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RENOWNED: A Real-time Anomaly Detection and
Mitigation Framework in Edge-Enabled IoV

Chandrajit Pal, Sangeet Saha, Xiaojun Zhai and Klaus McDonald-Maier

Abstract—The rapid adoption of smart vehicles and their
interconnection through the Internet of Vehicles (IoV) has in-
creased the use of Electronic Control Units (ECUs) in cars. These
ECUs, while enabling advanced features, also present a larger
target for cyberattacks, which can disrupt critical functions and
jeopardize safety. The time-sensitive nature of automotive systems
necessitates swift responses, making the protection of ECUs
crucial. The imprecise computation (IC) task model can mitigate
the risk of task completion failures by generating acceptable
approximation results within deadlines when achieving absolute
accuracy becomes difficult within fixed deadlines and energy
budgets. This paper introduces RENOWNED, a solution that
ensures the normal functioning of these Controller area networks
(CAN) controlled ECUs even in the face of anomalies. It com-
bines anomaly detection and mitigation through the HEALING
module to maintain the desired performance. The anomaly
detection module uses Graph Attention Networks (GAT) to
identify unusual processor behaviour. If an anomaly is detected,
the HEALING module takes over, reallocating tasks based on
the available resources to guarantee that deadlines are met and
energy constraints are not exceeded. Experiments have shown
that RENOWNED delivers a Quality of Service (QoS) of 25%
to 64% when system utilisation is varied in the range from
40% to 90%. It exhibits an excelling performance in detecting
anomalies, achieving a 97.6% accuracy even when the magnitude
mixed anomaly signals are very minute. Thus our proposed
RENOWNED offers a robust way to enhance the reliability
and energy efficiency of safety-critical automotive applications
prevalent in IoV.

Index Terms—Imprecise Computation (IC), energy-aware
scheduling, quality of service (QoS), Precedence-constrained Task
Graphs (PTGs), Normalised QoS (NQ), Hardware Performance
Counters (HPCs), Graph Attention Networks (GAT), Internet of
Vehicles (IoV), Electronic Control Units (ECUs).

I. INTRODUCTION

THe growing integration of smart vehicles into the Internet
of Vehicles (IoV) has brought about a significant increase

in the use of CAN controlled Electronic Control Units (ECUs) 
present within an automobile responsible for performing es-
sential functions like V2X (Vehicle-to-Everything) commu-
nication, V2V (Vehicle-to-Vehicle) interaction, and a multi-
tude of internal vehicular functionalities including sensing, 
signal processing, actuating and various infotainment [1], [2]. 
While this connectivity enhances vehicle capabilities, it also 
creates a larger attack surface for cyber threats, potentially 
leading to disruptions in vehicle operation and safety risks. 
The end goal of most cyberattacks on vehicles is to disrupt 
the normal functioning of the interconnected ECUs within
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a vehicle as illustrated in Figure 1. Hence, protecting these
ECUs is crucial for continuing their normal functioning and
meeting the hard real-time functioning nature. Critical task
functions like sensing, braking and steering require immediate
responses. Therefore, failing to meet task deadlines due to an
external attack on them can be disastrous [3]. These ECUs
are practical examples of hard real-time embedded devices
that operate with limited resources and power, where partially
accurate results obtained within a given deadline and energy
budget are preferable to fully accurate results obtained after
these constraints [4]. For instance, in V2V communication
sensing video streams with lower-quality frames obtained
before a deadline is preferable to entirely missing frames. An
approximate location estimate within a deadline is preferable
to an accurate location obtained too late in target tracking [5].

The applications running directly on these ECUs controlling
the vehicular hardware are generally modelled as Precedence-
constrained Task Graphs (PTGs) [6], [7] where, a node
represents a task associated with the application, while an
edge denotes interdependencies among tasks. Despite the
battery-operated components’ resource-constrained nature and
restricted energy budgets, these interconnected ECUs must
deliver superior performance and high-quality services [8].
Because of the fixed energy budget, an Imprecise Computation
(IC) task model [9] can help reduce the risk of task completion
after the deadline. This is achieved by generating an acceptable
approximation result within a deadline if the system is unable
to provide an accurate result on time. In this approach, a task
can be decomposed into necessary and optional components
[5]. To produce the minimum acceptable QoS, all necessary
components must be executed before the deadline. Depending
on resource availability, the optional component may then
be partially or fully executed to increase the accuracy of
the initial output obtained within the deadline—the more
execution cycles used on the optional component, the higher
the QoS.

Recent research focuses on the problem of energy-efficient
real-time scheduling of IC tasks to enhance performance while
adhering to the underlying system constraints. In [10], the
authors proposed a scheduling mechanism which performs
additional computations, when there is more energy available,
and accepts imprecise results, when the energy budget is
limited. However, their study is limited to independent tasks.
Authors in [11], [12], [13] considered dependent IC tasks
and proposed utilising dynamic voltage frequency scheduling
DVFS for designing energy-efficient scheduling strategies.
However, when DVFS decreases the supply voltage and fre-
quency to save power, the system’s soft error and transient fault
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Fig. 1: A typical Internet of Vehicles scenario

rates increase dramatically, decreasing the system’s reliability
[14]. Wang et al. [15] proposed to determine an optimal energy
frequency in multiprocessor platforms as a workaround.

