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Abstract 

Modern power machinery is inherently complex and operates under dynamic operating conditions, so they demand 

advanced solutions based on deep learning to diagnose bearing faults inside rotating equipment that cause unplanned 

downtime and safety issues, leading to operational challenges. However, most deep learning approaches aim to improve 

performance by incorporating hybrid neural networks that rely on multiple convolutional and temporal units, often 

overlooking optimizing the large number of hyperparameters that define the structure and performance of hybrid models 

along with the associated computational constraints. To address this gap, this study presents an innovative approach for the 

detection and classification of bearing faults by integrating an optimized sparse deep autoencoder (DAE) with a 

Bidirectional Long Short-Term Memory model (Bi-LSTM). The optimal network structure and hyperparameters are 

determined through Bayesian optimization (BO) with parallel settings, which automatically searches for network 

configurations that improve the feature extraction ability of the DAE and the generalization ability of the Bi-LSTM for more 

efficient fault classification in rolling bearings. Parallel optimization accelerates network structure and hyperparameter 

tuning by evaluating multiple configurations at once. It leverages the full potential of available multi-core Central Processing 

Units (CPUs)/Graphics Processing Units (GPUs) in conjunction with a lightweight BO surrogate model. This autonomous 

and user-friendly framework generates inputs from principal component analysis for linear and BO-DAE for non-linear 

feature extraction and selection, which are then used to train a BO-enhanced Bi-LSTM. This three-stage optimized method 

effectively captures spatial and temporal dependencies in vibrational signals, achieving superior efficiency, accuracy, and 

reliability compared to shallow and deep learning models. Evaluation metrics, including macro precision (99.50%), recall 

(99.60%), F1-Score (99.57%), and Cohen's Kappa metric (Cκ = 99.53%), demonstrate the efficacy of our approach for 

bearing fault classification in industrial applications. 

Keywords: Rolling Element Bearings, Modern Power Machinery, Deep Autoencoder, Bidirectional Long Short-Term 

Memory, Bayesian Optimization. 

1) Introduction 

By 2030, the global GDP is anticipated to exceed $125 trillion, fueled by a compound annual growth rate (CAGR) 

of approximately 3.5%, primarily driven by rapid technological advancements and the widespread adoption of Industry 4.0 

[1]. There is an ongoing integration of automation in industrial manufacturing through smart manufacturing and the 

Industrial Internet of Things (IIoT), which leads to a 30% increase in the deployment of rotating machinery across different 

critical sectors. In the power sector, energy companies are prime examples that use IIoT systems to monitor the performance 

of rotating machinery like gas turbines and compressors in real-time. This integration optimizes energy consumption, 

minimizes downtime, and extends the operational lifespan of gas turbines and compressors. However, the reliability of 

rotating machines depends on the accurate detection and classification of faults in rolling bearings—a vital component in 

rotary machines that is responsible for almost 40% of all machinery failures [2]. The failures result in unexpected downtime, 

expensive maintenance costs, and catastrophic failures in some cases that could jeopardize human safety. Therefore, 

advances in fault classification techniques are essential to prevent these severe consequences, ensuring seamless operation 

and supporting the global GDP growth targets set for 2030. 

It is evident from reviewing the literature that vibrational signals from modern machinery are vital for detecting and 

classifying bearing faults, and the methodologies for fault diagnosis can be broadly categorized into four main domains: 1) 

model-based, signal processing-based, machine learning-based (ML), and deep learning-based (DL) methods [3]. Model-

based are the earliest approaches that depend upon physical principles and mathematical models to describe equipment 

behaviour under normal and faulty conditions. However, despite the valuable information present within vibrational signals, 

model-based methods like spectral analysis [4] and envelope demodulation [5] have their limitations. These conventional 

methods depend on deep domain knowledge to develop accurate models, which can be a barrier in complex systems. 

Moreover, the complex operating conditions typically add non-linearity to the system with heavy background noises, which 

affects the model’s robustness and leads to misdiagnosis. Depending upon the operating conditions, specific signal 

processing methods emerged to complement model-based approaches by extracting fault-related features from the non-

linearity and non-stability of recorded vibration signals. For this purpose, techniques like time-domain analysis (such as 
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kurtosis, skewness, mean, and crest factor), frequency-domain analysis (such as Fourier transform (FT) and power spectral 

density), and time-frequency analysis (employing wavelet transform (WT), Hilbert transform, short-time Fourier transform 

(STFT)) were adopted [6]. In recent attempts, C. Hu et al. s [7] used FT and discrete WT to isolate specific frequency 

components and transient signals associated with faults. Adaptive threshold settings were then applied to metrics such as 

mean and kurtosis to detect faults. While these settings provide a straightforward approach for fault detection in vibration 

signals, their limitations, such as sensitivity to noise, static nature, inability to analyze multivariate data, and frequent 

recalibration under complex operating conditions, require addressing. 

As a branch of data-driven techniques, ML models can adapt to varying operational conditions without manual 

recalibration and capture the intricate relationship between multivariate data for modern fault diagnosis applications in 

complex industrial environments [8]. Several traditional ML models have been reported for rolling bearing fault diagnosis 

in recent years [8]. A fault diagnosis process is divided into denoising, feature extraction, feature selection (FS), and 

classification for traditional ML models. For the fault classification, different well-known classifiers, such as support vector 

machine (SVM) [9], artificial neural network (ANN)[10], k-nearest neighbour (k-NN)[11], Naïve Bayes (NB)[12], neural 

fuzzy logic [13] and random forest (RF) have been applied. Whereas to capture the bearing characteristics under dynamic 

operating conditions, signal processing techniques are often employed to denoise and extract features from the time-domain, 

frequency-domain, and time-frequency domain, which are then used to design a high-dimensional feature vector.  However, 

a significant challenge arises because some features may be redundant or irrelevant to the diagnostic target. Therefore, the 

FS step for different diagnostic tasks is crucial, but it is subjective, time-consuming, and inefficient without sufficient 

engineering expertise [14]. These aforementioned limitations stem from the shallow architectures often used in traditional 

ML models. As a result, there is a pressing need to develop autonomous end-to-end solutions based on deep learning (DL), 

as these methods extract meaningful information from high-dimensional feature vectors without any expertise. 

