
1

On Optimizing Inter- and Intra-chiplet

Interconnection Topologies for Robust Multi-chiplet

Systems

Xiaohang Wang, Member, IEEE, Miao Xu, Amit Kumar Singh, Member, IEEE, Yingtao Jiang and Mei Yang,

Member, IEEE

Abstract—Inter- and intra-chiplet interconnection networks

play a vital role in the operation of many core systems made of

multiple chiplets. However, these networks are susceptible to

faults caused by manufacturing defects and attacks resulting

from the malicious insertion of hardware Trojans and backdoors.

Unlike conventional fault-tolerant or countermeasure methods,

this paper focuses on optimizing network robustness to withstand

both faults and attacks, while considering the constraints of

chiplet area and power budget. To achieve this, this paper first

defines network robustness as a quantifiable measure based on

various network parameters, after which an optimization

problem is formulated to optimize the robustness of the network

topology. To efficiently solve this problem, a reinforcement

learning algorithm is proposed. Experimental results

demonstrate that the proposed method is capable of generating

inter- and intra-chiplet interconnection networks that are

significantly more robust than existing topology generation

methods. Specifically, the proposed method improves robustness

over ButterDonut and Kite, respectively by an average of 10.88%

and 14.06% under random faults and by 9.37% and 7.81%

under targeted attacks. These experimental results confirm that

the proposed method is capable of generating robust inter- and

intra-chiplet interconnection networks that can withstand both

faults and attacks. By optimizing the network topology's

robustness, it provides a valuable contribution to the design and

security of chiplet-based core systems.

Index Terms—chiplet, robustness, topology optimization

I. INTRODUCTION

ULTI-CHIPLET systems have emerged as a new

design paradigm aimed at improving chip yield and

reducing chip manufacturing costs. Two

X. Wang is with State Key Laboratory of Blockchain and Data Security,

Zhejiang University, China, and also with Hangzhou High-Tech Zone
(Binjiang), Institute of Blockchain and Data Security (e-mail:

xiaohangwang@zju.edu.cn). Xiaohang Wang is the corresponding author.

M. Xu is with the School of Software Engineering, South China
University of Technology, China. (e-mail: sexumiao@mail.scut.edu.cn).

A. K. Singh is with the School of Computer Science and Electronic

Engineering, University of Essex, UK. (e-mail: a.k.singh@essex.ac.uk)
Y. Jiang and M. Yang are with the Department of Electrical and

Computer Engineering, University of Nevada, Las Vegas, USA. (e-mail:

yingtao.jiang@unlv.edu, mei.yang@unlv.edu)
This work was supported in part by the National Natural Science

Foundation of China under Grants 92373205 and 62374146, in part by the

National Key Research and Development Program of China No.
2023YFB4404404, in part by the key R&D programme of Zhejiang Province

No. 2024C01012, in part by the by Ant Group through CCF-Ant Research

Fund, in part by the Key Technologies R&D Program of Jiangsu (Prospective
and Key Technologies for Industry) under Grant BE2023005-2, and in part by

CIE-Smartchip research fund No. 2023-004.

D
R

A
M

chip
R

chip
R

D
R

A
M

chip
R

D
R

A
M

chip
R D

R
A

M

SMT

shared memory

L1 cache

micro-bump

interposer

chiplet

C4-bump

R

chiplet

(a)

micro-bump

interposer

chiplet

C4-bump

RD
R

A
M

chip
R

chip
R

D
R

A
M

chip
R

D
R

A
M

chip
R D

R
A

M

chiplet

core

L1

core

L1
...

LLC I/O

MCU

L2 L2

(b)

Fig. 1. Architecture models of the (a) GPU and (b) CPU based multi-

chiplet systems.

representative architectures for such systems are illustrated in

Fig. 1: GPU-based (Fig. 1 (a)) and CPU-based (Fig. 1 (b))

multi-chiplet systems. Despite their advantages, these systems

face two significant threats: (1) random faults that arise from

manufacturing imperfections [1] and can disrupt the

operational reliability of the system, and (2) threats of attacks

associated with the use of chiplets from untrusted sources or

the integration of hardware Trojans or backdoors [2]. To

address these challenges, a variety of fault tolerance and

security countermeasure methods have been proposed,

primarily focusing on repairing the remaining systems through

packet rerouting within the inter- and intra-chiplet networks [3,

4]. One major limitation of these approaches, however, lie in

their inability to address a fundamental requirement: ensuring

the resilience of the network topology against both faults and

attacks. In this context, faults are analyzed using a specific

model in [22], while attacks are exemplified by the DoS attack

model [24].

A critical factor in ensuring the resilience of multi-chiplet

system is network connectivity, which is evaluated at node or

network levels using various parameters.

The degree of a node, which represents the number of direct

connections (edges) it has in the network, serves as a key

indicator of the network’s connectivity. Increasing the degree

M

mailto:xiaohangwang@zju.edu.cn
mailto:a.k.singh@essex.ac.uk

2

of a node enhances the network's robustness by providing

additional connections, improving fault tolerance, and

enabling alternative communication paths, thereby reducing

the risk of network partitioning in the event of node or link

failures. For example, consider the 4×4 mesh and torus

topologies shown in Fig. 2. Suppose that both nodes 2 and 7

are faulty. In the mesh topology, these faulty nodes block all

available paths for communication with node 3. In contrast,

the torus topology retains an alternative path from node 1 to

node 3 due to its additional wraparound connections. This

example illustrates that topologies with higher degrees (such

as the torus) exhibit greater robustness and fault tolerance

compared to those with lower degrees (such as the mesh),

even when subjected to the same set of node failures.

The robustness of a network is further quantified using the

parameter 𝛾, defined as the percentage of failed nodes required

to disconnect the network ((indicated by infinite average

network latency). A higher 𝛾 value signifies a more robust

network. Fig. 3 shows a comparison of latency for different

topologies under both attacks and faults. Under random faults,

ButterDonut [5] exhibits a higher 𝛾 value than Kite [6].

However, under targeted attacks, Kite outperforms

ButterDonut due to its greater number of high-degree nodes.

This highlights the trade-offs between degree uniformity and

robustness against specific failure types.

Based on the observation illustrated in Fig. 3, the paper

proposes a methodology a novel methodology to model and

optimize the robustness of inter- and intra-chiplet

interconnection topologies. The key contributions of this work

can be summarized as follows:

1) Inter- and intra-chiplet interconnection network

robustness is modeled using structural parameters such as

average neighbor degree, maximum degree, average path

length, clustering coefficient, and the most frequent degree.

2) An optimization problem is formulated to optimize

network robustness, while adhering to power and area

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b)

Fig. 2. (a) 4×4 mesh and (b) 4×4 torus.

15

20

25

30

0% 8% 16% 24% 32%

La
te

n
cy

Faulty node percentage
ButterDonut Kite

 (a)

15

20

25

30

0% 8% 16% 24%

La
te

n
cy

Attacked node percentage
ButterDonut Kite

 (b)

Fig. 3. The robustness of Kite and ButterDonut under (a) random faults

and (b) targeted attacks.

constraints. To solve the problem, an efficient

reinforcement learning algorithm is designed to find

topologies with high robustness.

3) Experimental results demonstrate that the proposed

method improves robustness over ButterDonut and Kite,

respectively by an average of 10.88% and 14.06% under

random faults and by 9.37% and 7.81% under targeted attacks.

The remainder of the paper is organized as follows. Section

Ⅱreviews the related work of chiplet-based many-core chips

and their interconnection network topologies. Section Ⅲ

models the robustness of a topology based on its network

structural parameters. Section Ⅳ formally defines the

problem of generating a robust inter- and intra-chiplet

interconnection network topologies. Section Ⅴ details the

reinforcement learning algorithm used to solve the

optimization problem and generate robust topologies, and

SectionⅥ presents the experimental results, validating the

proposed methodology. Finally, Section Ⅶ summarizes

contributions and concludes the paper.

II. RELATED WORK

In this section, we will first review the Network-on-Chip

(NoC) topologies and survey the works concerning the

generation of NoC topologies for many-core systems. These

works aim to find efficient topologies that satisfy the specific

requirements of the applications and systems. We will then

examine the inter-chiplet network topologies, such as Kite,

ButterDonut, and Hypercube, which enable efficient

communication between chiplets. In the end, we will look into

various techniques to mitigate the impact of faults and attacks,

and the methods to improve the reliability and security of the

interconnection network and the overall system through fault

tolerance and security countermeasures.

A. NoC Topologies and Topology Generation

There are regular and irregular topologies in NoC designs.

Among regular topologies, such as mesh [7], torus [8],

butterfly [9], among a few others [10-15], mesh is particularly

popular due to its simplicity and low cost. Torus improves

connectivity and bandwidth but requires longer links.

Customized topologies are generated based on application

communication characteristics, often by adding express long

links for high-volume communications. These customized

topologies serve different design goals, such as performance

optimization and fault tolerance purposes.

For performance-optimization-oriented topologies,

Katherine et al. [10] proposed a custom NoC topology

generation method based on floorplanning, which achieves

lower bandwidth and power consumption. Srinivasan et al.

[11] used linear programming to generate application-specific

NoCs, which reduces power consumption and router

resources. Venkataraman et al. [12] used Ant Lion

optimization techniques to generate topology with low power,

small area, and high speed. Neeb et al. [13] used simulated

annealing to map a task to a bidirectional chain topology and

then add edges using a greedy algorithm, enabling scalability

and expansibility.

For fault tolerance, Yang et al. [14] proposed the fault-

tolerant cellular model, which adds a spare router in the center

3

of each hexagon to ensure high system reliability.

Hosseinabady et al. [15] proposed de Bruijn graphs as on-chip

interconnection networks and developed a routing algorithm

that detours problematic links by at most two more switches

further than the original route. However, these existing works

do not especially consider network robustness and inter-

chiplet interconnections.

B. Inter-chiplet Network Topologies and Fault Tolerance

 In the literature, there are several studies on how to design

efficient inter- and intra-chiplet interconnection networks.

These works can be categorized into two main areas: (1)

topology design for inter- and intra-chiplet networks, and (2)

routing deadlock avoidance.

 In the field of topology generation, Kite [6] allows for the

use of longer links in Network-on-Interposer (NoI) and

optimizes the effective hop count and effective bandwidth to

improve communication throughput. Wang et al. [16]

proposed a reusable NoI design for agile AI chip

customization, which can self-adapt to the inter-die

communication patterns of various neural network

applications, enabling the reuse of the interposers for different

applications. Li et al. [17] proposed a reusable general

interposer architecture to amortize NRE costs and accelerate

integration flows of interposers across different chiplet-based

systems effectively. Sharma et al. [18] proposed a novel NoI

architecture with multiple non-overlapping SFCs specifically

targeting running multiple concurrent CNN inference tasks.

