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Abstract—Biocomputing envisions the development computing
paradigms using biological systems, ranging from micron-level
components to collections of cells, including organoids. This
paradigm shift exploits hidden natural computing properties, to
develop miniaturized wet-computing devices that can be deployed
in harsh environments, and to explore designs of novel energy-
efficient systems. In parallel, we witness the emergence of AI
hardware, including neuromorphic processors with the aim of
improving computational capacity. This study brings together
the concept of biocomputing and neuromorphic systems by
focusing on the bacterial gene regulatory networks and their
transformation into Gene Regulatory Neural Networks (GRNNs).
We explore the intrinsic properties of gene regulations, map this
to a gene-perceptron function, and propose an application-specific
sub-GRNN search algorithm that maps the network structure
to match a computing problem. Focusing on the model organ-
ism Escherichia coli, the base-GRNN is initially extracted and
validated for accuracy. Subsequently, a comprehensive feasibility
analysis of the derived GRNN confirms its computational prowess
in classification and regression tasks. Furthermore, we discuss the
possibility of performing a well-known digit classification task
as a use case. Our analysis and simulation experiments show
promising results in the offloading of computation tasks to GRNN
in bacterial cells, advancing wet-neuromorphic computing using
natural cells.

Index Terms—Biocomputing, Neuromorphic Computing, Bac-
teria, Gene Regulatory Network.

I. INTRODUCTION

Bacterial computing is an emerging field within the broader
discipline of biocomputing [1]. The inherent computing prop-
erties of bacteria enable them, in particular, to sense their
environment, make decisions, and adapt to changing condi-
tions [2], with remarkable efficiency [3]. These characteristics,
along with biocompatibility, parallelism, self-sustainability [1],
communication capabilities [4], and data storage [5], tend to
provide bacterial computing with an edge over conventional
silicon-based computing architectures. Furthermore, the con-
cept of neuromorphic computing is gaining traction, inspired
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by the workings of neurons, showing promise compared to Von
Neuman computing architectures [6]. By integrating natural
biocomputing into neuromorphic systems, researchers are now
exploring wet-neuromorphic computing, where living cells are
used in tandem with silicon technology. This has resulted in
new paradigms such as organoid intelligence [7], one of which
is the brain organoid. The “Dishbrain” is one example of many
approaches to such systems, which is a brain organoid that
harnesses the inherent adaptive computation of brain neurons
within a structured environment that is capable of learning and
performing complex tasks, such as playing a game of Pong [8].

Past research has extensively analyzed the functional com-
ponents of natural bacterial computing, revealing a complex
interplay of molecular processes that results in their deci-
sion making and adaptive behaviors [9]. Signal transduction
mechanisms facilitate adept extracellular information recep-
tion, followed by the complex orchestration of transcription
and translation processes, resulting in a sophisticated com-
putational architecture within bacterial cells using their Gene
Regulatory Networks (GRNs). The synergy between these
processes emphasizes the profound complexity of bacterial
computing, underscoring its potential as a model for advanced
bioinspired computing paradigms within the confines of a
single bacterial cell.

Synthetic biology has enabled researchers to use conven-
tional computing theories that are engineered into cells by
precisely altering and modifying biological components [10],
[11]. Although the feasibility of using biological substrates
for computing has been established since Adleman’s seminal
work in 1994 [12], a number of proposals have been made
for the use of bacterial cells for computing. An example is
Levskaya et al., who proposed the bacterial cell as a pro-
grammable computational device [13]. Expanding on this con-
cept, Baumgardner et al. successfully programmed Escherichia
coli (E. coli) with a genetic circuit using DNA segments [14].
This breakthrough has resulted in bacteria solving a classical
problem in artificial intelligence – the Hamiltonian problem.
Theoretical models, such as the application of bacteria to
solve the “burnt pancake problem” [15] have also reinforced
the notion that bacteria possess computing capabilities that
extend beyond traditional electronic systems. Furthermore, it is
possible to witness biocomputing in multiple dimensions such
as at the gene, metabolic and population levels. Exemplifying
gene-level computation, researchers created encoding devices
by altering the parameters of genes [6]. In addition, computing
capabilities in metabolic circuits are demonstrated in whole-
cell and cell-free environments in [16] that signify metabolic



Fig. 1. Illustration of the framework associated with the novel concept of
GRNN-based wet-neuromorphic computing. Our previous studies focused on
revealing the concept of GRNN, the emergent property of population-based
perceptron model and GRNN reconfiguration with mutagenesis. This study
focuses on the components marked with the red-dashed box.

layer biocomputing, while [17] uses bacteria consortiums for
pattern recognition, giving an example for population-level
biocomputing. All these approaches are based on engineering
the cells. However, the challenges associated with engineered
bacteria limit their practical use for computing. To this day, it
is burdensome to design large-scale genetic circuits without
stressing the cell, negatively affecting the circuit dynamics
and overall reliability [18]. Moreover, the cross-talks between
signaling expression pathways also narrows down the pos-
sibility of complex genetic circuit design [19]. This is also
impacted by the gene regulatory mechanism that competes for
expression resources, which further creates unintended cross-
talks [20]. Ensuring the long-term stability of engineered cells
is also challenging under the altered gene expression pathways
as the modifications may affect cell viability and growth rates
[18]. This motivates us to explore the possibility of using the
inherent computing functions within the cells through external
chemical control, without modifying the cells’ internal genetic
system.

This study focuses on a specific aspect of a GRNN-based
wet-neuromorphic computing framework that we introduce as
illustrated in Fig. 1. In our previous work, a mechanism was
introduced to quantify gene-gene interactions that returns a
weighted directional network with nodes as genes and edges
as expression interaction with the capability to process the in-
coming regulatory factors [21]. This network is analogous to
a random structured Neural Network (NN); hence, we call this
Gene Regulatory Neural Network (GRNN). Further, previ-
ous work demonstrated the potential of using bacterial pop-
ulations as single perceptrons, with a focus on Molecular
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Fig. 2. Comparison of bacterial and neuromorphic computing architectures,
emphasizing shared features like in-memory, analog, parallel, and asyn-
chronous event-driven computing. This comparison lays the direction for
bacterial computing as a novel wet-neuromorphic computing architecture.

Communication (MC) between GRNNs [21]. In contrast, this
study examines the individual capabilities of these networks,
exploring the feasibility of using non-engineered bacteria for
general-purpose computing, including mathematical regression
and classification tasks, as highlighted in the red dashed box
in Fig. 1. Further, the current study emphasizes the necessity
of searching sub-GRNN to perform application-specific com-
puting and introduce a search mechanism. Finally, using E.
coli as our model species, this study evaluates the feasibility
of performing mathematical regression and classification tasks
and elucidates the computing diversity within a GRNN of a
single cell.

The core principles of neuromorphic systems, such as in-
memory computing, analog computing, parallel processing,
and asynchronous event-driven computing draw inspiration
from brain computing architecture. While the literature demon-
strates the potential to leverage inherent cellular properties to
synthetically design neuromorphic architectures within bac-
terial cells [6], observing GRNN-based bacterial computing
through a neuromorphic lens, we recognize in-memory com-
puting in bacteria, where computational “weights” are embed-
ded in the physical properties of gene interactions, including
binding affinity, allosteric effects, and diffusion dynamics.
Analog computing is reflected in the way gene expression
levels respond to TF concentrations, analogous to continuous
signals. Further, parallel processing in neuromorphic systems
is mirrored in bacterial cells, where multiple genes are reg-
ulated simultaneously by various TFs. Additionally, asyn-
chronous event-driven computing, a hallmark of neuromorphic
systems, is evident in bacterial behavior where gene regulation
and cellular responses occur in reaction to environmental
changes without a global clock, ensuring efficient and timely
processing. At each event, a spike in TF concentration occurs
for the related gene, with its amplitude determined by the
incoming signal’s concentration, drawing parallels to spiking
neural networks. The accumulation of TF spikes from source
genes leading to expression in the target gene is analogous to
the Integrate-and-Fire model in SNNs, with studies showing
that the BReLU (ReLU) behavior observed in gene expression
mathematically resembles both IF and Leaky Integrate-and-
Fire models [22]. By leveraging these similarities as shown in
Fig. 2, we propose GRNN-based bacterial computing systems
as a novel wet-neuromorphic approach, utilizing the inherent
biological computing properties of bacterial cells for efficient



computation. The contributions of this article are as follows.
• Modeling the E. coli GRNN for in-silico experiments:

Our previous studies proved the existence of GRNN [21]
using experimental gene expression data. Here, we extend
this model by focusing on the GRNN of E. coli and
explore their natural individual computing capabilities to
solve computer science problems.

