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 A B S T R A C T

This paper studies the optimal design of a liability-sharing arrangement as an infinitely repeated 
game. We construct a noncooperative model with an active and a passive agent. The active 
agent can take a costly and unobservable avoidance action to reduce the incidence of a crisis, 
but a crisis is costly for both agents. When a crisis occurs, each agent decides how much to 
contribute to mitigating it. For the one-shot game, when the avoidance cost is not too high 
relative to the expected loss of crisis for the active agent, a no-bailout policy always achieves 
the first-best outcome, at which the active agent puts in effort to minimize the crisis incidence. 
However, the first-best is not achievable when the avoidance cost is sufficiently high. We 
show that, in the latter case with the same stage game, the first-best cannot be implemented 
as a perfect public equilibrium (PPE) of the infinitely repeated game either. Instead, at any 
constrained efficient PPE with avoidance, the active agent ‘‘shirks’’ infinitely often, though crises 
are always mitigated, and is bailed out infinitely often. The reason is that promises of future 
shirking and bailout incentivize the active player to take the costly crisis-avoidance action in 
the present. This result runs contrary to the typical moral hazard view that bailouts reduce 
incentives for agents to avoid crises. Here bailouts enhance ex-ante mitigation efforts rather than 
diminish them and are necessary to achieve the second-best. We use finite-state automata to 
approximate the constrained efficient PPE and explore some comparative statics of the repeated 
game numerically.

. Introduction

Many important institutional arrangements inherently bear high incentive costs. These costs become apparent during challenging 
imes, such as financial crises, prompting varied responses to mitigate the damage. At times, troubled institutions have been bailed 
ut, and others have not. As a result, the fate of these troubled parties ranges from complete failure and bankruptcy to full recovery.1 
ypically, a troubled institution gets bailed out on the grounds that the alternative (failure) would have been much more costly, 
t least in the short run, since it might impose a big negative externality on many related parties. When this happens, economists 

I We thank Ed Green, V. Bhaskar, Neil Wallace, and Rishabh Kirpalani for their helpful discussion and comments.
∗ Corresponding author.
E-mail addresses: bsalcedo@uwo.ca (B. Salcedo), bruno@sultanum.com (B. Sultanum), rzhou@psu.edu (R. Zhou).

1 For example, while the majority of US companies sink or float on their own, the US government has consistently bailed out large corporations in the 
utomobile industry such as GM and Chrysler. Among financial institutions, the Federal Reserve Bank significantly assisted large banks like Citigroup and Bank 
f America with loans and guarantees, while it let other large financial institutions, such as Lehman Brothers and Washington Mutual, fail during the 2007–2009 
reat Recession. Among sovereign countries, the US government helped Mexico to survive the 1994 Tequila crisis, while many countries suffered huge losses 
uring the 1997 Asian financial crisis with little help from the IMF. During the Eurozone crisis that followed the Great Recession, countries such as Greece, 
taly, and Spain received multiple rounds of bailouts with varying magnitudes.

ttps://doi.org/10.1016/j.euroecorev.2025.104999
eceived 8 April 2024; Received in revised form 11 October 2024; Accepted 23 February 2025
vailable online 6 March 2025 
014-2921/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/eer
https://www.elsevier.com/locate/eer
https://orcid.org/0000-0002-5469-383X
mailto:bsalcedo@uwo.ca
mailto:bruno@sultanum.com
mailto:rzhou@psu.edu
https://doi.org/10.1016/j.euroecorev.2025.104999
https://doi.org/10.1016/j.euroecorev.2025.104999
http://creativecommons.org/licenses/by/4.0/


B. Salcedo et al. European Economic Review 175 (2025) 104999 
are always quick to point out a fatal flaw of such rescue operation: the moral hazard — the ‘‘too big to fail’’ justification of bailout 
encourages behaviors that may lead to more failure. This incentive cost serves as the rationale for not bailing out some troubled 
institutions. Here, we develop a dynamic model of crises and bailouts that tackles these confronting views directly.

In this paper, we show that the decision to bail out an institution when optimally taken does not necessarily lead to more failures. 
Instead, it can increase mitigation efforts and reduce the likelihood of a crisis. We model this problem as a dynamic game between 
two players: the ‘‘crisis-inflicting’’ active agent, and the potential ‘‘help-to-clean-up’’ passive agent. The active agent can take a costly 
unobservable action to reduce the incidence of crisis (avoidance). Whenever a crisis occurs, both parties suffer some loss, but each 
agent can simultaneously contribute to mitigate the loss. It is assumed both players have nontransferable utility. They can contribute 
directly to reduce the loss from the crisis but not to increase each other’s consumption. This assumption rules out direct subsidies 
from the passive agent to the active agent to pay for his avoidance cost.2

The one-shot game exhibits various combinations of avoidance and mitigation strategies as static Nash equilibria, depending 
on the model parameters. Specifically, when the avoidance cost is relatively low compared to the expected loss from a crisis for 
the active agent, a no-bailout policy can effectively lead the active agent to take the socially desirable but costly avoidance action. 
However, if this cost becomes too high, there is no equilibrium where the active agent chooses the avoidance action.

We then study the perfect public equilibria (PPE) of the repeated game. We show that for model parameters such that the active 
agent shirking — that is, not taking the avoidance action — is the only static Nash equilibrium of the stage game, the first-best 
requiring him to take the avoidance action every period cannot be implemented as a PPE of the infinitely repeated game. The 
reason is the same as in the static game. To induce the active agent to take the costly avoidance action, the expected mitigation cost 
for him in case of a crisis must be higher than the avoidance cost. With high avoidance costs, the active agent is better off doing 
nothing.

While the first-best outcome is unattainable, agents can still improve upon the repetition of the static Nash equilibrium if they 
are sufficiently patient. We show that if the discount factor is above a certain threshold, any constrained efficient PPE will involve 
the active agent shirking infinitely often, though crises are always mitigated, and the passive agent bailing out the active agent 
infinitely often. As a result, crises occur more frequently compared to the first-best, but less frequently than in a repetition of the 
static Nash equilibrium.

The intuition behind the seemingly counterintuitive result that shirking and bailouts can incentivize good behavior lies in the 
dynamics of repeated interactions. In a one-shot game, the threat of a crisis and its associated costs might not be enough to induce 
the active agent to take costly avoidance actions if such cost is high. However, in a repeated game, future leniency (in the form of 
bailouts or allowing shirking) can be a reward for good behavior today. The active agent, anticipating these future benefits, may 
then be induced to take the costly avoidance action in the present, even if it is not in their immediate best interest. The interaction 
of these dynamic forces creates a delicate balance where the possibility of future moral hazard (shirking or bailouts) paradoxically 
leads to less moral hazard in the present, ultimately increasing overall welfare.

A natural question arises: why is it necessary to promise both future shirking and bailouts to incentivize the active agent? The 
promise of future bailouts is more appealing as it compensates the active agent without sacrificing efficiency. However, the passive 
agent’s ability to bear the mitigation cost is limited by incentive compatibility. This is because, while the active agent’s shirking 
imposes a cost on the passive agent, the latter has no recourse but to bear it. On the other hand, the passive agent can always choose 
not to mitigate the crisis if his required contribution becomes too high. As a result, after a series of successful avoidance actions 
and crisis-free periods, the only feasible compensation left to offer is the promise of future shirking.

