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Abstract—The advent of Ultra-Reliable Low Latency Com-
munication (URLLC) along with the emergence of Open RAN
(ORAN) architectures presents unprecedented challenges and
opportunities in Radio Resource Management (RRM) for next-
generation communication systems. This paper presents a com-
prehensive trade-off analysis of Deep Reinforcement Learning
(DRL) approaches designed to enhance URLLC performance
within ORAN’s flexible and dynamic framework. By investigating
various DRL strategies for optimizing RRM parameters, we
explore the intricate balance between reliability, latency, and
the newfound adaptability afforded by the ORAN principles.
Through extensive simulation results, our study compares the
efficacy of different DRL models in achieving URLLC objectives
in an ORAN context, highlighting the potential of DRL to navi-
gate the complexities introduced by ORAN. The proposed study
provides valuable information on the practical implementation of
DRL-based RRM solutions in ORAN-enabled wireless networks.
It sheds light on the benefits and challenges of integrating DRL
and ORAN for URLLC enhancements. Our findings demonstrate
that the proposed twin-delayed deep-deterministic policy gradi-
ent (TD3) integrated with Thompson Sampling (TS) achieves
reliability levels above 99% in more than 80% of instances,
outperforming baseline DRL methods in maintaining stringent
URLLC reliability requirements, offering a roadmap for future
research to pursue efficient, reliable, and flexible communication
systems.

Index Terms—URLLC, ORAN, DRL, RRM, power allocation.

I. INTRODUCTION

OPEN radio access network (O-RAN) is a revolutionary
approach to designing and deploying mobile networks,

aiming to disaggregate traditional, proprietary network ele-
ments and foster interoperability among different vendors’
hardware and software components. In a conventional RAN,
the hardware and software are tightly integrated, often sup-
plied by a single vendor. O-RAN, however, promotes a more
open and flexible ecosystem by separating the radio network
functions into standardised, interoperable components. This
separation allows network operators to mix and match compo-
nents from different vendors, fostering competition, reducing
dependency on a single supplier, and potentially lowering
costs. In an Open RAN architecture, the radio functions are
divided into three main components: the Radio Unit (RU),
the Distributed Unit (DU), and the Centralized Unit (CU).
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The RU contains radio transceivers and antennas, the DU
handles baseband processing, and the CU manages higher-
layer functions. Open interfaces and standardised protocols
facilitate interoperability and allow operators to deploy best-
of-breed solutions for each network element. This approach
is particularly appealing for promoting innovation, enabling
new market entrants, and fostering a more dynamic and
competitive ecosystem within the telecommunications indus-
try. While O-RAN promises increased flexibility and cost
efficiency, it also presents challenges, including the need
for robust standardisation, addressing interoperability issues,
and ensuring that mobile networks’ performance and security
requirements, especially in terms of latency and reliability,
are met in diverse deployment scenarios. In response to these
challenges, the RAN Intelligent Controller (RIC) has emerged
as a transformative technology within the 5G ecosystem. The
RIC facilitates a modular and open architecture to manage
resources efficiently and enhance the overall user experience
by leveraging advanced algorithms, machine learning, and
data analytics, promoting interoperability and innovation by
allowing third-party applications to interact with the RAN
through standardised interfaces.

The landscape of wireless communication is transforming
with the proliferation of Ultra-Reliable Low Latency Com-
munication (URLLC). One of the key features of 5G is the
support for Ultra-Reliable and Low-Latency Communications
(URLLC), which is expected to revolutionise industries such
as autonomous driving, industrial automation, and healthcare
by enabling real-time and reliable communication [1], [2].
However, the stringent Quality of Service (QoS) requirements
of URLLC, such as high reliability and low latency, pose
significant challenges to the design and management of radio
resources [3]. URLLC caters to applications that require
stringent reliability and low latency, such as autonomous
vehicles, industrial automation, and mission-critical healthcare
systems [4]. The demand for URLLC is driven by the surge
in applications requiring instantaneous and error-free com-
munication. For instance, vehicles must exchange real-time
information in autonomous driving scenarios to make split-
second decisions, demanding ultra-reliable and low-latency
communication. Similarly, in industrial automation, where
machines collaborate in real time, any communication delay or
failure can have severe consequences. Recognising the trans-
formative potential of URLLC applications, the industry is
actively seeking solutions to overcome the challenges posed by
these stringent requirements. As URLLC applications become
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more prevalent, communication systems must evolve to meet
the stringent requirements imposed by these use cases. In this
context, Radio Resource Management (RRM) is pivotal in en-
suring efficient spectrum utilisation, interference management,
power allocation, and overall network performance [5], [6].
Achieving the delicate balance between ultra-reliability and
low latency is a complex challenge that demands innovative
solutions. Traditional RRM techniques, however, may need
to be revised to meet the stringent requirements of URLLC
due to their inability to adapt to dynamic network conditions
and user requirements [7]. Achieving reliability levels on
the order of 99.99%. URLLC necessitates reevaluating the
trade-offs between conflicting objectives, such as optimising
spectral efficiency while minimising latency. The coexistence
of different types of traffic, each with very stringent but
completely different requirements, presents a novel and very
relevant research issue. Moreover, the dynamic and unpre-
dictable nature of URLLC traffic patterns requires adaptive
and intelligent RRM solutions that can respond in real-time to
changing conditions [8].