DL models represent a significant advancement in artificial intelligence (AI) for fault diagnosis in advanced systems. 

Convolutional or temporal layers within DL architectures extract meaningful information either from raw vibrational signals 

or processed multi-domain features. This extracted information is then passed through dense layers to effectively 

differentiate output classes [15]. This capability makes DL models a suitable option for detection and classification tasks in 

the fault diagnosis of rolling bearings. A summary of the most used DL models, including convolutional neural networks 

(CNN), long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and deep auto-encoder (DAE) are elaborated in 

Table 1. 

Table 1. Related work summary of rolling bearing fault diagnosis for detection and classification using Deep Learning methods 

Related work summary of rolling bearing fault diagnosis for detection and classification using Deep Learning methods 

Metrics 
Methods used 

Feature selection 

and classification 

Methods used for 
Feature Extraction 

Noise 
Immunity 

Calculation 
Rate Explanation Limitations 

Single Deep Learning Models of CNN, LSTM, Bi-LSTM, and DAE 

[16] CNN 
Continuous 

Wavelet Transform 

(CWT) 

Good Good 
Eliminates manual feature extraction. The algorithm is strong 

under noise via Time-frequency (TF) images. 

The adaptive algorithm requires 
computational resources and human 

expertise for CWT processing. 

[17] CNN 
Raw Vibration 

Signals (RVS) 
Good Moderate 

Raw vibration signals are transformed into two-dimensional 

grayscale images for feature extraction. 

Data preprocessing requires computational 

resources. 

[18] CNN CWT for RVS Excellent Good 
Incorporates spatial and channel attention modules to focus on 

representative features within the TF images. 

Significant computational resources and 

human expertise are required for CWT 

preprocessing. 

[19] CNN RVS Excellent Good 

The proposed framework simplifies fault diagnosis by 

preprocessing raw vibration signals into 2D grayscale images for 
input into attention-based CNN. 

Denosing with kernel Principle Component 

Analysis (PCA) removes subtle important 
details along with noise.  

[20] CNN 
Short-Time Fourier 
Transform (STFT) 

Moderate Moderate 
Using inception blocks enables the model to capture at different 

frequency bands. 
ICN architecture involves multiple layers, 

increasing the computational burden. 

[21] CNN RVS Excellent Moderate 
Utilizing two convolution layers, max-pooling, fully connected 

layers, and a Softmax layer for multiclass fault classification. 

CNN architecture involves multiple layers, 

increasing the computational burden. 

[22] CNN 
Raw Sound 

Signals 
Good Good 

The end-to-end CNN model combines the advantages of multi-

channel signal fusion and automatic feature learning to achieve 

superior fault detection accuracy. 

Requires controlled environments for 

acoustic signal acquisition, which may limit 

real-world applications. 

[23] CNN 
Extracts Periodic 

Pulses 
Good Moderate 

This work proposes to combine optimized signal preprocessing 
with CNN-based classification. 

Human expertise is required to optimize the 
signal preprocessing model. 

[24] LSTM 

Periodic Sparse 

Attention + LSTM 
Units for RVS 

Good Moderate 

Extracts long-term dependencies from fault signals, capturing 

time-series correlations in vibration data. Periodic, where sparse 
attention minimizes the impact of random interference. 

Increase the number of parameters for 

training. 
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[25] LSTM 
Raw Vibration 

Signals + LSTM 

Units 

Good Moderate 
Enhances standard LSTM by iteratively optimizing the number of 
hidden layer nodes to balance information from input and forget 

gates. 

Single dataset used for testing. 

[26] LSTM 

Raw vibration 

signals + LSTM 
Units 

Good Moderate 

The stacked LSTM architecture extracts temporal features at 

multiple abstraction levels, effectively capturing the inherent 
structure of vibration signals. 

Requires careful hyperparameter tuning. 

[27] Bi-LSTM Wavelet Transform Excellent Good 
This method integrates advanced signal preprocessing with Bi-

LSTM to enhance fault diagnosis. 

The single dataset used for testing and 

human expertise for WT. 

[28] Bi-LSTM 
Sliding Window 

Input 
Excellent Good 

This method tackles the challenge of limited failure using transfer 
learning combined with Bi-LSTM. 

Tendency for overfitting. 

[29] 
Deep Auto 

Encoders (DAE) 

Frequency 

Spectrum Input 
Excellent Excellent 

DAE excels at discriminating complex spatial characteristics. 

These extracted features help pinpoint intricate structural 
characteristics of bearing faults. 

Performance depends on several 

hyperparameters optimization. 

Hybrid Deep Learning Models of CNN, LSTM, Bi-LSTM, and DAE 

[30] CNN-LSTM 
Convolutional and 

Temporal Features 

from RVS 
Moderate Moderate 

BiConvLSTM architecture removes information loss that occurs in 

conventional CNN-LSTM pipelines by simultaneously processing 

spatial and temporal features. 

Accuracy for fault direction classification 

remains lower (84.72%) compared to fault 

type and location. 

[31] CNN-LSTM 
Convolutional + 

Temporal Features 
from RVS 

Good Good 
The blend of dilated convolutions, residual networks, and LSTM 

gates results in a model capable of handling noise and fluctuating 

conditions. 

Performance depends on several 
hyperparameters optimization. 

[32] CNN/Bi-LSTM 
Convolutional and 

Bi-Temporal 

Features from RVS 
Excellent Good 

PCA improves computational efficiency and reduces noise, while 
the CNN/Bi-LSTM combination boosts the model’s ability to 

process complex, time-series data. 
A single dataset was used for testing.  

[33] CNN-SVM CWT for RVS Good Moderate CNN extracts deep features from vibration signals, and the SVM 
classifier provides fault classification. 

Accuracy decreases with highly noisy 
datasets. 

[34] CNN-SVM Raw Vibration 

Signals Excellent Good Feature representations extracted via CNN are mapped to a cleaner 

space, enabling SVM to classify faults. Needs broader validation 

[35] Deep Neural 
Network (DNN)  DAE Good Moderate The paper proposes a novel DNN-based method for fault diagnosis 

of rotating machinery. 
The DNN requires significant training time 

compared to shallow networks. 

