
1

Intelligent speech handover for smart speakers
through deep learning: a custom loss function

approach
Vijaya Nirmala Mitnala, Martin J. Reed, John Bicknell, and Joyraj Chakraborty

Abstract—The consistent growth of the smart speaker market
has established far-field speech communication as an alternative
to traditional handsets. When multiple smart speakers are used,
a mechanism for seamless handover is needed, which is not
currently supported. This paper presents two novel contributions
that, together, enable seamless handover: using speech signals to
select a suitable smart speaker through machine learning; and,
reduction in media disruption during handover by local mod-
ifications to the session initiation protocol (SIP). The proposed
solution uses prediction based on a one-dimensional convolu-
tional neural network (1DCNN) and a custom loss function. A
comprehensive evaluation with multiple datasets incorporating
different types of audio signals, movement loci, and, varying
room scenarios demonstrates the effectiveness of the suggested
method in predicting the most appropriate smart speaker. Our
proposal is shown to be highly effective when compared against
a previously proposed predictor or using a standard 1DCNN loss
function and operates with a low computational cost, suitable for
consumer smart speakers.

Index Terms—Smart speakers, Seemless speech handover,
Smart speech mobility, Session Initiation Protocol, Convolutional
Neural Networks.

I. INTRODUCTION

S INCE 2015 there has been rapid and sustained growth
in the number of connected devices around the home;

by 2025 it is expected to reach over 20 billion globally
[1]. Many of these next-gen consumer electronics - such as
smart speakers, laptops, tablets, smartphones, and electronic
portals - are able to support video and/or audio communication
sessions [2]. Whilst this has led to much greater flexibility in
how and where we communicate, little effort has been made
to unify or simplify the consumer experience when it is across
multiple devices and multiple environments.

Until recently, such unification was difficult to foresee and
today, many of the services related to smart devices remain
in siloed ecosystems. However, there are promising signs of
the industry moving towards open connectivity standards with
the adoption of Matter [3]. Indeed, this is also foreseen in the
research literature as the next-gen consumer electronics [2].
Next-gen consumer electronics will open up new opportunities
for device manufacturers and telecommunications providers

Dr. Vijaya Nirmala Mitnala, and Professor Martin J. Reed, are with the
Department of Computer Science and Engineering, University of Essex,
Colchester, UK (Email: vm20821@essex.ac.uk, mjreed@essex.ac.uk).

John Bicknell is with British Telecommunication Plc, Ipswich, UK (Email:
john.bicknell@bt.com).

Dr. Joyraj Chakraborty is with the Department of Engineering Science,
University of Oxford, UK (Email: joyraj.chakraborty@eng.ox.ac.uk).

alike to deliver features that enhance consumer experience
without being bound to a single brand or service silo [4]. This
paper considers smart mobility in the home for a consumer
speech application delivered through smart speakers.

One notable research gap lies in achieving seamless han-
dover between two or more smart speakers during a voice call.
While existing studies have explored talker location [5] and
vertical handover [6] between different networked systems,
there is a lack of research combining these concepts for con-
sumer applications involving multiple smart speakers within
a single environment (room), known as horizontal handover.
Additionally, existing SIP research has not addressed seamless
handover. Today, if a user wishes to change smart speakers
during a call, it typically involves manually ending the session
and starting a new session on the new target smart speaker. The
key objectives of seamless speech handover are to (a) always
select the smart speaker that will deliver the best possible audio
quality for the user and their environment, and (b) to provide a
universally adoptable method for managing session handover
between standard session initiation protocol (SIP) clients.

This paper proposes a novel solution for the voice call
handover between smart speakers within a single audio envi-
ronment, such as a domestic living room as shown in Fig. 1.
Here we can see a user initially using smart speaker 1, for
a voice call to a remote corresponding node (CN) and then
moving to smart speaker 2 in the same room (or maybe
a neighbouring room). It is advantageous to move the call
seamlessly between smart speakers 1 and 2, but this is not
currently possible as existing SIP mechanisms exhibit signif-
icant latency during device handover [6] and current location
systems within a room require calibration that is not suitable
for consumers. For example, while there have been attempts
at determining user location in a room, these have often relied
either upon tracking systems (e.g. video capture) [7] or on
audio detection that makes use of accurate device and audio
environment calibration [5]. Neither approach is well-suited to
practical smart speaker usage; devices are normally placed for
convenience rather than optimal acoustic performance, devices
may be moved to different locations in the room and the
auditory environment of the room may change when moving
furniture or due to the presence and movement of other people
in the room. To avoid this calibration dependency, our research
proposes a novel method for identifying the suitable smart
speaker using multivariate audio signal features. This approach
utilises deep learning techniques, particularly one-dimensional
neural network (1DCNN) [8], leveraging its effectiveness

2

Standard room

7.0m

1.5m

3.5m

5.5m

3.5m

1.0m

Switch
smart speakers

Smart speaker 1

Home hub

B2BUA

Smart speaker 2

Fig. 1: Example smart speech mobility consumer application
with two smart speakers in a room (height of 2.4m not shown)

in analysing time-series multivariate audio signal data. Our
motivation for using such machine learning is that we want to
train a system that works solely on the one-dimensional audio
data obtained from the smart speaker microphones without
relying upon other data such as two or three-dimensional
positioning information. A deep convolution neural network
has the advantage that it can be trained on a suitably large
dataset, which will create filters that are thus designed to solve
the target problem. Later we show that our solution can run
with relatively low complexity by using suitable audio features
that are averaged over the time-frame of movement rather than
each audio sample.

In summary, the novel contributions encompass:
• the detection of a suitable smart speaker using a 1DCNN

based upon only the audio signal features without calibra-
tion or knowledge of the location of the smart speakers;

• a custom loss function in the 1DCNN training that is
problem-specific to improve over standard machine learning
(ML) loss functions;

• and, alternative SIP signalling approaches for mid-call per-
sonal mobility providing seamless session handover.

These contributions are shown to require very low computa-
tional effort to allow deployment in contemporary consumer
smart speakers.

In Section II, we review related literature, followed by
the presentation of the problem statement in Section III.
Subsequently, we present our proposed methods for both smart
speaker detection and SIP in section IV. The advantages of
our proposal are demonstrated through the results presented in
Section V. We provide discussion on the proposed approach
in Section VI before drawing conclusions in Section VII.

II. RELATED WORK

A. Smart speaker technology

With increasing consumer drives for connectivity, the need
for smart homes equipped with smart speakers has become
more pronounced than ever with an estimated 200 million
smart speakers purchased by 2022 and an estimated growth
to a $ 21 billion market by 2027 [9]. Smart speakers serve

as central hubs that streamline various aspects of daily life,
offering convenience, efficiency, and enhanced control over
home environments. Voice-activated speakers with virtual as-
sistants can perform tasks and provide information through
voice commands. Key components include advanced speech
recognition, high-quality audio for music and responses, and
beamforming microphones to capture commands effectively.

Localising talkers using speech is a key feature of smart
speaker technology for speech mobility. Sound source local-
isation (SSL) is one way to determine the talker’s location
and has been widely studied for applications like smart home
systems, video conferencing, robotics, speech enhancement,
augmented reality, and surveillance systems [10]–[16]. The
authors in [17], [18] used traditional signal processing tech-
niques, such as voice power or the time-difference of arrival
(TDOA) method, for this task. These methods require prior
knowledge of the acoustic environment, such as room dimen-
sions and wall surface area, etc.

There have been recent proposals to adopt learning-based
methods for sound localisation, eliminating the need for
traditional measurements of distance [5], [19]–[21]. Within
this evolving paradigm, audio attributes such as magnitude
squared coherence (MSC), signal magnitude (A), direct-to-
reverberant ratio (DRR), and mel-frequency cepstral coeffi-
cients (MFCC) [22] serve as determining features, playing
a pivotal role in advancing feature-based machine learning
approaches for superior sound localisation and recognition.
Baimirov et al. [23] discuss research advancements in smart
speaker technology, including the use of microphone signals
with CNN techniques and time-series filters like Kalman filters
for speech recognition and talker location; but unlike our work,
they do not find research that detects the suitable smart speaker
for a speech session. The research in [19] compares different
acoustic source distance parameters and concludes the MSC
method is most effective for distance estimation. The studies
in [19], [24] discuss using the MSC to compute the DRR for
distance estimation. The research in [5] introduces a Gaussian
mixture model (GMM) using MSC features from a binaural
input to estimate arrival distance. While these research pro-
posals provide compelling reasons for using MSC in distance
estimation after calibration in static environments, they do
not address the scenario of generic device switching without
calibration. An earlier study [25] introduced a method that
leveraged MSC along with smoothing filters to enable smart
speaker selection without the need for calibration. However,
this method was not applicable to the general case of arbitrary
movement and varying room/device locations considered in
this paper.

Over the last decade, deep learning has significantly im-
proved in this field. Convolutional neural networks (CNN),
one of the dominating paradigms in deep learning [26], have
exerted a substantial influence on research across diverse
domains, such as human activity recognition [27], [28], speech
recognition [29], image classification [30], and, various time-
series prediction applications [31]–[33] etc. In particular, the
1DCNN [8] has achieved good results in processing time-
series multivariate audio signal data. This previous work moti-
vates our paper in utilising a 1DCNN along with suitable audio

3

features to provide robust suitable smart speaker detection for a
smart mobility speech application. Deep learning can require
significant computation resources and consequently, authors
look for green and sustainable solutions such as offloading
to/from end-devices [34] or other green cloud solutions for
multimedia [35]. In this paper, we take an alternative approach
by implementing deep learning such that it only requires a
small, negligible, fraction of a smart speaker’s processing
resource.

B. SIP Personal mobility

The smart speech mobility solution in this research con-
siders session initiation protocol (SIP) for session handling.
SIP [36], [37] is widely accepted and heavily used as an
application layer signalling protocol in voice over Internet
protocol (VoIP) and Internet protocol multimedia sub-systems
(IMS) [38]. VoIP/IMS systems are generally implemented
as virtualized software systems [39]; consequently, end sys-
tem user components are easily implemented in home gate-
ways [40] or in a smart speaker as a SIP server. The SIP
server can function fundamentally in two modes: the back-to-
back user agent (B2BUA) mode and the proxy mode [41]. The
B2BUA-based SIP server fully controls and manages the SIP
sessions over all the call stages. This study uses a B2BUA-
based SIP server because of its strong features among proxy-
based SIP servers and because it is the most commonly used
scenario. We note that in our system only the single end user is
connected to the B2BUA, so SIP load scheduling is not within
the scope of this paper as only a single, or small group of
callers, will be part of the call at any one time i.e. the B2BUA
has a very low signalling load consisting of simply start of a
call, end of a call and movements within the consumer location
which happens in the order of seconds. However, a network
operator, that is coordinating a large number of calls at any
one time, will require load scheduling within its central VoIP
architecture; two alternative solutions for this load scheduling
are presented by Azhari et al. [42] and by Yavis et al [43].

Personal mobility requires a SIP architecture that has the
flexibility to dynamically change according to a user’s needs
and locations. There are a number of approaches to achieve
this, one is to use software-defined networking as proposed
by Gandotra and Perigo with SDVoIP [44] and this is a useful
technique in cases where mobility spans diverse locations. In
this work, we can avoid the need for such network-centric
mechanisms as our solution is only concerned within the
domain of a single consumer, i.e. with a number of smart
speakers within a single location that are typically connected
via wireless networking such as WiFi. Consequently, our
solution is agnostic to the wider SIP implementation although
a software-defined solution such as SDVoIP might bring wider
benefits to the general SIP architecture of an operator that is
outside of the domain of the consumer. Instead, our solution
makes use of the simple approach of a single B2BUA which
already exists in most consumer end-points.

SIP personal mobility [45], [46] allows registering multiple
devices to one SIP address for session handling. A call session
can be initiated on multiple devices with the same SIP address

using the existing SIP support of either parallel or sequential
call forking. This facility can be used in dynamic session
handover between smart speakers. The use of SIP personal
mobility has been studied in the past for various smart home
applications [18], [47]. This paper uses the SIP personal
mobility feature for session handling and introduces a novel
solution for seamlessly handling sessions during smart speaker
handovers.