• Introducing application-specific sub-GRNN search al-
gorithm: GRNNs are considered pre-trained NNs leading
to significant differences in the application pipelines.
Therefore, we introduce a search algorithm tailored to
GRNNs that includes extractions of sub-GRNNs by map-
ping them to an application problem.

• Feasibility analysis on performing computing of con-
ventional computing tasks: We evaluate the feasibility
of performing regression (including linear, multiple vari-
able linear, 2nd and 3rd degree polynomial regressions)
and classification (including binary and multi-class) tasks
using the extracted E. coli GRNN. Further, we solve a
digit classification problem and evaluate its accuracy as
a case study.

The remainder of the manuscript is structured as follows.
Section II explores the background of GRN computing prop-
erties using the literature and, subsequently, the existence
of GRNN. The next section describes the design of the E.
coli GRNN using experimental transcriptomic data, presents a
structural analysis of GRNN, and introduces the methodology
applied for extracting application-specific sub-GRNN. Section
IV and V present feasibility analyzes of performing regression
and classification problems including a digit classification use-
case problem. This is followed by discussion and conclusions
in Section VI.

II. BACKGROUND

We identified that the natural computation of a bacterium is
manifested within the domain of gene regulation. The bacterial
cell’s genome serves as a repository of encoded information,
and its dynamic regulation is through the transcription, trans-
lation, and post-translational modifications, which constitutes
a complex computing network.

A. Gene as a Computing Unit

The gene expression process can consider intra/extra cellular
information computing, resulting in functional gene products,
such as proteins or non-coding RNAs [23]. Prokaryotic genes
are often organized into operons (clusters of genes transcribed
as a single mRNA molecule with a shared promoter), and
transcription is regulated by specific DNA-binding proteins
near the promoter, influencing RNA polymerase activity. The
transcribed mRNA, complementary to the DNA template,
undergoes translation into ribosomes, which are composed of
rRNA and proteins. This tightly regulated and coordinated
process is vital for the cell to execute specific functions and
respond to environmental signals. The computing capabilities
of genes have been investigated in recent decades, gradually
paving the way toward the use of biological entities for
computing. Since the pioneering work of DNA computing
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Fig. 3. Gene expression Pearson correlation coefficients between the source
and target genes with only one inward and no outward edges. These results
indicate the expression levels of the source-target gene pairs have linear
relationships.

in 1994 [12], the field has been relentlessly advancing as
an alternative to conventional computing methods. Among
many diverse approaches, the use of genes as perceptrons
[24] holds a special position due to the crucial role that
Artificial Neural Networks (ANNs) play in today’s computing
world. An artificial neuron can accept multiple inputs that
are then weighted and summed before passing through an
activation function. Similarly, a gene can receive multiple TFs
that lead to combinatorial regulation of the target gene [25].
Furthermore, the properties of TFs including the affinity of
the TF binding site and mechanisms such as thermoregula-
tors/enhancers/silencers [26], [27] and the lifetime of a DNA-
TF complex [28] can determine the magnitude of the impact
of the source TFs on the target gene resulting in regulation
of expression level. In an ANN, the weighted summation
of an artificial neuron is then passed through an activation
function such as sigmoid, tanh, and ReLU, which introduces
nonlinearity to the computing. Similar behavior can also be
observed in genes, as they are considered switches that are
in the “on” or “off” states determined by the regulatory
influence of the TFs. Here, the combined influence of the
TFs as a weighted summation is converted into the same two-
state output (“on” or “off” states) for cell transcription [29],
exhibiting sigmoid-like dynamics of gene expression.

To observe gene expression behaviors beyond the sigmoidal
properties, we performed a simple correlation analysis on
temporal expression dynamics utilizing an E. coli dataset
(accession number GSE65244) from the GEO database [30].
Here, we used 827 target genes with single inward and no
outward edges to clearly observe gene correlation. Based on
our analysis, 95.40% of the target genes have a correlation
coefficient greater than 0.9, while 4.11% of the genes have a
coefficient less than −0.9, demonstrating that there are strong
linear relationships between the expressions of the source and
target genes. Furthermore, only 0.49% of the expressions of
the pair of source-target genes have correlation coefficients
within ±0.9. This analysis reveals that most of the source and
target genes have linear relationships as shown in Fig. 3. This
emphasizes that the relationships between the source and target
genes can be converted to a single value (a.k.a weight) and
the suitability of the ReLU activation function over a sigmoid
to represent a gene’s expression behavior in the time domain.
However, there is a biophysical boundary for the maximum
gene expression rate, which emphasizes the requirement of
using a Bounded Rectify Linear (BReLU) activation function.
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Fig. 4. Illustration of the gene-perceptron model of gene gp, where the
weighted summation of source gene (g0, g1,...,gP ) expression levels at
time step t passes through the activation function BReLU and produces an
expression level at time step t + 1 corresponding to the input. This figure
also elucidates the weight extraction mechanism, where we use temporal
transcriptomic records to refine the weights between predicted and expressed
genes, as well as the biases.

We prove this argument in Section III-A, where we use
the accuracy of the extracted GRNN to show that the gene
expression behavior follows a BReLU activation function.
Moreover, a further investigation of gene expression properties
explains that prokaryotic genes have “ground states” since
RNA polymerase can access almost any promoter without the
presence of activators or repressors [31]. Taking into account
this property, we improve our previous weight extraction
model by accompanying each gene perceptron with a bias that
represents the ground state, as shown in Fig. 4.

B. Existence of GRNN

Gene interactions driven by functional proteins form a com-
plex network within the GRN, involving operons, modules,
and motifs for coordinated gene expression [32]. An operon
is a set of co-regulated genes with a common promoter,
producing a single mRNA molecule. A module is a group of
operons regulated by the same TF or signal, while a motif is
a recurring interaction pattern with specific functions, such as
feedback loops [33]. GRNs process and transmit information
through these structures, modulating downstream gene activity.
Transcription patterns and GRN topologies drive bacterial
decision-making, hinting at complex computing properties
[34]. To reveal these properties, we introduced a framework

for quantifying gene-gene interaction dynamics [21]. By
perceiving the GRN as a random structured graph network,
we quantified the influence of source genes on target genes
using transcriptomic data. This weighted interaction GRN can
be considered a gene regulation-based random structured NN,
transforming it into a GRNN and reflecting the computational
principles observed in ANNs.

III. BASE-GRNN CREATION AND APPLICATION-SPECIFIC
SUB-GRNN EXTRACTION

In this section, we detail a modified version of the GRN-
to-GRNN conversion framework originally introduced in [21]
which creates an in-silico version of the biological GRNN.
Subsequently, we dive into the essential components of
GRNNs, which include network structures as well as their
analog and parallel computing capabilities; and present the
network architectural search in the context of GRNN-based
computing instead of the conventional NN learning stage as

the GRNN is analogous to a pre-trained random structured
NN.