The optimal mechanism to align incentives requires allowing the active agent to shirk and providing bailouts, both occurring 
infinitely often. This raises the question of how much welfare gains a constrained efficient PPE can achieve compared to the first-best 
outcome. To investigate this, we employ finite-state automata to approximate the constrained efficient PPE. Note that any PPE in 
the repeated game can theoretically be represented by an automaton, possibly with infinite states. We focus on finite-state automata 
for two reasons. One is that the PPE of a finite-state automaton gives up an implementable procedure, including both the automaton 
design and the equilibrium strategies, that approximates the constrained efficient PPE of the original game. The other reason is that 
it gives us a computationally feasible way to conduct welfare comparisons. In our numerical examples, the welfare loss relative to the 
first-best is relatively small, suggesting that strategic shirking and bailouts can lead to big welfare gains even in the presence of moral 
hazard. Furthermore, our analysis reveals that following the instructions from the approximated constrained efficient mechanism 
can significantly reduce costs for both the active and passive agents.

Our paper is closely related to the literature that studies incentive problems induced by bailout policies. Most papers in the 
literature take particular institutional design and market structures very seriously but abstract from strategic dynamic interactions. 
In contrast, we simplify the environment in multiple dimensions to make it manageable, while taking seriously the dynamic game 
played by the two parties involved. This approach enables us to elucidate the mechanism of stochastic bailout, which has some 
interesting economic implications. In most papers, bailouts generate bad incentives for private agents. This is true in the stage game 
of our model. We show that, in the repeated setting, the credible promise of conditional future bailouts can be used to generate good 
incentives and reduce the incidence of crises. Such strategic behavior is likely present in repeated interactions between long-lived 
large agents, such as members of the European Union or a government and a large corporation.

2 This assumption is often not far from reality. For example, it may be politically infeasible to contribute directly to another country’s budget. Furthermore, 
even when transfers are feasible, they can be costly. In these situations, a combination of transfers and the mechanism we propose would likely be optimal.
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Some examples of papers highlighting the negative incentives generated by bailout policies are Chari and Kehoe (2016), Farhi 
and Tirole (2012, 2018).3  Chari and Kehoe (2016) study the time inconsistency problem of bailouts. The paper focuses on the 
dynamic policy decision of a bailout authority who cannot commit to future actions (like the two players in our model). Farhi and 
Tirole (2012, 2018) consider a commitment problem from the government side, band focus on the strategic complementarity of 
firms’ risk-taking behavior. The last two papers study a finite-horizon stage game and the former assumes bailout policies to be 
noncontingent in agents’ identities.

Green (2010) and Keister (2016) highlight that bailouts can be welfare-enhancing, but they do so without relying on dynamic 
incentives. Keister (2016) studies a version of Diamond and Dybvig (1983) that allows the government to divert expenditures from 
public goods to bailout banks and highlights two important implications of bailouts. On the one hand, bailouts induce bad behavior 
in banks, making them less cautious and more illiquid. On the other hand, bailouts in their environment also provide insurance to 
depositors. Keister (2016) demonstrates that the insurance effect prevails when the likelihood of a crisis is low. Similarly, Green 
(2010) suggests that the welfare-enhancing benefits of bailouts stem from the necessity of such measures in a regime with limited-
liability firms. In this case, bailouts enable firms to offer perfect risk-sharing. The mechanism that makes bailouts welfare-enhancing 
in these models differs from others in the literature, including ours. In comparison to our model, they lack the dynamic incentive 
properties we highlight.

The constrained efficient PPE we study is characterized by recurrent crises, as in Green and Porter (1984). Such a phenomenon 
reflects an equilibrium that passes through several distinct states, rather than independent randomization by individual agents. 
Unlike in Green and Porter (1984), however, the recurrent shirking by the active agent is not punished by a severe ex-post 
inefficient outcome. Instead, all crises are mitigated regardless of the cause (hence ex-post efficient). The solution here is a deliberate 
arrangement of interwoven occasional shirking and bailout as mechanisms to incentivize the good behavior of the active agent as 
often as possible. Such a solution is more related to Rubinstein (1979), which shows in the context of criminal proceedings that, 
with repeated interactions, it is optimal to be lenient on offenders with good records.

The design of optimal incentive contracts in dynamic settings has also been a central focus in contract theory. A substantial 
body of literature follows Spear and Srivastava (1987) in studying a discrete-time framework and applying recursive methods with 
the agent’s continuation value as a state variable. We built on this literature, specifically on subsequent developments by Abreu 
et al. (1986, 1990), to derive our results. A subsequent literature, notably Sannikov (2008) and Williams (2015), has extended these 
insights to continuous time. Our study returns to the discrete-time setting and departs from this literature in two other ways. The 
principal, our passive agent, cannot commit to the contract, and there is no transferable utility — instead, the game participants 
decide how to split the mitigation cost. The lack of commitment introduces a limit on how much utility the passive agent can 
promise to the active agent to induce effort. This difference put this paper closer to the relational contract theory (principal–agent 
dynamic moral hazard problems without commitment) as reviewed in Watson (2021). The absence of transferable utility restricts 
the range of possible contractual arrangements. Our application to a crisis-bailout game also differs from most papers on contract 
theory, offering new insights into bailout policies.

The paper is structured as follows. Section 2 introduces the stage game, while Section 3 describes the repeated game. Section 4 
contains our main theoretical results. Section 5 uses numerical exercises to illustrate how the incentive mechanism works and 
to explore some comparative statics. Section 6 discusses alternative mechanisms under different assumptions. Finally, Section 7 
concludes.

2. The stage game

There are two agents, agent 1 and agent 2, and two subperiods. In the first subperiod, agent 1 either takes an avoidance action 
to avert a crisis, 𝑎 = 1, or not, 𝑎 = 0. The cost of taking the avoidance action is 𝑑 > 0, and the cost of not taking the avoidance 
action is normalized to zero. Agent 1’s action 𝑎 is unobservable to agent 2.

In the second subperiod, one of two things happens: either there is a crisis, denoted by 𝜉 = 1, or there is no crisis, denoted by 
𝜉 = 0. Define 𝑋 ≡ {0, 1}, 𝜉 ∈ 𝑋. The probability of a crisis, conditional on agent 1’s action in the first subperiod, 𝑎 ∈ {0, 1} ≡ 𝐴, is 
𝜋𝑎 ∈ (0, 1). We assume 𝜋1 < 𝜋0 so that taking the avoidance action reduces the probability of crisis. Agent 2 cannot infer agent 1’s 
action from observing whether there is a crisis. Throughout the text, we refer to agent 1 as the active agent given that his action 
affects the probability of a crisis, and agent 2 as the passive agent since he is forced to face the consequences of a crisis but does 
not influence its occurrence.

In the event of a crisis, 𝜉 = 1, the two agents can jointly mitigate the crisis. Let 𝑚𝑖 ≥ 0 denote agent 𝑖’s contribution to mitigation. 
The crisis is mitigated if the total contribution of the two agents, 𝑚1 +𝑚2 is no less than one. If the crisis is mitigated (𝑚1 +𝑚2 ≥ 1), 
the cost to agent 𝑖 is only his mitigation contribution 𝑚𝑖. If the crisis is not mitigated (𝑚1 +𝑚2 < 1), agent 𝑖 suffers a loss 𝑐𝑖 > 0 due 
to the crisis and his contribution 𝑚𝑖. If there is no crisis, 𝜉 = 0, nothing needs to be mitigated and agents do not suffer any loss. It 
is implicit in the payoff structure that there is no transferable utility; contribution 𝑚1 +𝑚2 is made only to mitigate a crisis. Neither 
party can consume it once it is made. The two agents cannot make payments to each other in the first subperiod. In Section 6, 
we show that relaxing this assumption would greatly reduce the difficulty of achieving a better allocation in equilibrium. Fig.  1 
summarizes the stage-game structure.