Sharma et al. [19] developed an efficient multi-objective

optimization algorithm to generate an NoP architecture where

the number of links associated with each router (number of

router ports) varies depending on the inter-chiplet traffic

pattern.

 For routing deadlock avoidance, Yin et al. [20] proposed a

method to avoid inter-chiplet routing deadlock by introducing

turn restrictions that break inter-chiplet cyclic dependencies.

Taheri et al. [21] proposed a method to avoid inter-chiplet

routing deadlock through a virtual network allocation strategy

and improve fault tolerance through dynamic vertical link

selection. Majumder et al. [22] proposed a selective injection

control mechanism to prevent inter-chiplet routing deadlock.

However, a common limitation of these works is the lack of

consideration for network robustness in their designs.

Robustness is crucial in ensuring the network's functionality

and performance even in the presence of faults or attacks.

 To combat faults/attacks in inter- or intra-chiplet networks,

several approaches have been proposed, including (1)

fault/attack detection, (2) fault-tolerant routing, and (3)

security mechanisms. Previous studies [20, 21] have focused

on detecting and locating faults and attacks in NoCs. These

works aim to identify the presence of hardware Trojan attacks,

Denial-of-Service (DoS) attacks and malicious traffic within

the network. In [18, 22], fault-tolerant routing algorithms were

introduced, such that once a fault/attack is detected, an

alternative path is selected to bypass the faulty or malicious

node. Regarding security mechanisms, works [3, 4] have

proposed methods to enhance the defense capability against

malicious nodes. These approaches involve monitoring

network behavior or implementing authentication mechanisms

to ensure the integrity and security of the communication.

 Our work complements these existing approaches. We

focus on generating a network topology that is inherently

resilient to faults and attacks. By designing a robust topology,

it can be integrated with online fault tolerance countermeasure

schemes, enhancing the overall reliability and security of the

inter- and intra-chiplet interconnection network. By combining

the strengths of fault/attack detection, fault-tolerant routing,

security mechanisms, and robust topology generation, it is

possible to create a comprehensive framework that ensures the

efficient and secure operation of inter- and intra-chiplet

networks even in the presence of faults and attacks.

III. MODELING ROBUSTNESS OF NETWORK TOPOLOGY

In this section, we begin by introducing the robustness

metric 𝛾 for a given network topology. This metric serves as a

measure of the network’s resilience and ability to withstand

attacks or failures. Next, we delve into the modeling of 𝛾 in

relation to network structure parameters. These parameters

capture various aspects of the network's architecture, such as

node connectivity, edge weights, or degree distributions.

A. Network Robustness Metric

Faults can be classified into two types: transient fault and

permanent fault [22]. The former is usually caused by power

grid fluctuations, particle hits and crosstalk, while permanent

fault is caused by physical damages. For the threat model

against chips, we consider two hardware trojan-assisted DoS

attacks, namely sinkhole and blackhole attacks [24]. Blackhole

attack disables links or router ports, while a sinkhole attack

aggregates the traffic and intercepts the packets. The

robustness (𝛾) of a network is defined as follows.

Definition 1. Robustness. Given a network 𝐺(𝑉, 𝐸) under

random faults or targeted attacks, where 𝑉 is the set of vertices

and 𝐸 is the set of edges, 𝛾 is the minimum percentage of

faulty nodes or attacked nodes that cause the network to be

disconnected, resulting in an infinite average latency.

Fig. 3 shows that 𝛾 is measured as 22.2% and 27.8% for an

8 × 8 torus under random faults and targeted attacks,

respectively. As mentioned in [26], network robustness is

closely related to network structure. Therefore, the robustness

metric 𝛾 can be modeled statistically using various network

parameters, including average path length (APL), average

clustering coefficient (ACC), average neighbor degree (AND),

the most frequent degree value of topology (𝑘𝑚𝑜𝑠𝑡) and the

highest degree value (𝑘𝑚𝑎𝑥). By changing each network

structure parameter, the correlation between the 𝛾 and each

parameter is shown in Table I. One can see from Table I that

APL is negatively correlated to γ, while AND, ACC, 𝑘𝑚𝑎𝑥 and

𝑘𝑚𝑜𝑠𝑡 display positive correlation with γ. Consequently, γ can

be modeled by

𝛾 = 𝛼6 ∗
𝛼1 ∗ 𝐴𝑁𝐷 + 𝛼2 ∗ 𝐴𝐶𝐶 + 𝛼3 ∗ 𝑘𝑚𝑜𝑠𝑡 + 𝛼4 ∗ 𝑘𝑚𝑎𝑥

𝛼5 ∗ 𝐴𝑃𝐿
+ 𝛼7 (1)

Eqn. (1) is derived empirically. The correlation between γ

and each parameter is analyzed and summarized in Table I,

which guides the design of the regression model in Eqn. (1). A

maximum likelihood method [29] is used to determine the

coefficients of this model.

To illustrate the metrics used in Eqn. (1), consider the 4×4

mesh in Fig. 4. These metrics, which characterize different

aspects of the network topology, are computed as follows:

4

1. average neighbor degree (AND)

Definition: the sum of the degree values of all nodes,

divided by the total number of nodes.

Example: In a 4×4 mesh with 16 nodes, there are 4 nodes

with a degree of 2, 8 nodes with a degree of 3, and 4 nodes

with a degree of 4. The total of degrees is (4×2) +(8×3) +(4×4)

=48. Therefore, AND= 48/16 = 3.

2. average path length (APL)

Definition: the sum of the path lengths for all pairs of

nodes, divided by the total number of node pairs.

Example: In the same 4×4 mesh, the distance between node

𝑢𝑖,𝑗 and node 𝑢𝑚,𝑛 is |m-i|+|n-j|, where i, j, m, n = 0, 1, 2… 15.

the sum of the all pairwise distances is 480 and there are

16×15/2=120 node pairs. Therefore, APL = 480/120=4.

3. average clustering coefficient (ACC)

Definition: the sum of the clustering coefficients of all

nodes, divided by the total number of nodes.

The clustering coefficient of a node 𝑢𝑖,𝑗 defined as:

𝑐𝑖,𝑗 =
𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗 − 1)
2

where (i) 𝑚𝑖,𝑗 is the number of actual direct edges between the

neighbors of node 𝑢𝑖,𝑗; (ii) 𝑘𝑖,𝑗 is the degree of node 𝑢𝑖,𝑗; and

(iii)
𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)

2
 gives the maximum number of possible direct

connections among the neighbors of node 𝑢𝑖,𝑗.

Example: For node 𝑢1,0, the neighbors are nodes 𝑢0,0, 𝑢1,1,

and 𝑢2,0, but none of these neighbors are directly connected to

each other. Hence, 𝑚1,0 = 0. Although 𝑘1,0 = 3, node 𝑢1,0’s

clustering coefficient is
0

3(3−1)

2

= 0 . In this mesh, actually

every node has a clustering coefficient of 0, so, the ACC = 0.

4. the maximum degree (𝑘𝑚𝑎𝑥)

Definition: the maximum number of direct connections

(edges) that any single node in the network has.

Example: In the 4×4 mesh, the maximum degree is 4. For

instance, nodes 5, 6, 9, and 10, each has 4 connections.

5. the most frequent degree value (𝑘𝑚𝑜𝑠𝑡)

Definition: the degree value with the highest frequency.

u0,0 u0,1 u0,2 u0,3

u1,0 u1,1 u1,2 u1,3

u2,0 u2,1 u2,2 u2,3

u3,0 u3,1 u3,2 u3,3

Fig. 4. An example showing the computation of the network parameters.

Example: In the 4×4 mesh, the most frequent degree value

is 3, since 8 out of 16 nodes have a degree value of 3, while 4

nodes have degrees of 2 or 4.

B. Modeling 𝛾 in Multi-chiplet Interconnection Networks

In Fig. 5 (a), the network topology is defined as a graph

𝐺(𝑉, 𝐸), where each vertex 𝑢𝑖,𝑗 ∈ 𝑉 is tile 𝑖 in chiplet 𝑗, and

𝑒𝑖,𝑘,𝑗 ∈ 𝐸 is the link between 𝑢𝑖,𝑗 and 𝑢𝑘,𝑗 in chiplet j. 𝑒𝑖,𝑘,𝑗 =

1 if there is a link between 𝑢𝑖,𝑗 and 𝑢𝑘,𝑗, and 0 otherwise. The

chiplets in the system are denoted by 𝑅1, ⋯ , 𝑅𝑐 , where each

𝑅𝑗 ⊂ 𝑉,𝑗 = 1, ⋯ , 𝑐, is a set of tiles in chiplet j. The number of

tiles in 𝑅𝑗 is given as |𝑅𝑗|, and 𝑐 is the total number of chiplets

in the system. In the context of using D2D (die to die)

interfaces within each chiplet, as described in [21], it is

assumed that each chiplet has no more than four D2D

interfaces for inter-chiplet communication [21]. The count of

D2D interfaces in chiplet 𝑗 is denoted as 𝑑𝑗 , and the D2D

interfaces in the chiplet 𝑗 are indexed by nodes

𝑢|𝑅𝑗|+1,𝑗 ,…, 𝑢|𝑅𝑗|+𝑑𝑗,𝑗 within chiplet 𝑗 . Therefore, the total

number of nodes in chiplet 𝑗 is |𝑅𝑗| + 𝑑𝑗. Given |𝑉|, 𝑐 and |𝑅𝑗|

should hold the following:

∑|𝑅𝑗|

c

𝑗=1

= |V| (2)

In Fig. 5 (a), the D2D interfaces within a chiplet can

connect to any tile within the same chiplet. This connectivity

is represented as 𝑒𝑖,|𝑅𝑗|+𝑚,𝑗 ∈ 𝐸, where 𝑖 is a tile within chiplet

𝑗, and 𝑚 is the index of the D2D interface within the same

ui,j

Chiplet j

...

.
.
.

...

.
.
.

uk,j

ei,k,j=1

ei,|Rj|+m,j=1

(a)

Chiplet j

Chiplet n Chiplet l

...

.
.
.

...

α|Rj|+1,j,|Rl|+k,l=1

(b)

Fig. 5. An example of the variables describing the (a) intra-chiplet

connection and (b) inter-chiplet connection.

