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Summary Recent advances in causal inference have seen the development of meth-
ods which make use of the predictive power of machine learning algorithms. In this
paper, we develop novel double machine learning (DML) procedures for panel data in
which these algorithms are used to approximate high-dimensional and nonlinear nui-
sance functions of the covariates. Our new procedures are extensions of the well-known
correlated random effects, within-group and first-difference estimators from linear to
nonlinear panel models, specifically, Robinson (1988)’s partially linear regression model
with fixed effects and unspecified nonlinear confounding. Our simulation study assesses
the performance of these procedures using different machine learning algorithms. We
use our procedures to re-estimate the impact of minimum wage on voting behaviour
in the UK. From our results, we recommend the use of first-differencing because it
imposes the fewest constraints on the distribution of the fixed effects, and an ensemble
learning strategy to ensure optimum estimator accuracy.

Keywords: CART, homogeneous treatment effect, hyperparameter tuning, LASSO,
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1. INTRODUCTION

Recent advances in the econometric literature on Machine Learning (ML) use the power
of ML algorithms, widely used in data science for solving prediction problems, to enhance
existing estimation procedures for treatment and other kinds of causal effect. Notable
developments include novel ML algorithms for causal analysis such as Causal Trees by
Athey and Imbens (2016), Causal Forests by Wager and Athey (2018) and Generalised
Random Forests by Athey et al. (2019). However, the key development, as far as this pa-
per is concerned, is Double/Debiased Machine Learning (DML) by Chernozhukov et al.
(2018) wherein ML is used to learn nuisance functions with ex ante unknown functional
forms, and the predicted values of these functions used to construct (orthogonalized)
scores for the interest parameters from which consistent and asymptotically normal es-
timators can be obtained. DML is a very general estimation framework but there are
limited examples of its application to panel data, notable examples of which include
Chang (2020), Klosin and Vilgalys (2023), and Semenova et al. (2023).
In this paper, we develop and assess novel DML procedures for estimating treatment

(or causal) effects from panel data with fixed effects. The procedures we propose are ex-
tensions of the correlated random effects (CRE), within-group (WG) and first-difference
(FD) estimators commonly used for linear models to scenarios where the underlying
model is non-linear. Specifically, these are based on an extension of the partially linear
regression (PLR) model proposed by Robinson (1988) to panel data through the inclu-
sion of time-varying predictors and unobserved individual heterogeneity (i.e. individual
fixed effects).
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Our methodological contribution is twofold and complementary to the recent work on
causal panel data estimation using DML by Chang (2020) on difference-in-differences,
Klosin and Vilgalys (2023) and Semenova et al. (2023) on high-dimensional treatment
heterogeneity in model with fixed effects.
A first contribution is that the procedures we develop are not based on ex ante taking

the nuisance functions or fixed effects to be accurately approximated by high-dimensional
sparse functions. Thus, we do not focus solely on the Least Absolute Shrinkage and
Selection Operator (LASSO) in the first stage of DML. This is in contrast to Klosin and
Vilgalys (2023) and Semenova et al. (2023) who explicitly exploit sparsity to propose
alternative procedures. While we do not rule out using LASSO (and indeed do so in both
our simulation study and empirical application), our approach requires only minimal
assumptions (like Lipschitz continuity) about the nuisance functions. This is in line with
Chang (2020) to encourage researchers to adopt estimation strategies which involve the
use of different ML algorithms. Such strategies could involve the use of ensemble learning
such as the stacking of Breiman (1996), the super-learning (a weighted average the best
predictions over different choices of ML algorithm) of van der Laan et al. (2007), or
selecting the best-performing learner on an application-by-application basis to ensure
inference is based on the most accurate predictions. This is important because, in practice,
many ML algorithms are difficult to tune and have been shown to perform very differently
for different datasets in different contexts.
Second, on a computational note, we use block-k-fold cross-fitting, where the entire time

series of the sampled unit is allocated to one fold to allow for possible serial correlation
within each unit as is common with panel data. In this, we are aligned with the concurrent
work by Klosin and Vilgalys (2023) in not needing to rely on the weak dependence
assumption to deal with dependent data as do Semenova et al. (2023). Conversely, Chang
(2020) does not require any additional assumption or change in the splitting algorithms
because they use only one observation per unit after treatment, ruling out the presence
of any fixed effects.
Our method for panel data models with individual fixed effects is general and particu-

larly relevant for applied researchers. We provide new estimation tools within the existing
DML framework for use on panel data. In doing so, we broaden the reach of DML to a
large family of empirical problems for which the time dimension must be properly ac-
counted for. Our focus, in the subsequent development, on the homogeneous treatment
effect case is also because such models are widely used by applied researchers, but we also
show how our procedures can be extended to heterogeneous treatment effects provided
that the analyst is prepared to specify a (finite-dimensional) parametric model for this
heterogeneity. More widely, we encourage researchers to use the procedures we propose
in place of existing ones, or to test the robustness of their results - based on, say, linear
models - to non-linearity.
We carry out a simulation study to assess our DML procedures and find large ac-

curacy gains from using DML with flexible learners when the data generating process
is highly non-linear (specifically, one involving a non-linear discontinuous function of
the regressors); and, while ordinary least squares (OLS) can outperform ML when the
data generating process is linear (as expected) and for some non-linear processes (specif-
ically, for a smooth process that excludes interactions), it is not robust because the
analyst never knows the form of the data generating process ex ante. Finally, we ap-
ply our new procedures to observational panel data by re-analyzing part of the study
by Fazio and Reggiani (2023) on the effect of the introduction National Minimum Wage
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(NMW) in the United Kingdom (UK) on voting for conservative parties. We find evidence
that the first-difference procedures are the most robust and perform well, and confirm
the conclusion from our simulation study that ensemble learning strategies are crucial to
obtaining robust results.

The remainder of the paper is structured as follows. Section 2 provides an overview
of the literature and places our novel contribution within it. Section 3 motivates the
partially linear panel regression model and the causal assumptions which must hold to
ensure the target parameter can be interpreted as a causal effect. Section 4 introduces the
two approaches we take to handle the fixed-effects problem. Section 5 formally introduces
the DML estimation procedures. Section 6 briefly discusses the Monte Carlo simulation
results. Finally, Section 7 illustrates an empirical application of the procedure and we
make concluding remarks in Section 8.