We are interested in studying the case where mitigation after a crisis is ex-post efficient. Therefore, we make the following 
assumptions on the model parameters. 

3 Other examples of papers highlighting the negative incentives generated by bailout policies are Schneider and Tornell (2004), Ennis and Keister (2009) 
and Brunnermeier et al. (2016).
3 
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Fig. 1. The stage game.

Assumption 1.  For 𝑖 = 1, 2, 𝑐𝑖 ∈ (0, 1), and 𝑐1 + 𝑐2 > 1.

Assumption  1 implies that neither agent alone is willing to mitigate the crisis, but together they should. Since the total cost of 
mitigation is less than that when there is no mitigation — that is, 1 < 𝑐1 + 𝑐2 — mitigation is efficient.

2.1. Equilibrium of the stage game

The structure of the game allows us to restrict attention to pure and public strategies without loss of generality. We thus solve 
for (pure-strategy, public-perfect) Nash equilibria of the two-subperiod normal-form game.

Denote the strategy for the active agent 1 by (𝑎, 𝑚1), and for the passive agent 2 by 𝑚2, where 𝑎 is agent 1’s avoidance action, 
and 𝑚𝑖 is agent 𝑖 = 1, 2 mitigation contribution. Given the strategy profile (𝑎, 𝑚1, 𝑚2), agent 1’s expected payoff is 

𝑢1(𝑎, 𝑚1, 𝑚2) = −𝑎𝑑 − 𝜋𝑎(𝑚1 + 𝑐1𝐼{𝑚1+𝑚2≥1}), (1)

and agent 2’s expected payoff is 

𝑢2(𝑎, 𝑚1, 𝑚2) = −𝜋𝑎(𝑚2 + 𝑐2𝐼{𝑚1+𝑚2≥1}). (2)

As usual, a Nash equilibrium of the stage game is given by a strategy profile (𝑎, 𝑚1, 𝑚2) such that (𝑎, 𝑚1) is a best response for agent 
1 given the strategy 𝑚2, and vice versa.

The stage game has many equilibria depending on the parameters, and we are interested in the parameter region where the 
efficient outcome cannot be supported as an equilibrium outcome. There are multiple best responses in the mitigation stage after a 
crisis. In particular, by Assumption  1, after a crisis, not contributing to mitigation 𝑚𝑖 = 0, is always the best response if the other 
agent is doing the same — although this is ex-post inefficient. If agent 1 contributes 𝑚1, and agent 2 contributes the remaining 
1 − 𝑚1, one can infer that 𝑚1 ≤ 𝑐1 and 𝑚2 = 1 − 𝑚1 ≤ 𝑐2. That is, for (𝑚1, 1 − 𝑚1) to be both agents’ best mitigation response to each 
other, it must be that 1 − 𝑐2 ≤ 𝑚1 ≤ 𝑐1. This mitigation outcome is ex-post efficient. The cases with 𝑚1 +𝑚2 > 1 or 𝑚1 +𝑚2 < 1 with 
either 𝑚1 > 0 or 𝑚2 > 0 can be easily ruled out since at least one agent would be strictly better off by decreasing his mitigation 
contribution.

When deciding whether to take the avoidance action, agent 1 weighs the cost 𝑑 against the expected gain of taking the action 
and successfully avoiding a crisis, which is either the change in his expected contribution (𝜋0 − 𝜋1)𝑚1 or expected loss (𝜋0 − 𝜋1)𝑐1. 
Define a composite parameter

𝑑 ≡ 𝑑

𝜋0 − 𝜋1

4 
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which is the cost of avoidance adjusted by its impact on the probability of a crisis. If 𝑑 ≤ 𝑐1, the efficient equilibrium where agent 1 
takes the avoidance action and crisis is mitigated is an equilibrium, and dominates all other equilibria. This scenario exemplifies the 
prevailing concern in the literature that bailouts can encourage moral hazard by diminishing the extent to which the active agent 
internalizes the cost of a crisis.

Definition 1.  A bailout in the stage game is a situation where a crisis occurs, the agents jointly contribute sufficient resources to 
mitigate it, and the contribution of the active agent is less than his private crisis loss, i.e., 𝑚1 + 𝑚2 ≥ 1, and 𝑚1 < 𝑐1.

In a bailout, the active agent fails to internalize both the social and private costs associated with a crisis.4 The condition 
𝑚1 + 𝑚2 ≥ 1 ensures that the crisis is mitigated, implying that the social cost of the crisis (the necessity for mitigation) is borne by 
both agents. The condition 𝑚1 < 𝑐1 highlights that the active agent’s contribution to the mitigation is less than their private cost of 
the crisis 𝑐1. This indicates that the active agent is not fully bearing the consequences of his (in)action, even at the individual level, 
which can lead to shirking (not taking the avoidance action) and a higher frequency of crisis. In an equilibrium without bailouts, on 
the other hand, the active agent’s cost during a crisis must be 𝑐1. If the adjusted avoidance cost 𝑑 is less than 𝑐1, the active agent’s 
best response is then to take the avoidance action.

Proposition 1.  In the state game, if 𝑑 < 𝑐1, the active agent takes the avoidance action in any Nash equilibrium without bailouts. Moreover, 
if 𝑑 > 𝑐1, the active agent does not take the avoidance action in all equilibria.

Proposition  1 demonstrates that a no-bailouts policy can effectively prevent the moral hazard associated with the active agent 
neglecting the avoidance action. However, this holds true only when the avoidance cost is not excessively high. The question then 
arises: what if the cost is substantial, rendering a no-bailout policy ineffective? In other words, what if 𝑐1 < 𝑑 < 1? In such a scenario, 
no static Nash equilibrium can achieve the first-best outcome. The subsequent analysis will focus on this case. 

Assumption 2. 𝑐1 < 𝑑 < 1.

Assumption  2 implies that 𝑎 = 0 is always agent 1’s optimal action. With agent 1 never taking the avoidance action, there are 
two types of equilibrium: a nonmitigation equilibrium where (𝑎, 𝑚1, 𝑚2) = (0, 0, 0), and a continuum of mitigation equilibria where 
(𝑎, 𝑚1, 𝑚2) = (0, 𝑚1, 1 − 𝑚1) where 𝑚1 ∈ [1 − 𝑐2, 𝑐1]. These equilibria are ex-ante inefficient when 𝑑 < 1 since the cost of action 𝑑 is 
less than the expected social gain of avoiding a crisis 𝜋0−𝜋1. Yet, the continuum of mitigating equilibrium is ex-post efficient given 
that all crises are mitigated. In the next section, we investigate what can be achieved in this region for the repeated game.

