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Abstract—Inter- and intra-chiplet interconnection networks 

play a vital role in the operation of many core systems made of 

multiple chiplets. However, these networks are susceptible to 

faults caused by manufacturing defects and attacks resulting 

from the malicious insertion of hardware Trojans and backdoors. 

Unlike conventional fault-tolerant or countermeasure methods, 

this paper focuses on optimizing network robustness to withstand 

both faults and attacks, while considering the constraints of 

chiplet area and power budget. To achieve this, this paper first 

defines network robustness as a quantifiable measure based on 

various network parameters, after which an optimization 

problem is formulated to optimize the robustness of the network 

topology. To efficiently solve this problem, a reinforcement 

learning algorithm is proposed. Experimental results 

demonstrate that the proposed method is capable of generating 

inter- and intra-chiplet interconnection networks that are 

significantly more robust than existing topology generation 

methods. Specifically, the proposed method improves robustness 

over ButterDonut and Kite, respectively by an average of 10.88% 

and 14.06% under random faults and by 9.37% and 7.81% 

under targeted attacks. These experimental results confirm that 

the proposed method is capable of generating robust inter- and 

intra-chiplet interconnection networks that can withstand both 

faults and attacks. By optimizing the network topology's 

robustness, it provides a valuable contribution to the design and 

security of chiplet-based core systems. 

 
Index Terms—chiplet, robustness, topology optimization  

I. INTRODUCTION 

ULTI-CHIPLET systems have emerged as a new 

design paradigm aimed at improving chip yield and 

reducing chip manufacturing costs. Two  
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Fig. 1. Architecture models of the (a) GPU and (b) CPU based multi-

chiplet systems. 

representative architectures for such systems are illustrated in 

Fig. 1: GPU-based (Fig. 1 (a)) and CPU-based (Fig. 1 (b)) 

multi-chiplet systems. Despite their advantages, these systems 

face two significant threats: (1) random faults that arise from 

manufacturing imperfections [1] and can disrupt the 

operational reliability of the system, and (2) threats of attacks 

associated with the use of chiplets from untrusted sources or 

the integration of hardware Trojans or backdoors [2]. To 

address these challenges, a variety of fault tolerance and 

security countermeasure methods have been proposed, 

primarily focusing on repairing the remaining systems through 

packet rerouting within the inter- and intra-chiplet networks [3, 

4]. One major limitation of these approaches, however, lie in 

their inability to address a fundamental requirement: ensuring 

the resilience of the network topology against both faults and 

attacks. In this context, faults are analyzed using a specific 

model in [22], while attacks are exemplified by the DoS attack 

model [24].   

A critical factor in ensuring the resilience of multi-chiplet 

system is network connectivity, which is evaluated at node or 

network levels using various parameters.  

The degree of a node, which represents the number of direct 

connections (edges) it has in the network, serves as a key 

indicator of the network’s connectivity. Increasing the degree 
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of a node enhances the network's robustness by providing 

additional connections, improving fault tolerance, and 

enabling alternative communication paths, thereby reducing 

the risk of network partitioning in the event of node or link 

failures. For example, consider the 4×4 mesh and torus 

topologies shown in Fig. 2. Suppose that both nodes 2 and 7 

are faulty. In the mesh topology, these faulty nodes block all 

available paths for communication with node 3. In contrast, 

the torus topology retains an alternative path from node 1 to 

node 3 due to its additional wraparound connections. This 

example illustrates that topologies with higher degrees (such 

as the torus) exhibit greater robustness and fault tolerance 

compared to those with lower degrees (such as the mesh), 

even when subjected to the same set of node failures. 

The robustness of a network is further quantified using the 

parameter 𝛾, defined as the percentage of failed nodes required 

to disconnect the network ((indicated by infinite average 

network latency). A higher 𝛾  value signifies a more robust 

network. Fig. 3 shows a comparison of latency for different 

topologies under both attacks and faults. Under random faults, 

ButterDonut [5] exhibits a higher 𝛾  value than Kite [6]. 

However, under targeted attacks, Kite outperforms 

ButterDonut due to its greater number of high-degree nodes. 

This highlights the trade-offs between degree uniformity and 

robustness against specific failure types. 

Based on the observation illustrated in Fig. 3, the paper 

proposes a methodology a novel methodology to model and 

optimize the robustness of inter- and intra-chiplet 

interconnection topologies. The key contributions of this work 

can be summarized as follows: 

1) Inter- and intra-chiplet interconnection network 

robustness is modeled using structural parameters such as 

average neighbor degree, maximum degree, average path 

length, clustering coefficient, and the most frequent degree. 

2) An optimization problem is formulated to optimize 

network robustness, while adhering to power and area 
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Fig. 2. (a) 4×4 mesh and (b) 4×4 torus. 
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Fig. 3. The robustness of Kite and ButterDonut under (a) random faults 

and (b) targeted attacks.  

constraints. To solve the problem, an efficient 

reinforcement learning algorithm is designed to find 

topologies with high robustness.  

3) Experimental results demonstrate that the proposed 

method improves robustness over ButterDonut and Kite, 

respectively by an average of 10.88% and 14.06% under 

random faults and by 9.37% and 7.81% under targeted attacks. 

The remainder of the paper is organized as follows. Section 

Ⅱreviews the related work of chiplet-based many-core chips 

and their interconnection network topologies. Section Ⅲ 

models the robustness of a topology based on its network 

structural parameters. Section Ⅳ  formally defines the 

problem of generating a robust inter- and intra-chiplet 

interconnection network topologies. Section Ⅴ details the 

reinforcement learning algorithm used to solve the 

optimization problem and generate robust topologies, and 

SectionⅥ presents the experimental results, validating the 

proposed methodology. Finally, Section Ⅶ  summarizes 

contributions and concludes the paper.  

II. RELATED WORK 

In this section, we will first review the Network-on-Chip 

(NoC) topologies and survey the works concerning the 

generation of NoC topologies for many-core systems. These 

works aim to find efficient topologies that satisfy the specific 

requirements of the applications and systems. We will then 

examine the inter-chiplet network topologies, such as Kite, 

ButterDonut, and Hypercube, which enable efficient 

communication between chiplets. In the end, we will look into 

various techniques to mitigate the impact of faults and attacks, 

and the methods to improve the reliability and security of the 

interconnection network and the overall system through fault 

tolerance and security countermeasures. 

A. NoC Topologies and Topology Generation 

There are regular and irregular topologies in NoC designs. 

Among regular topologies, such as mesh [7], torus [8], 

butterfly [9], among a few others [10-15], mesh is particularly 

popular due to its simplicity and low cost. Torus improves 

connectivity and bandwidth but requires longer links.  

Customized topologies are generated based on application 

communication characteristics, often by adding express long 

links for high-volume communications. These customized 

topologies serve different design goals, such as performance 

optimization and fault tolerance purposes.  

For performance-optimization-oriented topologies, 

Katherine et al. [10] proposed a custom NoC topology 

generation method based on floorplanning, which achieves 

lower bandwidth and power consumption. Srinivasan et al. 

[11] used linear programming to generate application-specific 

NoCs, which reduces power consumption and router 

resources. Venkataraman et al. [12] used Ant Lion 

optimization techniques to generate topology with low power, 

small area, and high speed. Neeb et al. [13] used simulated 

annealing to map a task to a bidirectional chain topology and 

then add edges using a greedy algorithm, enabling scalability 

and expansibility.  

For fault tolerance, Yang et al. [14] proposed the fault-

tolerant cellular model, which adds a spare router in the center 
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of each hexagon to ensure high system reliability. 

Hosseinabady et al. [15] proposed de Bruijn graphs as on-chip 

interconnection networks and developed a routing algorithm 

that detours problematic links by at most two more switches 

further than the original route. However, these existing works 

do not especially consider network robustness and inter-

chiplet interconnections.  

B. Inter-chiplet Network Topologies and Fault Tolerance 

    In the literature, there are several studies on how to design 

efficient inter- and intra-chiplet interconnection networks. 

These works can be categorized into two main areas: (1) 

topology design for inter- and intra-chiplet networks, and (2) 

routing deadlock avoidance.  

    In the field of topology generation, Kite [6] allows for the 

use of longer links in Network-on-Interposer (NoI) and 

optimizes the effective hop count and effective bandwidth to 

improve communication throughput. Wang et al. [16] 

proposed a reusable NoI design for agile AI chip 

customization, which can self-adapt to the inter-die 

communication patterns of various neural network 

applications, enabling the reuse of the interposers for different 

applications. Li et al. [17] proposed a reusable general 

interposer architecture to amortize NRE costs and accelerate 

integration flows of interposers across different chiplet-based 

systems effectively. Sharma et al. [18] proposed a novel NoI 

architecture with multiple non-overlapping SFCs specifically 

targeting running multiple concurrent CNN inference tasks. 

