

University of Essex

Research Repository

Optimizing Machine Learning Algorithms for Fault

Classification in Rolling Bearings: A Bayesian Optimization

Approach

Muhammad Zain Yousaf, Zhejiang University, China

Josep M Guerrero, Valladolid University, Spain

Muhammad Tariq Sadiq, University of Essex

Accepted for publication in Engineering Applications of Artificial Intelligence.

Research Repository link: https://repository.essex.ac.uk/40566/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers

may not be reflected in this version. For the definitive version of this publication, please refer to the

published source. You are advised to consult the published version if you wish to cite this paper.

https://doi.org/10.1016/j.engappai.2025.110597

www.essex.ac.uk

1 | P a g e

Optimizing Machine Learning Algorithms for Fault Classification in Rolling

Bearings: A Bayesian Optimization Approach.

responding Authors(*): Muhammad Zain Yousaf

Abstract

Modern power machinery is inherently complex and operates under dynamic operating conditions, so they demand

advanced solutions based on deep learning to diagnose bearing faults inside rotating equipment that cause unplanned

downtime and safety issues, leading to operational challenges. However, most deep learning approaches aim to improve

performance by incorporating hybrid neural networks that rely on multiple convolutional and temporal units, often

overlooking optimizing the large number of hyperparameters that define the structure and performance of hybrid models

along with the associated computational constraints. To address this gap, this study presents an innovative approach for the

detection and classification of bearing faults by integrating an optimized sparse deep autoencoder (DAE) with a

Bidirectional Long Short-Term Memory model (Bi-LSTM). The optimal network structure and hyperparameters are

determined through Bayesian optimization (BO) with parallel settings, which automatically searches for network

configurations that improve the feature extraction ability of the DAE and the generalization ability of the Bi-LSTM for more

efficient fault classification in rolling bearings. Parallel optimization accelerates network structure and hyperparameter

tuning by evaluating multiple configurations at once. It leverages the full potential of available multi-core Central Processing

Units (CPUs)/Graphics Processing Units (GPUs) in conjunction with a lightweight BO surrogate model. This autonomous

and user-friendly framework generates inputs from principal component analysis for linear and BO-DAE for non-linear

feature extraction and selection, which are then used to train a BO-enhanced Bi-LSTM. This three-stage optimized method

effectively captures spatial and temporal dependencies in vibrational signals, achieving superior efficiency, accuracy, and

reliability compared to shallow and deep learning models. Evaluation metrics, including macro precision (99.50%), recall

(99.60%), F1-Score (99.57%), and Cohen's Kappa metric (Cκ = 99.53%), demonstrate the efficacy of our approach for

bearing fault classification in industrial applications.

Keywords: Rolling Element Bearings, Modern Power Machinery, Deep Autoencoder, Bidirectional Long Short-Term

Memory, Bayesian Optimization.

1) Introduction

By 2030, the global GDP is anticipated to exceed $125 trillion, fueled by a compound annual growth rate (CAGR)

of approximately 3.5%, primarily driven by rapid technological advancements and the widespread adoption of Industry 4.0

[1]. There is an ongoing integration of automation in industrial manufacturing through smart manufacturing and the

Industrial Internet of Things (IIoT), which leads to a 30% increase in the deployment of rotating machinery across different

critical sectors. In the power sector, energy companies are prime examples that use IIoT systems to monitor the performance

of rotating machinery like gas turbines and compressors in real-time. This integration optimizes energy consumption,

minimizes downtime, and extends the operational lifespan of gas turbines and compressors. However, the reliability of

rotating machines depends on the accurate detection and classification of faults in rolling bearings—a vital component in

rotary machines that is responsible for almost 40% of all machinery failures [2]. The failures result in unexpected downtime,

expensive maintenance costs, and catastrophic failures in some cases that could jeopardize human safety. Therefore,

advances in fault classification techniques are essential to prevent these severe consequences, ensuring seamless operation

and supporting the global GDP growth targets set for 2030.

It is evident from reviewing the literature that vibrational signals from modern machinery are vital for detecting and

classifying bearing faults, and the methodologies for fault diagnosis can be broadly categorized into four main domains: 1)

model-based, signal processing-based, machine learning-based (ML), and deep learning-based (DL) methods [3]. Model-

based are the earliest approaches that depend upon physical principles and mathematical models to describe equipment

behaviour under normal and faulty conditions. However, despite the valuable information present within vibrational signals,

model-based methods like spectral analysis [4] and envelope demodulation [5] have their limitations. These conventional

methods depend on deep domain knowledge to develop accurate models, which can be a barrier in complex systems.

Moreover, the complex operating conditions typically add non-linearity to the system with heavy background noises, which

affects the model’s robustness and leads to misdiagnosis. Depending upon the operating conditions, specific signal

processing methods emerged to complement model-based approaches by extracting fault-related features from the non-

linearity and non-stability of recorded vibration signals. For this purpose, techniques like time-domain analysis (such as

2 | P a g e

kurtosis, skewness, mean, and crest factor), frequency-domain analysis (such as Fourier transform (FT) and power spectral

density), and time-frequency analysis (employing wavelet transform (WT), Hilbert transform, short-time Fourier transform

(STFT)) were adopted [6]. In recent attempts, C. Hu et al. s [7] used FT and discrete WT to isolate specific frequency

components and transient signals associated with faults. Adaptive threshold settings were then applied to metrics such as

mean and kurtosis to detect faults. While these settings provide a straightforward approach for fault detection in vibration

signals, their limitations, such as sensitivity to noise, static nature, inability to analyze multivariate data, and frequent

recalibration under complex operating conditions, require addressing.

As a branch of data-driven techniques, ML models can adapt to varying operational conditions without manual

recalibration and capture the intricate relationship between multivariate data for modern fault diagnosis applications in

complex industrial environments [8]. Several traditional ML models have been reported for rolling bearing fault diagnosis

in recent years [8]. A fault diagnosis process is divided into denoising, feature extraction, feature selection (FS), and

classification for traditional ML models. For the fault classification, different well-known classifiers, such as support vector

machine (SVM) [9], artificial neural network (ANN)[10], k-nearest neighbour (k-NN)[11], Naïve Bayes (NB)[12], neural

fuzzy logic [13] and random forest (RF) have been applied. Whereas to capture the bearing characteristics under dynamic

operating conditions, signal processing techniques are often employed to denoise and extract features from the time-domain,

frequency-domain, and time-frequency domain, which are then used to design a high-dimensional feature vector. However,

a significant challenge arises because some features may be redundant or irrelevant to the diagnostic target. Therefore, the

FS step for different diagnostic tasks is crucial, but it is subjective, time-consuming, and inefficient without sufficient

engineering expertise [14]. These aforementioned limitations stem from the shallow architectures often used in traditional

ML models. As a result, there is a pressing need to develop autonomous end-to-end solutions based on deep learning (DL),

as these methods extract meaningful information from high-dimensional feature vectors without any expertise.

DL models represent a significant advancement in artificial intelligence (AI) for fault diagnosis in advanced systems.

Convolutional or temporal layers within DL architectures extract meaningful information either from raw vibrational signals

or processed multi-domain features. This extracted information is then passed through dense layers to effectively

differentiate output classes [15]. This capability makes DL models a suitable option for detection and classification tasks in

the fault diagnosis of rolling bearings. A summary of the most used DL models, including convolutional neural networks

(CNN), long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and deep auto-encoder (DAE) are elaborated in

Table 1.

Table 1. Related work summary of rolling bearing fault diagnosis for detection and classification using Deep Learning methods

Related work summary of rolling bearing fault diagnosis for detection and classification using Deep Learning methods

Metrics
Methods used

Feature selection

and classification

Methods used for
Feature Extraction

Noise
Immunity

Calculation
Rate Explanation Limitations

Single Deep Learning Models of CNN, LSTM, Bi-LSTM, and DAE

[16] CNN
Continuous

Wavelet Transform

(CWT)

Good Good
Eliminates manual feature extraction. The algorithm is strong

under noise via Time-frequency (TF) images.

The adaptive algorithm requires
computational resources and human

expertise for CWT processing.

[17] CNN
Raw Vibration

Signals (RVS)
Good Moderate

Raw vibration signals are transformed into two-dimensional

grayscale images for feature extraction.

Data preprocessing requires computational

resources.

[18] CNN CWT for RVS Excellent Good
Incorporates spatial and channel attention modules to focus on

representative features within the TF images.

Significant computational resources and

human expertise are required for CWT

preprocessing.

[19] CNN RVS Excellent Good

The proposed framework simplifies fault diagnosis by

preprocessing raw vibration signals into 2D grayscale images for
input into attention-based CNN.

Denosing with kernel Principle Component

Analysis (PCA) removes subtle important
details along with noise.

[20] CNN
Short-Time Fourier
Transform (STFT)

Moderate Moderate
Using inception blocks enables the model to capture at different

frequency bands.
ICN architecture involves multiple layers,

increasing the computational burden.

[21] CNN RVS Excellent Moderate
Utilizing two convolution layers, max-pooling, fully connected

layers, and a Softmax layer for multiclass fault classification.

CNN architecture involves multiple layers,

increasing the computational burden.

[22] CNN
Raw Sound

Signals
Good Good

The end-to-end CNN model combines the advantages of multi-

channel signal fusion and automatic feature learning to achieve

superior fault detection accuracy.

Requires controlled environments for

acoustic signal acquisition, which may limit

real-world applications.

[23] CNN
Extracts Periodic

Pulses
Good Moderate

This work proposes to combine optimized signal preprocessing
with CNN-based classification.

Human expertise is required to optimize the
signal preprocessing model.

[24] LSTM

Periodic Sparse

Attention + LSTM
Units for RVS

Good Moderate

Extracts long-term dependencies from fault signals, capturing

time-series correlations in vibration data. Periodic, where sparse
attention minimizes the impact of random interference.

Increase the number of parameters for

training.

3 | P a g e

[25] LSTM
Raw Vibration

Signals + LSTM

Units

Good Moderate
Enhances standard LSTM by iteratively optimizing the number of
hidden layer nodes to balance information from input and forget

gates.

Single dataset used for testing.

[26] LSTM

Raw vibration

signals + LSTM
Units

Good Moderate

The stacked LSTM architecture extracts temporal features at

multiple abstraction levels, effectively capturing the inherent
structure of vibration signals.

Requires careful hyperparameter tuning.

[27] Bi-LSTM Wavelet Transform Excellent Good
This method integrates advanced signal preprocessing with Bi-

LSTM to enhance fault diagnosis.

The single dataset used for testing and

human expertise for WT.

[28] Bi-LSTM
Sliding Window

Input
Excellent Good

This method tackles the challenge of limited failure using transfer
learning combined with Bi-LSTM.

Tendency for overfitting.

[29]
Deep Auto

Encoders (DAE)

Frequency

Spectrum Input
Excellent Excellent

DAE excels at discriminating complex spatial characteristics.

These extracted features help pinpoint intricate structural
characteristics of bearing faults.

Performance depends on several

hyperparameters optimization.

Hybrid Deep Learning Models of CNN, LSTM, Bi-LSTM, and DAE

[30] CNN-LSTM
Convolutional and

Temporal Features

from RVS
Moderate Moderate

BiConvLSTM architecture removes information loss that occurs in

conventional CNN-LSTM pipelines by simultaneously processing

spatial and temporal features.

Accuracy for fault direction classification

remains lower (84.72%) compared to fault

type and location.

[31] CNN-LSTM
Convolutional +

Temporal Features
from RVS

Good Good
The blend of dilated convolutions, residual networks, and LSTM

gates results in a model capable of handling noise and fluctuating

conditions.

Performance depends on several
hyperparameters optimization.

[32] CNN/Bi-LSTM
Convolutional and

Bi-Temporal

Features from RVS
Excellent Good

PCA improves computational efficiency and reduces noise, while
the CNN/Bi-LSTM combination boosts the model’s ability to

process complex, time-series data.
A single dataset was used for testing.

[33] CNN-SVM CWT for RVS Good Moderate CNN extracts deep features from vibration signals, and the SVM
classifier provides fault classification.

Accuracy decreases with highly noisy
datasets.

[34] CNN-SVM Raw Vibration

Signals Excellent Good Feature representations extracted via CNN are mapped to a cleaner

space, enabling SVM to classify faults. Needs broader validation

[35] Deep Neural
Network (DNN) DAE Good Moderate The paper proposes a novel DNN-based method for fault diagnosis

of rotating machinery.
The DNN requires significant training time

compared to shallow networks.

[14] Softmax Classifier Ensemble DAE Good Good
This study addresses the limitations of individual deep learning

models by proposing an ensemble-based approach for rolling

bearing fault diagnosis.

Performance depends on several
hyperparameters optimization.

[36] Ensemble

Classification DAE Good Good The final classification relies on combining the outputs of multiple

classifiers using a majority voting strategy,
No state-of-the-art shallow and DL models

in comparative studies

Table 1 showcases recent studies on rolling bearing fault diagnosis using deep learning (DL) algorithms, which can

be divided into two main categories: single and hybrid models. Single models rely on one specific DL architecture(such as

CNN, LSTM, Bi-LSTM, or DAE) for fault diagnosis, whereas hybrid models combine two or more techniques to improve

classification accuracy and performance. However, the studies summarized in Table 1 often overlook the general limitations

inherent in single DL models, which are briefly outlined below:

• CNN: overfitting (low generalization) and struggle to capture temporal features in vibration signals [37].

• LSTM: can extract temporal features of vibration signals and improve model generalization through gate structures [38].

However, with large datasets, it struggles to capture non-linear characteristics and faces a slow convergence rate [38].

