The first sets the maximum distance for which the 
correlation is computed from each site, while the second specifies the 
point beyond which sampling follows a logarithmic scale, extending up 
to 𝐿∕2.

3.1. Workload distribution via fabric memory

As is common practice, the spin system is stored in memory using two 
separate buffers arranged in a checkerboard pattern.1 This partitioning 
ensures that all spins of one color can be updated in parallel. Since each 
spin’s flipping decision depends entirely on its neighbors in the oppo
site buffer, each simulation step consists of two update phases—one for 
each color. The workload is distributed across GPUs according to a 1D 
decomposition, that is by partitioning each buffer into horizontal slabs, 
which are stored in device memory. This approach minimizes inter-GPU 
communication during spin updates, restricting it to just two rows: the 
last row of the slab on the preceding GPU and the first row of the slab 
on the next GPU. Notably, due to the periodic boundary conditions, the 
first and last GPU slabs are also connected. In our original code, this 
slab-based partitioning was easily implemented via Unified Memory. For 
each color, the host process simply called cudaMallocManaged once 
to request an allocation for the entire buffer. Then, cudaMemAdvise 
was called once per GPU to assign each slab (a specific address range) 
to its corresponding device’s global memory. This allows the GPUs to di
rectly access any spin in the system by indexing the global buffers. The 

1 The checkerboard lattice decomposition is crucial in numerical simulations 
and pure theoretical settings. For instance, the lattice decomposition in two sub
lattices played a significant role in [65].

system automatically handles data transfers between devices by migrat
ing memory pages as needed.

While Managed Memory is an effective method for achieving multi
GPU parallelism, it is limited to single-node systems, as it relies on 
underlying operating system support to provide its functionalities. For
tunately, the features of Unified Memory that our code depends on can 
be implemented using the Virtual Memory Management API (VMM)2, 
a low-level interface for directly managing the GPU’s virtual address 
space. Specifically, VMM introduces a new type of allocation called fab

ric memory, which, in multi-node NVLink systems, allows the memory 
of remote GPUs to be mapped into the address space of any other GPU.

VMM API calls can be seamlessly integrated into an existing pro
gram to configure memory allocations that require low-level tuning, 
without modifying other parts of the code. For instance, they can 
be used alongside standard runtime functions like cudaMalloc or 
cudaMallocManaged. This flexibility allowed us to introduce support 
for Fabric Memory in our code by simply replacing the two managed 
memory calls used for allocating the two color buffers (and the corre
sponding Unified Memory advise calls) with calls to a custom allocation 
function. This function encapsulates all the necessary VMM API calls 
to implement the shared buffer, keeping these details separate from 
the main code. Moreover, it allows for switching between the single
node/managed-memory and multi-node/Fabric-Memory versions using 
a compile-time directive that determines which allocation calls to use. 
Finally, to enable multi-node execution, we used the MPI library to 
launch and coordinate processes across the nodes. Each MPI process was 
assigned to a node, where it managed all GPUs connected to that node, 
following a similar approach to the one used in the original single-node 
implementation.

The VMM API decouples addresses from memory, enabling applica
tions to manage them independently and map different memory types 
and locations to a virtual address range. Our Fabric Memory function 
is called by all MPI processes. Each process first requests a physi
cal memory allocation for each of its local GPUs, with the allocation 
size matching the slab size and suitable for sharing with other GPUs 
within the same NVLink fabric (both local and remote). This is done 
using the cuMemCreate function, which returns a handle to the al
located physical memory. At this point, the memory is reserved but 
not yet associated with an address, making it inaccessible. Next, the 
handles must be distributed across the processes so that each pro
cess can map remote allocations to local address ranges. However, 
since handles cannot be shared directly, they are first exported to OS
specific types using the cuMemExportToShareableHandle function. 
The exported handles are then distributed using the MPI_Allgather 
collective. Once received, the remote handles are imported with 
cuMemImportFromShareableHandle, making them ready for map
ping to local addresses. Each process then reserves a new virtual address 
range, large enough to accommodate the entire memory allocation 
across all devices, using the cuMemAddressReserve function. Next, 
each memory handle is mapped to consecutive chunks (each of slab 
size) within the newly reserved address range using cuMemMap. Access 
to the address range, as well as the underlying memory, is enabled via 
cuMemSetAccess. To ensure that the same offset in the address range 
of each process corresponds to the same physical memory location (on 
the same GPU), all processes map the handles in a consistent order: first 
across MPI ranks (from the first to the last), and then, within each rank, 
from the first GPU to the last.

