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Abstract

The task of Legal Judgment Prediction (LJP) involves predicting court decisions
based on the facts of the case, including identifying the applicable law article,
the charge, and the term of penalty. While neural methods have made significant
strides in this area, they often fail to fully harness the rich semantic potential
of language models (LMs). Prompt learning is a novel paradigm in Natural Lan-
guage Processing (NLP) that reformulates downstream tasks into cloze-style or
prefix-style prediction challenges by utilizing specialized prompt templates. This
paradigm shows significant potential across various NLP domains, including short
text classification. However, the dynamic word lengths of LJP labels present
a challenge to the general prompt templates designed for single-word [MASK]
tokens commonly used in many NLP tasks. To address this gap, we introduce the
Prompt4LJP framework, a new method based on the prompt learning paradigm
for the complex LJP task. Our framework employs a dual-slot prompt template in
conjunction with a correlation scoring mechanism to maximize the utility of LMs



without requiring additional resources or complex tokenization schemes. Specifi-
cally, the dual-slot template consists of two distinct slots: one dedicated to factual
descriptions and the other to labels. This approach effectively tackles the chal-
lenge of dynamic word lengths in LJP labels, reformulating the LJP classification
task as an evaluation of the applicability of each label. By incorporating a corre-
lation scoring mechanism, we can identify the final result label. The experimental
results show that our Prompt/LJP method, whether using discrete or continu-
ous templates, outperforms baseline methods, particularly in charges and terms
of penalty prediction. Compared to the best baseline model EPM, Prompt4LJP
shows Fl-score improvements of 2.25% and 4.76% (charge prediction and term
of penalty prediction) with discrete templates, and 3.24% and 4.05% with the
continuous template, demonstrating prompt4LJP ability to leverage pre-trained
knowledge and adapt flexibly to specific tasks. The source code can be obtained
from https://github.com/huanggiongyannn/Prompt4LJP

Keywords: natural language processing, legal judgement prediction, prompt learning,
legal application, masked language model

1 Introduction

Legal Judgment Prediction (LJP) aims to predict court decisions based on case facts,
encompassing tasks such as law article prediction, charge prediction, and term of
penalty prediction. Specifically in Figure 1, the text highlighted in red signifies key
details extracted from the factual description, while the content highlighted in blue
denotes the relevant law article, charge, and term of penalty applicable to the fact
description. Substantial advancements in LJP have been achieved using sophisticated
neural networks and text representation models [1-3]. For example, Luo et al. [1]
improved the integration of factual descriptions with law articles using attention mech-
anisms. However, these neural methodologies primarily focus on extracting in-domain
information from LJP datasets, often neglecting the rich semantic and linguistic infor-
mation available in language models (LMs). Current approaches typically treat LJP
tasks as straightforward text classification problems [4], which limits their effectiveness
in leveraging the comprehensive legal knowledge embedded in LMs.

Prompt learning, a transformative approach that reformulates downstream tasks as
cloze-style or prefix-style prediction challenges for LMs, including Masked Language
Models (MLMs) using specialized prompt templates, has shown considerable promise
across various Natural Language Processing (NLP) domains [5-11]. One of the pri-
mary advantages of prompt learning is that it enables models to better understand
downstream tasks, thereby stimulating the recall of relevant knowledge embedded in
LMs [12, 13]. However, current prompt learning templates are not well-suited for LJP
tasks due to the nature of LJP labels. The dynamic word lengths of LJP labels present
a challenge to the standard prompt templates designed for single-word [MASK] token
commonly used in many NLP tasks. LJP labels often consist of complex, multi-word
expressions, such as legal charges like “intentional injury” or legislative references like
“Article 256,” which cannot be adequately captured by single [MASK] token. This
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/—{ Fact Description } ~

At around 1 a.m. on November 17, 2016, the defendant Zhou stole
property worth CNY 12,159.44 from the victim Lin's vehicle in Yingpan
Community, Wukang Street of the county, by pulling open the car door.
The stolen items included four Apple phones, eight foreign currency
\ notes, and CNY 20. J

< Judging

/—{ Judgement Results }

law article: 264
charge: theft
term of penalty: An imprisonment of six months

Fig. 1 An illustration of legal judgment prediction.

misalignment hinders the effective use of LMs’ extensive pre-trained knowledge in LJP
tasks.

To address this gap, we introduce the Prompt/LJP framework, a pioneering
method that effectively utilizes LMs knowledge tailored for the complex and dynamic
nature of LJP labels. Our contributions are centered on harnessing the extensive pre-
trained knowledge of LMs and enhancing their ability to recall and apply relevant
legal information through two main technical innovations:

First, we developed a Dual-Slot Prompt Template that directly incorporates the
given fact description and a potential label into the prompt, respectively, transforming
LJP tasks into masked language model challenges. This design engages the language
model to apply its learned semantic knowledge and intuitively grasp the task through
structured template guidance, accommodating the complex, multi-word labels typical
in LJP.

Second, we introduced a novel Correlation Scores Ranking to assess candidate
labels generated for each fact scenario. Although LJP tasks typically involve a single
label per case, in real judicial applications, charges or law articles can be very similar.
The ranking mechanism generates candidate labels that can assist in practical judicial
decision-making by providing closely related alternatives and identifying the most
accurate ground-truth label. This system significantly enhances the LM’s capacity to
leverage its extensive pre-trained legal knowledge, thereby boosting both accuracy and
reliability in LJP tasks.

To evaluate our Prompt4LLJP method, we conducted rigorous testing on the
CAIL2018-small dataset [14], a recognized benchmark in the LJP field. The results
are highly promising, showing that Prompt4LJP not only meets but often exceeds the
performance of existing state-of-the-art (SOTA) neural models in predicting charges
and terms of penalty. These outcomes highlight the efficacy of our tailored prompt
template in adeptly managing multi-word labels and markedly improving the accuracy
and reliability of LJP systems.