3. The repeated game

In the repeated game, time is discrete and is indexed by 𝑡 ∈ {1, 2,…}. The two agents live forever and discount future payoffs with 
the same discount factor 𝛿 ∈ (0, 1). At the beginning of each period 𝑡, agents observe a payoff-irrelevant public signal 𝜃𝑡 ∼  [0, 1], 
which is i.i.d. across periods. After observing the public signal, the agents play the stage game described in the previous section. 
The public signal allows agents to take correlated actions in each period. This serves a technical purpose — it convexifies the payoff 
set without explicitly considering the randomized strategy for agent 1’s action 𝑎𝑡. The public information at the beginning of date 
𝑡 is denoted by ℎ𝑡 ∈ 𝐻𝑡. It consists of the realizations of all past and current public signals, the history of all past crises, and the 
history of all past contributions.

We focus on perfect Bayesian equilibria where both agents play pure and public strategies. Proposition A.2 establishes that this 
restriction is without loss of generality (see Appendix A for details). A public strategy for the active agent 1 is a sequence of 
measurable functions 𝜎1 = (𝛼𝑡, 𝜇1𝑡)∞𝑡=1, where 𝛼𝑡(ℎ𝑡) ∈ {0, 1} is whether to take the avoidance action in period 𝑡 given the public 
information ℎ𝑡, and 𝜇1𝑡(ℎ𝑡) ≥ 0 is his contribution to the mitigation in case of a crisis. A public strategy for the passive agent 2 is 
a sequence of functions 𝜎2 = (𝜇2𝑡)∞𝑡=1, where 𝜇2𝑡(ℎ𝑡) ≥ 0 is his contribution to the mitigation in case of a crisis. We denote a public 
strategy profile by 𝜎 = (𝜎1, 𝜎2).

The expected discounted utility for agent 𝑖 from date 𝑡 onward, given the strategy profile 𝜎 and public history ℎ𝑡 is 

𝑣𝑖𝑡(𝜎, ℎ𝑡) = (1 − 𝛿)E

[ ∞
∑

𝜏=𝑡
𝛿𝜏−𝑡𝑢𝑖

(

𝛼𝜏 (ℎ𝜏 ), 𝜇1𝜏 (ℎ𝜏 ), 𝜇2𝑡(ℎ𝜏 )
)

|

|

|

ℎ𝑡

]

, (3)

where the expectation is taken with respect to the crisis realizations from period 𝑡 onward and the public signal from period 𝑡 + 1
onward. With slight abuse of notation, the average expected discounted utility for agent 𝑖 at the beginning of the game is denoted 
by 𝑣𝑖(𝜎) = E[𝑣𝑖1(𝜎, ℎ1)].

Definition 2.  A public strategy profile 𝜎∗ is a perfect public equilibrium (PPE) if and only if 𝑣𝑖𝑡(𝜎∗, ℎ𝑡) ≥ 𝑣𝑖𝑡(𝜎′𝑖 , 𝜎
∗
−𝑖, ℎ𝑡) for any agent 

𝑖, any public strategy 𝜎′𝑖  any period 𝑡 ≥ 1, and any public history ℎ𝑡.

4 An alternative definition could focus on the relative contributions of each agent to the mitigation effort, and define a bailout as a situation where the active 
agent’s contribution as a proportion of the total mitigation cost is less than their private crisis loss as a proportion of the total potential loss, i.e. 𝑚1

𝑚1+𝑚2
< 𝑐1

𝑐1+𝑐2
. 

While this definition has its merits, it does not capture the concept we aim to emphasize: that a no-bailout policy ensures the active agent internalizes the 
benefit of the avoidance action.
5 



B. Salcedo et al. European Economic Review 175 (2025) 104999 
We denote the set of PPE payoffs by ∗ = {𝑣(𝜎∗) | 𝜎∗ is a PPE}. A PPE always exists because unconditional repetition of a static 
Nash equilibrium of the stage game is a PPE. In Appendix A, using a version of the recursive decomposition introduced in Abreu 
et al. (1990), we show that the set of PPE can be characterized recursively, and establish technical properties of equilibria used in 
the proofs.

4. Optimal level of crises and bailouts

Under Assumptions  1 and 2, the first-best requires that in every period the active agent takes the avoidance action, and both 
agents mitigate a crisis if it happens. However, this is not achievable in an equilibrium of the stage game because the active agent 
never takes the avoidance action in such circumstances. In this section, we study how, and to what extent, welfare can be improved 
in the repeated setting. Our first finding is that, in the infinitely repeated game, the first-best outcome is also not achievable. This 
is a strong impossibility result: it holds for games with agents with any discount factor 𝛿 ∈ (0, 1).

Given that the first-best is not achievable, we then turn our attention to constrained-efficient allocations by investigating the 
properties of the constrained-efficient PPEs. In any constrained-efficient PPE, crises are always mitigated and the welfare loss arises 
from the avoidance action not being taken every period. Furthermore, the frequency of avoidance action depends on the agents’ 
discount factor. For low enough discount factors, the active agent never takes the avoidance action at equilibrium. Once the discount 
factor is above a certain threshold, the active agent takes the avoidance action infinitely often in any constrained-efficient PPE. 
Moreover, the passive agent has to bailout the active agent infinitely often, where ‘‘bailout’’ is defined more precisely later. The 
optimal frequency of avoidance and bailouts is determined endogenously.

In what follows, we discuss the logical reasoning and intuition of these results. The details of all proofs are in Appendix B.

4.1. The impossibility of implementing the first-best

Suppose that in an equilibrium the active agent takes the avoidance action with positive probability. When he takes the action, 
his expected discounted payoff (𝑣1) is a convex combination of the expected discounted payoff conditional on the event of a crisis 
(𝑤1

1), and that conditional on no crisis (𝑤0
1). Because taking the avoidance action is costly, it must be the case that 𝑤0

1 is strictly 
greater than 𝑤1

1, so that the active agent finds it optimal to incur the cost. Moreover, 𝑤1
1 cannot be too negative because of individual 

rationality. Using these facts, we show that there is a fixed positive constant 𝛾, such that the ex-post value at the good state for the 
active agent 𝑤0

1 has to be strictly greater than that of the ex-ante value 𝑣1 by 𝛾; 𝑤0
1 > 𝑣1 + 𝛾. That is, whenever the active agent 

takes the avoidance action as part of a PPE and there is no crisis, his continuation value must increase by at least a fixed amount. 
Therefore, when there is no crisis for a sufficiently long time, the implied continuation value required for the active agent to be 
willing to take the avoidance action value stops being feasible.5 We thus obtain the following result.

Proposition 2.  There is no PPE in which the active agent takes the avoidance action almost surely at every period along the equilibrium 
path.

4.2. Efficient mitigation

It is not possible to have avoidance action played on every period at equilibrium. However, when the discount factor is not 
too low, a PPE exists in which the active agent sometimes takes the avoidance action (see Lemma B.4 in the appendix for detail). 
Such ‘‘good deed’’ requires incentives, for instance, punishing the active agent after a crisis, or rewarding him if there is no crisis. 
Two possible ways to punish the active agent after a crisis are to let him suffer the cost of the crisis (no mitigation), or to ask 
him to contribute more than necessary to mitigate the crisis (money burning). Our second result is that neither of these forms of 
punishment schemes is optimal. In every constrained efficient PPE, agents contribute exactly as much as needed to mitigate a crisis 
when it happens.

Proposition 3.  In any constrained-efficient PPE, crises are efficiently mitigated, that is, 𝜇1𝑡(ℎ𝑡) + 𝜇2𝑡(ℎ𝑡) = 1 almost surely along the 
equilibrium path.