2. RELATED LITERATURE

There is a growing body of econometrics literature on using ML for causal inference. One
strand focuses on building or modifying existing learners to consistently estimate and
make inferences about causal effects (e.g., Athey and Imbens, 2016; Wager and Athey,
2018; Athey et al., 2019; Lechner and Mareckova, 2022; Di Francesco, 2025). Another
strand focuses on incorporating ML into traditional statistical estimators (e.g., least
squares, generalised method of moments, maximum likelihood) to estimate causal effects
more accurately (e.g., Belloni et al., 2014, 2016; Chernozhukov et al., 2018; Chang, 2020;
Chernozhukov et al., 2022; Bia et al., 2023). This paper falls into the second strand.

Much of the ML literature in econometrics, including that for causal estimation, is
built around penalized regression methods like LASSO, where the onus is on the analyst
to specify a sufficiently rich data dictionary for the problem at hand. For example, Belloni
et al. (2016) proposed two-step post-cluster LASSO procedures for panel data with ad-
ditive individual-specific heterogeneity in which potential control variables are selected
using LASSO at stage one followed by the estimation of the homogeneous treatment
effect at stage two.

Two recent papers propose estimation procedures based on LASSO for non-linear
panel models. Both focus on different causal targets to ours: in the context of continuous
treatments, Klosin and Vilgalys (2023) proposed an estimator for the average partial
effect based on a PLR model suitable for static panels, where a first-difference data
transformation is used to handle omitted fixed time-invariant confounding; and Semenova
et al. (2023) propose a procedure for CATE estimation based on a PLR model for dynamic
panels. Both of these procedures rely crucially on the key nuisance functions being well
approximated by high-dimensional sparse functions: without assuming this ex-ante, their
procedures do not follow. We propose alternative procedures that make no such ex-ante
assumptions, and set these up within the DML framework developed by Chernozhukov
et al. (2018) who considered the PLR model at length but did not provide any panel
examples.

The generality of our approach allows us to move beyond LASSO to other types of
ML algorithm. LASSO is powerful but it requires the analyst to pre-specify a sufficiently
rich data dictionary, and the memory required to store these in panels with many waves
could be prohibitively large such that alternative learners are preferable. However, by
staying general, we rule out solutions to the fixed-effects problem like that proposed by
Semenova et al. (2023) who incorporate the fixed effects into the LASSO data dictionary
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under a weak sparsity assumption. While recent work by Kolesár et al. (2023) argues
that, in the absence of prior knowledge to the contrary, this assumption is unlikely to
hold, Semenova et al. (2023) avoid this issue by decomposing the overall fixed effect
into a fixed part, involving the individual-specific means of the (fixed) predictors, and a
fixed-effect residual which can be incorporated into the dictionary under a weak sparsity
assumption.
By not formulating the learning problem in terms of LASSO, we must consider alter-

native approaches so, instead, propose three estimation procedures that obviate entirely
the requirement to model the fixed effects. The first two are based on transforming the
outcome to induce a reduced-form model that does not depend on the fixed effects. Be-
cause we are agnostic, our first-difference procedure differs from that proposed by Klosin
and Vilgalys (2023) in ways we explain further on. We also consider a procedure based on
a correlated random effects model similar to that used by Wooldridge and Zhu (2020) for
limited dependent variable panel models to convert the fixed effects into random effects.
Finally, we note that our work also fits into the literature that leverages the power

of ML for causal analysis and policy evaluation. The value added of doubly-robust pro-
cedures has been explored in applied works by, for example, Knaus (2022), Bach et al.
(2023), Strittmatter (2023), Baiardi and Naghi (2024a,b). Because panel data are widely
used in applied analyses, our proposed procedures for panel data models have the po-
tential to attract the interest of applied researchers from various fields broadening the
applicability of DML.

3. THE PARTIALLY LINEAR PANEL REGRESSION MODEL

3.1. Notation

Suppose the panel study collected information on each of N individuals at each of the
t time periods, or waves. Let {(Yit, Dit,Xit) : t = 1, . . . , T}Ni=1 be N independent and
identically distributed (iid) random vectors for individual i across all T waves, where
Yit ∈ Y is the outcome variable, Dit ∈ D a continuous or binary treatment variable (or
intervention), andXit = (Xit,1, . . . , Xit,p)

′ ∈ X a p×1 vector of control (pre-determined)
variables, usually including a constant term, able to capture time-varying confounding
induced by non-random treatment selection.1 We denote the realizations of these random
variables by {(yit, dit,xit)}, respectively. For continuous Dit ∈ D ⊂ R, if dit ≥ 0 then a
dose-response relationship is presumed to hold with dit = 0 indicating null treatment;
otherwise, Dit is taken to be centered around its mean µD such that Dit ≡ Dit − µD.
For binary Dit ∈ {0, 1}, dit = 0 is taken to indicate the absence and dit = 1 the presence
of treatment.
The non-linear model we propose is a simple extension of the partially linear model of

Robinson (1988) to panel data. We then use a potential outcomes causal framework (e.g.
Rubin (1974)) to set out the assumptions under which its parameters can be interpreted
causally. As pointed out by Lechner (2015), this allows us to interpret the resulting
partially linear panel model as reduced-form without relying on specific parametric model
for the data generating process. To this end, further define the set Yit(.) = {Yit(d) :
d ∈ D} containing all potential outcomes for individual i at wave t, where Yit(d) is
the realization of the outcome for individual i at wave t were the treatment level set

1Throughout, we use v′ to indicate the matrix transpose of arbitrary vector v and take vectors to be
column vectors unless explicitly stated to the contrary.
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to d, with one potential outcome for every possible value the treatment could take. The
realizations of the wave t potential outcomes are taken to occur before treatment selection
at wave t, and are linked to the observed outcome by the consistency assumption that
Yit(dit) = Yit with the others latent counterfactuals.2 In the interval preceding wave t,
it is also presumed that the realization of time-varying predictor Xit precedes that of
(Yit, Dit).
Finally, define the sets ξi of time-invariant heterogeneity terms influencing (Yit, Dit),

and Lt−1(Wi) = {Wi1, . . . ,Wit−1} the lags of a generic random variable Wit available at
wave t such that L0(Wi) ≡ ∅.