Our findings demonstrate that the Prompt4LJP framework effectively utilizes the
rich, pre-trained knowledge embedded in LMs, optimizing it specifically for LJP tasks
without the necessity for additional external datas. This framework stimulates LMs to
recall pre-trained legal knowledge relevant to LJP tasks, significantly enhancing their



performance. Furthermore, this significant advancement in applying LMs knowledge
directly addresses the unique demands of LJP, setting a new standard in the field.

2 Related Work

In this section, we review our related work. Section 2.1 covers existing methods for LJP
and highlights their strengths and weaknesses. Section 2.2 discusses prompt learning
in LJP and its limitations compared to our approach.

2.1 Legal Judgement Prediction

Traditional methods to LJP have primarily relied on rule-based systems or mathemat-
ical models [15-17]. While these methods have demonstrated notable accuracy, their
applicability is often limited due to the labor-intensive process of feature engineering
and the challenge of generalizing across diverse datasets. The intricate nature of man-
ually crafting features restricts the scalability and adaptability of these approaches,
especially in complex, real-world legal scenarios.

The advent of neural network techniques in NLP has revolutionized LJP research,
shifting the focus from traditional methods to more dynamic, data-driven approaches.
Neural networks provide the ability to automatically learn representations from tex-
tual data, which has spurred numerous studies aiming to enhance LJP accuracy and
generalizability [1-3, 18-22]. This paradigm shift has not only improved prediction
performance but also enabled the modeling of complex semantic relationships within
legal texts.

A prominent trend in recent research involves employing a multi-task learn-
ing (MTL) framework to model the subtasks of LJP. By addressing related tasks
simultaneously, MTL captures dependencies among them, leading to more nuanced
predictions. For instance, Zhong et al. [18] proposed a topological multi-task learning
framework using a Directed Acyclic Graph (DAG) to model dependencies among LJP
subtasks, capturing hierarchical relationships between law articles, charges, and terms
of penalty, leading to improved prediction accuracy and coherence. Experiments on
large-scale civil law datasets showed significant performance improvements over single-
task and basic multi-task models. Meanwhile, Feng et al. [2] proposed an Event-based
Prediction Model (EPM) with constraints, focusing on identifying key event infor-
mation and leveraging cross-task consistency across LJP subtasks. Their approach
achieves superior performance compared to existing SOTA models on benchmark
LJP datasets. Similarly, Zhang et al. [3] proposed a supervised contrastive learning
framework, using contrastive learning to address ambiguity in legal terminology by dis-
tinguishing fine-grained differences in law articles and charges. Their method enhances
LJP accuracy and improves fact-label relationships, achieving superior performance
on real-world datasets.

Despite their advantages, MTL-based methods introduce additional complexi-
ties. Effective implementation requires carefully balancing task weights and designing
task-specific loss functions, which can complicate hyperparameter tuning and model
optimization. Inspired by the success of prompt learning in various NLP domains
[8, 11], which provides a lightweight yet powerful alternative to traditional deep



learning approaches by aligning model inputs with task-specific cues, we propose the
Prompt4LJP framework. This framework aims to harness the potential of prompt
learning to improve LJP, leveraging its ability to efficiently integrate contextual
information and task-specific signals to enhance prediction performance.

2.2 Prompt Learning

Prompt learning, facilitated by pre-trained language models such as BERT [23] and
GPT [24], has revolutionized various NLP tasks by framing them as cloze-style or
prefix-style prediction challenges. Although successful in domains like news recom-
mendation [8], implicit discourse relationship recognition [11], and text classification
[5-7], its application in LJP faces unique challenges due to the complexity of legal
terminology and the often complex, multi-word expressions that LJP labels entail.

Sun et al. [25] tackled the challenge of representing intricate legal charges by
employing a fixed template with ten [MASK] tokens. This approach, while innovative,
resulted in significant data sparsity from the numerous possible combinations of the
[MASK] tokens. To mitigate this issue, they incorporated external knowledge bases
to enrich contextual understanding, though their method depended on calculating the
similarity between predicted outputs and actual legal terms, which can be problematic
due to nuanced differences between similar terms.

Prompt4LLJP diverges significantly by simplifying the integration of labels and
facts. Our model uses a dual-slot prompt template that directly incorporates the given
fact and a potential label into the prompt. This method efficiently evaluates correlation
scores between facts and labels, converting the traditional multi-class classification
challenge into a more straightforward binary prediction task. The Prompt4LJP frame-
work guides LMs to leverage their extensive pre-trained knowledge more effectively,
enhancing their ability to recall and apply relevant legal information for LJP tasks.
This enhancement not only eliminates the need for external data sources and complex
tokenization strategies but also increases the accuracy and applicability of prompt
learning for LJP.

3 Our proposed method

In this section, we first give the essential definitions of LJP task. Then, we explain
the details of our prompt templates, verbalizer and answer words. Finally, we present
a comprehensive overview of our Prompt4LJP framework and detail the training
strategy employed.

3.1 Task Definition

The three subtasks in LJP are denoted as t,, t., and t;, representing law article
prediction, charge prediction, and term of penalty prediction, respectively. Each sub-
task is a multi-label classification task. To maintain consistency with previous studies
[2, 3, 20], we consider only samples in which each subtask has a single label in the
dataset. Given the factual description = of a legal case, the LJP task, denoted as
T = {tq,te,tp}, aims to predict the result labels for the three subtasks. Formally,



y! represents the i-th label of a subtask-specific label set Y, where y! € Y* and
i = 1,2,....|Y?| for t € T. For instance, in the charge prediction subtask t., the
label set Y¢ = {Theft, Robbery, ..., Arson} includes y$ = Theft, y5 = Robbery, and
yfyc‘ = Arson.

3.2 Dual-Slot Prompt Template for LJP

Within our research, each subtask—t,, t., and ¢,—is treated as an independent task,
each utilizing a consistent prompt template format. Unlike conventional multi-class
classification templates, which typically feature only one input slot for a single-word
label or its expanded word from the LM’s vocabulary, our templates include two slots:
< fact > and < label >. Specifically, < fact > represents the fact statement x, while
< label > corresponds to the label y!. Here, < label > serves as a unified representation
of < erime >, < law >, and < term >, representing charges, law articles, and terms
of penalty, respectively. For instance, in the charges prediction task t., we construct

a prompt template denoted as fy, ., (< fact >, < crime >) as follows:

According to the following fact, whether the defendant is guilty of < crime > : [MASK].
< fact >.