TABLE I. CORRELATIONS BETWEEN ϒ AND NETWORK

PARAMETERS

Network AND APL ACC 𝑘𝑚𝑜𝑠𝑡 𝑘𝑚𝑎𝑥

Random faults

Mesh 0.781 -0.865 0 0.772 0

Torus 0.945 -0.999 0 0.539 0

Kite 0.890 -0.998 0.665 0.506 0.276

Butterfly 0.853 -0.962 0.243 0.253 0.392

Targeted attacks

Mesh 0.909 -0.992 0 0.692 0

Torus 0.880 -0.963 0 0.720 0

Kite 0.728 -1 0.556 0.593 0

Butterfly 0.783 -0.986 0.342 0.435 0.228

5

chiplet. In Fig. 5 (b), the link between D2D interfaces in

chiplet 𝑗 and chiplet 𝑛 is denoted by 𝛼|𝑅𝑗|+𝑖,𝑗,|𝑅𝑛|+𝑚,𝑛 . If there

is a link between 𝑢|𝑅𝑗|+𝑖,𝑗 and 𝑢|𝑅𝑛|+𝑚,𝑛 , the value of

𝛼|𝑅𝑗|+𝑖,𝑗,|𝑅𝑛|+𝑚,𝑛 is 1; otherwise, it is 0.

1) Computing AND

As per [28], the average neighbor degree is calculated using

(3). AND is the average degree value of each node in the

network, which can be obtained by summing up the degree

values of all nodes and dividing it by the total number of

nodes in the network. In this case, the total number of nodes in

the network is given as the tile count plus the number of

interface nodes (|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1). The degree value of a node is

the number of edges connected to that node. Note that the sum

of all nodes is equal to twice the number of edges in the

network, encompassing both the edges connecting the tile

nodes and the edges connecting the interface nodes.

𝐴𝑁𝐷 =
∑ ∑ ∑ 𝑒𝑖,𝑘,𝑗

𝑐
𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑘=1

|𝑅𝑗|

𝑖=1
+ ∑ ∑ ∑ ∑ 𝛼𝑝,𝑗,𝑞,𝑛

𝑐
𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑞=|𝑅𝑛|+1
𝑐
𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑝=|𝑅𝑗|+1

|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1

(3)

2) Computing APL

 As per [28], the average shortest path length is computed

using (4),

𝐴𝑃𝐿 =
1

(|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1)(|𝑉| + ∑ 𝑑𝑗

𝑐
𝑗=1 − 1)

(∑ ∑ ∑ ∑ 𝑙𝑖,𝑗,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=1

𝑐

𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑖=1

) (4)

 This equation calculates the average path length between

any two nodes in the network, which requires the computation

of the shortest path length 𝑙𝑖,𝑗,𝑚,𝑛 of any two nodes. For nodes

within the same chiplet, the shortest path length is computed

using (5),

 𝑙𝑖,𝑗,𝑚,𝑛 = 𝑚𝑖𝑛(𝑒𝑖,𝑚,𝑗 , 𝑒𝑖,𝑎,𝑗 + 𝑙𝑎,𝑚,𝑗)

∀0 < 𝑎, 𝑖, 𝑚 ≤ |𝑅𝑗| + 𝑑𝑗 , 1 ≤ 𝑗, 𝑛 ≤ 𝑐, 𝑗 = 𝑛, 𝑒𝑖,𝑚,𝑗 , 𝑒𝑖,𝑎,𝑗 ≠ 0 (5)

Take Fig. 6 (a) as an example. As nodes 𝑢𝑖,𝑗 and 𝑢𝑏,𝑗 in

chiplet 𝑗 are not directly connected, the shortest path length

from 𝑢𝑖,𝑗 to 𝑢𝑏,𝑗 is equal to the minimum path length from 𝑢𝑖,𝑗

to other nodes, plus the shortest path length from other nodes

to 𝑢𝑏,𝑗 . This is caluculated as min {𝑒𝑖,𝑖+1,𝑗 + 𝑙𝑖+1,𝑏,𝑗 , 𝑒𝑖,𝑖+2,𝑗 +

𝑙𝑖+2,𝑏,𝑗 , … , 𝑒𝑖,|𝑅𝑗|+𝑑,𝑗 + 𝑙|𝑅𝑗|+𝑑,𝑏,𝑗}.

For nodes in different chiplets, the shortest path is

calculated by finding the shortest path from the source node to

the D2D interface within the same chiplet using (5), plus the

shortest distance from the D2D to the destination node. The

shortest path length for nodes in different chiplets is thus

calculated using (6),

𝑙𝑖,𝑗,𝑚,𝑛 = min (𝑙𝑖,𝑗,|𝑅𝑗|+𝑘,𝑗 + 𝑙|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 + 𝑙|𝑅𝑛|+ℎ,𝑛,𝑚,𝑛)

𝑙|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 = min (𝛼|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 , 𝛼|𝑅𝑗|+𝑘,𝑗,|𝑅𝑎|+𝑏,𝑎 + 𝑙|𝑅𝑎|+𝑏,𝑎,|𝑅𝑛|+ℎ,𝑛)

∀0 < 𝑖 ≤ |𝑅𝑗|, 0 < 𝑚 ≤ |𝑅𝑛|, 0 < 𝑛, 𝑗, 𝑎 ≤ 𝑐, 0 < 𝑘 ≤ 𝑑𝑗 ,

0 < ℎ ≤ 𝑑𝑛 , 0 < 𝑏 ≤ 𝑑𝑎 , 𝑗 ≠ 𝑛 (6)

As shown in Fig. 6 (b), the shortest path from node 𝑢𝑖,𝑗 in

chiplet 𝑗 to node 𝑢𝑚,𝑛 in chiplet 𝑛 consists of three parts: 1)

the shortest path from source node 𝑢𝑖,𝑗 to D2D in chiplet 𝑗, 2)

the shortest path from chiplet 𝑗 to chiplet 𝑛, and 3) the shortest

path from D2D to the destination node 𝑢𝑚,𝑛 in chiplet 𝑛.

3) Computing ACC

According to [28], ACC is computed using (7) – (9) as

follows:

𝐴𝐶𝐶 =
1

|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1

(∑ ∑
2𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗 − 1)

𝑐

𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑖=1

) (7)

𝑚𝑖,𝑗 = ∑ ∑ 𝑒𝑖,𝑎,𝑗 ∗ 𝑒𝑖,𝑏,𝑗 ∗ 𝑒𝑎,𝑏,𝑗

|𝑅𝑗|+𝑑𝑗

𝑏=1

|𝑅𝑗|+𝑑𝑗

𝑎=1

+

 ∑ ∑ ∑ ∑ 𝛼𝑖,𝑗,𝑚,𝑛 ∗ 𝛼𝑖,𝑗,𝑝,𝑞 ∗ 𝛼𝑝,𝑞,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=|𝑅|+1

𝑐

𝑞=1

|𝑅𝑞|+𝑑𝑞

𝑝=|𝑅𝑞|+1

(8)

𝑘𝑖,𝑗 = ∑ 𝑒𝑖,𝑘,𝑗

|𝑅𝑗|+𝑑𝑗

𝑘=1

+ ∑ ∑ 𝛼𝑖,𝑗,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=|𝑅𝑛|+1

(9)

where 𝑚𝑖,𝑗 is the sum of connected edges between node 𝑢𝑖,𝑗’s

neighbors, and 𝑘𝑖,𝑗 is the degree of node 𝑢𝑖,𝑗. In simpler terms,

the clustering coefficient of a node is the ratio of actual

connected edges (𝑚
𝑖,𝑗

) between the node's neighbors to the

maximum possible connected edges (𝑘𝑖,𝑗 ∗ (𝑘
𝑖,𝑗

− 1)/2). If 𝑢𝑖,𝑗

has neighbors 𝑢𝑎,𝑗 and 𝑢𝑏,𝑗 and 𝑢𝑎,𝑗 and 𝑢𝑏,𝑗 are also neighbors to

each other, the product of𝑒𝑖,𝑗,𝑎,𝑗, 𝑒𝑖,𝑗,𝑏𝑗,, 𝑒𝑎,𝑗,𝑏,𝑗 is 1; otherwise,

it is 0.

ui,j

ua,j ub,j

...

...

... ...

ui+1,j

ei+1,b,j

ei,i+1,j

...

...

...

...

(a)

u1,j

u|Rj|+k,j

ui,j

u|Rn|+h,n

...

...

...

.
.. .
..

.
..

u1,n

um,n

...

...

...

.
.. .
..

.
..

e1,|Rj|+k,j

e1,i,j

α|Rj|+k,j,|Rn|+h,n

e1,|Rn|+h,n

e1,m,n

(b)

Fig. 6. An example showing the calculation of APL in two scenarios: (a)

two nodes are within the same chiplet, and (b) two nodes are in

different chiplets.

6

ui,j

ud,j

ua,j ub,j

...

...

... ...

ui+1,j

ei+1,b,j

ei+1,d,j

ea,b,j

...
...

...

...

Fig. 7. The diagram of computing ACC.

For example, as shown in Fig. 7, if node 𝑢𝑖,𝑗 has 4 neighbor

nodes (𝑢𝑑,𝑗 , 𝑢𝑖+1,𝑗 , 𝑢𝑎,𝑗 , 𝑢𝑏,𝑗), with 𝑘𝑖,𝑗 = 4 , the maximum

number of connected edges between neighbors is
𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)

2
=

6. If the actual connected edges between neighbors are 3 (i.e.,

𝑒𝑖+1,𝑑,𝑗 , 𝑒𝑖+1,𝑏,𝑗 , 𝑒𝑎,𝑏,𝑗), then 𝑚𝑖,𝑗 = 3 . Therefore, the

clustering coefficient of node 𝑢𝑖,𝑗 is
2𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)
= 1/2.

4) Computing 𝑘𝑚𝑜𝑠𝑡

 The highest degree frequency is calculated as in (10) by

using Pearson's empirical coefficient [27]:

𝑘𝑚𝑜𝑠𝑡 = 𝐴𝑁𝐷 − 3 (𝐴𝑁𝐷 −
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2
) (10)

𝑘𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑘𝑖,𝑗) , ∀ 0 < 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (11)

𝑘𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑘𝑖,𝑗) , ∀ 0 < 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (12)

IV. PROBLEM DEFINITION

The problem of optimizing the robustness of inter- and

intra-chiplet interconnection network topology is formulated

as follows. Given the network topology within a multi-chiplet

system, the objective is to identify the inter- and intra-network

configurations that maximizes the robustness metric γ while

adhering to power and area constraints.