This result is very natural since both of these forms of punishment are ex-post inefficient. However, the proof is far from trivial 
because, given that there is imperfect monitoring, some degree of inefficiency ex-post could be necessary to generate incentives 
ex-ante. This is a common feature of models with imperfect monitoring that can be traced back to Green and Porter (1984). We 
obtain the result because we show that there are always more efficient ways to punish the active agent. As it turns out, any incentive 
scheme that can be generated in equilibrium via no-mitigation or money-burning can also be generated by adjusting the shares of 
the mitigation cost in the future without incurring any efficiency losses due to either insufficient or excessive mitigation.

5 It is crucial for this proposition that the avoidance action is not observable, see Section 6.1. Hence, this is a result of moral hazard and not of the structure 
of the payoffs.
6 
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4.3. Bailouts as an incentive mechanism for avoidance

The difficulty in inducing the active agent to take the avoidance action is that the cost is too high for him to pay on his own. The 
solution seems to be that the passive agent should help pay part of it. In a world with perfectly transferable utility, we could consider 
schemes where the passive agent directly subsidizes the active agent.6 However, we have assumed that the agents’ contributions 
can only be used to mitigate crises. In our environment, the only way for the passive agent to compensate the active agent is by 
sometimes paying more in mitigation costs after a crisis has occurred. When this happens, we call it a bailout.

Definition 3.  A bailout in the dynamic game is a situation where a crisis occurs, the agents jointly contribute sufficient resources 
to mitigate it, and the contribution of the active agent is less than his private crisis loss, i.e., 𝜇1𝑡(ℎ𝑡) + 𝜇2𝑡(ℎ𝑡) ≥ 1, and 𝜇1𝑡(ℎ𝑡) < 𝑐1.

We can show that bailouts are the only form of compensation available, and if the active agent is not compensated, then he has 
no reason to choose avoidance. It follows that bailouts are not only sufficient to induce the avoidance action, but also necessary.

Proposition 4.  In any PPE where the avoidance action is taken with positive probability, bailouts occur with positive probability.
Proposition  4 shows that bailouts are necessary to support avoidance actions, but it says nothing about sufficiency or efficiency. 

When is it possible to support any avoidance at all? When is it efficient to do so? If the active agent expects to be bailed out in 
the future as a form of compensation, he may be willing to take the avoidance action, at least in some instances, and such an 
arrangement is necessary for efficiency when feasible. The following proposition formalizes these results.

Proposition 5.  There exists 𝛿 ∈ (0, 1) such that:
1. If 𝛿 < 𝛿, every PPE (and therefore every constrained-efficient PPE) has avoidance played with probability zero at all periods.
2. If 𝛿 > 𝛿, in every constrained-efficient PPE the avoidance action is played infinitely often, and bailouts take place infinitely often.
Proposition  5 indicates that, for low discount factors, it is not possible to induce the active agent to take any avoidance actions, 

and the set of efficient PPE essentially reduces to a repetition of static Nash equilibria of the stage game. For higher discount factors, 
avoidance is not only possible, but it is also necessary for constrained efficiency. Propositions  2 and 5 combined imply that when 
𝛿 > 𝛿, in any constrained-efficient PPE the active agent takes the avoidance action infinitely often, takes the non-avoidance action 
infinitely often, and is bailed out infinitely often.

The proof of this result involves two key steps. First, we show that when agents are sufficiently patient, any equilibrium without 
avoidance is Pareto dominated by one with avoidance and bailouts. The intuition behind this is that a patient active agent can be 
motivated to bear the immediate cost of avoidance in exchange for the long-term benefits of reduced crisis frequency and future 
bailouts. At the same time, a patient passive agent is willing to provide bailouts to obtain the long-term benefits of reduced crises. 
Once we establish that constrained efficient equilibria must include at least one instance of avoidance, the next step is to prove 
that avoidance must occur infinitely often. This is possible because we can incentivize the active agent to choose avoidance without 
altering their expected payoff. Although playing avoidance is costly and reduces the active agent’s immediate payoff, this can be 
offset by the decreased probability of a crisis and the prospect of future bailouts. Consequently, if an equilibrium does not feature 
avoidance after a certain history, it can be improved by introducing avoidance after that history without affecting the active agent’s 
earlier incentives, as their continuation payoffs would remain unchanged. Having established the necessity of having avoidance 
played infinitely often, we can then utilize Proposition  4 to conclude that bailouts must also occur infinitely often.

5. Automata: endogenous frequency of crises and bailouts

From previous sections, we know that due to the misalignment between the active agent’s private incentive and the social 
objective (represented by 𝑐1 < 𝑑 < 1), the optimal arrangement to correct this incentive problem involves bailing out the active agent 
infinitely often. Two questions arise immediately. The first is implementation. The results from the last section are all qualitative 
features of the optimal mechanism. What does such a mechanism look like? How can it be implemented? After all, ‘‘infinitely often’’ 
shirking and bailouts are not actionable plans. The second question is the effectiveness of a mechanism resulting from a constrained 
efficient PPE if it can be implemented (at least approximately). What are the potential welfare gains it could achieve? How big are 
the welfare losses relative to the first-best outcome which is not achievable? Furthermore, are these welfare implications sensitive 
to the model specification? More specifically, when the model parameters vary, such as the avoidance cost (𝑑), the private costs 
of a crisis to each agent if it is not mitigated (𝑐1 and 𝑐2), and the effectiveness of the avoidance action in reducing crisis incidence 
(𝜋0 − 𝜋1), how would the welfare comparisons change?

In this section, we employ an often-used numerical procedure — finite-state automaton — to address these questions. This 
procedure explicitly tells us step-by-step how to implement an approximation of a constrained efficient PPE of our infinitely repeated 
game. It also provides a lower bound on the welfare achievable by the constrained efficient PPE.7

6 In Section 6.2, we study an extension with perfectly transferable utility and show that the first-best can be achieved when both agents are sufficiently 
patient.

7 An automaton describes a profile of public strategies for the repeated game. If we did not restrict attention to finite-state automata, every public strategy 
profile could be described by an automaton (Mailath and Samuelson, 2006, pp. 230). However, for computational reasons, we restrict attention to finite-state 
automata with a fixed upper bound on the number of auxiliary states.
7 
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Fig. 2. Automaton.

A finite-state automaton consists of four components: a (finite) set of auxiliary states, an initial distribution over the states, a 
transition rule, and a mapping from states to actions. Let 𝛺 be a finite set of auxiliary states. States are mapped into agent 1’s 
avoidance action choice 𝛼1 ∶ 𝛺 → 𝐴 and agent 𝑖’s crisis mitigation contribution 𝜇𝑖 ∶ 𝛺 × 𝑋 → 𝑀 , 𝑖 = 1, 2, where 𝑀 = [0, 1] is 
implied by Proposition  3. With this definition, the automaton works as follows. At any state 𝜔𝑡 ∈ 𝛺, the active agent takes the 
action 𝛼1(𝜔𝑡). After a crisis state 𝜉𝑡 is realized, when there is a crisis (𝜉𝑡 = 1), the agent 𝑖 contributes 𝜇𝑖(𝜔𝑡, 1) to mitigate the crisis; 
otherwise, 𝜇𝑖(𝜔𝑡, 0) = 0, 𝑖 = 1, 2. Note that in each state 𝜔𝑡, the two agents play a pure-strategy stage game. No randomization at this 
point. At the end of each period, given the current state 𝜔𝑡, observable crisis state 𝜉𝑡, the two agents’ contribution 𝜇1 and 𝜇2, the 
next period state 𝜔𝑡+1 is drawn randomly according to the transition rule 𝜂 ∶ 𝛺 ×𝑋 ×𝑀 ×𝑀 → 𝛥(𝛺). The initial state for period-1
is drawn according to the initial distribution 𝜂0 ∈ 𝛥(𝛺).