Our method innovatively converts the multi-class classification task into a cloze-
style mask-prediction task within the template. Prompt-guided MLMs aim to predict
whether a given label y! is a plausible result label for the factual description z. Addi-
tionally, we explore the impact of employing the continuous prompt on prediction
performance for LJP. In our continuous template, we preserve the structure of discrete
prompts but substitute discrete tokens on them with custom pseudo tokens. These
pseudo tokens are arbitrarily chosen characters without intrinsic meaning, and their
embeddings are initialized randomly. Here, we denote these pseudo tokens as [Py, ],
[Q1:1,], and [My.,]. Serving as learnable parameters within the MLMs, these pseudo
tokens are strategically placed before < label >, [MASK], and < fact >, respectively,
where [y, I3, and I3 specify the number of pseudo tokens. For further clarity, Table 1
provides an overview of our designed prompt templates for the three subtasks.

Table 1 Prompt templates designed for the three subtasks in this paper, including discrete and
continuous templates.

TYPE TASK TEMPLATE
Discrete Law Articles According to the following fact, whether the defendant vio-
lates Article < law > of the Criminal Law: [MASK]. <
fact >
Charges According to the following fact, whether the defendant is
guilty of < crime >: [MASK]. < fact >
Terms of Penalty According to the following fact, whether it is reasonable to
impose a < term > punishment on the defendant: [MASK].
< fact >
Continuous All [P]...[P,] < label > [Q1]...[Qi,] [MASK] [M]...[Mi;] <
fact >




3.3 Answer Words and Verbalizer

Based on our provided prompt template f;mmpt(< fact >,< label >), we simply
select two opposite words from the vocabulary V' of the MLMs as our answer words,
specifically yes and no. These two words constitute our answer space V,, where V, =
{no,yes} C V. In MLMs M, the probability of filling each word v from V, into the
[MASK] can be calculated as in Equation (1):

P(v € Valz,4;) = Pr(w| fprompe (. 47)) (1)

where w represents filling the [M ASK] with the answer word v € V,, i.e., [MASK] =
v. As we don’t directly use labels as answer words, the primary emphasis of our work
doesn’t focus on the construction of the verbalizer. Nonetheless, within the prompt
learning paradigm, the verbalizer holds significance. Thus, we provide a simplified
formulation for our work:

r =yl v=uyes

¢ (2)

] V) =
fuerbalzzef( ) {.’IJ 7£> gt v=no
In this formulation, z = y! indicates that y! is a possible result label for z, while
x # y! indicates the absence of y! as a potential result label for .

3.4 Our Prompt4LJP Framework

For each given factual description z;, we aim to predict the ground-truth label g for
the three subtasks—t,, t., and t;—respectively. Figure 2 illustrates our Prompt4LJP
framework, which encompasses three steps for legal judgments: prompts construction,
candidate labels prediction, and correlation scores ranking.

Stepl:Prompts Construction. In subtask ¢, we generate |Y?| prompts for each
given fact x;. Formally, we denote f;, . ;(%i,¥5) as the j-th prompt associated with
the fact z;, where x; and y]t are inserted into the prompt template’s < fact > and
< label > slots, respectively. We represent these |Y*| prompts for z; as a prompt set
D} = {f}rompt.i;(®i,¥5) | y§ € Y'} in the subtask t. The prompt whose < label >
corresponds to the target label §! is called the positive prompt, while the remaining
|[Yt| — 1 prompts, which contain labels from Y excluding the label corresponding to
gf., are termed negative prompts.

Step2:Candidate Labels Prediction. Denoted s} ; as the correlation score between
x; and y§ The correlation score can be served as the confidence whether the label
y; is a result label for z;. The higher correlation score, the greater probability that
y; is the ground-truth label for z;. For the k-th prompt f; ... x(%i,y}) of @y, if
the probability of the answer word v = yes is greater than that of v = no, i.e.,
P(v = yes|z;,yl) > P(v = nolx;,yl), we consider z; and y! to be correlated, with a
correlation score of s, = P(v = yes|z;, y;,). Then, we create a pair consisting of the
corresponding label and the correlation score, denoted as < y!, sf & > and add it into

the candidate label set C¥. When the same evaluation is applied to all prompts in the
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Fig. 2 The framework of Prompt4LJP. The three areas represent the three steps: Prompts Con-
struction, Candidate Labels Prediction, and Correlation Scores Ranking.

prompt set D}, we will obtain a candidate label set C! for the fact z; in the subtask
t, where 0 < |Cf| < |V

Step3:Correlation Scores Ranking. We will sort the pair < y§, s;j > in the can-
didate label set C} by the correlation score sf ; in order of largest to smallest. The
label y}, corresponding to < yj, s, > with the highest correlation score s}, will be

served as the final prediction label §! for the fact x; in the subtask ¢, which can be
formalized as in Equation (3):

gi = g (max{s ; | (vj,s;;) € Cj}), te€T 3)

where ¢ is a function finding the corresponding label y! of the highest correlation
score s} from the candidate label set Cf.

3.5 Training

We fine-tune the parameters of a MLM using the public CAIL2018-small [14] dataset
and LAIC2021 dataset! with our custom prompt templates and answer space. For

each subtask ¢, we use the cross-entropy loss function [26] to train the corresponding

model:
K

1
L' =2 > [eklogpl + (1 = 2)log(1 = p})] (4)
k=1
where z} and p! are the gold label and predicted probability of the k-th training

instance in the subtask ¢, respectively. We use the AdamW optimizer [27] with L2
regularization for model training.

4 Experiments

In this section, we introduce our experimental settings and conduct a series of
experiments to evaluate the proposed Prompt4LJP framework.