Note that, unlike managed memory, the beginning of the virtual ad
dress range [startPtr , startPtr+totSize) may differ for each 
process, even though the underlying memory it maps to remains iden
tical. This behavior is common in many shared memory mechanisms 

2 For a complete description, see: https://docs.nvidia.com/cuda/cuda-driver-
api/group__CUDA__VA.html.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
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Fig. 1. Distribution of the shared spin buffer across the GPUs connected to the 
nodes.

where there is a decoupling between memory allocation and address
ing. The allocation function then returns startPtr to the caller.

In this way, we have implemented a shared buffer spanning multiple 
GPUs across different nodes, as illustrated in Fig. 1. On each node, the 
address startPtr points to the same contiguous buffer, with consec
utive chunks of equal size (matching the size of a spin slab) physically 
distributed across the memory of consecutive GPUs across all nodes. As 
a result, startPtr+i consistently refers to the same memory location 
within the memory of a particular GPU, regardless of the process access
ing it within the system.

From the application’s perspective, there is no difference compared 
to memory allocation using cudaMallocManaged. Each process pro
vides the same buffer pointer to the kernels launched on its local devices, 
enabling GPU threads to access any location directly. Accesses to loca
tions mapped to remote memory are automatically handled via NVLink 
transfers, transparently managed by the system. This approach elimi
nates the need for explicit data transfers between GPUs and maximizes 
the size of the systems that can be simulated, as remote data can be ac
cessed directly without the need to reserve additional memory for local 
copies.

3.2. Optimized Monte Carlo implementation

The original implementation of our spin update kernel employed 
Multiple Spin Coding (MSC) by using four bits per spin to sum the val
ues of neighboring spins for multiple consecutive spins (of the same 
color) in parallel, within the same addition instructions. In the updated 
version, we reduced the bits per spin to one in order to maximize the 
size of the spin slab per device. This required a significant rewrite of 
the kernel, as integer additions could no longer be used to sum spin 
values in parallel—any sum involving more than one value of 1 would 
overflow into the next site. As mentioned earlier, using one bit per spin 
also allowed us to improve kernel efficiency by reducing the number 
of random numbers required to flip spins according to the acceptance 
probability. This improvement is achieved through the LUT-based ap
proach described in Ref. [46], Section II.A.1. We recall that a spin is 
flipped with probability 𝑒−4𝛽 if it shares its value with exactly three 
neighbors, with probability 𝑒−8𝛽 if it shares its value with exactly four 
neighbors, and with probability 1 in all other cases. Since we are using 
one bit per spin, we pack multiple spins into a single unsigned word (the 
word bit-length will be discussed later).

To explain how we revised the update kernel, let us assume we have 
the words src, eq4 and eq3, where (for clarity, we use array indexing 
to denote a specific bit within a word):

• src contains the input spins;
• eq4[i] == 1 ⟺ exactly four neighbors of spin 𝑖 have the same 

value as src[i];
• eq3[i] == 1 ⟺ exactly three neighbors of spin 𝑖 have the same 

value as src[i].