Moreover, it seeks information in one direction.

• Bi-LSTM: can process vibration signal sequences in bi-direction, which helps capture non-linear characteristics and

complex temporal information in large datasets. The overall generalization is also better with faster convergence rates.

However, complexity arises due to an increase in the number of hyperparameters for training.

• DAE is a simple and easy-to-train DL model that can reduce the dimensionality of high-dimensional feature vectors and

extract meaningful information [29]. However, hyperparameter tuning is required for efficient performance.

These challenges can be addressed by leveraging the individual strengths of single models for feature extraction

and pattern classification. 1) While some studies above have explored hybrid models and highlighted their enhanced fault

classification accuracy, these models are more or less limited to a maximum of two techniques. Nevertheless, this integration

often overlooks challenges such as the increased number of parameters associated with each model, the requirement for

precise tuning in these deeper networks to encounter obstacles such as exploding or vanishing gradients, and deterioration

along with the computational burden [39, 40]. Therefore, selecting parameters with efficient optimization in deeper neural

networks serves as an instrumental tool that enhances the true efficacy of the hybrid models while considering computational

time constraints. This is because traditional approaches to hyperparameter tuning often face time constraints due to high

computational costs. This study pioneers the application of an optimized hybrid model by integrating sparse DAE and Bi-

LSTM. Moreover, to maximize the performance of each DL model, a meticulous optimization process is employed via

Bayesian Optimization (BO). 2) In addition, many single and hybrid models above utilize signal processing techniques to

extract high-dimensional features instead of working direct with raw datasets. This reliance on signal processing integration

4 | P a g e

does not present a genuine end-to-end or off-the-shelf solution for fault diagnosis in rolling bearings that any user can readily

apply. It still requires domain expertise for feature extraction and preprocessing, which limits the accessibility and

practicality of these models in modern equipment with dynamic operating conditions. The contributions of this paper are

summarized as follows.

a) To develop autonomous and user-friendly fault diagnosis systems, a deep neural network with optimized parameters is

designed to avoid complex signal processing and manual feature extraction.

b) Sparse DAE with an optimized structure enhances the ability to extract non-linear and complex features without prior

experience or domain knowledge.

c) This sophisticated feature extraction and selection methodology integrates PCA and BO-based sparse DAE to minimize

computational burden and extract linear and non-linear features from vast raw datasets.

d) To solve the exploding or vanishing gradients problem and use the full potential of available multi-core CPUs and GPU

processors such as NVIDIA GeForce RTX Series, BO with parallel settings is implemented to enhance computation

and model training.

e) This solution can give adaptive and optimal configurations for any type of dataset due to the proposed BO’s global

optimization ability. This is useful when dealing with complex, black-box functions in fault diagnosis. Besides, BO’s

auto-tuning ability saves time and money because setting up parameters for complex deep neural networks before

training requires human expertise [41].

f) These extracted features, when fed into BO-based Bi-LSTM architecture, the proposed system with fine-tuned

parameters for specific data proficiently captures and interprets both forward and backward temporal information. The

improved spatial and temporal data analysis enables more precise detection and classification of unseen failures.

g) Unlike prior works that use BO for shallow models or limit its application to a small number of hyperparameters, our

framework applies the proposed BO to optimize 15 hyperparameters across both the sparse DAE and Bi-LSTM for

superior performance, with search ranges spanning 4–5 orders of magnitude [42-45].

h) In contrast to prior sequential BO methods that rely on the expected improvement (EI) acquisition function, our

approach introduces the Expected Improvement per Second Plus (EIps+) acquisition function and parallel settings,

reducing the optimization time by 63.33% for hyperparameter tuning.

i) Experiments are carried out on two different datasets based on bearings and gearboxes. The proposed algorithm achieves

an average fault classification accuracy of 99.60% and 99.99%, respectively. Furthermore, the proposed algorithm

reaches an average accuracy of 99.12% when tested on noisy data (SNR = 10 dB). It outperforms state-of-the-art

shallow and DL models in comparative studies.

This paper consists of the following sections: In Section (2), the theoretical and motivation background for PCA, DAE, Bi-

LSTM, and BO is presented, and in Section (3), the proposed algorithm is implemented. Section (4) presents experimental

and analytical results applicable to evaluation metrics, followed by a conclusion in Section (5).

2) Fundamentals for the Proposed Methodology

This section introduces the dimensionality reduction concepts for applying linear PCA to vibrational signals. It also

covers the basics of BO, DAE, and BO-DAE approaches, which are crucial for extracting non-linear features. Finally, we

will explore the theoretical framework of BO tuned Bi-LSTM. This paved the way for a robust fault classification system.

2.1 Principal Component Analysis (PCA)

In comparison to counterparts such as linear discriminant analysis (LDA), ICA, and t-distributed Stochastic

Neighbor Embedding (t-SNE), PCA can capture large datasets more simply with better interpretability. It is an unsupervised

learning technique that helps to transform the dimension of large datasets represented by 𝑛 × 𝑝 matrix. The goal is to

transform original 𝑝 variables into a smaller set of 𝑞 variables called principal components. Principal components are

orthogonal projections (perpendicular) of data onto lower-dimensional space. Ensure that the resulting components capture

significant variation within the data and are uncorrelated [46]. Basically, principal components are linear combinations of

the original variables and can be written as:

1 1 2 2k k k kp pPC a Y a Y a Y (1)

Y1, Y2 ,…, and Yp are the vibrational signals in the above equation, and PCk represents the k number of principal

components, coefficients 𝑎𝑘1, 𝑎𝑘2,…, 𝑎𝑘𝑝 forms the 𝑘th eigenvector of the covariance matrix S [46]. Since eigenvectors and

5 | P a g e

their corresponding eigenvalues are crucial for determining how much variance different principal components capture.

Thereupon, singular value decomposition (SVD) is employed to compute these principal components by decomposing the

data matrix 𝑌 into three matrices 𝑌 = 𝑈𝛴𝑉𝑇. For very large datasets of vibrational signals, we have incorporated SVD

alongside PCA. This is because SVD helps to decrease computational burden while maintaining the integrity of the data

[46]. Now, the equation has two orthogonal matrices, U and V. In the case of 𝛴, it is a diagonal matrix and contains singular

values of 𝑌. The columns of the V matrix represent principal components, and the singular values in 𝛴 correspond to the

square root of the eigenvalues of the covariance matrix of Y. This relationship is vital because it helps to determine how

well variance is captured from the vibrational signals. By doing so, variance is measured by the eigenvalues λi of the

covariance matrix. Subsequently, as shown in Table 2, the optimal number of principal components is selected by including

the cumulative variance (𝐶. 𝑉) criterion with a 95% threshold, as shown below:

 . 1

1

k

i
i
p

i
i

CV (2)

For optimal projection dimensionality reduction, identify the minimum number 𝑘 as:

 .

2

1

2

1

0 95

k

i
i
p

i
i

 (3)

According to Equation 3, in Figure 1, 𝑘 =276 principal components achieve a 95% variance for designated

vibrational signals and also help reduce noise while retaining the most essential and interpretable patterns [47]. This initial

step also helps reduce the computational load for subsequent tasks.

Cuff-off region

Figure 1. The vibrational signals total variance with a 95% threshold.

Table 2. SVD-based PCA with linear feature reduction.

Algorithm 1: Principal component analysis

Input: Data matrix Y, size n×p.

Output: Principal Components matrix P.

1: Standardize Data Matrix:

-Standardize data matrix Y for equal contribution to the analysis.

2: Perform SVD:

-Perform SVD on data matrix Y to attain U, Σ, and V, as Σ
TY =U V

3: Variance Assessment:

- Variance for every individual singular value calculated:
2
i , for i = 1to p
n -1

- Sigmoid function is represented as .
4: Select Number of Components:

6 | P a g e

- Determine the optimal 𝑘 via: .

2

1

2

1

0 95

k

i
i
p

i
i

5: Extract Principal Components:

 - Select the first k vectors from V.

 - From the Principal Components matrix P using these vectors.

6: End.

2.2 Deep Autoencoder (DAE)

The deep sparse autoencoder helps to capture complex non-linear patterns that the linear PCA misses. This hybrid

combination helps to capture a broad and complementary spectrum of features in vibration data that can be used for

clustering, classification, and anomaly detection.

a) Basic-Autoencoder

The three-layer architecture of a basic autoencoder is shown in Figure 2. Autoencoders are generative models that

capture non-linear, complex relationships [48]. As the autoencoder trains with unlabelled input data 𝑋, it compresses the

high-dimensional data from the first layer to the second layer into a lower-dimension space. A decoder tries to reconstruct

input data from the second to third layer after the encoding process has been completed. Since the autoencoder captures

essential features in the bottleneck layer 𝑍 (latent space), it can be perceived as a clever method to transform dimensions.

In addition to determining the reduced space dimension and capturing essential information, this layer assists in

reconstructing the original data at the output �̂�. Achieving efficient compression is impossible if the autoencoder is not

properly trained while minimizing reconstruction errors. In other words, inadequate training results in poor learning of

prominent features.

Figure 2. Autoencoder basic structure

With this in mind, iterative backpropagation is used to find the best encoding and decoding weights and biases for

the basic autoencoder with a single hidden layer during training. This unsupervised training process requires 𝑁 samples

without labels, which are obtained by high-dimensional input data as 𝑋 = {𝑋1, 𝑋2, , … , 𝑋𝑡 , … , 𝑋𝑁} , each 𝑋𝑡 is a v-

dimensional vector in ℛ𝐷ϰ . The encoder maps input vector X to a corresponding encoded vector Z ∈ ℛ𝐷(1)
 via a

transformation defined by the weights matrix 𝑊(1) ∈ ℛ𝐷(1)𝐷ϰ and bias vector 𝑏(1) ∈ ℛ𝐷(1)
 . Encoding function for each

input vector can be written as:

() () ()()1 1 1Z h W X b (4)

ℛ𝐷ϰdenotes high-dimensional space. (1) indicates the first layer. ℎ(1) is the non-linear encoder transfer function. A

positive saturating linear transfer function (satlin) is proposed in this study to help capture complex patterns in high-

dimensional vibrational data. In mathematical terms, the generic ‘satlin’ can be written as follows:

,

() ,

,

0 0

0 1

1 1

if Z

f Z Z if Z

if Z

 (5)

Input

X

Output

�̂�

Encoder

Bottle Neck (Z)

Decoder

7 | P a g e

When using ‘satlin’, Equation 4 latent feature representation for 𝑋𝑡 becomes:

() ()

() () () () () ()

() ()

, ()

() , ()

()

1 1

1 1 1 1 1 1

1 1

0 0

0 1

1 1

t t i

t t t t t t t t t t

t t t

if W X b

Z f W X b W X b if W X b

if W X b

(6)

Within the interval [0, 1] is the output that can be used for feature learning. The decoder then reconstructs the latent

space 𝑍 back to an approximation �̂� of the original input vector, using its own set of weights 𝑊(2) ∈ ℛ𝐷ϰ×𝐷(1)
 and bias

vector 𝑏(2) ∈ ℛ𝐷ϰ. Decoding for the latent features is defined as follows:

() () ()()2 2 2X h W Z b (7)

(2) indicates the second layer. ℎ(2) is the transfer function for the decoder. We have employed a pure line,

represented as f (Z)= Z and �̂� = 𝑊(2)𝑍 + 𝑏(2). Meanwhile, the scaled conjugate gradient ‘transcg’ function updates weight

and biases during training to minimize the cost function. Cost functions measure the error between inputs 𝑋 and outputs �̂�

[49].

2.2.1 Sparse Autoencoders

Sparse autoencoders introduce regularization techniques that enhance feature recognition [48]. Sparsity

regularization ensures that a few neurons are active for each vibrational input set in the hidden layer. For this reason, neurons

can recognize specific, possibly unique, characteristics of input data to learn more meaningful and distinct features. This

objective is achieved by adding a regularizer to the cost function. It is based on the average activation value of a neuron.

For a neuron ‘α’ in the hidden layer, the average activation over the training set is �̂�𝛼. Here, it is calculated as:

() ()()1 1

1

1 Tp h w X b (8)

Equation 8 has 𝑤𝛼
(1)𝑇, which is the α th row of the weight matrix 𝑊(1), 𝑏𝛼

(1)
is the α th entry of the bias vector 𝑏(1),

and 𝑋𝛾is the γ th training example. 𝛽 is the total number of training examples. For this study, the cost function is augmented

with a regularization term to induce low average activation levels (�̂�𝛼).

b) Sparsity Regularization

To add such a regularization term in this study, Kullback-Leibler (KL) divergence is used for sparsity that works to

keep the �̂�𝛼 close to a small value. This is achieved by comparing �̂�𝛼 with a small predefined sparsity parameter ρ. Sparsity

proportion ρ is a hyperparameter that can be used to set the average activation value [50]. In doing so, the sparsity

regularization term can be written as follows:

() ()

() log() () log()

1 1

1 1

1
1

1

D D

sparsity KL p
p p

 (9)

The idea behind this penalty function is that sparsity increases monotonically as �̂�𝛼 diverges from 𝜌 otherwise 𝐾𝐿(𝜌‖ �̂�𝛼) =

0 if �̂�𝛼 = 𝜌. As a result of KL divergence, it is added to the cost function to help the neurons in the hidden layer focus on

and respond to certain features in the training data.

c) L2 regularization

Furthermore, this study includes L2 regularization term to prevent excessive weights during training sparse

autoencoder. This modification controls overfitting and computes as follows:

()() ,2

1 1 1

1

2

l lL
l

weights
l

w (10)

Hidden layers are denoted by L. The input size of layer l is l , and 𝛽𝑙 is the output size of layer l. 𝑤𝛾𝛼
(𝑙)

 denotes

elements of the weight matrix of layer l. The overall cost function integrates these terms to balance reconstruction accuracy,

sparsity, and weight magnitude. The adjusted cost function for the proposed algorithm is based on mean-squared error (MSE),

and the overall cost function is now:

8 | P a g e

Here, K denotes the input dimension. In this modification, λ is the

L2 weight regularization coefficient, and δ is the sparsity regularization coefficient. To incorporate optimum sparsity

and control weight values, the proposed BO algorithm will optimize potential hyperparameters (such as λ, δ, and ρ) to

control the influence of regularization terms. As a result, the autoencoder can be trained to learn compact data representations

effectively, making it useful for tasks such as dimensionality reduction and feature extraction.