Thttp://data.court.gov.cn/pages/laic2021.html
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4.1 Experimental Settings

Dataset. We validated our method using the publicly available dataset from the
Chinese AT and Law challenge [14]: CAIL2018-small. Each sample includes a factual
description of a legal case, applicable law articles, charges, and terms of penalty.
To align with state-of-the-art methods like CLALJP [3], we used their preprocessing
pipelines, filtering out samples with multiple labels. Statistical details of the datasets
are shown in Table 2. Additionally, we tested the generalizability of our method with
the newly released dataset of Legal Artificial Intelligence Challenge (LAIC) 2021%,
similar in content to CAIL2018-small. For LAIC2021, we used the data processing
pipelines from ML-LJP [22]. Statistical details of the datasets are shown in Table 2.

Table 2 Statistics on datasets of CAIL2018-small and LAIC2021.

Dataset CAIL2018-small LAIC2021
#Training Set Cases 96,540 79,169
#Validation Set Cases 12,903 9,896
#Testing Set Cases 24,848 9,897
#Law Articles 101 70
#Charges 117 42
#Term of Penalty 11 9

Implementation Details. We utilize the pre-trained language model bert-base-
chinese [23] provided by HuggingFace transformers [28]. For consistency across all
subtasks of LJP, we employ the same training strategy. Specifically, the model is
trained on 4 NVIDIA GeForce RTX 3090 GPUs simultaneously, with a batch size of 16
for each GPU. We use the AdamW optimizer [27] with a learning rate of 2e-5 and train
the model for 8 epochs. The final epoch model is evaluated on the testing set. To assess
the performance of our methods and baseline models, we employ four widely-used
metrics for multi-class classification tasks: accuracy (Acc.), macro-precision (MP),
macro-recall (MR), and macro-F1 (F1).

4.2 Baseline Methods

To fully demonstrate the effectiveness and superiority of our methodology in LJP tasks,
emphasizing its capability to leverage knowledge acquired during the pre-training pro-
cess, we conducted comparisons with three fundamental paradigms: SOTA neural
networks, LLM-specific techniques such as prompt-based in-context learning (ICL),
and parameter-efficient fine-tuning (PEFT).

Neural Methods. We selected seven SOTA neural models in Chinese LJP as our
baseline models, and the full names of all models are shown in Table 3, including:

1. MLAC [1], which is an attention-based neural network method for charge
prediction that incorporates the k most relevant law articles.

2. TOPJUDGE [18], which constructs a topological multi-task learning framework
to capture dependencies among the three subtasks of LJP.



3. MPBFN-WCA [19], which utilizes dependencies among the three subtasks and
integrates word collocation features of fact descriptions into the network via an
attention mechanism to distinguish similar cases.

4. LADAN [20], which proposes a graph neural network to capture discriminative
features between confusing law articles.

5. NeurJudge [21], which separates the factual description into several parts, each
making a judgment for other subtasks.

6. EPM [2], which leverages key event information of legal cases to predict the result
and utilizes consistency constraints between the three subtasks.

7. CL4LJP [3], which introduces a neural contrastive learning framework to capture
the relationship between factual descriptions, similar law articles, and corresponding
charges.

8. ML-LJP [22], which proposes a novel multi-law aware LJP method to enhance LJP
by extracting label-specific features from facts and capturing high-order interactions
among multiple law articles.

Table 3 The full names of SOTA neural models for LJP

Model Full Name

MLAC [1] -

TOPJUDGE [18] A Topological Multi-Task Learning Framework for LJP

MPBFN-WCA [19] A Multi-Perspective Bi-Feedback Network with the Word Col-
location Attention Mechanism

LADAN [20] A Law Article Distillation-based Attention Network

NeurJudge [21] A Circumstance-Aware Neural Framework for LJP

EPM [2] An Event-Based Prediction Model with Constraints

CL4LJP [3] A Contrastive Learning Framework for the LJP Task

ML-LJP [22] A Novel Multi-Law Aware LJP Framework

PEFT Method. Considering the limited computational resources, we chose the newly
released Qwenl.5-1.8B-Chat with small parameters [29], which is tailored for Chinese,
as our backbone for LoRA fine-tuning [30] on the CAIL2018-Small training set. The
fine-tuned model is denoted as PEFT-Qwen1.5. We utilized the LLama Factory
[31] for LoRA fine-tuning on Qwenl.5-1.8B-Chat, leveraging 4 NVIDIA GeForce RTX
3090 GPUs. Specifically, we transformed the original CAIL2018-small dataset into
the “instruction-input-output” JSON format tailored for the model, as depicted in
Table 4. The model hyperparameters were fine-tuned based on the training set of
CAIL2018-small, with detailed settings provided in Table 5.

ICL Method. Evaluation results from [4] indicate that the Qwen7B-Chat model [29]
exhibits the best performance on legal tasks among Chinese-oriented LLMs. Therefore,
we selected the latest known Qwen model, Qwenl.5-14B-Chat, as our backbone for
zero-shot and few-shot experiments. For the given descriptions, we constructed suitable
prompts to guide the model in providing the applicable law article, charge, and term
of penalty. Due to the maximum input token limit of the model, we only conducted
0-shot, 2-shot, and 4-shot experiments. Experimental results show that the 4-shot

10



Table 4 The JSON format for fine-tuning, labeled as “instruction-input-output,” assigns roles as
follows: “system” describes the LJP task, “user” pertains to data input, and “assistant” denotes
model output.

Role Message

system You will participate in a legal judgment prediction task. Given a set of
case facts, you need to predict the applicable laws, charges, and possible
terms of penalty. Please use your legal knowledge and logical reasoning to
make predictions.

user Fact description: On the evening of October 4, 2012, the defendant, Luo
Moujia, ...
assistant Law: Article 234 of the Criminal Law of the People’s Republic of China

Charge: Intentional Injury
Penalty terms: Imprisonment for less than six months

setup yields the best results. Table 6 only presents the optimal results. We denote
this method as Few-shot. In alignment with the Qwenl.5-14B-Chat input format,
we adhere to a structure comprising two message roles: “system” and “user.” The
“system” role is designated for task descriptions, while the “user” role is intended for
text input. Additionally, we selected the sample with the most similar fact description
to the given factual description as the input demonstrations. The specific prompt
demonstration for Legal Judgment Prediction are shown in Table 7.