Modern multi-ECU-based automotive systems are often
subjected to faults resulting from run-time errors, preventing
them from normal functioning [16]. Intrusions like hardware
trojan attacks tend to slow down a processor’s speed result-
ing in real-time applications missing its deadline [17], [18].
Malware can also result in unintentional power dissipation
when the energy budget is fixed, which exhausts the system’s
energy budget and renders it unusable [19], [20]. As a result,
real-time systems fail to accomplish their tasks within the
deadline. This makes it crucial to implement error-resilient
security modules capable of identifying these anomalies and
implementing suitable measures for their mitigation to ensure
a proper continuation of system execution within a vehicle.
Hence, given a task graph and a multi-ECU-based automotive
application, the successful execution of all associated tasks
within the given deadline by mitigating any runtime error
while satisfying energy and precedence-related constraints is
a challenging problem in IoV.

In this manuscript, we propose RENOWNED, consisting of
a reliability-aware scheduler that ensures the system maintains
a desired QoS despite having any anomalies through intelligent
detection and mitigation procedures. We considered a multi-
ECU system and dependent real-time IC task graph simulating
an automotive safety-critical application shown in Figure.
3. RENOWNED schedules the tasks by allocating them to
appropriate processors at specific time instants, following a
predefined scheduling strategy and QoS. At runtime, if addi-
tional power dissipation during task execution is observed, or
if a task cannot be finished within the designated time resulting
in a reduction of desired QoS, the anomaly detection module is
enabled, which finds the presence of an anomaly in the system
(through a detailed analysis based on the correlation among
multiple observed Hardware Performance Counters (HPCs)
being traced from the ECUs), if any and labels the correspond-
ing processing core of an ECU as faulty. Thereafter a new
schedule is generated based on the available energy budget,
remaining execution time and the available idle processing
cores as depicted in Figure. 2. The new schedule guarantees
that every necessary and maximum possible optional portion

will be completed within the energy budget to obtain the best
possible QoS. RENOWNED’s suitability is demonstrated and
proven by the obtained high Normalised QoS (NQ) defined in
Equation 8.

RENOWNED showcases several novelties compared to ex-
isting methodologies as it integrates anomaly detection and
mitigation, ensuring continuous operation even in the middle
of disruptions. It performs fine-grained anomaly detection at
the hardware level, using GATs to analyze correlations among
multiple HPCs and identify subtle anomalies with high accu-
racy. It efficiently schedules dependent IC tasks, intelligently
allocating necessary and optional components based on energy
and deadline constraints. Furthermore, it balances QoS and
energy consumption under attacks, dynamically reallocating
tasks and adjusting frequencies to maintain desired QoS while
meeting energy constraints.

The following summarises the contributions of
RENOWNED:

1) RENOWNED schedules dependent IC tasks by execut-
ing the entire necessary components and appropriate op-
tional components based on the available energy budget
and deadline.

2) At runtime, our intelligent graph attention network-
based runtime security mechanism can recognise abnor-
malities in processor performance by finding a corre-
lation among multiple observed Hardware Performance
Counters (HPCs) of multi-ECU cores at a fine granular
hardware level. It excels at detecting anomalies, achiev-
ing a 97.6% accuracy even when the mixed anomaly
signals are very subtle.

3) Given an IC task graph in a multi-ECU-based automo-
tive application, RENOWNED maintains the Quality of
Service of 25% to 64% when system utilisation is varied
in the range from 40% to 90%.

Fig. 2: RENOWNED FLOW CHART

II. SYSTEM MODELLING AND ASSUMPTIONS

A. Processing core Model
We consider an evaluation platform consisting of homo-

geneous multiprocessing ECU cores with p processing cores
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represented as C = {c1, c2, ..., cp}. Each core is characterised
by discrete voltage, power and frequency levels. The next
subsection will describe behavioural task modelling.

B. Task modelling

Considering a real-time vehicular application (A) that is
represented by a PTG (Figure 3) which is directed and acyclic
expressed as Gr = (Tk, Ed), where Tk denotes a task set
(Tk = {Tki | 1 ≤ i ≤ |Tk|}) and Ed a list of directed edges
(Ed = {⟨Tki, Tkj⟩ | 1 ≤ i, j ≤ |Tk|; i ̸= j}), illustrating
the precedence relationships among different task pairs. An
edge ⟨Tki, Tkj⟩ denotes precedence such that task Tkj cannot
initiate execution until Tki completes.

Since this is a real-time application, all associated task
nodes must be executed within the interval for the entire
application (A) to meet its deadline. We decomposed every
task Tki (1 ≤ i ≤ n) into a necessary component expressed
as Ni, together with an optional component OPi. Executing
the necessary components is required to achieve an acceptable
result. Only after the necessary component Ni has been
completed the optional component OPi is executed either
partially or entirely.

For every task Tki, the execution length can be represented
as:

Li = Ni + λ×OPi (1)

where λ consists of n discrete values and represents the portion
of the executed optional component. Consequently, λ = 1
indicates the execution of entire OPi units to produce the
most accurate result possible. The total of the OP component
cycles executed for each task determines the system-level
result accuracy or the quality of service (QoS). It is also
assumed that there are ni distinct task versions Tki; i.e.
Tki = {T 1

ki, T
2
ki, . . . , T

ni

ki }. For example as shown in Fig. 7 b.
the optional portion of the first task Tk1 in the usual scenario,
is 14. This means the complete range of λ i.e. 0 to 1 is divided
into 14 parts and in the anomaly scenario a reduced range of
the optional components is executed based on an anomalous
situation to mitigate the harmful effects of the attack.

The energy consumption Ei of task Tki having the length
Li is expressed as [21]:

Ei = Li × POWi (2)

where POWi represents the power consumption of the
processing core executing task Tki. The equation denotes
that the longer the task, the more energy it will consume to
complete it. Conversely, more execution of the optional portion
(which lengthens the task) will lead to more improvements
in task accuracy, which will ultimately improve the system’s
QoS. The scheduling goal will be maximising the QoS by
running a higher version of every task while minimising
energy.