The basic methods for extracting features from high-dimensional vibrational data have been introduced so far. After

feature reduction and extraction, the next step is to train the model on the extracted features. To effectively train our proposed

model with the extracted features, we briefly introduce Bi-LSTM in the next section.

2.3 Bidirectional Long Short-Term Memory (Bi-LSTM)

LSTM possesses advanced design, and it is an exclusive type of RNN. This exclusive type incorporates a forget

gate, an input gate, an output gate, and a cell state. These gating mechanisms help mitigate the common problems of

exploding and vanishing gradients often met in RNNs when dealing with complex data identical to vibrational signals from

bearings. The architecture of the LSTM is illustrated in Figure 3.

Figure 3. Structure of LSTM cell.

At the time step , 𝑥() indicate the LSTM cell input data, ℎ() indicates the LSTM cell current output, whereas

()1h is the output from the previous time step ()1 . 𝑐() represent the cell state of the LSTM. Within the LSTM

cell, the following computation is executed:

The variables wxi ,wxo ,wxf , and wxg indicate the weight matrices for the input gate, output gate, forget gate, and cell

gate. Moreover, bi, bo, bf, and bg are the bias vectors corresponding to the input gate, output gate, forget gate, and cell state.

𝜎 symbolize the sigmoid function, respectively.

As mentioned earlier, LSTM models have shown better performance than RNNs in addressing problems related to

long-term dependency. At the same time, LSTM cannot consider past and future contextual information due to its only one-

direction sequence processing. A bi-directional mechanism is incorporated into the Bi-LSTM structure to overcome LSTM

2

2

1 1

1 N K

weights sparsity

L sparsity
regularizationregularizationmeansquarederror

adjusted mean squared error function

E X X
N

(11)

() ((), (),)

() (() ())

() (() ())

() tanh(() ())

() () () () ()

() (() ())

() () tanh(())

1

1

1

1

1

1

xi hi i

xf hf f

hgxg g

xo ho o

h f x h w

i w x w h b

f w x w h b

g w x w h b

c f c i g

o w x w h b

h o c

 (12)

tanh σ

+ ×

σ

×

σ

× tanh

f
τ
 i

τ
 g

τ
 o

τ

x
τ

c
τ -1

h
τ-1

c
τ

h
τ

9 | P a g e

constraints. As illustrated in Figure 4, this structure comprises two LSTMs: forward LSTM manages the sequence from the

past to the future and another from the future to the past (i.e., backward LSTM). The Bi-LSTM structure output is formed

by cascading vectors from both the forward and backward sequence outputs, as shown below:

ℎ𝑓() and ℎ𝑏() are the forward and backward sequence outputs. In this study, the Adam optimizer adaptively

tunes Bi-LSTM network interior parameters (𝜃), including gradient moments, weights, and biases for both forward and

backward LSTM cells [41]. For optimal convergence and loss function (𝜚) minimization, Adam updates parameters via

𝜃𝜏+1 = 𝜃𝜏 −
𝜂

√�̂�𝜏+𝜖
�̂�𝜏. Here, �̂�𝜏 and 𝑣𝜏 are adaptive moments of the gradients that help to improve weights and biases, 𝜖

is a constant value, and 𝜂 is the learning rate. This proposed mechanism with the concept of gradient clipping in Bi-LSTM

structure, helps decode complex dependencies in the vibrational signals of bearing [41]. For clarity, Adam optimizes model

parameters during training while BO tunes hyperparameters.

Figure 4. Description of the Bi-LSTM.

2.4 Bayesian Optimization (BO)

Deep learning models such as DAE and Bi-LSTM for optimal performance depend upon fine-tuned

hyperparameters. However, the global optimization of hyperparameters in the high-dimensional, black-box system is time-

consuming and a high-cost evaluation. BO tackles this challenge by leveraging a probabilistic model that explores the

hyperparameter space in an intelligent manner, lowering evaluation costs and improving model performance [51].

Gaussian Process (GP): BO leverages GP to model the unknown objective function probabilistically ().f x GP is a non-

parametric model defined by a mean function m()x and covariance function (),k x x , known as the kernel. These elements

facilitate accurate prediction of the function distribution that best fits the observed data. In general, for new input x , GP

assumes the underlying function values have a multivariate normal distribution as:

Wherem represents the mean vector andK is the covariance matrix. For a dataset 1={(,y)}ni i iD x , where yi are the

observed values of ()if x , GP calculates the posterior mean and variance predictions for a new point newx by utilizing the

observed inputsX , outputs Y , and the noise term
2
n , as follows:

Where I is the identity matrix. Mean Function: The mean function in our GP model is set to a constant mean,

which assumes that the objective function has a consistent baseline value across the hyperparameter space. This choice is

common in BO applications because it simplifies the model while still allowing the GP to capture complex patterns through

() () ()f bh h h (13)

 (m)() ,f x N K (14)

() (,)
12

posterior new new nx k x X K I Y (15)

() (,) (,) (,)
12 2

posterior new new new new n newx k x x k x X K I k X x (16)

x
τ-1

LSTM

x
τ

LSTM

x
τ+1

LSTM

LSTM LSTM LSTM

h
τ+1

 h
τ
 h

τ-1

y
τ-1

 y
τ
 y

τ+1

Backward

Layer

Input Layer

Output Layer

Forward

Layer

ℎ𝑏(τ)

ℎ𝑓(τ)

10 | P a g e

the covariance function. The constant value for the mean in our work is estimated from the observed point. Choice of Kernel:

The covariance function (),k x x defines the relationship between points in the hyperparameter space. We employ the Matérn

5/2 kernel, which is a popular choice for BO due to its flexibility and ability to model smooth but non-linear functions.

Moreover, the Matérn 5/2 kernel is less sensitive to small fluctuations, reducing the risk of overfitting to noisy observations.

The Matérn 5/2 kernel is defined as:

Where:

• d x x is the Euclidean distance between two points,

•
2

is the variance parameter,

• ℓ is the length-scale parameter, controlling the smoothness of the function.

This kernel is well-suited for our application as it balances smoothness and adaptive nature, allowing the GP to model the

complex, non-linear relationships in the hyperparameter space of the sparse DAE and Bi-LSTM in an effective manner.

Acquisition Functions: This decision-making process is based on a predefined strategy and auxiliary optimization to find

the next query point [51]. Employing the mean and variance predictions from the GP generates a scalar metric that indicates

the potential utility or improvement expected from evaluating candidate points. Expected Improvement per Second Plus

(EIps+): Expected Improvement (EI) and its variant, Expected Improvement per Second (EIps), are useful acquisition

functions that can be significantly improved to make computations more efficient. EI and EIps guide the selection of the

next query point to evaluate by balancing the trade-off between exploration (uncertain regions of the search space, where

𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 (.) is high) and exploitation (areas already identified as promising, where 𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(.) is high). At the same time,

to execute this task and enhance decision-making under computational resource constraints, lightweight EIps+ is

incorporated. The formula for standard EI is:

()bestxf is the best point observation so far. and are the cumulative distribution function and probability density

function of the normal distribution, respectively, and is a hyperparameter encouraging exploration. For EIps, the expected

evaluation time ()s x factored as:

Lightweight EIps+ introduces an adjustment for the uncertainty in computational cost:

()s x quantifies the uncertainty in evaluation time and is a hyperparameter balancing expected improvement

against time uncertainty. Advantages Over EI and EIpS: EIps+has the following benefits over EI and EIps.

1. While previous methods, such as EI and EIps, focus on enhancing the objective function, they do not account for

time and its associated uncertainties. In contrast, the EIps+ acquisition function incorporates time-aware exploration

and quantifies the associated uncertainties. This approach prioritizes the exploration of hyperparameter

configurations that offer high improvement potential and predictable evaluation times, avoiding overcommitment

to slow or uncertain evaluations.

2. By penalizing uncertain time estimates ()s x , EIps+ reduces its sensitivity to noisy or unstable evaluations.

3. The introduction of () ()ss x x the denominator in Equation 21 facilitates batch evaluations, thereby

maximizing hardware utilization (e.g., multi-core CPUs/GPUs).

. . .
, exp

2
2

2

5 5 5
() 1

3

d d d
k x x

l l l
 (17)

() (() ()) () () ()posterior best posteriorEI x x f x Z x Z (18)

)()

() ,
()

(
0 0,posterior best

posterior
posterior

x f x
x

x
Z if elseZ (19)

()
()

()

EI x
EIps x

s x
 (20)

()
()

() ()s

EI x
EIps x

s x x
 (21)

11 | P a g e

Integration of Parallel Settings: The extension of EIps+ to parallel settings allows for simultaneous evaluation of multiple

promising hyperparameter configurations. A batch method selects a group of promising options 1 2 nx x x{ , , , } for

evaluation together. Various workers (independent computational units) ran each evaluation to save time, the GP model is

updated once all assessments are done. This step helps to find better options in the next iteration and ensures faster

convergence while maintaining model performance and reducing optimization time.

3) Implementation of the Proposed Methodology

This section presents an implementation of the algorithm based on the aforementioned basic methods. The proposed

algorithm based on the PCA, BO-DAE, and BO-Bi-LSTM is shown in Figure 5.

Figure 5. Implementation of the proposed algorithm based on supervised learning

3.1 Data Collection

At first, Case Western Reserve University’s (CWRU) faulty bearing dataset is sorted to collect significant data for

further analysis. The dataset is categorized into three main types: 1) Inner race faults: The fault occurs on the inner race of

the bearing, which provides a path for rolling elements and is closest to the shaft; 2) Outer race faults: These faults are at

the outer ring of the bearing and interfaces with housing, 3) Ball faults: These faults are on the ball in ball bearing. These

Vibrational Signal

Analysis

Data

Normalization

Preprocess

the data

Reduced

 Data, 𝑋ሷ
PCA

Encoded

 Features, 𝑋ሷ
AE

Stacking data

Normal, fault?

Feature scaling

z-score normalization

Principle Component

Analysis

 Implementation of Bayesian Optimization

for DEA & Bi-LSTM Architectures

Initialize

Hyperparameters

Define the

parameter space

Specify the

objective function

Set the number

of iterations

Building/Update

surrogate function

Select sample by

optimizing the

acquisition function.

Evaluate the sample

with the

objective function.

Update the data

surrogate function

VII. Train with the best selected

model

Fit the model to the

training data via BO

Validate the model's

performance using cross-

validation techniques.

BO-based DAE and PCA

features trained with BO-

based Bi-LSTM architecture

VIII. Perform fault classification

Enhanced Spatial & Temporal

Analysis via BO based

Bi-LSTM architecture

Multi-fault Diagnosis

Output

End

IX. Display the fault classification

accuracy

Meeting
the stop
criteria?

CWRU faulty bearing

dataset (Raw Data)

II. Data Collection

III. Data Labelling

I. Start

IV. Data Analysis

V. Data Preprocessing & Feature Reduction

BO-DAE & BO-Bi-LSTM Best Models

VI. Reduced High-Dimensional Data

BO based Deep

Auto-Encoder

Advanced solution

for Bearing fault

diagnosis

𝑋ሷ
total

= {𝑋ሷ
PCA

, 𝑋 ሷ
AE

}

No

Yes

12 | P a g e

faults are artificially generated via electro-discharge machining (EDM) on the bearing components with fault diameters

ranging from 0.007 to 0.021 inches at different degrees of severity, as tabulated in Table 3. The dataset has ten data groups,

including faulted and normal bearings. In this test, a 3-horsepower (HP) reliance electric motor is mounted on the left-hand

side of the test bench, while the fan and drive end are equipped with 6205-RS JEM SKF deep groove ball bearings. We

collected vibration data at a sampling frequency of 12 kHz by mounting accelerometers (encoders) at particular points on

the motor housing, typically near its drive and fan ends, to capture vibration signals from bearings. Load conditions applied

to the motor shaft are 3 HP and a speed of 1772 revolutions per minute (rpm), which simulate common operational

conditions for such motors.

Table 3. Rolling bearing data set description

3.2 Standardization

Considering a dataset with dimension 𝑁ሷ × 𝑀ሷ , 𝑁ሷ gives total samples and 𝑀ሷ gives the number of features (e.g.,

CWRU measurements). After sorting the raw signal 𝑋ሷ
𝑟𝑎𝑤 = {𝑥ሷ1, 𝑥ሷ2, … , 𝑥ሷ(𝑀ሷ)} into ten different types and setting 𝑁ሷ =

10×117 =1170, where each 𝑥ሷ𝑖 =1024 are features of the vibrational signal in each sample that correspond to fault type or

healthy state. We utilized different standardization techniques such as min-max scaling, robust scaling, decimal scaling, and

L2 normalization. However, z-score normalization leads to more effective compressed representations for training deep

learning models as:

Where μ and σ represent mean and standard deviation vectors. Equation 22 ensures that features in each sample

have small gaps and a consistent range for reduction techniques like PCA and BO-DAE.