Clearly, ``eq4 & eq3'' is equal always to zero. Let us also define a func
tion nonUniformRandBits() that returns a word in which each bit is 
set independently with probability 𝑒−4𝛽 . With these definitions, we can 
update the source spins in parallel as follows:

exp4 = nonUniformRandBits();
exp8 = nonUniformRandBits();
exp8 = exp8 & exp4;
flip = (eq4 & exp8) | (eq3 & exp4) | (~eq4 & ~eq3);
dst = src ^ flip;

The words eq4 and eq3 can be computed starting from the source spin 
word and the words containing the four neighboring spins in several 
ways. Let the neighboring words be labeled neighN, neighS, neighW 
and neighE. We obtain them using the following method:

neighN ^= ~src;
neighS ^= ~src;
neighW ^= ~src;
neighE ^= ~src;

tmp = neighW; neighW &= neighE; neighE |= tmp;
tmp = neighS; neighS &= neighW; neighW |= tmp;
tmp = neighN; neighN &= neighS; neighS |= tmp;
tmp = neighW; neighW &= neighE; neighE |= tmp;
tmp = neighS; neighS &= neighW; neighW |= tmp;

eq4 = neighN;
eq3 = ~neighN & neighS;

The first four lines replace the values of the neighboring spins with a 
bit indicating whether each neighbor matches the corresponding source 
spin (a value of 1 means they match). Then, we independently sort 
these ``difference'' bits within the word sequence [neighN , neighS , 
neighW , neighE]. Specifically, bits with a value of 0 are compacted to
ward neighN (while bits with a value of 1 are shifted toward neighE). 
This is accomplished by swapping adjacent bits, starting from the end 
of the sequence, until the lowest values are moved into the first two ele
ments. Since we are sorting four elements and begin from the end, only 
five swaps are needed. If a spin shares its value with four neighbors, the 
corresponding bit in neighN is set to 1. If it shares its value with exactly 
three neighbors, the corresponding bits in neighN and neighS are set 
to 0 and 1, respectively. The final two lines store this information in the 
words eq4 and eq3.

In our code, each GPU thread manages 128 spins, enabling effi
cient memory access by performing 128-bit loads and stores using the 
ulonglong2 vector type. Accordingly, we use two 64-bit unsigned long 
long integers for each spin word in the above description (specifically, 
the .x and .y fields of the vector type).

Finally, the nonUniformRandBits() function generates non
uniform random bits. It is based on an algorithm that produces 𝑁
random bits by performing a binary search on a 32-bit random number 
within a sorted table of length 2𝑁 . The table is generated at the begin
ning of the run and remains unchanged throughout the simulation. The 
probability distribution of the bits [𝑝(0) = 1 − 𝑒−4𝛽 and 𝑝(1) = 𝑒−4𝛽] is 
encoded in the content of the table. A detailed description of how it is 
generated can be found in Ref. [46]. In our case, 𝑁 = 4, so we generate 
four random bits per lookup. The function nonUniformRandBits() 
is implemented as follows:

function nonUniformRandBits() {
uint64 ret = 0
for(int k = 0; k < 64; k += 4) {

uint32 rndNum = philox_32_10();
uint64 rndBits = getMaxLE(table , rndNum)
ret |= rndBits < < k;
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}

return ret
}

The 32-bit uniform random number is generated using the Philox4 
_32_10 generator from the cuRAND library’s device API [66], as in our 
original code. The function getMaxLE() returns the index (from 0 to 
15) of the table corresponding to the largest element less than or equal 
to rndNum. For each 64-bit word (representing 64 spins), we generate 
16 random numbers. Since two random bit words (exp8 and exp4) are 
needed for each spin word, the total number of calls to the random 
number generator is 32. This reduces the number of calls by a factor of 
2 compared to our original implementation, where each spin required a 
separate 32-bit random number.

3.3. Correlation protocol

As discussed in Sec. 1, we developed a custom protocol to reduce 
the computational time for calculating the correlation function with
out compromising statistical reliability. Ideally, the correlation function 
would be computed at every site and for all distances 𝑟 up to half the 
system’s linear dimension. However, this would result in prohibitively 
long runtimes for large systems. Using a Fast Fourier Transform (FFT) 
is not a feasible alternative for two reasons. First, in the Blume-Capel 
model, the FFT would require unpacking the spin configuration. Sec
ond, and more critically, we are already close to exhausting the device’s 
memory with the spin configurations.