Deep Reinforcement Learning (DRL), a subset of machine
learning, has emerged as a promising approach for addressing
optimisation problems in wireless communication [9]. With
its ability to learn optimal strategies through interaction with
the environment, DRL presents a promising avenue for ad-
dressing the challenges to achieve URLLC. By leveraging
DRL techniques, it becomes possible to develop intelligent
systems that adapt to the unique requirements of URLLC
applications, optimising RRM parameters in a manner that
balances reliability and latency. It has been applied to various
aspects of URLLC, including radio resource allocation and
power allocation [10], data management on top of sched-
uled eMBB traffic [11], and resource allocation for diverse
URLLC [8], [12]. Several studies have proposed DRL-based
approaches for URLLC [8], [12]. Despite these advancements,
there are still open challenges and future research directions in
applying DRL techniques in RRM for URLLC applications.
While the literature on DRL applications in communication
systems is expanding rapidly, a noticeable gap exists in the
specific domain of URLLC. Notably, more comprehensive
studies that systematically explore the trade-offs inherent in
various DRL approaches for optimising RRM parameters in
URLLC scenarios need to be conducted. The need for a
comprehensive trade-off analysis becomes increasingly evident
as URLLC applications become more prevalent, necessitating
adaptive and intelligent RRM solutions. Existing research
often focuses on isolated aspects of DRL or URLLC. However,
a holistic examination of the trade-offs between different DRL
strategies for RRM optimisation in URLLC applications is
notably required. Addressing this gap is crucial for advancing
state-of-the-art URLLC communication systems, as it provides
a foundation for understanding the strengths and weaknesses
of various DRL approaches. This knowledge is essential for
guiding the design and deployment of communication systems
that can meet the stringent requirements of URLLC applica-
tions without compromising reliability or latency.

This paper aims to enhance URLLC performance by con-
ducting a trade-off analysis of DRL approaches for radio

resource management. It comprehensively reviews the most
widely used DRL algorithms to address resource allocation
and power allocation problems, including the value- and
policy-based algorithms in next-generation wireless networks.
Each algorithm’s advantages, limitations, and use cases are
thoroughly discussed. Furthermore, this study aims to fill the
void in the literature by offering a comprehensive exploration
of the nuanced relationships between DRL strategies and key
URLLC performance metrics. Finally, the paper highlights
critical open challenges and provides insights into several
future research directions.

II. DRL-POWERED RRM APPROACHES

In literature, a spectrum of DRL approaches is considered
for optimising RRM parameters in URLLC scenarios, includ-
ing deep deterministic policy gradient (DDPG), policy gradient
actor-critic (PGAC), double deep Q-networks (DDQN), and
deep Q-networks (DQN). Each DRL approach is tailored to
address the specific challenges of RRM optimisation, incorpo-
rating state-of-the-art techniques in the reinforcement learning
domain. In this section, we highlight the challenges associated
with these DRL approaches.

A. Deep deterministic policy gradient (DDPG)

DDPG employs an actor-critic architecture. The actor-
network learns a policy that maps state observations to actions,
while the critic network evaluates the value of the chosen ac-
tions. DDPG uses target networks for both the actor and critic
to enhance stability during training. These target networks
slowly track the learned networks’ parameters. It enables end-
to-end learning, allowing the algorithm to directly optimise the
RRM parameters based on the observed performance metrics
and rewards [10]. Unlike traditional reinforcement learning
algorithms that use stochastic policies, DDPG uses a deter-
ministic policy. This policy selection means the actor network
outputs a deterministic action for a given state. DDPG is well-
suited for problems with continuous action spaces, making it
applicable to fine-grained RRM parameter adjustments.