Mathematically, we can formulate this problem as follows:

max 𝛾 = 𝛼6 ∗
𝛼1 ∗ 𝐴𝑁𝐷 + 𝛼2 ∗ 𝐴𝐶𝐶 + 𝛼3 ∗ 𝑘𝑚𝑜𝑠𝑡 + 𝛼4 ∗ 𝑘𝑚𝑎𝑥

𝛼5 ∗ 𝐴𝑃𝐿
+ 𝛼7 (13)

𝑠. 𝑡. 𝐴(𝑅𝑖) ≤ 𝐴0 ∀ 𝑖 = 1, ⋯ , 𝑐 (14)

 𝑃(𝑅𝑖) ≤ 𝑃0 ∀ 𝑖 = 1, ⋯ , 𝑐 (15)

𝑒𝑖,𝑘,𝑗 = 𝑒𝑘,𝑖,𝑗 = 0 𝑜𝑟 1, ∀ 0 < 𝑖, 𝑘 < |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (16)

𝛼𝑖𝑗𝑚𝑛 = 𝛼𝑚𝑛𝑖𝑗 = 0 𝑜𝑟 1,

 ∀|𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , |𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , 0 < 𝑗, 𝑛 ≤ 𝑐 (17)

𝑒𝑖,𝑘,𝑗 = 0, ∀ 𝑖 = 𝑘 || |𝑅𝑗| + 1 ≤ 𝑖, 𝑘 ≤ |𝑅𝑗| + 𝑑𝑗 (18)

where 𝐴(𝑅𝑖) and 𝑃(𝑅𝑖) are the area and power of chiplet 𝑅𝑖 ,

and 𝐴0 and 𝑃0 are the area and power thresholds of a chiplet.

 Equation (18) specifies that a tile can not connect to itself.

For passive interposers, where only adjacent chiplets can be

connected, we introduce additional constraints:

𝛼𝑖,𝑗,𝑚,𝑛 = 0 𝑜𝑟 1, ∀ |𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 ,

|𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , 𝑛 = 𝑗 + 1 𝑜𝑟 𝑗 + ⌈√𝑐⌉, 0 < 𝑗, 𝑛 ≤ 𝑐 (19)

𝛼𝑖,𝑗,𝑚,𝑛 = 0, ∀ |𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 ,

|𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , ∀𝑗%⌈√𝑐⌉ = 0, 𝑛 = 𝑗 + 1 (20)

Fig. 8. Illustration of (19) and (20).

As illustrated in Fig. 8, chiplet 𝑗 is restricted to establishing

connections only with the chiplets 𝑗 ± 1 and 𝑗 ± ⌈√𝑐⌉. In other

words, chiplet 𝑗 − 1 cannot establish a connection with chiplet

𝑗 + 1 (marked as ②). In a specific scenario, as shown in Fig. 8

(marked as ①), the edge chiplets are subject to a constraint

where they cannot connect with the chiplets whose numbers

are given by 𝑛 ∗ ⌈√𝑐⌉ (n=0, 1, …, ⌈√𝑐⌉). In simple terms, the

edge chipet labeled as 𝑛 ∗ ⌈√𝑐⌉ cannot connect with the chiplet

labeled as 𝑛 ∗ ⌈√𝑐⌉ + 1.

The area of a chiplet 𝑅𝑗 is computed as follows, where

𝐴(𝑢𝑖,𝑗) is the area model that returns the area of each router (𝑖

from 1 to |𝑅𝑗|) and 𝐴(𝑢𝑖,𝑗) returns the area of each D2D

interface (𝑖 from |𝑅𝑗| +1 to |𝑅𝑗| + 𝑑𝑗).

𝐴(𝑅𝑗) = ∑ 𝐴(𝑢𝑖,𝑗)

|𝑅𝑗|

𝑖=1

 + ∑ 𝐴(𝑢𝑖,𝑗)

|𝑅𝑗|+𝑑𝑗

𝑖=|𝑅𝑗|+1

 ∀ 0 < 𝑗 ≤ 𝑐 (21)

Similarly, the power of a chiplet 𝑅𝑗 is computed as

follows.

𝑃(𝑅𝑗) = ∑ 𝑃(𝑢𝑖,𝑗)

|𝑅𝑗|

𝑖=1

 + ∑ 𝑃(𝑢𝑖,𝑗)

|𝑅𝑗|+𝑑𝑗

𝑖=|𝑅𝑗|+1

, ∀ 0 < 𝑗 ≤ 𝑐 (22)

where 𝑃(𝑢𝑖,𝑗) is the power model that returns the power of

each router (𝑖 from 1 to |𝑅𝑗|) and 𝑃(𝑢𝑖,𝑗) returns the power of

each D2D interface (𝑖 from |𝑅𝑗| +1 to |𝑅𝑗| + 𝑑𝑗).

V. TOPOLOGY GENERATION ALGORITHM

To solve the above problem, a reinforcement learning based

algorithm is proposed in this section. The algorithm works on

a search tree iteratively, with the root node being a fully

connected topology as the initial solution, and each node

branches new child node through actions selected by the UCD

algorithm [51]. The algorithm disconnects the links iteratively

to achieve the maximum robustness under area and power

constraints.

A. Initial Solution

We use the state 𝒔 to represent the inter- and intra-chiplet

interconnection network topology, and the state in the

7

algorithm as an 𝑁 × 𝑁 adjacent matrix (that is, the inter- and

intra-chiplet network topology), where 𝑁 = ∑ (|𝑅𝑗| + 𝑑𝑗)𝑐
𝑗=1 ,

with ∑ 𝑑𝑗
𝑐
𝑗=1 being the number of D2D and ∑ |𝑅𝑗|𝑐

𝑖=1 being

the number of tiles in the multi-chiplet system. Fig. 9 (a)

shows the adjacency matrix of an inter- and intra-chiplet

interconnection network topology. One can see from Eqn. (1)

that APL is negatively correlated to γ, while AND, ACC, 𝑘𝑚𝑎𝑥,

and 𝑘𝑚𝑜𝑠𝑡 have positive correlation with γ. The APL value of

the fully connected network is the smallest, while AND, ACC,

𝑘𝑚𝑎𝑥, and 𝑘𝑚𝑜𝑠𝑡 are the largest. Therefore, the topology with

highest robustness without considering the area and power

constraints corresponds to a fully connected network. We set

the initial solution 𝒔𝟎 to be a matrix whose elements are all 1.

B. Reward Function in the Reinforcement Learning

An action in the reinforcement algorithm is a quadruple

(𝑥, 𝑦, 𝑚, 𝑛), which corresponds to deleting the link between

nodes 𝑢𝑥,𝑦 and 𝑢𝑚,𝑛. The reward for moving from state 𝒔𝟏 to

state 𝒔𝟐 is

𝑅(𝒔𝟏, 𝒔𝟐) = 𝛾(𝒔𝟐) − 𝛾(𝒔𝟏) + 𝑐1(𝐴(𝒔𝟏) − 𝐴(𝒔𝟐))

+ 𝑐2(𝑃(𝒔𝟏) − 𝑃(𝒔𝟐)) (23)

where 𝛾(𝒔𝒊) is the robustness of state 𝒔𝒊, 𝐴(𝒔𝒊) is the area of

state 𝒔𝒊, 𝑃(𝒔𝒊) is the power of state 𝒔𝒊. The coefficients 𝑐1 and

𝑐2 are used to bias the weights of robustness, area, and power

in optimization.

C. Strategy and Value Network

Since the inter- and intra-chiplet network is modeled as a

graph, in order to better converge along the search direction of

the UCD algorithm, this paper uses ResGCN model [53] as the

strategy and value network (denoted as the SV model).

Fig. 9 (c) shows the entire strategy and value network of the

topology generation method composed by multiple GCN and

ResGCN blocks, and Fig. 9 (b) shows the ResGCN module

where 𝐻 is the number of channels. The model fits both the

strategy and the value functions. The convolution layer is

followed by a batch normalization layer, and some

convolution layers (highlighted in Fig. 9 (c)) are followed by a

respective TopK pooling layer. The equation for each building

block of ResGCN is as follows:

𝓖𝑙+1 = ℱ(𝓖𝑙 , 𝓦𝑙) + 𝓖𝑙 (24)

where 𝓖𝑙 is the input of the l-th layer, 𝓦𝑙 is the learnable

parameter of the l-th layer, and ℱ(𝓖, 𝓦) is the residual

mapping. The final output strategy needs to be passed through

Rectified Linear Unit (ReLU) [54] and normalized exponential

function (softmax function) [55], where a 4 × 𝑁 matrix 𝑷 =
(𝑝𝑖,𝑗) output is obtained, with 𝑝1,𝛽 , 𝑝2,𝛿 , 𝑝3,𝜎 , 𝑝4,𝜏 being the

probabilities of 𝑥 = 𝛽, 𝑦 = 𝛿, 𝑚 = 𝜎, 𝑛 = 𝜏 respectively and

∑ 𝑝1,𝛽
𝑁
𝛽=1 = 1, ∑ 𝑝2,𝛿

𝑁
𝛿=1 = 1, ∑ 𝑝3,𝜎

𝑁
𝜎=1 = 1, ∑ 𝑝4,𝜏

𝑁
𝜏=1 = 1.

The SV model is defined as (𝑷, 𝑞) = 𝑔𝜽(𝒔), where 𝑷 is the

predicted action probabilities, 𝑞 is the predicted reward. The

training data is a triplet (𝒔, 𝝅, 𝑟), where 𝒔 is a state, 𝝅 is the

vector of action probabilities, and 𝑟 is state reward. The loss

function of the SV model is

𝑙 = (𝑟 − 𝑞)2 − 〈𝝅, log 𝑷〉 + 𝑏‖𝜃‖2 (25)

where 𝑏 is the regularization parameter, 〈𝝅, log 𝑷〉 are the

inner product of 𝝅 and log 𝑷. In this paper, the SV model uses

the Adam algorithm [52] for parameter optimization.