A. GRN-to-GRNN Conversion

The GRN represents a unique gene-gene interaction network
specific to each species. Publicly accessible GRN databases
covering various species or strains, such as E. coli, can be
found in [35]. Typically, these GRNs contain only data on
the existence and type of interactions between static features
such as genes, operons, and TFs (including Sigma Factors -
SFs). In addition, both coding RNAs (cRNAs) and non-coding
RNAs (ncRNAs) play critical regulatory roles in bacteria. In
E. coli, small RNAs (sRNAs) that are typically less than
200 nucleotides, regulate gene expression by base pairing
with target mRNAs to influence their stability or translation,
often requiring chaperone proteins. Approximately 200 trans-
acting sRNAs in E. coli can inhibit translation initiation by
binding near the target’s Shine-Dalgarno sequence, prevent-
ing ribosome binding and promoting RNA degradation. The
regulatory impact of both cRNAs and ncRNAs acting as
TFs, is determined by their diffusion properties and allosteric
effects, which influence the interaction strength with the target
genes. In addition, the concentration of these TFs serves as
the input value for gene regulation, ultimately determining
the magnitude of their regulatory effect [36]. The absence of
quantitative properties, including the magnitude of the impact
of one element on another, hinders the extraction of accurate
natural computing capabilities of biological cells. To overcome
such obstacles, we previously introduced a GRN-to-GRNN
conversion method [21] to quantify the influence of TFs
on the regulation of a target gene. The transcriptomic data
used for weight extraction in this method inherently captures
the combinatorial effects of various regulatory mechanisms,
including the influences of non-coding and coding RNAs on
TF activity. As a result, the interaction strengths derived from
our framework reflect the integrated impact of these regulatory
properties, including the indirect contributions of non-coding
and coding RNAs on gene regulation through their modulation
of TFs.

The previously proposed GRN-to-GRNN conversion
method involves several stages: modeling the GRN as a
graph network, dividing the GRN into gene-perceptrons,
pre-processing transcriptomic data, and weight extraction
[21]. Initially, the GRN is reconstructed as a directed graph

where genes are nodes and their interactions are edges.
This GRN is divided into sub-networks, each associated
with a gene having at least one inward edge. These sub-
networks, similar to single-layer perceptrons, contain a target
gene and source genes regulating its expression. These are
termed single-layer gene-perceptrons. Transcriptomic data,
consisting of expression levels of both source and target
genes in each gene-perceptron, is used to assess interaction
strengths. Fig. 3 shows that gene expression has linear
relationship between inputs and outputs. Additionally, the
maximum biophysical expression rate suggests that gene-
perceptron expressions have an upper bound. These factors
indicate that gene expression exhibits BReLU properties,



and a mechanism similar to single-layer perceptron training
quantifies interactions between source and target genes.
Furthermore, as the prokaryotic genes have a ground state,
identified as the bias of the gene-perceptron model, we
improved the previously proposed GRN-to-GRNN conversion
by embedding a bias in gene-perceptrons to extract gene-gene
interaction dynamics. The gene-perceptron of this study is
depicted in Fig. 4 and its functions are represented as,

ŷt+1
p = max

(
P∑
i=1

yt(i,p)w(i,p) + bp, 0

)
, (1)

where ŷt+1
p represents the predicted output of the target gene

gp at the next time step t+ 1. This prediction is influenced
by the current outputs of other genes gi at the same time
step t, denoted by yt(i,p). The interaction between gene gi and
the target gene gp is quantified by the weight w(i,p), which
determines the strength and nature (positive or negative) of
this interaction. The term bp represents the bias or baseline
expression level of the target gene, independent of the inter-
actions with other genes. In this model, the expression level
of the target gene at the future time step t+ 1 is influenced
not only by the direct interactions with other genes at the
current time step t, but also by the inherent properties of
the target gene itself (captured by the bias bp). Initially, the
weights w(i,p) are set to random values, reflecting the lack
of prior knowledge about the interactions. These weights are
then iteratively refined through a process of minimizing the
Mean Squared Error (MSE), which is the difference between
the predicted gene expression ŷt+1

p (from the model) and
the actual measured gene expression yt+1

p (from experimental
transcriptomic data). This iterative adjustment continues until
the model’s predictions closely match the observed data,
thereby optimizing the gene-perceptron for accurate prediction
of gene expression levels. Further information can be found
in [21]. MSE is calculated as,

MSE(gp) =
1

T

T∑
t=0

(ytp − ŷtp)
2 (2)

where T is the last time step. This process is iterated for all the
gene-perceptrons to extract the weights of all the interactions
within the GRN.

B. E. coli Base-GRNN

We applied the GRN-to-GRNN conversion method ex-
plained in Section III-A to E. coli k-12 strain CSH50 to
extract its base-GRNN and used it for all analyses of this
study. In the first stage of conversion, the GRN data is
obtained from [35] under multiple categories including TF
- gene, TF - operon, TF - Transcription Units (TU), TF -
TF, SF - Gene, SF - TU and sRNA - gene. By merging the
interactions in each category, the complete GRN of E. coli is
constructed as a directed graph network consisting of 3175
genes as nodes and 9678 interactions as edges using Python
and the NetworkX library. Next, the GRN is divided into
single-layered gene-perceptrons that contains corresponding
source genes and initialized with random weights. For the
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Fig. 5. Illustration of the accuracy of the extracted base-GRNN, where a)
compares the predicted ŷ and wet-lab experiment y expression levels for all
the timesteps of all the gene-perceptrons and b) showes the MSE of each gene
for all the timesteps.

weight/bias extraction phase, temporal transcriptomics data
[30] (GEO accession number GSE65244) that contains inter-
polated expression records for 43 time steps are used after
normalization. However, we only use 34 expression records,
which is about 80% of the total records for the weight/bias
extraction, while the rest of the transcription records are
used to evaluate the accuracy of the extracted weights and
biases. This step involves a custom Python script designed
to identify each single-layered gene-perceptron and generate a
corresponding randomly weighted shadow perceptron with the
same structure. The transcriptomic data are then used to fine-
tune the weights using equations (1) and (2). The learning
rate and the number of epochs are set to 10−5 and 109,
respectively. Further, we parallelized the iterative process of
weights and biases extraction of all the gene-perceptrons using
the CUDA platform on NVIDIA GeForce RTX 4090. This
provides a weight matrix representing an in silico randomly
structured NN that can mimic the computation based on the
gene expression of the bacterial cell. The extracted weight
matrix is denoted as

W =

g1 g2 ... gP


g1 w(1,1) w(1,2) ... w(1,P )

g2 w(2,1) w(2,2) ... w(2,P )

...
...

...
. . .

...
gP w(P,1) w(P,2) ... w(P,P )

, (3)

where w(i,j) is the weight of the interaction between ith and
jth gene where i : j = {1, 2, .., P}. The w(i,j) is the weight
of self-regulation interaction when i = j. Next, we model the
output of the GRNN, O(t+1) at t+ 1 using weight W as,

O(t+1) = max(W · (I(t) + Ñ) +B), (4)

where It is the input matrix B is the bias matrix and Ñ is the
Gaussian noise Ñ = N(0, 0.1) extracted based on the iterative
experiments [30] (GEO accession number GSE215300). For
the next time step, the input matrix It+1 = Ot+1 and Ot+2

is computed as,

O(t+2) = max(W · (I(t+1) + Ñ) +B). (5)

The structural and algorithmic complexity behaviors of the E.
coli base-GRNN are analyzed in the next section.