3.2. Model and Assumptions

We extend the partially linear model proposed by Robinson (1988) to panel data by
introducing fixed effect α∗

i to give the partially linear panel regression (PLPR) model

Yit = Ditθ0 + g1(Xit) + α∗
i + Uit, (3.1)

where g1 is a non-linear nuisance function of Xit and E[Uit|Dit,Xit, α
∗
i ] = 0 but E[α∗

i |
Dit,Xit] ̸= 0. The target parameter θ0 is the average partial effect of continuous Dit such
that dθ0 = E[Yit(d) − Yit(0)], or the average treatment effect (ATE) E[Yit(1) − Yit(0)]
for binary treatments.
Following Chernozhukov et al. (2018), we focus on the partialled-out PLPR (PO-

PLPR) model

Yit = Vitθ0 + l1(Xit) + αi + Uit, (3.2)

Vit = Dit −m1(Xit)− γi, (3.3)

where l1 and m1 are nuisance functions, αi is a fixed effect, E[Uit | Vit,Xit, αi] = 0, and
Vit the residual of a non-linear additive noise treatment model depending on fixed effect
γi and satisfying E[Vit|Xit, γi] = 0. The focus will be on the PO-PLPR rather than the
PLPR model because, as shown below, l1 is a conditional expectation over Yit whereas
g1 is a conditional expectation over counterfactual Yit(0) that must generally be learnt
iteratively. Moreover, the orthogonalized score on which DML estimation of θ0 is based
involves Vit whether it is derived under PLPR or PO-PLPR (see Section 5).
We now detail the underlying assumptions required for θ0 to be feasibly estimable

with a causal interpretation. Note that some of these assumptions are stated in terms
of stochastic conditional independence ⊥⊥ to simplify the development. Recalling that ξi
represents the omitted time-invariant confounding variables, the first two assumptions
can be stated as follows:

Assumption 3.1. (No feedback to predictors)Xit ⊥⊥ Lt−1(Yi, Di) | Lt−1(Xi), ξi.

Assumption 3.2. (Static panel) Yit, Dit ⊥⊥ Lt−1(Yi,Xi, Di) |Xit, ξi.

Assumptions 3.1-3.2 together ensure that the panel is static and that any observed lag
dependence is due to non-causal autocorrelation. Specifically, these assumptions ensure

2The stable unit treatment value (SUTVA) assumption, that Yit(d) does not depend on the treatment
assignments of any other individual, is implicitly taken to hold.
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that the joint distribution of outcomes and treatments given the time-varying predictors
and omitted time-invariant influences satisfies

p{Yi1, Di1, . . . , YiT , DiT |LT (Xi), ξi} =

T∏
t=1

p(Yit, Dit|Xit, ξi),

where p(.) denotes a density function for the (conditional or joint) distribution indicated
by its arguments. Moreover, there is no need to model the distribution of the time-varying
predictors, and the initial conditions problem, which would arise were the panel study to
have started after the joint process began, is avoided.
To give θ0 a causal interpretation, we require that the data generating process for the

potential outcomes and treatment satisfies the following conditions:

Assumption 3.3. (Selection on observables and omitted time-invariant vari-
ables) Yit(.) ⊥⊥ Dit |Xit, ξi.

Assumption 3.4. (Homogeneity and linearity of the treatment effect)
E[Yit(d)− Yit(0)|Xit, ξi] = dθ0.

Assumption 3.3 states that treatment selection at wave t is (strongly) ignorable givenXit

and latent ξi. Assumption 3.4 requires that Yit(d)−Yit(0) is constant or varies between in-
dividuals independently ofXit and ξi. Alternatively, under the weakly ignorable assump-
tion that only Yit(0) ⊥⊥ Dit |Xit, ξi, target parameter dθ0 = E[Yit(d)−Yit(0) | Dit = d].
However, we assume throughout that the strong version holds.
The final assumption is that the combined effect of the confounding variables is addi-

tively separable into that of the observed confounding variables and that of the omitted
time-invariant confounding variables.

Assumption 3.5. (Additive Separability)

(a) E[Yit(0) |Xit, ξi] = g1(Xit) + α∗
i where α∗

i = α∗(ξi),
(b) E[Dit |Xit, ξi] = m1(Xit) + γi where γi = γ(ξi).

Assumptions 3.3 and 3.4 imply that E[Yit | Dit,Xit, ξi] = E[Yit(0) | Xit, ξi] + Ditθ0.
Hence, Assumption 3.5(a) leads instantly to PLPR model (3.1). Moreover, Assump-
tions 3.3 and 3.4 also imply that E[Yit(0) |Xit, ξi] = E[Yit |Xit, ξi]−E[Dit |Xit, ξ]θ0,
from which it follows from both Assumptions 3.5(a) and 3.5(b) that PO-PLPR model
(3.2)-(3.3) holds because E[Yit | Xit, ξi] = l1(Xit) + αi, where l1(Xit) = g1(Xit) +
m1(Xit)θ0 and αi = α∗

i + γiθ0.

In the description of each approach, below, we focus on procedures for the homogenous
treatment effects case. However, all of these procedures can be extended to heterogeneous
treatment effects provided the analyst is prepared to specify a (finite-dimensional) para-
metric heterogeneity model. A summary of how this is done can be found in Section 4.3.

4. FIXED-EFFECTS ESTIMATION

We propose two approaches for estimating θ0 from PO-PLPR model (3.2)-(3.3). The
presence of the time-invariant fixed effects means that only l1(Xit) + E[αi|Xit] and
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m1(Xit) +E[γi|Xit] can be learnt from the observed data directly through E[Yit |Xit]
and E[Dit |Xit], respectively, so the first challenge is to remove the fixed effects just as
it is in the linear case. As such, the approaches we propose are adaptations of existing
techniques for linear panel data models. The first is based on correlated random effects
(CRE) and the second on two varieties of data transformation: first-difference (FD) and
within-group (WG).3

Crucially, to understand our contribution, it is important to note that the use of CRE
or data transformations does not in itself lead to a consistent estimator of θ0. There
are further challenges, created by the non-linearity of the nuisance functions l1 and m1,
to be overcome. Specifically, we do not solve these challanges by a priori taking l1 and
m1 to be accurately approximated by high-dimensional sparse functions of the form
l1(Xit) ≈ B′

itψψψ and m1(Xit) ≈ B′
itϕϕϕ, where vector Bit = B(Xit) is an analyst-specified

high-dimensional data dictionary of linear and non-linear terms, ψψψ and ϕϕϕ are vectors
of parameters with dim(ψψψ) >> ||ψψψ||0 and dim(ϕϕϕ) >> ||ϕϕϕ||0, and ||v||0 is the number
of non-zero elements in arbitrary vector v. The FD and CRE procedures respectively
developed by Klosin and Vilgalys (2023) and Semenova et al. (2023) rely explicitly on
such representations. However, our procedures are suitable for DML based on ensemble
learning strategies.