D. Reinforcement Learning Algorithm

Given a search tree 𝑇(𝑆, 𝐺), where 𝒔𝒊 ∈ 𝑆 is the search node,

𝒔𝒊 is a state (i.e., an inter- and intra-chiplet interconnection

network topology), and 𝑔𝑖,𝑗 = (𝒔𝒊, 𝒔𝒋) is the edge between 𝒔𝒊

and 𝒔𝒋, 𝑔𝑖,𝑗 is an action of deleting a link in the topology. The

UCD algorithm is used to search an action. 𝑛(𝑔𝑖,𝑗) and 𝜇(𝑔𝑖,𝑗)

are visit number and average reward value of edge 𝑔𝑖,𝑗 in the

search tree, respectively. The set of outgoing edges from the

destination node of edge 𝑔𝑖,𝑗 is denoted as 𝑂(𝒔𝒋), and the set

of outgoing edges from the source node of edge 𝑔𝑖,𝑗 is denoted

as 𝑂(𝒔𝒊). As Fig. 10 shows, during iteration 5, state 𝒔𝟎 selects

action 𝑎5 and results in state 𝒔𝟐 (in iteration 2, 𝒔𝟎 selects

action 𝑎2 and it also reaches 𝒔𝟐). At this point, the current

state is 𝒔𝟐 , the set 𝑂(𝒔𝟎) is {𝑔0,1, 𝑔0,2, 𝑔0,4} and set 𝑂(𝒔𝟐) is

{𝑔2,3}. The visit number and average reward value of edge 𝑔𝑖,𝑗

when 𝑂(𝒔𝒋) = ∅ are denoted as 𝑛′(𝑔𝑖,𝑗) and 𝜇′(𝑔𝑖,𝑗) ,

respectively, and 𝑑 is the depth of backtracking. According to

[51], in each iteration, the visit number (𝑛𝑑(𝑔𝑖,𝑗)), average

reward (𝜇𝑑(𝑔𝑖,𝑗)), and parent node's visit number (𝑝𝑑(𝑔𝑖,𝑗)) of

edge 𝑔𝑖,𝑗 are updated as follows:

𝑛𝑑(𝑔𝑖,𝑗) = {

𝑛(𝑔𝑖,𝑗), 𝑑 = 0

∑ 𝑛𝑑−1(𝑓)

𝑓∈𝑂(𝒔𝒋)

, 𝑑 > 0 (26)

𝜇𝑑(𝑔𝑖,𝑗) = {

𝜇(𝑒), 𝑑 = 0

𝜇′(𝑔𝑖,𝑗)𝑛′(𝑔𝑖,𝑗) + ∑ 𝜇𝑑−1(𝑓)𝑛(𝑓)𝑓∈𝑂(𝒔𝒋)

𝑛′(𝑔𝑖,𝑗) + ∑ 𝑛(𝑓)𝑓∈𝑂(𝒔𝒋)

, 𝑑 > 0
 (27)

𝑝𝑑(𝑔𝑖,𝑗) = ∑ 𝑛𝑑(𝑓)

𝑓∈𝑂(𝒔𝒊)

 (28)

3×3 ResGCN,16

N×N GCN,16

3×3 ResGCN,32

3×3 GCN,32

3×3 ResGCN,64

3×3 GCN,64

(b) ResGCN module

(a) state encoding of the inter-

and intra-chiplet network

(c) strategy and value network

TopK pooling

TopK pooling

N×N ResGCN,H

N×N GCN,H

N×N GCN,H

3×3 GCN,2 3×3 GCN,2

FC FC

P q

0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

0 0

0 0

0 1

1 1

0 0 0 1

0 0 1 1

0 1

1 0

u1,1u2,1u3,1u1,2u2,2 u3,2

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

0 0.2 0 ...

0.1 0 0.3 ...

0 0.1 0 ...

0 0 0 ...

u1,1 u2,1 u3,1 u|Rc|+dc,c

1

2

3

4

... 0.1

... 0

... 0

... 0.2

1 2 3 N

x

y

m

n

Fig. 9. The strategy and value network.

8

s0

s1

g0,1
a1

Iteration 1 Iteration 2 Iteration 3

Iteration 4

s0

s1

g0,1

s2 s4

g0,2 g0,4

s3

g2,3 O(s2)={g2,3}

O(s0)={g0,1, g0,2, g0,4}

a1 a2

a3

a4
a5

Iteration 5

s0

s1

g0,1

s2 s4

g0,2 g0,4

s3

g2,3

a1 a2

a3

a4

s0

s1

g0,1

s2

g0,2

s3

g2,3

a1 a2

a3

s0

s1

g0,1

s2

g0,2 a1 a2

Fig. 10. An example of the search tree.

According to the UCD algorithm [51], the upper confidence

bound of edge 𝑔𝑖,𝑗 (𝑢𝑑1,𝑑2,𝑑3
(𝑔𝑖,𝑗 , 𝜌)) is as follows:

𝑢𝑑1,𝑑2,𝑑3
(𝑔𝑖,𝑗 , 𝜌) = 𝜇𝑑1

(𝑔𝑖,𝑗) + 𝜃𝜌√
log 𝑝𝑑2

(𝑔𝑖,𝑗)

𝑛𝑑3
(𝑔𝑖,𝑗)

 (29)

where 𝜃 is a constant, 𝑑1, 𝑑2, 𝑑3 are 1, 2, 3, which are tracing

depths of 1, 2, 3, respectively. A larger 𝜃 makes the algorithm

more inclined to explore new branches. 𝜌 is the probability of

selecting the action corresponding to edge 𝑔𝑖,𝑗 given by the

SV model. It can be seen that the selected action in state 𝒔 is:

𝑎∗ = argmax
𝑎

 𝑢𝑑1,𝑑2,𝑑3
(𝑔(𝒔, 𝑎), 𝑴(𝒔) ∗ 𝑷(𝒔, 𝑎)) (30)

where 𝑔(𝒔, 𝑎) is the edge corresponding to selecting action 𝑎

in state 𝒔, 𝑷(𝒔, 𝑎) is the probability of selecting action 𝑎 in

state 𝒔 given by the SV model, and 𝑴(𝒔) is the adjacency

matrix of state 𝒔.

In summary, the topology generation algorithm includes the

following steps in each iteration:

1) Selection: Starting from the root node, actions are

selected by using (30) until the current node is a leaf node.

Node generation must be passed through a node hash table to

avoid multiple nodes with the same state being created. It is

performed as follows: the initial state is set to 𝒔𝟎 and nodes are

stored in the hash table (ℎ𝑎𝑠ℎ_𝑡𝑎𝑏𝑙𝑒(𝒔)). The current state is

set to 𝒔 = 𝒔𝟎. If the current node is not a leaf node, the SV

model is used to calculate the probability distribution of

actions 𝑷(𝒔, 𝑎) and reward 𝑞(𝒔), and an action is selected by

using (30) to generate a new node.

2) Expansion and evaluation: If the current state 𝒔 is a

terminal state, the cumulative reward 𝑅(𝒔) is obtained by

calculating the path reward from the root node to the current

node using the reward function; otherwise, for the current

node 𝒔, children nodes corresponding to all feasible actions

are created and the selection probability 𝑷(𝒔, 𝑎) of each action

and the reward 𝑞(𝒔) of the state 𝒔 are predicted by using the

SV model. The SV model is being trained on the results of

search iterations.

3) Backtracking: Edges related to the selected nodes are

updated. The set of nodes on the traversal path is denoted as 𝐷,

and the ancestors of node 𝒔𝒊 within distance 𝑑 is defined as

𝚷𝒅(𝒔𝒋) = {
{𝒔𝒊}, 𝑑 = 0

{𝒔𝒊|𝑔𝑖,𝑗 ∈ 𝑂(𝒔𝒋)} ∪ 𝚷𝒅−𝟏(𝒔𝒊), 𝑑 > 0
(31)

For edge 𝑔𝑖,𝑗 ∈ {𝑔ℎ,𝑤|ℎ, 𝑤 ∈ D ∪ 𝚷𝟏(𝒔)} , visit number

𝑛(𝑔𝑖,𝑗) is updated to be 𝑛(𝑔𝑖,𝑗) + 1 . For edge 𝑔𝑖,𝑗 ∈

{𝑔ℎ,𝑤|ℎ, 𝑤 ∈ D ∪ 𝚷𝟐(𝒔), average award 𝜇(𝑔𝑖,𝑗) is updated to

be 𝜇(𝑔𝑖,𝑗) + Δ𝜇(𝑔𝑖,𝑗). For the incoming edges of the current

node 𝒔 , Δ𝜇(𝑔𝑖,𝑗) = 𝑞(𝑠) ; for other edges, Δ𝜇(𝑔𝑖,𝑗) =
∑ Δ𝜇(𝑓)𝑛(𝑓)

𝑓∈𝑂(𝑔𝑖,𝑗)

𝑛′(𝑔𝑖,𝑗)+∑ 𝑛(𝑓)
𝑓∈𝑂(𝑔𝑖,𝑗)

.

4) The above steps are repeated until the iteration upper

bound is reached, and the leaf node with the highest reward is

output.

VI.A EXPERIMENTAL SETUP

Our experiments were performed using the cycle-accurate

multi-chiplet simulator [38] which can simulate both x86 and

GPU multi-chiplet systems. The inter- and intra-chiplet

network simulators can also run individually without cores

with random traffic injection as input (i.e., network only

mode). In the GPU multi-chiplet system, each network node is

a graphics processing cluster (GPC), each of which has

multiple texture processing clusters (TPCs) containing

multiple streaming multiprocessors (SMs) and L1 caches.

Additionally, there is both a private and shared TLB hierarchy

assisted by a hardware page table walker (PTW). In the x86

multi-chiplet system, multiple x86 many-core chiplets are

connected by the inter-chiplet network. Table II lists the

configurations of the multi-chiplet system simulators.

Our benchmark suit has both random traffics and real

applications. The random traffics are generated following the

parameters specified in Table II by running the simulation

with the network only mode. Additionally, there are two types

of real benchmarks. The first set of real benchmarks are

PARSEC and SPLASH-2 running on the x86 multi-chiplet

system simulator with the configurations summarized in Table

II. The second real benchmarks run on the multi-chiplet

systems, including ResNet [29], Transformer [30], GCN [31]

and CNN [32] for the GPU multi-chiplet system. The datasets

of ResNet and CNN are CIFAR-10 [33] and MNIST [34],

respectively. The dataset of GCN and Transformer both are

VOC [35]. The benchmarks of neural network adopt the

model parallelization approach as follows [36]. Each chiplet is

responsible for computing tasks at one or more layers of the

model. In the chiplet, the matrix multiplication of the data sets

of the neural network is decomposed into multiple vectors

multiplied by the matrix and assigned to different cores [37].

Both the baseline inter- and intra-chiplet topologies are mesh.

The network sizes are 4×9, 4×16, and 4×36, where the first

term is the chiplet count and the second term is the tile count

per chiplet.

The transmission latency is divided among three

components: 1) packetization and depacketization times (the

values are obtained from [61, 62]); 2) transceiver latency (the

9

values are obtained from [56, 57]); 3) interposer wire latency

(values from [40]).

The base area and power parameters used in this study

come from reliable sources and are validated by simulations.