C. GRNN Structural and Algorithmic Complexity

The base-GRNN consists of a graph topology with a power-
law distribution that contains a few central nodes and a
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Fig. 6. Network degree distribution of the E. coli GRNN, where a) and b)
show inward and outward degree frequency, respectively.

significant number of terminal nodes, as evident in Fig. 6.
Within the E. coli GRNN, 68.45% of the gene-perceptrons
have more than one inward edge (Fig. 6a) with the ability to
compute multiple inputs together. Moreover, the distribution
of the outward edges as shown in Fig. 6b proves the existence
of central gene-perceptrons that can influence around 92.12%
of the terminal nodes. For example, the gene b3067 has a
total of 1703 outward edges, of which 91% are terminal
nodes. Activation of this particular gene-perceptron in turn
results in a wide range of expression values in the terminal
nodes, which contributes to making the base-GRNN suitable
for a range of problems. Therefore, this power-law distribution
positively reflects computing diversity, allowing the base-
GRNN to be recognized as an extensive repository of diverse
pre-trained sub-GRNNs. Due to the presence of loops in gene
expression pathways, GRNNs can be considered NNs with a
theoretically unlimited number of layers, allowing complex,
recurrent interactions and regulatory feedback.

An important factor of NN is its structural and algorithmic
complexities; therefore, we analyze and compare the structural
and algorithmic complexities of GRNN with conventional
NNs to determine its computing performance. The structural
entropy of a graph neural network indicates its capacity
to process complex graph-structured data by measuring the
randomness and diversity in its topology, facilitating effec-
tive information integration. Kolmogorov complexity reflects
the simplicity or complexity of the graph neural network’s
representation, with lower complexity implying more efficient
learning and higher complexity indicating greater expressive
power. Together, these metrics help assess the computational
capabilities of a graph neural network in terms of efficiency,
expressiveness, and generalization potential.

Calculation of structural entropy Sc begins by computing
the betweenness centrality of all the gene-perceptrons, where
we denote the betweenness of the ith gene-perceptron l(i) as
follows

l(i) =
∑

1⩽i⩽N,s̸=i̸=t

σs,p(i)

σs,p
(6)

where σs,p is the total number of shortest paths between the
source gs and target gp genes, while σs,p(i) is the number of
shortest paths through gene gi between the source gene gs and
target gene gp. Further, we define the relative degree pi of
the ith node as,

pi =
Degree(i)∑N
i=1 Degree(i)

, (7)
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Fig. 7. A comparison of structural (Sc) and algorithmic (Ac) complexity
behaviors between Fully Connected Neural Networks (FCNNs) and GRNNs.
a) and b) compare the Sc and Ac variations against the number of nodes in
the two types of NNs, while c) focuses on Ac against the number of edges.
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and qi as the nonextensive parameter which is defined based
on the betweenness l(i) as follows,

qi = 1 + (l(max)− l(i)), (8)

where l(max) = max[l(i), (i = 1, 2, 3, ..., N)]. Finally,
structural complexity Sc is calculated as follows

Sc =

N∑
i=1

(
pqii∑n
i=1 p

qi
i

)
log

(
pqii∑n
i=1 p

qi
i

)
. (9)

This study uses the Kolmogorov complexity (K-complexity)
approximated by the Coding Theorem Method (CTM ) to
determine the algorithmic complexity Ac, which is considered
the basis for the network complexity [37]. CTM is calculated
based on the Laplacian matrix L, and due to the large
dimensions, we also employ the Block Decomposition Method
(BDM ) as follows

Ac ≈ BDM(L) =

P∑
i=1

CTM(bi) + log2|bi|, (10)

where bi is the ith row of L and more information on
estimating the CTM of bi can be found in [38]. Fig. 7a
compares the behavior of the structural complexity with re-
spect to the number of nodes in a fully connected NN versus
GRNN. It is evident that the power-law properties in the
random structured GRNNs compared to fully connected NN
result in lower structural complexity. We also found lower
algorithmic complexity in GRNN structures which is shown
in Fig. 7b due to a minimized number of edges compared
to a fully connected NN with a similar number of nodes.
Moreover, GRNNs comprising edges ranging from 2000 to
10000 exhibit greater algorithmic complexity compared to
fully connected NNs as depicted in Fig. 7c. This reveals certain
GRNN structures are capable of complex computing, while
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Fig. 9. Illustration of the proposed application-specific sub-GRNN search algorithm for One-vs-All classification. Step 1 focuses on selecting a set of input
gene-perceptrons, G(Trimmed) based on their inward/outward degree distributions, and a subset, G(Inj) with K number of gene-perceptrons input features
is selected from G(Trimmed). In Step 2, the searching dataset SD is encoded into the expression level-based input matrix I(t=0). The output matrix,
O(t=T ), corresponding to I(t=0), is then calculated using the in-silico base-GRNN model as explained in Section III-B. In Step 4, a set of gene-perceptrons
is identified, exhibiting higher expression variance between classes and lower expression variance within the same class. This set of gene-perceptrons is then
pooled under each class in Step 5 based on their expression levels. Step 6 searches for the optimal expression thresholds for each class by maximizing
accuracy. Finally, Step 7 conducts an Mutual Information (MI) analysis to identify the insignificant input gene-perceptrons and removes them from the input
layer to reduce the size of the network.

maintaining an improved interpretability compared to fully
connected GRNNs.

D. Application-specific sub-GRNN Search Algorithm for Re-
gression

The weight configuration of an extracted base-GRNN de-
pends solely on the state of the bacterial cell and the en-
vironmental conditions. Thus, the weight extraction process
creates an in-silico twin of the cell’s base-GRNN, which can
be viewed as an application-agnostic, pre-trained, randomly
structured physical neural network or a weight-defined neuro-
morphic system. To use a bacterial cell with such a GRNN
for problem-solving, it is necessary to search for and extract
the precise sub-GRNN from the in-silico version of the base-
GRNN.

Mathematical regression has been widely used in data
mining applications [39], [40] for many years. Therefore, as
one of the key contributions of this study, we introduce and
detail the extraction mechanism of the sub-GRNN that can
approximate regression functions of the gene-perceptron ex-
pression profiles. In order to showcase the regression diversity
illustrated in Fig. 8, we first stimulate a randomly selected
gene as input and observe the resulting expression patterns of
the other genes in the GRNN. Subsequently, each expression
pattern is subjected to a curve approximation to determine
its mathematical form. For the extracted expression levels
of all the gene-perceptrons, the r2 score (r2 = RSS/TSS,

where RSS is the residual sum of squares and TSS is the
total sum of squares) is calculated to measure the goodness
of fitness of the output gene-perceptron expression with a
regression approximations. This method is used for all types
of regressions. Further, in this case of multiple polynomial
regression, the goodness of the curve is fitted to the following
equation,

f(x1, x2) = d1x
2
1+d2x

2
2+d3x1x2+d4x1+d5x2+d6, (11)

where d1 to d6 are coefficients of the approximated curve
for each output gene-perceptron and x1 and x2. When applying
GRNN for regression tasks, users can select the gene whose
expression pattern exhibits the desired mathematical curve for
the computational task using the in silico GRNN. Results for
the regression diversity are presented in Section IV.