4.1. Correlated Random Effects

Correlated random effects (CRE) models are extensions of fixed effect models in which
the fixed effect is replaced by a model for its dependence on the predictor variables. CRE
models can depend on any function of {Xit : t = 1, . . . , T} (e.g. Wooldridge and Zhu
(2020)) but practice tends to focus on exchangeable functions and especially functions of

Xi = T−1
∑T

t=1Xit following Mundlak (1978) who first demonstrated the equivalence
of CRE and fixed effects estimators when the effects of Xit in the fixed-effects model
and the effects of Xi in the model for the fixed effect are all linear.
In general, the fixed-effect model must be correctly specified, but a major advantage

of the Mundlak device for linear panel models, where the effects of Xit are linear, is that
least-squares estimators of the coefficients remain consistent even if the linear model
for E[αi|Xi] is mis-specfied, provided that αi and Xi are correlated. However, this
robustness is lost for PO-PLPR model (3.2)-(3.3) because l1 and m1 are non-linear. This
is also the case for the linear panel model with random coefficients for heterogeneous
treatment effects of Wooldridge (2019) and the non-linear probit model of Wooldridge
and Zhu (2020).
In the spirit of Wooldridge and Zhu (2020), we derive a CRE model based on PO-PLPR

model (3.2)-(3.3). Suppose that the data generating process satisfies Assumptions 3.1-
3.5 and the fixed effects follow non-linear additive noise models αi = ωα(Xi) + ai and
γi = ωγ(Xi) + ci, where ai and ci are random effects satisfying (ai, ci) ⊥⊥ LT (Xi) and

3Under the random effects assumption, where E[αi | Xit] = E[αi] = 0 and E[γi | Xit] = E[γi] = 0,
l1 and m1 can be straightforwardly learnt from the observed data, but we assert that this is unlikely to
hold in practice and, hence, causal inference would not be credible. However, were the analyst prepared
to make the random effects assumption, we note that Sela and Simonoff (2012) developed an algorithm
for using tree-based learners to estimate non-causal partially linear regression models.
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ai ⊥⊥ ci. Then the CRE model with nuisance parameters l̃1 and m̃1 is

Yit = Vitθ0 + l̃1(Xit,Xi) + ai + Uit (4.1)

Vit = Dit − m̃1(Xit,Xi)− ci, (4.2)

where E[Uit | Vit,Xit,Xi, ai
]
= E[Vit|Xit,Xi, ci] = 0, l̃1(Xit,Xi) = l1(Xit) + ωα(Xi)

and m̃1(Xit,Xi) = m1(Xit) + ωγ(Xi). The random effects simply capture autocorre-

lation between observations on the same individual. Crucially, l̃1 and m̃1 can be learnt
directly from E[Yit |Xit,Xi] and E[Dit |Xit,Xi], respectively.

4

4.2. Data Transformations

The second approach we consider follows more conventional techniques for panel data by
transforming the data to remove entirely the fixed effects from the analysis.
LetWit be a generic random variable and Q a panel data transformation operator such

that Q(Wit) = Qt(Wi1, . . . ,WiT ) is a function of the random variable at wave t and the
remaining realizations for individual i. We consider two such transformations: the WG
(within-group) or time-demeaning transformation, i.e., Q(Wit) =Wit−W i, where W i =

T−1
∑T

t=1Wit; and the FD (first-difference) transformation, i.e., Q(Wit) = Wit −Wit−1

for t = 2, . . . , T .
The reduced-form model for Q(Yit) and Q(Vit) under PO-PLPR model (3.2)-(3.3) is

Q(Yit) = Q(Vit)θ0 +Q
(
l1(Xit)

)
+Q(Uit) (4.3)

Q(Vit) = Q(Dit)−Q
(
m1(Xit)

)
, (4.4)

which does not depend on fixed effects αi and γi because Q(αi) = Q(γi) = 0.
The challenge of learning the transformed nuisance functionsQ(l1(Xit)) andQ(m1(Xit))

is complicated by the non-linearity of l1 and m1 because, as set out previously, we do
not a priori assume that the nuisance functions admit high-dimensional sparse represen-
tations of l1 and m1 where Q(l1(Xit) ≈ Q(B′

it)ψψψ and Q(m1(Xit)) ≈ Q(B′
it)ϕϕϕ could be

learnt directly as per the FD procedure proposed by Klosin and Vilgalys (2023).

4.3. Heterogeneity

If Assumption 3.4 is implausible or the inferential target of the analysis is heterogeneity
of the treatment effects itself then further modelling is required. Completely relaxing
Assumption 3.4 results in θ0d = E[Yit(d) − Yit(0) | Xit, ξi], that is, conditional average
partial effects or conditional average treatment effects (CATE) dependent on all of the
confounding variables. Focussing on the binary treatment case for simplicity, extending
Assumption 3.5(a) so that E[Yit(1) | Xit, ξi] is also additively separable would lead to
an additively separable CATE θ0 = h0(Xit) + δi, where δi = δ(ξi) is what Wooldridge
(2019) refers to as a random coefficient.
CRE model (4.1)-(4.2) can be specified in terms of CATEs if Assumption 3.4 fails.

4Semenova et al. (2023) also use a CRE model in their formulation for dynamic models. In our static

panel case with only fixed Xit predictors, this would be equivalent to specifying l1(Xit)+αi = ψ0Xi+αi

with (α1, . . . , αN ) assumed to be a weakly sparse vector following a Mundlak-style model which can be
estimated using LASSO. Alternative models for weakly sparse fixed effects have been developed by Kock
(2016) and Kock and Tang (2019) which can be estimated using de-sparsified LASSO.
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Temporarily discarding vector notation, if E[Yit(1) − Yit(0) | Xit, ξi] = h0(Xit) then
our procedure allows parametric model h0(Xit) = Sitθ0, where Sit = S(Xit) captures
treatment effect heterogeneity though interaction SitVit replacing Vit in (4.1). If the
heterogeneity also depends on ξi then, following Wooldridge (2019), the analyst can
proceed by additionally specifying a further linear model for E[δi | Xi] so that Sit

is extended to Sit = S(Xit, Xi) with no interactions between Xit and Xi included. As
noted by Wooldridge (2019), this model must be correctly specified to induce a consistent
estimator, despite having the appearance of the Mundlak device.
Finally, for the transformation models, the failure of Assumption 3.4 also requires

the analyst to specify parametric model h0(Xit) = Sitθ0. Then (4.3) becomes Q(Yit) =
Q(VitSit)θ0 + Q

(
l1(Xit)

)
+ Q(Uit). In contrast to the CRE, where the analyst must

assume δi = 0 or specify the model E[δi |Xi], random coefficient δi cancels out.
Our approach contrasts with those of Klosin and Vilgalys (2023) and Semenova et al.

(2023), both of which are based on learning the high-dimensional sparse representation of
h1 using a suitably specified data dictionary. The former is a FD procedure that removes
δi from consideration provided the CATE is additively separable as above, whereas the
latter implicitly assumes that δi = 0.