Sharma et al. [19] developed an efficient multi-objective 

optimization algorithm to generate an NoP architecture where 

the number of links associated with each router (number of 

router ports) varies depending on the inter-chiplet traffic 

pattern.  

    For routing deadlock avoidance, Yin et al. [20] proposed a 

method to avoid inter-chiplet routing deadlock by introducing 

turn restrictions that break inter-chiplet cyclic dependencies. 

Taheri et al. [21] proposed a method to avoid inter-chiplet 

routing deadlock through a virtual network allocation strategy 

and improve fault tolerance through dynamic vertical link 

selection. Majumder et al. [22] proposed a selective injection 

control mechanism to prevent inter-chiplet routing deadlock. 

However, a common limitation of these works is the lack of 

consideration for network robustness in their designs. 

Robustness is crucial in ensuring the network's functionality 

and performance even in the presence of faults or attacks.  

    To combat faults/attacks in inter- or intra-chiplet networks, 

several approaches have been proposed, including (1) 

fault/attack detection, (2) fault-tolerant routing, and (3) 

security mechanisms. Previous studies [20, 21] have focused 

on detecting and locating faults and attacks in NoCs. These 

works aim to identify the presence of hardware Trojan attacks, 

Denial-of-Service (DoS) attacks and malicious traffic within 

the network. In [18, 22], fault-tolerant routing algorithms were 

introduced, such that once a fault/attack is detected, an 

alternative path is selected to bypass the faulty or malicious 

node. Regarding security mechanisms, works [3, 4] have 

proposed methods to enhance the defense capability against 

malicious nodes. These approaches involve monitoring 

network behavior or implementing authentication mechanisms 

to ensure the integrity and security of the communication.  

    Our work complements these existing approaches. We 

focus on generating a network topology that is inherently 

resilient to faults and attacks. By designing a robust topology, 

it can be integrated with online fault tolerance countermeasure 

schemes, enhancing the overall reliability and security of the 

inter- and intra-chiplet interconnection network. By combining 

the strengths of fault/attack detection, fault-tolerant routing, 

security mechanisms, and robust topology generation, it is 

possible to create a comprehensive framework that ensures the 

efficient and secure operation of inter- and intra-chiplet 

networks even in the presence of faults and attacks. 

III. MODELING ROBUSTNESS OF NETWORK TOPOLOGY 

In this section, we begin by introducing the robustness 

metric 𝛾 for a given network topology. This metric serves as a 

measure of the network’s resilience and ability to withstand 

attacks or failures. Next, we delve into the modeling of 𝛾 in 

relation to network structure parameters. These parameters 

capture various aspects of the network's architecture, such as 

node connectivity, edge weights, or degree distributions. 

A. Network Robustness Metric 

Faults can be classified into two types: transient fault and 

permanent fault [22]. The former is usually caused by power 

grid fluctuations, particle hits and crosstalk, while permanent 

fault is caused by physical damages. For the threat model 

against chips, we consider two hardware trojan-assisted DoS 

attacks, namely sinkhole and blackhole attacks [24]. Blackhole 

attack disables links or router ports, while a sinkhole attack 

aggregates the traffic and intercepts the packets. The 

robustness (𝛾) of a network is defined as follows. 

Definition 1. Robustness. Given a network 𝐺(𝑉, 𝐸) under 

random faults or targeted attacks, where 𝑉 is the set of vertices 

and 𝐸  is the set of edges, 𝛾  is the minimum percentage of 

faulty nodes or attacked nodes that cause the network to be 

disconnected, resulting in an infinite average latency.  

Fig. 3 shows that 𝛾 is measured as 22.2% and 27.8% for an 

8 × 8 torus under random faults and targeted attacks, 

respectively. As mentioned in [26], network robustness is 

closely related to network structure. Therefore, the robustness 

metric 𝛾  can be modeled statistically using various network 

parameters, including average path length (APL), average 

clustering coefficient (ACC), average neighbor degree (AND), 

the most frequent degree value of topology (𝑘𝑚𝑜𝑠𝑡 ) and the 

highest degree value ( 𝑘𝑚𝑎𝑥 ). By changing each network 

structure parameter, the correlation between the 𝛾  and each 

parameter is shown in Table I. One can see from Table I that 

APL is negatively correlated to γ, while AND, ACC, 𝑘𝑚𝑎𝑥 and 

𝑘𝑚𝑜𝑠𝑡  display positive correlation with γ. Consequently, γ can 

be modeled by 

𝛾 = 𝛼6 ∗
𝛼1 ∗ 𝐴𝑁𝐷 + 𝛼2 ∗ 𝐴𝐶𝐶 + 𝛼3 ∗ 𝑘𝑚𝑜𝑠𝑡 + 𝛼4 ∗ 𝑘𝑚𝑎𝑥

𝛼5 ∗ 𝐴𝑃𝐿
+ 𝛼7 (1) 

Eqn. (1) is derived empirically. The correlation between γ 

and each parameter is analyzed and summarized in Table I, 

which guides the design of the regression model in Eqn. (1). A 

maximum likelihood method [29] is used to determine the 

coefficients of this model. 

To illustrate the metrics used in Eqn. (1), consider the 4×4 

mesh in Fig. 4. These metrics, which characterize different 

aspects of the network topology, are computed as follows: 
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1. average neighbor degree (AND) 

Definition: the sum of the degree values of all nodes, 

divided by the total number of nodes. 

Example: In a 4×4 mesh with 16 nodes, there are 4 nodes 

with a degree of 2, 8 nodes with a degree of 3, and 4 nodes 

with a degree of 4. The total of degrees is (4×2) +(8×3) +(4×4) 

=48. Therefore, AND= 48/16 = 3. 

2. average path length (APL) 

Definition:  the sum of the path lengths for all pairs of 

nodes, divided by the total number of node pairs.  

Example: In the same 4×4 mesh, the distance between node 

𝑢𝑖,𝑗 and node 𝑢𝑚,𝑛 is |m-i|+|n-j|, where i, j, m, n = 0, 1, 2… 15. 

the sum of the all pairwise distances is 480 and there are 

16×15/2=120 node pairs. Therefore, APL = 480/120=4. 

3. average clustering coefficient (ACC) 

Definition: the sum of the clustering coefficients of all 

nodes, divided by the total number of nodes.  

The clustering coefficient of a node 𝑢𝑖,𝑗 defined as: 

𝑐𝑖,𝑗 =
𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗 − 1)
2

 

where (i) 𝑚𝑖,𝑗 is the number of actual direct edges between the 

neighbors of node  𝑢𝑖,𝑗; (ii) 𝑘𝑖,𝑗 is the degree of node 𝑢𝑖,𝑗; and 

(iii) 
𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)

2
 gives the maximum number of possible direct 

connections among the neighbors of node 𝑢𝑖,𝑗. 

Example: For node 𝑢1,0, the neighbors are nodes 𝑢0,0, 𝑢1,1, 

and 𝑢2,0, but none of these neighbors are directly connected to 

each other. Hence, 𝑚1,0 = 0. Although 𝑘1,0 = 3, node 𝑢1,0’s 

clustering coefficient is 
0

3(3−1)

2

= 0 . In this mesh, actually 

every node has a clustering coefficient of 0, so, the ACC = 0. 

4. the maximum degree (𝑘𝑚𝑎𝑥) 

Definition: the maximum number of direct connections 

(edges) that any single node in the network has. 

Example: In the 4×4 mesh, the maximum degree is 4. For 

instance, nodes 5, 6, 9, and 10, each has 4 connections. 

5. the most frequent degree value (𝑘𝑚𝑜𝑠𝑡) 

Definition: the degree value with the highest frequency. 

u0,0 u0,1 u0,2 u0,3

u1,0 u1,1 u1,2 u1,3

u2,0 u2,1 u2,2 u2,3

u3,0 u3,1 u3,2 u3,3
 

Fig. 4. An example showing the computation of the network parameters. 

Example: In the 4×4 mesh, the most frequent degree value 

is 3, since 8 out of 16 nodes have a degree value of 3, while 4 

nodes have degrees of 2 or 4. 