[14] Softmax Classifier Ensemble DAE Good Good 
This study addresses the limitations of individual deep learning 

models by proposing an ensemble-based approach for rolling 

bearing fault diagnosis. 

Performance depends on several 
hyperparameters optimization. 

[36] Ensemble 

Classification DAE Good Good The final classification relies on combining the outputs of multiple 

classifiers using a majority voting strategy,  
No state-of-the-art shallow and DL models 

in comparative studies 

Table 1 showcases recent studies on rolling bearing fault diagnosis using deep learning (DL) algorithms, which can 

be divided into two main categories: single and hybrid models. Single models rely on one specific DL architecture( such as 

CNN, LSTM, Bi-LSTM, or DAE) for fault diagnosis, whereas hybrid models combine two or more techniques to improve 

classification accuracy and performance. However, the studies summarized in Table 1 often overlook the general limitations 

inherent in single DL models, which are briefly outlined below: 

• CNN: overfitting (low generalization) and struggle to capture temporal features in vibration signals [37]. 

• LSTM: can extract temporal features of vibration signals and improve model generalization through gate structures [38]. 

However, with large datasets, it struggles to capture non-linear characteristics and faces a slow convergence rate [38]. 

Moreover, it seeks information in one direction. 

• Bi-LSTM: can process vibration signal sequences in bi-direction, which helps capture non-linear characteristics and 

complex temporal information in large datasets. The overall generalization is also better with faster convergence rates. 

However, complexity arises due to an increase in the number of hyperparameters for training.  

• DAE is a simple and easy-to-train DL model that can reduce the dimensionality of high-dimensional feature vectors and 

extract meaningful information [29]. However, hyperparameter tuning is required for efficient performance. 

These challenges can be addressed by leveraging the individual strengths of single models for feature extraction 

and pattern classification. 1) While some studies above have explored hybrid models and highlighted their enhanced fault 

classification accuracy, these models are more or less limited to a maximum of two techniques. Nevertheless, this integration 

often overlooks challenges such as the increased number of parameters associated with each model, the requirement for 

precise tuning in these deeper networks to encounter obstacles such as exploding or vanishing gradients, and deterioration 

along with the computational burden [39, 40]. Therefore, selecting parameters with efficient optimization in deeper neural 

networks serves as an instrumental tool that enhances the true efficacy of the hybrid models while considering computational 

time constraints. This is because traditional approaches to hyperparameter tuning often face time constraints due to high 

computational costs. This study pioneers the application of an optimized hybrid model by integrating sparse DAE and Bi-

LSTM. Moreover, to maximize the performance of each DL model, a meticulous optimization process is employed via 

Bayesian Optimization (BO).  2) In addition, many single and hybrid models above utilize signal processing techniques to 

extract high-dimensional features instead of working direct with raw datasets. This reliance on signal processing integration 
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does not present a genuine end-to-end or off-the-shelf solution for fault diagnosis in rolling bearings that any user can readily 

apply. It still requires domain expertise for feature extraction and preprocessing, which limits the accessibility and 

practicality of these models in modern equipment with dynamic operating conditions. The contributions of this paper are 

summarized as follows. 

a) To develop autonomous and user-friendly fault diagnosis systems, a deep neural network with optimized parameters is 

designed to avoid complex signal processing and manual feature extraction. 

b) Sparse DAE with an optimized structure enhances the ability to extract non-linear and complex features without prior 

experience or domain knowledge. 

c) This sophisticated feature extraction and selection methodology integrates PCA and BO-based sparse DAE to minimize 

computational burden and extract linear and non-linear features from vast raw datasets.  

d) To solve the exploding or vanishing gradients problem and use the full potential of available multi-core CPUs and GPU 

processors such as NVIDIA GeForce RTX Series, BO with parallel settings is implemented to enhance computation 

and model training. 

e) This solution can give adaptive and optimal configurations for any type of dataset due to the proposed BO’s global 

optimization ability. This is useful when dealing with complex, black-box functions in fault diagnosis. Besides, BO’s 

auto-tuning ability saves time and money because setting up parameters for complex deep neural networks before 

training requires human expertise [41]. 

f) These extracted features, when fed into BO-based Bi-LSTM architecture, the proposed system with fine-tuned 

parameters for specific data proficiently captures and interprets both forward and backward temporal information. The 

improved spatial and temporal data analysis enables more precise detection and classification of unseen failures. 

g) Unlike prior works that use BO for shallow models or limit its application to a small number of hyperparameters, our 

framework applies the proposed BO to optimize 15 hyperparameters across both the sparse DAE and Bi-LSTM for 

superior performance, with search ranges spanning 4–5 orders of magnitude [42-45]. 

h) In contrast to prior sequential BO methods that rely on the expected improvement (EI) acquisition function, our 

approach introduces the Expected Improvement per Second Plus (EIps+) acquisition function and parallel settings, 

reducing the optimization time by 63.33% for hyperparameter tuning. 

i) Experiments are carried out on two different datasets based on bearings and gearboxes. The proposed algorithm achieves 

an average fault classification accuracy of 99.60% and 99.99%, respectively. Furthermore, the proposed algorithm 

reaches an average accuracy of 99.12% when tested on noisy data (SNR = 10 dB). It outperforms state-of-the-art 

shallow and DL models in comparative studies.  

This paper consists of the following sections: In Section (2), the theoretical and motivation background for PCA, DAE, Bi-

LSTM, and BO is presented, and in Section (3), the proposed algorithm is implemented. Section (4) presents experimental 

and analytical results applicable to evaluation metrics, followed by a conclusion in Section (5). 

2) Fundamentals for the Proposed Methodology 

This section introduces the dimensionality reduction concepts for applying linear PCA to vibrational signals. It also 

covers the basics of BO, DAE, and BO-DAE approaches, which are crucial for extracting non-linear features. Finally, we 

will explore the theoretical framework of BO tuned Bi-LSTM. This paved the way for a robust fault classification system.  