A 𝑁-state automaton can be viewed as an approximation of the original repeated game where the two agents’ lifetime expected 
discounted payoffs of any PPE are represented by convex combinations of the payoffs achievable at the 𝑁 states of the automaton. 
The two agents use the publicly observable auxiliary states to coordinate actions in each state. The convex combinations of the 
payoffs across states are achieved by public randomization, via transition rule 𝜂. A resulting PPE of a 𝑁-state automaton is often 
called a correlated equilibrium. The higher the number of states 𝑁 , the better the approximation to the original game. We look for 
constrained efficient allocations among all PPEs of an automaton game. One advantage of approximating the original model with 
finite-state automaton is that the solution of constrained efficient PPE itself is an implementation procedure: following the design of 
the automaton and the equilibrium strategies, the two agents would achieve lifetime expected discounted payoffs that are hopefully 
close approximations of the constrained efficient PPE of the original game.

In what follows, we show with an example how a 4-state automaton and an associated PPE work.

5.1. An illustrative example of an equilibrium mechanism

Consider an example with the following set of parameters,
𝛿 = 0.95, 𝜋1 = 0.2, 𝜋0 = 0.9, 𝑑 = 0.5, 𝑐1 = 0.6, 𝑐2 = 0.5.

In the environment with this set of parameters,

• 𝑐1, 𝑐2 ∈ (0, 1), and 𝑐1 + 𝑐2 > 1, so Assumption  1 is satisfied.
• 𝑐1 = 0.6 < 𝑑 ≈ 0.7143 < 1, so Assumption  2 is satisfied.

Hence, avoidance and mitigation after a crisis are socially efficient — the first best, which has an expected total cost of 0.7 
(= 𝑑 + 𝜋1 × 1). By Proposition  2, the first-best is not obtainable in any PPE. The expected total cost at a static Nash equilibrium is 
0.9 (= 𝜋0 × 1), which implies a welfare loss (relative to the first-best) of 28.57 percent.

Fig.  2 describes the PPE that minimizes the total expected discounted lifetime cost among all PPEs of a four-state automaton 
with one of the states being the minimax equilibrium that serves as an off-equilibrium threat. The equilibrium works as follows.

• Agents start in state 𝜔1, where the strategy profile is (𝑎, 𝑚1, 𝑚2) = (1, 0.61, 0.39). In this state, agent 1 is supposed to take the 
avoidance action, but his private cost in the crisis alone does not generate enough incentive to do so since 𝑚1 = 0.61 < 𝑑 ≈
0.7143. To induce agent 1 to take the avoidance action, when there is no crisis, the state switches to 𝜔2 with probability 0.19. 
State 𝜔2 is a bailout state: 𝑚1 = 0 < 𝑐1. The ‘‘reward’’ of a bailout in the future provides incentives for agent 1 to take the 
avoidance action now in 𝜔1. That is, the probability of going to this bailout state, compensates for the fact that 𝑚1 = 0.61 < 𝑑, 
aligning the private and social incentives for agent 1 to take the avoidance action.
8 
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Table 1
Summary statistics of the PPE.
 State 𝜔 Invariant

distribution
𝑢1(𝜔) 𝑢2(𝜔) 𝑉1(𝜔) 𝑉2(𝜔) Welfare Welfare

loss (%)
 

 𝜔1 0.50 −0.622 −0.078 −0.539 −0.177 −0.716 2.23  
 𝜔2 0.38 −0.500 −0.200 −0.478 −0.250 −0.727 3.87  
 𝜔3 0.12 −0.000 −0.900 −0.420 −0.328 −0.748 6.86  
 LRA – −0.501 −0.222 −0.501 −0.222 −0.724 3.41  
Notes: LRA refers to the long-run averages, which correspond to the expected values evaluated using the invariant distribution 
(the long-run frequencies of the equilibrium in the three on-equilibrium states).
𝑢𝑖(𝜔) denotes agent 𝑖’s expected payoff for the period when the state is 𝜔.
𝑉𝑖(𝜔) denotes agent 𝑖’s total discounted expected payoff when the state is 𝜔.
The ‘‘Welfare loss’’ is the expected total cost relative to that of the first-best.

• In 𝜔2, the strategy profile is (𝑎, 𝑚1, 𝑚2) = (1, 0, 1). Again, agent 1 is supposed to take the avoidance action, but now he has 
even less incentive to do so since his contribution to mitigation is now zero. This time, to generate sufficient incentive, the 
equilibrium moves to state 𝜔3 with probability 0.32 if there is no crisis.

• The state 𝜔3 has an even stronger form of bailout because the active agent contribution in mitigating crisis is zero, and he 
takes no avoidance action.8

• The fourth state 𝜔4, which is not in the figure, has a strategy profile of non-avoidance/no-mitigation (the minimax equilibrium). 
This state is out of the equilibrium path and works as a punishment state in case of a detectable deviation by either agent.

This automaton PPE is not on the Pareto frontier, but it provides a lower bound on what can be achieved by a constrained 
efficient allocation. Table  1 provides summary statistics of the equilibrium. In state 𝜔1, the expected discounted total cost is 0.716, 
which is only 2.23 percent greater than the first-best one, 0.7. On average, crisis occurs 28.4 percent of the time, compared to 20
percent at the first-best. When a crisis happens, a bailout occurs 70.3 percent of the time. The striking result is that even though 
the passive agent bailouts the active agent over 70 percent of the crises, the expected present value of his cost is only 0.17. For 
comparison, in the best equilibrium for the passive agent with no bailouts, the expected present value of his cost is 0.36. That is, 
by optimally choosing a bailout policy, the passive agent can reduce his cost with crises by half.

5.2. Comparative statics

The equilibrium displayed in Fig.  2 illustrates how bailouts can be used to induce avoidance in equilibrium. In this subsection, 
we study how properties of this equilibrium change with key parameters of the model: the avoidance cost 𝑑, the private costs of 
nonmitigated crisis (𝑐1, 𝑐2), and the probabilities of crises (𝜋0, 𝜋1). Throughout this analysis, Assumptions  1 and 2 are maintained. 
For each set of parameters, we found the PPE that minimizes the total discounted long-run cost among six-state automata.9 Then, 
we compare the implied long-run probabilities of avoidance, crisis, and bailouts, as well as the long-run average cost of avoidance 
and the agents’ mitigation payments.

The impact of changes in the avoidance cost
Table  2 displays features of the equilibrium outcome for different avoidance cost 𝑑, while keeping other parameters at 𝛿 = 0.9, 

𝜋1 = 0.2, 𝜋0 = 0.9, 𝑐1 = 0.6 and 𝑐2 = 0.5. As one could expect, when the avoidance cost increases, avoidance action is taken 
less frequently, therefore, crisis happens more often. The average avoidance cost (column 5) is non-monotone, reflecting the fact 
that the more costly avoidance action is taken less often and at a slower reduction pace. The incidence of bailouts (column 4) is 
non-monotone, similar to agent 1’s mitigation cost (column 6). These changes reflect the structure of the equilibrium. Bailouts are 
the mechanism where agent 2 compensates agent 1 for bearing the avoidance cost alone. As 𝑑 increases, the compensation needed 
to generate incentives for the avoidance action also increases.