Our approach computes the spin-spin correlation for each spin in the 
system only up to a limited threshold, 𝑟 ≤ 2𝑅. Beyond this threshold, we 
apply downsampling. Specifically, we reduce the number of source spins 
by a factor of 𝑅2 by selecting a single spin per 𝑅 ×𝑅 square (e.g., the 
spin in the top-left corner). This downsampling comes with almost no 
penalty in statistical errors as soon as the coherence length 𝜉(𝑡) exceeds 
𝑅.3 Despite this downsampling, calculating the correlation for every 
distance up to 𝐿∕2 would still result in excessive runtimes for large 
systems [we simulated systems with linear dimensions on the order of 
𝑂(106)].

To further optimize performance, we introduce an additional level 
of downsampling by defining a second distance threshold, 𝑟c(𝑡), beyond 
which correlation values are sampled using a logarithmic scale. How
ever, in order to compute the coherence length safely, both 𝑟𝑐(𝑡) and 
the statistical errors must meet two separate conditions. First, 𝑟c(𝑡) must 
be larger than a fixed multiple of the coherence length 𝜉(𝑡). Since the 
growth of 𝜉(𝑡) is slightly slower than 

√
𝑡, we found it sensible to have 

𝑟c(𝑡) grow linearly with 
√
𝑡, as explained below. Additionally, we re

quire full details of the correlation function up to the largest distance 
where the signal-to-noise ratio remains above a prescribed threshold (3 
in our case). With these conditions in mind, statistical errors decay with 
system size as 1∕𝐿, which implies that 𝑟c(𝑡) should increase with sys
tem size (though not by much, since the correlation function decays at 
long distances as 𝐶(𝑟) ∼ e−[𝑟∕𝜉(𝑡)]2 ). Our prescription, described below, 
was calibrated using preliminary simulations of 100 independent runs 
of the Blume-Capel system with sizes 𝐿 = 216. This calibration extends 
to larger systems, as discussed. Specifically, we compute the correlation 
function 𝐶(𝑟, 𝑡) as follows:

• for all spins, for 𝑟 ≤ 2𝑅;
• for one spin per 𝑅×𝑅 square, for 2𝑅< 𝑟 ≤ 𝑟c(𝑡);
• for one spin per 𝑅 × 𝑅 square, for 𝑟 ∈ {⌊2𝑥∕32⌋ ∶ 𝑟c(𝑡) < 𝑥 ≤

32[𝑙𝑜𝑔2(𝐿) − 1]}, meaning 32 values of 𝑟 for each power of two, 
up to 𝐿∕2;

3 In fact, the number of statistically independent source spins in a lattice of 
dimension 𝐿 is roughly [𝐿∕𝜉(𝑡)]2.

with:

𝑅 = 16, 𝑟c(𝑡) = max{256,⌊𝑔(𝐿)√𝑡+ 0.5⌋}, 
𝑔(𝐿) = 6

√
log(𝐿∕216)

3.32
+ 1.0

Even with this protocol, calculating the correlation function at every 
timestep would still significantly impact the overall simulation runtime. 
To mitigate this, we compute the function at timesteps spaced evenly 
on a logarithmic scale, a natural choice for studying a power-law time
growth phenomenon:

{𝑡 ∶ 𝑡 = ⌊(20.125)𝑥 + 0.5⌋ , 𝑥 a positive integer }.

This approach evaluates the correlation function less frequently as the 
simulation progresses, striking a balance between accuracy and compu
tational efficiency. For instance, in our large Ising simulations presented 
in Ref. [17], we ran 524,288 timesteps on systems with 𝐿 = 222, with 
each run lasting a total of 24.1 hours. The correlation function compu
tation accounted for approximately 3.3% of the total runtime.