III. PROBLEM STATEMENT

Given N smart speakers D = d1 . . . dn in a room with a
user at position p(t) at time t using one of the smart speakers
to communicate with a remote user at a corresponding node
(CN), the aim of this work is to determine an optimal
di ∈ D that will provide the highest quality communications
experience. For simplicity, we assume that the user is moving
and that the smart speakers are static at locations denoted by
the smart speaker variable di. On first inspection, this appears
to be a simple classification problem. However, this simplistic
approach leads to several issues. While there may be a number
of ways to determine the optimum smart speaker, for the
moment we will assume it is the smart speaker di that is
nearest, according to Euclidean distance, to the user’s position
p(t) and denoted as |p(t), di|2. Later we will comment on this
assumption. If we now consider the selection of the optimum
smart speaker d̂i as

d̂i = arg min
di∈D

|p(t), di|2 (1)

the classification problem in this form thus depends upon
determining the location of the user relative to the speakers to
obtain |p(t), di|2. However, as noted above in I and II, location
tracking in most home environments where smart speakers will
be used is very difficult. Existing localisation methods use
offline measurements to calibrate the localisation system [5],
[19]. However, given that users tend to move smart speakers
or furniture, arbitrarily, any such calibration would be invalid,
resulting in incorrect localisation. Consequently, determining
|p(t), di|2 itself is not practical and instead, we propose using
features from captured audio on each of the smart speakers
to estimate the solution to (1). We describe the features we
investigated for this work in IV-A2.

In addition to the problem of location estimation, the clas-
sification formulation in (1) leads to issues when determining
the error (loss function) in a given position. A classical classi-
fication problem would evaluate “wrongness” as simple counts
on the number of classification errors, but this misses some
subtlety in the problem. Consider, for simplicity of description
but without loss of generality, a two-device system D = d1, d2
as shown in Fig. 2. Here we show a talker moving between
position pα to pΩ. Ideally, the speech should switch the active
smart speaker from d1 to d2 as the talker moves through
position p2 where the talker’s position is equidistant from the
two smart speakers. It would be considered an error to switch
the active smart speaker at positions p1 or p3. However, if we
use a simple, binary, classification value to represent this error
this clearly does not adequately represent the problem. For
example, switching to device d2 at p1 would be disturbing as

4

AS:

Optimum smart speaker
 switching point

p1

d2d1

𝛅e 𝛅e

xl,1
xr,1 xl,2

xr,2

✅

❌ ❌

p2 p3p𝛼 pΩP:
d1 d2d1→d2

Fig. 2: Example handover process to select an active smart
speaker (AS) at a user position (P), with ideal (p2) and non-
ideal (p1, p3) handover positions for a talker walking from pα
to pΩ. Ideally, handover should occur at p2 and for non-ideal
handover, p1 is perceptually much worse than switching at p3.

:
:

C2 Dense 1

Hyperparameter tuned 1DCNN model

:
:

xl,1
xr,1

xl,2

5

from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a

portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =
lX

k=�l

z(k) · w(t� k) (9)

The weights of the kernel w(t) are initialized using He normal
initialization [43]. Then, the output of the CNN layer can be
represented as:

Cl
i = bl

i +
X

k

Cl�1
k ⇤wl

k (10)

where Cl
i is the ith output feature at the lth layer, Cl�1

k is
the kth input feature at the (l � 1)th layer, wk denotes the
convolution kernel at the kth index, and bl

i is the bias term for
the ith output feature at the lth layer.

ReLU activation is applied on the convolution output:

ReLU(Cl
i) =

(
Cl

i if Cl
i > 0

0 if Cl
i <= 0

(11)

The output of the final dense layer is a single regression
value which is then mapped to a class through a binary
decision variable, i.e. the choice of device. The choice of
the structure was driven by the observation that smoothing
a single feature (e.g. MSC) can aid a very simple decision
algorithm. Thus, similarly, the use of 1DCNN layers can be
seen to act as time-domain variant trained filters that learn
to appropriately process the input data to achieve improved
classification performance. The size of the kernels is such
that a reasonable history is used to feed into the classification
decision, see V-B for the values selected. We found, through
experimentation and hyperparameter tuning, that it was best
to maintain the time-domain structure throughout the CNN
structure, with decreasing kernel size, until the end where the
dense layer then reduced the dimensionality to one.

4) Training environment: The training dataset comprises
information such as the talker’s position from the smart speak-
ers and the signal features, extracted from the audio outcome
from each smart device microphone array, while the talker is
in motion. To acquire these features, the system can undergo
training via two primary methods: real-world data collection
in actual rooms with people; or using room simulations. In
the real-world data collection approach, training data would
be collected by deploying smart speakers in real rooms where

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

movements are relatively gradual compared to the distances
between the smart speakers. For instance, the user does not
move rapidly from one end of a room to another (running)
but rather involves expected movements during a call such
as walking. The process for computing the audio features is
outlined below. Without loss of generality, we will consider
the case where each device has a microphone array with two
microphones as a pair denoted l, r. The processing system is
thus described as:
• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . .

separately from the microphone pair (l, r) from each device
di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xi,l, xi,r for D speakers, i 2 D.

A number of candidate features were considered in this
work as specified below, these include the magnitude squared
coherence, signal magnitude, Mel cepstral coefficients, and
Mel magnitude spectrum; each of these is formally defined
below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two micro-
phone signals from device i 2 D, xi,l(t) xi,r(t), for the left, l,
and right, r, channels respectively. Specifically the MSC ⇢i(t)
for a block at time t is calculated using the Fourier transform
F of x, X = F(x):

⇢i(t) =

���P̂ (Xi,l(f, t), Xi,r(f, t))
���
2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of Xa(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

4

ρˆ2

A2l

A2r
:
: Input data C1 C2 C3 Dense 1

Hyperparameter tuned 1DCNN model

ρˆ1

A1l

A1r
:
:

xl,1

xr,1

0.2 s time-
series signal
processed to

extract

Feature extractionRaw data

xl,2
xr,2

do

ρˆ1 A1l A1r

Fig. 3: Complete pipeline incorporating feature extraction
according to equations (3), (6) 1DCNN model

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1;
b1 Bias term for layer 1;
h1 f(w1 ⇤ T + b1);
// where f is the relu activation

function
w2 Filter weights for layer 2;
b2 Bias term for layer 2;
h2 f(w2 ⇤ h1 + b2);
w3 Filter weights for layer 3;
b3 Bias term for layer 3;
h3 f(w3 ⇤ h2 + b3);
W Weight matrix for the dense layer;
B Bias vector for the dense layer;
y g(W ⇤ h3 + B);
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y <= 0.5
;

return d̂;

Algorithm 1: 1DCNN Model

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
device handover in two parts, firstly how nearest device
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. ?? which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem
can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the

1DCNN and describes the structure of this model. Having
proposed the nearest device detection, Section IV-B gives a
brief overview of the proposed media handover using SIP.

A. Nearest device detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a speaker and uses this as a basis for switching. Now in our
simple example, again in Fig. 2, if p2 was incorrectly switched
to d2, the regression error would be much smaller than for
p1. However, while this regression problem has been widely
used for systems that attempt to determine exact position,
this is not practical in most smart device environments as
we and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the speakers;
• a decision variable that indicates whether the ideal device

was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart
speakers equipped with microphones, placed according to user
preferences within a room or meeting area. The utilisation of
microphone arrays integrated within the speaker amplifies the
capabilities of speech processing [41]. The situation assumes
a continuous voice call, and we also presume that the user’s

4

ρˆ2

A2l

A2r
:
: Input data C1 C2 C3 Dense 1

Hyperparameter tuned 1DCNN model

ρˆ1

A1l

A1r
:
:

xl,1

xr,1

0.2 s time-
series signal
processed to

extract

Feature extractionRaw data

xl,2
xr,2

do

ρˆ1 A1l A1r

Fig. 3: Complete pipeline incorporating feature extraction
according to equations (3), (6) 1DCNN model

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1;
b1 Bias term for layer 1;
h1 f(w1 ⇤ T + b1);
// where f is the relu activation

function
w2 Filter weights for layer 2;
b2 Bias term for layer 2;
h2 f(w2 ⇤ h1 + b2);
w3 Filter weights for layer 3;
b3 Bias term for layer 3;
h3 f(w3 ⇤ h2 + b3);
W Weight matrix for the dense layer;
B Bias vector for the dense layer;
y g(W ⇤ h3 + B);
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y <= 0.5
;

return d̂;

Algorithm 1: 1DCNN Model

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
device handover in two parts, firstly how nearest device
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. ?? which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem
can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the

1DCNN and describes the structure of this model. Having
proposed the nearest device detection, Section IV-B gives a
brief overview of the proposed media handover using SIP.

A. Nearest device detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a speaker and uses this as a basis for switching. Now in our
simple example, again in Fig. 2, if p2 was incorrectly switched
to d2, the regression error would be much smaller than for
p1. However, while this regression problem has been widely
used for systems that attempt to determine exact position,
this is not practical in most smart device environments as
we and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the speakers;
• a decision variable that indicates whether the ideal device

was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart
speakers equipped with microphones, placed according to user
preferences within a room or meeting area. The utilisation of
microphone arrays integrated within the speaker amplifies the
capabilities of speech processing [41]. The situation assumes
a continuous voice call, and we also presume that the user’s

xr,2

4

:
:

C2 Dense 1

Hyperparameter tuned 1DCNN model

A1l

:
:

xl,1
xr,1

Feature
extraction

xl,2

5

from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a

portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =
lX

k=�l

z(k) · w(t� k) (9)

The weights of the kernel w(t) are initialized using He normal
initialization [43]. Then, the output of the CNN layer can be
represented as:

Cl
i = bl

i +
X

k

Cl�1
k ⇤wl

k (10)

where Cl
i is the ith output feature at the lth layer, Cl�1

k is
the kth input feature at the (l � 1)th layer, wk denotes the
convolution kernel at the kth index, and bl

i is the bias term for
the ith output feature at the lth layer.

ReLU activation is applied on the convolution output:

ReLU(Cl
i) =

(
Cl

i if Cl
i > 0

0 if Cl
i <= 0

(11)

The output of the final dense layer is a single regression
value which is then mapped to a class through a binary
decision variable, i.e. the choice of device. The choice of
the structure was driven by the observation that smoothing
a single feature (e.g. MSC) can aid a very simple decision
algorithm. Thus, similarly, the use of 1DCNN layers can be
seen to act as time-domain variant trained filters that learn
to appropriately process the input data to achieve improved
classification performance. The size of the kernels is such
that a reasonable history is used to feed into the classification
decision, see V-B for the values selected. We found, through
experimentation and hyperparameter tuning, that it was best
to maintain the time-domain structure throughout the CNN
structure, with decreasing kernel size, until the end where the
dense layer then reduced the dimensionality to one.

4) Training environment: The training dataset comprises
information such as the talker’s position from the smart speak-
ers and the signal features, extracted from the audio outcome
from each smart device microphone array, while the talker is
in motion. To acquire these features, the system can undergo
training via two primary methods: real-world data collection
in actual rooms with people; or using room simulations. In
the real-world data collection approach, training data would
be collected by deploying smart speakers in real rooms where

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a

portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

The weights of the kernel w(t) are initialized using He normal
initialization [43]. Then, the output of the CNN layer can be
represented as:

Cl
i = bl

i +
X

k

Cl�1
k ⇤wl

k (10)

where Cl
i is the ith output feature at the lth layer, Cl�1

k is
the kth input feature at the (l � 1)th layer, wk denotes the
convolution kernel at the kth index, and bl

i is the bias term for
the ith output feature at the lth layer.

ReLU activation is applied on the convolution output:

ReLU(Cl
i) =

(
Cl

i if Cl
i > 0

0 if Cl
i <= 0

(11)

The output of the final dense layer is a single regression
value which is then mapped to a class through a binary
decision variable, i.e. the choice of device. The choice of
the structure was driven by the observation that smoothing
a single feature (e.g. MSC) can aid a very simple decision
algorithm. Thus, similarly, the use of 1DCNN layers can be
seen to act as time-domain variant trained filters that learn
to appropriately process the input data to achieve improved
classification performance. The size of the kernels is such
that a reasonable history is used to feed into the classification
decision, see V-B for the values selected. We found, through
experimentation and hyperparameter tuning, that it was best
to maintain the time-domain structure throughout the CNN
structure, with decreasing kernel size, until the end where the
dense layer then reduced the dimensionality to one.