2.1        Principal Component Analysis (PCA) 

In comparison to counterparts such as linear discriminant analysis (LDA), ICA, and t-distributed Stochastic 

Neighbor Embedding (t-SNE), PCA can capture large datasets more simply with better interpretability. It is an unsupervised 

learning technique that helps to transform the dimension of large datasets represented by 𝑛  × 𝑝  matrix. The goal is to 

transform original 𝑝  variables into a smaller set of 𝑞  variables called principal components. Principal components are 

orthogonal projections (perpendicular) of data onto lower-dimensional space. Ensure that the resulting components capture 

significant variation within the data and are uncorrelated [46]. Basically, principal components are linear combinations of 

the original variables and can be written as: 

1 1 2 2k k k kp pPC a Y a Y a Y  (1) 

Y1, Y2 ,…, and Yp are the vibrational signals in the above equation, and PCk represents the k number of principal 

components, coefficients 𝑎𝑘1, 𝑎𝑘2,…, 𝑎𝑘𝑝 forms the 𝑘th eigenvector of the covariance matrix S [46]. Since eigenvectors and 



5 | P a g e  

 

their corresponding eigenvalues are crucial for determining how much variance different principal components capture. 

Thereupon, singular value decomposition (SVD) is employed to compute these principal components by decomposing the 

data matrix 𝑌 into three matrices 𝑌 = 𝑈𝛴𝑉𝑇. For very large datasets of vibrational signals, we have incorporated SVD 

alongside PCA. This is because SVD helps to decrease computational burden while maintaining the integrity of the data 

[46]. Now, the equation has two orthogonal matrices, U and V.  In the case of 𝛴, it is a diagonal matrix and contains singular 

values of 𝑌. The columns of the V matrix represent principal components, and the singular values in 𝛴 correspond to the 

square root of the eigenvalues of the covariance matrix of Y. This relationship is vital because it helps to determine how 

well variance is captured from the vibrational signals. By doing so, variance is measured by the eigenvalues λi of the 

covariance matrix. Subsequently, as shown in Table 2, the optimal number of principal components is selected by including 

the cumulative variance (𝐶. 𝑉) criterion with a 95% threshold, as shown below: 

                                          . 1

1

k

i
i
p

i
i

CV       (2) 

For optimal projection dimensionality reduction, identify the minimum number 𝑘 as: 

                                             .

2

1

2

1

0 95

k

i
i
p

i
i

    (3) 

According to Equation 3, in Figure 1, 𝑘  =276 principal components achieve a 95% variance for designated 

vibrational signals and also help reduce noise while retaining the most essential and interpretable patterns [47]. This initial 

step also helps reduce the computational load for subsequent tasks. 

Cuff-off region

 
Figure 1. The vibrational signals total variance with a 95% threshold. 

Table 2. SVD-based PCA with linear feature reduction. 

Algorithm 1: Principal component analysis 

Input: Data matrix Y, size n×p. 

Output: Principal Components matrix P. 

1: Standardize Data Matrix: 

-Standardize data matrix Y for equal contribution to the analysis. 

2: Perform SVD: 

-Perform SVD on data matrix Y to attain U, Σ, and V, as  Σ
TY =U V  

3: Variance Assessment: 

- Variance for every individual singular value calculated:
2
i , for i = 1to p
n -1

 

-  Sigmoid function is represented as . 
4: Select Number of Components: 
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- Determine the optimal 𝑘 via: .

2

1

2

1

0 95

k

i
i
p

i
i

 

5: Extract Principal Components: 

   - Select the first k vectors from V. 

   - From the Principal Components matrix P using these vectors. 

6: End. 

2.2        Deep Autoencoder (DAE) 

The deep sparse autoencoder helps to capture complex non-linear patterns that the linear PCA misses. This hybrid 

combination helps to capture a broad and complementary spectrum of features in vibration data that can be used for 

clustering, classification, and anomaly detection.  

a)        Basic-Autoencoder 

The three-layer architecture of a basic autoencoder is shown in Figure 2. Autoencoders are generative models that 

capture non-linear, complex relationships [48]. As the autoencoder trains with unlabelled input data 𝑋, it compresses the 

high-dimensional data from the first layer to the second layer into a lower-dimension space. A decoder tries to reconstruct 

input data from the second to third layer after the encoding process has been completed. Since the autoencoder captures 

essential features in the bottleneck layer 𝑍 (latent space), it can be perceived as a clever method to transform dimensions. 

In addition to determining the reduced space dimension and capturing essential information, this layer assists in 

reconstructing the original data at the output �̂�. Achieving efficient compression is impossible if the autoencoder is not 

properly trained while minimizing reconstruction errors. In other words, inadequate training results in poor learning of 

prominent features.  

    
Figure 2. Autoencoder basic structure 

With this in mind, iterative backpropagation is used to find the best encoding and decoding weights and biases for 

the basic autoencoder with a single hidden layer during training. This unsupervised training process requires 𝑁 samples 

without labels, which are obtained by high-dimensional input data as 𝑋 =  {𝑋1, 𝑋2, , … , 𝑋𝑡 , … , 𝑋𝑁} , each 𝑋𝑡  is a v-

dimensional vector in ℛ𝐷ϰ . The encoder maps input vector X to a corresponding encoded vector Z ∈  ℛ𝐷(1)
 via a 

transformation defined by the weights matrix 𝑊(1) ∈ ℛ𝐷(1)𝐷ϰ  and bias vector 𝑏(1) ∈ ℛ𝐷(1)
 . Encoding function for each 

input vector can be written as: 

                    
( ) ( ) ( )( )1 1 1Z h W X b  (4) 

ℛ𝐷ϰdenotes high-dimensional space. (1) indicates the first layer. ℎ(1) is the non-linear encoder transfer function. A 

positive saturating linear transfer function (satlin) is proposed in this study to help capture complex patterns in high-

dimensional vibrational data. In mathematical terms, the generic ‘satlin’ can be written as follows: 

         

,

( ) ,

,

0 0

0 1

1 1

if Z

f Z Z if Z

if Z

  (5) 

Input 

X  

Output 

�̂� 

Encoder  

Bottle Neck (Z)  

Decoder  
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When using ‘satlin’, Equation 4 latent feature representation for 𝑋𝑡  becomes: 

                                        
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, ( )

( ) , ( )

( )