Challenges: Training DDPG may require a large number
of samples, which could be a challenge in scenarios where
collecting data is costly or time-consuming [13]. DDPG relies
on exploration strategies such as adding noise to actions,
which may not always be effective, especially in complex
environments with sparse rewards.

B. Policy Gradient Actor-Critic (PGAC)

Policy Gradient methods, particularly the Actor-Critic archi-
tecture, have shown promise in optimising sequential decision-
making processes in scheduling URLLC traffic [8]. PGAC
involves two key components: the actor, which learns a policy
to map states to actions, and the critic, which evaluates the
policy’s performance and guides the learning process. PGAC
is implemented with a neural network architecture where the
actor and critic components are jointly trained. The actor
network learned a policy that influenced RRM decisions, while
the critic assessed the quality of these decisions. Using a con-
tinuous action space in PGAC facilitated nuanced adjustments
to RRM parameters.
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Challenges: One of the primary challenges associated with
PGAC is the issue of high variance in gradient estimates,
often leading to slow convergence and suboptimal policies.
PGACL methods inherently explore the action space by sam-
pling actions according to the policy distribution. However,
ensuring sufficient exploration can be challenging, especially
in wireless communication environments with complex action
spaces. Despite its merits, PGAC may suffer from sample
inefficiency, requiring considerable data for effective learning.
Additionally, the sensitivity to hyperparameter tuning poses
a challenge in achieving optimal performance across diverse
URLLC scenarios [12].

C. Double Deep Q-Networks (DDQN)

DDQN is an extension of the traditional Q-learning algo-
rithm that mitigates overestimation biases by employing two
separate networks for action selection and value estimation.
This dual-network architecture aims to stabilise the learning
process and improve the accuracy of action value predictions.
DDQN exhibited improved training stability compared to
traditional Q-learning approaches, addressing concerns related
to overestimating Q-values and enhancing the robustness of the
learned policies. Using target networks in DDQN mitigated the
issues associated with the moving target problem, resulting in
more accurate Q-value estimates. DDQN excels in scenarios
with discrete action spaces, making it suitable for RRM
parameter optimisation tasks that involve discrete decision-
making.

Challenges: Despite its benefits, DDQN may face chal-
lenges in efficiently handling continuous action spaces, which
are prevalent in specific URLLC optimisation problems [13].

D. Deep Q-Networks (DQN)

DQN serves as a foundational algorithm in reinforcement
learning, offering simplicity and ease of implementation. Its
discrete action space compatibility suits certain RRM scenar-
ios where discrete decisions are prevalent.

Challenges: The discretisation of action spaces could limit
the precision of the learned policies, especially in URLLC
scenarios where fine-grained adjustments are crucial. DQN’s
reliance on a single Q-network could lead to overestimation
bias, impacting the accuracy of learned Q-values and poten-
tially affecting the model’s overall performance [14].

III. DRL IN URLLC: CONCEPTS AND FRAMEWORK

Due to the critical nature of URLLC traffic, which can-
not be delayed during ongoing eMBB communication, we
adopt a puncturing strategy. The scheduling approach involves
puncturing the eMBB slots to accommodate the transmission
of URLLC traffic during short Transmission Time Intervals
(TTIs). URLLC services are scheduled at a short TTI duration
of 0.5 ms, emphasising low-latency communication. When
both eMBB and URLLC requests coexist, eMBB slots are
punctured to facilitate the transmission of URLLC traffic
without delay. The puncturing strategy ensures that the strin-
gent latency requirements of URLLC traffic are met, even
during ongoing eMBB communication. Fig. 1 illustrates the

Fig. 1: Illustration of the puncturing strategy: a) resource grid;
b) DL eMBB puncturing; c) frame structure.

puncturing strategy where the eMBB slots are punctured by
URLLC traffic. The integration of DRL into URLLC presents
a promising avenue for addressing the unique challenges
associated with optimising RRM parameters. DRL, a subset
of machine learning, is characterised by its ability to learn
optimal decision-making policies through interaction with an
environment. DRL has gained immense attention in commu-
nication systems for its potential to adapt and optimise system
parameters based on real-time feedback. Within the URLLC
landscape, where the demand for reliability and low latency
is paramount, DRL emerges as a potent tool for crafting
adaptive and intelligent RRM strategies. The core concept
of DRL involves an agent interacting with an environment,
receiving feedback in the form of rewards or penalties, and
adjusting its actions to maximise cumulative rewards over
time. In the URLLC context, the environment encompasses
communication channels’ dynamic and unpredictable nature,
varying traffic patterns, and stringent reliability and latency
requirements. To address the challenges URLLC poses, DRL
must be customised to the unique characteristics of these appli-
cations. The framework involves defining states, actions, and
rewards that capture the intricacies of URLLC performance
metrics. States encapsulate relevant information about the
communication system, actions represent the decisions made
by the agent, and rewards reflect the system’s performance
in meeting URLLC objectives. For instance, in the URLLC
domain, states may include channel conditions, traffic load,
and historical performance metrics. Actions could encompass
resource allocation, scheduling, and interference management
decisions. Rewards may be derived from achieving low la-
tency, ensuring high reliability, or optimising spectral effi-
ciency.