4) Training environment: The training dataset comprises
information such as the talker’s position from the smart speak-
ers and the signal features, extracted from the audio outcome
from each smart device microphone array, while the talker is
in motion. To acquire these features, the system can undergo
training via two primary methods: real-world data collection
in actual rooms with people; or using room simulations. In
the real-world data collection approach, training data would
be collected by deploying smart speakers in real rooms where

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

Raw
data

Feature
extraction

Raw
data

4

ρˆ2

A2l

A2r
:
: Input data C1 C2 C3 Dense 1

Hyperparameter tuned 1DCNN model

ρˆ1

A1l

A1r
:
:

xl,1

xr,1

0.2 s time-
series signal
processed to

extract

Feature extractionRaw data

xl,2
xr,2

do

ρˆ1 A1l A1r

Fig. 3: Complete pipeline incorporating feature extraction
according to equations (3), (6) 1DCNN model

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1;
b1 Bias term for layer 1;
h1 f(w1 ⇤ T + b1);
// where f is the relu activation

function
w2 Filter weights for layer 2;
b2 Bias term for layer 2;
h2 f(w2 ⇤ h1 + b2);
w3 Filter weights for layer 3;
b3 Bias term for layer 3;
h3 f(w3 ⇤ h2 + b3);
W Weight matrix for the dense layer;
B Bias vector for the dense layer;
y g(W ⇤ h3 + B);
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y <= 0.5
;

return d̂;

Algorithm 1: 1DCNN Model

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
device handover in two parts, firstly how nearest device
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. ?? which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem
can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the

1DCNN and describes the structure of this model. Having
proposed the nearest device detection, Section IV-B gives a
brief overview of the proposed media handover using SIP.

A. Nearest device detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a speaker and uses this as a basis for switching. Now in our
simple example, again in Fig. 2, if p2 was incorrectly switched
to d2, the regression error would be much smaller than for
p1. However, while this regression problem has been widely
used for systems that attempt to determine exact position,
this is not practical in most smart device environments as
we and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the speakers;
• a decision variable that indicates whether the ideal device

was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart
speakers equipped with microphones, placed according to user
preferences within a room or meeting area. The utilisation of
microphone arrays integrated within the speaker amplifies the
capabilities of speech processing [41]. The situation assumes
a continuous voice call, and we also presume that the user’s

5

movements are relatively gradual compared to the distances
between the smart speakers. For instance, the user does not
move rapidly from one end of a room to another (running)
but rather involves expected movements during a call such
as walking. The process for computing the audio features is
outlined below. Without loss of generality, we will consider
the case where each device has a microphone array with two
microphones as a pair denoted l, r. The processing system is
thus described as:
• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . .

separately from the microphone pair (l, r) from each device
di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xi,l, xi,r for D speakers, i 2 D.

A number of candidate features were considered in this
work as specified below, these include the magnitude squared
coherence, signal magnitude, Mel cepstral coefficients, and
Mel magnitude spectrum; each of these is formally defined
below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two micro-
phone signals from device i 2 D, xi,l(t) xi,r(t), for the left, l,
and right, r, channels respectively. Specifically the MSC ⇢i(t)
for a block at time t is calculated using the Fourier transform
F of x, X = F(x):

⇢i(t) =

���P̂ (Xi,l(f, t), Xi,r(f, t))
���
2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of Xa(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

movements are relatively gradual compared to the distances
between the smart speakers. For instance, the user does not
move rapidly from one end of a room to another (running)
but rather involves expected movements during a call such
as walking. The process for computing the audio features is
outlined below. Without loss of generality, we will consider
the case where each device has a microphone array with two
microphones as a pair denoted l, r. The processing system is
thus described as:
• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . .

separately from the microphone pair (l, r) from each device
di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xi,l, xi,r for D speakers, i 2 D.

A number of candidate features were considered in this
work as specified below, these include the magnitude squared
coherence, signal magnitude, Mel cepstral coefficients, and
Mel magnitude spectrum; each of these is formally defined
below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two micro-
phone signals from device i 2 D, xi,l(t) xi,r(t), for the left, l,
and right, r, channels respectively. Specifically the MSC ⇢i(t)
for a block at time t is calculated using the Fourier transform
F of x, X = F(x):

⇢i(t) =

���P̂ (Xi,l(f, t), Xi,r(f, t))
���
2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of Xa(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

movements are relatively gradual compared to the distances
between the smart speakers. For instance, the user does not
move rapidly from one end of a room to another (running)
but rather involves expected movements during a call such
as walking. The process for computing the audio features is
outlined below. Without loss of generality, we will consider
the case where each device has a microphone array with two
microphones as a pair denoted l, r. The processing system is
thus described as:
• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . .

separately from the microphone pair (l, r) from each device
di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xi,l, xi,r for D speakers, i 2 D.

A number of candidate features were considered in this
work as specified below, these include the magnitude squared
coherence, signal magnitude, Mel cepstral coefficients, and
Mel magnitude spectrum; each of these is formally defined
below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two micro-
phone signals from device i 2 D, xi,l(t) xi,r(t), for the left, l,
and right, r, channels respectively. Specifically the MSC ⇢i(t)
for a block at time t is calculated using the Fourier transform
F of x, X = F(x):

⇢i(t) =

���P̂ (Xi,l(f, t), Xi,r(f, t))
���
2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of Xa(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

movements are relatively gradual compared to the distances
between the smart speakers. For instance, the user does not
move rapidly from one end of a room to another (running)
but rather involves expected movements during a call such
as walking. The process for computing the audio features is
outlined below. Without loss of generality, we will consider
the case where each device has a microphone array with two
microphones as a pair denoted l, r. The processing system is
thus described as:
• Capture an audio sample block, (u1,l, u1,r), (u2,l, u2,r), . . .

separately from the microphone pair (l, r) from each device
di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xi,l, xi,r for D speakers, i 2 D.

A number of candidate features were considered in this
work as specified below, these include the magnitude squared
coherence, signal magnitude, Mel cepstral coefficients, and
Mel magnitude spectrum; each of these is formally defined
below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two micro-
phone signals from device i 2 D, xi,l(t) xi,r(t), for the left, l,
and right, r, channels respectively. Specifically the MSC ⇢i(t)
for a block at time t is calculated using the Fourier transform
F of x, X = F(x):

⇢i(t) =

���P̂ (Xi,l(f, t), Xi,r(f, t))
���
2

P̂ (Xi,l(f, t), Xi,l(f, t))P̂ (Xi,r(f, t), Xi,r(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of Xa(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤
a(f, t) as the complex conjugate of Xb(f, t).

Finally the averaged MSC, ⇢̂(t) at time across B blocks of
size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above this coherence is calculated separately for each
device to give ⇢̂1 and ⇢̂2 if two devices are used.

Signal magnitude: The absolute signal magnitude, (A), Ai,
of device i is calculated from the power spectral density as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

where X⇤ is the complex conjugate of X . This magnitude
is calculated for each device and for the left, l, and right, r,
channels as A1l, A1r, and A2l, A2r if two devices are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart device. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance1. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a time series, z(t),
where each point in time is a vector representing the features
described in IV-A2. The input z(t) is convolved with a kernel
w(t) of size l to obtain the output C(t), which is described
using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

1Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

7

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 Device1: 1.0m X 3.5m X 0.9m Device2: 5.5m X 3.5m X 0.9m
Room 2 Device1: 1.5m X 3.5m X 0.9m Device2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Audio block size 3200 samples (0.2 s)

behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for devices within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart devices, both of which are being used as a B2BUA
in emerging systems.

V. RESULTS

[TODO Martin please address:
• The results section is comprehensive, but some parts can

be made more concise.
• Lines 7-9: Consider summarizing the key findings in

bullet points for quick reference.
] The evaluation is performed across 20,000 different sce-
narios: 50 different speech signals (taken from [44]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table ??, were simu-
lated using the Python package Pyroomacoustics [45]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [46], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
metres and examples of device locations are shown

TABLE II: Hypertuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

we simulate two speakers, Device 1 (D1) and Device 2 (D2),
each with two omni-directional microphones, positioned at
opposite ends of the room with a 4.5-meter separation. This
setup emulates an open-plan living area, with one device in
the living room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to
simulate different walking speeds. This represents the talker’s
movement between two locations, covering two speakers and
manoeuvring around a third object, such as furniture.

B. Configuration of hypertuned 1DCNN model

The high-level 1DCNN model is depicted in Fig. ?? show-
ing three convolutional layers that were determined through
experimentation to be the best after experimentation in com-
bination with hyperparameter tuning. The input tensor T is
formed from the concatonation of the extracted features
. The input tensor T then is fed through three consecutive
CNNs C1, C2, C3. The parameters determined after hypertuning
are shown in Table II. The input to the first layer comprises
a number of audio features captured at 49 time steps. The

4

ρˆ2

A2l

A2r
:
: Input data C1 C2 C3 Dense 1

Hyperparameter tuned 1DCNN model

ρˆ1

A1l

A1r
:
:

xl,1

xr,1

0.2 s time-
series signal
processed to

extract

Feature extractionRaw data

xl,2
xr,2

do

ρˆ1 A1l A1r

Fig. 3: Complete pipeline incorporating feature extraction
according to equations (3), (6) 1DCNN model

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1;
b1 Bias term for layer 1;
h1 f(w1 ⇤ T + b1);
// where f is the relu activation

function
w2 Filter weights for layer 2;
b2 Bias term for layer 2;
h2 f(w2 ⇤ h1 + b2);
w3 Filter weights for layer 3;
b3 Bias term for layer 3;
h3 f(w3 ⇤ h2 + b3);
W Weight matrix for the dense layer;
B Bias vector for the dense layer;
y g(W ⇤ h3 + B);
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y <= 0.5
;

return d̂;

Algorithm 1: 1DCNN Model

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
device handover in two parts, firstly how nearest device
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. ?? which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem
can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the

1DCNN and describes the structure of this model. Having
proposed the nearest device detection, Section IV-B gives a
brief overview of the proposed media handover using SIP.

A. Nearest device detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a speaker and uses this as a basis for switching. Now in our
simple example, again in Fig. 2, if p2 was incorrectly switched
to d2, the regression error would be much smaller than for
p1. However, while this regression problem has been widely
used for systems that attempt to determine exact position,
this is not practical in most smart device environments as
we and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the speakers;
• a decision variable that indicates whether the ideal device

was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart
speakers equipped with microphones, placed according to user
preferences within a room or meeting area. The utilisation of
microphone arrays integrated within the speaker amplifies the
capabilities of speech processing [41]. The situation assumes
a continuous voice call, and we also presume that the user’s

4

ρˆ2

A2l

A2r
:
: Input data C1 C2 C3 Dense 1

Hyperparameter tuned 1DCNN model

ρˆ1

A1l

A1r
:
:

xl,1

xr,1

0.2 s time-
series signal
processed to

extract

Feature extractionRaw data

xl,2
xr,2

do

ρˆ1 A1l A1r

Fig. 3: Complete pipeline incorporating feature extraction
according to equations (3), (6) 1DCNN model

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1;
b1 Bias term for layer 1;
h1 f(w1 ⇤ T + b1);
// where f is the relu activation

function
w2 Filter weights for layer 2;
b2 Bias term for layer 2;
h2 f(w2 ⇤ h1 + b2);
w3 Filter weights for layer 3;
b3 Bias term for layer 3;
h3 f(w3 ⇤ h2 + b3);
W Weight matrix for the dense layer;
B Bias vector for the dense layer;
y g(W ⇤ h3 + B);
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y <= 0.5
;

return d̂;

Algorithm 1: 1DCNN Model

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
device handover in two parts, firstly how nearest device
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. ?? which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem
can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the

1DCNN and describes the structure of this model. Having
proposed the nearest device detection, Section IV-B gives a
brief overview of the proposed media handover using SIP.

A. Nearest device detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a speaker and uses this as a basis for switching. Now in our
simple example, again in Fig. 2, if p2 was incorrectly switched
to d2, the regression error would be much smaller than for
p1. However, while this regression problem has been widely
used for systems that attempt to determine exact position,
this is not practical in most smart device environments as
we and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the speakers;
• a decision variable that indicates whether the ideal device

was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart
speakers equipped with microphones, placed according to user
preferences within a room or meeting area. The utilisation of
microphone arrays integrated within the speaker amplifies the
capabilities of speech processing [41]. The situation assumes
a continuous voice call, and we also presume that the user’s

xr,2

Fig. 3: Complete smart speaker detection pipeline, incor-
porating feature extraction according to equations (3), (6),
and detecting speaker d̂ using the 1DCNN decision process
described in Algorithm 1.