III. THREAT MODELLING

Threats typically arise from intentional or natural causes.
Intentional manual threats in an Internet of Vehicles (IoV) are
carried out by intruders, where adversaries introduce malware

Fig. 3: (a) Dynamic in-vehicular control module [22], (b) Its
corresponding Task Graph

in firmware or inject hardware-based faults in working ECUs
through network communication, causing delays, execution
termination, and power draining etc. Below is a list of latent
threats [23], [24]:

A. Execution termination of a processing core

This could happen as a result of a runtime error or a
hardware trojan-like malware that has been introduced, which
prevents it from working as represented in Figure 4.b with the
normal scenario shown in Figure 4.a.

B. Unexpected task execution delay

Malware or ageing processor hardware are the two possible
causes of this. This prevents the real-time system’s ability to
complete within a deadline as shown in Figure 4.c.

C. Intentional draining of power

This generally occurs due to malware implanted by adver-
saries. Besides unwanted delay resulting in additional power
draining, deliberate malware has its separate power-dissipating
circuitry that executes simultaneously to the original circuit.
They might not affect the timing but if they go unnoticed, they
will lead to high power consumption and eventually exhaust
the system’s energy budget. The PTG’s tasks closer to the
sink won’t have sufficient energy to accomplish their task
completion if the energy budget is depleted in the early or
middle phases. As a result, the system will be unable to finish
the tasks before the deadline as illustrated in Figure4.d.

D. Reduced QoS

When the measured QoS reduces a predefined threshold it
denotes an anomalous situation.

IV. PROPOSED METHODOLOGY

RENOWNED consists of two major design blocks namely
the Monitoring and Anomaly Detection (MAD) block and the
remedial scheduling block (HEALING) (Figure 2). The system
RENOWNED initiates its execution based on a predefined
normal schedule (process 1). During its execution, the MAD
block (process 2) detects the threats through the following
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Fig. 4: Illustrating the threat Model

three observations with the monitored time of execution and
power dissipation of individual processing cores. If this sur-
passes the predefined recorded values and the monitored QoS
is reduced below a predefined threshold, the system enables
the anomaly detection module in the MAD block, which if
confirms the presence of an anomaly, marks the corresponding
processing core as faulty. As a substitute it restores a backup
core and increases its operating frequency and the HEALING
module is called which generates a new schedule based on
the remaining energy budget and application deadline and the
available processing cores at that instant of time (process 3).

A. Anomaly detection and Mitigation Implementation

Our proposed security implementation covers two aspects,
namely anomaly detection and mitigating its effects through
our proposed HEALING module.

1) Alert for Anomaly: The threats discussed in Section III
indicate anomalous situations. Three factors—power, timing
and QoS variations are used as indicators of anomalous
situations.

Timing based alert: Defects, ageing, and deliberate delays
can all be found with detection based on the parameter timing.
The security module of a processing core keeps track of the
beginning and end times of a specific task. If the execution
time that is observed is longer than a predefined threshold
completion time, it indicates an anomalous situation and
enables the anomaly detection module to begin functioning
(Algorithm 1) MAD.

Power and QoS based alert: Besides unwanted delay re-
sulting in additional power draining, deliberate malware has

Algorithm 1: Enforcing Security Measure: Monitoring
and Anomaly Detection (MAD)

Input: i. Observed Time and Power information obtained
from sensors,

ii. Threshold QoS.
iii. Predefined Time and Power information,
iv. Measured QoS.
Output: Processor core labelled as normal/faulty

1 for every Task Tki running on Processing core PCi do
2 if (Observed Power consumption > Predefined Power

consumption) ∨
3 (Observed Time > Predefined Time) ∨
4 (Measured QoS < Threshold QoS) then
5 Call and enable anomaly detection module; /* Refer

Figure 5 */
6 if FAULTY==1 then
7 Processoring core CPi is labelled faulty;
8 Call HEALING (i.e Algorithm 2) to schedule

the remaining tasks on the non-faulty healthy
processing cores (substituting the faulty core
with a backup core executing at high
frequency);

9 else
10 Go to step 12;

11 else
12 Reflects normal scenarios and follows the regular

schedule of execution;

its separate power-dissipating processes that execute simul-
taneously to the original circuit that uses up the system’s
energy budget by dissipating excessive power. The security
module determines if the observed power consumption ex-
ceeds a predefined threshold power consumption, it enables
the anomaly detection module which detects the presence of
faults if any, and labels the corresponding processing core
as faulty. Following this, a standby core is restored and is
made to function at an increased frequency, and the scheduler
module is re-executed to schedule the remaining tasks on the
unaffected processing cores within the available energy budget
before the deadline. Similar actions are repeated for generating
a fresh schedule if situations described in subsection III-D
arise (Algorithm 1).

In our current implementation, the operating frequency of
the backup core is set to be higher than that of the faulty
core to compensate for the potential delay in executing the
remaining tasks before the deadline and available remaining
energy. We employ a heuristic approach to determine the
frequency, balancing the need for faster execution with energy
constraints. This involves selecting the lowest frequency level
among the available options that still ensures the timely
completion of all remaining tasks within the energy budget.

2) Proposed Anomaly detection module: Our anomaly de-
tection mechanism operates at a fine-grained hardware level,
utilising the correlation among multiple HPCs. These HPCs
are specialized registers within the processor that track various
hardware events, such as cache misses, branch predictions, and
instruction counts (referring to Fig. 5).

• HPC Data Collection: We begin by collecting time-series
data from the HPCs while executing benchmark programs
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Fig. 5: Anomaly detection module (refer MAD block in Figure 2)

on the ECUs. This data reflects the normal behaviour of
the processor under typical workloads.