E. Application-specific sub-GRNN Search Algorithm for Clas-
sification

Our next main contribution in this study is the proposal
of an application-specific sub-GRNN search algorithm for
classification tasks, illustrated in Fig. 9, that is executed in
silico. The conventional approach for classification using NNs
involves creating a suitable NN architecture and training the
weights using a training dataset, denoted as SDK×V where K
is the number of input features and V is the number records
with corresponding class labels. In contrast, our algorithm is
based on random permutation search to select sub-GRNNs



from the extracted base-GRNN. Upon stimulation of the input
gene perceptron in the in silico base-GRNN model with input
data from the labeled dataset (SDK×V ), the gene expression
cascades through the cell mimicking the dynamics of the
actual cell. This results in the computation of the output as
the expression levels of the output genes. Next, the model
evaluates their accuracy using SDK×V . This process is re-
peated iteratively until a sub-GRNN with higher accuracy is
identified. The identified sub-GRNN reveals the relationships
between input and output gene-perceptrons. Next, the input
data for specific applications should be converted into the
TF concentration domain for computing tasks. This involves
mapping input feature value ranges to corresponding input
layer gene-perceptrons TF ranges based on the transcriptomic
database used for the weight extraction. While the study does
not emphasize wet-lab experiments, it lays the groundwork for
wet-neuromorphic computing by harnessing the computational
diversity of GRNN. The following section provides an in-depth
explanation of this algorithm.

In the initial step, suitable candidates for the input layer are
first filtered using the characteristics of the genes, including
inward/outward degree as shown in Fig. 9 (Step 1). These
characteristics include gene-perceptrons with an inward degree
closer to zero, which are not significantly influenced by unnec-
essary incoming signals except for the problem-specific inputs
and input gene-perceptrons with a higher outward degree so
they have variety of output combinations that can support
complex computing capabilities. This stage uses a theoretical
graph degree distribution to create a set of gene-perceptrons for
the input layer, G(Trimmed). Here, G(Trimmed) contains
the P ′ number of genes, where the selected genes, P ′, is
less than the total number of genes, P , of GRNN, respec-
tively. Given that G(Trimmed) contains P ′ number of gene-
perceptrons and the problem has K number of features, there
are P ′PK different input layers that can be extracted (where
P ′PK = P ′!/(P ′−K)!). Due to the massive number of sub-
GRNNs, a heuristic search algorithm may be more efficient.
However, exploring such algorithms is beyond the scope of
this study and we use only this random permutation-based
algorithm. Finally (Fig. 9-Step 1), the algorithm randomly
picks a set of K number of inputs denoted as G(InJ), for
the J th permutation, where J = {0, 1, 2, ..., P ′PK}, where K
is number of input features of the problem.

Before SD is encoded into the expression levels in Fig. 9
(Step 2), a base-TF array is created using the expression
levels at the zero time step of the transcriptomic data used for
weight extraction [30] (GEO accession number GSE65244).
This step is crucial to mimic the base behavior of the cell
at t = 0 (starting time of the computing process), where
the cell functions with respect to environmental conditions.
The base-TF array is then sufficiently altered to encode the
inputs of SD to create the input matrix I(t=0) that contains
the TF input arrays I

(t=0)
v , where v = {0, 1, 2, ..., V }. In this

stage, if SD is considered digital, then state “1” represents
the highest expression level of the corresponding gene, while
state “0” represents the lowest value. However, if SD is in
analogue form, the values are normalized and mapped with
the concentrations based on the highest and lowest expression

levels of the relevant gene. After decoding all input records
with the expression levels in Step 2, using the mathematical
model explained in (4) and (5), the output expression levels are
computed in Step 3. This step produces an expression matrix,
O(t=T ), with output arrays, O(t=T )

v , where v = {0, 1, 2, ..., V }
corresponds to each class.

In Step 4, we conduct a variance analysis to identify the
genes-perceptron that can be used to represent each class at
the output layer of the sub-GRNN. Suppose a gene-perceptron
can express in a higher level for the corresponding input
I(t=0) of a particular class, ci, while maintaining low variance
between augmentations in the same class and higher variance
between different classes. In this case, that gene-perceptron is
a good candidate to represent ci. Hence, we search for gene-
perceptrons for all the classes in “Region 4” (as shown in
Fig. 9- Step 4), where the variance between classes is high
and the variance between records of the same class is low,
which we will then form a set of output gene-perceptrons.

In Step 5, if a gene-perceptron gi from the above set satisfies
the condition, y(gi, cl) > y(gi, cm) : m∀;m < |c|,m ̸= l,
where y(gi, cl) is the mean expression level for the class cl,
then gi is pooled under the class cl. This process is repeated
for all the gene-perceptrons in “Region 4”. Following this, the
gene-perceptrons that has the highest mean expression level
a particular class and the lowest gene-perceptrons for other
classes are selected to represent each class.

Step 6 of the algorithm is dedicated to identifying the thresh-
old for each gene perceptron using an accuracy-maximizing
approach. First, we get the true-positives (TP), true-negatives
(TN), false-positives (FP) and false-negatives (FN) for each
class using an arbitrary threshold value, Th = a. The accuracy
of the classification is then calculated for class cl, which is
denoted as ACC(cl, Th = a) and represented as follows

Acc(cl, Th = a) =
TP + TN

TP + TN + FN + FP
. (12)

This calculation is repeated with various thresholds a ranging
from zero to one with increments of 0.05 and the threshold
for the class cl is calculated as

Th = argmax
a

Acc(cl, Th = a). (13)

Similarly, the thresholds for all the classes associated with the
problem are extracted iteratively. This process is repeated a
number of times (< P ′PK), resulting in an accuracy-based
ranking to support the selection of the best sub-GRNN.

After successfully selecting a suitable application-specific
sub-GRNN, a perturbation-based MI analysis is performed
with the objective of optimizing the network in Step 7. In
this step, all inputs of the extracted sub-GRNN are subjected
to signals fluctuating from zero to one, and the outputs of
the network are recorded from the gene-perceptrons at the
output layer. Since both inputs and outputs for this network
are continuous variables, the MI between the input and output
nodes is denoted as,

I(gx; gy) = f(x, y) · log
(

f(x, y)

f(x) · f(y)

)
dxdy, (14)



TABLE I
PARAMETERS UTILIZED FOR THE in silico FEASIBILITY ANALYSIS FOR

REGRESSION APPLICATIONS
Parameter Value
Input genes b3067 (for simple regressions),

b3067, b3357 (for multiple regressions)
Input range 0 to 0.5 (normalized concentration units)

where gx and gy are the input and output nodes, respectively;
and f(x, y) is the joint probability density function of gx and
gy expressions. These MI values indicate the amount of infor-
mation flow from input nodes to output nodes. Input nodes
associated with lower MI values can be ignored, resulting
in a reduced network. This reduction allows the network to
compute with fewer inputs, making it more efficient and easier
to use.

IV. GRNN APPLICATION IN REGRESSION

In this section, we elucidate the diversity of the search space
for regression problem types, as illustrated in Fig. 8 using the
method explained in Section III-D. This analysis is conducted
using the E. coli GRNN as a use case.

A. Linear Regression Analysis

First, we identified b3067 as the E. coli input gene-
perceptron that has the highest outward degree and can regu-
late other 1703 connected gene-perceptrons. This is important
for this analysis as the b3067 stimulation cascades through a
significant portion of the GRNN, leading to various regression
outputs. Next, the input gene-perceptron is stimulated with 25
concentration input values ranging from 0 to 0.5 normalized
concentration units (as mentioned in Table I). The initial
expression values of the rest of the gene-perceptrons are kept
at the minimum level based on the expression profiles in
[30] (GEO accession number GSE65244). Each step of this
experiment is also iterated 10 times to observe more accurate
behaviors.

The variety of linear regression slopes with respect to r2

fitness, where the gene-perceptrons with the highest r2 values
tend to have a variety of coefficients for different slopes (see
Fig. 10a), reveals that the highest positive slope is estimated
as 0.36 while −0.50 is the largest negative slope for E. coli
GRNN when the input is b3067. Fig. 10b presents three
output gene-perceptrons for different regression lines, where
b1380 and b3293 have positive slopes of 0.29 and 0.12,
respectively; while b4435 has a negative regression slope of
−0.29. Fig. 10c illustrates the sub-GRNNs associated with
the three output gene-perceptrons, b4435, b1380 and b3293
with corresponding color codes to Fig. 10b. According to Fig.
10c, it is essential to highlight that all three linear regressions
are performed in parallel, proving the parallel computing
properties of the GRNN. This analysis evidently elucidates
the availability of a diverse linear regression solution space,
where an algorithm can search and map gene-perceptrons to
applications.