5. DML PROCEDURES FOR PANEL DATA

We now describe our DML procedures for the fixed-effects estimators presented in Sec-
tion 4. The objective is to make inferences on the target parameter θ0 given a suitable pre-
dictions of nuisance functions η0 based on the observed data Wi = {Wit : t = 1, . . . , T},
where Wit = {Yit, Dit,Xit,Xi} for CRE, and Wit = {Q(Yit), Q(Dit), Q(Xit)} for the
transformation approach (noting that Wi1 ≡ ∅ if Q is the FD transformation).

5.1. Learning the Nuisance Parameters

The first stage of DML involves using a suitably chosen learner (or combination of
learners) to predict flexibly the unknown nuisance parameters. The nuisance functions
η0i = η0(Xi1, . . . ,XiT ) vary between individuals and so the task is to learn η0. As
discussed previously, the presence of the fixed effects and non-linear functional forms
pose challenges which need to be addressed. Below we describe different procedures for
learning η0.

5.1.1. Correlated Random Effects The estimation of θ0 based on model (4.1)-(4.2) re-

quires learning l̃1(Xit,Xi) from the data {Yit,Xit,Xi : t = 1, . . . , T}Ni=1, and obtaining

predicted residual V̂it to plug into Equation (4.1). Simply learning m̃1(Xit,Xi) from

the data {Dit,Xit,Xi : t = 1, . . . , T}Ni=1 and using V̂it = Dit − m̂1(Xit,Xi) would ig-
nore individual random effect ci and so introduce bias. Hence, we propose the following
approach:

Step 1. Learn m̃1(.) from
{
Dit,Xit,Xi : t = 1, . . . , T

}N
i=1

with prediction

m̂1i = m̃1
̂(Xit,Xi).

Step 2. Calculate m̂i = T−1
∑T

t=1 m̂1i.

Step 3. Calculate m̂∗
1(Xit,Xi, Di) = m̂1i +Di − m̂i,
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wherem∗
1(Xit,Xi, Di) = E[Dit |Xit,Xi]+ci. To capture ci, it is essential to include the

individual-specific treatment mean Di to ensure Vit is included in the prediction of m∗
1.

For example, if the conditional distribution Di1, . . . , DiT | Xi1, ...,XiT is multivariate
normal with E[Dit|Xit,Xi] = m̃1(Xit,Xi) and a homoskedastic variance-covariance
matrix with random effects structure (induced by marginalizing over ci) then E(Dit |
Xit,Xi, Di) = m̃1(Xit,Xi)+ci = m∗

1 as required, but it is generally necessary to follow
the steps above. More details are given in Section S1.1 of the Online Supplementary
Information.

5.1.2. Transformation approaches First, we consider learning based on the transformed
data alone. Generally, Q

(
l1(Xit)

)
̸= l1

(
Q(Xit)

)
and Q

(
m1(Xit)

)
̸= m1

(
Q(Xit)

)
unless

l1 and m1 are linear. This means a consistent estimator cannot straightforwardly be
constructed from the transformed data. However, we propose the following procedures:
(a) Approximate procedure. Approximate model (4.3)-(4.4) by

Q(Yit) ≈ Q(Vit)θ0 + l1
(
Q(Xit)

)
+Q(Uit) (5.1)

Q(Vit) ≈ Q(Dit)−m1

(
Q(Xit)

)
, (5.2)

where l1 andm1 can be learnt from the transformed data {Q(Yit), Q(Xit) : t = 1, . . . , T}Ni=1

and {Q(Dit), Q(Xit) : t = 1, . . . , T}Ni=1, respectively. This approach can produce good
approximations of some non-linear nuisance functions but it is not robust and we were
able to choose functions where it performed poorly.
(b) Exact procedure. Consider first the FD transformation Q(Yit) = Yit − Yit−1. Then

under Assumptions 3.1-3.5, E[Yit − Yit−1 | Xit−1,Xit] = ∆l1(Xit−1,Xit) and E[Dit −
Dit−1 | Xit−1,Xit] = ∆m1(Xit−1,Xit), so that ∆l1(Xit−1,Xit) can be learnt using
{Yit − Yit−1,Xit−1,Xit : t = 2, . . . , T}Ni=1 and ∆m1(Xit−1,Xit) can be learnt using
{Dit − Dit−1,Xit−1,Xit : t = 2, . . . , T}Ni=1. However, for WG transformation E[Yit −
Y i | LT (Xi)] = l1(Xit) − T−1

∑T
s=1 l1(Xis) and E[Dit − Di|LT (Xi)] = m1(Xit) −

T−1
∑T

s=1m1(Xis), the dimension of the learning problem is O(T 2) times greater than
that of the FD transformation and so unfeasible for non-trivial T .

(c) Hybrid procedure. Suppose the conditions set out in Section 4.1 for model (4.1)-

(4.2) hold. Then l̃1(Xit,Xi) = l1(Xit)+ωα(Xi) and m̃1(Xit,Xi) = m1(Xit)+ωγ(Xi)

learnt from the sample data satisfy Q(l̃1(Xit,Xi)) = Q(l1(Xit)) and Q(m̃1(Xit,Xi)
)
=

Q(m1(Xit). The hybrid approach can be used with both WG and FD transformations.
We elaborate on the justification for these procedures in Sections S1.2 and S1.3 of the

Online Supplementary Information.

5.2. Neyman Orthogonal Score Function

The second stage of DML requires specifying an orthogonal score function for the struc-
tural parameter of interest to be solved after the nuisance functions have been plugged in.
Following Chernozhukov et al. (2018), we construct a generic Neyman orthogonal score
function for panel data that accounts for (a) the presence of the unobserved individual
heterogeneity, and (b) non-linearity of the nuisance functions. Its properties allow us
to obtain valid inferences using DML algorithms, provided the ML algorithms converge
at rate N1/4. We wish to make inference on the target parameter θ0 given a suitable
estimate of the nuisance parameter η0 from the data. We repurpose the definition of
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Wit to define the entire dataset as W = ∪N
i=1Wi, where Wi = {Wit : t = 1, . . . , T},

Wit = w{Yit, Dit,Xit} and w is a function or transformation of the data (possibly the
identity) chosen by the analyst to implement one of the estimation approaches discussed
in Section 4.
For individual i, let ri = (ri1, ..., riT )

′ be the T residuals of the PO-PLPR model (ei-
ther (4.1)-(4.2) or (5.1)-(5.2)), Xi = X(Xi1, . . . ,XiT ) the appropriately chosen set of
predictor variables, and Σ(Xi) = E[rir

′
i | Xi] the (potentially) heteroskedastic residual

variance-covariance matrix. Note that rit differs from Uit in that it potentially incorpo-
rates the model random effect and other sources of autocorrelation.
Then the Neyman orthogonal score has the form

ψ⊥(Wi; θ0,η0) = V⊥
i Σ

−1
0 (Xi)ri, (5.3)

where row vector V⊥
i = (V ⊥

i1 , . . . , V
⊥
iT ) contains the orthogonalized regressors chosen to

ensure Neyman orthogonality.