1 1

1 1 1 1 1 1

1 1

0 0

0 1

1 1

t t i

t t t t t t t t t t

t t t

if W X b

Z f W X b W X b if W X b

if W X b

 
(6) 

Within the interval [0, 1] is the output that can be used for feature learning. The decoder then reconstructs the latent 

space 𝑍 back to an approximation �̂� of the original input vector, using its own set of weights 𝑊(2) ∈ ℛ𝐷ϰ×𝐷(1)
 and bias 

vector 𝑏(2) ∈ ℛ𝐷ϰ. Decoding for the latent features is defined as follows: 

                    
( ) ( ) ( )( )2 2 2X h W Z b    (7) 

(2) indicates the second layer. ℎ(2)  is the transfer function for the decoder. We have employed a pure line, 

represented as f (Z)= Z and �̂� = 𝑊(2)𝑍 + 𝑏(2).  Meanwhile, the scaled conjugate gradient ‘transcg’ function updates weight 

and biases during training to minimize the cost function. Cost functions measure the error between inputs 𝑋 and outputs �̂� 

[49]. 

2.2.1 Sparse Autoencoders 

Sparse autoencoders introduce regularization techniques that enhance feature recognition [48]. Sparsity 

regularization ensures that a few neurons are active for each vibrational input set in the hidden layer. For this reason, neurons 

can recognize specific, possibly unique, characteristics of input data to learn more meaningful and distinct features. This 

objective is achieved by adding a regularizer to the cost function. It is based on the average activation value of a neuron. 

For a neuron ‘α’ in the hidden layer, the average activation over the training set is �̂�𝛼. Here, it is calculated as:  

              
( ) ( )( )1 1

1

1 Tp h w X b  (8) 

Equation 8 has  𝑤𝛼
(1)𝑇, which is the α th row of the weight matrix 𝑊(1), 𝑏𝛼

(1)
is the α th entry of the bias vector 𝑏(1), 

and 𝑋𝛾is the γ th training example. 𝛽 is the total number of training examples. For this study, the cost function is augmented 

with a regularization term to induce low average activation levels (�̂�𝛼).  

b)        Sparsity Regularization 

To add such a regularization term in this study, Kullback-Leibler (KL) divergence is used for sparsity that works to 

keep the �̂�𝛼 close to a small value. This is achieved by comparing �̂�𝛼 with a small predefined sparsity parameter ρ. Sparsity 

proportion ρ is a hyperparameter that can be used to set the average activation value [50]. In doing so, the sparsity 

regularization term can be written as follows:  

              

( ) ( )

( ) log( ) ( ) log( )

1 1

1 1

1
1

1

D D

sparsity KL p
p p

 (9) 

The idea behind this penalty function is that sparsity increases monotonically as �̂�𝛼 diverges from 𝜌 otherwise 𝐾𝐿(𝜌‖ �̂�𝛼) =

0 if �̂�𝛼 = 𝜌. As a result of KL divergence, it is added to the cost function to help the neurons in the hidden layer focus on 

and respond to certain features in the training data. 

c)        L2 regularization  

Furthermore, this study includes L2 regularization term to prevent excessive weights during training sparse 

autoencoder. This modification controls overfitting and computes as follows: 

                                    
( )( ) ,2

1 1 1

1

2

l lL
l

weights
l

w    (10) 

Hidden layers are denoted by L. The input size of layer l is l , and 𝛽𝑙 is the output size of layer l. 𝑤𝛾𝛼
(𝑙)

 denotes 

elements of the weight matrix of layer l. The overall cost function integrates these terms to balance reconstruction accuracy, 

sparsity, and weight magnitude. The adjusted cost function for the proposed algorithm is based on mean-squared error (MSE), 

and the overall cost function is now: 
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Here, K denotes the input dimension.  In this modification, λ is the  

L2 weight regularization coefficient, and δ is the sparsity regularization coefficient. To incorporate optimum sparsity 

and control weight values, the proposed BO algorithm will optimize potential hyperparameters (such as λ, δ, and ρ) to 

control the influence of regularization terms. As a result, the autoencoder can be trained to learn compact data representations 

effectively, making it useful for tasks such as dimensionality reduction and feature extraction.  

The basic methods for extracting features from high-dimensional vibrational data have been introduced so far. After 

feature reduction and extraction, the next step is to train the model on the extracted features. To effectively train our proposed 

model with the extracted features, we briefly introduce Bi-LSTM in the next section. 

2.3       Bidirectional Long Short-Term Memory (Bi-LSTM)  

LSTM possesses advanced design, and it is an exclusive type of RNN. This exclusive type incorporates a forget 

gate, an input gate, an output gate, and a cell state. These gating mechanisms help mitigate the common problems of 

exploding and vanishing gradients often met in RNNs when dealing with complex data identical to vibrational signals from 

bearings. The architecture of the LSTM is illustrated in Figure 3. 

 
Figure 3. Structure of LSTM cell. 

At the time step , 𝑥( ) indicate the LSTM cell input data, ℎ( ) indicates the LSTM cell current output, whereas 

( )1h  is the output from the previous time step ( )1 . 𝑐( ) represent the cell state of the LSTM. Within the LSTM 

cell, the following computation is executed: 

 

 

 

 

 

 

 

 

 

 

The variables wxi ,wxo ,wxf , and wxg indicate the weight matrices for the input gate, output gate, forget gate, and cell 

gate. Moreover, bi, bo, bf, and bg are the bias vectors corresponding to the input gate, output gate, forget gate, and cell state. 

𝜎 symbolize the sigmoid function, respectively. 