Input: Time series feature tensor
T = [⇢̂i1(t), ⇢̂i2(t), A1,l(t), . . . , A2,r]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 Filter weights for layer 1
b1 Bias term for layer 1
h1 f(w1 ⇤ T + b1)
// where f is the relu activation

function
w2 Filter weights for layer 2
b2 Bias term for layer 2
h2 f(w2 ⇤ h1 + b2)
w3 Filter weights for layer 3
b3 Bias term for layer 3
h3 f(w3 ⇤ h2 + b3)
W Weight matrix for the dense layer
B Bias vector for the dense layer
y g(W ⇤ h3 + B)
// where g is the softmax

activation function

d̂ =

(
2 if y > 0.5

1 if y 0.5

return d̂

Algorithm 1: The decision procedure for optimum device
position using 1DCNN

IV. PROPOSED METHOD FOR INTELLIGENT DEVICE
HANDOVER

This section describes the proposal for intelligent smart
speaker handover in two parts, firstly how nearest speaker
detection in a home is determined and secondly how SIP can
trigger media handover. A overall system diagram is shown in
Fig. 3 which shows how the signals from the smart speakers,
xl,1 . . . xr,2 are used to create features which are then fed into
a 1DCNN machine learning model as shown in Algorithm 1.
Section IV-A will first describe how the classification problem

can be modelled as a custom error function, that will later be
used as a custom loss function in machine learning. It then
proposes the candidate features that will be extracted for the
1DCNN and describes the structure of this model. Having
proposed the nearest smart speaker detection, Section IV-B
gives a brief overview of the proposed media handover using
SIP.

A. Nearest smart speaker detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier,
as described above in III, an alternative could be to consider
it as a regression problem which determines the minimum
distance to a speaker and uses this as a basis for switching.
Now in our simple example, again in Fig. 2, the regression
error would be significantly smaller if the handover occurred
at position p3 than at p1 [TODO Martin, pl. check this change].
However, while this regression problem has been widely used
for systems that attempt to determine exact position, this
is not practical in most smart device environments as we
and others have found that predicting distance in arbitrary
rooms with uncalibrated speaker positions and orientations is
very difficult [19]. We choose to instead consider this as a
hybrid classification/regression problem by using a normalised
regression metric that is then fed to a simple decision classifier
on the output of the normalised regression model. This hybrid
solution is described as an error function that will be used as
the custom loss function within the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the smart speakers;
• a decision variable that indicates whether the ideal smart

speaker was used;
The custom error/loss function makes use of ground-truth

variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

����
|p(t), d1|2 � |p(t), d2|2

|d1, d2|2

���� �(p(t), d1, d2) (2)

where �(p(t), d1, d2) is a binary decision variable which is
unity if an incorrect device is selected and zero otherwise. All
of the variables in (2) are unknown to a running system as we
are assuming that the smart speakers are placed (and possibly
moved) by users without any calibration. Consequently, in the
1DCNN this loss function has to be implemented as a custom
function such that the function (and input variables) is used
during training but then hidden during the prediction (running)
phase.

2) Feature extraction: [TODO Martin to address: Subsec-
tion IV-A2: Clarify the steps involved in feature extraction
with a step-by-step diagram or flowchart.] In this section, we
present a method for intelligently switching between speakers
within a unified audio environment, using the audio features
extracted at each talker’s position and at a certain time interval.
This may include the use of D smart speakers, such as smart

Feature
extraction

Feature
extraction

Dense
layer

Convolutional layersInput features

Time steps

5

a room to another (running) but rather involves expected
movements during a call such as walking. The process for
computing the audio features is outlined below. Without loss of
generality, we will consider the case where each smart speaker
has a microphone array with two microphones as a pair
denoted l, r. The initial processing system is thus described
as:
• Capture an audio sample block, (ul,1, ur,1), (ul,2, ur,2), . . .

separately from the microphone pair (l, r) from each smart
speaker di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xl,i, xr,i for D smart speakers, i 2 D.

These signals, xl,i, xr,i, . . ., are then used to generate features
for the machine learning as shown in Fig. 3. A number of
candidate features were considered in this work as specified
below, these include the magnitude squared coherence, sig-
nal magnitude, Mel cepstral coefficients, and Mel magnitude
spectrum; each of these is formally defined below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two mi-
crophone signals from smart speaker i 2 D, xl,i(t) xr,i(t),
for the left, l, and right, r, channels respectively. Specifically
the MSC ⇢i(t) for a block at time t is calculated using the
Fourier transform F of x, X = F(x):

⇢i(t) =

���P̂ (Xl,i(f, t), Xr,i(f, t))
���
2

P̂ (Xl,i(f, t), Xl,i(f, t))P̂ (Xr,i(f, t), Xr,i(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of X(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤(f, t) as the complex conjugate of X(f, t).
Finally the averaged MSC, ⇢̂(t) at time, t, across B blocks

of size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above, this coherence is calculated separately for each
smart speaker to give ⇢̂1 and ⇢̂2 if two smart speakers are used.

Signal magnitude: The absolute signal magnitude Ai, of
smart speaker i is calculated from the power spectral density
as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

This magnitude is calculated for each smart speaker and for
the left, l, and right, r, channels as Al,1, Ar,1, and Al,2, Ar,2

if two smart speakers are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart speaker. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2. An
overview of the 1DCNN within the system is shown in Fig. 3.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance2. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a tensor T , where each
column z(t) is a time series vector representing the features
described in IV-A2. The full 1DCCN is given in Algorithm 1
and each step is further described below. The input z(t) is
convolved with a kernel w(t) of size l to obtain the output
C(t), which is described using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

2Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

a room to another (running) but rather involves expected
movements during a call such as walking. The process for
computing the audio features is outlined below. Without loss of
generality, we will consider the case where each smart speaker
has a microphone array with two microphones as a pair
denoted l, r. The initial processing system is thus described
as:
• Capture an audio sample block, (ul,1, ur,1), (ul,2, ur,2), . . .

separately from the microphone pair (l, r) from each smart
speaker di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xl,i, xr,i for D smart speakers, i 2 D.

These signals, xl,i, xr,i, . . ., are then used to generate features
for the machine learning as shown in Fig. 3. A number of
candidate features were considered in this work as specified
below, these include the magnitude squared coherence, sig-
nal magnitude, Mel cepstral coefficients, and Mel magnitude
spectrum; each of these is formally defined below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two mi-
crophone signals from smart speaker i 2 D, xl,i(t) xr,i(t),
for the left, l, and right, r, channels respectively. Specifically
the MSC ⇢i(t) for a block at time t is calculated using the
Fourier transform F of x, X = F(x):

⇢i(t) =

���P̂ (Xl,i(f, t), Xr,i(f, t))
���
2

P̂ (Xl,i(f, t), Xl,i(f, t))P̂ (Xr,i(f, t), Xr,i(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of X(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤(f, t) as the complex conjugate of X(f, t).
Finally the averaged MSC, ⇢̂(t) at time, t, across B blocks

of size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above, this coherence is calculated separately for each
smart speaker to give ⇢̂1 and ⇢̂2 if two smart speakers are used.

Signal magnitude: The absolute signal magnitude Ai, of
smart speaker i is calculated from the power spectral density
as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

This magnitude is calculated for each smart speaker and for
the left, l, and right, r, channels as Al,1, Ar,1, and Al,2, Ar,2

if two smart speakers are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart speaker. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2. An
overview of the 1DCNN within the system is shown in Fig. 3.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance2. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a tensor T , where each
column z(t) is a time series vector representing the features
described in IV-A2. The full 1DCCN is given in Algorithm 1
and each step is further described below. The input z(t) is
convolved with a kernel w(t) of size l to obtain the output
C(t), which is described using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

2Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

a room to another (running) but rather involves expected
movements during a call such as walking. The process for
computing the audio features is outlined below. Without loss of
generality, we will consider the case where each smart speaker
has a microphone array with two microphones as a pair
denoted l, r. The initial processing system is thus described
as:
• Capture an audio sample block, (ul,1, ur,1), (ul,2, ur,2), . . .

separately from the microphone pair (l, r) from each smart
speaker di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xl,i, xr,i for D smart speakers, i 2 D.

These signals, xl,i, xr,i, . . ., are then used to generate features
for the machine learning as shown in Fig. 3. A number of
candidate features were considered in this work as specified
below, these include the magnitude squared coherence, sig-
nal magnitude, Mel cepstral coefficients, and Mel magnitude
spectrum; each of these is formally defined below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two mi-
crophone signals from smart speaker i 2 D, xl,i(t) xr,i(t),
for the left, l, and right, r, channels respectively. Specifically
the MSC ⇢i(t) for a block at time t is calculated using the
Fourier transform F of x, X = F(x):

⇢i(t) =

���P̂ (Xl,i(f, t), Xr,i(f, t))
���
2

P̂ (Xl,i(f, t), Xl,i(f, t))P̂ (Xr,i(f, t), Xr,i(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of X(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤(f, t) as the complex conjugate of X(f, t).
Finally the averaged MSC, ⇢̂(t) at time, t, across B blocks

of size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above, this coherence is calculated separately for each
smart speaker to give ⇢̂1 and ⇢̂2 if two smart speakers are used.

Signal magnitude: The absolute signal magnitude Ai, of
smart speaker i is calculated from the power spectral density
as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

This magnitude is calculated for each smart speaker and for
the left, l, and right, r, channels as Al,1, Ar,1, and Al,2, Ar,2

if two smart speakers are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart speaker. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2. An
overview of the 1DCNN within the system is shown in Fig. 3.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance2. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a tensor T , where each
column z(t) is a time series vector representing the features
described in IV-A2. The full 1DCCN is given in Algorithm 1
and each step is further described below. The input z(t) is
convolved with a kernel w(t) of size l to obtain the output
C(t), which is described using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

2Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

5

a room to another (running) but rather involves expected
movements during a call such as walking. The process for
computing the audio features is outlined below. Without loss of
generality, we will consider the case where each smart speaker
has a microphone array with two microphones as a pair
denoted l, r. The initial processing system is thus described
as:
• Capture an audio sample block, (ul,1, ur,1), (ul,2, ur,2), . . .

separately from the microphone pair (l, r) from each smart
speaker di 2 D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xl,i, xr,i for D smart speakers, i 2 D.

These signals, xl,i, xr,i, . . ., are then used to generate features
for the machine learning as shown in Fig. 3. A number of
candidate features were considered in this work as specified
below, these include the magnitude squared coherence, sig-
nal magnitude, Mel cepstral coefficients, and Mel magnitude
spectrum; each of these is formally defined below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two mi-
crophone signals from smart speaker i 2 D, xl,i(t) xr,i(t),
for the left, l, and right, r, channels respectively. Specifically
the MSC ⇢i(t) for a block at time t is calculated using the
Fourier transform F of x, X = F(x):

⇢i(t) =

���P̂ (Xl,i(f, t), Xr,i(f, t))
���
2

P̂ (Xl,i(f, t), Xl,i(f, t))P̂ (Xr,i(f, t), Xr,i(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of X(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N�1X

f=0

|X⇤
a(f, t)Xb(f, t)| (4)

which denotes X⇤(f, t) as the complex conjugate of X(f, t).
Finally the averaged MSC, ⇢̂(t) at time, t, across B blocks

of size N with sample rate, r is

⇢̂(t) =
1

B

k=B�1X

k=0,⌧=t+kN/r

⇢k(⌧) (5)

as noted above, this coherence is calculated separately for each
smart speaker to give ⇢̂1 and ⇢̂2 if two smart speakers are used.

Signal magnitude: The absolute signal magnitude Ai, of
smart speaker i is calculated from the power spectral density
as:

Ai(t) =
1

N

N�1X

f=0

|X⇤(f, t)X(f, t)| (6)

This magnitude is calculated for each smart speaker and for
the left, l, and right, r, channels as Al,1, Ar,1, and Al,2, Ar,2

if two smart speakers are used.