4.3 Main Experimental Results

The main results of the three subtasks on CAIL2018-small are summarized in Table
6. Our Prompt4LLJP method, whether using discrete or continuous templates, out-
performs baseline methods, particularly in charges and terms of penalty prediction.
Compared to the best baseline model EPM, Prompt4LJP shows F1l-score improve-
ments of 2.25% and 4.76% (charges and penalties) with discrete templates, and 3.24%
and 4.05% with the continuous template, demonstrating prompt-learning’s ability to
leverage pre-trained knowledge and adapt flexibly to specific tasks.

However, our performance in law article prediction is inferior to EPM, likely
because the < law > slot is filled with simple numbers (e.g., “256”), while the
< crime > and < term > slots contain contextually rich phrases like “robbery”

Table 5 Hyper-parameter settings.

Hyper-parameter Value
per-device-train-batch-size 4
gradient-accumulation-steps 2
learning-rate 5e-6
num-train-epochs 3.0
Ir-scheduler-type cosine
warmup-steps 0.1
bf16 true

11



Table 6 Experimental results on CAIL2018-small dataset. Results marked with * represent those
from models reported in [2], which share the same data preprocessing pipeline with our approach.
All other results were obtained from our own experiments.

Tasks ‘ Law Articles ‘ Charges ‘ Terms of Penalty

Metrics | Acc. MP MR F1 | Acc. MP MR F1 | Acc. MP MR F1
ICL Method

Few-shot ‘ 64.01 59.81 53.65 51.94 ‘ 65.06 69.70 60.52 59.72 ‘ 08.13 17.84 13.37 07.68

PEFT Method

PEFT-Qwenl.5 ‘ 50.85 42.03 36.52 36.96 ‘ 57.25 50.49 46.59 45.82 ‘ 23.11 28.20 18.27 18.48

SOTA Neural Methods

MLACx 73.02 69.27 66.14 64.23 74.73 72.65 69.56 68.36 36.45 34.50 29.95 29.64
TOPJUDGEx* 78.60 76.59 74.84 73.72 81.17 81.87 80.57 79.96 35.70 32.81 31.03 31.49
MPBFN* 76.83 74.57 71.45 70.57 80.17 78.88 75.65 75.68 36.18 33.67 30.08 29.43
LADANx 78.70 74.95 75.61 73.83 82.86 81.69 80.40 80.05 36.14 31.85 29.67 29.28
NeuralJudgex* 79.02 75.69 75.23 74.87 81.22 77.51 78.17 77.99 36.84 34.80 32.22 32.48
EPM=* 84.65 80.82 77.55 78.10 84.10 84.55 80.22 81.43 36.69 35.60 32.70 32.99
CL4LJP 77.01 75.42 73.38 72.48 79.14 78.45 78.11 77.25 36.31 33.20 30.05 29.53
Prompt4LJP(ours)
Discrete 79.24 78.28 77.27 76.25 84.66 85.19 84.12 83.68 40.44 39.40 37.02 37.75
Continuous 80.95  80.08 78.42 77.49 | 86.01 85.82 84.68 84.67 | 40.41 40.92 34.86  37.04

and “imprisonment for less than one year,” providing more linguistic and semantic
information to the model. Future research will focus on handling this issue.

Continuous templates generally outperform discrete ones in law articles and charges
prediction, with accuracy and Fl-score differences exceeding 1%, due to the flexibility
of learnable pseudo tokens in continuous prompts. However, for penalty prediction,
continuous templates slightly underperform discrete ones, with gaps averaging less
than 0.4%, possibly because penalty prediction benefits from the stability of discrete
templates.

Overall, both direct fine-tuning and prompting of LLMs perform poorly on LJP
tasks, indicating a failure to fully utilize the encyclopedic linguistic evidence embedded
in the pre-training process. In contrast, our Prompt4LJP framework, with its dual-slot
prompt template, effectively harnesses legal knowledge within the pre-trained LMs,
significantly improving LJP performance by better capturing domain-specific infor-
mation and enhancing the model’s capability in complex legal reasoning, ultimately
surpassing current SOTA methods in accuracy and reliability.

Additionally, to validate the generalization capability of our method across different
datasets, we conducted experiments on the LAIC2021 dataset. ML-LJP [22] represents
the latest SOTA method on the LAIC2021 dataset. Consequently, we adopted its data
processing pipelines and used ML-LJP as our primary baseline. Given that ML-LJP
addresses law articles prediction as a multi-label classification task, whereas our study
focuses on single-label scenarios, we limit our evaluation to the charges prediction and
terms of penalty prediction. The specific experimental results are shown in Table 8.
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We observed that for charges prediction, our method’s performance is slightly
inferior to ML-LJP. However, compared to other baseline models, our methods still
demonstrates excellent performance. For instance, our method’s F1l-score surpasses
that of the second-best baseline EPM, in both discrete and continuous templates.
Additionally, in the discrete template, our method’s accuracy also exceeds that of
EPM. Further observation of terms of penalty prediction results reveals that our
method exhibits superior performance. In the continuous template, the F1l-score of
our method is 1.29% higher than that of ML-LJP.

Overall, our method demonstrates superior performance on both the CAIL2018-
small dataset and the newly released LAIC2021 dataset, particularly in the terms of
penalty prediction subtask. By employing the dual-slot template and relevant scoring
mechanism, our method effectively leverages existing legal knowledge in MLs and
exhibits excellent generalization capabilities.

4.4 Hyperparameter Analysis

The number of pseudo tokens within continuous templates and the number of negative
prompts for training represent our core hyperparameters. Experimental findings reveal
that different parameter configurations exert distinct impacts across LJP subtasks.