A. Conceptual Framework for DRL-based RRM in URLLC

Fig. 2 illustrates the system model of the use case. The
conceptual framework for applying DRL to RRM in URLLC
involves a closed-loop process [9]. The agent observes the
current state of the communication system, selects actions
based on learned policies, interacts with the environment, and
receives feedback as a reward. These states serve as the foun-
dation for decision-making by the DRL agent. In the context
of URLLC, states may encompass variables such as channel
conditions, traffic load, historical performance metrics, and
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Fig. 2: Illustration of the system model of use case.

other relevant parameters that influence the reliability and
latency of communication links. Including both instantaneous
and historical information allows the DRL agent to make
informed decisions considering the dynamic nature of URLLC
traffic. The flexibility of the action space enables the DRL
agent to adapt its decision-making process to diverse and
evolving scenarios. The granularity of the action space is cru-
cial. Fine-tuning actions allow the agent to respond precisely
to the specific demands of URLLC applications, ensuring a
balance between reliability and latency. For example, priority
scheduling or dynamic resource allocation decisions can sig-
nificantly impact URLLC performance. This iterative process
enables the DRL-based RRM system to continually adapt
and optimise its strategies in response to evolving network
conditions and URLLC requirements. A key consideration in
the framework is designing an appropriate reward structure
that aligns with URLLC objectives. Balancing the trade-offs
between reliability and latency becomes central to formulating
a reward function that guides the DRL agent toward achieving
desired URLLC performance metrics.

B. Role of DRL in Optimising RRM Parameters

Within the DRL-based RRM framework for URLLC, spe-
cific attention is given to optimising crucial parameters. These
may include, but are not limited to, scheduling policies,
resource allocation strategies, and interference mitigation tech-
niques. DRL’s ability to adapt and learn from dynamic envi-
ronments positions it as a powerful tool for crafting policies
that balance these parameters to meet the stringent demands of
URLLC applications. In DRL or decision-making problems,
an ϵ-greedy approach is a strategy for selecting actions. The
parameter ϵ represents the probability of choosing a random
(exploration) action instead of the one that is currently believed
to be the best (exploitation). When ϵ is small, the agent
primarily exploits the current best-known action; when ϵ is
large, the agent explores more by randomly selecting actions.
While exploiting the current best-known action might be
effective in many situations, it may not always lead to the
globally optimal solution. In some cases, the agent may get
stuck in a sub-optimal solution, as it tends to repeatedly choose
the action with the highest estimated reward, possibly missing
out on better alternatives that it has yet to explore [15].

Existing research has primarily concentrated on traditional
exploration-exploitation techniques, notably ϵ-greedy algo-
rithms, to address the challenges of radio resource alloca-
tion, HO decision-making, and related tasks. The absence
of comprehensive studies on other exploration-exploitation
techniques, such as Thompson sampling (TS), leaves a critical
void in understanding its applicability and efficacy in radio
resource management scenarios.

IV. THE PROPOSED METHODOLOGY

A. Thompson Sampling (TS) for URLLC
In [12], we show the efficient, intelligent resource schedul-

ing of URLLC users by implementing the TS. TS, a robust
Bayesian algorithm, presents a promising solution for opti-
mising resource allocation while ensuring the stringent QoS
demands of these service categories are met. In URLLC,
TS proves valuable in scenarios where uncertainties in the
communication environment are prevalent. For instance, in
the allocation of resources, TS dynamically adapts to changes
in channel conditions and traffic patterns by updating its
probability distribution, thereby addressing the challenges of
URLLC’s dynamic and unpredictable nature. Using Bayesian
inference, TS begins by modelling the uncertainty associated
with each action’s true underlying reward distribution. It main-
tains a distribution (often a Beta distribution) for each action,
representing the agent’s belief about the likelihood of different
reward values. During each decision-making iteration, TS
samples from these distributions for each action. The action as-
sociated with the highest sample is then chosen for execution.
This process reflects a probabilistic approach that naturally
balances exploration (sampling from uncertain distributions)
and exploitation (choosing the best current option). When
employing TS, the DRL agent gains the ability to gather
knowledge and adjust to these shifting conditions persistently.
It can modify its decisions on distributing resources by relying
on the most recent data available. This adaptability is crucial
in meeting the stringent requirements of URLLC applications,
where network conditions and traffic demands can vary dy-
namically.
B. Twin-delayed deep deterministic policy gradient (TD3)