The impact of changes in the private costs of a crisis
Table  3 displays features of the equilibrium outcome for different values of (𝑐1, 𝑐2) while keeping other parameters of the model 

at 𝛿 = 0.9, 𝜋1 = 0.2, 𝜋0 = 0.9, and 𝑑 = 0.5. When 𝑐1 and/or 𝑐2 increase, both agents’ minimax payoff decreases. The impact of 𝑐1 on 
the equilibrium outcome is substantial. Increasing 𝑐1 from 0.55 to 0.65 reduces the long-run expected total cost from about 106.4 
percent to 101.8 percent of the first-best; the incidence of crisis is reduced by approximately one-third (from 0.36 to 0.24); and 
bailouts are reduced to 60 percent from 89 percent. The reason for these changes is that higher 𝑐1 improves the alignment of agent 
1 private cost of a crisis, 𝑐1, with the social cost of a crisis, the total mitigation cost of 1. Agent 2 private cost of crisis, 𝑐2, has little 
effect on the equilibrium outcome since he is a passive agent and has no private information that impedes equilibrium efficiency.

8 The probability of moving to a state preferred by agent 1 is always higher when there is no crisis. Hence, the automata are reminiscent of the revision 
strategies used in Rubinstein and Yaari (1983) and Radner (1985).

9 We used in Section 5.1 a four-state automaton since it helps to illustrate the equilibrium dynamics. We now move to a six-state automaton for better 
computational precision. We found no significant increase in welfare from further increasing the number of states.
9 
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Table 2
The impact of changes in the avoidance cost.
 𝑑 P(𝑎 = 1) P(𝜉 = 1) P(𝑚1 < 𝑐1) E(𝑑) E(𝑚1) E(𝑚2) Expected

total cost (%)
 

 0.45 0.9569 0.2302 0.4647 0.4306 0.0784 0.1518 101.66  
 0.50 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08  
 0.55 0.7598 0.3682 0.8942 0.4179 0.0182 0.3500 104.81  
 0.60 0.7115 0.4019 0.9301 0.4269 0.0143 0.3877 103.61  
 0.65 0.6851 0.4204 0.8727 0.4453 0.0227 0.3977 101.85  
Note: The probabilities and expectations are evaluated using the implied invariant distribution.
The ‘‘Expected total cost’’ is expressed as a percentage of the first-best.

Table 3
The impact of changes in the private costs of a crisis.
 𝑐1 𝑐2 P(𝑎 = 1) P(𝜉 = 1) P(𝑚1 < 𝑐1) E(𝑑) E(𝑚1) E(𝑚2) Expected

total cost (%)
 

 0.55 0.5 0.7763 0.3566 0.8870 0.3882 0.0177 0.3388 106.39  
 0.7 0.7729 0.3590 0.8875 0.3864 0.0176 0.3414 106.49  
 0.60 0.5 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08  
 0.7 0.8529 0.3029 0.7119 0.4265 0.0391 0.2638 104.20  
 0.65 0.5 0.9363 0.2446 0.6136 0.4681 0.0655 0.1791 101.82  
 0.7 0.9349 0.2456 0.5420 0.4675 0.0722 0.1733 101.86  
Note: The probabilities and expectations are evaluated using the implied invariant distribution.
The ‘‘Expected total cost’’ is expressed as a percentage of the first-best.

Table 4
Total cost above the first-best (%).a

𝜋1
𝜋0

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.10 3.25 5.71 8.49 9.05 8.00 2.94 −
0.15 − 2.70 4.65 6.46 6.59 4.41 1.28
0.20 − − 2.20 3.68 4.67 4.54 2.74
0.25 − − − 1.75 2.89 3.30 2.89
0.30 − − − − 1.38 2.19 2.26

a Long-run average as percentage of the first-best.

The impact of changes in crisis probabilities
Table  4 displays the long-run expected total cost above that of the first-best for different combinations of (𝜋0, 𝜋1), while other 

parameters are set to 𝛿 = 0.95, 𝑑 = 0.5, 𝑐1 = 0.6, and 𝑐2 = 0.5. The cells with the symbol ‘‘−’’ represent the cases where the parameters 
do not satisfy Assumption  2. The effect of (𝜋0, 𝜋1) on the welfare cost is not uniform. Combinations of (𝜋0, 𝜋1), with 𝑑 (= 𝑑𝜋0 − 𝜋1) 
either closer to 𝑐1 or 1, lead to lower cost. This means that sometimes decreasing 𝜋0 reduces the welfare cost, while other times 
increasing 𝜋0 reduces the welfare cost. The same is true for 𝜋1.

On the other hand, for combinations of (𝜋0, 𝜋1) with the same 𝑑 (that is, 𝜋0−𝜋1 constant), higher 𝜋0 and 𝜋1 always lead to a lower 
welfare cost. The interpretation of these results is more subtle. One might think that higher 𝜋1 means that avoidance is less effective 
in preventing crisis, which could imply a higher cost, but this is not true. The correct measure is 𝜋0 − 𝜋1 — the reduction of crisis 
probability by taking the avoidance action. With 𝜋0−𝜋1 held constant (corresponding to cells along diagonal and off-diagonals), the 
only impact is increasing 𝜋0. Higher 𝜋0 implies that the minimax utility of agent 1 is lower, hence, it is easier to generate incentives 
for avoidance.

The impact of changes in agents’ discount factor
Table  5 displays features of the equilibrium outcome for different values of the discount factor 𝛿, while other parameters are set 

to 𝜋1 = 0.2, 𝜋0 = 0.9, 𝑐1 = 0.6, 𝑐2 = 0.5, and 𝑑 = 0.5. As one could expect, lower 𝛿 is associated with lower welfare. Increasing 𝛿 from 
0.6 to 0.9 decreases the total cost by about 4 percent of the first-best. This pattern reflects that a higher 𝛿 implies a higher future 
payoff as well as punishment, so agents are more willing to cooperate.

6. Alternative mechanisms

We have shown that the first-best cannot be achieved as a PPE of the repeated game, and that whenever avoidance is possible 
in equilibrium, every constrained efficient PPE involves bailouts infinitely often. In this section, we consider two alternative 
10 
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Table 5
The impact of changes in agents’ discount factor.
 𝛿 P(𝑎 = 1) P(𝜉 = 1) P(𝑚1 < 𝑐1) E(𝑑) E(𝑚1) E(𝑚2) Expected

total cost (%)
 

 0.6 0.7111 0.4022 0.5978 0.3555 0.1063 0.2960 108.25  
 0.7 0.7630 0.3659 0.8345 0.3815 0.0636 0.3023 106.77  
 0.8 0.7979 0.3415 0.7491 0.3989 0.0444 0.2970 105.78  
 0.9 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08  
Note: The probabilities and expectations are evaluated using the implied invariant distribution.
The ‘‘Expected total cost’’ is expressed as a percentage of the first-best.

mechanisms that can help to improve welfare.10 We analyze one model where the avoidance action is perfectly observed, and 
one where the passive agent can directly subsidize the active agent. In both cases, some forms of compensation (either bailouts or 
direct transfers) are still necessary for the active agent to take the avoidance action. However, unlike our benchmark model, these 
alternative specifications admit PPE that achieves the first-best when agents are patient enough.