4. Results

In this section, we present performance results for both single-GPU 
and multi-GPU configurations. Our tests were conducted on an NVIDIA 
GB200 NVL72 system, which consists of 18 computing nodes. Each node 
is equipped with two Grace CPUs (each featuring 72 ARM Neoverse 
V2 cores) and four Blackwell GPUs, for a total of 72 GPUs. All GPUs 
are connected within a single NVLink domain, providing a GPU-to-GPU 
bandwidth of 1.8 TB/s and an aggregate NVLink bandwidth of 130 TB/s. 
Each GB200 GPU is equipped with 192 GB of HBM3e memory, deliver
ing a bandwidth of 8 TB/s. This results in a total device memory of 13.5
TB and an aggregated memory bandwidth of 576 TB/s.

While this work emphasizes the performance of our Ising and Blume
Capel implementations, these codes have already been applied in large
scale numerical studies demonstrating the universality of critical dy
namics. The results of these studies, available in Ref. [17], confirm 
the correctness of our implementations. Additionally, we have used the 
Schwinger-Dyson equation as a practical and straightforward program 
sanity check [67]. For both the Ising and Blume-Capel models, the fol
lowing identity holds in thermal equilibrium:

1 = 1 
𝐿2

∑
𝐱
⟨e−2𝐽𝛽𝜎𝐱ℎ𝐱 ⟩ , 𝛽 = 1 

𝑘B𝑇
, ℎ𝐱 =

∑
‖𝐱−𝐲‖=1 𝜎𝐲 . (3)

The identity was originally derived for the Ising model, but it straight
forwardly extends to the Blume-Capel model. Note that evaluating the 
right-hand side (r.h.s.) of the above equation is similar to an energy 
computation using a short look-up table. Specifically, the exponential 
term takes only five distinct values for the Ising model and nine for the 
Blume-Capel model. Although our simulations do not run long enough 
to reach full thermal equilibrium, Eq. (3) holds with very high accuracy 
as soon as 𝜉(𝑡) becomes significantly larger than one (i.e., when the sys
tem reaches quasi-equilibrium locally).4 Failure to meet this condition 
is a clear indication that something is wrong with the simulation.

We assess the performance improvement of our current Monte Carlo 
implementation by comparing it to the previous version released in [45]. 
Both codes were executed on a single GB200 GPU, using the largest sys
tem size supported by the earlier implementation, 𝐿 = 219. That version 
stored 4 bits per spin, requiring 128 GB of memory for the full lattice. 
The previous code achieved a speed of 1070 updates/ns, while the new 
implementation reaches 1800 updates/ns �- an improvement of approx
imately 1.7×.

4 After just 128 time steps, we observed deviations from Eq. (3) on the order 
of ∼ 5 × 10−4 for 𝐿 = 223 Ising systems, and as small as 2 × 10−5 for 𝐿 = 223
Blume Capel systems (at their respective critical temperatures).
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Fig. 2. Plot showing the spin update throughput data from Table 1. 

Table 1
Spin updates per nanosecond for the 
Ising code on a single GB200 GPU, with 
varying system sizes and memory re
quirements ranging from 8 MB to 128
GB.

𝐿 updates/ns 
213 1051 
214 1530 
215 1741 
216 1784 
217 1797 
218 1801 
219 1802 
220 1802 

Table 2
Spin updates per nanosecond for the 
Blume-Capel code on a single GB200 
GPU, with varying system sizes and 
memory requirements ranging from 8
MB to 128 GB.

𝐿 updates/ns 
212 304 
213 633 
214 839 
215 922 
216 941 
217 947 
218 949 
219 948 

Tables 1 and 2 present the single-GPU performance of the Ising and 
Blume-Capel codes on an NVIDIA GB200 GPU, varying the system’s lin
ear size and covering total memory usage from 8 MB to 128 GB. The 
data from the tables are plotted in Figs. 2 and 3. For the Ising code, 
experiments were conducted with system sizes ranging from 𝐿 = 213
to 𝐿 = 220. Since each spin in the Blume-Capel code requires four bits 
instead of one, the runs for this case started at 𝐿 = 212 and went up 
to 𝐿 = 219. Peak performance for the Ising code is reached at 𝐿 = 216
(1.0 GB), exceeding 99% of the absolute maximum performance of 1802
updates/ns, which is achieved at 𝐿 = 220. For the Blume-Capel code, 
peak performance occurs at 𝐿 = 216, exceeding 99% of the maximum 
performance of 948 updates/ns, which is attained at 𝐿 = 219.