• GAT-Based Correlation Modeling: The collected HPC
data is then used to train two Graph Attention Net-
works (GATs). GATs are a type of neural network
well-suited for capturing relationships and dependencies
within graph-structured data. In our study, the Hardware
Performance Counters (HPCs) are the node features, and
the relationships (correlations) among these HPCs are the
edge features. The HPCs are represented as nodes in a
graph, and the GATs learn the intricate correlations and
dependencies among them. Two GATs operate simulta-
neously: one for extracting signal pattern features and
another for extracting temporal features.
Node Features: The GATs learn node features (em-
beddings) by aggregating information from neighbouring
nodes. Each GAT layer updates the representation of a
node by attending to its neighbours’ features. The atten-
tion mechanism allows the GAT to weigh the importance
of different neighbours based on their feature values.
Edge Features: The edge features are implicitly captured
in the attention mechanism. The attention weights (rij)
assigned to edges reflect the strength and importance
of the relationship between connected nodes. Temporal
Features: The temporal GAT specifically focuses on
capturing temporal dependencies in the time-series data.
It learns how the values of HPCs change over time and
how these changes correlate with each other. Embed-
dings: The final output of the GATs is a set of learned
embeddings (feature vectors) for each node (HPC timer).
These embeddings capture the complex relationships and
patterns within the HPC data, both spatially (between
different HPCs) and temporally (over time).

• GRU for Temporal Dependencies: To further capture the
temporal dynamics within the HPC data, we employ a
Gated Recurrent Unit (GRU). GRUs are a type of recur-
rent neural network that excels at modelling sequential

data and capturing long-term dependencies. The node
embeddings from the two GATs are concatenated and
fed into a Gated Recurrent Unit (GRU). The GRU further
refines the feature representation by capturing long-term
dependencies in the time-series data. It learns how the
patterns and relationships between HPCs evolve over
longer time intervals.

• Reconstruction and Forecasting: The output of the GRU
is fed into two parallel models: a reconstruction model
and a forecasting model. The reconstruction model, a
variational autoencoder (VAE), learns the underlying data
distribution of the HPC time series. The forecasting
model focuses on predicting future HPC values based on
past trends.

• Anomaly Inference: By jointly optimizing the recon-
struction and forecasting models, we obtain an anomaly
inference score. This score reflects the likelihood of
a given HPC data point being anomalous, considering
both its deviation from the expected distribution and its
deviation from predicted values.

While executing benchmark programs, virtual and physical
timer values are generated at four different privileges while
we execute the benchmark programs in the processing cores,
which we used to train our graph neural net-based attention
model (Figure 5).

Referring Figure 5 the problem definition is expressed
as: The values from the multi-variable time series generated
during program execution are tmϵRTL×fn

n , where TL, fn
and Rn represent the length of the maximum timestamp, the
no. of input features and real number respectively. Longer
time series is handled by leveraging a fixed-length sliding
window WT as input. An anomaly in the ith timestamp
is indicated by Riϵ(0, 1), which is the multi-variable times
series response RϵRWT

n . Hence, we initiate by modelling the
inter-feature correlations and temporal dependencies utilising
two GATs operating simultaneously. Following this, a Gated
Recurrent Unit (GRU) is placed to extract the long-term data
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dependencies in the sequence. In the following sequence, we
designed a tiny variational autoencoder-based reconstruction
and forecasting model for jointly optimising an integrated
objective function.

The process is initiated by feeding the input from various
HPC registers as time series sequential data produced while
executing the benchmark programs and it is then subjected
to normalisation followed by single-dimension convolution
(with kernel size set to 5) for extracting high-level features
from the time series HPC variables [25]. The normalisation
is performed considering the maximum and minimum values
present in the labelled dataset and is expressed as:

t̃N =
tm−min(tmlabel)

max(tmlabel)−min(tmlabel)
(3)

Each timer variable (i.e High-Performance Counter HPC)
tmi is treated as a separate feature variable modelled as a
node vi of the graph shown in Figure 6, and the relationships
rij among such nodes are the corresponding edges eij . The
resultant attention score R is computed taking into account
the contribution of adjacent nodes as the neighbouring HPC
nodes equated as:

Ri = σ(

N∑
j=1

rijtNj) (4)

where σ is the sigmoid activation function, the edges eij
are represented by rij which measures the attention score
representing the contribution of adjacent nodes(timers tmj in
our study) from i to j and N is the no. of neighbourhood
HPC timers of j. Both feature- and time-oriented GATs are
used to model the correlations between the multiple feature
variables (i.e., timer registers) and the time series temporal
dependencies simultaneously. These GATs are used to generate
a learned relationship among the various HPCs. This allows
for identifying any discrepancies that may arise when utilising
an untrained routine arising out of threats.

Referring to Figure 5 the output obtained from the two GAT
models is concatenated and fed into a 24-unit (GRU model size
492 KB) layer expressed as:

Ri(feature) +Ri(temporalfeature) + t̃N → GRU

GRU → Tg (5)

This is followed by a GRU layer to record time-series
sequential patterns. The output of the GRU model is fed into
both the reconstruction and forecasting models in parallel. The
reconstruction model aims to learn the marginal data distribu-
tion by gaining knowledge of a latent representation of the
entire time series, whereas the forecasting model concentrates
on single-timestamp prediction. Both the model parameters are
updated simultaneously during training.

Our proposed reconstruction model (size 1.5 MB) learns the
marginal data distribution pattern acquired from the knowledge
of the latent representation of the entire time series. The fore-
casting model focuses on single-timestamp prediction. During
training, both model parameters are updated simultaneously,
and the total loss Lf is computed by adding the losses from
each model as follows:

Lf = LRec + LForc (6)

where LRec and Lforc represents the reconstruction and
forecasting module losses respectively. The forecasting module
is designed using 2 fully connected layers (model size 2.6 MB
approx) meant for computing the next predicted time stamp.