B. Quadratic Polynomial Regression

The GRNN output generated in the previous section is
also utilized for the matching to quadratic polynomial regres-
sions. Fig. 11a represents the behavior of quadratic (Coef.
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Fig. 10. Illustration of simple linear regression using E.coli GRNN, where a)
shows the regression slope distribution of all the genes against the respective
r2 score, b) exemplifies three regression lines based on three output gene-
perceptrons and c) is the sub-GRNN for the linear regressions.
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Fig. 11. Illustration of non-linear quadratic regression using E.coli GRNN,
where a) shows the quadratic and linear coefficient distribution of all the genes
that are color-coded to the RSS value, b) shows three example regression
curves and c) is the sub-GRNN associated with the three example regression
curves.

1) and linear (Coef. 2) coefficients for each gene-perceptron
that is color-coded according to the RSS value, where the
lighter color (yellow) indicates the higher goodness of fit.
The quadratic coefficients of the curves with the highest RSS
values range from −2 to 2, while the linear coefficient ranges
from −1 to 0.5. Fig. 11b shows three example curves to
emphasize the diversity of the available quadratic regression
within the E. coli GRNN given the input gene-perceptron
b3067. Three quadratic curves shown in Fig. 11b are for the
gene b0124, b2487 and b3751 where the quadratic coeffi-
cients are −0.83, −0.63 and 1.48, respectively. Figure 11c
shows the sub-GRNNs corresponding to the three output gene-
perceptrons, namely b0124, b2487, and b3751, each repre-
sented with distinctive color codes, aligning with Fig. 11b.
This shows that with the same input gene-pereceptron b3067,
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Fig. 12. Illustration of non-linear cubic regression using E.coli GRNN, where
a) shows the cubic, quadratic and linear coefficient distribution of all the
genes that are color-coded to the RSS value, b) shows three example cubic
regression curves and c) illustrates the extracted sub-GRNNs of the three
cubic regression curves.

we can switch from linear to quadratic polynomial regression
by finding a different output gene-perceptron combination.

C. Cubic Polynomial Regression

The same data set used in Sections IV-A and IV-B is used
to discover and match to the cubic polynomial regression of
E. coli GRNN. Fig. 12a shows the coefficients of the cubic
polynomials, Fig. 12b provides three example curves, while
Fig. 12c illustrates the corresponding three sub-GRNNs. The
cubic coefficient with RSS > 0.7 ranges approximately from
0 to 13, while the quadratic and linear coefficients range from
−11 to 2 and −0.75 to 0.75, respectively. The ranges of the
data points for the curves in Fig. 12 are not spread out, which
means there is a minimized variation in the higher-degree
polynomial regressions. This can be perceived as a limitation
in the discovery of higher-degree functions.

However, it is important to note that these solution spaces
are derived using the input gene-perceptron b3067 as an
example. Selecting a different gene could yield an entirely
different solution space, further showcasing the diversity and
adaptability of the computing capabilities. Conversely, select-
ing a gene with fewer outward edges may restrict information
flow through the GRNN, leaving portions of the network
underutilized. This, in turn, could result in a smaller and less
dynamic solution space.

D. Multiple Linear Regression

We further investigate the feasibility of multiple regression
of E.coli GRNN by using two input gene-perceptrons, b3067
and b3357 with outward degrees of 1703 and 596, respectively.
Similarly to the previous setup, the two inputs are stimulated
with expression levels from 0 to 0.5 with increments of 0.02 (a
total of 625 input setups). In this analysis, RSS is considered
the measure of variance of the regression model. Fig. 13a
shows the coefficient variation, where Coef. 1 and Coef. 2 are
associated with the two input gene-perceptrons, respectively.
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Fig. 13. llustration of multiple-linear regression using E.coli GRNN by using
gene-perceptrons b3067 and b3357 as two inputs, where a) shows the first
and second coefficients distribution of all the genes that are color-coded to the
RSS value, b) and c) shows the example plane of the output gene-perceptron
b3090 and the corresponding sub-GRNN, respectively.

Planes with RSS > 0.7 have Coef. 1 ranging from −0.2 to
+0.4 and Coef. 2 ranging from −1 to 1. Fig. 13b exemplifies
the plane for the output b3090 with the first and second
coefficients of 0.10 and 0.14, respectively. Fig. 13c shows the
sub-GRNN where the input layer consists of b3067 and b3357
and output layer with b3090 gene-perceptrons. This example
only considers the gene-perceptrons b3067 and b3357 as the
inputs, and it is possible to explore diverse efficient spaces
by selecting different combinations of inputs and output gene-
perceptron.

E. Multiple Polynomial Regression

Results in Fig. 14 depict the possibility of extracting com-
plex higher-order multivariate polynomial regression models
that match our problem. The d1 and d2 in Fig. 14a are
quadratic coefficients associated with the two inputs that gov-
ern the curvature of the model. The positive values of d1 and
d2 result in curvature along the b3067 and b3357 concentration
axes, respectively. It is evident that the distributions d1 and d2
exhibit distinct trends, characterized by positive and negative
skewness, within approximate ranges of −10 to +10 and
−3 to +3, respectively. Furthermore, d3 is the cross-term
coefficient that determines how the two inputs, b3067 and
b3357 combine to affect the shape of the curve. Given that
both inputs are consistently positive, the negative skewness of
the d3 distribution emphasizes that most of the resulting curves
are shifted upward due to the combined influence of b3067
and b3357. Linear terms d4 and d5 have an impact on the
vertical position of the curve based on individual inputs. The
analysis of the graphs in Fig. 14a reveals that b3067 exerts
a balanced effect on the curve shift, while b3357 primarily
tends to shift the curve downwards. Lastly, d6 represents the
y-intercept or the offset of the curve, which determines the
vertical positioning of the curve. In particular, the distribution
of d6 is fairly symmetric around zero. Fig. 14b and Fig. 14c
elucidate two significantly different multivariate polynomial
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Fig. 14. Illustration of multiple non-linear regression using E.coli GRNN by
using gene-perceptrons b3067 and b3357 as two inputs, where a) shows the
distributions of each coefficient associated with (11) while b) and c) exemplify
two curves with positive and negative coef. 1, respectively. Subsequently, d)
shows the sub-GRNNs for the two examples regressions shown in b) and c).

regression examples, using gene-perceptrons b0904 and b4406
and this is based on the sub-GRNN presented in Fig. 14c.

V. GRNN APPLICATION IN CLASSIFICATION

In addition to regression applications, NNs are also well
known for classification tasks [41]. In this section, we explore
the application of GRNN for three types of classification tasks:
One-vs-All, One-vs-One, and Multiclass, as depicted in Fig.
15. These tasks necessitate more advanced and specialized
layers compared to the simpler architecture used for curve
approximation in regression, as discussed in Section IV.

A. BReLU as the activation function for GRNN-based classi-
fication

Gene-perceptrons can exhibit BReLU activation function
behaviors (see Section III-A), which can be beneficial for
GRNN-based classification. The sigmoid-like activation func-
tion produces positive outputs for negative inputs, and this can
lead to noisy computing in NNs. However, this noisy behavior
cannot be observed in NNs, when ReLU (BReLU) activation
functions are utilized for classification tasks [42] as evident
in Fig. 16a. ReLU including (BReLU) further encourages
activation sparsity in computing by zeroing out negative values
[43] and it further contributes to pruned networks for better
computing efficiency, which we cover in this section using
mutual information analysis.