Table 3 summarizes the strong scaling measurements for both codes. 
For each model, we ran the same system using between 1 and 64 GPUs 

Table 3
Strong scaling measurements of the Blume-Capel and Ising codes for 
the Monte Carlo kernel, using up to 64 GB200 GPUs with fixed-size 
systems, are presented. The Blume-Capel code was run with 𝐿= 219
(∼ 2.8 × 1011 spins), while the Ising code with 𝐿 = 220 (∼ 1.1 × 1012
spins), resulting in a total memory usage of 128 GB in both cases. 
Each experiment was run for 128 time steps. The runtime column 
includes both the Monte Carlo simulation time and the time spent on 
consistency checks, such as verifying that the total number of spins 
remains unchanged and computing the Schwinger-Dyson values.

GPUs Blume-Capel (𝐿 = 219) Ising (𝐿 = 220) 
updates/ns runtime (sec) updates/ns runtime (sec) 

1 948 37.26 1802 78.87 
2 1890 18.69 3604 39.44 
4 3778 9.35 7196 19.75 
8 7547 4.68 14349 9.91 
16 15054 2.35 28678 4.96 
32 29910 1.18 57201 2.48 
64 59138 0.60 113813 1.25 

over 128 time steps. The lattice sizes were selected to maximize memory 
usage on a single GPU, with 238 spins (𝐿 = 219) for the Blume-Capel 
model and 240 spins (𝐿 = 220) for the Ising model. Each experiment 
produced identical numerical results (within each model), regardless of 
the number of GPUs used. Fig. 4 illustrates the corresponding speedup 
graph. The codes demonstrate near-perfect linear speedup, benefiting 
from the minimal inter-GPU communication required during the spin 
update step (each GPU exchanges 0.25 MB and 0.5 MB of data with its 
two neighbors for the Ising and Blume-Capel models, respectively).

Table 4 showcases the weak scaling measurements, where the sys
tem size per GPU is kept fixed while scaling from 1 to 64 GPUs. As in 
the strong scaling experiments, the lattice size per GPU was chosen to 
maximize memory usage. Specifically, for the Blume-Capel model, the 
system size per GPU was maintained at 238 spins, while for the Ising 
model, it was set to 240 spins. Fig. 5 shows the corresponding efficiency 
plot. As in the strong scaling case, the flip update rate was measured 
over 128 simulation steps. Although increasing the number of GPUs re
sults in larger system boundaries (two rows of 𝐿 spins) while keeping 
the number of spins per device constant, the relative ratio of boundary 
to total spins remains small (with 64 GPUs, each device exchanges 2 MB 
and 4 MB of data with its two neighbors for the Ising and Blume-Capel 
models, respectively). Consequently, access to remote GPU memory has 
no significant impact on performance.

The highest spin update rates we measured with our codes are 
114729 and 60381 updates/ns for the Ising and Blume-Capel imple
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Fig. 3. Plot showing the spin update throughput data from Table 2. 

Table 4
Weak scaling measurements of the Blume-Capel and Ising codes for the Monte Carlo kernel, using 
up to 64 GB200 GPUs while keeping the system size per GPU fixed, are presented. The Blume
Capel code was run with 238 spins per GPU, and the Ising code with 240 spins per GPU, resulting in 
a total of ∼ 1.8 × 1013 spins for the Blume-Capel model and ∼ 7.0 × 1013 spins for the Ising model 
(with 64 GPUs). Each experiment was run for 128 time steps. The runtime column includes both 
the Monte Carlo simulation time and the time spent on consistency checks, such as verifying that 
the total number of spins remains unchanged and computing the Schwinger-Dyson values.