Processor element areas within each chiplet are obtained from

[43] and McPAT [60] for GPU and CPU based multi-chiplets,

respectively. The power consumption of GPU and CPU multi-

chiplet systems is simulated using GPUWattch and McPAT,

respectively. For routers and SRAM components, their area

and power requirements are calculated using DSENT [46] and

CACTI 6.0 [47] simulators, respectively. The network

interface (NI) parameters, including area, power, and latency,

are taken from [44]. Additionally, the area and

TABLE II. PARAMETERS OF THE EXPERIMENTAL PLATFORMS

GPU chiplets

Processor cores/clusters 15

Warp size 32

Shared memory/processor cores 48KB

Texure cache size 8KB

Constant cache size 12KB

L1 data cache 16KB

L1 instruction cache 2KB

Memory per chiplet

Bandwidth/memory module 8 Bytes / cycle

DRAM request queue capacity 32

Memory controller Out of order (FR-FCFS)

x86 chiplets

Core frequency 3GHz

Main memory size 2GB

Get/Decode/Submit Size 4/4/4

ROB size 64

L1 D cache (private) 16 KB

L1 I cache (private) 32 KB

L 2 cache (shared) 64 KB

Inter- and intra-chiplet network

Flit size 256 bits

Packet size 5

Network size 4×9, 4×16, and 4×36

Number of virtual channels 1/2/4

Input buffer size 2/4/8

Routing algorithm XY-XY (Mesh-Mesh), XY-Torus

XY(Mesh-Torus), routing

table(other topologies)

Random traffic pattern uniform, shuffle, bit traversal

Packet injection rate 0.02-0.12 packet/cycle/router

Intra-chiplet latency router: 2 cycles, link: 1 cycle

Active interposer latency Interposer link latency model [40],

PHY latency model [41], router: 2

cycles

Passive interposer latency Interposer link latency model [40],

PHY latency model [41]

Benchmarks

Neural networks (for GPU) ResNet, GCN, Transformer, and

CNN

Data sets CIFAR-10, MNIST, VOC

PARSEC and SPLASH-2 (for

x86)

vips, barnes, blackscholes, canneal,

dedup, ferret, raytrace,

fluidanimate, streamcluster,

freqmine

power consumption of the D2D (Die-to-Die) interface are

based on [56]. The wire model in interposer is taken from [40].

Collectively, these sources establish a consistent experimental

foundation and ensure accurate modeling.

The proposed method is evaluated against previously

proposed inter- and intra-chiplet interconnection networks,

including Kite [6] and ButterDonut [5], where the number of

chiplets is 4 and the number of cores per chiplet is 16.

Additionally, the proposed method is compared against:

1) On-chip network topology generation which uses genetic

algorithm (GA) and Tabu. These algorithms are modified to

consider a uniform partitioning of tiles into m chiplets, with

specific two D2D interface configurations.

2) Inter- and intra-chiplet interconnection networks based

on well-known NoC topologies, which are categorized as

Mesh-Mesh (both the inter- and intra-chiplet topologies are

mesh), and Mesh-Torus (the inter-chiplet topology is mesh

and the intra-chiplet topology is torus), and Mesh-Butterfly

(the inter-chiplet topology is mesh and the intra-chiplet

topology is generated by [48]).

VI.B EXPERIMENTAL RESULTS

A. Measuring the Error of the Proposed Robustness Model

The γ model defined in Eqn. (1) has been evaluated for

accuracy. The robustness values computed by Eqn. (1) in the

model γ𝑝 is compared against that obtained through

simulation γ𝑎. The regression error is defined as follows:

𝑒 = |
 γ𝑝 − γ𝑎

 γ𝑎

| × 100%

Fig. 11 shows the error of the γ model. One can see that the

average error is 8.15%, which indicates that the accuracy of

the γ model exhibits a fairly high degree of accuracy in

predicting robustness values. The proposed γ model is also

compared against other regression models, including the

models based on power, exponential, and linear functions. As

shown in Table III, the proposed γ model yields the lowest

average among all tested models, while the others have an

error rate exceeding 10%.

0
2
4
6
8

10

Er
ro

r
(%

)

fault attack

Fig. 11. Error of the proposed robustness model in Eqn. (1).

TABLE III. THE ERRORS OF DIFFERENT REGRESSION MODELS

Model Form Error

Power 𝑓(𝑥) = 𝑎ϒ𝑏 25.7%

Proposed 𝑓(𝑥) = 𝑎ϒ + 𝑏 5.3%

Exponential 𝑓(𝑥) = 𝑎(exp(𝑏ϒ)) 12.8%

Linear fitting f(x)=a(sin(ϒ-pi))+b(ϒ-10)2+c 11.3%

10

B. Performance Evaluation with Random Benchmarks

The proposed method has been applied to the random

traffics with packet injection rates ranging from 0.02-0.2

packet per cycle per router, and the results are shown in Fig.

12.

0

10

20

30

40

R
o

b
u

st
n

es
s

(%
)

fault attack

(a)

0

10

20

30

40

R
o

b
u

st
n

es
s

(%
)

fault attack

(b)

0

50

100

2 3 4 5 6 7 8

N
o

d
es

 n
u

m
b

er

p
er

ce
n

ta
ge

(%
)

degree
Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(c)

0

0.5

1

1.5

2 3 4 5 6 7 8

N
o

d
es

 n
u

m
b

er

p
er

ce
n

ta
ge

(%
)

degree
ButterDonut Proposed

(d)

0

0.5

1

1.5

2 3 4 5 6 7 8

N
o

d
e

s
n

u
m

b
e

r
p

e
rc

e
n

ta
ge

(%
)

degree
Proposed Kite (e)

0.6

0.8

1

1.2

1.4

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.02

N
o

rm
al

iz
ed

 la
te

n
cy

packect injection rate(packect/cycle/router)
Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut

Kite GA Tabu Proposed

(f)

0.6

0.8

1

1.2

1.4

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.02N
o

rm
al

iz
ed

 la
te

n
cy

packect injection rate(packect/cycle/router)
Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(g)

Fig. 12. (a) Robustness with active interposer. (b) Robustness with passive
interposer and random traffics, where the packect injection rate is

0.002-0.02 packet/cycle/router. (c) The node distributions of different

topologies. (d) The cumulative distributions of ButterDonut and the
proposed method. (e) The cumulative distributions of Kite and the

proposed method. (f) Normalized communication latencies with active

interposer and (g) passive interposer.

tile

D2D

Fig. 13. The generated topology with a total tile count of 36.

Here, we examine the case with a total of 64 tiles. The

robustness, area, power and communication latency of other

networks are normalized to those of our proposed method.

One can see from Fig. 12 (a) that the proposed method

increases the robustness by 15.76%, 10.88%, 17.13%, 10.88%,

14.06%, 4.65%, 12.5% and 12.5%, 7.81%, 9.37%, 9.37%,

7.81%, 6.24%, 9.37% over Mesh-Mesh, Mesh-Torus, Mesh-

Butterfly, ButterDonut, Kite, GA, Tabu under random faults

and targeted attacks with active interposer, respectively.

Similar improvements in robustness are observed under

random faults and target attacks with a passive interposer, as

shown Fig. 12 (b). Specifically, the proposed method increases

the robustness by 14.26%, 9.38%, 15.62%, 9.38%, 12.5%,

6.13%, 12.94% and 10.95%, 6.25%, 9.38%, 7.82%, 7.82%,

6.25%, 7.82%. The proposed topology's more uniform

distribution of node degrees is identified as a key factor

contributing to its enhanced robustness, as shown in Fig. 12

(c). In particular, 80% of nodes have a degree of 4, while 20%

have a degree of 6, which allows the network to withstand

failures more effectively. Note that having too many nodes

with high degree raises area and power consumption, while

having too many nodes with low degree reduces robustness. A

degree of 4 is thus a balanced choice, offering a good trade-off

between robustness and area. Consequently, most nodes in the

network converge to a degree of 4. Although the Kite and

ButterDonut topologies can reach a maximum degree of 8,

only 14.2% of their nodes do so—fewer than in the proposed

topology, where 20% of nodes reach a degree of 6. As shown

in Figures 12(d) and 12(e), the proposed topology reaches a

cumulative distribution probability of 1 at degree 6, whereas

Kite and ButterDonut both do so at degree 8. Once nodes with

the highest degree become targets of an attack, overall

network performance declines significantly.

From Fig. 12 (f) and (g), one can see that with the increase

of injection rate, the network latency increases gradually.

However, the proposed method always has the minimal

latency, i.e., it reduces the communication latency by 30.8%,

12.4%, 14.3%, 11.7%, 14.75%, 13.95%, 10.3% and 33.3%,

13.7%, 16%, 13.9%, 15.9%, 14.6%, 11.2% over Mesh-Mesh,

Mesh-Torus, Mesh-Butterfly, ButterDonut, Kite, GA, Tabu

with active and passive interposers, respectively.

11

The generated topology with a total tile count of 36 is

shown in Fig. 13. This topology can be implemented using

existing chiplet integration technologies.

C. Sensitivity Analysis

The proposed method consistently improves network

robustness when compared to ButterDonut, Kite, GA, and

Tabu under various total tile counts (36, 64, and 144) under

random faults and targeted attacks, as depicted in Fig. 14. In

Fig. 14 (a), under random faults, the proposed method

increases the robustness by 8.33%, 11.1%, 5.55%, 8.33% over

ButterDonut, Kite, GA, Tabu with a total tile count of 36. It

also increases the robustness by 10.94%, 14.06%, 4.69%,

12.5% over ButterDonut, Kite, GA, Tabu with a total tile

count of 64, and 9.89%, 8.90%, 7.68%, 10.98% with a total

tile count of 144. Moving on to Fig. 14 (b), under targeted

attacks, one can see that the proposed method increases

robustness by 7%, 5.2%, 5.6%, 8.2% and 9.37%, 7.81%,

6.24%, 9.37% and 7.13%, 8.69%, 8.69%, 7.15% over

ButterDonut, Kite, GA, Tabu with total tile counts of 36, 64,

and 144, respectively. It is worth noting that the network

robustness under targeted attacks is significantly lower than

that under random faults.

Targeted attacks specially disable nodes with the highest

degree, leading to a fast network disconnection.

As shown in Fig. 14 (c), the proposed method reduces

latency by 2.41%, 6.29%, 4.52%, 6% and 17.25%, 10.88%,

6.48%, 8% and 15.78%, 11.06%, 8.99%, 7% over

ButterDonut, Kite, GA, Tabu with total tile counts of 36, 64,

and 144, respectively. This indicates that the network

performance improvement due to the proposed method

becomes more pronounced with larger node sizes.

Evaluation results regarding the impact of VC (virtual

channel) number and buffer size on network latency are shown

in Fig. 14 (d) and (e). In this assessment, we consider cases

with VC numbers of 4, 6, and 8 and buffer sizes of 2, 4, 8. The

proposed method decreases latency by 13.76%, 18.14%,

9.86%, and 16% over ButterDonut, Kite, GA, Tabu with VC

numbers of 4, 6 and 8. It also decreases latency by 14.97%,

14.61 %, 14.61% and 19.66%, 18.99%, 18.99% over

ButterDonut and Kite with buffer sizes of 2, 4 and 8,

respectively. The results suggest that the number of virtual

channels and buffer size have minimal impact on network

latency.

Finally, Fig. 14(f) presents experimental results on how the

number of D2D interfaces affects network robustness. Three

configurations are evaluated, with D2D counts of 1, 2, and 4.