3.3 Feature Extraction

PCA transforms standardized data 𝑋ሷ
𝑠𝑡𝑑 into a reduced dimensional space 𝑋ሷ

𝑃𝐶𝐴 = 𝑈𝑘Σ𝑘𝑉𝑘 , where k =276

components are chosen to achieve a cumulative variance of 95%. With reference to Section 2.1, SVD-based PCA reduces

the dimensionality from 1024 to 276 components while maintaining the CWRU dataset’s core characteristics. SVD-based

PCA aims to collect linear spatial features, whereas BO-DAE is utilized to capture non-linear spatial features from 𝑋ሷ
𝑠𝑡𝑑.

Therefore, the sparse autoencoder architecture defined in Section 2.2 is designed. At its core, the bottleneck layer produces

a compressed representation 𝑍(𝑖) for the input data 𝑋ሷ
𝑠𝑡𝑑
(𝑖)

. For ideal features at the bottleneck output, the primary objective is

to minimize the total loss function while integrating the reconstruction loss, the sparsity penalty, and 𝐿2 regularization as:

() ()

2

2

1 1

1 i

std

N K
i

Total weights sparsity

L sparsity
regularizationregularizationmeansquarederror

adjusted mean squared error function

E X X
N

 (23)

By optimizing 𝐸𝑇𝑜𝑡𝑎𝑙, the proposed DAE learns to encode the essential non-linear features of the data into a bottleneck layer

(𝑋ሷ
𝐴𝐸= Encoder (𝑋ሷ

𝑠𝑡𝑑)) with fewer dimensions. 𝐸𝑇𝑜𝑡𝑎𝑙 can be improved by selecting optimal hyperparameter values before

training that balance complexity and generalization, capturing key features for high-dimension vibrational signal reduction,

Rolling bearing data set description

Bearing State Fault Degree Number Label Letter Labels Remarks

Rolling Ball faults 1 0.007 Label 1 RE007 Ball defects_07

Rolling Ball faults 2 0.014 Label 2 RE014 Ball defects 014

Rolling Ball faults 3 0.021 Label 3 RE021 Ball defects 021

Inner race defect 1 0.007 Label 4 IR007 Inner defects 07

Inner race defect 2 0.014 Label 5 IR014 Inner defects 014

Inner race defect 3 0.021 Label 6 IR021 Inner defects 021

Outer race defect 1 0.007 Label 7 OR007 Outer defects 07

Outer race defect 2 0.014 Label 8 OR014 Outer defects 014

Outer race defect 3 0.021 Label 9 OR021 Outer defects 021

Normal NA Label 10 Nor Normal

raw
std

X
X (22)

13 | P a g e

plus avoid overfitting. To achieve this, BO is employed to find a set of hyperparameters , including λ, δ, and other

hyperparameters mentioned in Table 4, by minimizing the aggregated validation loss. Implementation of the proposed BO-

DAE is shown in Table 5. The BO models the loss function (MSE) as a GP and uses the acquisition function EIps+ to decide

where to sample next:

(());min val valarg E R X (24)

Delved into Equation 24, BO’s primary objective is to minimize the objective function, where 𝐸val represents the

validation loss, and R represents the reconstructed output of the validation data. represent selected values from a search

range of hyperparameters.

Table 4. Optimized DAE Hyperparameters

The following sub-section gives the results obtained by implementing BO-DAE.

Table 5. Training DAE with BO and k-Fold CV

Algorithm 2: Proposed BO-DAE

Input: Data matrix 𝑿ሷ
𝒔𝒕𝒅 size 𝑵ሷ × 𝑴ሷ .

Output: Optimized Sparse Autoencoder model with hyperparameters .

1: Initialization:

-Define a range for hyperparameters, including Max epochs, δ, λ, and ρ, to initiate the BO

process.

2: k-Fold Cross-Validation (CV) Setup:

- Integrate k-Fold CV within the BO loop with k=5 (Dividing the dataset 𝑿ሷ
𝒔𝒕𝒅 into five

distinct subsets)

3: Evaluation with k-Fold CV:

-For each set of hyperparameters

1) Train Sparse Autoencoder with on 5-fold CV training data.

2) Evaluate each fold’s validation set.

3) Calculate MSE for the reconstruction error on the validation subset.

4: Results Aggregation:

-Aggregate the MSEs from 5 folds to calculate an average MSE for the set of

hyperparameters .

5: Optimization:

- Apply BO to analyze the aggregated MSE results from the 5-fold CV

 - Determine the next set of hyperparameters for evaluation in parallel to evaluate via

maximizing the acquisition function (Parallel EIps+), guided by the GP model.

6: Iteration:

- Utilize the parallel setup to evaluate multiple configurations simultaneously, reducing

overall optimization time. Repeat steps 3 to 5 until the 30th BO iterations are done

7: Final Selection (Best Model):

- Find the optimal set of hyperparameters that minimize the objective function (i.e.,

aggregated MSE), indicating the best model performance on unseen data subsets.

8: End.

During training, BO uses 30 iterations to fine-tune a set of critical hyperparameters. Based on our experiments, 30

iterations provided a good balance between computational cost and convergence to optimal hyperparameters. Meanwhile,

BO is integrated with k-fold CV to lower the MSE (objective function) on a validation dataset. The process took 10,598.6

sec, and the best MSE of 0.10083 was observed on the 24th iteration, demonstrating model accuracy in reconstructing data

from compressed representations with optimized hyperparameters. The integration of parallel BO reduced the total

Optimized DAE Hyperparameters

Hyperparameters Search Range BO Selected Parameters

L2 Weight regularization coefficient (λ) [1×10-5 to 1×10-2] 0.009690540632201

Sparsity regularization coefficient (δ) [1×10-3 to 1] 0.070407786152138

Hidden size [100 to 200] 198

Sparsity proportion (ρ) [0.01 to 0.5] 0.451387076690407

Max epochs [100 to 500] 485

Scale data NA 0

14 | P a g e

optimization time by approximately 35% compared to traditional BO. The coefficient for the L2 weight regularization is λ,

which avoids overfitting by applying a penalty proportional to the square of the magnitude of the weights. The search range

is set between [1×10-5 to 1×10-2], with BO selecting 0.009690540632201. The number suggests that a generalizable model

with strong regularization is chosen. This is because it is close to the upper limit of the range. The sparsity regularization

coefficient (δ) encourages the model to learn sparse representations by implementing a penalty for non-zero activations in

the hidden layers. The search range spanned from [1×10-3 to 1]. BO suggests the value of 0.070407786152138. Under those

circumstances, an optimal level of sparsity enforcement allows the model to maintain a flexible approach to learning from

the data. The total number of neurons in the bottleneck layer of the autoencoder is specified by the hidden size, which

determines the ability of the model to compress input. For instance, the selection of 198 reflects a balanced approach to

model complexity, allowing for feature extraction without overfitting. From a range of [0.01, 0.5], ρ =0.451387076690407

is selected, indicating a high level of neuron activation in the bottleneck layer that supports the model’s comprehensive

representation of features. With a search range from [100, 500], 485 epochs are chosen via BO, which gives an optimized

value of 𝐸𝑇𝑜𝑡𝑎𝑙 = 0.2555. These results prove robust training with better convergence and in-depth learning without

overfitting.
t-SNE before feature reduction t-SNE after feature reduction

D
im

en
si

o
n

 2
 (

Y
-A

x
is

) Labels

High diffusion Less diffusion

Dimension 1 (X-Axis) Dimension 1 (X-Axis)

D
im

en
si

o
n

 2
 (

Y
-A

x
is

)

Figure 6. t-SNE representation of before and after feature reduction 𝑋ሷ

𝑇𝑜𝑡𝑎𝑙.

3.3.1 Feature Selection

After collecting features from 𝑋ሷ
𝑃𝐶𝐴 = 𝑃𝐶𝐴(𝑋ሷ

𝑠𝑡𝑑) and BO-DAE (𝑋ሷ
𝐴𝐸 = Encoder (𝑋ሷ

𝑠𝑡𝑑)), the datasets are organized

together for each of the fault types as 𝑋ሷ
𝑇𝑜𝑡𝑎𝑙 = {𝑋ሷ

𝑃𝐶𝐴 , 𝑋ሷ
𝐴𝐸}. These reduced features represent the vibrational signal’s linear

and non-linear contents in the bearing structure. We employ a correlation-based feature selection method to optimize feature

selection for data processing further. The theoretical foundation is based on the Pearson correlation coefficient, which

evaluates the relationship between two variables:

15 | P a g e

()()

(,)

() ()2 2

ii
i

ii

X X Y Y
corr X Y

X X Y Y
 (25)

Where 𝑋ሷ
𝑖 and 𝑌ሷ present features and targets. 𝑋ሷ̂

𝑖 and 𝑌ሷ̂ present mean values. In this model, we compute an absolute

correlation for each feature with the label. Features are then ranked based on their correlation scores, with higher values

indicating a stronger connection to the label. Figure 6 with the help of t-SNE, clearly illustrates how features that are

significant to the target variable are identified and prioritized to expedite learning while improving spatial interpretability

for future modelling [52].

3.4 Network Mapping

In the next step, the proposed model learns the relation between input 𝑋ሷ
𝑔and 𝑌ሷ

𝑔 output with the help of BO-based

Bi-LSTM architecture in the offline training mode to classify bearings faults. It is mathematically expressed based on the

following equation:

 ()g gY X (26)

Here, ℝ presents intelligent architecture attained to leverage the temporal characteristics of BO-Bi-LSTM. In this

context, the input sequence expanded as 𝑋ሷ
𝑔 = [𝑥ሷ𝑔

1, 𝑥ሷ𝑔
2, 𝑥ሷ𝑔

3, 𝑥ሷ𝑔
4, … 𝑥ሷ𝑔

𝑒 , … , 𝑥ሷ𝑔
𝐿]. Each 𝑥ሷ𝑔

𝑒 is a column vector representing feature

inputs with a total length L of data (also the length of time) that feeds into the input layer (range of 𝑒 is 1 to 𝐿). Now, the

input data is arranged as follows:

, , , , , , , ., , .; , , , .,1 2 1 2 1 2
1 2 3 4 1 1 1 2 2 2 ; L L L

n g g gX X X X X X x x x x x x x x x (27)

With reference to Table 2, there are 10 target labels, namely different types of inner, outer along with bearing faults

and normal operations. Under those circumstances, the target labels are organized as follows:

, , , , ,1 2 3 4 nF Y Y Y Y Y (28)

Each 𝑌ሷ
𝑗 corresponds to the classified fault type for the 𝑗th sequence, and 𝑛 represents the total number of sequences

in the dataset. After mapping, preprocessed data is segmented for training and validating the BO-optimized Bi-LSTM model

across defined folds. Under those circumstances, the best-selected intelligent architecture will classify bearing faults. Table

6 and Table 7 present the BO-based Bi-LSTM best-selected intelligent architecture and optimized parameters.

Table 6. BO-based Bi-LSTM architecture (ℝ)

BO-based Bi-LSTM architecture

 Layer Architecture Description Remarks

1) Sequence Input Initiates processing of variable-length sequences. Matching input feature size

2) Bi-LSTM Layer Crucial for capturing complex temporal patterns. Bi- temporal learning

3) Normalization Layer Stabilizes learning via normalizing layer outputs. Improve training efficiency

4) Dropout Layer Prevents overfitting via randomly omitting units. Ensure model generalization

5) Bi-LSTM Layer Bi-LSTM Layer 2 Bi-lstmLayer-02

6) Normalization Layer Normalization Layer 2 batchNormalizationLayer-02

7) Dropout Layer Dropout Layer 2 dropoutLayer-02

8) Bi-LSTM Layer Bi-LSTM Layer 3 Bi-lstmLayer-03

9) Normalization Layer Normalization Layer 3 batchNormalizationLayer-03

10) Dropout Layer Dropout Layer 3 dropoutLayer-03

11) Fully Connected Transforms Bi-LSTM features for classification. Dense layer with 100 neurons

12) ReLU Layer Introduce non-linearity to help the model learn complex patterns.(reluLayer-01)

13) Dropout Layer Mitigate overfitting post-feature extraction and enhance generalization.

14) Fully Connected Align output dimension with target classes for classification.

15) Softmax Layer Converts outputs to probabilities. 𝑌ሷ
𝑔=softmax (W. ℝ(𝑋ሷ

𝑔)+b)

16) Classification Layer Assign the most probable class to each sequence for fault classification.

16 | P a g e

3.4.1 BO-based Bi-LSTM architecture (ℝ)

BO incorporates three Bi-LSTM layers to capture temporal dependencies in both forward and backward directions

of the input sequence. However, vibration sequence can vary significantly in amplitude depending on factors such as sensor

placement, operating conditions, and even equipment age. Therefore, normalization layers ensure that features extracted

by the model are a true reflection of the underlying faults and are not skewed by signal variations that are not relevant. In

addition to improving convergence, it reduces the risk of becoming stuck in local optima and enhances overall performance.

To further improve the performance, the ReLU layer introduces non-linearity into the model, allowing it to learn these

intricate relationships and effectively differentiate between different fault types. This is because vibration sequences exhibit

complex relationships between features. Especially with Bi-LSTM layers, it enhances model computation compared to

Sigmoid and Tanh. After capturing patterns through the Bi-LSTM layers, the hidden layer output is sent to a fully connected

layer as an input, where the refined information is categorized. We can distinguish between normal and abnormal rolling

element-bearing states by combining softmax and classification layers. However, given the dynamic nature of fault operating

environments in rotary machines, it is difficult to include all possible fault scenarios; therefore, training samples are usually

too small. This may expose the conventional Bi-LSTM model to overfitting states, plus the hit-and-trial method of selecting

hyperparameters is inefficient. Therefore, the following sub-section provides a comprehensive overview of these problems

and the criteria used to address them.