GPUs Blume-Capel Ising 
𝐿 size (GB) upd/ns runtime (sec) 𝐿 size (GB) upd/ns runtime (sec) 

1 219 128 948 37.68 220 128 1802 78.87 
4 220 512 3789 37.76 221 512 7199 78.97 
16 221 2048 15113 37.82 222 2048 28722 79.17 
64 222 8192 60381 37.89 223 8192 114729 79.29 

Fig. 4. Plot showing the strong scaling performance of the Blume-Capel and 
Ising codes, based on the data from Table 3.

mentations, respectively. To the best of our knowledge, the previous 
highest Ising flip rate was reported in Ref. [44], where the authors 
achieved 61853 updates/ns by running 754 parallel simulations on 
a WSE, each with a size of 11586 × 16384. Our results demonstrate 
that a GB200 NVL72 system—comparable to the WSE—delivers nearly 
twice the performance for Ising simulations (∼ 1.85×). Additionally, the 
GB200 NVL72 enables the study of significantly larger systems (up to 
∼ 370000× larger), offering much higher statistical quality, since sta

Fig. 5. Plot showing the weak scaling performance of the Blume-Capel and Ising 
codes, based on the data from Table 4.

tistical errors scale inversely with system size in these simulations. For 
example, a single run on a system of size 𝐿 = 222 is free of finite-size 
artifacts, provided the coherence length remains below 𝜉(𝑡) ≈ 218. In 
Ref. [17], we simulated up to 𝜉(𝑡) ∼ 210, which would likely cause incip
ient finite-size artifacts in a system of linear dimensions 11586 × 16384. 
Furthermore, the statistical errors for a single run of 𝐿 = 222 are roughly 
equivalent to those obtained from 244∕(11586 × 16384) ≈ 92675 inde
pendent runs of a 11586 × 16384 system.
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It is worth noting that, with regard to the Blume-Capel model, we 
are unaware of any performance-focused implementations in the liter
ature. To the best of our knowledge, this work presents the first high
performance implementation of the model.

5. Conclusions

In this study, we presented high-performance implementations of the 
two-dimensional Ising and Blume-Capel models, optimized for large
scale multi-GPU simulations. These implementations leverage multi
node NVLink systems, such as the NVIDIA GB200 NVL72. By employ
ing advanced memory management techniques and optimizing Monte 
Carlo kernels, our implementations achieve unprecedented simulation 
scales, handling up to 246 spins for the Ising model and 244 spins 
for the Blume-Capel model. Our benchmarks demonstrate near-perfect 
strong and weak scaling up to 64 GPUs, highlighting the effective
ness of the NVLink interconnect in enabling memory sharing across 
multiple compute nodes. The Ising model achieves a peak update rate 
of 114729 updates/ns, significantly surpassing previous performance 
records. Meanwhile, the Blume-Capel model reaches 60381 updates/ns, 
marking the first high-performance implementation of this model to our 
knowledge. These results further demonstrate the versatility of GPUs as 
general-purpose accelerators, showing their ability to scale seamlessly 
to rack-level configurations. Advances in high-speed interconnects, uni
fied memory architectures, and parallel programming frameworks now 
allow programmers to treat distributed GPUs as a unified compute re
source.

A natural direction for future developments would be to extend the 
codes to support 3D systems. Although the shared buffer based on fabric 
memory and the optimized random bit generation could be reused with 
minimal modifications, the spin processing kernels would likely require 
substantial changes. A 3D lattice may benefit from a different spin layout 
in memory, which would necessitate a new memory access pattern for 
reading neighboring spins. Furthermore, careful consideration should 
be given to the domain decomposition strategy to minimize intra-GPU 
communications when computing correlations.

Beyond raw performance, our implementations enable simulations 
of significantly larger systems than previously possible, improving the 
statistical reliability of results and minimizing finite-size effects. The 
custom correlation function protocol and Schwinger-Dyson checks fur
ther ensure the correctness and consistency of our simulations. These ad
vances open up new opportunities for large-scale statistical physics stud
ies, including investigations of critical dynamics, universality classes, 
and non-equilibrium phenomena at previously unattainable scales.
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