(a) For CRE: Under model (4.1)-(4.2), rit = ai + Uit = Yit − Vitθ0 − l̃1(Xit,Xi),
Vit = Dit − m̃1(Xit,Xi)− ci and V

⊥
it = Vit.

(b) For FD: Under model (4.3)-(4.4), rit = Q(uit) = Q(Yit) − Q
(
Vit
)
θ0 − Q

(
l1(Xit)

)
and V ⊥

it = Q(Vit).

A derivation of (5.3) and its generalization to estimating conditional average treat-
ment effects (CATEs) in the presence of heterogeneous treatment effects is provided in
Section S2 of the Online Supplement.

5.3. Estimation and Inference About the Target Parameter

Suppose that suitable ML algorithms are available to learn the nuisance functions and
obtain estimate η̂ on a pathway converging to η0 at rate N1/4. We now set out the
DML2 (Chernozhukov et al., 2018, Def. 3.2) algorithm we use to make post-regularized
inference about θ0 based on Neyman-orthogonal score (5.3).

DML uses cross-fitting to control the overfitting or regularization bias introduced by
plugging in η̂ to (5.3). A key feature of our procedure is that we have adapted DML
to use block-k-fold cross-fitting for panel data. This involves treating the time-series
for each sample unit, Wi, as k-fold-sampling units when partitioning the sample into
K equi-sized folds. Because Wi satisfies the independent and identically distributed as-
sumption, whereas Wit does not, block cross-fitting accounts for the within-individual
autocorrelation structure and so avoids having to make further post-fitting adjustments
for autocorrelation to the estimmated standard errors as did Semenova et al. (2023).
Letting W = {1, . . . , N} denote the indices of the sample units, our DML estimation

procedure with block-k-fold cross-fitting can be set out as follows:

Algorithm 5.1. (DML estimator)

Step 1. (Sample splitting and cross-fitting) Randomly partition the cross-
sectional units in the estimating sample into K folds of the same size. Denote the
units in fold k = 1, . . . ,K by Wk ⊂ W and let Wc

k be its complement such that
Nk ≡ |Wk| = N/K, |Wc

k| = N −Nk and, because the folds are mutually exclusive
and exhaustive, Wk ∩Wj = Wk ∩Wc

k = ∅ and Wk ∪Wc
k = W1 ∪ . . . ∪WK = W.
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For K > 2, the larger complementary sample Wc
k is used to learn the potentially

complex nuisance parameters η, and Wk for the relatively simple task of estimating
the target parameter θ0.

Step 2. (Nuisance learning) For fold k, learn η0 from the data {Wi : i ∈ Wc
k}

using one of the approaches from Section 5.1. Then use the learnt prediction rule
η̂k to construct ψ⊥(Wk; θ, η̂k) for each fold.

Step 3. (Estimation) The DML estimator θ̂DML is obtained by solving

1

K

K∑
k=1

1

Nk

∑
i∈Wk

ψ⊥(Wi; θ̂
DML, η̂k) = 0, (5.4)

which has closed-form solution

θ̂DML =

(
K∑

k=1

∑
i∈Wk

V̂
′
iV̂ i

)−1 K∑
k=1

∑
i∈Wk

V̂
′
iÛ i, (5.5)

where V̂ i = (V̂i1, . . . , V̂iT )
′ and Û i = (Ûi1, . . . , ÛiT )

′. Note that the closed-form
expression is obtained by setting Σ0 = IT in equation (5.3) and capturing auto-
correlation using cluster-robust versions of the following variance estimators. The
estimator of the variance of θ̂DML is

σ̂2 = Ĵ−1

{
1

K

K∑
k=1

1

Nk

∑
i∈Wk

ψ⊥(Wi; θ̂
DML, η̂k)ψ

⊥(Wi; θ̂
DML, η̂k)

′

}
Ĵ−1
k (5.6)

where Ĵ = K−1
∑K

k=1N
−1
k

∑
i∈Wk

V̂
′
iV̂ i.

5

Step 4. (Iteration) Repeat Steps 1-3 for each of the k-folds and average out the
results.

Because score (5.3) is linear in θ, our proposition is that θ̂DML converges to normality
according to the vectorized equivalent of Chernozhukov et al. (2018, Theorem 4.1) under
the regularity conditions set out by Chernozhukov et al. (2018, Assumption 4.1).

6. SIMULATION STUDY

The primary focus of our Monte Carlo simulation study is to assess the performance of the
DML procedures we propose in terms of bias and precision for different ML algorithms.
We generated data under DGPs satisfying the assumptions required for the PO-PLPR
model to hold for three different pairs of nuisance functions: linear, non-linear (smoothly
continuous with no interactions), and non-linear (discontinuous with interactions). These
are described along with a detailed discussion of the results in Online Supplement S3.
The DGP satisfies the usual sparsity constraints because only two of the thirty predictors
included in the analysis have non-zero effects.
Table 1 provides a summary of the main results under the most complex non-linear

DGP for four of the procedures introduced above (Panels A-C). For each procedure,
standard OLS estimates are compared with DML using four different learners for the

5We additionally make a finite-sample correction (θ̂DML − K−1
∑

k θ̂k)
2 to σ̂2, where θ̂k =(∑

i∈Wk
V̂

′
iV̂ i

)−1 ∑
i∈Wk

V̂
′
iÛ i is the fold-specific estimate as in Chernozhukov et al. (2018, p. C30).
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non-linear nuisance functions. Across all three procedures, OLS can exhibit large bias
and DML-LASSO typically outperforms the other learners in terms of both bias and
precision, with the exception of the WG estimator (Panel C). In practice, LASSO re-
quires the analyst to specify a sufficiently rich dictionary of non-linear terms; had only
linear terms been included, for example, its performance would have been closer to OLS.
Gradient boosting outperforms the other tree-based approaches (CART and RF) the
performance of which in terms of bias and precision (SE/SD) is far inferior. A closer
investigation, described in Online Supplement S3.2, found the sampling distributions
of tree-based θ̂DML to be highly non-normal (see Figure S.1) so that inferences based
on first-order asymptotic results are unreliable. Because trees are sensitive to hyper-
parameter choice (tree depth, etc.), we experimented with an alternative strategy for
hyperparameter tuning (described in Online Supplement S3.2) that led to normal sam-
pling distributions but larger biases. An extensive discussion on hyperparameter tuning
can be found in Section S4.2 of the Online Supplement.
The superior performance of LASSO is indicated by the Root Mean Square Errors