B. Modeling 𝛾 in Multi-chiplet Interconnection Networks 

In Fig. 5 (a), the network topology is defined as a graph 

𝐺(𝑉, 𝐸), where each vertex 𝑢𝑖,𝑗 ∈ 𝑉 is tile 𝑖 in chiplet 𝑗, and 

𝑒𝑖,𝑘,𝑗 ∈ 𝐸 is the link between 𝑢𝑖,𝑗 and 𝑢𝑘,𝑗 in chiplet j. 𝑒𝑖,𝑘,𝑗 =

1 if there is a link between 𝑢𝑖,𝑗 and 𝑢𝑘,𝑗, and 0 otherwise. The 

chiplets in the system are denoted by 𝑅1, ⋯ , 𝑅𝑐 , where each 

𝑅𝑗 ⊂ 𝑉,𝑗 = 1, ⋯ , 𝑐, is a set of tiles in chiplet j. The number of 

tiles in 𝑅𝑗 is given as |𝑅𝑗|, and 𝑐 is the total number of chiplets 

in the system. In the context of using D2D (die to die) 

interfaces within each chiplet, as described in [21], it is 

assumed that each chiplet has no more than four D2D 

interfaces for inter-chiplet communication [21]. The count of 

D2D interfaces in chiplet  𝑗 is denoted as 𝑑𝑗 , and the D2D 

interfaces in the chiplet 𝑗  are indexed by nodes 

𝑢|𝑅𝑗|+1,𝑗 ,…, 𝑢|𝑅𝑗|+𝑑𝑗,𝑗  within chiplet 𝑗 . Therefore, the total 

number of nodes in chiplet 𝑗 is |𝑅𝑗| + 𝑑𝑗. Given |𝑉|, 𝑐 and |𝑅𝑗| 

should hold the following: 

∑|𝑅𝑗|

c

𝑗=1

= |V| (2) 

In Fig. 5 (a), the D2D interfaces within a chiplet can 

connect to any tile within the same chiplet. This connectivity 

is represented as 𝑒𝑖,|𝑅𝑗|+𝑚,𝑗 ∈ 𝐸, where 𝑖 is a tile within chiplet 

𝑗, and 𝑚 is the index of the D2D interface within the same  

ui,j

Chiplet j

...

.
.
.

...

.
.
.

uk,j

ei,k,j=1

ei,|Rj|+m,j=1

 
(a) 

Chiplet j

Chiplet n Chiplet l

...

.
.
.

...

α|Rj|+1,j,|Rl|+k,l=1

 
(b) 

Fig. 5. An example of the variables describing the (a) intra-chiplet 

connection and (b) inter-chiplet connection. 

TABLE I.  CORRELATIONS BETWEEN ϒ AND NETWORK 

PARAMETERS 

Network AND APL ACC 𝑘𝑚𝑜𝑠𝑡  𝑘𝑚𝑎𝑥 

Random faults 

Mesh 0.781 -0.865 0 0.772 0 

Torus 0.945 -0.999 0 0.539 0 

Kite 0.890 -0.998 0.665 0.506 0.276 

Butterfly 0.853 -0.962 0.243 0.253 0.392 

Targeted attacks 

Mesh 0.909 -0.992 0 0.692 0 

Torus 0.880 -0.963 0 0.720 0 

Kite 0.728 -1 0.556 0.593 0 

Butterfly 0.783 -0.986 0.342 0.435 0.228 
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chiplet. In Fig. 5 (b), the link between D2D interfaces in 

chiplet 𝑗 and chiplet 𝑛 is denoted by 𝛼|𝑅𝑗|+𝑖,𝑗,|𝑅𝑛|+𝑚,𝑛 . If there 

is a link between 𝑢|𝑅𝑗|+𝑖,𝑗  and 𝑢|𝑅𝑛|+𝑚,𝑛 , the value of 

𝛼|𝑅𝑗|+𝑖,𝑗,|𝑅𝑛|+𝑚,𝑛 is 1; otherwise, it is 0. 

1) Computing AND 

As per [28], the average neighbor degree is calculated using 

(3). AND is the average degree value of each node in the 

network, which can be obtained by summing up the degree 

values of all nodes and dividing it by the total number of 

nodes in the network. In this case, the total number of nodes in 

the network is given as the tile count plus the number of 

interface nodes (|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1 ). The degree value of a node is 

the number of edges connected to that node. Note that the sum 

of all nodes is equal to twice the number of edges in the 

network, encompassing both the edges connecting the tile 

nodes and the edges connecting the interface nodes.  

𝐴𝑁𝐷 =  
∑ ∑ ∑ 𝑒𝑖,𝑘,𝑗

𝑐
𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑘=1

|𝑅𝑗|

𝑖=1
+ ∑ ∑ ∑ ∑ 𝛼𝑝,𝑗,𝑞,𝑛

𝑐
𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑞=|𝑅𝑛|+1
𝑐
𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑝=|𝑅𝑗|+1

|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1

(3) 

2) Computing APL 

    As per [28], the average shortest path length is computed 

using (4), 

𝐴𝑃𝐿 =  
1

(|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1 )(|𝑉| + ∑ 𝑑𝑗

𝑐
𝑗=1 − 1)

( ∑ ∑ ∑ ∑ 𝑙𝑖,𝑗,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=1

𝑐

𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑖=1

) (4) 

    This equation calculates the average path length between 

any two nodes in the network, which requires the computation 

of the shortest path length 𝑙𝑖,𝑗,𝑚,𝑛 of any two nodes. For nodes 

within the same chiplet, the shortest path length is computed 

using (5), 

 𝑙𝑖,𝑗,𝑚,𝑛 = 𝑚𝑖𝑛(𝑒𝑖,𝑚,𝑗 , 𝑒𝑖,𝑎,𝑗 + 𝑙𝑎,𝑚,𝑗) 

∀0 < 𝑎, 𝑖, 𝑚 ≤ |𝑅𝑗| + 𝑑𝑗 , 1 ≤ 𝑗, 𝑛 ≤ 𝑐, 𝑗 = 𝑛, 𝑒𝑖,𝑚,𝑗 , 𝑒𝑖,𝑎,𝑗 ≠ 0 (5)
 

Take Fig. 6 (a) as an example. As nodes 𝑢𝑖,𝑗  and 𝑢𝑏,𝑗  in 

chiplet 𝑗 are not directly connected, the shortest path length 

from 𝑢𝑖,𝑗 to 𝑢𝑏,𝑗 is equal to the minimum path length from 𝑢𝑖,𝑗 

to other nodes, plus the shortest path length from other nodes 

to 𝑢𝑏,𝑗 . This is caluculated as min {𝑒𝑖,𝑖+1,𝑗 + 𝑙𝑖+1,𝑏,𝑗 , 𝑒𝑖,𝑖+2,𝑗 +

𝑙𝑖+2,𝑏,𝑗 , … , 𝑒𝑖,|𝑅𝑗|+𝑑,𝑗 + 𝑙|𝑅𝑗|+𝑑,𝑏,𝑗}.  

For nodes in different chiplets, the shortest path is 

calculated by finding the shortest path from the source node to 

the D2D interface within the same chiplet using (5), plus the 

shortest distance from the D2D to the destination node. The 

shortest path length for nodes in different chiplets is thus 

calculated using (6), 

𝑙𝑖,𝑗,𝑚,𝑛 = min (𝑙𝑖,𝑗,|𝑅𝑗|+𝑘,𝑗 + 𝑙|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 + 𝑙|𝑅𝑛|+ℎ,𝑛,𝑚,𝑛)

𝑙|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 = min (𝛼|𝑅𝑗|+𝑘,𝑗,|𝑅𝑛|+ℎ,𝑛 , 𝛼|𝑅𝑗|+𝑘,𝑗,|𝑅𝑎|+𝑏,𝑎 + 𝑙|𝑅𝑎|+𝑏,𝑎,|𝑅𝑛|+ℎ,𝑛)

∀0 < 𝑖 ≤ |𝑅𝑗|, 0 < 𝑚 ≤ |𝑅𝑛|, 0 < 𝑛, 𝑗, 𝑎 ≤ 𝑐, 0 < 𝑘 ≤ 𝑑𝑗 ,

0 < ℎ ≤ 𝑑𝑛 , 0 < 𝑏 ≤ 𝑑𝑎 , 𝑗 ≠ 𝑛 (6)

 

As shown in Fig. 6 (b), the shortest path from node 𝑢𝑖,𝑗 in 

chiplet 𝑗 to node 𝑢𝑚,𝑛  in chiplet 𝑛 consists of three parts: 1) 

the shortest path from source node 𝑢𝑖,𝑗 to D2D in chiplet 𝑗, 2) 

the shortest path from chiplet 𝑗 to chiplet 𝑛, and 3) the shortest 

path from D2D to the destination node 𝑢𝑚,𝑛 in chiplet 𝑛.  