Mel magnitude spectrum: The Mel magnitude spectrum [22]
m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [42] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in
speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N � 2:

gi(n) =

r
2

N

N�2X

k=1

log(m(k, n)) cos

✓
⇡k(2N + 1)

2N

◆
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart speaker. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2. An
overview of the 1DCNN within the system is shown in Fig. 3.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance2. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a tensor T , where each
column z(t) is a time series vector representing the features
described in IV-A2. The full 1DCCN is given in Algorithm 1
and each step is further described below. The input z(t) is
convolved with a kernel w(t) of size l to obtain the output
C(t), which is described using:

C(t) = z(t) ⇤w(t) =

lX

k=�l

z(k) · w(t� k) (9)

2Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

Fig. 3: Complete smart speaker detection pipeline, incorpo-
rating feature extraction according to equations (3), (6), and
detecting smart speaker d̂ using the 1DCNN decision process
described in Algorithm 1.

the user is very close to d1
1. However, making the same error

at p3 may not even be noticeable to the user as the switching
error occurs very close to the ideal position, p2. Consequently,
representing the system as a pure classification value does not
adequately represent the problem. The next section presents
our solution to this issue using an alternative representation of
the error by introducing a custom loss function that takes this
into account to correctly train the system.

IV. PROPOSED METHOD FOR INTELLIGENT SMART
SPEAKER HANDOVER

This section describes the proposal for intelligent smart
speaker handover in two parts, firstly how nearest smart
speaker detection in a home is determined and secondly how
SIP can trigger media handover. An overall system diagram
is shown in Fig. 3 which shows how the signals from the
smart speakers, xl,1 . . . xr,2 are used to create features, defined

1we are assuming they had stopped at p1 and the corresponding node is
then wrongly switched to talk from d2.

Input: Time series feature tensor
T = [ρ̂i1(t), ρ̂i2(t), Al,1(t), . . . , Ar,2(t)]

Output: Output d̂
Function Decision(T):

Data: Filter weights and biases for each layer
Result: d̂
w1 ← Filter weights for layer 1
b1 ← Bias term for layer 1
h1 ← f(w1 ∗ T + b1)
// where f is the relu activation

function
w2 ← Filter weights for layer 2
b2 ← Bias term for layer 2
h2 ← f(w2 ∗ h1 + b2)
w3 ← Filter weights for layer 3
b3 ← Bias term for layer 3
h3 ← f(w3 ∗ h2 + b3)
W ←Weight matrix for the dense layer
B ← Bias vector for the dense layer
y ← g(W ∗ h3 +B)
// where g is the softmax

activation function

d̂ =

{
2 if y > 0.5

1 if y ≤ 0.5

return d̂

Algorithm 1: The decision process for selecting the opti-
mal smart speaker using the 1DCNN model.

later in IV-A2, which are then fed into a 1DCNN machine
learning model as shown in Algorithm 1. Section IV-A will
first describe how the classification problem can be modelled
as a custom error function, that will later be used as a
custom loss function in machine learning. It then proposes
the candidate features that will be extracted for the 1DCNN
and describes the structure of this model. Having proposed
the nearest smart speaker detection, Section IV-B gives a brief
overview of the proposed media handover using SIP.

A. Nearest smart speaker detection

A key challenge is to define a prediction function and an
associated error function (later to be used as a loss function).
To obviate the problem found when using a binary classifier, as
described above in III, an alternative could be to consider it as
a regression problem which determines the minimum distance
to a smart speaker and uses this as a basis for switching. Now
in our simple example, again in Fig. 2, the regression error
would be significantly smaller if the handover occurred at
position p3 than at p1. However, while this regression problem
has been widely used for systems that attempt to determine
exact position, this is not practical in most smart speaker
environments as we and others have found that predicting
distance in arbitrary rooms with uncalibrated speaker positions
and orientations is very difficult [19]. Instead, we choose to
consider this a hybrid classification/regression problem by
using a normalised regression metric that is then fed to a
simple decision classifier based on the output of the normalised

5

regression model. This hybrid solution is described as an error
function that will be used as the custom loss function within
the 1DCNN.

1) Custom error/loss function: The custom error/loss func-
tion is based on a combination of:
• the normalised distance between the smart speakers;
• a decision variable that indicates whether the ideal smart

speaker was used;
The custom error/loss function makes use of ground-truth
variables that are known during training (and for evaluation),
but are not known by the model during the prediction (running)
phase. The proposed formulation of the custom loss function
is:

L(t) =

∣∣∣∣
|p(t), d1|2 − |p(t), d2|2

|d1, d2|2

∣∣∣∣ δ(p(t), d1, d2) (2)

where δ(p(t), d1, d2) is a binary decision variable which
is unity if an incorrect smart speaker is selected and zero
otherwise. All of the variables in (2) are unknown to a
running system as we are assuming that the smart speakers are
placed (and possibly moved) by users without any calibration.
Consequently, in the 1DCNN, this loss function has to be
implemented as a custom function such that the function and
corresponding input variables are used during training but then
are not used (unknown) during the prediction (running) phase.

2) Feature extraction: In this section, we present a method
for intelligently switching between smart speakers within a
unified audio environment, using the audio features extracted
at each talker’s position and at a certain time interval. The
inputs to the feature extraction block, shown in Fig. 3, are the
audio, xl,1, xr,1, xl,2, xr,2 . . . captured by the smart speakers
as shown in Fig. 2. This may include the use of D smart
speakers, such as smart speakers equipped with microphones,
placed according to user preferences within a room or meeting
area. The utilisation of microphone arrays integrated within the
smart speaker utilises typical capabilities of such devices [48].
The situation assumes a continuous voice call, and we also
presume that the user’s movements are relatively gradual
compared to the distances between the smart speakers. For
instance, the user does not move rapidly from one end of
a room to another (running) but rather involves expected
movements during a call such as walking. The process for
computing the audio features is outlined below. Without loss of
generality, we will consider the case where each smart speaker
has a microphone array with two microphones as a pair
denoted l, r. The initial processing system is thus described
as:
• Capture an audio sample block, (ul,1, ur,1), (ul,2, ur,2), . . .

separately from the microphone pair (l, r) from each smart
speaker di ∈ D at each time step

• Apply A-weighting filter A to each audio signal to empha-
sise speech over other background noise

• Apply a Hanning window, Han, on each block of audio,
using overlap-add to achieve continuity in the signal, x =
Han(A(u))

• Calculate a relevant feature (below) from the audio signals
xl,i, xr,i for D smart speakers, i ∈ D.

These signals, xl,i, xr,i, . . ., are then used to generate features
for the machine learning as shown in Fig. 3. A number of
candidate features were considered in this work as specified
below, these include the magnitude squared coherence, sig-
nal magnitude, Mel cepstral coefficients, and Mel magnitude
spectrum; each of these is formally defined below.

Magnitude Squared Coherence: The MSC is computed
using Welch’s cross-power spectral density for the two mi-
crophone signals from smart speaker i ∈ D, xl,i(t) xr,i(t),
for the left, l, and right, r, channels respectively. Specifically
the MSC ρi(t) for a block at time t is calculated using the
Fourier transform F of x, X = F(x):

ρi(t) =

∣∣∣P̂ (Xl,i(f, t), Xr,i(f, t))
∣∣∣
2

P̂ (Xl,i(f, t), Xl,i(f, t))P̂ (Xr,i(f, t), Xr,i(f, t))
(3)

where the cross power spectral density P̂ (Xa(f, t), Xb(f, t))
is calculated across an N block Fourier transform of X(f, t)
from x(t) as:

P̂ (Xa(f, t), Xb(f, t)) =
1

N

N−1∑

f=0

|X∗
a(f, t)Xb(f, t)| (4)

which denotes X∗(f, t) as the complex conjugate of X(f, t).
Finally the averaged MSC, ρ̂(t) at time, t, across B blocks

of size N with sample rate, r is

ρ̂(t) =
1

B

k=B−1∑

k=0,τ=t+kN/r

ρk(τ) (5)

as noted above, this coherence is calculated separately for each
smart speaker to give ρ̂1 and ρ̂2 if two smart speakers are used.

Signal magnitude: The absolute signal magnitude Ai, of
smart speaker i is calculated from the power spectral density
as:

Ai(t) =
1

N

N−1∑

f=0

|X∗(f, t)X(f, t)| (6)

This magnitude is calculated for each smart speaker and for
the left, l, and right, r, channels as Al,1, Ar,1, and Al,2, Ar,2

if two smart speakers are used.
Mel magnitude spectrum: The Mel magnitude spectrum [22]

m(fm, t):

m(fm, t) = M(|X(f, t)|) (7)

is a warped magnitude spectrum of |X|, the discrete Fourier
transform of x of a block at time t. Specifically, M is a
filterbank that calculates the (mostly) logarithmically spaced
frequency magnitude of the signal x at frequencies fm. Here
we used the spacing suggested by Slaney [49] which with
a sampling frequency of 16 kHz gives the number of filters
H = 11 in the filterbank M .

Mel Frequency Cepstral Coefficients: The set of Mel fre-
quency cepstral coefficients (MFCCs) [22] is an alternative
pseudo-time domain representation of the Mel spaced mag-
nitude spectrum. This is a common representation used in

6

speech processing and is defined as a set of coefficients, gi(n),
n = 1 . . . N − 2:

gi(n) =

√
2

N

N−2∑

k=1

log(m(k, n)) cos

(
πk(2N + 1)

2N

)
(8)

which represents the discrete cosine transform of the loga-
rithmically scaled Mel magnitude spectrum; note n=0, the
DC component, and n=N-1 are ignored as they are usually
zero magnitude components at these Mel frequencies in audio
signals.

3) Machine learning architecture: This research proposes
a 1DCNN to identify the most suitable smart speaker. The
network processes time-series audio signal data using the
multivariate features that were described in Section IV-A2. An
overview of the 1DCNN within the system is shown in Fig. 3.
In our model, we leverage multiple 1D convolutional layers to
identify local patterns and features through the application of
convolutional filters (kernels) to the input data. Furthermore,
we incorporate the Rectified Linear Unit (ReLU) activation
function to infuse non-linear characteristics into the model.
The ReLU activation function has the advantage of introducing
some non-linearity while maintaining a linear function for a
portion of the signal region. We performed a hyperparameter
tuning process using the Random Search library from the
Keras Tuner library, to identify the number of convolutional
layers, filters, and units to achieve optimal performance2. The
specific hyperparameters that were tuned include the number
of filters and the kernel size. The tuning was carried out while
using the custom loss function defined in (2).

The input to the 1DCNN layer is a tensor T , where each
column z(t) is a time series vector representing the features
described in IV-A2. The full 1DCCN is given in Algorithm 1
and each step is further described below. The input z(t) is
convolved with a kernel w(t) of size l to obtain the output
C(t), which is described using:

C(t) = z(t) ∗w(t) =

l∑

k=−l

z(k) ·w(t− k) (9)

The weights of the kernel w(t) are initialized using He normal
initialization [50]. Then, the output of the CNN layer can be
represented as:

Cl
i = bli +

∑

k

Cl−1
k ∗wl

k (10)

where Cl
i is the ith output feature at the lth layer, Cl−1

k is
the kth input feature at the (l − 1)th layer, wk denotes the
convolution kernel at the kth index, and bli is the bias term for
the ith output feature at the lth layer.

ReLU activation is applied to the convolution output:

ReLU(Cl
i) =

{
Cl

i if Cl
i > 0

0 if Cl
i <= 0

(11)

2Hyperparameter tuning is a standard approach to optimising model param-
eters by automatically testing parameters over a reasonable range until good
values are reached.

The output of the final dense layer is a single regression
value which is then mapped to a class through a binary
decision variable, i.e. the choice of smart speaker. The choice
of the structure was driven by the observation that smoothing
a single feature (e.g. MSC) can aid a very simple decision
algorithm. Thus, similarly, the use of 1DCNN layers can be
seen to act as time-domain variant trained filters that learn
to appropriately process the input data to achieve improved
classification performance. The size of the kernels is such
that a reasonable history is used to feed into the classification
decision, see V-B for the values selected. We found, through
experimentation and hyperparameter tuning, that it was best
to maintain the time-domain structure throughout the CNN
structure, with decreasing kernel size, until the end where the
dense layer then reduced the dimensionality to one.