The TD3 algorithm is an extension of the Deep Determinis-
tic Policy Gradient (DDPG) algorithm and addresses its over-
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Fig. 3: Distributed DRL for RRM.

estimation bias, which can lead to poor policy performance.
TD3 introduces three critical improvements: clipped double-Q
learning, delayed policy updates, and target policy smoothing,
which collectively help to stabilise the training process and im-
prove the performance of the learned policies [13]. Incorporat-
ing twin critics in TD3 contributes to increased stability during
the learning process. This robustness is essential in dynamic
URLLC environments where the wireless channel conditions
and interference patterns evolve continuously. The dual critics
provide more accurate Q-value estimates, mitigating the risk
of overestimation and enhancing the reliability of learned poli-
cies. TD3 demonstrated enhanced sample efficiency compared
to traditional policy gradient methods. This characteristic is
particularly advantageous in URLLC scenarios where rapid
adaptation to changing conditions is crucial.
C. Multi-Agent TS-based TD3 Approach

To address the challenges and leverage the advantages iden-
tified in the DRL approaches, we propose a novel methodology
that integrates the strengths of TD3 with the exploration
strategy of TS. We integrate TS into the TD3 framework
by incorporating Bayesian techniques to model uncertainties
in the RRM decision space. The TS-based TD3 approach
maintains the twin critics for stability and leverages TS to
guide policy updates, injecting a probabilistic element into
the decision-making process. By considering uncertainties in
decision-making, the model can respond more effectively to
variations in URLLC traffic patterns and wireless channel
conditions. The training process involves initialising the TD3
model with TS enhancements and updating policies based on
sampled values from the posterior distribution. The training it-
erations aim to refine the model’s understanding of the URLLC
environment and improve the robustness of the learned poli-
cies. Fig. 3 refers to the distributed framework, where every
RU serves as a DRL agent at near-RT-RIC. Training is imple-
mented offline at a centralised server in non-RT-RIC, where
information is gathered from all regional DRL agents. Each
agent makes independent decisions, which enables all DRL
agents to improve the learning process and convergence rate.
The centralised server shares the trained parameters with all
DRL agents. The global model undergoes training to optimise

and maximise a predefined global reward function, which is
defined as the achievable eMBB rate and URLLC reliability.
This means that during the training process, the model is
continually adjusted to improve its performance based on
the specified objective in the global reward function. Every
DRL agent decides the optimal resource allocation policy by
learning from the trained model according to the observed
local environment. The model learns and refines its parameters
to enhance its ability to achieve the optimal policy as dictated
by the global reward function.

V. DRL-POWERED RRM: A CASE STUDY

URLLC requires highly reliable and low-latency communi-
cation, which is essential for applications such as autonomous
driving, industrial automation, and remote surgery. In such
environments, the wireless network conditions can be very
volatile, and managing resources like power, spectrum, and in-
terference becomes critical. In this section, we present how to
intelligently optimise the radio resources for URLLC incoming
traffic. Four BSs are configured to form a wireless network,
catering to various communication needs within the coverage
area of 200 m2. We consider two types of downlink requests:
eMBB and URLLC. The heterogeneity of the network, com-
bined with the varying nature of eMBB and URLLC requests,
provides a realistic and challenging environment for evaluating
the DRL approaches. We present the simulation parameters
in Table I. The proposed and other DRL approaches are
trained using different communication configurations, e.g.,
varying URLLC arrival rates. The optimiser chosen for all
DRL approaches is the Adam algorithm. In Fig. 4, it can be
observed that TD3-TS achieves optimal performance earlier
and maintains it more consistently, suggesting that it efficiently
learns to allocate resources under stringent URLLC con-
straints, outperforming other DRL methods that show slower
or more fluctuating learning behavior. This superiority comes
from its ability to balance exploration and exploitation more
effectively in dynamic environments, ensuring better reliability
and low-latency communication. In Fig. 5, we investigate
the URLLC reliability obtained by different DRL schemes
and compare the performance with the proposed approach by
plotting the CCDF of outage probability. Fig. 5a demonstrates
that the proposed approach based on TS maintains the outage
probability within the tolerable threshold in over 99% of
instances. TS enables the TD-3 agent to incorporate adaptive
exploration by sampling from the posterior distribution over
the model parameters. This helps it to effectively explore the