3) Computing ACC 

According to [28], ACC is computed using (7) – (9) as 

follows:  

𝐴𝐶𝐶 =
1

|𝑉| + ∑ 𝑑𝑗
𝑐
𝑗=1

( ∑ ∑
2𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗 − 1)

𝑐

𝑗=1

|𝑅𝑗|+𝑑𝑗

𝑖=1

) (7) 

𝑚𝑖,𝑗 = ∑ ∑ 𝑒𝑖,𝑎,𝑗 ∗ 𝑒𝑖,𝑏,𝑗 ∗ 𝑒𝑎,𝑏,𝑗

|𝑅𝑗|+𝑑𝑗

𝑏=1

|𝑅𝑗|+𝑑𝑗

𝑎=1

+

 ∑ ∑ ∑ ∑ 𝛼𝑖,𝑗,𝑚,𝑛 ∗ 𝛼𝑖,𝑗,𝑝,𝑞 ∗ 𝛼𝑝,𝑞,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=|𝑅|+1

𝑐

𝑞=1

|𝑅𝑞|+𝑑𝑞

𝑝=|𝑅𝑞|+1

(8)

 

𝑘𝑖,𝑗 = ∑ 𝑒𝑖,𝑘,𝑗

|𝑅𝑗|+𝑑𝑗

𝑘=1

+  ∑ ∑ 𝛼𝑖,𝑗,𝑚,𝑛

𝑐

𝑛=1

|𝑅𝑛|+𝑑𝑛

𝑚=|𝑅𝑛|+1

(9) 

where 𝑚𝑖,𝑗 is the sum of connected edges between node 𝑢𝑖,𝑗’s 

neighbors, and 𝑘𝑖,𝑗 is the degree of node 𝑢𝑖,𝑗. In simpler terms, 

the clustering coefficient of a node is the ratio of actual 

connected edges (𝑚
𝑖,𝑗

) between the node's neighbors to the 

maximum possible connected edges (𝑘𝑖,𝑗 ∗ (𝑘
𝑖,𝑗

− 1)/2). If 𝑢𝑖,𝑗 

has neighbors 𝑢𝑎,𝑗 and 𝑢𝑏,𝑗 and 𝑢𝑎,𝑗 and 𝑢𝑏,𝑗 are also neighbors to 

each other, the product of𝑒𝑖,𝑗,𝑎,𝑗, 𝑒𝑖,𝑗,𝑏𝑗,, 𝑒𝑎,𝑗,𝑏,𝑗 is 1; otherwise, 

it is 0. 

ui,j

ua,j ub,j

...

...

... ...

ui+1,j

ei+1,b,j

ei,i+1,j

...

...

...

...

 
(a) 

u1,j

u|Rj|+k,j

ui,j

u|Rn|+h,n

...

...

...

.
.. .
..

.
..

u1,n

um,n

...

...

...

.
.. .
..

.
..

e1,|Rj|+k,j

e1,i,j

α|Rj|+k,j,|Rn|+h,n

e1,|Rn|+h,n

e1,m,n

 

(b) 

Fig. 6. An example showing the calculation of APL in two scenarios: (a) 

two nodes are within the same chiplet, and (b) two nodes are in 

different chiplets. 
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ui,j

ud,j

ua,j ub,j

...

...

... ...

ui+1,j

ei+1,b,j

ei+1,d,j

ea,b,j

...
...

...

...

 

Fig. 7. The diagram of computing ACC. 

For example, as shown in Fig. 7, if node 𝑢𝑖,𝑗 has 4 neighbor 

nodes (𝑢𝑑,𝑗 , 𝑢𝑖+1,𝑗 , 𝑢𝑎,𝑗 , 𝑢𝑏,𝑗 ), with 𝑘𝑖,𝑗 = 4 , the maximum 

number of connected edges between neighbors is 
𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)

2
=

6. If the actual connected edges between neighbors are 3 (i.e., 

𝑒𝑖+1,𝑑,𝑗 , 𝑒𝑖+1,𝑏,𝑗 , 𝑒𝑎,𝑏,𝑗 ), then 𝑚𝑖,𝑗 = 3 . Therefore, the 

clustering coefficient of node 𝑢𝑖,𝑗 is 
2𝑚𝑖,𝑗

𝑘𝑖,𝑗(𝑘𝑖,𝑗−1)
= 1/2. 

4) Computing 𝑘𝑚𝑜𝑠𝑡  

   The highest degree frequency is calculated as in (10) by 

using Pearson's empirical coefficient [27]: 

𝑘𝑚𝑜𝑠𝑡 = 𝐴𝑁𝐷 − 3 (𝐴𝑁𝐷 −
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2
) (10) 

𝑘𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑘𝑖,𝑗) , ∀ 0 < 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (11) 

𝑘𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑘𝑖,𝑗) , ∀ 0 < 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (12) 

IV. PROBLEM DEFINITION 

The problem of optimizing the robustness of inter- and 

intra-chiplet interconnection network topology is formulated 

as follows. Given the network topology within a multi-chiplet 

system, the objective is to identify the inter- and intra-network 

configurations that maximizes the robustness metric γ while 

adhering to power and area constraints. 

Mathematically, we can formulate this problem as follows: 

max 𝛾 = 𝛼6 ∗
𝛼1 ∗ 𝐴𝑁𝐷 + 𝛼2 ∗ 𝐴𝐶𝐶 + 𝛼3 ∗ 𝑘𝑚𝑜𝑠𝑡 + 𝛼4 ∗ 𝑘𝑚𝑎𝑥

𝛼5 ∗ 𝐴𝑃𝐿
+ 𝛼7 (13) 

𝑠. 𝑡.      𝐴(𝑅𝑖) ≤ 𝐴0     ∀ 𝑖 = 1, ⋯ , 𝑐 (14) 

            𝑃(𝑅𝑖) ≤ 𝑃0     ∀ 𝑖 = 1, ⋯ , 𝑐 (15) 

𝑒𝑖,𝑘,𝑗 = 𝑒𝑘,𝑖,𝑗 = 0 𝑜𝑟 1, ∀ 0 < 𝑖, 𝑘 < |𝑅𝑗| + 𝑑𝑗 , 0 < 𝑗 ≤ 𝑐 (16) 

𝛼𝑖𝑗𝑚𝑛 = 𝛼𝑚𝑛𝑖𝑗 = 0 𝑜𝑟 1,

 ∀|𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 , |𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , 0 < 𝑗, 𝑛 ≤ 𝑐 (17)
 

𝑒𝑖,𝑘,𝑗 = 0, ∀ 𝑖 = 𝑘 || |𝑅𝑗| + 1 ≤ 𝑖, 𝑘 ≤ |𝑅𝑗| + 𝑑𝑗 (18) 

where 𝐴(𝑅𝑖) and 𝑃(𝑅𝑖) are the area and power of chiplet 𝑅𝑖 , 

and 𝐴0 and 𝑃0 are the area and power thresholds of a chiplet. 

    Equation (18) specifies that a tile can not connect to itself. 

For passive interposers, where only adjacent chiplets can be 

connected, we introduce additional constraints: 

𝛼𝑖,𝑗,𝑚,𝑛 = 0 𝑜𝑟 1, ∀ |𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 ,

|𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , 𝑛 = 𝑗 + 1 𝑜𝑟 𝑗 + ⌈√𝑐⌉, 0 < 𝑗, 𝑛 ≤ 𝑐 (19)
 

𝛼𝑖,𝑗,𝑚,𝑛 = 0, ∀ |𝑅𝑗| + 1 ≤ 𝑖 ≤ |𝑅𝑗| + 𝑑𝑗 ,

|𝑅𝑛| + 1 ≤ 𝑚 ≤ |𝑅𝑛| + 𝑑𝑛 , ∀𝑗%⌈√𝑐⌉ = 0, 𝑛 = 𝑗 + 1 (20)
 

 

 

Fig. 8. Illustration of (19) and (20). 

As illustrated in Fig. 8, chiplet 𝑗 is restricted to establishing 

connections only with the chiplets 𝑗 ± 1 and 𝑗 ± ⌈√𝑐⌉. In other 

words, chiplet 𝑗 − 1 cannot establish a connection with chiplet 

𝑗 + 1 (marked as ②). In a specific scenario, as shown in Fig. 8 

(marked as ①), the edge chiplets are subject to a constraint 

where they cannot connect with the chiplets whose numbers 

are given by 𝑛 ∗ ⌈√𝑐⌉ (n=0, 1, …, ⌈√𝑐⌉). In simple terms, the 

edge chipet labeled as 𝑛 ∗ ⌈√𝑐⌉ cannot connect with the chiplet 

labeled as 𝑛 ∗ ⌈√𝑐⌉ + 1.  