4) Training environment: The training dataset comprises
information such as the talker’s position from the smart speak-
ers and the signal features, extracted from the audio outcome
from each smart speaker microphone array, while the talker is
in motion. To acquire these features, the system can undergo
training via two primary methods: real-world data collection
in actual rooms with people; or using room simulations. In
the real-world data collection approach, training data would
be collected by deploying smart speakers in real rooms where
actual people are tracked and interact with the speakers.
Conversely, in the room simulation method, the training data is
collected by simulating a room layout configured with multiple
smart speakers with microphone arrays, simulating various
reverberation times to emulate authentic sound environments.
The talker’s movement is simulated by positioning simulated
sound sources at different locations among the simulated
speakers, from which audio features are extracted. Simulated
environments offer the advantage of accumulating data that
encompasses various smart speaker setups, room configura-
tions, and various talker locations. This research leverages
a training dataset generated from a simulated environment,
and information about our simulation setup is available in
V-A. This training data set was as close to real-world data
as possible, using real speech; an additional, similar, data set
was generated for testing the system.

B. SIP signalling for smart speaker session handover

The standard SIP protocol supports personal mobility to
accommodate sessions on multiple devices, whether it occurs
during pre-call or even mid-call. However, the current stan-
dards do not support seamless media transitions. In the context
of personal mobility, it is possible to have several devices
registered to a single SIP address for session management.
Initiating a call session on multiple devices sharing the same
SIP address can be accomplished through the existing SIP
functionality, which supports either parallel or sequential call
forwarding. This capability can be leveraged for dynamic
session handover between the smart speakers. While a call is
in progress, i.e during a mid-call scenario, and a more suitable
smart speaker is identified for handover, based on the method
proposed in IV-A, the session handover can be achieved using
one of the methods below:

7

CN B2BUA

D1

D2

INVITE/200 OK
INVITE/200 OK

REFER/NOTIFYINVITE/200 OK

1

2

34

Device sw
itched

Devices with single
SIP address

SIP session handover using call forking

Media before switch

Media after switch

Fig. 4: SIP mid-call horizontal smart speaker session han-
dover using REFER/NOTIFY between back-to-back user agent
(B2BUA) and corresponding node (CN)

CN B2BUA

D1

D2

INVITE/200 OK

1

Devices with single
SIP address

New Session Handover Proposal

2

Media on D1

Media on D2

4

4

2
3

Media

Fig. 5: SIP mid-call horizontal smart speaker session handover
with modified back-to-back user agent (B2BUA) and corre-
sponding node (CN)

Using existing SIP signalling: The existing session can be
transferred to the new smart speaker using SIP Re-Invite or
REFER methods. The message sequence flow at a higher level
for this situation, involving call sequential forking and using
REFER methods, is illustrated in Fig. 4. This method typically
introduces a gap in the media while the signalling completes.

Using modified SIP signalling: This paper also introduces
an alternative approach for session handover, as depicted in
Fig. 5. Slight changes are required to the existing B2BUA
behaviour. However, this novel method eliminates media inter-
ruptions and offers improved control over session management
for smart speakers within the handover domain.

In practice media monitoring and switching is needed at a
node in the network and it makes sense to carry this out on the
B2BUA with the proposed modified SIP signalling which is
straightforward to implement. In a practical deployment, this
could be carried out at the home/office gateway or in one of
the smart speakers, both of which are being used as a B2BUA
in emerging systems.

TABLE I: Room simulation setup

Parameter Description

Room Dimensions 7m X 5.5m X 2.4m
Room 1 D1: 1.0m X 3.5m X 0.9m D2: 5.5m X 3.5m X 0.9m
Room 2 D1: 1.5m X 3.5m X 0.9m D2: 6.0m X 3.5m X 0.9m
Source Positions 200 locus movements each with 50 time steps from 0.5m to 6m
RT60 0.8s, 1.5s
Audio features All, C, C+A
Number of audio signals 50
Audio sample rate 16 kHz
Feature sample rate 0.2 s−1

V. RESULTS

The evaluation was designed to test the proposed method
against a non-machine learning approach and to test the pro-
posed custom-loss function against a commonly used ML loss
function. The evaluation is performed across 20,000 different
scenarios: 50 different speech signals (taken from [51]) were
applied across 200 different sets of movement loci and two
different room scenarios (Room 1 and Room 2). The speech
samples and loci in the training set were different from those
used in the testing set. Room 1 was used for the training
and then testing was applied in both Room 1 and Room 2.
This section describes the simulation environment used for
the evaluation of the proposed ML-based technique as well
as a comparative method that uses a simple predictor based
only on the MSC as inspired by location-based techniques;
although, there is no attempt to determine the actual locations.
An additional comparison is made by using a standard mean
squared error as a loss function for the ML technique. First,
we explain the room simulation environment and the 1DCNN
model configuration. Then, before presenting the main results,
we show a set of graphs that illustrate some specific examples
of the operation of the comparative methods and our proposed
1DCNN-based approach to understand the performance of the
audio features.

A. Room simulation setup

Two rectangular rooms, detailed in Table I, were simu-
lated using the Python package Pyroomacoustics [52]. These
simulations emulate typical living spaces, though factors like
varying wall absorbance, windows, and furniture were not
included. The experiments are conducted in environments
with realistic reverberation times (RT60) [53], replicating
conditions found in real-world settings to mimic realistic
sound environments. Within this typical room configuration,
we simulate two smart speakers, (D1) and (D2), each with
two omnidirectional microphones, positioned at opposite ends
of the room with a 4.5-meter separation. This setup emulates
an open-plan living area, with one smart speaker in the living
room section and the other in the kitchen area.

The movement of the sound source, representing the talker’s
voice, is simulated using two methods, as shown in Fig. 6.
The first is a simple linear movement, where the sound source
moves in 0.05-metre steps across the room. The second is
locus movement, where the source follows a pseudo-random
path defined by three random positions connected by a cubic
Bezier curve. For locus movement, 200 loci were generated,
each sampled at 50 points along the curve at varying speeds to

8

1 2 3 4 5 6 7
1

2

3

4

5

D1 D2

Fig. 6: Two examples of simulated movement: black is a linear
move, green is one of the 200 simulated random motions using
smoothed Bézier curves. The dimensions of the room are in
meters and examples of smart speaker locations are shown

TABLE II: Hyperparameter tuned 1DCNN model

Parameter Description

1st layer filters: 120 kernel size: 45
2nd layer filters: 124 kernel size: 30
3rd layer filters: 112 kernel size: 15
dense layer 1
activation ReLU
strides 1
padding same
number of time steps 49
audio features All, C, C+A

simulate different walking speeds. This represents the talker’s
movement between two locations, covering two smart speakers
and manoeuvring around a third object, such as furniture.

B. Configuration of hyperparameter tuned 1DCNN model
The high-level 1DCNN model is depicted in Fig. 3 showing

three convolutional layers that were optimised through hyper-
parameter tuning. The input tensor T is formed from column
vectors consisting of the extracted features ρ̂1, ρ̂2, Al,1, Ar,1,
Al,2, and Ar,2 . . ., as described in Section IV-A2. The input
tensor T then is fed through three consecutive 1DCNNs
C1, C2, C3. The parameters determined after hyperparameter
are shown in Table II. A number of different audio feature
sets were tested in different combinations including: MSC
(abbreviated as just C); mean power spectral amplitude (A);
MSC with amplitude (C+A); and, a combination of the former
with the addition of MFCC, Mel spectral amplitude (All).

To produce a single predicted output, we conclude the model
with a Dense layer consisting of one unit. This Dense layer
takes inputs from the third layer in the model, computes a
weighted sum of these inputs using a single set of weights,
and generates a single predicted output.

C. Comparative techniques
As noted earlier we are interested to see how our approach

compares against a simple MSC predictor and how the custom
loss function improves the performance of the 1DCNN as
described below.

1) Using simple MSC predictor: As a comparison tech-
nique, we use a double exponential smoothing predictor based
on the MSC (Smoothed-MSC) as proposed by a number of
location tracking applications and earlier work [5], [19], [24],
[25]. The primary benefit of employing this method is that
it does not need any calibration for smart speaker detection.
Using this technique, the smart speaker exhibiting the higher
MSC, denoted as max(ρ̂1, ρ̂2), is identified as the optimal
choice for session transfer. The Monte-Carlo parameterization
identified that values of α = 0.05 and β = 0.01 are appropriate
for the double exponential smoothing applied to the raw MSC
values. The details of the outcome of this technique are
described in Section V-D. We also tried Long Short-Term
Memory (LSTM) as a predictor for the MSC values as a
smoothing function but found it gave poorer results than the
simple smoothing approach so we do not report that method
here.

2) Using mean squared error as a loss function: As an
additional comparison technique, we trained our 1DCNN
model using a standard mean squared error (MSE) as a loss
function. The outcomes of employing this technique will
clearly highlight the issue outlined in Section III, emphasizing
the need for a customized loss function as detailed in Section
IV-A1.

D. Smart speaker prediction results

As noted earlier, we first here present some specific example
graphs showing the operation of the Smoothed-MSC com-
parative method, shown in Fig. 7(a),(b),(c), and the 1DCNN
approach shown in Fig. 7(d). The graphs show the ground
truth (GTruth) as the top, blue, line as specified in (1) and the
result of either the Smoothed-MSC (max(ρ̂1, ρ̂2)) or the output
of the 1DCNN (Pred.) as the second, red, line. Additionally,
these graphs give more detail on the MSC used as a feature
in the 1DCCN and as used in the Smoothed-MSC method.
The MSC value is shown as the raw value from each smart
speaker, ρ1 and ρ2 respectively, and, for the Smoothed-MSC
comparative method, Fig. 7(a),(b),(c), the doubly exponentially
smoothed values are also shown as ρ̂1 and ρ̂2 respectively.

The first graph, Fig. 7(a) depicts transitions based on the raw
(non-smoothed) MSC values (max(ρ1, ρ2)) and the Smoothed-
MSC transitions (max(ρ̂1, ρ̂2)) when there is a simple locus.
This shows that transitions are not clearly detected using raw
MSC, whereas transitions using the Smoothed-MSC approach
closely approximate the ideal scenario. However, when this
technique is applied to a different room scenario in Fig. 7(b)
or more complex locus in Fig. 7(c) we see that the Smoothed-
MSC fails to follow the desired performance as: it either
transitions at the wrong locus position in Fig. 7(b); or, exhibits
extraneous transitions in Fig. 7(c). This is likely to be caused
by the predictor having fixed parameters (α and β) that do not
encompass the wider set of scenarios such as real-world loci.

The graph in Fig. 7(d) illustrates the predicted transitions
(Pred.) using the proposed 1DCNN with a custom loss
function applied to the complex locus, closely approximating
the ideal scenario during the transition. We only show one
result for the proposed technique in this diagram to save

9

1

2
GTruth

1

2

y
(tr

an
sit

io
n)

max(1, 2)

1

2
max(1, 2)

0.4

0.5 1

2

0 10 20 30 40
x (locus steps)

0.4

0.5
1

2

(a) Smoothed-MSC, simple locus

1

2
GTruth

1

2

y
(tr

an
sit

io
n)

max(1, 2)

1

2
max(1, 2)

0.4

0.5 1

2

0 10 20 30 40
x (locus steps)

0.4

0.5 1

2

(b) Smoothed-MSC, simple locus, different RT60

1

2
GTruth

2

1

y
(tr

an
sit

io
n)

max(1, 2)

1

2
max(1, 2)

0.3

0.4

0.5
1

2

0 10 20 30 40
x (locus steps)

0.4

0.5 1

2

(c) Smoothed-MSC, complex locus

1

2
GTruth

1

2

y
(tr

an
sit

io
n)

Pred.

2

1
max(1, 2)

0.4

0.5 1

1

0 10 20 30 40
x (locus steps)

10000

20000

|x
|

D1A

D2A

(d) Proposed 1DCNN-CL, complex locus

Fig. 7: Sample result comparing the comparison technique, exponentially smoothed-MSC predictor in (a-c), with the proposed
technique 1DCNN with custom loss (1DCNN-CL) (d). Note: 1DCNN-CL gave equally good results in the other, simple, cases,
not shown here. The top (blue) line shows the ground truth, and the second (red) line shows the prediction of each technique.
Appropriate features are shown below.

space as it worked also perfectly in the other cases. The
graph displays raw MSC values (ρ1, ρ2) and signal magnitudes
(D1A, D2A) captured at each locus position, which are the
features employed in the 1DCNN predictor for forecasting the
transition.