As shown in Fig. 14(f), increasing the number of D2D

interfaces bolsters network robustness. For a network with 36

tiles, the proposed method’s robustness exceeds the

configurations with 1 and 2 D2D interfaces by 16.12% and

9.3%, respectively. In a 64-tile network, those increases stand

at 18.15% and 9.66%, respectively, and in a 144-tile network,

they reach 23.15% and 12.25%. Notably, as the network size

grows, the robustness benefits become more substantial. This

indicates that additional D2D interfaces provide more

alternative paths and enhanced connectivity, both of which are

essential for preserving performance and fault tolerance in

larger topologies.

0

10

20

30

40

36 64 144

R
o

b
u

st
n

es
s

(%
)

Network size
ButterDonut Kite
GA Tabu
Proposed

 (a)

0

10

20

30

36 64 144

R
o

b
u

st
n

e
ss

 (
%

)

Network size
ButterDonut Kite
GA Tabu
Proposed

(b)

0.6

0.8

1

1.2

36 64 144

N
o

rm
al

iz
ed

 la
te

n
cy

Network size
ButterDonut Kite
GA Tabu
Proposed

 (c)

0.6

0.8

1

1.2

4 6 8

N
o

rm
al

iz
e

d
 la

te
n

cy

VC number
ButterDonut Kite
GA Tabu
Proposed

 (d)

(e)

0.6

0.8

1

1.2

1.4

36 64 144
Network size

D2D number 1 2 4

R
o

b
u

st
n

e
ss

(%
)

 (f)

Fig. 14. (a) Robustness under random faults; (b) robustness under targeted

attacks; (c) communication latencies with different node sizes; (d)

communication latencies with different VC numbers; (e)
communication latencies with different buffer sizes; (f) robustness

with different D2D number and network sizes.

D. Performance Evaluation Using PARSEC and SPLASH2

Benchmarks

Performance of the proposed method using PARSEC and

SPLASH2 benchmarks are assessed, and the results are shown

in Fig. 15. In this evaluation, we exclusively focus on the

execution and communication latency of the network, since

the robustness, area, and power consumption of each network

are primarily influenced by the topology structures, rather than

the benchmarks themselves. Fig. 15 (a) and (b) demonstrate

that the proposed method consistently reduces the execution

time, achieving improvements of 12.4%, 11.9%, 10.81%,

10.46%, 9.8%, 9.5%, 9.79% and 11.51%, 10.67%, 9.61%,

8.96%, 8.52%, 8.05%, 8.99% over Mesh-Mesh, Mesh-Torus,

Mesh-Butterfly, ButterDonut, Kite, GA, Tabu, considering

both active and passive interposers, respectively. Moving on

to Fig. 15 (c) and (d), one can see that the proposed method

also reduces communication latency effectively, achieving

reductions of by 25.3%, 11.1%, 9.86%, 8.34%, 13%, 9.9%,

9% and 23.9%, 10.7%, 9.35%, 7.54%, 12.75%, 9.5%, 8.5%

over Mesh-Mesh, Mesh-Torus, Mesh- Butterfly, ButterDonut,

Kite, GA, Tabu, considering both active and passive

interposers, respectively. These results underscore the efficacy

of our approach in enhancing network performance across a

range of benchmarks and network configurations.

12

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 t
im

e

Mesh-Mesh Mesh-Torus Mesh-Butterfly Butterdonut
Kite GA Tabu Proposed

(a)

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 t
im

e

Mesh-Mesh Mesh-Torus Mesh-Butterfly Butterdonut

Kite GA Tabu Proposed

(b)

0.8

0.9

1

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 la
te

n
cy

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(c)

0.8

0.9

1

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 la
te

n
cy

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut

Kite GA Tabu Proposed
(d)

Fig. 15. (a) Application execution times with active interposer and (b)

passive interposer. (c) Communication latencies with active interposer

and (d) passive interposer running PARSEC and SPLASH2

benchmarks.

E. Performance Evaluation with Neural Network Applications

We evaluate different networks with different neural

network benchmarks in Fig. 16. In Fig. 16 (a) and (b), it is

evident that the proposed method reduces the execution time,

achieving improvements of 21.59%, 15.7%, 12.65%, 8.37%,

6.94%, 8.21%, 8.43% and 19.59%, 12.95%, 9.65%, 7.62%,

4.94%, 7.91%, 8.41% over Mesh-Mesh, Mesh-Torus, Mesh-

Butterfly, ButterDonut, Kite, GA, Tabu with active and

passive interposers, respectively. Moving on to Fig. 16 (c) and

(d), one can see that the proposed method also leads to a

notable reduction in communication latency, with

improvements of 23.79%, 17.5%, 14.64%, 10.87%, 9.19%,

9.66%, 9.53 % and 21.84%, 16.9%, 13.64%, 9.62%, 7.94%,

8.91%, 9.16% over Mesh-Mesh, Mesh-Torus, Mesh-Butterfly,

ButterDonut, Kite, GA, Tabu, considering both active and

passive interposers, respectively.

F. Performance Evaluation on FPGA-Based Multicore System

We evaluated the proposed method on a multicore system

on Xilinx vu3p FPGA. The multicore system uses PULPino

[42] as the processor cores, and OpenPiton [48] as the uncore

(NoC and NoI, memory, etc.). The configurations of PULPino

and OpenPiton follow the default configurations from [49] and

0.6

0.8

1

1.2

ResNet CNN GCN Transformer

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(a)

0

0.2

0.4

0.6

0.8

1

1.2

ResNet CNN GCN Transformer

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(b)

0.6

0.8

1

1.2

ResNet CNN GCN Transformer

N
o

rm
al

iz
ed

 la
te

n
cy

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut

Kite GA Tabu Proposed
(c)

0.6

0.8

1

1.2

ResNet CNN GCN Transformer

N
o

rm
al

iz
e

d
 la

te
n

cy

Mesh-Mesh Mesh-Torus Mesh-Butterfly ButterDonut
Kite GA Tabu Proposed

(d)

Fig. 16. (a) Application execution times with active interposer and (b)

passive interposer. (c) Communication latencies with active interposer

and (d) passive interposer running different neural network

applications.

13

Fig. 17. (a) Robustness and (b) communication latencies with different

percentages of faulty nodes. (c) Resources utilization of the networks.

(a)

(b)

Fig. 18. (a) Normalized areas and (b) powers with different network sizes.

[50], respectively. The configuration of the inter- and intra-

chiplet network is the same as in Table II. The robustness and

latency of the proposed method with the different proportions

of faulty nodes are shown in Fig. 17. From Fig. 17 (a) and (b),

one can see that the proposed method increases the robustness

by 15.82%, 10.8% and reduces the communication latency by

29.3%, 11.5% over Mesh-Mesh, Mesh-Torus, respectively.

From Fig. 17 (c), one can see that resource utilization of the

proposed method is slightly higher than Mesh-Mesh, Mesh-

Torus, however, the resource usage is still within the threshold

(the maximum resource of the FPGA).

G. Area and Power Evaluation

Area and power of the proposed method are compared and

shown in Fig. 18. Fig. 18 (a) and (b) demonstrate that the

proposed method has similar area and power consumption

compared to other topologies.

VII. CONCLUSION

Inter- and intra-chiplet interconnection networks serve as

the backbone of multi-chiplet systems, providing the essential

framework to enable efficient communication, scalability,

fault tolerance, and performance optimization. In this paper,

robustness of inter- and intra-chiplet interconnection networks

was modelled and characterized by various network

parameters, including the average clustering coefficient

(ACC), average shortest path length (APL), average neighbor

degree (AND), the most frequent degree value of

topology (𝑘𝑚𝑜𝑠𝑡), and the highest degree value of topology

(𝑘𝑚𝑎𝑥) . An optimization problem was subsequently

formulated, aimed at generating network topologies that

maximize robustness while adhering to the power and area

constraints. To tackle this problem, an efficient reinforcement

learning algorithm was proposed. Experimental results

demonstrated that our proposed method significantly enhances

network robustness. Under random faults, our approach

achieved improvements of 15.76% over Mesh-Mesh, 10.88%

over Mesh-Torus, 17.13% over Mesh-Butterfly, 10.88% over

ButterDonut, 14.06% in Kite, 4.65% over GA, and 12.5% over

Tabu.. These outcomes underscore the suitability of our

approach for generating resilient large scale inter- and intra-

chiplet networks, which are essential for the development and

deployment of multi-chiplet based many-core systems.

REFERENCES

[1] S. Shamshiri, A. Ghofrani and K.-T. Cheng, "End-to-end error correction and

online diagnosis for on-chip networks," in ITC, 2011, pp. 1-10.

[2] N. Vashistha, M. M. Al Hasan, N. Asadizanjani, F. Rahman and M. Tehranipoor,

“Trust validation of chiplets using a physical inspection-based certification

authority,” in ECTC, 2022, pp. 2311-2320.

[3] V. Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware Trojan attacks

in NoC-based manycore computing,” in DAC, 2019, pp. 1-6.

[4] J. Harttung, E. Franz, S. Moriam, and P. Walther, “Lightweight authenticated

encryption for network-on-chip communications,” in GLVLSI, 2019, pp. 33-38.

[5] A. Kannan, N. D. Enright Jerger, G. H. Loh, “Enabling interposer-based

disintegration of multi-core processors,” in MICRO, 2015, pp. 546-558.

[6] S. Bharadwaj, J. Yin, B. M. Beckmann, T. Krishna, “Kite: A family of

heterogeneous interposer topologies enabled via accurate interconnect modeling,”

in DAC, 2020, pp. 1-6.

[7] W. J. Dally, B. Towles, “Route packets, not wires: on-chip interconnection

networks,” in DAC, 2001, pp. 684-689.

[8] W. J. Dally, C. L. Seitz, “The torus routing chip,” in Distributed Computing, 1986,

pp. 187-196.

[9] N. Enright Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC architectures for silicon

interposer systems,” in MICRO, 2014, pp. 458-470.

[10] K. S. -M. Li, S. -Y. Chen, L. -B. Chen and R. -T. Gu, “A fast custom network

topology generation with floorplanning for NoC-based systems,” in IEEE IC

Design & Tech. Conf., 2011, pp. 1-4.

[11] K. Srinivasan, K. S. Chatha, G. Konjevod, “Linear-programming-based techniques

for synthesis of network-on-chip architectures,” in VLSI Systems, 2006, pp. 407-

420.

[12] N. Venkataraman and R. Kumar, “Design and analysis of application specific

network on chip for reliable custom topology,” in Computer Networks, vol. 158,

pp. 69-76, 2019.

[13] C. Neeb and N. When, “Designing efficient irregular networks for heterogeneous

systems-on-chip,” in J. Syst. Archit., vol. 54, no. 3-4, 2008, pp. 384-396.

[14] P. Yang, Q. Wang, W. Li, Z. Yu and H. Ye, “A fault tolerance NoC topology and

adaptive routing algorithm,” in ICESS, 2016, pp. 42-47.