4.4.1 The Influence of the Quantity of Pseudo Tokens.

From Table 1, we note that the three independent subtasks of LJP share the same
continuous template pattern with [Py, ], [Q1.1,], and [My.,]. To explore the impact
of varying the number of pseudo tokens (i.e., l1, I3, I3) on prediction performance, we

Table 7 Demonstration of prompt for LJP: Here, “< fact >” represents the factual statement of
a legal case, while “[charge]”, “[law]”, and “[penalty]” denote the charge, law, and penalty term,

respectively.

Role Message

system You will participate in a legal judgment prediction task. Given a descrip-
tion of the facts of a case, you need to predict the applicable law, the
charge, and the possible term of penalty. Each charge, term of penalty
and applicable law should be singular. Based on the provided case facts,
use your legal knowledge and logical reasoning to make predictions. Out-
put format requirements: output the predicted charge, law, and term of
penalty separated by commas, without including any additional analysis
or explanation. For example: theft,264,up to three years imprisonment.

user Example 1
input: < factl >
output: [charge 1],[law 1],[penalty 1]
Example 2
input: < fact2 >
output: [charge 2],[law 2],[penalty 2]

input: < fact >
output:
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Table 8 Experimental results on LAIC2021 dataset. Text in bold denotes the best result, while
underline indicates the second best result across the entire table. Results marked with represent
those from ML-LJP, which share the same data preprocessing pipeline with our approach.

Tasks | Charges | Terms of Penalty

Metrics | Acc. MP MR F1 | Acc MP MR F1
SOTA Neural Methods

TOPJUDGE* 96.46 91.97 90.17 91.06 38.97 38.90 35.16 36.94

LADAN* 96.21 91.20 91.51 91.35 41.28 40.55 38.73 39.62

NeuralJudge* 94.21 88.43 84.73 86.54 37.12 38.16 34.07 36.00

EPM* 97.11 93.89 92.63 93.11 40.48 38.99 38.34 38.38

ML-LJP* 97.54 95.56 93.73 94.64 | 47.63 48.39  46.68  47.52
Prompt4LJP(ours)

Discrete* 97.23 94.57 92.11 93.15 47.02 48.76 45.73 48.81

Continuous* 97.05 95.38 92.15 93.36 | 47.75 50.26  46.06 47.79

conduct three experiments for each subtask. We adopt a basic hyperparameter tuning
strategy, setting Iy, I3, I3 to the same value, denoted as | = [; = ls = l3. Given that
in Chinese expressions, a complete word typically consists of two Chinese characters,
we vary [ in {0,2,6,10, 16}, increasing in multiples of 2.

Figure 3 demonstrates varying optimal [ values across subtasks according to F1-
score, solely based on differences in label values and quantities within the same
continuous template pattern. Additionally, for terms of penalty prediction at [ = 10
and [ = 16, Fl-score increases while accuracy decreases, suggesting the introduction
of ambiguities due to the absence of pre-training knowledge in randomly initialized
pseudo tokens.

4.4.2 The Effect of Number of Negative Prompts.

In our experiments, we noticed a significant impact on prediction performance based
on the number of negative prompts (n) used during training. We varied n from 1 to 10
and focused on predicting law articles and terms of penalty. Our experiments solely
employed the discrete template and analyzed F1l-score, considering the imbalanced
data distribution in the CAIL2018 dataset.

Results, as depicted in Figure 4, illustrate that increasing n enhances the model’s
ability to predict low-frequency labels, particularly evident in law articles prediction
with its larger label set (101 labels). This improvement is attributed to the model’s
capacity to learn relevant characteristics between the fact and the target label, along-
side irrelevant characteristics between the fact and non-target labels. Consequently,
the model captures more discriminative information, benefiting overall prediction per-
formance. Conversely, in terms of penalty prediction, which involves a smaller label set
(11 labels), setting n to its maximum value (i.e., n = 10) leads to overfitting, thereby
diminishing prediction performance.

4.4.3 The Impact of Different Discrete Prompt Templates

In the prompt learning paradigm, using different templates can impact task perfor-
mance. To investigate this, we constructed additional two prompt discrete templates
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Fig. 3 Impact of the number of pseudo tokens in the continuous templates for three subtasks.

for each of the three subtasks. The difference between the two discrete templates and
the one used in our original work lies in the answer words. Besides “yes” and “no”
(referred to as Prompt-1), we also chose “right” and “wrong” (referred to as Prompt-
2), and “have” and “not have” (referred to as Prompt-3). For each pair of answer
words, we constructed corresponding discrete prompt templates that fit the context.
The specific experimental results on CAIL2018-small are shown in Table 9.

We observed that for charge prediction and term of penalty prediction, the choice of
answer words had minimal impact on the experimental results. The differences in Acc.
and F1-score between the different templates were all below 1%. Our main experiments
demonstrated that the proposed method outperformed SOTA approaches in both
tasks, indicating that our Prompt4LJP effectively extracts features that distinguish
charge and term of penalty labels, reducing the sensitivity of performance to prompt
templates.

In contrast, for the law article prediction, the choice of answer words had a more sig-
nificant effect on results. The best-performing template was not Prompt-1 but rather
Prompt-3, which uses "have” and "not have” as answer words. This template led to
improvements of 2.02% in accuracy and 1.11% in Fl-score compared to the original
template. We hypothesize that this difference arises due to the numerical nature of
law article labels, which lack semantic content, making it harder for the model to
extract contextual cues. Therefore, in the law article prediction, the prompt template
plays a more crucial role in providing the contextual information needed by the model,
significantly influencing performance.

F1 Score

w## |Law Articles
mma Terms of Penalty

Law Articles
~ ~ ~ ~
N » o ©

Terms of Penalty

~
o

3
Negative Prompt Counts

Fig. 4 Impact of number of negative prompts for model training in the discrete templates for the
prediction of law articles and terms of penalty.
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Table 9 Results of different prompt templates on the CAIL2018-small dataset.