(RMSEs) of the estimator, model, and nuisance parameters. These results support the use
of an ensemble learning strategy, in which the best-performing learner is chosen because,
for our example, this would have selected LASSO and ensured reliable inference.
There is little to choose between the CRE, FD (Exact) and WG (Approximate) pro-

cedures. This is not unexpected because the DGP in the simulation study satisfies the
additional assumptions for modelling the unobserved heterogeneity with Mundlak-like
CRE, but the results are slightly different because these procedures involve learning dif-
ferent nuisance functions. More generally, the FD (Exact) estimator is the most robust
procedure because it does not rely on any additional assumptions. In comparison, the
WG (Approximation) method performed poorly no matter which learner was chosen
because the approximation error induced by using the linearly transformed data (the
time-demanded transformation) is large for the non-linear DGP.

7. EMPIRICAL APPLICATION

We reanalyse Fazio and Reggiani (2023)’s study of the impact of the National Minimum
Wage (NMW) on voting behaviour in the UK. The data used in the original investigation
come from the British Household Panel Survey (BHPS) comprising 4, 927 working indi-
viduals (aged 18-64) between waves 1 and 16 (from 1991 until 2007).6 The treatment is
measured by the question ‘Were you paid the minimum wage’ asked to those responding
at Wave 9 in 1999. The authors use least squares to estimate the average treatment effect
on the treated (ATT) between the NMW policy on various outcomes, including voting for
conservative political parties which is our outcome of interest. Fazio and Reggiani (2023)
compared the results of four regression specifications with different sets of covariates and
fixed effects to capture all potential confounders, showing that the estimates did not vary
across these, hence, concluding that workers who were paid the NMW rate were more
likely to support conservative parties.
We revisit Specification (2) of Table 5 from the original paper that includes all control

6BHPS is a longitudinal survey study for British households that run from 1991 until 2009. The online
replication package provides the instructions for data access and the codes to run the analysis in this
section. DML estimation is conducted in R using the XTDML package in the replication package (or
accessible in its latest version at https://github.com/POLSEAN/XTDML at the time of writing) which is
built on DoubleML by Bach et al. (2024).
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Table 1: Average MC simulation results, nonlinear and discontinuous DGP

Bias(θ̂) RMSE(θ̂) SE(θ̂)/SD(θ̂) Model RMSE RMSEl RMSEm

Panel A: CRE approach

OLS 0.993 0.993 0.999
DML-Lasso 0.009 0.014 1.235 5.818 1.981 1.432
DML-CART -0.087 0.199 0.084 21.316 7.169 5.910
DML-RF 0.149 0.151 1.320 6.773 2.427 1.779
DML-Boosting -0.007 0.033 0.871 7.432 2.523 1.860

Panel B: Exact approach with FD transformation

OLS 0.993 0.993 0.951
DML-Lasso 0.005 0.008 1.050 4.302 1.605 1.432
DML-CART 0.291 0.385 0.049 46.564 18.889 12.596
DML-RF 0.752 0.765 0.071 14.180 8.824 5.840
DML-Boosting -0.014 0.059 0.461 9.815 3.514 2.612

Panel C: Approximation approach for WG transformation

OLS 0.993 0.993 0.999
DML-Lasso 0.977 0.977 1.120 4.347 9.625 6.450
DML-CART 0.754 0.764 0.050 20.049 11.363 7.552
DML-RF 0.972 0.972 0.739 5.070 9.817 6.578
DML-Boosting 0.918 0.918 0.426 9.837 10.017 6.711

Note: The figures in the table are the average values over the total number of Monte Carlo replications
(R = 100). The true target parameter is θ = 0.50; N = 4000 and T = 10. The quantities displayed

correspond to: Bias(θ̂, θ) = R−1
∑R

r=1

(
E(θ̂r) − θ

)
; RMSE(θ̂) =

√
R−1

∑R
r=1

(
V ar(θ̂r) +Bias(θ̂r, θ)2

)
,

where V ar(θ̂) = E
[(
θ̂ − E(θ̂)

)2]
; Model RMSE= (RK)−1

∑R
r=1

∑K
k=1

√
(|W |)−1

∑
i∈W

(
Ûit − V̂itθ̂k)2,

where Ûit and V̂it are the residuals of the PO structural equations; the RMSE of the nui-

sance parameters are RMSEl = (RK)−1
∑R

r=1

∑K
k=1

√
(|W c|)−1

∑
i∈Wc

(
yit − l̂k(.)

)2
and RMSEm =

(RK)−1
∑R

r=1

∑K
k=1

√
(|W c|)−1

∑
i∈Wc

(
dit − m̂k(.)

)2
. DML-Lasso uses 525 raw variables; the rest of the

learners 30 raw variables. We use the Neyman-orthogonal PO score and five-fold cross-fitting.

variables, regions and wave fixed effects, by using DML procedure to fit the following
PO-PLPR model

V oteit = Vitθ0 + l1(Xit) + αi + Uit (7.1)

Vit = NMWit −m1(Xit)− γi (7.2)

where V oteit is an indicator corresponding to one if respondent i voted for conservative
parties in wave t, and zero otherwise; NMWit is the treatment variable which is equal to
one if the respondent’s hourly pay increased due to the introduction of the NMW in 1999
and the respondent is observed in wave 9 onwards; Xit are the confounding variables
whose functional form is ex ante unknown; and θ is the target parameter. The original
base control variables included information about the age, education, marital status,
household size, and income of other household members for respondent i in wave t.
We add thirty additional variables to the original specification, providing informa-

tion on demographic characteristics, socio-economic status, employment and work-related
variables, and ideology of the respondents. The complete list of confounders is reported
in Table S.5 of the Online Supplement S5. We also increase the sample size by includ-
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Table 2: The Effect of National Minimum Wage on Voting Behaviour in the UK

OLS DML-Lasso DML-CART DML-RF DML-Boosting
(1) (2) (3) (4) (5)

Dependent variable: Voting for conservative parties

Panel A: CRE approach

NMW 0.051*** 0.045** 0.069* 0.180 -0.355
(0.019) (0.020) (0.036) (0.151) (0.232)