The reconstruction model aims to learn a minimal dis-
tribution of information over a latent representation. A tiny
Variational Auto-Encoder (VAE) is leveraged to describe the
phenomenon in the latent space in a probabilistic way [26].
By considering the time-series values as variables, the model
can capture the data distribution of the entire time series.
After taking into account the integrated optimisation target
and computing the projected values of the forecasting and
reconstruction models, the model inference is finally com-
puted. For every feature, an inference value Ii is computed,
and the final inference value Fval is the summation of all
the individual features shown in Equation 7. We identify a
predefined threshold [27], and label a timestamp as anomalous
if its matching inference score exceeds it. The final inference
is expressed as (ref. Figure 5):

Fval(LRec, LForc, λ) =

f∑
i=1

Ii =

f∑
i=1

(Tgi − T̂ gi)
2 + λ× (1− pi)

1 + λ

(7)
where (T̂ gi − Tgi)

2 is the forecasting error computed as the
absolute deviation between the predicted and present actual
value, and (1− pi) illustrates the likelihood of coming across
an anomalous value by the reconstruction model. pi represents
the probability of the ith feature being normal as estimated
by the reconstruction model. It reflects this likelihood, where
a higher value indicates a greater probability of the feature
being normal. and λ a hyper-parameter which combines the
reconstruction probability and the forecasting error, is chosen
by a grid search on the testing dataset. The final inference
determines the fate of a processor in ECU to be faulty.

3) Security Preservation: Following a processing core be-
ing labelled as faulty during execution, a new backup core is
restored to substitute the faulty one and is made to work at a
higher frequency compared to the faulty core to compensate
for the delay in executing the rest of the tasks before the
deadline. As shown in Figure 7 (a), Task 1 of length L1
is executed on core 1 bearing frequency f1 and consuming
power P1. When the task is suspended due to a threat, it
is restarted to execute (by opportunistically shredding some
of the optional components) on a standby processing core
2 bearing frequency f2 and consuming power P2 where
f2 > f1. This increase in processing frequency leads to
an increase in energy consumption which is compensated by
reducing the task length through opportunistically shredding
some of the optional components of Task 1 to generate Task
1’ (of length L2).

Subsequently, the scheduler module is re-executed to sched-
ule the leftover tasks on the remaining processing cores within
the available energy budget before the deadline. An example
of Power and QoS-related alerts and threats are mitigated as
shown in Figure 7b. As shown in Figure 7(b.1), excessive
power draining in core 1, led to raising an alarm of suspicious
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Fig. 6: Graph attention layer, vi → tmi and eij → rij
denotes the vertices (used timers as HPC in our study) and
edges (relationship among timing events), dashed node R is

the resultant

events, enabling the anomaly detection block which after
detecting an anomaly, labels the core 1 as faulty, resulting
in Task 1 failing to complete within the deadline. A standby
processing core is called for and RENOWNED calls for the
HEALING module which generates a fresh schedule. This
involves completing the necessary components of every task
and relaxing the completion of optional portions, as shown to
schedule the execution of the remaining tasks on the remaining
processing cores within the available energy budget before
the deadline (Algorithm 2 HEALING). To compensate for the
increased energy consumption by the high-frequency operating
standby core, clock gating is applied in its idle states and the
tasks are operated at reduced optional components. A similar
strategy is applied as depicted in 7(b.2) when measured QoS
goes below a threshold value.

The NQ is computed as the ratio of the executed optional
component to the total number of available optional compo-
nents of all the tasks of a given application expressed as:

NQA =

∑n
i=1 OPei∑n
j=1 OPLj

(8)

where OPe is the executed optional component and the de-
nominator is the total number of available optional components
of all n tasks of application A. The ranges of the necessary
Ni and optional OPi components of a task are obtained by
leveraging [13].

B. Proposed HEALING module

The HEALING module is a real-time adaptive task sched-
uler that is activated when an anomaly is detected. It is
designed to ensure the continued execution of the application,
while meeting deadlines and energy constraints, despite the
presence of anomalies.

In this subsection, we will discuss the scheduling Algorithm
2 HEALING, which is responsible for assigning the tasks

represented as nodes in the PTG (Figure 3). Suppose the
parent nodes of tasks have already completed their execution.
In that case, the task is allotted to the idle processing cores
based on the energy budget at that instance, else it selects the
task version with the lesser optional component OP (equation
1). Based on the task-to-core mapping, the allocation of the
start time of a task will be the latest completion time of its
predecessors. When a task has a single parent, the algorithm
can start working on it as soon as the parent is finished. A
task Tkj is assigned to a processing core ci which executes
it till it satisfies the condition. RTi flag represents Remaining
Time necessary to complete the present task by processing
core ci, following which RT becomes zero. After a task is
completed, it is added to the set CT and removed from χ.
This task allocation and execution operations mentioned above
keep going iteratively until all of the tasks in χ have been
completed, deadline DGr

has been reached, and the allotted
energy budget Ebudget has been used up. Summarising the
methodology of HEALING:

• Initialization: Identify available processing cores and ini-
tialize the task list.

• Task Mapping and Execution: Iterate through tasks until
completion, deadline, or energy budget exhaustion.

• Task Selection and Allocation: Select a task whose pre-
decessors are complete and allocate it to a free core.

• Energy-Aware Task Version Selection: Choose the appro-
priate task version based on the available energy budget.

• Task Execution and Monitoring: Execute task on the
assigned core and monitor remaining time.

• Task Completion and Core Release: Release core after
task completion, update completed task list, and adjust
energy budget.