Tasks ‘ Law Articles ‘ Charges ‘ Terms of Penalty
Metrics ‘ Acc. MP MR F1 ‘ Acc. MP MR F1 ‘ Acc. MP MR F1
Prompt-1 | 77.62 76.98 75.15 73.73 | 83.70 84.55 83.60 82.89 | 40.44 39.40 37.02 37.75
Prompt-2 | 79.93 76.49 75.21 74.04 | 83.95 85.11 82.70 82.53 | 39.90 40.15 35.56  37.25
Prompt-3 | 79.64 77.69 76.31 74.84 | 83.73 85.71 83.18 83.19 | 40.31 42.29 32.93 36.13

4.5 Impact of Training Dataset Size

Several studies have highlighted the efficacy of prompt learning with smaller datasets
in various NLP tasks [7, 8, 11]. Our study examines the Prompt4LJP model’s impact
on prediction performance across three subtasks with limited data, using both discrete
and continuous prompt templates.

We trained the three subtasks using 10%, 30%, 50%, 70%, and 90% of the available
data. The results, as shown in Table 10, demonstrate that both the continuous and
discrete templates exhibit similar trends. Specifically, under the continuous prompt
template, significant improvements in accuracy and Fl-score from 10% to 30% of the
training data for charges and law articles. However, gains diminish from 50% to 100%,
indicating robust generalization capabilities by harnessing the knowledge embedded
in pre-trained MLs to support the LJP task, irrespective of training data quantity.
Furthermore, our approach surpasses the top-performing baseline EPM, trained on
the entire dataset, utilizing only 50% of the training data for predicting penalty terms
and 70% for predicting charges. These findings underscore the advanced capabili-
ties of prompt learning methods in managing situations with limited training data,
showcasing their superiority compared to shallow neural networks.

Table 10 Experimental results with fewer training data under continuous and discrete prompt
templates. The data in bold indicates that our method outperformed the best baseline model EPM
when using less than 70% of the training data.

Tasks | Law Articles | Charges | Terms of Penalty
Metrics | Acc. F1 | Acc. F1 | Acc. F1
Best Baseline
EPM ‘ 84.65 78.10 ‘ 84.10 81.43 ‘ 36.69 32.99
Continuous Template
Train-10% 73.85 64.52 75.86 74.34 27.27 23.79
Train-30% | 78.01 (+4.16) 71.87 (+7.35) | 81.48 (+5.62)  80.66 (+6.32) | 29.28 (+2.01) 29.35 (+5.56)
Train-50% | 78.77 (+0.76)  72.45 (+0.58) | 83.34 (+1.86)  81.70 (+1.04) | 40.83 (+11.55) 35.12 (+5.77)
Train-70% | 79.06 (+0.29)  74.62 (+2.17) | 85.41 (+2.07) 84.24 (+2.54) | 38.93 (-1.90) 36.80 (+1.68)
Train-90% | 79.98 (+0.92)  76.09 (+1.47) | 84.99 (-0.42)  84.11 (-0.13) | 41.52 (+2.59) 36.80 (40.00)
Train-Full | 80.95 (+0.97)  77.49 (+1.40) | 86.01 (+1.02)  84.67 (+0.56) | 40.41 (-1.11) 37.04 (40.24)
Discrete Template

Train-10% 71.35 62.67 75.39 73.16 27.33 23.38
Train-30% | 77.93 (+6.58)  73.05 (+10.38) | 79.08 (+3.69)  79.56 (+6.40) | 27.38 (+0.05) 28.49 (+5.11)
Train-50% | 78.74 (+0.81)  73.68 (+0.63) | 83.64 (+4.56)  82.49 (+2.93) | 40.43 (+13.05) 35.46 (+7.08)
Train-70% | 78.13 (-0.61)  74.74 (+1.06) | 84.30 (+0.66) 83.18 (+0.69) | 34.61 (-5.82) 33.01 (-2.45)
Train-90% | 79.85 (+1.72)  75.95 (+1.21) | 85.13 (+0.83)  84.06 (+0.88) | 40.71 (+6.10) 37.00 (+3.99)
Train-Full | 79.24 (-0.61)  76.25 (+0.30) | 84.66 (-0.47) 83.68 (-0.38) 40.44 (-0.27) 37.75 (+0.75)
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4.6 Error Analysis

In this section, for each subtask, we randomly selected 400 samples with incorrect
predictions and analyzed the true labels, all candidate labels, and the correlation scores
for each candidate label for each sample. Below are the error analysis results for each
subtask.

4.6.1 Charge Prediction Issues

The charge prediction faces some key challenges. First, the model often assigns highly
correlation scores to confusable charges (e.g., “fraud” vs. “contract fraud” and “arson”
vs. “manslaughter”), leading to frequent misidentifications. For instance, in cases
involving economic crimes like “embezzlement of funds” vs. “misappropriation of pub-
lic funds,” the model assigns a higher score to the incorrect charge (“misappropriation
of public funds” at 0.9965) instead of the true charge (“embezzlement of funds” at
0.8842), indicating limited ability to distinguish between similar charges related to
official duties. Second, the model struggles with low-frequency tail charges due to insuf-
ficient training data, leading to poor performance and misclassification. To address
these issues, future work will focus on refining scoring mechanisms using seman-
tic similarity, charge-specific feature matching, and contextual indicators to improve
correlation scores.

4.6.2 Law Article Prediction Issues

Similar to charge prediction, law article prediction faces difficulties in distinguishing
between confusable law articles and performs poorly on low-frequency tail law articles.
First, correlation scores between candidate law articles are often very close, leading to
inaccurate selections. For example, in theft-related cases, the model might incorrectly
associate the true law article “264” (theft) with “266” (fraud) or “133” (intentional
injury), both of which have correlation scores close to or higher than the true law
article. This reflects the model’s inability to differentiate law articles with similar
behavioral descriptions but different legal applicability. Second, the model struggles to
accurately parse behavioral characteristics from case descriptions. For instance, when
a suspect steals a bicycle by breaking a lock, the correct law article is “264” (theft),
but the model often associates it with “246” (robbery) or “312” (concealment of crime
proceeds), highlighting difficulties in distinguishing between law articles. Law articles
are numerically represented and lack sufficient contextual information. Future research
could focus on integrating semantic information, such as linking law articles to legal
terms, case law, and definitions, using legal knowledge graphs.