Model RMSE 1.104 1.030 1.009 1.051
RMSE of learner l 0.422 0.419 0.413 0.435
RMSE of learner m 0.064 0.051 0.016 0.010
No. control variables 144 1,477 144 144 144

Panel B: Exact approach with FD

∆NMW 0.029 0.030 0.026 0.018 0.011
(0.026) (0.025) (0.026) (0.026) (0.026)

Model RMSE 0.644 0.643 0.640 0.624
RMSE of learner l 0.283 0.282 0.282 0.286
RMSE of learner m 0.051 0.050 0.049 0.053
No. control variables 143 1,476 143 143 143

Panel C: Approximation approach with WG

ÑMW 0.051*** 0.048** 0.048** 0.041** 0.047***
(0.019) (0.019) (0.019) (0.019) (0.017)

Model RMSE 0.532 0.530 0.528 0.525
RMSE of learner l 0.214 0.213 0.212 0.216
RMSE of learner m 0.065 0.064 0.065 0.070
No. control variables 71 738 71 71 71

Note: The table displays our estimates based on Specification (2) of Table 5 in Fazio and Reggiani (2023) using
a different sample and confounders. Figures in Column (1) are estimated through OLS while the remaining
columns using DML with different learners. The reported number of control variables includes the original
variables, the individual means in DML-CRE, the lags of included controls in DML-FD, and the extended
dictionary with polynomials and interactions for Lasso. The number of observations (NT ) is 59, 745 in Panels A
and C, and 49, 823 in Panel B; the number of cross-sectional units is 9, 922 in all panels. The DML estimation
uses 5-fold block cross-fitting and partialling-out score. The hyperparameters of the base learners are tuned
with grid search. Cluster-robust standard errors at the respondent level in parenthesis. Significance levels: * p
< 0.10, ** p < 0.05, *** p < 0.01.

ing two additional waves for years 2008 and 2009 (waves 17 and 18, respectively). Our
final sample includes 9, 922 working individuals. The functional form of the confounding
variables is learnt using four different base learners: LASSO with a dictionary of non-
linear terms (i.e., polynomials of order three and interaction terms of each raw variable),
CART, RF, and boosted trees. The hyperparameter tuning of the base learners used in
the implementation is discussed in the Online Supplement S4.3.
The point estimates of NMW effect on voting conservative parties are reported in

Table 2. Column (1) shows OLS estimates (i.e. using standard panel estimation based
on linear models) while the remaining columns contain the results using DML with
different learners. Panel A displays the CRE estimates, Panel B the FD (Exact) estimates,
and Panel C the WG (Approximation) estimates. The regression equations include the
individual means of all included control variables when the CRE is used, and one-period
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lagged variables of the controls when FD exact is used. Cluster-robust standard errors
are reported in parenthesis with clustering at the respondent level.

The results exhibit considerable differences in the estimated effects between learners
and estimators but, we argue, are consistent with those from a DGP which is either close
to linear or smoothly non-linear as in our simulation study (see Online Supplement S3).
The first difference we consider is between the FD (Exact) and CRE estimators. The
former should be the most robust because it does not rely on the Mundlak-type models
for fixed effects and also allows for different sets of omitted variables fixed only between
distinct wave pairs t − 1 and t (which could be represented by adding parameters like
αi(t−1,t) to the models). The magnitudes of the FD (Exact) point estimates are (a)
smaller for OLS and LASSO and (b) more stable across all learners than those based on
CRE. The RMSEs for the outcome (l) and treatment (m) models for FD (Exact) are
smaller than those for CRE, which indicates the learners are more effective at learning
nuisance functions of Xit and xit−1 than of Xit and xi and so more likely to have errors
bounded by N1/4. Moreover, the consistency across OLS and the learners would suggest
a DGP that is linear or smoothly non-linear. Second, the WG (Approximate) estimates
are also consistent across learners and larger than those obtained using FD (Exact). The
differences between FD (Exact) and WG (Approximate) are also commensurate with
the additional robustness of the former. The CRE estimates obtained using tree-based
learners, compared with all other estimates, are both larger (in absolute value) and less
precise, with the DML-Boosting estimate particularly imprecise. However, the RMSEs
indicate the tree-based algorithms do a better job learning the nuisance functions in Xit

and x̄i than LASSO, and an ensemble strategy would have selected the estimate based on
the random forest (DML-RF) for comparison with OLS and so pointed to a slightly larger
but less significant estimate than the best estimate obtained using WG (Approximate).
We finally reiterate the preference of FD (Exact) in this application, and the importance
of comparing different procedures and learners in reaching this conclusion.

8. CONCLUSION

DML is a powerful tool for leveraging the power of ML for robust estimation of treatment
effects, or policy-intervention. We provide estimation tools for applying DML when panel
data are available which practitioners can use in place of existing ones or in a complemen-
tary way to test the robustness of their results to non-linearity. Moreover, the nature of
static panels means that our procedures extend naturally to unbalanced panels provided
that the non-response at each wave is conditionally independent of Yit given Xit and ξi.
Further work on relaxing this assumption for CRE could build on Wooldridge (2019).

In general, although the three approaches we presented can be considered complemen-
tary to each other, the suitability of each will depend on the specific empirical example
and the assumptions that the analyst is prepared to make. However, following our em-
pirical studies, our recommendation for practice is to employ the FD (exact) approach
because the ML algorithms we consider proved effective at estimating the nuisance func-
tions involving predictors from waves t and t− 1, the random coefficient treatment effect
heterogeneity of Wooldridge (2019) is automatically accounted for, and it places fewer
assumptions on the the distribution of the fixed effects.

From our simulation study, we also recommend using multiple (base) learners for DML
stage one in the context of ensemble learning. In our simulations, the LASSO with an
extended dictionary of non-linear terms performed best across all scenarios. However,
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despite Lipschitz continuity and weak sparsity conditions holding, we found tree-based
learners to perform poorly in terms of bias (of the point and interval estimates) and
in terms of standard deviation and normality, even after making extensive efforts to
implement adaptive hyperparameter tuning. We do not claim this to be a general result
(there are many successful applications of tree-based learners in the literature), but we
strongly recommend that analysts use an ensemble strategy involving multiple learners
(the tree-based learners could perform better than the others in some scenarios) as is
standard practice in other disciplines where ML and other AI-based methods are widely
used.
Finally, our method is limited when there is treatment effect heterogeneity but the

analyst still wishes to target the ATE rather than the CATE. Further work on extending
these procedures, based on adapting the interactive model of Chernozhukov et al. (2018,
Sec. 5) to panel data, would therefore be of great value for practice.
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