• Iteration and Termination: Repeat steps 2-6 until all tasks
are complete, the deadline is reached, or the energy
budget is depleted. Calculate the achieved Normalized
QoS (NQ).

It prioritizes necessary task components for achieving min-
imum QoS while dynamically adjusting the optional tasks
according to energy and deadline and leverages parallel ex-
ecution for efficiency.

V. EXPERIMENTATION AND RESULTS

An application under execution consists of a set of programs
and every program (considered as PTG) consists of a set of
dependent and independent functions which we consider as
tasks of the PTG. Tasks have been carefully chosen which will
not throw any exception but with a bit decrease in tolerable
performance if partially executed as part of the optional
component. The task graphs that we created were produced
using the task graphs for free (TGFF) tool [28]. For our
experiments, we used a homogeneous quad-core processing
cluster environment similar to Neoverse-N1 processors to
serve as the basis for the new, experimental, out-of-order CPU
used in the ARM SoC prototype architecture [29]. Regarding
Figure 8, the experimental setup comprises an ARM processor
located in the hardware prototype platform connected to a host
PC via a DSTREAM-PT trace device to probe the runtime
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(a)

(b)

Fig. 7: (a) A threat suspending a task and restarting it on a
standby processing core with high frequency and

opportunistically shredding off an optional section of the task
to accommodate for overall energy consumption (b) Overall
scenario of threat mitigation: use of standby processing cores

with high frequency to finish of task execution within
deadline and use of clock gating and opportunistically

shredding off optional components of tasks to meet deadlines
and energy consumption whilst maintaining accuracy.

Algorithm 2: Proposed Task Scheduling based on
Deadline and Energy Budget (HEALING)

Input:
i. Lvi

i : Denotes the length of task Tki of vthi version
ii. Evi

i : labelled energy dissipation for vthi version of task
Tki.
iii. DGr : denotes the PTG deadline (Figure3, 4).
iv. arranged list of tasks, χ.
v. Ebudget of the present application.
Output: Assigning the remaining tasks to the available

resources to meet the deadline and energy budget.
1 /*........................... BEGIN......................................*/
2 /* Considering PC representing the group of processing

cores that are presently operative; */
3 A Task Tkj consists of Necessary Nj and optional

components OPj .
4 Assign PC = C; /* Set of processing cores */
5 ∀ ci ∈ PC, Set PAi= 0; /* Initialise, a flag variable PAi to

0 if the processing core is free for execution; else set to 1.
In the beginning, every processing core is freely available */

6 Assign χ = Tkj ; /* Move tasks into χ variable.
7 OPLj a list of optional components of the task Tkj

8 /*...........TASK MAPPING & EXECUTION..............*/
9 for tm = 0; tm ≤ DGr & (χ & Ebudget) ̸= V OID;

tm ++ do
10 for every single processing core available in parallel do;
11 if ∃ Tkj ∈ χ | Every ancestor of Tkj have completed

their job & PC ̸= VOID then
12 if (Ebudget ≥ Evi

i ) then
13 Processing core(s) ci with PAi == 0 is selected;
14 Set PAi = 1 /* Initialised ci to occupied; */
15 Task Tkj is mapped to processing core ci;
16 TkjB = tm /* The present time tm is initialised

as the beginning of Tkj execution */
17 RTi= L

vj
j ; /* Begin Tkj execution; RTi: this

flag holds the Remaining Time necessary to
complete the present task in ci */

18 PC = PC \ ci; /* ci is removed from PC list */

19 else
20 The next lower version of OPi is chosen from

OPLj and move to step 12

21 else
22 RTi = RTi-1; /* Remaining Time is decremented */
23 if RTi == 0 then
24 PC = PC ∪ {ci}; /* ci is added to the list of

freely available processing cores */
25 PAi = 0; * ci is set to free; */
26 CT = CT∪ Tkj /* Tkj is added to the list of

CT of completed tasks */
27 χ = χ \ Tkj ; /* Task Tkj is removed from list

χ */ Ebudget = Ebudget − E
vj
j ; /* Decrease

the amount of energy used from the remaining
budget. */

28 Return and compute Equation 8.

data from the running programs on the platform. Our target
platform has a DSTREAM-PT debug probe that can do high-
performance debugging and tracing, is appropriate for quick
downloads, and can adjust to JTAG clock rates. It also has
several peripheral interfaces, including Ethernet connections,
USB interfaces, and debug trace ports. Upto 300 MHz DDR
(600 Mbit/s per pin) has been employed to capture traces that
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are 32 bits wide. The trace device traces this runtime data
from different program variables and functions via the trace
port before sending it to the host PC for anomaly detection
and fresh schedule generation.

Fig. 8: RENOWNED experimental setup

This study made use of seven benchmark algorithms from
the well-known automobile package of the EEMBC bench-
mark suite [30]. This benchmark simulates an actuator being
driven by a PWM signal proportionate to an input. PWM
signals provide proportionate velocity control, while phase sig-
nals control the motor’s direction. Although having different
complexities and characteristics, they are suitable to serve as
test subjects for the proposed experiments since they share
similar sub-routines being executed on the SPMD datasets
[31]. As shown in Table I, we have conducted an initial
experiment by training the first five benchmark programs and
kept the last two namely the idctrn and ttsprk for testing on
our trained models as unknown routines. This has yielded a
result of anomaly detection with accuracies as shown in Table
I. The unknown programs are being detected as anomalous
programs even though their signature is similar to that of
known trained programs a2time and tblook respectively.