3.5 Overfitting Problem

It is understood that overfitting is a critical issue in fault classifications, as rolling bearing datasets are limited, and

deep neural networks often overfit over these limited training datasets [41]. It is possible to fit each neural network on the

same dataset and average the prediction from all models. However, it is impossible to do so on the scale of rotary machines.

Therefore, dropout is a good solution for overfitting. It is a regularization tool that includes training Bi-LSTM with various

non-repetitive sub-networks and averaging them. It eliminates neurons from an initial network with the probability 𝑷ሷ . This

probability rate is enhanced with the help of BO, presented in Table 7. As a result, the proposed architecture (ℝ) generalizes

well to new data, reduces overfitting, and improves the model stability to diagnose faults accurately on unseen vibration

signals.

Table 7. Optimized Bi-LSTM Hyperparameters

3.6 Hyperparameter Selection and Training

During training with extracted features, BO aims to build a Bi-LSTM architecture and improve learning by

exploring a predefined hyperparameter space to maximize validation performance. This process involves carefully setting

the search space and tailoring the objective function. The BO objective function incorporates k-fold cross-validation, which

trains the model on diverse subsets of data and computes the average validation accuracy to guide the optimization process.

The accuracy metric for multi-class is defined as:

𝑆ሷ is the total number of samples in the validation set for fold 𝑧. ,Pred vald d
Y Y are the predicted and actual labels of the

Optimized Bi-LSTM Hyperparameters

Hyperparameters Search Range BO Selected Parameters

Hidden units for Bi-LSTM Layer [50 to 200] 89

Initial Learning Rate (ILR) [1×10-4 to 1×10-2] 0.0099

Mini-Batch Size (MBS) [20 to 128] 94

Learn Rate Drop Factor (LRDF) [0.1 to 0.9] 0.1943

Learn Rate Drop Period (LRDP) [1 to 50] 38

Gradient Threshold (GT) [0.5 to 2] 1.5937

Number of Epochs (NE) [100 to 300] 173

Number of Bi-LSTM Layers (NBL) [1 to 5] 3

Dropout Rate (𝑷ሷ) [0.1 to 0.5] 0.2230

Pr()

 1

1

1
AvgValAccuracy

S

ed valu d d
d

z

Y Y

u S

(29)

17 | P a g e

𝑑th sample in the validation set. The expression == generates 1 when the expression within it is true and 0 otherwise.

 The negated value obtained via Equation 29 assists BO in pinpointing the optimal set of hyperparameters, as

presented in Table 7. This meticulous adjustment of hyperparameters—including hidden units, initial learning rate (ILR),

mini-batch size (MBS), learning rate drop factor (LRDF), learning rate drop period (LRDP), gradient threshold (GT),

number of epochs (NE), number of Bi-LSTM layers (NBL), and dropout rate (𝑷ሷ) [41]. Specifically, hidden units help to

learn the complex patterns of the vibrational signal. BO selected 89 hidden units per Bi-LSTM layer, which helps to maintain

an optimal balance between model complexity and mitigating overfitting issues. ILR = 0.0099 and MBS = 94 aim for fast

convergence with acceptable noise. This is because ILR controls model weights during training, whereas MBS affects the

stability and speed of the learning process. To improve this learning process during training, LRDF controls the size of the

decrease in the learning rate, while the LRDP specifies how frequently (in epochs). GT prevents exploding gradients.

Gradients are allowed larger updates (GT =1.5937 threshold) for faster learning, balanced by the learning rate factor, and

drop (LRDF =38 epochs, LRDP = 0.1943 factor) in the training cycle. Incorporating three Bi-LSTM layers helps capture

complexity without excessive burden. As a result, the model achieved robust performance metrics, including a training

accuracy of 100% in every iteration. On the validation set, the model exhibited the best accuracy of 90.89 % at the 28th

iteration with an evaluation time of 1.82 seconds.

50

100

-0.85 -0.86

150

3D Scatter Plot for Hidden Units

Y

-0.88

X

200

-0.9 -0.9
-0.92

0

-0.85

0.005

-0.86

3D Scatter Plot for ILR

Y

-0.88

X

0.01

-0.9 -0.9
-0.92

0

-0.85

50

-0.86

3D Scatter Plot for MBS

Y

100

-0.88

X

-0.9 -0.9
-0.92

0

-0.85

0.5

-0.86

3D Scatter Plot for (LRDF)

Y

-0.88

X

1

-0.9 -0.9
-0.92

20

-0.85 -0.86

40

3D Scatter Plot for (LRDP)

Y

-0.88

X

60

-0.9 -0.9

0.5

1

-0.85 -0.86

1.5

3D Scatter Plot for (GT)

Y

-0.88

X

2

-0.9 -0.9
-0.92

100

-0.85

200

-0.86

3D Scatter Plot for (NE)

Y

-0.88

X

300

-0.9 -0.9
-0.92

3

-0.85

4

-0.86

3D Scatter Plot for (NBL)

Y

-0.88

X

5

-0.9 -0.9
-0.92

0.2

-0.85 -0.86

0.3

3D Scatter Plot for Dropout Rate (P)

0.4

Y

-0.88

X

-0.9 -0.9
-0.92

 H
id

d
e
n
 U

n
it

s

In
it

ia
l

L
e
a
rn

 R
at

e

M
in

i-
B

at
ch

 S
iz

e

L
e
a
rn

 R
a
te

 D
ro

p
 F

ac
to

r

L
e
a
rn

 R
a
te

 D
ro

p
 P

er
io

d

G
ra

d
ie

n
t
T

h
re

sh
o

ld

N
u
m

b
e
r

o
f

E
p
o

c
h
s

N
u
m

b
e
r

o
f

L
a
y
er

s

D
ro

p
 o

u
t
R

at
e

High Accuracy

Area

Figure 7. Hyperparameter variation across observed accuracy (𝑋) on validation sets and BO estimated accuracy (𝑌).

Figure 7 shows the estimated and observed accuracy of the model for 30 iterations. As the accuracy metric increases,

BO tends to pick hyperparameter values that are not too big or too small to ensure that the model is balanced and works

best without overfitting or underfitting. After optimizing hyperparameters via BO and 5-fold CV for efficiency, the best

model undergoes further exhaustive 10-fold CV to assess its performance across several metrics. Thus ensuring robust

validation and testing.

4) Results and Discussion

This section meticulously assesses the proposed fault classification algorithm across diverse conditions, including

noise settings, comparison with shallows and DL models, and critical feature extraction techniques. It also has confusion

matrix analysis and ablation studies (removing PCA, BO-DAE, and BO-based Bi-LSTM) that confirm the model’s reliance

on both spatial (space) and temporal (time) information.

4.1 Fault Classification Accuracy

In this section, we evaluate the fault classification accuracy of the best selected via different metrics. Apart from

the accuracy metric (29), precision, recall, F1-scores, and Cohen's Kappa metrics are used to validate the model performance.

18 | P a g e

These metrics are mathematically represented as follows.

TP and FP represent true positive and false prediction, whereas FN stands for false negative. op is observed

agreement and ep is expected agreement by chance.These metrics are used to monitor and measure the model’s classification

accuracy.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Label 5

Label 4

Label 3

Label 2

Label 1

 Average Test Precision

 Average Test Recall

 Average Test F1-Scores

Label 6

Label 7

Label 8

Label 9

Label 10

Figure 8. A radar chart presents precision, recall, and F1 scores for each class with a 10-fold CV (Label info Table 3)

After segmenting the selected features into training and validation sets 𝑋ሷ
𝑡𝑟𝑎𝑖𝑛, 𝑋ሷ

𝑣𝑎𝑙, 𝐹𝑡𝑟𝑎𝑖𝑛and 𝐹𝑣𝑎𝑙, as described in

subsection 3.3.1; we proceed to train and evaluate the best model ((,)g gY X), 𝑔 present any specific sequence.

Thereupon, metrics are recorded and averaged across folds to determine the model’s overall effectiveness. While analyzing

the radar chart in Figure 8, Label 1 exhibited the highest precision at 0.9938, indicating a solid model accuracy. In contrast,

Label 2 had the lowest precision but a satisfactory recall of 0.9, suggesting a balance between these evaluation metrics. The

highest recall was observed for Label 4 at 0.9909, demonstrating the model’s effectiveness in identifying true positives.

Label 10 achieved the highest F1-Score of 0.9819 for steady-state values, with Label 4 leading in non-steady-state scenarios

with an F1-Score of 0.9952.

 Precision
TP

TP FP
 (30)

 Recall
TP

TP FN
 (31)

Precision Recall

F1-Score 2
Precision Recall

 (32)

Cohen's Kappa
1
o e

e

p p

p
 (33)

19 | P a g e

1

2

3

4

5

6

7

8

9

10

Confusion Matrix for Entire CWRU dataset

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0.1%

0

0

0

0

1

0.1%

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0.1%

0

0

0

0

0

0

0

0

0

0

0

1

0.1%

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0.1%

0

0

117

10.0%

115

 9.8%

117

10.0%

116

9.9%

116

9.9%

116

9.9%

117

10.0%

T
ru

e
C

la
ss

117

10.0%

117

10.0%

117

10.0%

Predicted Class

100%

0.0 %

100%

0.0 %

98.3%

1.7 %

100%

0.0 %

100%

0.0 %

99.2%

0.8 %

100%

0.0 %

99.1%

0.9 %

100%

0.0 %

99.2%

0.8 %

0

20

40

60

80

100

100%

0.0 %

98.3%

1.7 %

100%

0.0 %

100%

0.0 %

100%

0.0 %

99.1%

0.9 %

99.1%

0.9 %

100%

0.0 %

99.1%

0.9 %

100%

0.0 %

99.6%

0.4 %

Figure 9. Confusion matrix of the proposed algorithm. (Label info Table 3)

Using predicted and actual classes, Figure 9 illustrates the overall accuracy of the dataset, demonstrating the efficacy

of a confusion matrix tailored to each fault type to evaluate the efficacy of the proposed algorithm. Using this matrix, we

have assessed how effective the algorithm is in distinguishing between fault types, which achieves 99.60% classification

accuracy for the CWRU dataset. These findings, with an average 10-fold CV training accuracy of 100%, highlight the

model’s robust performance across diverse testing scenarios.

Figure 10. Accuracy Bar Chart

A bar chart in Figure 10 illustrates the importance of macro values when evaluating a classification model’s

performance in a variety of fault categories, especially in datasets with uneven class distributions. According to its macro

precision score of 99.50%, macro recall score of 99.60%, and macro F1-Score of 99.57%, this model is reliable and well-

balanced in classification. To further highlight model robustness in complex classification scenarios, training and testing

accuracies represent an average of 100% for training and 91% for a 10-fold cross-validation test. These well-tested metrics

84%

86%

88%

90%

92%

94%

96%

98%

100%

Accuracy Bar Chart

20 | P a g e

ensure that all classes are assessed uniformly. Thus preventing any single metric from skewing the overall performance

assessment.

4.2 Evaluation under Noisy Events

Considering the working conditions under which mechanical equipment operates, data collected under variable

conditions might be contaminated with severe noise conditions. To rigorously evaluate the proposed algorithm’s robustness,

it is deliberately injected with Gaussian white noise under extreme noise conditions at signal-to-noise ratios (SNRs) of 10

dB, 6 dB, and 2 dB. This way, the algorithm’s performance is tested under realistic and challenging acoustic conditions,

ensuring it can handle diverse acoustic scenarios. The classification results under different noise levels are presented in

Table 8.
Table 8. The recognition rate of faults under noise conditions

The high fault classification accuracy of 98.36% for the entire (CWRU) dataset demonstrates the robustness of the

proposed feature against noise. In comparison, when the denoising Wiener Filtering (WF) technique is applied [53], defined

as WF (𝐻(𝑓) =
𝑃𝑥𝑥(𝑓)

𝑃𝑥𝑥(𝑓)+𝑆𝑣𝑣(𝑓)
) and trained for 10 dB noise levels, dataset accuracy was 98.12%. This approach removes noise

using a periodogram to estimate and simplify noise power spectrums 𝑆𝑣𝑣(𝑓) using the signal’s median power 𝑃𝑥𝑥(𝑓). We

have enhanced signal clarity by mitigating additive Gaussian noise by leveraging FFT with WF filtering and IFFT

conversion. We also compared with the robust discrete wavelet transform-based denoising technique (DWT-DT) [54].

However, samples contaminated with 10 dB noise levels received a classification accuracy of 97.95%, macro precision of

97.95%, macro recall of 97.97%, and macro F1-Score of 97.95% for the DWT-DT model. Keeping this in mind, the proposed

features perform well.

To further highlight the resistance of our proposed framework, we have tested the baseline shallow ML and DL

models under low SNR conditions by injecting Gaussian white noise into the vibration signals. The results are tabulated in

Table 9. Decrement in accuracy (%) measures the average performance drop under noise (10 dB, 6 dB, 2 dB) compared to

clean data. These additional experiments and analyses demonstrate that our framework achieves state-of-the-art

performance with minimal decrement (1.3%), outperforming SVM (14.55%) and KNN (18.63%) due to robust features and

optimized hyperparameters.
Table 9. Comparisons of proposed framework and baseline models under low SNR conditions

4.3 Comparison with Shallow Networks

In this section, we compared traditional shallow networks such as Support Vector Machine (SVM) with a Medium

Gaussian kernel, Cosine K-Nearest Neighbors (KNN), Logistic Regression kernel (LRK), and Naïve Bayes Classifier (NBC)

against a proposed algorithm using PCA & BO-DAE features on the CWRU dataset. The assessment is based on

classification accuracy under normalized and proposed feature sets with robust 10-fold CV. The classification accuracy,

macro precision, recall, and F1-Score for all shallow networks are tabulated in Table 10. Considering the dynamics and

complicated operating environments for bearing, these shallow networks are prone to mis-convergence and lower accuracy

rates.