As mentioned earlier, LSTM models have shown better performance than RNNs in addressing problems related to 

long-term dependency. At the same time, LSTM cannot consider past and future contextual information due to its only one-

direction sequence processing. A bi-directional mechanism is incorporated into the Bi-LSTM structure to overcome LSTM 
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constraints. As illustrated in Figure 4, this structure comprises two LSTMs: forward LSTM manages the sequence from the 

past to the future and another from the future to the past (i.e., backward LSTM). The Bi-LSTM structure output is formed 

by cascading vectors from both the forward and backward sequence outputs, as shown below: 
 

 

ℎ𝑓( ) and ℎ𝑏( ) are the forward and backward sequence outputs. In this study, the Adam optimizer adaptively 

tunes Bi-LSTM network interior parameters (𝜃), including gradient moments, weights, and biases for both forward and 

backward LSTM cells [41]. For optimal convergence and loss function (𝜚) minimization, Adam updates parameters via 

𝜃𝜏+1 = 𝜃𝜏 −
𝜂

√�̂�𝜏+𝜖
�̂�𝜏. Here, �̂�𝜏 and 𝑣𝜏 are adaptive moments of the gradients that help to improve weights and biases, 𝜖 

is a constant value, and 𝜂 is the learning rate. This proposed mechanism with the concept of gradient clipping in Bi-LSTM 

structure, helps decode complex dependencies in the vibrational signals of bearing [41]. For clarity, Adam optimizes model 

parameters during training while BO tunes hyperparameters. 

 
Figure 4. Description of the Bi-LSTM. 

2.4 Bayesian Optimization (BO) 

Deep learning models such as DAE and Bi-LSTM for optimal performance depend upon fine-tuned 

hyperparameters. However, the global optimization of hyperparameters in the high-dimensional, black-box system is time-

consuming and a high-cost evaluation. BO tackles this challenge by leveraging a probabilistic model that explores the 

hyperparameter space in an intelligent manner, lowering evaluation costs and improving model performance [51].  

Gaussian Process (GP): BO leverages GP to model the unknown objective function probabilistically ( ).f x GP is a non-

parametric model defined by a mean function m( )x and covariance function ( ),k x x , known as the kernel. These elements 

facilitate accurate prediction of the function distribution that best fits the observed data. In general, for new input x  , GP 

assumes the underlying function values have a multivariate normal distribution as:  

 
 

Wherem represents the mean vector andK is the covariance matrix. For a dataset 1={( ,y )}ni i iD x , where yi are the 

observed values of ( )if x , GP calculates the posterior mean and variance predictions for a new point newx by utilizing the 

observed inputsX , outputs Y , and the noise term
2
n , as follows: 

 

 

 

 

Where I  is the identity matrix. Mean Function: The mean function in our GP model is set to a constant mean, 

which assumes that the objective function has a consistent baseline value across the hyperparameter space. This choice is 

common in BO applications because it simplifies the model while still allowing the GP to capture complex patterns through 
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the covariance function. The constant value for the mean in our work is estimated from the observed point. Choice of Kernel:  

The covariance function ( ),k x x defines the relationship between points in the hyperparameter space. We employ the Matérn 

5/2 kernel, which is a popular choice for BO due to its flexibility and ability to model smooth but non-linear functions. 

Moreover, the Matérn 5/2 kernel is less sensitive to small fluctuations, reducing the risk of overfitting to noisy observations. 

The Matérn 5/2 kernel is defined as:  

 

 

 
Where: 

• d x x is the Euclidean distance between two points, 

• 
2

is the variance parameter,  

• ℓ is the length-scale parameter, controlling the smoothness of the function. 

This kernel is well-suited for our application as it balances smoothness and adaptive nature, allowing the GP to model the 

complex, non-linear relationships in the hyperparameter space of the sparse DAE and Bi-LSTM in an effective manner. 

Acquisition Functions: This decision-making process is based on a predefined strategy and auxiliary optimization to find 

the next query point [51]. Employing the mean and variance predictions from the GP generates a scalar metric that indicates 

the potential utility or improvement expected from evaluating candidate points. Expected Improvement per Second Plus 

(EIps+): Expected Improvement (EI) and its variant, Expected Improvement per Second (EIps), are useful acquisition 

functions that can be significantly improved to make computations more efficient. EI and EIps guide the selection of the 

next query point to evaluate by balancing the trade-off between exploration (uncertain regions of the search space, where 

𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 (. ) is high) and exploitation (areas already identified as promising, where 𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(. ) is high). At the same time, 

to execute this task and enhance decision-making under computational resource constraints, lightweight EIps+ is 

incorporated. The formula for standard EI is: 

 

 

 

 
 
 

( )bestxf is the best point observation so far.  and  are the cumulative distribution function and probability density 

function of the normal distribution, respectively, and  is a hyperparameter encouraging exploration. For EIps, the expected 

evaluation time ( )s x  factored as: 

 

 

 

Lightweight EIps+ introduces an adjustment for the uncertainty in computational cost: 

 

 

 

( )s x quantifies the uncertainty in evaluation time and is a hyperparameter balancing expected improvement 

against time uncertainty. Advantages Over EI and EIpS: EIps+has the following benefits over EI and EIps. 

1. While previous methods, such as EI and EIps, focus on enhancing the objective function, they do not account for 

time and its associated uncertainties. In contrast, the EIps+ acquisition function incorporates time-aware exploration 

and quantifies the associated uncertainties. This approach prioritizes the exploration of hyperparameter 

configurations that offer high improvement potential and predictable evaluation times, avoiding overcommitment 

to slow or uncertain evaluations.  

2. By penalizing uncertain time estimates ( )s x  , EIps+ reduces its sensitivity to noisy or unstable evaluations. 

3. The introduction of ( ) ( )ss x x  the denominator in Equation 21 facilitates batch evaluations, thereby 

maximizing hardware utilization (e.g., multi-core CPUs/GPUs).  
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Integration of Parallel Settings: The extension of EIps+ to parallel settings allows for simultaneous evaluation of multiple 

promising hyperparameter configurations. A batch method selects a group of promising options 1 2 nx x x{ , , , }   for 

evaluation together. Various workers (independent computational units) ran each evaluation to save time, the GP model is 

updated once all assessments are done. This step helps to find better options in the next iteration and ensures faster 

convergence while maintaining model performance and reducing optimization time. 

3) Implementation of the Proposed Methodology 

This section presents an implementation of the algorithm based on the aforementioned basic methods. The proposed 

algorithm based on the PCA, BO-DAE, and BO-Bi-LSTM is shown in Figure 5.  