The area of a chiplet 𝑅𝑗  is computed as follows, where 

𝐴(𝑢𝑖,𝑗) is the area model that returns the area of each router (𝑖 

from 1 to |𝑅𝑗| ) and 𝐴(𝑢𝑖,𝑗)  returns the area of each D2D 

interface (𝑖 from |𝑅𝑗| +1 to |𝑅𝑗| + 𝑑𝑗). 

𝐴(𝑅𝑗) =  ∑ 𝐴(𝑢𝑖,𝑗)

|𝑅𝑗|

𝑖=1

 + ∑ 𝐴(𝑢𝑖,𝑗)

|𝑅𝑗|+𝑑𝑗

𝑖=|𝑅𝑗|+1

 ∀ 0 < 𝑗 ≤ 𝑐 (21) 

Similarly, the power of a chiplet 𝑅𝑗  is computed as 

follows. 

𝑃(𝑅𝑗) =  ∑ 𝑃(𝑢𝑖,𝑗)

|𝑅𝑗|

𝑖=1

 + ∑ 𝑃(𝑢𝑖,𝑗)

|𝑅𝑗|+𝑑𝑗

𝑖=|𝑅𝑗|+1

, ∀ 0 < 𝑗 ≤ 𝑐 (22) 

where 𝑃(𝑢𝑖,𝑗) is the power model that returns the power of 

each router (𝑖 from 1 to |𝑅𝑗|) and 𝑃(𝑢𝑖,𝑗) returns the power of 

each D2D interface (𝑖 from |𝑅𝑗| +1 to |𝑅𝑗| + 𝑑𝑗).  

V. TOPOLOGY GENERATION ALGORITHM  

To solve the above problem, a reinforcement learning based 

algorithm is proposed in this section. The algorithm works on 

a search tree iteratively, with the root node being a fully 

connected topology as the initial solution, and each node 

branches new child node through actions selected by the UCD 

algorithm [51]. The algorithm disconnects the links iteratively 

to achieve the maximum robustness under area and power 

constraints. 

A. Initial Solution 

We use the state 𝒔 to represent the inter- and intra-chiplet 

interconnection network topology, and the state in the 
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algorithm as an 𝑁 × 𝑁 adjacent matrix (that is, the inter- and 

intra-chiplet network topology), where 𝑁 = ∑  (|𝑅𝑗| + 𝑑𝑗)𝑐
𝑗=1 , 

with ∑ 𝑑𝑗
𝑐
𝑗=1  being the number of D2D and ∑  |𝑅𝑗|𝑐

𝑖=1  being 

the number of tiles in the multi-chiplet system. Fig. 9 (a) 

shows the adjacency matrix of an inter- and intra-chiplet 

interconnection network topology. One can see from Eqn. (1) 

that APL is negatively correlated to γ, while AND, ACC, 𝑘𝑚𝑎𝑥, 

and 𝑘𝑚𝑜𝑠𝑡  have positive correlation with γ. The APL value of 

the fully connected network is the smallest, while AND, ACC, 

𝑘𝑚𝑎𝑥, and 𝑘𝑚𝑜𝑠𝑡  are the largest. Therefore, the topology with 

highest robustness without considering the area and power 

constraints corresponds to a fully connected network. We set 

the initial solution 𝒔𝟎 to be a matrix whose elements are all 1. 

B. Reward Function in the Reinforcement Learning 

An action in the reinforcement algorithm is a quadruple 

(𝑥, 𝑦, 𝑚, 𝑛), which corresponds to deleting the link between 

nodes 𝑢𝑥,𝑦 and 𝑢𝑚,𝑛. The reward for moving from state 𝒔𝟏 to 

state 𝒔𝟐 is 

𝑅(𝒔𝟏, 𝒔𝟐) = 𝛾(𝒔𝟐) − 𝛾(𝒔𝟏) + 𝑐1(𝐴(𝒔𝟏) − 𝐴(𝒔𝟐))

+ 𝑐2(𝑃(𝒔𝟏) − 𝑃(𝒔𝟐))                       (23) 

where 𝛾(𝒔𝒊) is the robustness of state 𝒔𝒊, 𝐴(𝒔𝒊) is the area of 

state 𝒔𝒊, 𝑃(𝒔𝒊) is the power of state 𝒔𝒊. The coefficients 𝑐1 and 

𝑐2 are used to bias the weights of robustness, area, and power 

in optimization. 

C. Strategy and Value Network 

Since the inter- and intra-chiplet network is modeled as a 

graph, in order to better converge along the search direction of 

the UCD algorithm, this paper uses ResGCN model [53] as the 

strategy and value network (denoted as the SV model). 

Fig. 9 (c) shows the entire strategy and value network of the 

topology generation method composed by multiple GCN and 

ResGCN blocks, and Fig. 9 (b) shows the ResGCN module 

where 𝐻 is the number of channels. The model fits both the 

strategy and the value functions. The convolution layer is 

followed by a batch normalization layer, and some 

convolution layers (highlighted in Fig. 9 (c)) are followed by a 

respective TopK pooling layer. The equation for each building 

block of ResGCN is as follows: 

𝓖𝑙+1 = ℱ(𝓖𝑙 , 𝓦𝑙) + 𝓖𝑙 (24) 

where 𝓖𝑙  is the input of the l-th layer, 𝓦𝑙  is the learnable 

parameter of the l-th layer, and ℱ(𝓖, 𝓦)  is the residual 

mapping. The final output strategy needs to be passed through 

Rectified Linear Unit (ReLU) [54] and normalized exponential 

function (softmax function) [55], where a 4 × 𝑁  matrix 𝑷 =
(𝑝𝑖,𝑗)  output is obtained, with 𝑝1,𝛽 , 𝑝2,𝛿 , 𝑝3,𝜎 , 𝑝4,𝜏  being the 

probabilities of 𝑥 = 𝛽, 𝑦 = 𝛿, 𝑚 = 𝜎, 𝑛 = 𝜏 respectively and 

∑ 𝑝1,𝛽
𝑁
𝛽=1 = 1, ∑ 𝑝2,𝛿

𝑁
𝛿=1 = 1, ∑ 𝑝3,𝜎

𝑁
𝜎=1 = 1, ∑ 𝑝4,𝜏

𝑁
𝜏=1 = 1. 

The SV model is defined as (𝑷, 𝑞) = 𝑔𝜽(𝒔), where 𝑷 is the 

predicted action probabilities, 𝑞 is the predicted reward. The 

training data is a triplet (𝒔, 𝝅, 𝑟), where 𝒔 is a state, 𝝅 is the 

vector of action probabilities, and 𝑟 is state reward. The loss 

function of the SV model is 

𝑙 = (𝑟 − 𝑞)2 − 〈𝝅, log 𝑷〉 + 𝑏‖𝜃‖2 (25) 

where 𝑏  is the regularization parameter, 〈𝝅, log 𝑷〉  are the 

inner product of 𝝅 and log 𝑷. In this paper, the SV model uses 

the Adam algorithm [52] for parameter optimization.  

D. Reinforcement Learning Algorithm 

Given a search tree 𝑇(𝑆, 𝐺), where 𝒔𝒊 ∈ 𝑆 is the search node, 

𝒔𝒊  is a state (i.e., an inter- and intra-chiplet interconnection 

network topology), and 𝑔𝑖,𝑗 = ( 𝒔𝒊, 𝒔𝒋) is the edge between 𝒔𝒊 

and 𝒔𝒋, 𝑔𝑖,𝑗 is an action of deleting a link in the topology. The 

UCD algorithm is used to search an action. 𝑛(𝑔𝑖,𝑗) and 𝜇(𝑔𝑖,𝑗) 

are visit number and average reward value of edge 𝑔𝑖,𝑗 in the 

search tree, respectively. The set of outgoing edges from the 

destination node of edge 𝑔𝑖,𝑗 is denoted as 𝑂(𝒔𝒋), and the set 

of outgoing edges from the source node of edge 𝑔𝑖,𝑗 is denoted 

as 𝑂(𝒔𝒊). As Fig. 10 shows, during iteration 5, state 𝒔𝟎 selects 

action 𝑎5  and results in state 𝒔𝟐  (in iteration 2, 𝒔𝟎  selects 

action 𝑎2  and it also reaches 𝒔𝟐 ). At this point, the current 

state is 𝒔𝟐 , the set 𝑂(𝒔𝟎) is {𝑔0,1, 𝑔0,2, 𝑔0,4} and set 𝑂(𝒔𝟐) is 

{𝑔2,3}. The visit number and average reward value of edge 𝑔𝑖,𝑗 

when 𝑂(𝒔𝒋) = ∅  are denoted as 𝑛′(𝑔𝑖,𝑗)  and 𝜇′(𝑔𝑖,𝑗) , 

respectively, and 𝑑 is the depth of backtracking. According to 

[51], in each iteration, the visit number (𝑛𝑑(𝑔𝑖,𝑗)), average 

reward (𝜇𝑑(𝑔𝑖,𝑗)), and parent node's visit number (𝑝𝑑(𝑔𝑖,𝑗)) of 

edge 𝑔𝑖,𝑗 are updated as follows:  