The recognition rate of faults under noise conditions

Noise (dB) Entire Dataset Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1-Score (%)

10 dB 99.12 99.23 99.24 99.23

6 dB 98.86 98.63 98.66 98.64

2 dB 97.10 97.10 97.20 97.12

 Average (%) 98.36 98.32 98.40 98.33

Comparisons of proposed framework and baseline models on the CWRU dataset under low SNR conditions (10 dB, 6 dB, and 2 dB)

Algorithms Selected Features
Entire Dataset

Accuracy

Accuracy @

10 dB

Accuracy @

6 dB

Accuracy @

2 dB

Decrement in

Accuracy (%)

SVM Normalized features 80.68% 78.55% 73.10% 55.18% 14.55%

KNN Normalized features 75.21% 68.50% 62.30% 52.80% 18.63%

LSTM Proposed Features 98.03% 97.76% 94.20% 88.50% 04.60%

Bi-LSTM Proposed Features 99.32% 98.46% 96.98% 94.12% 02.82%

 Proposed Algorithm + Proposed features 99.60% 99.12% 98.86% 97.10% 01.30%

21 | P a g e

Table 10. Comparisons of diagnostic results with shallow networks with 10-fold CV.

We tested 12-15 shallow networks for given scenarios and presented models that stood out, but our proposed model

still outperformed them all. Figure 11 presents the confusion matrix for the SVM model with normalized features. It provides

better results than other shallow networks. However, a 49.5% decrease in accuracy is observed for SVM with the proposed

features. On the contrary, despite being less adept at handling reduced features, the KNN performed well with the proposed

features. It underlines the importance of feature selection for improving classification.

The choice of hyperparameters, such as the kernel function, box constraint, and kernel scale, plays a crucial role in

enhancing SVM classification performance [55]. For validation, BO-optimized SVM models using the proposed features

achieved 80.68% accuracy with a Gaussian kernel function, a kernel scale of 29.26, and a box constraint of 156.86. The box

constraint determines the trade-off between maximizing generalization and minimizing classification errors. A high value

of 156.86 makes the model more complex and imposes stronger penalties for misclassifications. However, when BO

employed a polynomial kernel function with a scale of 1 and a box constraint of 9.93, it suggested that SVM used a non-

linear boundary to separate the data better. The lower box constraint allowed the model to generalize better with low

penalties for misclassifications, leading to a substantial improvement in accuracy of 93.76%.

Predicted Class

1

2

3

4

5

6

7

8

9

10

T
ru

e
C

la
ss

Confusion Matrix for Entire CWRU dataset

56

4.7%
61

5.2%

44

3.76%

39

3.3%

6

0.5%

103

8.8%

19

1.6%

15

1.3%

4

0.3%

1

0.1%

25

2.14%

38

3.25%

1

0.1%

9

0.8%

8

0.7%

117

10%

117

10%

117

10%

117

10%

108

9.23%

87

7.4%

78

6.7%

47.9% 52.1%

37.6% 73.0%

88.0% 12.0%

100% 0.0%

100% 0.0%

92.3% 7.7%

100% 0.0%

100% 0.0%

74.4% 25.6%

66.7% 33.3%

TPR FNR

80.7% 19.3%

Overall

Figure 11. Confusion matrix of the SVM with normalized vibrational features.

Comparisons of diagnostic results with shallow networks

Algorithms Selected Features
Entire Dataset

Accuracy (%)

Drop off in

Accuracy (%)

Macro

Precision

Macro

Recall

Macro

F1-Score

SVM Normalized features 80.68% 18.92% 80.68% 84.43% 79.91%

KNN Normalized features 75.21% 24.39% 75.39% 79.82% 75.28%

Logistic Regression Normalized features 77.26% 22.34% 77.26% 78.51% 77.08%

Naïve Bayes Normalized features 51.54% 48.06% 51.54% 57.42% 52.11%

SVM Proposed features 50.10% 49.50% 50.10% 53.34% 49.71%

KNN Proposed features 77.18% 22.42% 77.44% 80.50% 76.84%

BO-SVM Proposed features 84.20% 15.40% 87.10% 84.20% 83.62%

BO-SVM Normalized features 93.76% 05.84% 94.42% 93.76% 93.73%

Proposed Algorithm Proposed features 99.60% 99.50% 99.60% 99.57%

22 | P a g e

GRU & Proposed Features

MLP & Normalized features

LSTM & Proposed Features

LSTM & Normalized features

1d-CNN & Normalized features

1d-CNN & Proposed features

BO/1d-CNN & Normalized features

Bi-LSTM & Proposed Features

Proposed Algorithm & Proposed features

0.0 0.2 0.4 0.6 0.8 1.0

Training Accuracy

A
lg

o
ri

th
m

s
&

 S
el

ec
te

d
 F

ea
tu

re
s

 Cohen's Kappa

 Macro F1-Score

 Macro Recall

 Macro Precision

 Entire Dataset Accuracy

 Testing Accuracy

 Training Accuracy

D
e
sc

e
n
d

in
g

 o
rd

e
r

A
sc

e
n
d

in
g

 o
rd

e
r

Comparisons of diagnostic results with deep neural networks

Algorithms Selected Features
Training

Accuracy

Testing

Accuracy

Entire Dataset

Accuracy

Macro

Precision

Macro

Recall

Macro

F1-Score

Cohen's

Kappa

GRU Proposed Features 40.23% 23.90% 72% 26.00% 26.27% 26.10% 44.33%

MLP Normalized features 99.70% 50.00% 95.3846% 95.539% 95.385% 95.462% 94.872%

LSTM Proposed Features 100% 75.47% 98.0342% 98.081% 98.034% 98.037% 97.816%

LSTM Normalized features 100% 65.40% 97.351% 97.50% 97.35% 97.37% 97.10%

1d-CNN Normalized features 96.952% 42.393% 42.393% 46.161% 41.414% 41.578% 36.162%

1d-CNN Proposed features 95.44% 29.402% 29.402% 29.886% 29.275% 28.311% 21.667%

BO-1d-CNN Normalized features 100% 78.923% 78.547% 77.919% 80.405% 78.219% 76.186%

Bi-LSTM Proposed Features 99.99% 86.8376% 99.32% 99.00% 99.00% 99.00% 99.00%

Proposed Algorithm Proposed features 100% 91% 99.60% 99.50% 99.60% 99.57% 99.53%

Figure 12. Comparison of diagnostic results with deep neural networks with 10-fold CV.

4.4 Comparison with Deep Neural Networks

In this evaluation, we compared the performance of various deep neural networks for fault classification tasks. The

results are visualized in Figure 12, "Descending order" and "Ascending order" in the table to indicate how the algorithms

are arranged according to their stepwise implementation. Apart from other evaluation metrics employed, we included

Cohen’s Kappa coefficient (𝐶𝜅) as an additional measure, Kappa assesses how much two observers agree on categorizing

items, effective for subjective and unordered categories. With 𝐶𝜅 = 99.53%, the proposed algorithm with proposed features

demonstrates robust performance.

In models like the gated recurrent unit (GRU) and 1d-CNN, performance falters when applied with proposed

features, even after incorporating ReLU activation, normalization, and dropout layers. For instance, the GRU model

achieved an average testing accuracy of 23.90%, with 𝐶𝜅 = 44.33%, reflecting significant challenges in generalizing the

learned patterns. The Multi-Layer Perceptron (MLP) model with normalized features and LSTM (both with proposed and

normalized features) presented a dichotomy in performance. For illustration, MLP with epoch =100 and batch size =150

obtained via the hit and trial hyperparameters settings cannot be generalized well with a testing accuracy of 50%. LSTM,

especially with proposed features, showed superior performance (average training accuracy of 100%, CWRU dataset

classification of 98.03%, 𝐶𝜅 = 97.82%). This indicates that the proposed spatial features integrate well with temporal

learning mechanisms.

To further enhance performance, we introduced the BO-1d-CNN model, with 12 optimized hyperparameters and

multiple relevant layers. This model outperforms conventional 1d-CNN models with an average testing accuracy of 78.92%

and 𝐶𝜅 = 76.19% [56]. In another case, it is observed that conventional Bi-LSTM (similar architecture to BO tuned Bi-

LSTM without optimized hyperparameters) with proposed features also showed notable results, closely following the

proposed algorithm with an entire dataset accuracy of 99.32%, testing accuracy of 86.84%, and uniform scores of 99%

across precision, recall, and F1-score, along with 𝐶𝜅 = 99.00%. While analyzing Figure 13, the proposed algorithm

underscores the Bi-LSTM model in terms of evaluation metrics, and the average training time for each fold is 50 sec, which

is three times less than the Bi-LSTM model (125 sec). This indicates a robust capacity for spatial and temporal feature

representation with increased convergence speed and superior fault classification.

23 | P a g e

88.89
94.87

87.18
92.31 90.6 91.45 89.74

86.32 88.89
95.73

0

20

40

60

80

100

120

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Validation Accuracy across each fold in Percentage (%)

GRU & Proposed Features MLP & Normalized features

LSTM & Proposed Features LSTM & Normalized features

1d-CNN & Normalized features 1d-CNN & Proposed features

BO/1d-CNN & Normalized features Bi-LSTM & Proposed Features

Proposed Algorithm & Proposed features

Figure 13. Validation accuracy (testing accuracy) across each deep neural network fold.

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

K
e
rn

e
l

D
e
n
si

ty
 E

st
im

at
es

 MLP & Normalized features

 LSTM & Normalized features

GRU & Proposed features

LSTM & Proposed features

1d-CNN & Normalized features

1d-CNN & Proposed features

BO/1d-CNN /Normalized features

Bi-LSTM & Proposed features

 Proposed Algorithm &

 Proposed features

Accuracy in Percentage
Figure 14. Kernel density estimation of errors for different networks

Kernel density estimation helps visualize algorithm performance across various metrics. Based on Figure 14, the

accuracy distribution graph demonstrates that the proposed algorithm with tailored features excels. Kernel distribution is

24 | P a g e

approximately 100% with sharp peaks, showing high accuracy and consistency. In contrast, the GRU model with the

proposed feature exhibits a peak at lower accuracy levels, dipping below 60%, showing poor performance and inconsistency.

Meanwhile, the LSTM model with proposed features has a median accuracy of around 80%. However, the LSTM model

for the normalized features has a median peak of around 65%, illustrating the importance of feature selection. In addition

to a tighter distribution of around 90% with better performance, the Bi-LSTM model with proposed features surpasses the

aforementioned LSTM models. On the other hand, 1d-CNN and BO-1d-CNN models with standard features have shown a

broader accuracy distribution. It determines that the proposed BO enhances the accuracy of the 1d-CNN model. Secondly,

the median accuracy falls below 50% for the MLP model, emphasizing the need for feature selection. Overall, this

comparative analysis highlights the importance of feature learning and optimization.

Figure 15. Accuracy Bar Chart with the replacement of the PCA component with 1d-CNN for 10-fold CV.

While DL models like 1d-CNN excel at hierarchical feature learning, PCA was preferred due to no requirement for

training and avoids the risk of overfitting with small and limited datasets. To evaluate the trade-offs between PCA and deep

hierarchical extractors, PCA was replaced with 1d-CNN’s latent features and combined with BO-DAE’s outputs (𝑋ሷ
𝑇𝑜𝑡𝑎𝑙 =

{𝑋ሷ
1d−CNN, 𝑋ሷ

𝐴𝐸}). With an initial learning rate of 0.001, 100 epochs, and a mini-batch size of 32, the 1d-CNN took 32

seconds to train and extract features. Figure 15 shows that the proposed algorithm achieved training accuracy of 93%, testing

accuracy of 72.4%, and macro precision, recall, and F1-Score of 73.0%, 72.4%, and 72.2%. Despite excelling at hierarchical

feature learning, the 1d-CNN model demonstrated signs of overfitting to extract features. This analysis highlights the

challenge of implementing 1d-CNN to small datasets.

Table 11. Proposed algorithm training and test results with PCA DAE for CWRU datasets with a 10-fold CV

4.5 Comparison with Different Feature Selection Models

This section presents the study to compare different feature selection and dimension reduction techniques as

individuals and in combination with the proposed encoder. Techniques like t-SNE [52], ICA [46], and random projection

(RP) [57] offered slightly improved results when used with the proposed encoder and trained with the proposed algorithm.

PCA, along with the encoder, helps to capture variance much better than ICA and preserve better information than t-SNE,

as shown in Figure 16. Subsequently, techniques like isometric feature mapping (ISO MAP) [57] and kernel PCA [47] tend

BO-based Bi-LSTM algorithm training and test results with PCA and DAE for CWRU datasets with a 10-fold CV.