 
Figure 5.  Implementation of the proposed algorithm based on supervised learning 

3.1        Data Collection       

At first, Case Western Reserve University’s (CWRU) faulty bearing dataset is sorted to collect significant data for 

further analysis. The dataset is categorized into three main types:  1) Inner race faults: The fault occurs on the inner race of 

the bearing, which provides a path for rolling elements and is closest to the shaft; 2) Outer race faults: These faults are at 

the outer ring of the bearing and interfaces with housing, 3) Ball faults: These faults are on the ball in ball bearing. These 
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faults are artificially generated via electro-discharge machining (EDM) on the bearing components with fault diameters 

ranging from 0.007 to 0.021 inches at different degrees of severity, as tabulated in Table 3. The dataset has ten data groups, 

including faulted and normal bearings. In this test, a 3-horsepower (HP) reliance electric motor is mounted on the left-hand 

side of the test bench, while the fan and drive end are equipped with 6205-RS JEM SKF deep groove ball bearings. We 

collected vibration data at a sampling frequency of 12 kHz by mounting accelerometers (encoders) at particular points on 

the motor housing, typically near its drive and fan ends, to capture vibration signals from bearings. Load conditions applied 

to the motor shaft are 3 HP and a speed of 1772 revolutions per minute (rpm), which simulate common operational 

conditions for such motors. 

Table 3. Rolling bearing data set description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2        Standardization 

Considering a dataset with dimension 𝑁ሷ × 𝑀ሷ  , 𝑁ሷ   gives total samples and 𝑀ሷ   gives the number of features (e.g., 

CWRU measurements). After sorting the raw signal 𝑋ሷ
𝑟𝑎𝑤 = {𝑥ሷ1, 𝑥ሷ2, … , 𝑥ሷ(𝑀ሷ )}  into ten different types and setting 𝑁ሷ   = 

10×117 =1170, where each 𝑥ሷ𝑖 =1024 are features of the vibrational signal in each sample that correspond to fault type or 

healthy state. We utilized different standardization techniques such as min-max scaling, robust scaling, decimal scaling, and 

L2 normalization. However, z-score normalization leads to more effective compressed representations for training deep 

learning models as: 

 

 
 

Where μ and σ represent mean and standard deviation vectors. Equation 22 ensures that features in each sample 

have small gaps and a consistent range for reduction techniques like PCA and BO-DAE. 

3.3 Feature Extraction 

PCA transforms standardized data 𝑋ሷ
𝑠𝑡𝑑  into a reduced dimensional space 𝑋ሷ

𝑃𝐶𝐴 = 𝑈𝑘Σ𝑘𝑉𝑘 , where k =276 

components are chosen to achieve a cumulative variance of 95%. With reference to Section 2.1, SVD-based PCA reduces 

the dimensionality from 1024 to 276 components while maintaining the CWRU dataset’s core characteristics. SVD-based 

PCA aims to collect linear spatial features, whereas BO-DAE is utilized to capture non-linear spatial features from 𝑋ሷ
𝑠𝑡𝑑. 

Therefore, the sparse autoencoder architecture defined in Section 2.2 is designed. At its core, the bottleneck layer produces 

a compressed representation 𝑍(𝑖) for the input data 𝑋ሷ
𝑠𝑡𝑑
(𝑖)

. For ideal features at the bottleneck output, the primary objective is 

to minimize the total loss function while integrating the reconstruction loss, the sparsity penalty, and 𝐿2 regularization as: 
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By optimizing 𝐸𝑇𝑜𝑡𝑎𝑙, the proposed DAE learns to encode the essential non-linear features of the data into a bottleneck layer 

(𝑋ሷ
𝐴𝐸= Encoder (𝑋ሷ

𝑠𝑡𝑑)) with fewer dimensions. 𝐸𝑇𝑜𝑡𝑎𝑙 can be improved by selecting optimal hyperparameter values before 

training that balance complexity and generalization, capturing key features for high-dimension vibrational signal reduction, 

Rolling bearing data set description 

Bearing State Fault Degree Number Label Letter Labels Remarks 

Rolling Ball faults 1 0.007 Label 1 RE007 Ball defects_07 

Rolling Ball faults 2 0.014 Label 2 RE014 Ball defects 014 

Rolling Ball faults 3 0.021 Label 3 RE021 Ball defects 021 

Inner race defect 1 0.007 Label 4 IR007 Inner defects 07 

Inner race defect 2 0.014 Label 5 IR014 Inner defects 014 

Inner race defect 3 0.021 Label 6 IR021 Inner defects 021 

Outer race defect 1 0.007 Label 7 OR007 Outer defects 07 

Outer race defect 2 0.014 Label 8 OR014 Outer defects 014 

Outer race defect 3 0.021 Label 9 OR021 Outer defects 021 

Normal NA   Label 10 Nor Normal 

raw
std

X
X                                                                              (22) 
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plus avoid overfitting. To achieve this, BO is employed to find a set of hyperparameters , including λ, δ, and other 

hyperparameters mentioned in Table 4, by minimizing the aggregated validation loss. Implementation of the proposed BO-

DAE is shown in Table 5. The BO models the loss function (MSE) as a GP and uses the acquisition function EIps+ to decide 

where to sample next: 

( ( ));min val valarg E R X                             (24) 

Delved into Equation 24, BO’s primary objective is to minimize the objective function, where 𝐸val represents the 

validation loss, and R represents the reconstructed output of the validation data.  represent selected values from a search 

range of hyperparameters. 

Table 4. Optimized DAE Hyperparameters 

 

 

 

 

The following sub-section gives the results obtained by implementing BO-DAE. 

Table 5. Training DAE with BO and k-Fold CV 

Algorithm 2: Proposed BO-DAE 

Input: Data matrix 𝑿ሷ
𝒔𝒕𝒅 size 𝑵ሷ × 𝑴ሷ . 

Output: Optimized Sparse Autoencoder model with hyperparameters . 

1: Initialization: 

-Define a range for hyperparameters, including Max epochs, δ, λ, and ρ, to initiate the BO 

process. 

2: k-Fold Cross-Validation (CV) Setup: 

- Integrate k-Fold CV within the BO loop with k=5 (Dividing the dataset 𝑿ሷ
𝒔𝒕𝒅 into five 

distinct subsets) 

3: Evaluation with k-Fold CV: 

-For each set of hyperparameters  

1) Train Sparse Autoencoder with  on 5-fold CV training data. 