Furthermore, we performed a quantitative analysis of these
techniques across diverse locus movements, various rooms,
and different audio signals. The assessment of quantitative
performance relies on two primary metrics:
number of extraneous transitions (ET): The count of extra
(or missed) smart speaker transitions using a prediction com-
pared to the number of smart speaker transitions using the
ideal (ground truth) case. For example see Fig. 7(c) which has
seven extraneous transitions (six before the ground truth and
one failed after).
weighted normalised error (WNE): uses the loss function
L(t) to compute an error that takes into account the fact that:
while an error near the ideal switching point is benign, an
error further away from this ideal switching point becomes
perceptually highly significant (see III).

Considering extraneous transitions as a metric is crucial

since users generally would find unnecessary switches as very
disruptive. Ideally, the number of extraneous transitions should
be zero. The objective of WNE, is to calculate an error that
increases when the selected smart speaker is substantially more
distant than the ideal smart speaker and the ideal value should
be zero.

The quantitative performance results shown in Table III
highlight the poor performance of the comparative MSC
technique on different room conditions and on random locus
movement. However, Table IV shows that using our pro-
posed 1DCNN solution significantly improves upon using the
smoothed MSC approach, in particular exhibiting no extrane-
ous transitions. Table IV also explores different feature choices
and loss function by training the model with different feature
combinations: solely MSC (C), absolute signal magnitude
(A), MSC with A (C+A), and all audio features described
in IV-A2 (All). We see that the custom loss (CL) function
gives considerable improvement compared to a standard loss
function such as MSE. We have chosen two results in Fig. 8
to demonstrate the effect of the custom loss function, as we
see the 1DCNN-CL more closely tracks the ground truth based

10

1

2
GTruth

1

2

tra

ns
iti

on

1DCNN-CL

x (locus steps)
1

2
1DCNN-MSE

0 10 20 30 40
 locus steps

1

2
Smoothed-MSC

(a)

1

2
GTruth

1

2

tra

ns
iti

on

1DCNN-CL

x (locus steps)
1

2
1DCNN-MSE

0 25 50 75 100 125 150 175 200
 locus steps

1

2
Smoothed-MSC

(b)

Fig. 8: Two samples from the results of using 1DCNN, showing comparative results for several locus positions, (a) and (b),
using our proposed 1DCNN custom loss (1DCNN-CL) and the alternatives of either standard mean squared error as a loss
function (1DCNN-MSE) or the exponentially smoothed MSC (Smoothed-MSC).

TABLE III: Performance of the double exponential smoothing
(S) compared with the Non-smoothed (NS) approach with
different locus types and room RT60 values showing it can
work with a simple locus (straight line) but fails with more
complex loci.

Linear locus Random locus
Metric NS/S RT60-0.8 RT60-1.5 RT60-0.8 RT60-1.5

WNE NS 0.43 0.59 0.43 0.45
S 0 0.08 0.64 0.66

ET NS 20 22 23 26
S 0 0 7 9

upon the nearest smart speaker. Although the 1DCNN-CL does
not transition exactly at the same point as the ground truth, as
noted in IV-A, small differences are unlikely to be noticeable,
however, with the standard MSE loss function (1DCNN-MSE)
the smart speaker transition is much less accurate; indeed we
see in Fig. 8 (a) that one of the transitions was not detected
at all for the standard loss function (1DCNN-MSE).

To demonstrate that the trained model can work across
multiple rooms, as well as loci it was not trained for, the
model was trained on Room 1 and then tested on Room 2
with different smart speaker positions and RT60 times. Table V
shows this comparison with highly different room types and
RT, indicating that the model performs well in different and
with highly reverberating rooms (RT60=1.5s).

The overall performance analysis concludes that:
• The simple MSC predictor (Smoothed-MSC) offers a

straightforward solution for detecting the appropriate smart
speaker for handover, but it does not address the complex-
ities of real-world loci scenarios.

• Using MSE as the loss function to train the 1DCNN model
for smart speaker detection, improves the performance over
the simple MSC predictor for loci of increased complexity,
but is less accurate than the proposed solution and leads to
missing/extraneous transitions

• The proposed 1DCNN-CL model, trained with both the

TABLE IV: Performance of proposed 1DCNN with custom
loss (1DCNN-CL) with various features and compared against
exponential smoothing (Smoothed-MSC) and a 1DCNN with
a standard loss (1DCNN-MSE). Features: Mean spectral mag-
nitude (A), MSC (C), multiple features (All). Complex loci
were used for all 20,000 results.

Model Features WNE ET

Smoothed-MSC C 0.86 4783
1DCNN-MSE C+A 0.22 1
1DCNN-CL All 0.087 0
1DCNN-CL C 0.05 0
1DCNN-CL C+A 0.03 0

TABLE V: Performance of the proposed 1DCNN with custom
loss (1DCNN-CL) using C+A features and with varied room
types, Room 1 (RT1) and Room 2 (RT2) with various RT60
values.

Train RT1 Test RT2 WNE ET

0.8s 0.8s 0.033 0
0.8s 1.5s 0.039 0
1.5s 0.8s 0.044 0

absolute signal magnitude and the MSC, addresses all
complex real-world loci scenarios and produces optimal
results – without including additional features such as the
Mel magnitude spectrum or MFCCs.

VI. DISCUSSION

The solution presented in this paper is, to the knowledge of
the authors, the first smart speaker handover mechanism for
smart speech handover between smart speakers that does not
require precise smart speaker calibration using location. This
is a significant advance but clearly, the proposal of the paper
would require some future engineering work to create a fully
working system. We consider some of these aspects here first
considering performance and then other practical issues.

11

A. Performance evaluation

The system described needs to operate in consumer smart
speakers which have modest computational power and some-
times operate purely on battery power. The solution has been
designed to only require modest computational power. Each
convolution layer has O(nkfd) [8] complexity where n is the
input size, k is the kernel size, f is the number of filters, and,
d is the number of channels (number of features). Using the
hyperparameter tuned model shown in Table II we thus find
that for each time sample the complete 1DCNN model would
require of the order 0.7 M operations for each locus point.
As the averaged features are sampled 5 times per second,
this gives the total number of floating point operations as
3.5 M/s which is well within the capability of a small modern
embedded processor such as would be found in a consumer
smart speaker.

B. Practical considerations

This section considers future engineering work required to
implement a full consumer application. We have shown that
the proposed method works with some different room sizes
and reverberation characteristics in a simulated environment
that closely approximates real-world scenarios. For a robust
solution, the machine learning would need to be optimised
across a much wider set of examples. For example, while
the simulation approach used in this paper shows good proof
of principle, further training in real environments would help
train the system across a wider set of conditions such as
different rooms and different smart speakers. Training the
system in real rooms would require a method of tracking
a talker while taking part in the training sessions, although
no such tracking would be required in the operational phase.
Advanced techniques for user tracking using video have been
proven in other fields for machine learning purposes. For
example, the use of eye-tracking to record user interactions
with Video-on-Demand (VoD) applications to understand user
experience [54]. Advanced video-based user tracking tech-
niques could be employed to provide the required ground-truth
inputs from training sessions with minimal operational effort.

Although the simulation and training in the paper were very
close to real-world conditions, the training in this paper was
specific to the microphone arrangement for the specific smart
speakers used for the results. For an engineering solution it
is likely that retraining would be required for a new smart
speaker with different microphone configurations for example
with different distances between the microphones. As this
retraining would be carried out by a vendor, before sale,
it would still allow consumers to use the system without
recalibration.

C. Future work

In the work of this paper, only one talker was used in the
simulations. While this is a good scenario for the consumer
use case of this paper, as often there is one dominant talker
in a location, this would be less valid in situations where
there are multiple talkers in a single auditory environment

such as business meetings with maybe only one or two remote
members. It may be in such cases the switching of the talker
input proposed in this paper would be useful to use the smart
speaker closest to the talker, but switching the played back
speech into the room may not benefit from switching as it
would make the remote talker’s apparent location in the room
jump from one smart speaker to another. Further work on this
user experience for different meeting types is thus required, a
possible solution combines the work of this paper with blind-
source separation techniques [55].

Finally, we commented in III that we assumed the smart
speaker nearest the user would be the ideal smart speaker.
The use of coherence in the approach is an interesting feature.
We conjecture that in a room that consists of a portion with a
dead acoustic environment (such as that set up for living space
with carpets) and a portion with a live acoustic environment
(such as a kitchen with hard surfaces), it would be beneficial
to switch to a smart speaker in the dead environment earlier
than that in the live environment. Thus, it might be that the use
of a coherence-based ground truth rather than distance-based
ground truth will result in improved perceptual performance
but this would require further perceptual testing that is out of
the scope of this paper.

VII. CONCLUSION

This paper addresses the need to autonomously handover
speech between smart speakers during a voice call. This is
important for the next generation of smart speakers so that
they can inter-operate with emerging applications that enable
users to interact with applications seamlessly and without
manual intervention. The work identifies the appropriate smart
speaker from multivariate audio features using a 1DCNN
and the utilisation of the SIP protocol for session transition.
The research addresses challenges associated with employing
1DCNN as a classifier for smart speaker prediction and
suggests a regression-based solution incorporating a custom
loss function. The results indicate that using 1DCNN as a
regressor with a custom loss function eliminates unnecessary
transitions and improves transition accuracy compared to a
system that only uses the audio features themselves. This
research also proposes modified SIP signalling to enable unin-
terrupted media transition. To validate the proposed 1DCNN
with a custom loss function, extensive testing was conducted
in an environment that simulated realistic conditions featuring
diverse room conditions, varied talker movements, and a range
of speech signals. This demonstrated that automatic switching
between smart speakers in a home is possible without requiring
exact calibration of the location and orientation of the smart
speakers. This is important for achieving, future, intelligent
home devices that can act autonomously for consumers [2].

ACKNOWLEDGMENT

The authors would like to acknowledge Ian Kegel from BT
who contributed to the early concepts of this work but, sadly,
his untimely loss made it impossible for him to contribute to
the manuscript as an author.

12

REFERENCES

[1] M. Philpott. (2021, January) The Future Telco Connected Home.
[Online]. Available: https://www.broadband-forum.org/

[2] C. K. Wu, C.-T. Cheng, Y. Uwate, G. Chen, S. Mumtaz, and
K. F. Tsang, “State-of-the-Art and Research Opportunities for Next-
Generation Consumer Electronics,” IEEE Transactions on Consumer
Electronics, vol. 69, no. 4, pp. 937–948, 2023.

[3] “The Foundation for Connected Things”. [Online]. Available: https:
//csa-iot.org/all-solutions/matter/

[4] “https://www.globalservices.bt.com/en/insights/whitepapers/what-
makes-a-smart-home-smart”. [Online]. Available: https:
//www.globalservices.bt.com/en/insights/whitepapers/what-makes-
a-smart-home-smart

[5] S. Vesa, “Binaural Sound Source Distance Learning in Rooms,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17, no. 8,
pp. 1498–1507, 2009.

[6] V. N. Mitnala, M. J. Reed, I. Kegel, and J. Bicknell, “Avoiding handover
interruptions in pervasive communication applications through machine
learning,” in 2021 IEEE International Conference and Expo on Real
Time Communications at IIT (RTC), 2021, pp. 1–8.

[7] B. Kapralos, M. Jenkin, and E. Milios, “Audiovisual localization of
multiple speakers in a video teleconferencing setting,” International
Journal of Imaging Systems and Technology, vol. 13, pp. 95 – 105,
07 2002.

[8] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman, “1D convolutional neural networks and applications: A survey,”
Mechanical Systems and Signal Processing, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0888327020307846

[9] H. Kim, S. Hwang, J. Kim, and Z. Lee, “Toward Smart Communication
Components: Recent Advances in Human and AI Speaker Interaction,”
Electronics, vol. 11, no. 10, 2022. [Online]. Available: https:
//www.mdpi.com/2079-9292/11/10/1533

[10] A. Ahrens, K. D. Lund, M. Marschall, and T. Dau, “Sound
source localization with varying amount of visual information in
virtual reality,” PLoS ONE, vol. 14, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:88480033

[11] K. Ma, H. Chen, Z. Wu, X. Hao, G. Yan, W. Li, L. Shao,
G. Meng, and W. Zhang, “A wave-confining metasphere beamforming
acoustic sensor for superior human-machine voice interaction,” Science
Advances, vol. 8, no. 39, p. eadc9230, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.adc9230

[12] C. Rascon and I. Meza, “Localization of sound sources in robotics:
A review,” Robotics and Autonomous Systems, vol. 96, pp. 184–
210, 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0921889016304742

[13] M. M. Faraji, S. B. Shouraki, E. Iranmehr, and B. Linares-Barranco,
“Sound Source Localization in Wide-Range Outdoor Environment Using
Distributed Sensor Network,” IEEE Sensors Journal, vol. 20, no. 4, pp.
2234–2246, 2020.