6.1. The avoidance action is observable

In the benchmark model, we assumed that the avoidance action of the active agent is private. The passive agent could only make 
imperfect inferences about it via the realization of crises. Now, consider the alternative specification where 𝑎 is perfectly observable 
to both agents. This allows agents to use strategy profiles conditional on 𝑎, in particular, bailing out the active agent if and only if 
he takes the avoidance action. This additional possibility does not change the fact that bailouts are necessary for avoidance.

Proposition 6.  In any PPE of the game with observable actions, if the avoidance action is taken with a positive probability, bailouts occur 
with positive probability.

To illustrate the difference from the unobservable-action case, consider the following simple strategy profile. Along the 
equilibrium path, the active agent always takes the avoidance action and crises are always mitigated.

(𝛼𝑡(ℎ𝑡), 𝜇1𝑡(ℎ𝑡), 𝜇2𝑡(ℎ𝑡)) = (1, 𝑚∗
1 , 1 − 𝑚∗

1),

for some fixed constant 𝑚∗
1 > 0, which is specified in Appendix B.7. After any deviation, the active agent chooses 𝑎 = 0 forever 

after, and both agents never again make positive mitigation contributions. We show in the appendix that, if the discount factor is 
sufficiently high, then a PPE with such a grim trigger strategy exists. Along this equilibrium path, avoidance action is taken every 
period and mitigation always happens if there is a crisis. Hence this strategy profile implements the first-best.

Proposition 7.  There exists 𝛿′ ∈ (0, 1) such that, if 𝛿 > 𝛿′, the game with observable actions admits a PPE where the active agent takes 
the avoidance action at every period and after every history.

6.2. Monetary transfers

The previous analysis depends crucially on the assumption of nontransferable utility. In particular, if the active agent takes the 
avoidance action, he has to pay the cost 𝑑 by himself. Moreover, both agents’ contributions to mitigation can only be used to clean 
up crises. Suppose we relax this assumption by allowing the passive agent to directly transfer resources to the active agent for 
consumption. More precisely, suppose that at any date 𝑡 and after any history ℎ𝑡, agent 2 can make a transfer 𝛽𝑡1(ℎ𝑡) ≥ 0 to agent 1 
if there is a crisis and a transfer 𝛽𝑡0(ℎ𝑡) ≥ 0 otherwise. These transfers enter the stage-game payoffs as an additive term. That is, the 
stage-game payoffs for the active (passive) agent in the game with transfers are exactly those from the game without transfers plus 
(minus) whatever transfer he receives (makes).

A version of Proposition  4 continues to hold in this modified model. For the active agent to be willing to take the avoidance 
action, he must expect some form of compensation. The only difference is that the passive agent now has new forms of compensation 
available. He can still compensate the active agent by bailout — contributing sufficient resources to mitigation so that the cost to 
the active agent is less than 𝑐1 in case of a crisis. Additionally, agent 2 can transfer resources to agent 1 in periods where there are 
no crises. Any equilibrium with avoidance must involve at least one of these forms of compensation.

Proposition 8.  In any PPE of the game with transfers where the active agent takes the avoidance action with positive probability, agent 
2 compensates agent 1 by having either 𝛽𝑡0(ℎ𝑡) > 0 or 𝜇1𝑡(ℎ𝑡) − 𝛽𝑡1(ℎ𝑡) < −𝑐1, or both with positive probability.

10 Another interesting extension is one where the passive agent can impose punishments to the active agent. If punishments are a sunk cost, then it does 
not implement the first best. If such punishments take the form of transfers from the active agent to the passive agent, like a fee paid in case of a crisis, this 
exercise is isomorphic to the one with monetary transfers. We omit this extension for this reason.
11 



B. Salcedo et al. European Economic Review 175 (2025) 104999 
To illustrate the difference from the nontransferable-utility case, consider the following simple strategy profile for the game with 
transfers.

(𝛼𝑡(ℎ𝑡), 𝜇1𝑡(ℎ𝑡), 𝜇2𝑡(ℎ𝑡)) = (1, 𝑚∗
1 , 1 − 𝑚∗

1),

and

(𝛽𝑡0(ℎ𝑡), 𝛽1𝑡(ℎ𝑡)) = (𝑏∗, 0),

for all 𝑡 and every ℎ𝑡 along the equilibrium path, where 𝑚∗
1 ∈ (0, 1) and 𝑏∗ > 0 are fixed constants specified in Appendix B.8. That is, 

agent 1 always takes the avoidance action and contributes 𝑚∗
1 when there is a crisis, and agent 2 compensates agent 1 with 𝑏∗ units 

of consumption when there is no crisis. The transfer 𝑏∗ can be viewed as a subsidy to agent 1 from agent 2 in no-crisis time. In case 
of a detectable deviation, the agents switch to play the one-shot Nash equilibrium with no avoidance and no mitigation forever. We 
show in the appendix that, if the discount factor is high enough, this strategy profile constitutes a PPE of the game with transfers. 
Hence, when the agents are patient enough, the first-best is attainable in equilibrium.

Proposition 9.  There exists 𝛿′′ ∈ (0, 1) such that, if 𝛿 > 𝛿′′, the game with transfers admits a PPE where the active agent takes the 
avoidance action at every period and after every history.

This subsidy scheme is simple theoretically but may not be easy to implement in reality. For example, it might be difficult to 
justify paying Greece’s government every period — subsidy in normal times and mitigation in crisis times to the public.

7. Conclusion

Our study of a liability-sharing problem between two asymmetric parties in an infinitely repeated game has highlighted some 
key points. First, the presence of shirking and bailouts may be necessary to achieve constrained efficient outcomes within a social 
arrangement (e.g., the European Monetary Union). Insisting on eliminating these elements may not be realistic due to high incentive 
costs. Second, stochastic shirking and bailout can be essential features of an approximately efficient outcome. It does so by adopting 
a differential approach towards bailouts, favoring institutions with a clean track record and exercising caution when considering 
bailouts for those with a history of crises. Coordination between the active and passive players can be accomplished using 𝑛−state 
automata and correlated equilibrium, with the levels of mitigation contribution and the transition probabilities serving as fine-tuning 
tools for incentive provision. Our numerical simulations demonstrate that the equilibrium of the 𝑛−state automata can achieve high 
levels of welfare relative to the first-best. Last, even if one relaxes the assumption of nontransferable utility, the payment from the 
passive player to the active player simply shifts from ex-post to ex-ante but does not disappear.

While we acknowledge the lack of empirical evidence on the use of such an arrangement, we believe there are hints that it is 
at play in reality. Policymakers are generally more inclined to be lenient towards institutions with a good track record. A rigorous 
empirical exercise to test this hypothesis could be a valuable avenue for future research. Our model is also highly schematic and 
lacks realistic features such as different maturities of debt instruments, sovereign default, and other fiscal policies. This is by design. 
The simplified model economy allows us to effectively illustrate the role of stochastic bailouts in repeated games. Future research 
can further enhance our understanding of the use of bailouts in generating incentives by introducing these more realistic features.
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Appendix A and B. Recursive analysis of the set of perfect public equilibrium and proofs

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.euroecorev.2025.104999. 
Appendix A shows that Perfect Public Equilibria can be characterized recursively. Appendix B contains all proofs.
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