Another advantage of BReLU is the increased sensitivity
in classification [44]. As shown in Fig. 16b, where the upper

Classification

Binary

MulticlassOne-Vs-All One-Vs-One

Fig. 15. Illustration of sub-categories of classification problems.

bound of BReLU is equal to that of the sigmoid function,
BReLU is more sensitive within the input range of zero to
one compared to the sigmoid activation function. Although the
variation of the sigmoid activation function is limited to ap-
proximately 0.23 within the non-negative region ([0,+1]), the
BReLU exhibits an unitary variation. The increased sensitivity
in BReLU paves the way for multiclass classification using a
single output gene-perceptron. This property is presented in
Fig. 16b, where different threshold values (Th1, Th2 and Th3

are set to 0.2, 0.5 and 0.8, respectively) are spaced to enable
greater sensitivity. As gene expression values are modeled
by the BReLU activation function, the thresholds represent
varying expression levels corresponding to the input. In the
multiclass classification application, the number of thresholds
is determined by the number of classes and can be expressed
as |Th| = |c| − 1, where |Th| and |c| are the number of
thresholds and classes, respectively. Due to this continuous
output of the gene-perceptrons, two types of thresholds can
be further applied: Th > 0 for one class versus all the other
classes (One-vs-All) and one class versus another class (One-
vs-One); and Th = 0 for One-Vs-All. However, determining
the threshold in the case of Th > 0 requires additional
processes, as discussed in Section III-E and elucidated in Step
6 of Fig. 9.

Fig. 16c shows multiple expression levels corresponding to
different classes (C0, C1, C2 and C3) where the expected
expression level for the class c0, E(c0) is always higher
compared to other classes. Therefore, such an expression
pattern of a gene-perceptron deems it suitable for One-vs-
All classification output. However, determining the appropri-
ate threshold (Th(c0)) requires additional steps. If a gene-
perceptron is expressed in two distinguish levels, E(c0) and
E(c1) as shown in Fig. 16c, it can be utilized for One-vs-One
classification output with the threshold Th(c0,c1). Similarly,
a gene-perceptron capable of expressing in three fixed levels
(E(c0), E(c1), and E(c2); see Fig. 16e) in response to various
inputs is suitable to represent the output layer node for mul-
ticlass classification applications. It is essential to emphasize
that, in such situations, two thresholds (Th(c0,c1), Th(c1,c2))
should be determined. The feasibility of binary and multiclass
classification is proven with in silico experimental results in
the next section.

B. Binary and Multi-Class Classification

We discuss the feasibility of gene-perceptron performing
a binary classification under two subcategories, One-Vs-One
(Fig. 16c) and One-Vs-All (Fig. 16d). Initially, we established
a transcriptomic-level experimental setup using the E. coli
GRNN, where we use 16 randomly selected gene perceptrons
as inputs. Table II further provides detailed information on the
parameters used for this analysis.
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TABLE II
PARAMETERS UTILIZED FOR THE in silico FEASIBILITY ANALYSIS FOR

CLASSIFICATION APPLICATIONS
Parameter Value
Input gene b2664, b0080, b3060, b2697, b2220, b3423,

b3743, b0345, b3481, b4401, b0357, b0889,
b0817, b2217, b3905, b3071

Input range 0 to 0.5 (normalized concentration units)
Iterations 10 per each input
# of classes 5
# of augmentations 10 (per class)
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Fig. 16. Comparison of the sigmoid and inherent BReLU properties in the
GRNN, where, a) highlights the shaded area in light blue that represents the
region, where the sigmoid activation function outputs a positive value for
negative weighted summation of the perceptron, b) compares the Sigmoid
Vs BReLU output variation within the weighted summation range [0, 1] and
the possibility of having multiple thresholds (Th1, Th2 and Th3) leading
to multi-class classifications (c0, c1, and c2), c) example gene expression
distribution for One-vs-All classification where Th > 0, d) gene expression
distribution for One-Vs-One binary classification, and e) gene expression
distribution with multi-class classification possibilities.

For this specific network, the input layer of the GRNN is in-
troduced with five different TF arrays (created as described in
Section III-E) associated with five classes ci, i = {0, 1, 2, 3, 4}.
To capture the stochastic behavior within a cell, each simula-
tion setup is iterated 10 times. A lower number of iterations
may fail to accurately reflect these dynamics, while increasing
the iterations further may not provide additional insights, as
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Fig. 17. Classification using the GRNN under three methods, where a) shows
the One-vs-All, b) shows the One-vs-One, where the aim is to show different
expression levels can be achieved for each gene indicating it can be used to
classify more than one class and c) illustrates the multi-class classification,
where we can see certain genes have separations that are high to support
classification of up to three classes.

the system’s behavioral variance remains consistent. Next, the
expression levels of each gene-perceptron are recorded and
filtered using the search algorithm proposed in Section III-E
to identify the suitable gene-perceptron perform three sub-
categories of classification, one-vs-all, one-vs-one and multi-
class.

For the one-vs-all subcategory of binary classifications that
uses the threshold as Th = 0, the algorithm seeks genes-
perceptrons that express for one class with a minimized
variance, while the expression levels for the other classes
remain equal to zero. Fig. 17a shows results for one-vs-all
classification for class c0 where gene-perceptrons on the x-
axis are an example set of suitable candidates that can be
considered output nodes. Selecting one of the gene-perceptrons
on the x-axis as the output node, it is possible to classify
inputs into class c0, proving the possibility of using the GRNN
for One-vs-All classification tasks. Moreover, the One-vs-All
method can be used for multiclass classification by selecting
gene-perceprons that are suitable for other classes.

Fig. 17b shows the feasibility of using GRNN for One-vs-
One classification, in which the objective is to search genes
that have low variance in expression levels within the same
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augmentations within the same class.

class while showing higher variance between classes. Hence,
these genes have different fixed expression levels for each
class. This plot provides evidence for the existence of the
gene-perceptrons that can be expressed in two distinct levels
by representing two classes. The x-axis is sorted based on the
mean expression distance between the two classes. The gene-
perceptrons b3403, b4063, b3250, b3251, and b4150 clearly
differentiate between classes c0 and c4 with an expression
difference of approximately 0.1. Further, gene-perceptrons
b2923 and b2343 can express at various levels to differentiate
between classes c0 and c2, and c0 and c1, respectively.

Finally, the possibility of using gene-perceptrons for mul-
ticlass classification is discussed here. The extended output
range due to BReLU allows multiple thresholds that allow
multiclass classification, and Fig. 17c presents a series of
genes that can be used to classify three classes. The gene
b0565 has the largest distribution of mean expression levels
associated with each class. Note that, except for the genes-
perceptrons b0565 and b0557, the deviation between multiple
classes is low (differences between classes are more difficult to
observe). However, it is important to mention that these results
are extracted using one set of random inputs, and various input
gene-perceptrons enable finding more output gene-perceptrons
that will have sparse expression levels for multiple classes.

C. Digit Classification Use Case

This study focuses on using E. coli GRNN, discovered
through our search algorithm, in a classic use case (digit
classification task). The primary goal of this investigation
is to systematically analyze each step of the application-
specific sub-GRNN search algorithm and the accuracy of
the computing required to classify digit images. This section

first discusses the experimental setup, the utilization of the
proposed sub-GRNN search algorithm, and finally the perfor-
mance of the GRNN computing for digit classification.