4.6.3 Term of Penalty Prediction Issues

SOTA methods currently demonstrate relatively low performance in term of penalty
prediction tasks. Although our Prompt4LJP method improves accuracy, performance
remains below optimal levels. Analysis reveals that, unlike charge and law article
prediction, many predicted correlation scores are below 0.7, and in some cases, the
model fails to generate accurate candidate term of penalty labels, indicating significant
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difficulties in extracting discriminative features related to term of penalty label. To
ensure consistency with benchmark evaluations, we adopted a common data process-
ing pipeline, including the standardization of term of penalty labels. Currently, term
of penalty labels are categorized into mutually exclusive intervals, such as “7-10 years
of fixed-term imprisonment.” While this simplifies the term of penalty prediction, it
introduces some limitations. On the one hand, the granularity of these intervals may
hinder the model’s ability to capture nuanced relationships between case details and
specific term of penalty labels. On the other hand, some cases may fall into intervals
that are not covered, leading to inaccuracies and reduced prediction performance. To
address these issues, future research could explore more fine-grained interval defini-
tions or adopt continuous term of penalty predictions that better reflect case-specific
characteristics.

4.7 Computational Efficiency Analysis

In this section, we analyze the training efficiency of the bert-base-chinese model [23]
on the CAIL2018-small dataset [14], using the charge prediction subtask as an exam-
ple. The dataset contains 96,540 samples and covers 117 charge labels. For prompt
construction, in addition to positive prompts for each label, we select n = 10 negative
prompts, resulting in a total of:

96, 540 x (1 + 10) = 1,061, 940 prompts.
The experiment was conducted on 4 NVIDIA GeForce RTX 3090 GPUs, each with
a batch size of 16, leading to a total batch size of 64. The model was trained for 8
epochs, each consisting of 16,593 iterations, totaling 132,744 iterations. A weight decay
strategy was applied with a decay coefficient of 1 x 1073,
Each epoch took about 2.5 hours, with a total training time of 20 hours. Therefore,
the fine-tuning time per prompt is calculated as:

20 hours x 60 minutes/hour x 60 seconds/minute
1,061, 940 prompts

~ 0.068 seconds (68 milliseconds).

This approach increases the number of training samples by a factor of n, leading
to additional hardware and time overhead. As discussed in Section 4.4.2, we randomly
select n labels to construct negative prompts. In practice, the choice of n can signifi-
cantly impact the experimental results. Furthermore, as shown in Section 4.5, reducing
the training set size to 70% of the original still yields good performance in both charge
and term of penalty prediction tasks. In future work, we plan to explore more effective
strategies for selecting negative labels, such as choosing labels that are easily con-
fused with the actual labels, to address the issue of label ambiguity. By optimizing
the selection of negative prompts and reducing n , we can enhance the model’s ability
to capture discriminative information. Additionally, we aim to reduce the dataset size
to alleviate the training burden while maintaining or improving model performance.
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5 Conclusion and Future Work

In this paper, we introduce Prompt4LJP, a novel framework that leverages the prompt
learning paradigm to tackle the complex task of LJP. The key challenge addressed
is the dynamic word lengths of LJP labels, which complicate the direct applica-
tion of traditional prompt learning methods. Our framework employs a dual-slot
prompt structure, combining factual descriptions and labels, along with a correlation
scoring mechanism to effectively handle varying label lengths. Extensive experi-
ments conducted on the CAIL2018-small dataset [14] demonstrate that Prompt4LJP
significantly outperforms state-of-the-art methods. Specifically, we observe F1-score
improvements of 2.25% and 4.76% in charge prediction, and 3.24% and 4.05% in term
of penalty prediction compared to the best baseline model, EPM. These findings high-
light the capability of our approach to leverage pre-trained LMs and adapt effectively
to tasks involving dynamic word lengths.

In our efforts to integrate the prompt learning paradigm into LJP, we recog-
nize several key limitations, including insufficient model interpretability, suboptimal
performance in law article prediction, and a lack of consideration for potential inter-
dependencies among the three sub-tasks. To address these issues, we propose the
following strategies. First, we will employ attention mechanism visualization or fea-
ture importance analysis to enhance model transparency and improve interpretability.
Second, to improve law article prediction, we will explore richer representations by
associating legal provisions with relevant legal terms, cases, and semantic contexts
to provide deeper semantic understanding. Additionally, we will utilize external legal
knowledge bases, leveraging existing legal documents and case information to fur-
ther enrich the model’s knowledge base. Finally, we will investigate the application of
joint prompting techniques, exploring how shared features and representations can be
leveraged to optimize performance across multiple sub-tasks.

6 Ethical Statement

LJP is a research domain of significant social relevance but also considerable ethi-
cal sensitivity. Therefore, it is crucial to discuss the ethical implications of our work.
The proposed model, Prompt4LJP, is designed to enhance the accuracy of LJP tasks
and outperform current SOTA methods. To some extent, our approach can provide
reference suggestions to legal practitioners, such as judges, to reduce their workload
and improve efficiency. However, it is important to emphasize that this model is not
intended to replace judicial decision-making but rather to serve as an auxiliary tool.
Judicial practitioners remain the primary decision-makers and retain full responsibil-
ity for final verdicts, ensuring fairness and justice in the legal process. Moreover, our
research relies on publicly available legal case datasets, including CAIL2018 [14] and
LAIC2021', which have been anonymized by their original publishers to protect per-
sonal privacy (e.g., names and contact details). Nonetheless, we acknowledge that,
despite anonymization, inherent biases in the training data may influence the model’s
fairness. Such biases could lead to unjust outcomes for certain groups, an issue that
requires continuous attention and iterative improvements.
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Although our research introduces methodological innovations, the model has
several limitations, including susceptibility to data bias, lack of interactivity, and
insufficient interpretability of its predictions. These challenges limit its practical appli-
cability and raise concerns about potential biases or unfair results in certain scenarios.
Given the high-stakes nature of the legal domain, we explicitly state that this model
is intended solely for academic research purposes and will not be used in real-world
legal decision-making scenarios.
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