[14] C. Evers, H. W. Löllmann, H. Mellmann, A. Schmidt, H. Barfuss, P. A.
Naylor, and W. Kellermann, “The LOCATA Challenge: Acoustic Source
Localization and Tracking,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 28, pp. 1620–1643, 2020.

[15] S. E. Chazan, H. Hammer, G. Hazan, J. Goldberger, and S. Gannot,
“Multi-Microphone Speaker Separation based on Deep DOA Estima-
tion,” in 2019 27th European Signal Processing Conference (EUSIPCO),
2019, pp. 1–5.

[16] A. Xenaki, J. Boldt, and M. Christensen, “Sound source localization and
speech enhancement with sparse Bayesian learning beamforming,” The
Journal of the Acoustical Society of America, vol. 143, pp. 3912–3921,
06 2018.

[17] H. Lim, I.-C. Yoo, Y. Cho, and D. Yook, “Speaker localization in noisy
environments using steered response voice power,” IEEE Transactions
on Consumer Electronics, vol. 61, no. 1, pp. 112–118, 2015.

[18] T. Kim, H. Park, S. H. Hong, and Y. Chung, “Integrated system of
face recognition and sound localization for a smart door phone,” IEEE
Transactions on Consumer Electronics, vol. 59, no. 3, pp. 598–603,
2013.

[19] K. Zhagyparova, R. Zhagypar, A. Zollanvari, and M. T. Akhtar, “Super-
vised Learning-based Sound Source Distance Estimation Using Multi-
variate Features,” TENSYMP 2021 - 2021 IEEE Reg. 10 Symp., pp. 1–5,
2021.

[20] A. Brendel and W. Kellermann, “Learning-based acoustic source-
microphone distance estimation using the coherent-to-diffuse power
ratio,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.,
vol. 2018-April, pp. 61–65, 2018.

[21] Y. Li and H. Chen, “Reverberation Robust Feature Extraction for Sound
Source Localization Using a Small-Sized Microphone Array,” IEEE
Sensors Journal, vol. 17, no. 19, pp. 6331–6339, 2017.

[22] Z. K. Abdul and A. K. Al-Talabani, “Mel Frequency Cepstral Coefficient
and its Applications: A Review,” IEEE Access, vol. 10, pp. 122 136–
122 158, 2022.

[23] K. Baimirov, E. Mergengali, and B. Baimirov, “Overview of the latest
research related to smart speakers,” in 2022 IEEE 7th International
Energy Conference (ENERGYCON), 2022, pp. 1–5.

[24] P. Calamia, N. Balsam, and P. Robinson, “Blind estimation of the
direct-to-reverberant ratio using a beta distribution fit to binaural
coherence,” The Journal of the Acoustical Society of America,
vol. 148, no. 4, pp. EL359–EL364, 10 2020. [Online]. Available:
https://doi.org/10.1121/10.0002144

[25] V. N. Mitnala, M. J. Reed, I. Kegel, and J. Bicknell, “Seamless
device handover for pervasive speech communication,” in 2022 5th
International Conference on Communications, Signal Processing, and
their Applications (ICCSPA), 2022, pp. 1–6.

[26] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, 2015.

[27] S. Kobayashi, T. Hasegawa, T. Miyoshi, and M. Koshino, “MarNAS-
Nets: Toward CNN Model Architectures Specific to Sensor-Based Hu-
man Activity Recognition,” IEEE Sensors Journal, vol. 23, no. 16, pp.
18 708–18 717, 2023.

[28] H. Cho and S. M. Yoon, “Divide and Conquer-Based 1D CNN Human
Activity Recognition Using Test Data Sharpening,” Sensors, vol. 18,
no. 4, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/
4/1055

[29] A. Chowdhury and A. Ross, “Fusing MFCC and LPC Features Using
1D Triplet CNN for Speaker Recognition in Severely Degraded Audio
Signals,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1616–1629, 2020.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] X. Wang, M. Xia, and W. Deng, “MSRN-Informer: Time Series Pre-
diction Model Based on Multi-Scale Residual Network,” IEEE Access,
vol. 11, pp. 65 059–65 065, 2023.

[32] A. Lawal, S. Rehman, L. M. Alhems, and M. M. Alam, “Wind Speed
Prediction Using Hybrid 1D CNN and BLSTM Network,” IEEE Access,
vol. 9, pp. 156 672–156 679, 2021.

[33] F. Shen, J. Liu, and K. Wu, “Multivariate Time Series Forecasting Based
on Elastic Net and High-Order Fuzzy Cognitive Maps: A Case Study
on Human Action Prediction Through EEG Signals,” IEEE Transactions
on Fuzzy Systems, vol. 29, no. 8, pp. 2336–2348, 2021.

[34] M. Aazam, S. u. Islam, S. T. Lone, and A. Abbas, “Cloud of Things
(CoT): Cloud-Fog-IoT Task Offloading for Sustainable Internet of
Things,” IEEE Transactions on Sustainable Computing, vol. 7, no. 1,
pp. 87–98, 2022.

[35] Y. Ma, Y. Zhang, Z. Sheng, H. Ruan, J. Wang, and Y. Sun, “CGMP:
cloud-assisted green multimedia processing,” Multimedia Tools and
Applications, vol. 75, pp. 13 317–13 332, 2016. [Online]. Available:
https://doi.org/10.1007/s11042-015-2783-2

[36] A. B. Johnston, SIP: understanding the session initiation protocol.
Artech House, 2015.

[37] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “RFC3261: SIP: session
initiation protocol,” 2002.

[38] M. A. Qadeer, A. H. Khan, J. A. Ansari, and S. Waheed, “IMS network
architecture,” Proc. - 2009 Int. Conf. Futur. Comput. Commun. ICFCC
2009, pp. 329–333, 2009.

[39] G. Carella, M. Corici, P. Crosta, P. Comi, T. M. Bohnert, A. A. Corici,
D. Vingarzan, and T. Magedanz, “Cloudified IP Multimedia Subsystem
(IMS) for Network Function Virtualization (NFV)-based architectures,”
in 2014 IEEE Symposium on Computers and Communications (ISCC),
vol. Workshops, 2014, pp. 1–6.

[40] J. Whiteaker, F. Schneider, R. Teixeira, C. Diot, A. Soule, F. Picconi,
and M. May, “Expanding home services with advanced gateways,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 5, p. 37–43, Sep.
2012. [Online]. Available: https://doi.org/10.1145/2378956.2378962

[41] V. K. Gurbani and K. Q. Liu, “Session initiation protocol: Service
residency and resiliency,” Bell Labs Technical Journal, vol. 8, no. 1,
pp. 83–94, 2003.

[42] S. V. Azhari, M. Homayouni, H. Nemati, J. Enayatizadeh, and
A. Akbari, “Overload control in SIP networks using no explicit
feedback: A window based approach,” Computer Communications,
vol. 35, no. 12, pp. 1472–1483, 2012. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0140366412001260

https://www.broadband-forum.org/
https://csa-iot.org/all-solutions/matter/
https://csa-iot.org/all-solutions/matter/
https://www.globalservices.bt.com/en/insights/whitepapers/what-makes-a-smart-home-smart
https://www.globalservices.bt.com/en/insights/whitepapers/what-makes-a-smart-home-smart
https://www.globalservices.bt.com/en/insights/whitepapers/what-makes-a-smart-home-smart
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.mdpi.com/2079-9292/11/10/1533
https://www.mdpi.com/2079-9292/11/10/1533
https://api.semanticscholar.org/CorpusID:88480033
https://www.science.org/doi/abs/10.1126/sciadv.adc9230
https://www.sciencedirect.com/science/article/pii/S0921889016304742
https://www.sciencedirect.com/science/article/pii/S0921889016304742
https://doi.org/10.1121/10.0002144
https://www.mdpi.com/1424-8220/18/4/1055
https://www.mdpi.com/1424-8220/18/4/1055
https://doi.org/10.1007/s11042-015-2783-2
https://doi.org/10.1145/2378956.2378962
https://www.sciencedirect.com/science/article/pii/S0140366412001260
https://www.sciencedirect.com/science/article/pii/S0140366412001260

13

[43] D. Y. Yavas, I. Hokelek, and B. Gunsel, “Modeling of Priority-based
Request Scheduling Mechanism for Finite Buffer SIP Servers,” in
Proceedings of the 11th International Conference on Queueing Theory
and Network Applications, ser. QTNA ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/3016032.3016055

[44] R. Gandotra and L. Perigo, “SDVoIP—A Software-Defined VoIP Frame-
work For SIP And Dynamic QoS,” The Computer Journal, vol. 64, no. 1,
pp. 254–263, 2019.

[45] H. Schulzrinne and E. Wedlund, “Application-layer mobility using
SIP,” ACM SIGMOBILE mobile computing and communications review,
vol. 4, no. 3, pp. 47–57, 2000.

[46] H. Schulzrinne, “Personal mobility for multimedia services in the
Internet,” in European Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services. Springer, 1996, pp. 143–161.

[47] Y.-j. Oh, E.-h. Paik, and K.-r. Park, “Design of a SIP-based real-
time visitor communication and door control architecture using a home
gateway,” IEEE Transactions on Consumer Electronics, vol. 52, no. 4,
pp. 1256–1260, 2006.

[48] D. Pinardi, A. Toscani, M. Binelli, L. Saccenti, A. Farina, and L. Cattani,
“Full-Digital Microphone Meta-Arrays for Consumer Electronics,” IEEE
Transactions on Consumer Electronics, vol. 69, no. 3, pp. 640–648,
2023.

[49] M. Slaney, “Auditory Toolbox: A MATLAB Toolbox for Auditory
Modeling Work. Technical Report, version 2, Interval Research
Corporation,” Interval Research Corporation, Tech. Rep., 1998. [Online].
Available: https://engineering.purdue.edu/∼malcolm/interval/1998-010/

[50] L. Datta, “A Survey on Activation Functions and their relation with
Xavier and He Normal Initialization,” 2020.

[51] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LibriSpeech:
An ASR corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[52] R. Scheibler, E. Bezzam, and I. Dokmanic, “Pyroomacoustics: A
Python Package for Audio Room Simulation and Array Processing
Algorithms,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, apr 2018. [Online].
Available: https://doi.org/10.1109%2Ficassp.2018.8461310

[53] H. Kuttruff, Room acoustics. CRC Press, 2016.
[54] Z. Chen, S. Zhang, S. McClean, F. Hart, M. Milliken, B. Allan,

and I. Kegel, “Process Mining IPTV Customer Eye Gaze Movement
Using Discrete-Time Markov Chains,” Algorithms, vol. 16, no. 2, 2023.
[Online]. Available: https://www.mdpi.com/1999-4893/16/2/82

[55] S. Ansari, K. A. Alnajjar, T. Khater, S. Mahmoud, and A. Hussain, “A
Robust Hybrid Neural Network Architecture for Blind Source Separation
of Speech Signals Exploiting Deep Learning,” IEEE Access, vol. 11, pp.
100 414–100 437, 2023.

https://doi.org/10.1145/3016032.3016055
https://engineering.purdue.edu/~malcolm/interval/1998-010/
https://doi.org/10.1109%2Ficassp.2018.8461310
https://www.mdpi.com/1999-4893/16/2/82

	Introduction
	Related Work
	Smart speaker technology
	SIP Personal mobility

	Problem statement
	Proposed Method for intelligent smart speaker handover
	Nearest smart speaker detection
	Custom error/loss function
	Feature extraction
	Machine learning architecture
	Training environment

	SIP signalling for smart speaker session handover

	Results
	Room simulation setup
	Configuration of hyperparameter tuned 1DCNN model
	Comparative techniques
	Using simple MSC predictor
	Using mean squared error as a loss function

	Smart speaker prediction results

	Discussion
	Performance evaluation
	Practical considerations
	Future work

	Conclusion
	References