Optimization
Feature Selection

Method
Classifier

 Values

Train

Accuracy

Test

Accuracy

Macro

Precision

Macro

Recall

Macro F1

Score

Macro

Kappa

Entire Dataset Accuracy

(%)

BO

PCA Bi-LSTM 100% 83.76% 98.90% 98.89% 98.89% 98.77% 98.89%

BO-DAE Bi-LSTM 94.00% 62.10% 92.00% 92.00% 92.00% 91.00% 91.71%

PCA + BO-DAE Bi-LSTM 100% 91.00% 99.50% 99.60% 99.57% 99.53% 99.60%

0

10

20

30

40

50

60

70

80

90

100

Train Accuracy Test Accuracy Macro Precision Macro Recall Macro F1-Score Macro Kappa

Accuracy Bar Chart

25 | P a g e

to overfit, whereas sequential feature selection (FS) underperforms for all metrics [58]. All these results were obtained using

MATLAB® 2023b, a 13th Generation Intel core(TM) i9-13900H@ 2.60GHz (24 Cores) with 32 GB RAM and NVIDIA RTX

2000 Ada Generation Laptop GPU running on Windows 11 Pro 22H2. Under these circumstances, the proposed model does

not overfit while avoiding sensitivity and mal-operation issues. This is because it contains a sophisticated feature selection

routine with optimized hyperparameters, which prevents maloperation from occurring.

Table 11 compares the performance of PCA and BO-DAE in terms of their impact on proposed model performance.

It was observed that PCA performed better than BO-DAE features; however, it tends to struggle to extract non-linear patterns.

Therefore, when BO-DAE is assembled with PCA, it leads to better and balanced model performance.

18.9%

19.3%

6.1%
19.3%

19.3%

17.1%
 Encoder+ICA

 Encoder +tNSE

 Encoder + RP

 Sequential FS

 ISO MAP

 kernel PCA

14.5%

14.3%

8%

23.5%

23.5%

16.2%

Average Training Accuracy Average Testing Accuracy

Comparisons of diagnostic results with different features

Selected Features
Training

Accuracy

Testing

Accuracy

Entire Dataset

Accuracy

Macro

Precision

Macro

Recall

Macro

F1-Score

Cohen's

Kappa

Encoder+ICA 88.70% 45.90% 79.74% 79.74% 80.90% 79.90% 77.51%

Encoder +tNSE 100% 66.33% 95.98% 95.98% 96.00% 95.98% 95.54%

Encoder + RP 100% 66.50% 95.64% 95.64% 95.70% 95.63% 95.16%

Sequential FS 31.71% 22.65% 30.86% 32.22% 30.85% 29.27% 23.33%

ISO MAP 99.92% 40.43% 93.50% 93.25% 93.25% 93.23% 92.50%

kernel PCA 98.24% 40.90% 91.03% 91.03% 91.28% 91.09% 90.03%

Figure 16. Comparison of Feature selection models trained with 10-fold CV and the proposed algorithm.

Predicted Class

1

2

3

4

Confusion Matrix for Entire Dataset

0

5

1

0

0

0

0

0

1

1

0

4

199

200

191

198

T
ru

e
C

la
ss

0

20

40

60

80

100

120

140

160

180

200

DDS experimental platform

Figure 17. Confusion matrix of the proposed algorithm with 10-fold CV.

4.6 Bearing Fault Diagnosis using Drivetrain Dynamics Simulator (Test 2)

This work also used SpectraQuest’s Drivetrain Dynamics Simulator (DDS) to verify the proposed algorithm’s

efficacy [47]. This simulator simulates industrial drivetrains for educational and experimental purposes. It uses two parallel-

26 | P a g e

shaft gearboxes with ER-16K bearing models, connected to opposing shafts through magnetic brakes by a bearing loader.

The wheel has a diameter of 15.16 mm and a diameter of 3.125 mm for the rolling elements, a total of nine, and a zero-

contact angle. We conducted experiments with a sampling frequency of 12.8 kHz, a motor of 20 Hz, and no load condition,

and we generated a matrix size of 200,000 *1. There are 800 samples, 200 for each condition, with a sample size of 1024

for normal, inner, outer, and rolling element defects. Figure 17 illustrates the overall classification accuracy of 99% (with

99.50%, 100%, 95.5%, and 99% for each class). Hence, with training accuracy of 100%, the macro average for precision =

98.50%, recall =98.52%, F1-Score=98.50%, and 𝐶𝜅 = 98%, the proposed algorithm demonstrates proficient results.

The proposed algorithm helps to capture long-term dependencies and identify characteristic variations at optimal

learning rates. Despite the complexity of the rolling bearing network, it fully exploits the intrinsic characteristics of Bi-

LSTM, such as pattern classification and high generalization capability. In comparison, the earlier mentioned Bi-LSTM

model that closely mimics the proposed algorithm achieves 98% classification accuracy of the entire dataset, with the macro

average for precision = 98.00%, recall =98.02%, F1-Score=98.00%, and 𝐶𝜅 = 97%.

4.7 Computational Complexity Breakdown

The proposed framework incorporates three main components: PCA, BO-DAE, and BO-based Bi-LSTM. For the

CWRU datasets, PCA performs the SVD of the input matrix to reduce the features from 1024 to 276 while keeping 95% of

the variance. This step is computationally light, with a processing time of approximately 0.05 ms per sample on a personal

computer.

However, optimizing a large set of hyperparameters to adjust the DL architecture based on the data characteristics

can be computationally intensive. This process often requires days or even weeks of computation on specialized high-

performance hardware [59]. The BO-DAE process completed 30 BO iterations (parallelized) in 10,598.6 seconds for 6

hyperparameters, including a 5-fold CV for each iteration of BO. In addition, rigorous BO-driven optimization was applied

to optimize 9 hyperparameters for the Bi-LSTM, with an extensive search range. The proposed parallel BO achieves 63.33%

faster convergence than the sequential BO method by evaluating multiple configurations simultaneously. The final model

involves training the Bi-LSTM model for 173 epochs (selected by BO) with a 10-fold CV and an evaluation time of 1.82

seconds per iteration. Once the BO training with parallel setting was completed, the optimized sparse DAE and Bi-LSTM

models took approximately 1.32×10-3 seconds to process a single 1024-point raw signal, making the system suitable for

real-time fault diagnosis.

In the literature, as tabulated in Table 12, particle swarm optimization (PSO) [42], grid search (GS) [44], and BO

[43] have been used to optimize the architecture of shallow machine learning algorithms with a limited number of

hyperparameters. However, PSO and GS are not well-suited for handling a large number of hyperparameters with an

extensive search range [55]. For deep learning algorithms, such as the deep convolution-gated recurrent unit [45], BO has

been employed to optimize five hyperparameters with a limited search range and without extensive validation. In contrast,

to the best of the authors' knowledge, this is the first attempt where extensive validation is conducted with a broad search

range of hyperparameters for rolling bearing fault classification. In future work, lightweight surrogate models for BO will

be explored further to reduce computational overhead while retaining accuracy. Plus, adaptive and semi-supervised studies

will be explored as well [60-62].

Table 12. Comparative Efficiency of BO vs. Existing Methods for Hyperparameter Tuning in Fault Diagnosis

Comparative Efficiency of BO vs. Existing Methods for Hyperparameter Tuning in Fault Diagnosis

Metric Proposed Framework Existing Methods ([42], [43], [44], [45])

Hyperparameters 15 parameters (BO-DAE+ BO based Bi-LSTM) ≤5 parameters (e.g., SVM kernels, shallow networks)

Search Range 4–5 orders of magnitude Narrow

Validation Rigor 5-fold + 10-fold CV Limited validation (e.g., single hold-out)

Training Time Higher Faster but lower accuracy

Table 13 compares the benchmark performance of the BO-driven framework against existing models. Liao et al.

[63] achieve higher accuracy than the proposed framework, but it requires twice the input size (2048 data points vs. 1024

in our framework). When compared to other state-of-the-art models, our framework stands out for its full autonomy and

reliability than [64] and [43]. This makes it more efficient, reliable, and user-friendly as an off-the-shelf device through its

autonomous feature extraction and end-to-end optimization, setting a new standard for predictive maintenance and fault

diagnosis in industrial applications.

27 | P a g e

Table 13. Comparison with Existing State-of-the-Art Models

4.8 Experimental Validation of BO Advantages

Table 14 compares the performance of the proposed BO method with baseline optimization techniques for the

CWRU datasets. As an initial step, we employed a Bi-LSTM model for grid search (GS) to evaluate in sequence all potential

combinations of hyperparameters within a predefined search space. Although GS guarantees that no potential configuration

is overlooked, it becomes high resource-intensive when dealing with a large set of hyperparameters. Subsequently, our

framework was unable to utilize this approach [55]. BO and random search (RS) are more computationally efficient in high-

dimensional space. With a random approach, RS provides a balance of exploration and exploitation. However, the

probabilistic nature of BO (30 iterations) gives better results than RS (30 iterations) in our case. Furthermore, the proposed

BO with a batch size of 8, GP kernel of Matérn 5/2 and =0.75 reduces optimization time by 63.33 % compared to EI and

57.63 % compared to EIpS with better entire dataset accuracy.

Table 14. Proposed BO method vs. Baseline Methods with 10-fold CV

Proposed BO method vs. Baseline Methods

Optimization Method
Time of Convergence

(Hours)

Decline in Time of

Convergence

Number of

Iterations

Training

Accuracy

Testing

Accuracy

Entire Dataset

Accuracy (%)

Grid Search (GS) Not applicable

Random Search (RS) 3.13 11.82 % 30 100% 87% 87.10%

Standard BO (EI) 7.50 63.33 % 30 100% 91% 99.15%

Standard BO (EIps) 6.49 57.63 % 30 100% 94% 99.20%

Proposed BO (EIps+) 2.76 Not applicable 30 100% 91% 99.60%

5) Conclusion

This paper introduces an advanced diagnostic approach for rolling element bearing faults using a BO-based method

designed for adaptive feature extraction of bearing faults. Unlike other DL solutions, the proposed BO-DAE and BO-Bi-

LSTM emphasize optimizing parameters and the backbone network structure. Through a probabilistic optimization

algorithm, this approach refines network structure and hyperparameters that strengthen generalization and feature extraction

capabilities. The incorporation of parallel BO with EIps+ proved essential in speeding up hyperparameter tuning and

optimizing computational resources while preserving high model performance. The rigorous evaluation highlights the

effectiveness of our approach, with metrics such as a macro precision of 99.50%, recall of 99.60%, F1-Score of 99.57%,

and Cohen’s Kappa metric (Cκ) of 99.53%. These metrics highlight the high accuracy and reliability of our model in

accurately classifying bearing faults. Furthermore, comparative analysis against shallow and deep learning models reveals

the superiority of our approach in terms of efficiency and accuracy. Our method outperforms these models across various

performance metrics, reinforcing its effectiveness in dealing with various engineering challenges in diagnostic scenarios.

Overall, the results demonstrate that our proposed framework, integrating PCA, BO-DAE, and BO-enhanced Bi-LSTM,

effectively captures the complex spatial and temporal dependencies in vibrational signals with better generalization and

mitigating overfitting issues. This comprehensive approach facilitates precise fault classification, offering a promising

solution for predictive maintenance in mechanical systems. These results underscore the potential of our method to

significantly reduce downtime, minimize financial losses, and enhance operational safety in industrial settings.

In future work, we plan to explore autonomous data labelling techniques based on active learning to further enhance

the robustness of the framework against mislabelled data. Active learning involves the model finding uncertain or ambiguous

samples and asking a human for the correct label.

6) References

[1] J. Henry and J. Pomeroy, "The world in 2030," 2018, vol. 75.

Accuracy Benchmark: Autonomous BO-Driven Framework vs. State-of-the-Art Models on CWRU Bearing Data

No. of

Series
Classification Models

Signal Decomposition

(SD)
Extracted Features

Fully

Autonomous

Hyperparameter

Tuning

Values (%)

Dataset Accuracy

Ref [63] CNN, Transfer Learning Wavelet Convolution Autonomous 99.73%

Ref [64] ANN Variational Mode SD Energy Features 99.30%

Ref [43] BO-SVM ─ Normalized Features 93.76%

Proposed PCA, BO-DAE/Bi-LSTM Autonomous Autonomous ✓ ✓ 99.60%

28 | P a g e

[2] A. Biswas, S. Ray, D. Dey, and S. Munshi, "Detection of simultaneous bearing faults fusing cross correlation with

multikernel SVM," IEEE Sensors Journal, vol. 23, no. 13, pp. 14418-14427, 2023.

[3] S. Wang and Z. Feng, "Multi-sensor fusion rolling bearing intelligent fault diagnosis based on VMD and ultra-

lightweight GoogLeNet in industrial environments," Digital Signal Processing, vol. 145, p. 104306, 2024.

[4] L. Ciabattoni, F. Ferracuti, A. Freddi, and A. J. I. T. o. I. E. Monteriu, "Statistical spectral analysis for fault diagnosis

of rotating machines," vol. 65, no. 5, pp. 4301-4310, 2017.

[5] X. Yu, F. Dong, E. Ding, S. Wu, and C. Fan, "Rolling bearing fault diagnosis using modified LFDA and EMD with

sensitive feature selection," IEEE Access, vol. 6, pp. 3715-3730, 2017.

[6] A. Rai and S. H. Upadhyay, "A review on signal processing techniques utilized in the fault diagnosis of rolling

element bearings," Tribology International, vol. 96, pp. 289-306, 2016.

[7] C. Hu, J. Wu, C. Sun, X. Chen, A. K. Nandi, and R. Yan, "Unified Flowing Normality Learning for Rotating

Machinery Anomaly Detection in Continuous Time-Varying Conditions," IEEE Transactions on Cybernetics, 2024.

[8] A. Biswas, S. Ray, D. Dey, and S. Munshi, "Detection of simultaneous bearing faults fusing cross correlation with

multikernel SVM," IEEE Sensors Journal, vol. 23, no. 13, pp. 14418-14427, 2023.