The SPMD dataset, which is massive and extensively used
in many fields of linked autonomous vehicle technology,
records the driving data of over 2500 automobiles over two
years. The present investigation involved the extraction of
comprehensive high-frequency data from a single vehicle
in the SPMD dataset. This data included the experimental
vehicle’s in-vehicle velocity (sensor 1), GPS velocity (sensor
2), and in-vehicle acceleration (sensor 3). It is important to
note that although the acceleration sensor records the vehicle’s
acceleration value based on speed, the in-vehicle speed sensor
and the GPS speed sensor record distinct types of speed values.
Four potential genuine anomalies with a 5% anomaly rate were
created and added to the SPMD data because anomalies were
not included in the original SPMD dataset. The anomalies
are namely instantaneous, constant, progressive drift, and
deviation anomalies [31] describes an analogous experimental
procedure, as described in brief below:

• Instantaneous: denotes a sudden, drastic change between
two readings in a row;

• Constant: transient, ongoing change unrelated to ”nor-
mal” sensor reading.

• Progressive drift: A minor but enduring change that takes
place during a certain time;

TABLE I: EEMBC Autobench benchmarks performance
Benchmarks Accuracy Precision Recall F1 SCORE

bitmnp 97 99 98.2 99.09
a2time 96.6 98 98.1 98.04
puwmod 97.3 99 97.4 98.19
rspeed 98 99.05 98.04 98.54
tblook 96 98.3 97.6 97.94
idctrn 98.4 0 0 0
ttsprk 98.6 0 0 0
General

performance 98.46 99 98 98.36

• Deviation/Bias anomalies: a consistent offset within a
certain time frame.

Results comparison under single and mixed anomaly types:
Table II compares the performance evaluation of the SOTA

methodologies of various magnitudes of instant anomalies.
The model performance has been compared at the lower range
of 10,25,50,100 and 200 amplitudes respectively. It is very
challenging to detect anomalies at the smaller magnitude of
the instant anomaly that is consistent with reality. Since at a
smaller magnitude, the difference between normal and abnor-
mal data is less making it difficult to distinguish anomalous
situations, which motivated us to design models which work
better in lower range amplitude suitable for anomaly detection.
This is evident from Table II our proposed RENOWNED
performs better than the SOTA models when evaluated on
Accuracy, Precision and Sensitivity scores respectively at
lower magnitudes while compared to [31], [32] and [33]. All
the compared models perform better at higher magnitudes,
however, our model still achieves 97.6% classification accu-
racy when the anomaly amplitude is as low as base value + 10
×N(0, 0.01) below 25 reflecting RENOWNED’s robustness.
Here, N(0, 0.01) represents a Gaussian distribution with a
mean of 0 and a standard deviation of 0.01. This signifies
that the anomalies are very subtle and challenging to detect,
yet our model maintains high accuracy. The anomaly signal’s
magnitude is measured using the amplitude of the injected
anomalies relative to the base value of the time series data.

For a better evaluation, the performance of RENOWNED
is evaluated under mixed anomaly types with other SOTA
models in Table III where it is evident that the performance
of RENOWNED has qualitatively improved. It is seen that
for constant anomaly detection RENOWNED achieved the
maximum F1 score of 84.93%, 87.43 % while detecting linear
anomalies and 88.12% for bias-based anomalies.

A. Results

1) Related to anomaly detection: The generated HPC val-
ues resulting from executing the complete dataset on the
benchmark programs are used for training our AI models.
During validation, the various anomalies are injected and
prediction is done accordingly. Figure 9(a), (b) shows the
snapshot of HPC values obtained while executing a set of tasks
of a benchmark program on a processing core. (a) represents
the system’s response to an injected instant anomaly. The top
part shows the raw HPC values, with a clear, sudden spike
indicating the anomaly. The bottom part presents the corre-
sponding loss curves for the forecasting and reconstruction
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TABLE II: Illustrating and comparing detection performance of instant anomaly type among SOTA models with
RENOWNED on SPMD dataset [31]

CNN-KF (%)[31] MSALSTM-CNN(%)[32] WKN-OC(%)[33] RENOWNED (%)(Ours)
Anomaly Magnitude Acc Sens Prec Acc Sens Prec Acc Sens Prec Acc Sens Prec
base value+10*N(0,0.01) 74.2 48 96.4 76.4 51 97.2 94.7 60.2 94.8 96.2 62.4 97.6
base value+25*N(0,0.01) 80 51.5 97.6 84.1 54.6 98.1 96.5 65.8 96.7 96.8 65 97.2
base value+50*N(0,0.01) 88.1 72 97.2 90.2 75.9 97.9 98 73.5 98.4 98.4 75.7 98.7
base value+100*N(0,0.01) 93.5 86.2 97.9 95.8 89.6 98.4 99.0 90.7 98.8 99.0 91.8 99.3
base value+200*N(0,0.01) 94 90.3 98 96.02 93.5 98.3 99.4 94.6 99.2 99.3 96.3 99.6

TABLE III: Illustrating and comparing detection performance of RENOWNED with mixed anomaly types on SPMD dataset
CNN-KF [31] MSALSTM-CNN [32] WKN-OC [33] RENOWNED (Ours)

Anomaly Magnitude Sensors Acc F1 Acc F1 Acc F1 Acc F1

Instant, 25*N(0,0.01)
1 82.6 70.1 85 72.3 92.81 74.03 96.79 81.62
2 89 66.24 91.4 79.65 95.64 81.37 95.87 83.76
3 88 73.54 87.49 76.91 96.5 72.9 96.4 76.21

Constant, U(0,1), d=3
1 85.32 74.95 92.54 81.67 91.57 82.01 90.46 84.93
2 91.82 80.97 93.84 78.97 93.87 90.39 95.82 88.36
3 88.64 75.19 89.21 80.61 90.92 82.57 94.32 84.09