The complexity of the problem is kept low to make the
analysis more explicable. We only use 4 × 4 images with 16
pixels. We used a search data set SD with five classes of digits
(“0”,“1”, “2”, “6”, and “7”) and 10 augmentations with signifi-
cant pattern differences as shown in Fig. 18. Consequently, this
SD has the dimensions of 50×16 with an accompanying label
matrix of 50 × 1. Following the proposed search algorithm,
first, a pool of 128 (P ′ = 128) gene-perceptrons as suitable
candidates are selected for the input layer based on their
inward/outward edges’ degree distributions. As the images
contain (K = 16) pixels, the total number of input layer
permutations is equal to 128P16 ≈ 1.95×1033 (Fig. 9, Step 1).
Next, SD is encoded in I(t=0) as explained in Section III-E
(Step 2) taking into account the binary properties of pixels.
We only use J < 150 permutations to find the most suitable
sub-GRNN for our digit classification scenario. However,
using a smaller number of permutations limits the solution
space. While this reduces search time, it also decreases the
probability of identifying a more accurate sub-network. Using
the GRNN computing model explained in Section III-B (Step
3), the output expression levels for all genes for each of these
input permutations are recorded after 43 time steps (where
T = 42). As the next stage of the search algorithm, the
variance analysis is performed. Here we extract a pool of
gene-perceptrons for the output layer (Fig. III-E, Step 4),
with higher expression variation between classes and low
expression variations for different augmentation within the
same class, which results in steady expression rates for the
corresponding class. The results of the variance analysis for
two input permutations with significantly high and low gene
quantities in “Region 4” (higher class variance and lower
record variance) are shown in Fig. 19. Fig. 19a shows the
variance behavior of a random permutation J = 23 of inputs
where a minimal number of candidates for output genes-
perceptrons can be observed in “Region 4”. In contrast, Fig.
19b associated with the permutation J = 29 has a significant
number of candidates in “Region 4”, increasing the likelihood
of selecting the most accurate output gene-perceptrons.

After ordering the gene-perceptrons by the difference be-
tween the first and second highest mean expression values,
according to Step 5 in Fig. 9, the output gene-perceptrons
are categorized under each digit as shown in Fig. 20. This
categorization will allow us to determine which output gene
corresponds to which digit. Evidently, Fig. 20a depicts a
low variation between the expression levels for each digit
class, that is resulted from the low number of gene-perceptron
candidates in Fig. 19a for J = 23 permutation. However,
contrasting results are observed for the expression patterns in
Fig. 20b due to the evidently increased number of candidate
gene-perceptrons in “Region 4” from Fig. 19b for the J = 29
permutation. Hence, we select the input permutation J = 29
as the most suitable input layer for this particular problem, as
shown in Fig. 22.

The search algorithm can be employed to extract sub-
GRNNs for One-vs-One, One-vs-All and multiclass classifi-
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Fig. 20. Heatmaps of normalized gene-perceptron pools for each digit class, where a) shows the expression behaviors for the permutation, J = 23, that is
associated with Fig. 19a and b) represents the results for permutation, J = 29 that is associated with Fig. 19b.
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Fig. 22. Illustration of perturbation-based MI analysis on the input and output
layer of the extracted sub-GRNN.

cation. However, as the GRNN contains a large number of
genes compared to the number of classes in this use case,
we only exemplify the method for One-vs-All classification,
where each class is assigned with corresponding output gene-
perceptrons. Based on the statistical distance relative gene
expression levels corresponding to each class of digits, the
algorithm then selects five output gene-perceptrons (b2436,
b0613, b0675, b2417 and b3902) from each group of digits
as shown in Fig. 20b. Subsequently, the algorithm searches
for the appropriate expression thresholds (Step 6) which are
selected based on the maximum classification accuracy. The

classification accuracy, for the five selected output gene-
perceptrons, is calculated using (12) for a threshold range
(from zero to one with increments of 0.05), and the consequent
accuracy variation is shown in Fig. 21. In this case, the
accuracy maximization method determines 0.10, 0.50, 0.85,
0.1, and 0.35 as threshold values, and the resulting accuracy
for digit classes 0, 1, 2, 6 and 7 was 0.842, 0.938, 0.820,
0.804, and 0.918, respectively.

After the successful extraction of the application-specific
sub-GRNN, we performed a perturbation-based MI analysis
(Step 7). The results of this MI analysis are presented in Fig.
23 distinctively proving that only the input gene-perceptrons,
b0080, b4401, b0889, b2217 and b3905 contribute to the
decision in the output layer gene-perceptrons. It is under-
stood that the shutdown of gene expression pathways as a
result of BReLU causes the disconnection of the information
flow between the input and output layer nodes (this lack of
connection is evident in Fig. 23, where MI becomes zero).
We then extract an optimized network based on these results
by reducing the input layer to only have the five investigated
gene-perceptrons. As the last step, we compare the decision-
making accuracy of the extracted sub-GRNN, before and after
condensing the network based on minimizing the number of
inputs; see Fig. 24. These results suggest that the optimized
sub-GRNN can make decisions close to the previous version
of the network, despite the reduced structural complexity due
to the low number of input nodes that are stimulated. This
reduction in complexity can result in lower ATP energy to
fuel gene-perceptrons for computing [45], lower the amount
of noise to maximize reliability, and improve the explainability
and reproducibility of the network.

VI. DISCUSSION

GRNNs introduced in [21], represent a distinctive form of
neural networks naturally embedded within GRNs. These net-
works can be conceptualized as extensive repositories of pre-
trained NNs, at the biological hardware layer, capable of exe-
cuting intricate and diverse computing tasks. Hence, GRNNs
can be regarded as a wet-neuromorphic systems. However, har-
nessing the potential of GRNNs for computing demands a spe-
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cialized set of mechanisms, including GRNN extraction and
an algorithm for searching application-specific sub-GRNNs.
Therefore, this study improved the GRNN extraction method
in [21] and introduced a sub-GRNN search algorithm based
on random permutation for specific applications. Considering
E. coli as the model species, we extracted the base-GRNN and
proved its accuracy indicating the reliability of the proposed
extraction method, the innate computing and the possibility
of converging the multidimensional gene-to-gene interaction
to a single weight. Subsequently, a feasibility analysis on the
extracted E. coli GRNN proved its computing capability in
classification and regression problems.

The feasibility analyses exhibit the computing power em-
bedded in a single cell and the possibility of mapping sub-
GRNNs for wide range of applications. The classification
and regression results highlight two noteworthy attributes
of GRNN-based computing: analog and parallel computing
capabilities. Both analyses used continuous inputs for One-
vs-All and One-vs-One classifications, revealing the potential
for analog-to-digital computing. Furthermore, in multiclass
classification, it is evident that GRNN can be utilized for
analog-to-multilevel computing. In addition, we conducted
all the analyzes on three datasets for classification, sim-
ple regression, and multiple regression. All sub-analyses on
classification, simple regression, and multiple regression are

done in parallel on the corresponding dataset, highlighting the
possibility of using GRNNs for parallel computing, which can
be significantly efficient.

Here, we like to highlight the prospective research areas
associated with the concept of GRNN as it is still in its
infancy. Integrating reporter genes as the output layer of the
application-specific sub-GRNN for conveniently observable
outputs can be a promising research topic. Similarly, we
believe that exploring the possibility of utilizing synthetic
proteins as inputs can also be an avenue for further research.
Moreover, embedding the metabolomic layer in the GRNN can
lead to the incorporation of molecular inputs, which enhances
both convenience and practicality in this domain. This study
indicates that in the future, GRNN-based biocomputing can
be an alternative to silicon-based computing. However, cells
exhibit plasticity, dynamically adapting their internal network
structures in response to environmental or genetic changes.
This flexibility supports GRNN-based dynamic computing, a
promising area for future research.Although this study pro-
poses an application-specific sub-GRNN search algorithm, we
emphasize that further research is vital for developing more
efficient and effective search algorithms. Such advances are
crucial to fully exploit the inherent general-purpose computing
capabilities of bacterial GRNNs.
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