[9] Z. Shen, Z. He, X. Chen, C. Sun, and Z. Liu, "A monotonic degradation assessment index of rolling bearings using

fuzzy support vector data description and running time," Sensors, vol. 12, no. 8, pp. 10109-10135, 2012.

[10] Y. Liao, L. Zhang, W. J. J. o. I. Li, and F. Systems, "Regrouping particle swarm optimization based variable neural

network for gearbox fault diagnosis," Journal of Intelligent Fuzzy Systems, vol. 34, no. 6, pp. 3671-3680, 2018.

[11] S. Dong, X. Xu, R. J. J. o. t. B. S. o. M. S. Chen, and Engineering, "Application of fuzzy C-means method and

classification model of optimized K-nearest neighbor for fault diagnosis of bearing," Journal of the Brazilian

Society of Mechanical Sciences Engineering, vol. 38, pp. 2255-2263, 2016.

[12] S. S. Roy, S. Dey, and S. Chatterjee, "Autocorrelation aided random forest classifier-based bearing fault detection

framework," IEEE Sensors Journal, vol. 20, no. 18, pp. 10792-10800, 2020.

[13] C. Abdelkrim, M. S. Meridjet, N. Boutasseta, and L. Boulanouar, "Detection and classification of bearing faults in

industrial geared motors using temporal features and adaptive neuro-fuzzy inference system," Heliyon, vol. 5, no.

8, 2019.

[14] H. Shao, H. Jiang, Y. Lin, and X. Li, "A novel method for intelligent fault diagnosis of rolling bearings using

ensemble deep auto-encoders," Mechanical Systems Signal Processing, vol. 102, pp. 278-297, 2018.

[15] R. Rajabioun, M. Afshar, Ö. Atan, M. Mete, and B. Akin, "Classification of Distributed Bearing Faults using a

Novel Sensory Board and Deep Learning Networks with Hybrid Inputs," IEEE Transactions on Energy Conversion,

2023.

[16] G. Jiang et al., "Rolling bearing fault diagnosis based on convolutional capsule network," Journal of Dynamics,

Monitoring Diagnostics, pp. 275-289, 2023.

[17] J. Zhang, S. Yi, G. Liang, G. Hongli, H. Xin, and S. Hongliang, "A new bearing fault diagnosis method based on

modified convolutional neural networks," Chinese Journal of Aeronautics, vol. 33, no. 2, pp. 439-447, 2020.

[18] J. Tang, J. Wu, B. Hu, and J. Qing, "Towards a Fault Diagnosis Method for Rolling Bearings with Time-Frequency

Region-Based Convolutional Neural Network," Machines, vol. 10, no. 12, p. 1145, 2022.

[19] H. Pan, W. Jiao, T. Yan, A. U. Rehman, A. Wan, and S. Yang, "Combining kernel principal component analysis and

spatial group-wise enhance convolutional neural network for fault recognition of rolling element bearings,"

Measurement Science Technology, vol. 34, no. 12, p. 125003, 2023.

[20] Z. Zhu, G. Peng, Y. Chen, and H. Gao, "A convolutional neural network based on a capsule network with strong

generalization for bearing fault diagnosis," Neurocomputing, vol. 323, pp. 62-75, 2019.

[21] M. Xia, T. Li, L. Xu, L. Liu, and C. W. De Silva, "Fault diagnosis for rotating machinery using multiple sensors and

convolutional neural networks," IEEE/ASME transactions on mechatronics, vol. 23, no. 1, pp. 101-110, 2017.

[22] Y. Yao et al., "End-to-end convolutional neural network model for gear fault diagnosis based on sound signals,"

Applied Sciences, vol. 8, no. 9, p. 1584, 2018.

[23] S. Gao, S. Shi, and Y. Zhang, "Rolling bearing compound fault diagnosis based on parameter optimization MCKD

and convolutional neural network," IEEE Transactions on Instrumentation Measurement, vol. 71, pp. 1-8, 2022.

[24] Y. An, K. Zhang, Q. Liu, Y. Chai, and X. Huang, "Rolling bearing fault diagnosis method base on periodic sparse

attention and LSTM," IEEE Sensors Journal, vol. 22, no. 12, pp. 12044-12053, 2022.

[25] Y. Han, N. Ding, Z. Geng, Z. Wang, and C. Chu, "An optimized long short-term memory network based fault

diagnosis model for chemical processes," Journal of Process Control, vol. 92, pp. 161-168, 2020.

[26] L. Yu, J. Qu, F. Gao, and Y. Tian, "A novel hierarchical algorithm for bearing fault diagnosis based on stacked

LSTM," Shock Vibration, vol. 2019, no. 1, p. 2756284, 2019.

29 | P a g e

[27] F. Zou, H. Zhang, S. Sang, X. Li, W. He, and X. Liu, "Bearing fault diagnosis based on combined multi-scale

weighted entropy morphological filtering and bi-LSTM," Applied Intelligence, pp. 1-18, 2021.

[28] A. Zhang et al., "Transfer learning with deep recurrent neural networks for remaining useful life estimation,"

Applied Sciences, vol. 8, no. 12, p. 2416, 2018.

[29] W. Mao, W. Feng, Y. Liu, D. Zhang, and X. Liang, "A new deep auto-encoder method with fusing discriminant

information for bearing fault diagnosis," Mechanical Systems Signal Processing, vol. 150, p. 107233, 2021.

[30] J. Shi et al., "Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks," Mechanical

Systems Signal Processing, vol. 162, p. 107996, 2022.

[31] Z. Zhuang, H. Lv, J. Xu, Z. Huang, and W. Qin, "A deep learning method for bearing fault diagnosis through stacked

residual dilated convolutions," Applied Sciences, vol. 9, no. 9, p. 1823, 2019.

[32] K. You, G. Qiu, and Y. Gu, "Rolling bearing fault diagnosis using hybrid neural network with principal component

analysis," Sensors, vol. 22, no. 22, p. 8906, 2022.

[33] L. Yuan, D. Lian, X. Kang, Y. Chen, and K. Zhai, "Rolling bearing fault diagnosis based on convolutional neural

network and support vector machine," IEEE Access, vol. 8, pp. 137395-137406, 2020.

[34] S.-s. Zhong, S. Fu, and L. Lin, "A novel gas turbine fault diagnosis method based on transfer learning with CNN,"

Measurement, vol. 137, pp. 435-453, 2019.

[35] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining

and intelligent diagnosis of rotating machinery with massive data," Mechanical systems signal processing, vol. 72,

pp. 303-315, 2016.

[36] X. Kong, G. Mao, Q. Wang, H. Ma, and W. Yang, "A multi-ensemble method based on deep auto-encoders for fault

diagnosis of rolling bearings," Measurement, vol. 151, p. 107132, 2020.

[37] Y. Guo, Y. Zhou, and Z. Zhang, "Fault diagnosis of multi-channel data by the CNN with the multilinear principal

component analysis," Measurement, vol. 171, p. 108513, 2021.

[38] M. Qiao, S. Yan, X. Tang, and C. Xu, "Deep convolutional and LSTM recurrent neural networks for rolling bearing

fault diagnosis under strong noises and variable loads," IEEE Access, vol. 8, pp. 66257-66269, 2020.

[39] M. Hakim, A. A. B. Omran, A. N. Ahmed, M. Al-Waily, and A. Abdellatif, "A systematic review of rolling bearing

fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges,

weaknesses and recommendations," Ain Shams Engineering Journal, vol. 14, no. 4, p. 101945, 2023.

[40] X. Chang, S.-p. Yang, S. Li, and X. Gu, "Rolling Element Bearing Fault Diagnosis Based on Multi-objective

Optimized Deep Auto-encoder," Measurement Science Technology, 2024.

[41] M. Z. Yousaf, H. Liu, A. Raza, A. J. C. J. o. P. Mustafa, and E. Systems, "Deep learning-based robust dc fault

protection scheme for meshed HVdc grids," CSEE Journal of Power Energy Systems, 2022.

[42] X. Yan and M. Jia, "A novel optimized SVM classification algorithm with multi-domain feature and its application

to fault diagnosis of rolling bearing," Neurocomputing, vol. 313, pp. 47-64, 2018.

[43] B. Wang, W. Qiu, X. Hu, and W. Wang, "A rolling bearing fault diagnosis technique based on recurrence

quantification analysis and Bayesian optimization SVM," Applied Soft Computing, vol. 156, p. 111506, 2024.

[44] X. Zhang, Y. Liang, and J. Zhou, "A novel bearing fault diagnosis model integrated permutation entropy, ensemble

empirical mode decomposition and optimized SVM," Measurement, vol. 69, pp. 164-179, 2015.

[45] M. Jiaocheng, S. Jinan, Z. Xin, and Z. Peng, "Bayes-DCGRU with bayesian optimization for rolling bearing fault

diagnosis," Applied Intelligence, vol. 52, no. 10, pp. 11172-11183, 2022.

[46] H. Liu, C. Chen, Y. Li, Z. Duan, and Y. Li, Smart metro station systems: data science and engineering. Elsevier,

2022.

[47] H. Pan, W. Jiao, T. Yan, A. U. Rehman, A. Wan, and S. Yang, "Combining kernel principal component analysis and

spatial group-wise enhance convolutional neural network for fault recognition of rolling element bearings,"

Measurement Science Technology, vol. 34, no. 12, p. 125003, 2023.

[48] F. Laakom, J. Raitoharju, A. Iosifidis, and M. Gabbouj, "Reducing redundancy in the bottleneck representation of

autoencoders," Pattern Recognition Letters, 2024.

[49] A. Abu-Jasser and M. Ashour, "A backpropagation feedforward NN for fault detection and classifying of overhead

bipolar HVDC TL using DC measurements," Journal of Engineering Research Technology, vol. 2, no. 3, 2015.

[50] Y. Qiu, W. Zhou, N. Yu, P. J. I. T. o. N. S. Du, and R. Engineering, "Denoising sparse autoencoder-based ictal EEG

classification," IEEE Transactions on Neural Systems Rehabilitation Engineering, vol. 26, no. 9, pp. 1717-1726,

2018.

[51] M. Z. Yousaf, S. Khalid, M. F. Tahir, A. Tzes, and A. Raza, "A novel dc fault protection scheme based on intelligent

network for meshed dc grids," International Journal of Electrical Power Energy Systems, vol. 154, p. 109423, 2023.

30 | P a g e

[52] J. Chen, D. Zhou, C. Lyu, and C. Lu, "Feature reconstruction based on t-SNE: an approach for fault diagnosis of

rotating machinery," Journal of Vibroengineering, vol. 19, no. 7, pp. 5047-5060, 2017.

[53] R. Jaiswal and D. Romero, "Implicit wiener filtering for speech enhancement in non-stationary noise," in 2021 11th

International Conference on Information Science and Technology (ICIST), 2021: IEEE, pp. 39-47.

[54] M. Z. Yousaf, M. F. Tahir, A. Raza, M. A. Khan, and F. Badshah, "Intelligent Sensors for dc Fault Location Scheme

Based on Optimized Intelligent Architecture for HVdc Systems," Sensors, vol. 22, no. 24, p. 9936, 2022.

[55] M. F. Tahir, M. Z. Yousaf, A. Tzes, M. S. El Moursi, and T. H. El-Fouly, "Enhanced solar photovoltaic power

prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and

Sustainable Energy Reviews, vol. 200, p. 114581, 2024.

[56] M. Hamadache, J. H. Jung, J. Park, and B. D. Youn, "A comprehensive review of artificial intelligence-based

approaches for rolling element bearing PHM: Shallow and deep learning," JMST Advances, vol. 1, pp. 125-151,

2019.

[57] P. H. Jain and S. P. Bhosle, "A review on vibration signal analysis techniques used for detection of rolling element

bearing defects," SSRG Int. J. Mech. Eng, vol. 8, pp. 14-29, 2021.

[58] M. R. Islam, M. M. Islam, and J.-M. Kim, "Feature selection techniques for increasing reliability of fault diagnosis

of bearings," in 2016 9th International Conference on Electrical and Computer Engineering (ICECE), 2016: IEEE,

pp. 396-399.

[59] L. Li et al., "A system for massively parallel hyperparameter tuning. arXiv 2018," arXiv preprint arXiv:1810.05934.

[60] S. Wang, F. Zhao, C. Cheng, H. Chen, and Y. Jiang, "Threshold-optimized and features-fused semi-supervised

domain adaptation method for rotating machinery fault diagnosis," Neurocomputing, vol. 613, p. 128734, 2025.

[61] S. Wang, G. Lian, C. Cheng, and H. Chen, "A novel method of rolling bearings fault diagnosis based on singular

spectrum decomposition and optimized stochastic configuration network," Neurocomputing, vol. 574, p. 127278,

2024.

[62] S. Wang, Y. Ju, C. Fu, P. Xie, and C. Cheng, "A Reversible Residual Network-Aided Canonical Correlation Analysis

to Fault Detection and Diagnosis in Electrical Drive Systems," IEEE Transactions on Instrumentation and

Measurement, 2024.

[63] M. Liao, C. Liu, C. Wang, and J. Yang, "Research on a rolling bearing fault detection method with wavelet

convolution deep transfer learning," IEEE Access, vol. 9, pp. 45175-45188, 2021.

[64] X. Liang, J. Yao, W. Zhang, and Y. Wang, "A novel fault diagnosis of a rolling bearing method based on variational

mode decomposition and an artificial neural network," Applied Sciences, vol. 13, no. 6, p. 3413, 2023.