GD, linespace(0, 1), d=1
1 88.32 80.39 92.69 83.12 94.5 85.24 96.37 87.43
2 90.82 79.58 93.21 80.78 92.65 83.17 94.32 86.77
3 92.14 85.36 89.08 80.37 93.14 79.97 97.39 82.53

Bias, U(0, 2), d=5
1 93.24 86.12 95.32 84.21 92.34 86.32 96.93 88.12
2 88.36 74.36 96.12 82.36 95.12 89.81 97.65 90.37
3 92.81 86.27 95.36 90.47 94.35 86.57 97.56 89.21

Fig. 9: (a) sudden increase in the loss curve for the reconstruction and forecasting models upon detecting an anomaly (instant 
anomaly type) (b) sudden increase in the loss curve for the reconstruction and forecasting models upon detecting an anomaly 
(constant anomaly type); displays the variation with time for forecasting and reconstruction module distinguishing between 

unknown benign and malicious programs. (c) Normalised QoS (NQ) variation in normal, attack and after mitigation scenarios 
against system utilisation percentages.
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models. A dramatic increase in the loss is observed at the point
of the anomaly. This happens because the AI models, trained
on normal data, encounter an unexpected pattern, signifying
an anomaly.

(b) represents the case of a constant anomaly injection
as depicted by a sudden and consistent change in the HPC
value and its corresponding change as reflected in the loss
curve of the forecast and reconstruction model. This sudden
change in the loss occurred since the AI models did not
encounter this pattern of data from the HPCs (physical and
virtual timer counts) during training, resulting from a deviation
from its learned representation predicting this as an anomaly.
Alternatively, the blue loss curves represent benign programs
without any attack scenario.

(c) demonstrates the impact of anomalies on system QoS
(measured as Normalized QoS - NQ) and the effectiveness of
the mitigation strategy. The graph plots NQ against system
utilization percentages. Under normal scenarios (blue bars),
NQ gradually decreases with higher utilization. This is ex-
pected as higher utilization implies more tasks, leading to a
reduction in the execution of optional components to meet
deadlines and energy constraints. When an attack occurs (red
bars), NQ further degrades due to disruptions caused by the
anomaly. However, after mitigation through RENOWNED’s
rescheduling approach (yellow bars), NQ recovers signifi-
cantly, demonstrating the system’s ability to restore perfor-
mance and maintain QoS even in the presence of anomalies.

2) Related to NQ and utilisation: To create task graphs,
we have utilised task graphs for free (TGFF) [28]. The NQ
is already computed in Equation 8 for a PTG. Again the
summation of each subtask’s execution times represents a
PTG’s total execution time expressed as TPTG, and DLPTG

denotes the maximum allowable execution time of a given
PTG. Here, we compute an average utilisation, which is the
ratio of the TPTG, and DLPTG .i.e Ut = TPTG/DLPTG.
In our experimentation, we have assumed to have a fixed
given deadline DLPTG. Therefore increasing the utilisation
Ut increases the number of tasks and to accommodate an
increased number of tasks (i.e. nodes in the PTG) the optional
portion of every task has to be reduced, which decreases the
QoS (and the NQ) and vice versa. While there is an attack,
the QoS decreases and mitigating it by RENOWNED’s new
scheduling approach again increases the QoS as depicted in
Fig. 9 (c). We have computed and analysed the NQ with
increasing utilisation percentiles and it varies as shown. The
maximum NQ reached is 64% and the least is 25% when
utilisation in the x-axis is varied in the range from 40 to 90%
(Fig. 9 (c)).

3) Limitations: A Few identified limitations regarding de-
ployment, program selection, operating frequencies, threat and
vehicle variety have been discussed. Porting RENOWNED to
a new platform may require adjustments in the anomaly detec-
tion module to accommodate the specific characteristics of the
available HPCs. Regarding benchmark program selection, fur-
ther research is needed to explore systematic approaches and
evaluate the impact of different benchmark suites on anomaly
detection accuracy. More sophisticated dynamic frequency
scaling techniques, such as DVFS, could be explored to further

optimize energy consumption and performance. Expanding the
threat model to encompass a wider range of attacks, such as
network intrusion or data manipulation, would enhance the
system’s robustness. And finally expanding the evaluation to
encompass a larger and more diverse set of vehicles would
strengthen the generalisability of the results.

VI. CONCLUSION

Our proposed design RENOWNED tackles the challenge
of ensuring the dependable and energy-efficient operation of
Electronic Control Units (ECUs) in the Internet of Vehicles
(IoV). RENOWNED’s novel approach combines anomaly de-
tection and task scheduling, allowing it to maintain the desired
level of performance even when faced with unexpected disrup-
tions. The AI-powered anomaly detection module, constituting
the graph attention networks and variational autoencoders,
demonstrates a remarkable ability to identify abnormal pro-
cessor behaviour, achieving a notable accuracy rate of 97.6%
in the fine granular hardware level. The system’s scheduling
mechanism further enhances its robustness by dynamically
reallocating tasks in response to detected anomalies. The
experimental results highlight RENOWNED’s effectiveness,
which still maintains an equivalence in energy consumption
even after an attack, while still maintaining a Quality of
Service (QoS) of 64% and the least is 25% when system
utilisation is varied in the range from 40 to 90%. The system’s
ability to balance energy efficiency and real-time performance
makes it a promising solution for safety-critical automotive
applications in the IoV. We are exploring federated learning
approaches for anomaly detection and creating a multi-layered
defence strategy that could lead to even higher accuracy and
faster response times. We believe the continued development
and refinement of solutions like RENOWNED will be crucial
in ensuring the safety and reliability of the increasingly
connected and autonomous vehicles of the future.
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