𝑛𝑑(𝑔𝑖,𝑗) = {

𝑛(𝑔𝑖,𝑗), 𝑑 = 0

∑ 𝑛𝑑−1(𝑓)

𝑓∈𝑂(𝒔𝒋)

, 𝑑 > 0 (26) 

𝜇𝑑(𝑔𝑖,𝑗) = {

𝜇(𝑒), 𝑑 = 0

𝜇′(𝑔𝑖,𝑗)𝑛′(𝑔𝑖,𝑗) + ∑ 𝜇𝑑−1(𝑓)𝑛(𝑓)𝑓∈𝑂(𝒔𝒋)

𝑛′(𝑔𝑖,𝑗) + ∑ 𝑛(𝑓)𝑓∈𝑂(𝒔𝒋)

, 𝑑 > 0
 (27) 

𝑝𝑑(𝑔𝑖,𝑗) = ∑ 𝑛𝑑(𝑓)

𝑓∈𝑂(𝒔𝒊)

 (28) 
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Fig. 9. The strategy and value network. 
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Fig. 10. An example of the search tree. 

According to the UCD algorithm [51], the upper confidence 

bound of edge 𝑔𝑖,𝑗 (𝑢𝑑1,𝑑2,𝑑3
(𝑔𝑖,𝑗 , 𝜌)) is as follows: 

𝑢𝑑1,𝑑2,𝑑3
(𝑔𝑖,𝑗 , 𝜌) = 𝜇𝑑1

(𝑔𝑖,𝑗) + 𝜃𝜌√
log 𝑝𝑑2

(𝑔𝑖,𝑗)

𝑛𝑑3
(𝑔𝑖,𝑗)

 (29) 

where 𝜃 is a constant, 𝑑1, 𝑑2, 𝑑3 are 1, 2, 3, which are tracing 

depths of 1, 2, 3, respectively. A larger 𝜃 makes the algorithm 

more inclined to explore new branches. 𝜌 is the probability of 

selecting the action corresponding to edge 𝑔𝑖,𝑗  given by the 

SV model. It can be seen that the selected action in state 𝒔 is:  

𝑎∗ = argmax
𝑎

 𝑢𝑑1,𝑑2,𝑑3
(𝑔(𝒔, 𝑎), 𝑴(𝒔) ∗ 𝑷(𝒔, 𝑎)) (30) 

where 𝑔(𝒔, 𝑎) is the edge corresponding to selecting action 𝑎 

in state 𝒔, 𝑷(𝒔, 𝑎) is the probability of selecting action 𝑎  in 

state 𝒔  given by the SV model, and 𝑴(𝒔)  is the adjacency 

matrix of state 𝒔. 

In summary, the topology generation algorithm includes the 

following steps in each iteration: 

1) Selection: Starting from the root node, actions are 

selected by using (30) until the current node is a leaf node. 

Node generation must be passed through a node hash table to 

avoid multiple nodes with the same state being created. It is 

performed as follows: the initial state is set to 𝒔𝟎 and nodes are 

stored in the hash table (ℎ𝑎𝑠ℎ_𝑡𝑎𝑏𝑙𝑒(𝒔)). The current state is 

set to 𝒔 = 𝒔𝟎. If the current node is not a leaf node, the SV 

model is used to calculate the probability distribution of 

actions 𝑷(𝒔, 𝑎) and reward 𝑞(𝒔), and an action is selected by 

using (30) to generate a new node.  

2) Expansion and evaluation: If the current state 𝒔  is a 

terminal state, the cumulative reward 𝑅(𝒔)  is obtained by 

calculating the path reward from the root node to the current 

node using the reward function; otherwise, for the current 

node 𝒔, children nodes corresponding to all feasible actions 

are created and the selection probability 𝑷(𝒔, 𝑎) of each action 

and the reward 𝑞(𝒔) of the state 𝒔 are predicted by using the 

SV model. The SV model is being trained on the results of 

search iterations. 

3) Backtracking: Edges related to the selected nodes are 

updated. The set of nodes on the traversal path is denoted as 𝐷, 

and the ancestors of node 𝒔𝒊 within distance 𝑑 is defined as 

𝚷𝒅(𝒔𝒋) = {
{𝒔𝒊}, 𝑑 = 0

{𝒔𝒊|𝑔𝑖,𝑗 ∈ 𝑂(𝒔𝒋)} ∪ 𝚷𝒅−𝟏(𝒔𝒊), 𝑑 > 0
(31) 

For edge 𝑔𝑖,𝑗 ∈ {𝑔ℎ,𝑤|ℎ, 𝑤 ∈ D ∪ 𝚷𝟏(𝒔)} , visit number 

𝑛(𝑔𝑖,𝑗)  is updated to be 𝑛(𝑔𝑖,𝑗) + 1 . For edge 𝑔𝑖,𝑗 ∈

{𝑔ℎ,𝑤|ℎ, 𝑤 ∈ D ∪ 𝚷𝟐(𝒔), average award 𝜇(𝑔𝑖,𝑗) is updated to 

be 𝜇(𝑔𝑖,𝑗) + Δ𝜇(𝑔𝑖,𝑗). For the incoming edges of the current 

node 𝒔 , Δ𝜇(𝑔𝑖,𝑗) = 𝑞(𝑠) ; for other edges, Δ𝜇(𝑔𝑖,𝑗) =
∑ Δ𝜇(𝑓)𝑛(𝑓)

𝑓∈𝑂(𝑔𝑖,𝑗)

𝑛′(𝑔𝑖,𝑗)+∑ 𝑛(𝑓)
𝑓∈𝑂(𝑔𝑖,𝑗)

.  

4) The above steps are repeated until the iteration upper 

bound is reached, and the leaf node with the highest reward is 

output. 

VI.A EXPERIMENTAL SETUP 

Our experiments were performed using the cycle-accurate 

multi-chiplet simulator [38] which can simulate both x86 and 

GPU multi-chiplet systems. The inter- and intra-chiplet 

network simulators can also run individually without cores 

with random traffic injection as input (i.e., network only 

mode). In the GPU multi-chiplet system, each network node is 

a graphics processing cluster (GPC), each of which has 

multiple texture processing clusters (TPCs) containing 

multiple streaming multiprocessors (SMs) and L1 caches. 

Additionally, there is both a private and shared TLB hierarchy 

assisted by a hardware page table walker (PTW). In the x86 

multi-chiplet system, multiple x86 many-core chiplets are 

connected by the inter-chiplet network. Table II lists the 

configurations of the multi-chiplet system simulators. 

Our benchmark suit has both random traffics and real 

applications. The random traffics are generated following the 

parameters specified in Table II by running the simulation 

with the network only mode. Additionally, there are two types 

of real benchmarks. The first set of real benchmarks are 

PARSEC and SPLASH-2 running on the x86 multi-chiplet 

system simulator with the configurations summarized in Table 

II. The second real benchmarks run on the multi-chiplet 

systems, including ResNet [29], Transformer [30], GCN [31] 

and CNN [32] for the GPU multi-chiplet system. The datasets 

of ResNet and CNN are CIFAR-10 [33] and MNIST [34], 

respectively. The dataset of GCN and Transformer both are 

VOC [35]. The benchmarks of neural network adopt the 

model parallelization approach as follows [36]. Each chiplet is 

responsible for computing tasks at one or more layers of the 

model. In the chiplet, the matrix multiplication of the data sets 

of the neural network is decomposed into multiple vectors 

multiplied by the matrix and assigned to different cores [37]. 

Both the baseline inter- and intra-chiplet topologies are mesh. 

The network sizes are 4×9, 4×16, and 4×36, where the first 

term is the chiplet count and the second term is the tile count 

per chiplet. 

The transmission latency is divided among three 

components: 1) packetization and depacketization times (the 

values are obtained from [61, 62]); 2) transceiver latency (the 
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values are obtained from [56, 57]); 3) interposer wire latency 

(values from [40]). 

The base area and power parameters used in this study 

come from reliable sources and are validated by simulations. 