TABLE I: Simulation Parameters

Parameters Values
Service Area 4 BSs, each BS covers 200 mˆ2, full-buffer

traffic
System bandwidth 20 MHz
URLLC packets length 32 Bytes
RB Bandwidth 180 kHz
Transmit power 38 dBm
Pathloss Model 120.8 + 37.5 log10(d)
PGAC δa = 10−5, δc = 10−3

DDPG δa = 10−4, δc = 10−3

TD3 δa = 10−5, δc = 10−3
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Fig. 4: Learning Analysis

action space, especially in scenarios where the environment
dynamics are uncertain or changing. However, it can be
observed from Fig. 5b that as URLLC traffic rates increase,
challenges to URLLC reliability may arise. Despite these
challenges, our proposed method demonstrates a remarkable
ability to maintain reliability in transmitting URLLC packets
compared to other DRL approaches. The inclusion of TS in
TD3 helps the agent explore the action space more informedly,
leading to more optimal decisions that result in a lower outage
probability for URLLC. This approach can be especially
beneficial in environments with high uncertainty or where the
reward distribution is non-stationary, which might be the case
in URLLC scenarios. TD3-TS’s performance, as visualised in
the provided CCDF plot, suggests it is more adept at handling
the complex and time-sensitive trade-offs required in URLLC
scenarios.

A. Trade-off Analysis

Exploration vs. Exploitation: TD3-TS provides a more
sophisticated exploration strategy, which could lead to the
discovery of more reliable communication strategies in the
long term. However, the benefit of improved exploration comes
with the trade-off of potentially slower initial learning progress
as the algorithm takes time to explore various options before
exploiting the best strategy. Traditional TD3 and DDPG may
exploit known-good strategies sooner, but if they become stuck
in local optima, this could lead to sub-optimal long-term
performance.

Complexity vs. Performance: The integration of TS into
TD3 increases the algorithmic complexity, which might re-
quire more computational resources or sophisticated training
procedures. The improved performance in URLLC scenarios
can justify this complexity, but it may only be suitable for
some applications, especially those with constrained compu-
tational resources. Simpler algorithms like DDPG might be
easier to implement and require less computational power,
making them more appropriate for systems with limited pro-
cessing capabilities despite possibly lower performance.

Stability vs. Responsiveness: TD3-TS’s twin Q-networks
and delayed policy updates contribute to the learning process’s
stability. This stability is crucial for URLLC, where erratic
behaviour could lead to unacceptable packet loss or delay

(a) CCDF of URLLC outage probability when ϕ = 80 pack-
ets/slot

(b) CCDF of URLLC outage probability when ϕ = 140
packets/slot

Fig. 5: CCDF of URLLC reliability for different ϕ.

levels. However, these features might also make the algorithm
less responsive to sudden environmental changes. PGAC and
DDPG may adapt more quickly to environmental changes due
to their potentially more responsive update mechanisms, but
with the risk of higher volatility in performance.

Overhead vs. Scalability: TS requires maintaining and up-
dating a probability distribution over actions, which introduces
additional overhead. This might affect the scalability of TD3-
TS to very large or complex networks. Algorithms without
such requirements may scale more easily but might not provide
the same level of performance in terms of outage probability,
as seen in the provided plot.

VI. CONCLUSION

This study presented an in-depth analysis of reinforcement
learning algorithms’ performance in managing URLLC’s strin-
gent requirements. This work is significant in its contribution
to the advancement of 5G and beyond wireless networks,
where URLLC is pivotal for mission-critical applications.
These applications demand high reliability and the capability
to adapt swiftly to dynamic network conditions. Our findings
highlight the effectiveness of integrating advanced statisti-
cal methods such as TS into machine learning algorithms,
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which can significantly enhance their effectiveness in highly
demanding URLLC applications. The TD3-TS approach, with
its enhanced learning capabilities and strategic action selection
process, paves the way for future explorations into intelligent
and autonomous network management solutions. As we move
forward, the continuous improvement of such algorithms and
their adaptation to the evolving landscape of URLLC will
remain a cornerstone of technological progress in the era of
interconnected systems.
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