[15] M. Hosseinabady, M. R. Kakoee, J. Mathew and D. K. Pradhan, “Reliable

network-on-chip based on generalized de Bruijn graph,” in HLDVT, 2007, pp. 3-

10.

[16] M. Wang, Y. Wang, C. Liu and L. Zhang, “Network-on-interposer design for agile

neural-network processor chip customization,” in DAC, 2021, pp. 49-54.

[17] F. Li, Y. Wang, Y. Cheng, Y. Wang, Y. Han, H. Li, and X. Li, "GIA: A reusable

general interposer architecture for agile chiplet integration.” in ICCAD, 2022, pp.

1–9.

[18] H. Sharma, S. K. Mandal, J. R. Doppa, U. Y. Ogras and P. P. Pande, "SWAP: A

server-scale communication-aware chiplet-based manycore PIM accelerator," in

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41, no. 11, 2022, pp.

4145-4156.

[19] H. Sharma, L. Pfromm, R. O. Topaloglu, J. R. Doppa, U. Y. O. A. Kalyanraman,

and P. P. Pande, “Florets for chiplets: Data flow-aware high-performance and

energy-efficient network-on-interposer for CNN inference tasks,” in ACM Trans.

Embed. Comput. Syst. vol.22, no. 132, 2023.

[20] J. Yin, et al., “Modular routing design for chiplet-based systems,” in ISCA, 2018,

pp. 726-738.

[21] E. Taheri, S. Pasricha and M. Nikdast, “DeFT: A deadlock-free and fault-tolerant

routing algorithm for 2.5d chiplet networks,” in DATE, 2022, pp. 1047-1052.

[22] P. Majumder, S. Kim, J. Huang, K. H. Yum and E. J. Kim, “Remote control: A

simple deadlock avoidance scheme for modular systems-on-chip,” in IEEE Tran.

Computers, vol. 70, no. 11, 2021, pp. 1928-1941.

[23] M. Sinha, S. Gupta, S. S. Rout, and S. De., “Sniffer: A machine learning approach

for DoS attack localization in NoC-based SoCs,” in IEEE J. Emerg. Sel. Topics

Circuits Syst., vol. 11, no. 2, 2021, pp. 278-291.

[24] L. Zhang, X. Wang, Y. Jiang, M. Yang, T. Mak, and A. K. Singh, “Effectiveness

of HT-assisted sinkhole and blackhole denial of service attacks targeting mesh

networks-on-chip,” in J. Syst. Archit., vol. 89, 2018, pp. 84-94.

[25] V. Janfaza and E. Baharlouei, “A new fault-tolerant deadlock-free fully adaptive

routing in NOC,” in EWDTS, 2017, pp. 1-6.

[26] A.-László Barabási, “Network science,” Cambridge University Press. 2016.

(a) (b) (c)

14

[27] J. Friedman, T. Hastie, R. Tibshirani, “The elements of statistical learning,”

Springer, 2001.

[28] B. S. Manoj, A. Chakraborty, R. Singh, “Complex networks: a networking and

signal processing perspective,” O’Reilly, 2019.

[29] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,”

in CVPR, 2016, pp. 770- 778.

[30] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in NIPS,

2017.

[31] T. N. Kipf, M. Welling, “Semi-supervised classification with graph convolutional

networks,” in ICLR, 2017.

[32] Simple CNN, Available: https://github.com/can1357/simple_cnn, 2017.

[33] CIFAR-10, Available: https://tensorflow.google.cn/datasets/catalog/cifar10.

[34] MNIST, Available: http://yann.lecun.com/exdb/mnist/.

[35] VOC, Available: http://host.robots.ox.ac.uk/pascal/VOC/.

[36] M. Wang, et al. “Network-on-interposer design for agile neural- network processor

chip customization,” in DAC, 2021.

[37] A. A. Huqqani, et al. “Multicore and GPU parallelization of neural networks for

face recognition,” in ICCS, 2013.

[38] H. Zhi, X. Xu, W. Han, Z. Gao, et al, “A methodology for simulating multi-chiplet

systems using open-source simulators,” in NANOCOM, 2021, pp. 1-6.

[39] M. Khairy, et al. “Accel-aim: An extensible simulation framework for validated

GPU modeling,” in ISCA, 2020.

[40] M. A. Kabir and Y. Peng, “Chiplet-package co-design for 2.5D systems using

standard ASIC cad tools,” in ASP-DAC, 2020, pp. 351-356.

[41] D. D. Sharma, et al. “Universal chiplet interconnect express (UCIe)TM: building an

open chiplet ecosystem,” in IEEE Trans. Compon. Packag. Manuf. Technol., vol.

12, no. 9, 2022, pp. 1423-1431.

[42] A. Traber, F. Zaruba, S. Stucki, et al., “PULPino: a small single-core RISC-V SoC,”

3rd RISCV Workshop.

[43] Volta V100 White Paper, Available: http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.

[44] M. Schoeberl M, Pezzarossa L, Spars J, “A minimal network interface for a simple

network-on-chip,” in ARCS, 2019, pp. 295-307.

[45] P. Vivet et al. “2.3 A 220GOPS 96-core processor with 6 chiplets 3D-stacked on

an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2 inter-chiplet

interconnects and 156mW/mm2@ 82%-peak-efficiency DC-DC converters,” in

ISSCC, 2020.

[46] C. Sun et al., “DSENT - a tool connecting emerging photonics with electronics for

opto-electronic networks-on-chip modeling,” in NoCS, 2012, pp. 201-210.

[47] N. Muralimanohar, R. Balasubramonian, N. P. Jouppi, “CACTI 6.0: a tool to

model large caches,” HP laboratories, 2009.

[48] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov, Mohammad

Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl, and David

Wentzlaff, “OpenPiton: an open source manycore research framework.” in

SIGPLAN, 2016, pp. 217-232.

[49] Pulpino, Available: https://www.pulp-platform.org/.

[50] Openpiton, Available: http://parallel.princeton.edu/openpiton.

[51] A. Saffidine, T. Cazenave and J. Méhat, "UCD: upper confidence bound for rooted

directed acyclic graphs," in Knowl. Based Syst., 2010, pp. 467-473.

[52] D. P. Kingma, J. Ba, "Adam: a method for stochastic optimization," in Proceedings

of ICLR'15, 2015.

[53] G. Li, et al., "DeepGCNs: can GCNs go as deep as CNNs?" in CVPR, 2020, pp.

5567-5576.

[54] X. Glorot, A. Bordes, and Y. Bengio. "Deep sparse rectifier neural networks," in

AISTATS, 2011.

[55] M. Leshno, et al., "Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function," in Neural networks, vol. 6, no.

6, 1993, pp. 861-867.

[56] Y. Feng, D. Xiang, K. Ma, “Heterogeneous die-to-die interfaces: Enabling more

flexible chiplet interconnection systems”, in MICRO, 2023, pp. 930-943.

[57] B. Ye, et al., “A 2.29-pJ/b 112-Gb/s wireline transceiver with RX four-tap FFE for

medium-reach applications in 28-nm CMOS,” in IEEE J. Solid-state Circuits, vol.

58, no. 1, 2023, pp. 19–29.

[58] Y. Hu, X. Lin, et al., “Wafer-scale computing: advancements, challenges, and

future perspectives,” in IEEE Circuits Syst. Mag, vol. 24, 2024, pp. 52-81.

[59] Y. Han, et al., "The big chip: challenge, model and architecture," in Fundamental

Research, vol. 4, pp. 1431-1441, 2024.

[60] S. Li, J. H. Ahn, R. D. Strong, et al., "McPAT: an integrated power, area, and

timing modeling framework for multicore and manycore architectures,” in MICRO,

2009, pp. 469-480.

[61] F. Schätzle, et al., “Modeling methodology for multi-die chip design based on

gem5/systemC co-simulation,” in RAPIDO@HiPEAC, 2024, pp. 35-41.

[62] X. Li, et al., “MUG5: Modeling of universal vhiplet interconnect express (UCIe)

standard based on gem5,” in ASICON, 2023, pp. 1-4.

Xiaohang Wang Xiaohang Wang received the B. Eng. and Ph. D. degree in

communication and electronic engineering from Zhejiang University, in 2006 and

2011, respectively. He is currently a professor at Zhejiang University. He was the

receipt of PDP 2015 and VLSISoC 2014 Best Paper Awards. His research interests

include many-core architecture, power efficient architectures, optimal control, and

NoC-based systems.

Miao Xu Miao Xu received his bachelor degree in software engineering from

Yunnan University (YNU), Kunming, China. She is pursuing her master degree in

the school of software engineering, SCUT. Her research interests include multi-

chiplet and design space exploration.

Amit Kumar Singh Amit Kumar Singh (M’09) is a Lecturer at University of

Essex, UK. He received the B.Tech. degree in Electronics Engineering from Indian

Institute of Technology (Indian School of Mines), Dhanbad, India, in 2006, and the

Ph. D. degree from the School of Computer Engineering, Nanyang Technological

University (NTU), Singapore, in 2013. He was with HCL Technologies, India for

year and half until 2008. He has a postdoctoral research experience for over five

years at several reputed universities. His current research interests are system level

design-time and runtime optimizations of 2D and 3D multi-core systems for

performance, energy, temperature, reliability and security. He has published over

80 papers in reputed journals/conferences, and received several best paper awards,

e.g. ICCES 2017, ISORC 2016 and PDP 2015. He has served on the TPC of

prestigious IEEE/ACM conferences DAC, DATE, CASES and CODES+ISSS.

Yingtao Jiang Yingtao Jiang received his Ph. D. in Computer Science from the

University of Texas at Dallas in 2001. Upon graduation, he immediately joined the

Department of Electrical and Computer Engineering (ECE), University of Nevada,

Las Vegas, where he was promoted to full professor in 2013, and subsequently

served as the ECE Department Chair between 2015 and 2018. Currently, he is the

associate dean of the college of engineering at the same university. His research

interests include algorithms, computer architectures, VLSI, networking,

nanotechnologies, etc.

Mei Yang Mei Yang received her Ph. D. in Computer Science from the University

of Texas at Dallas in Aug. 2003. In Aug. 2004, she joined in the Department of

Electrical and Computer Engineering, University of Nevada, Las Vegas, where she

was promoted to full professor in 2016. Her research interests include computer

architectures, interconnection networks, machine learning, and embedded systems.

Letian Huang Letian Huang received the MS and Ph. D. degrees in communication

and information system from the University of Electronic Science and Technology

of China (UESTC), Chengdu, China in 2009 and 2016, respectively. He is an

associate professor with UESTC. His scientific work contains more than 40

publications including book chapters, journal articles and conference papers. His

research interests include heterogeneous multi-core system-on-chips, network-on-

chips, and mixed signal IC design.