Processor element areas within each chiplet are obtained from 

[43] and McPAT [60] for GPU and CPU based multi-chiplets, 

respectively. The power consumption of GPU and CPU multi-

chiplet systems is simulated using GPUWattch and McPAT, 

respectively. For routers and SRAM components, their area 

and power requirements are calculated using DSENT [46] and 

CACTI 6.0 [47] simulators, respectively. The network 

interface (NI) parameters, including area, power, and latency, 

are taken from [44]. Additionally, the area and  

TABLE II.  PARAMETERS OF THE EXPERIMENTAL PLATFORMS  

GPU chiplets 

Processor cores/clusters 15 

Warp size 32 

Shared memory/processor cores 48KB 

Texure cache size 8KB 

Constant cache size 12KB 

L1 data cache 16KB 

L1 instruction cache 2KB 

Memory per chiplet 

Bandwidth/memory module 8 Bytes / cycle 

DRAM request queue capacity 32 

Memory controller Out of order (FR-FCFS) 

x86 chiplets 

Core frequency 3GHz 

Main memory size 2GB 

Get/Decode/Submit Size  4/4/4 

ROB size 64 

L1 D cache (private) 16 KB 

L1 I cache (private) 32 KB 

L 2 cache (shared) 64 KB  

Inter- and intra-chiplet network 

Flit size 256 bits 

Packet size  5 

Network size 4×9, 4×16, and 4×36 

Number of virtual channels 1/2/4 

Input buffer size 2/4/8 

Routing algorithm XY-XY (Mesh-Mesh), XY-Torus 

XY(Mesh-Torus), routing 

table(other topologies) 

Random traffic pattern uniform, shuffle, bit traversal 

Packet injection rate 0.02-0.12 packet/cycle/router 

Intra-chiplet latency router: 2 cycles, link: 1 cycle 

Active interposer latency Interposer link latency model [40], 

PHY latency model [41], router: 2 

cycles 

Passive interposer latency Interposer link latency model [40], 

PHY latency model [41] 

Benchmarks 

Neural networks (for GPU) ResNet, GCN, Transformer, and 

CNN 

Data sets CIFAR-10, MNIST, VOC 

PARSEC and SPLASH-2 (for 

x86) 

vips, barnes, blackscholes, canneal, 

dedup, ferret, raytrace, 

fluidanimate, streamcluster, 

freqmine 

 

power consumption of the D2D (Die-to-Die) interface are 

based on [56]. The wire model in interposer is taken from [40]. 

Collectively, these sources establish a consistent experimental 

foundation and ensure accurate modeling. 

The proposed method is evaluated against previously 

proposed inter- and intra-chiplet interconnection networks, 

including Kite [6] and ButterDonut [5], where the number of 

chiplets is 4 and the number of cores per chiplet is 16. 

Additionally, the proposed method is compared against: 

1) On-chip network topology generation which uses genetic 

algorithm (GA) and Tabu. These algorithms are modified to 

consider a uniform partitioning of tiles into m chiplets, with 

specific two D2D interface configurations. 

2) Inter- and intra-chiplet interconnection networks based 

on well-known NoC topologies, which are categorized as 

Mesh-Mesh (both the inter- and intra-chiplet topologies are 

mesh), and Mesh-Torus (the inter-chiplet topology is mesh 

and the intra-chiplet topology is torus), and Mesh-Butterfly 

(the inter-chiplet topology is mesh and the intra-chiplet 

topology is generated by [48]). 

VI.B EXPERIMENTAL RESULTS  

A. Measuring the Error of the Proposed Robustness Model 

The γ  model defined in Eqn. (1) has been evaluated for 

accuracy. The robustness values computed by Eqn. (1) in the 

model γ𝑝  is compared against that obtained through 

simulation γ𝑎. The regression error is defined as follows: 

𝑒 =  |
 γ𝑝 − γ𝑎

 γ𝑎

|  ×  100% 

Fig. 11 shows the error of the γ model. One can see that the 

average error is 8.15%, which indicates that the accuracy of 

the γ model exhibits a fairly high degree of accuracy in 

predicting robustness values. The proposed γ model is also 

compared against other regression models, including the 

models based on power, exponential, and linear functions. As 

shown in Table III, the proposed γ model yields the lowest 

average among all tested models, while the others have an 

error rate exceeding 10%. 

0
2
4
6
8

10

Er
ro

r 
(%

)

fault attack  

Fig. 11. Error of the proposed robustness model in Eqn. (1). 

TABLE III.  THE ERRORS OF DIFFERENT REGRESSION MODELS 

Model Form Error 

Power 𝑓(𝑥) = 𝑎ϒ𝑏 25.7% 

Proposed 𝑓(𝑥) = 𝑎ϒ + 𝑏 5.3% 

Exponential 𝑓(𝑥) = 𝑎(exp(𝑏ϒ)) 12.8% 

Linear fitting f(x)=a(sin(ϒ-pi))+b(ϒ-10)2+c 11.3% 
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B. Performance Evaluation with Random Benchmarks 

The proposed method has been applied to the random 

traffics with packet injection rates ranging from 0.02-0.2 

packet per cycle per router, and the results are shown in Fig. 

12.  
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(g) 

Fig. 12. (a) Robustness with active interposer. (b) Robustness with passive 
interposer and random traffics, where the packect injection rate is 

0.002-0.02 packet/cycle/router. (c) The node distributions of different 

topologies. (d) The cumulative distributions of ButterDonut and the 
proposed method. (e) The cumulative distributions of Kite and the 

proposed method. (f) Normalized communication latencies with active 

interposer and (g) passive interposer.  

tile

D2D

 

Fig. 13. The generated topology with a total tile count of 36. 

Here, we examine the case with a total of 64 tiles. The 

robustness, area, power and communication latency of other 

networks are normalized to those of our proposed method. 

One can see from Fig. 12 (a) that the proposed method 

increases the robustness by 15.76%, 10.88%, 17.13%, 10.88%, 

14.06%, 4.65%, 12.5% and 12.5%, 7.81%, 9.37%, 9.37%, 

7.81%, 6.24%, 9.37% over Mesh-Mesh, Mesh-Torus, Mesh-

Butterfly, ButterDonut, Kite, GA, Tabu under random faults 

and targeted attacks with active interposer, respectively. 

Similar improvements in robustness are observed under 

random faults and target attacks with a passive interposer, as 

shown Fig. 12 (b). Specifically, the proposed method increases 

the robustness by 14.26%, 9.38%, 15.62%, 9.38%, 12.5%, 

6.13%, 12.94% and 10.95%, 6.25%, 9.38%, 7.82%, 7.82%, 

6.25%, 7.82%. The proposed topology's more uniform 

distribution of node degrees is identified as a key factor 

contributing to its enhanced robustness, as shown in Fig. 12 

(c). In particular, 80% of nodes have a degree of 4, while 20% 

have a degree of 6, which allows the network to withstand 

failures more effectively. Note that having too many nodes 

with high degree raises area and power consumption, while 

having too many nodes with low degree reduces robustness. A 

degree of 4 is thus a balanced choice, offering a good trade-off 

between robustness and area. Consequently, most nodes in the 

network converge to a degree of 4. Although the Kite and 

ButterDonut topologies can reach a maximum degree of 8, 

only 14.2% of their nodes do so—fewer than in the proposed 

topology, where 20% of nodes reach a degree of 6. As shown 

in Figures 12(d) and 12(e), the proposed topology reaches a 

cumulative distribution probability of 1 at degree 6, whereas 

Kite and ButterDonut both do so at degree 8. Once nodes with 

the highest degree become targets of an attack, overall 

network performance declines significantly. 

From Fig. 12 (f) and (g), one can see that with the increase 

of injection rate, the network latency increases gradually. 

However, the proposed method always has the minimal 

latency, i.e., it reduces the communication latency by 30.8%, 

12.4%, 14.3%, 11.7%, 14.75%, 13.95%, 10.3% and 33.3%, 

13.7%, 16%, 13.9%, 15.9%, 14.6%, 11.2% over Mesh-Mesh, 

Mesh-Torus, Mesh-Butterfly, ButterDonut, Kite, GA, Tabu 

with active and passive interposers, respectively.  
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The generated topology with a total tile count of 36 is 

shown in Fig. 13. This topology can be implemented using 

existing chiplet integration technologies. 

C. Sensitivity Analysis 

The proposed method consistently improves network 

robustness when compared to ButterDonut, Kite, GA, and 

Tabu under various total tile counts (36, 64, and 144) under 

random faults and targeted attacks, as depicted in Fig. 14. In 

Fig. 14 (a), under random faults, the proposed method 

increases the robustness by 8.33%, 11.1%, 5.55%, 8.33% over 

ButterDonut, Kite, GA, Tabu with a total tile count of 36. It 

also increases the robustness by 10.94%, 14.06%, 4.69%, 

12.5% over ButterDonut, Kite, GA, Tabu with a total tile 

count of 64, and 9.89%, 8.90%, 7.68%, 10.98% with a total 

tile count of 144. Moving on to Fig. 14 (b), under targeted 

attacks, one can see that the proposed method increases 

robustness by 7%, 5.2%, 5.6%, 8.2% and 9.37%, 7.81%, 

6.24%, 9.37% and 7.13%, 8.69%, 8.69%, 7.15% over 

ButterDonut, Kite, GA, Tabu with total tile counts of 36, 64, 

and 144, respectively. It is worth noting that the network 

robustness under targeted attacks is significantly lower than 

that under random faults.  

Targeted attacks specially disable nodes with the highest 

degree, leading to a fast network disconnection.  

As shown in Fig. 14 (c), the proposed method reduces 

latency by 2.41%, 6.29%, 4.52%, 6% and 17.25%, 10.88%, 

6.48%, 8% and 15.78%, 11.06%, 8.99%, 7% over 

ButterDonut, Kite, GA, Tabu with total tile counts of 36, 64, 

and 144, respectively. This indicates that the network 

performance improvement due to the proposed method 

becomes more pronounced with larger node sizes.  

Evaluation results regarding the impact of VC (virtual 

channel) number and buffer size on network latency are shown 

in Fig. 14 (d) and (e). In this assessment, we consider cases 

with VC numbers of 4, 6, and 8 and buffer sizes of 2, 4, 8. The 

proposed method decreases latency by 13.76%, 18.14%, 

9.86%, and 16% over ButterDonut, Kite, GA, Tabu with VC 

numbers of 4, 6 and 8. It also decreases latency by 14.97%, 

14.61 %, 14.61% and 19.66%, 18.99%, 18.99% over 

ButterDonut and Kite with buffer sizes of 2, 4 and 8, 

respectively. The results suggest that the number of virtual 

channels and buffer size have minimal impact on network 

latency.  

Finally, Fig. 14(f) presents experimental results on how the 

number of D2D interfaces affects network robustness. Three 

configurations are evaluated, with D2D counts of 1, 2, and 4. 

As shown in Fig. 14(f), increasing the number of D2D 

interfaces bolsters network robustness. For a network with 36 

tiles, the proposed method’s robustness exceeds the 

configurations with 1 and 2 D2D interfaces by 16.12% and 

9.3%, respectively. In a 64-tile network, those increases stand 

at 18.15% and 9.66%, respectively, and in a 144-tile network, 

they reach 23.15% and 12.25%. Notably, as the network size 

grows, the robustness benefits become more substantial. This 

indicates that additional D2D interfaces provide more 

alternative paths and enhanced connectivity, both of which are 

essential for preserving performance and fault tolerance in 

larger topologies. 
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Fig. 14. (a) Robustness under random faults; (b) robustness under targeted 

attacks; (c) communication latencies with different node sizes; (d) 

communication latencies with different VC numbers; (e) 
communication latencies with different buffer sizes; (f) robustness 

with different D2D number and network sizes. 

D. Performance Evaluation Using PARSEC and SPLASH2 

Benchmarks 

Performance of the proposed method using PARSEC and 

SPLASH2 benchmarks are assessed, and the results are shown 

in Fig. 15. In this evaluation, we exclusively focus on the 

execution and communication latency of the network, since 

the robustness, area, and power consumption of each network 

are primarily influenced by the topology structures, rather than 

the benchmarks themselves. Fig. 15 (a) and (b) demonstrate 

that the proposed method consistently reduces the execution 

time, achieving improvements of 12.4%, 11.9%, 10.81%, 

10.46%, 9.8%, 9.5%, 9.79% and 11.51%, 10.67%, 9.61%, 

8.96%, 8.52%, 8.05%, 8.99% over Mesh-Mesh, Mesh-Torus, 

Mesh-Butterfly, ButterDonut, Kite, GA, Tabu, considering 

both active and passive interposers, respectively. Moving on 

to Fig. 15 (c) and (d), one can see that the proposed method 

also reduces communication latency effectively, achieving 

reductions of by 25.3%, 11.1%, 9.86%, 8.34%, 13%, 9.9%, 

9% and 23.9%, 10.7%, 9.35%, 7.54%, 12.75%, 9.5%, 8.5% 

over Mesh-Mesh, Mesh-Torus, Mesh- Butterfly, ButterDonut, 

Kite, GA, Tabu, considering both active and passive 

interposers, respectively. These results underscore the efficacy 

of our approach in enhancing network performance across a 

range of benchmarks and network configurations. 
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Fig. 15. (a) Application execution times with active interposer and (b) 

passive interposer. (c) Communication latencies with active interposer 

and (d) passive interposer running PARSEC and SPLASH2 

benchmarks.  

E. Performance Evaluation with Neural Network Applications 

We evaluate different networks with different neural 

network benchmarks in Fig. 16. In Fig. 16 (a) and (b), it is 

evident that the proposed method reduces the execution time, 

achieving improvements of 21.59%, 15.7%, 12.65%, 8.37%, 

6.94%, 8.21%, 8.43% and 19.59%, 12.95%, 9.65%, 7.62%, 

4.94%, 7.91%, 8.41% over Mesh-Mesh, Mesh-Torus, Mesh-

Butterfly, ButterDonut, Kite, GA, Tabu with active and 

passive interposers, respectively. Moving on to Fig. 16 (c) and 

(d), one can see that the proposed method also leads to a 

notable reduction in communication latency, with 

improvements of 23.79%, 17.5%, 14.64%, 10.87%, 9.19%, 

9.66%, 9.53 % and 21.84%, 16.9%, 13.64%, 9.62%, 7.94%, 

8.91%, 9.16% over Mesh-Mesh, Mesh-Torus, Mesh-Butterfly, 

ButterDonut, Kite, GA, Tabu, considering both active and 

passive interposers, respectively. 

F. Performance Evaluation on FPGA-Based Multicore System 

We evaluated the proposed method on a multicore system 

on Xilinx vu3p FPGA. The multicore system uses PULPino 

[42] as the processor cores, and OpenPiton [48] as the uncore 

(NoC and NoI, memory, etc.). The configurations of PULPino 

and OpenPiton follow the default configurations from [49] and  
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Fig. 16. (a) Application execution times with active interposer and (b) 

passive interposer. (c) Communication latencies with active interposer 

and (d) passive interposer running different neural network 

applications. 
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Fig. 17. (a) Robustness and (b) communication latencies with different 

percentages of faulty nodes. (c) Resources utilization of the networks. 

 
(a) 

 
(b) 

Fig. 18. (a) Normalized areas and (b) powers with different network sizes. 

[50], respectively. The configuration of the inter- and intra-

chiplet network is the same as in Table II. The robustness and 

latency of the proposed method with the different proportions 

of faulty nodes are shown in Fig. 17. From Fig. 17 (a) and (b), 

one can see that the proposed method increases the robustness 

by 15.82%, 10.8% and reduces the communication latency by 

29.3%, 11.5% over Mesh-Mesh, Mesh-Torus, respectively. 

From Fig. 17 (c), one can see that resource utilization of the 

proposed method is slightly higher than Mesh-Mesh, Mesh-

Torus, however, the resource usage is still within the threshold 

(the maximum resource of the FPGA). 

G. Area and Power Evaluation 

Area and power of the proposed method are compared and 

shown in Fig. 18. Fig. 18 (a) and (b) demonstrate that the 

proposed method has similar area and power consumption 

compared to other topologies. 

VII. CONCLUSION  

Inter- and intra-chiplet interconnection networks serve as 

the backbone of multi-chiplet systems, providing the essential 

framework to enable efficient communication, scalability, 

fault tolerance, and performance optimization. In this paper, 

robustness of inter- and intra-chiplet interconnection networks 

was modelled and characterized by various network 

parameters, including the average clustering coefficient 

(ACC), average shortest path length (APL), average neighbor 

degree (AND), the most frequent degree value of 

topology (𝑘𝑚𝑜𝑠𝑡 ), and the highest degree value of topology 

(𝑘𝑚𝑎𝑥) . An optimization problem was subsequently 

formulated, aimed at generating network topologies that 

maximize robustness while adhering to the power and area 

constraints. To tackle this problem, an efficient reinforcement 

learning algorithm was proposed. Experimental results 

demonstrated that our proposed method significantly enhances 

network robustness. Under random faults, our approach 

achieved improvements of 15.76% over Mesh-Mesh, 10.88% 

over Mesh-Torus, 17.13% over Mesh-Butterfly, 10.88% over 

ButterDonut, 14.06% in Kite, 4.65% over GA, and 12.5% over 

Tabu.. These outcomes underscore the suitability of our 

approach for generating resilient large scale inter- and intra-

chiplet networks, which are essential for the development and 

deployment of multi-chiplet based many-core systems.  
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