2) Evaluate each fold’s validation set. 

3) Calculate MSE for the reconstruction error on the validation subset. 

4: Results Aggregation: 

-Aggregate the MSEs from 5 folds to calculate an average MSE for the set of 

hyperparameters . 

5: Optimization: 

- Apply BO to analyze the aggregated MSE results from the 5-fold CV 

            - Determine the next set of hyperparameters  for evaluation in parallel to evaluate via 

maximizing the acquisition function (Parallel EIps+), guided by the GP model. 

6: Iteration: 

- Utilize the parallel setup to evaluate multiple configurations simultaneously, reducing 

overall optimization time. Repeat steps 3 to 5 until the 30th BO iterations are done 

7: Final Selection (Best Model): 

- Find the optimal set of hyperparameters  that minimize the objective function (i.e., 

aggregated MSE), indicating the best model performance on unseen data subsets. 

8: End. 

During training, BO uses 30 iterations to fine-tune a set of critical hyperparameters. Based on our experiments, 30 

iterations provided a good balance between computational cost and convergence to optimal hyperparameters. Meanwhile, 

BO is integrated with k-fold CV to lower the MSE (objective function) on a validation dataset. The process took 10,598.6 

sec, and the best MSE of 0.10083 was observed on the 24th iteration, demonstrating model accuracy in reconstructing data 

from compressed representations with optimized hyperparameters. The integration of parallel BO reduced the total 

Optimized DAE Hyperparameters 

Hyperparameters Search Range BO Selected Parameters 

L2 Weight regularization coefficient (λ) [1×10-5 to 1×10-2 ] 0.009690540632201 

Sparsity regularization coefficient (δ ) [1×10-3 to 1] 0.070407786152138 

Hidden size [100 to 200] 198 

Sparsity proportion (ρ) [0.01 to 0.5] 0.451387076690407 

Max epochs [100 to 500] 485 

Scale data NA 0 
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optimization time by approximately 35% compared to traditional BO. The coefficient for the L2 weight regularization is λ, 

which avoids overfitting by applying a penalty proportional to the square of the magnitude of the weights. The search range 

is set between [1×10-5 to 1×10-2], with BO selecting 0.009690540632201. The number suggests that a generalizable model 

with strong regularization is chosen. This is because it is close to the upper limit of the range. The sparsity regularization 

coefficient (δ) encourages the model to learn sparse representations by implementing a penalty for non-zero activations in 

the hidden layers. The search range spanned from [1×10-3 to 1]. BO suggests the value of 0.070407786152138. Under those 

circumstances, an optimal level of sparsity enforcement allows the model to maintain a flexible approach to learning from 

the data. The total number of neurons in the bottleneck layer of the autoencoder is specified by the hidden size, which 

determines the ability of the model to compress input. For instance, the selection of 198 reflects a balanced approach to 

model complexity, allowing for feature extraction without overfitting. From a range of [0.01, 0.5], ρ =0.451387076690407 

is selected, indicating a high level of neuron activation in the bottleneck layer that supports the model’s comprehensive 

representation of features. With a search range from [100, 500], 485 epochs are chosen via BO, which gives an optimized 

value of 𝐸𝑇𝑜𝑡𝑎𝑙 = 0.2555. These results prove robust training with better convergence and in-depth learning without 

overfitting.  
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Figure 6. t-SNE representation of before and after feature reduction 𝑋ሷ

𝑇𝑜𝑡𝑎𝑙. 

3.3.1 Feature Selection 

After collecting features from 𝑋ሷ
𝑃𝐶𝐴 = 𝑃𝐶𝐴(𝑋ሷ

𝑠𝑡𝑑)  and BO-DAE (𝑋ሷ
𝐴𝐸  = Encoder (𝑋ሷ

𝑠𝑡𝑑 )), the datasets are organized 

together for each of the fault types as 𝑋ሷ
𝑇𝑜𝑡𝑎𝑙 = {𝑋ሷ

𝑃𝐶𝐴 , 𝑋ሷ
𝐴𝐸}. These reduced features represent the vibrational signal’s linear 

and non-linear contents in the bearing structure. We employ a correlation-based feature selection method to optimize feature 

selection for data processing further. The theoretical foundation is based on the Pearson correlation coefficient, which 

evaluates the relationship between two variables: 
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Where 𝑋ሷ
𝑖 and 𝑌ሷ  present features and targets. 𝑋ሷ̂

𝑖 and 𝑌ሷ̂  present mean values. In this model, we compute an absolute 

correlation for each feature with the label.  Features are then ranked based on their correlation scores, with higher values 

indicating a stronger connection to the label. Figure 6 with the help of t-SNE, clearly illustrates how features that are 

significant to the target variable are identified and prioritized to expedite learning while improving spatial interpretability 

for future modelling [52].  

3.4 Network Mapping 

In the next step, the proposed model learns the relation between input 𝑋ሷ
𝑔and 𝑌ሷ

𝑔 output with the help of BO-based 

Bi-LSTM architecture in the offline training mode to classify bearings faults. It is mathematically expressed based on the 

following equation: 

  ( )g gY X  (26) 

Here, ℝ presents intelligent architecture attained to leverage the temporal characteristics of BO-Bi-LSTM. In this 

context, the input sequence expanded as 𝑋ሷ
𝑔 = [𝑥ሷ𝑔

1, 𝑥ሷ𝑔
2, 𝑥ሷ𝑔

3, 𝑥ሷ𝑔
4, … 𝑥ሷ𝑔

𝑒 , … , 𝑥ሷ𝑔
𝐿]. Each 𝑥ሷ𝑔

𝑒   is a column vector representing feature 

inputs with a total length L of data (also the length of time) that feeds into the input layer (range of 𝑒 is 1 to 𝐿). Now, the 

input data is arranged as follows: 

, , , , , , , ., , .; , , , .,1 2 1 2 1 2
1 2 3 4 1 1 1 2 2 2 ; L L L

n g g gX X X X X X x x x x x x x x x                    (27) 

With reference to Table 2, there are 10 target labels, namely different types of inner, outer along with bearing faults 

and normal operations. Under those circumstances, the target labels are organized as follows: 

, , , , ,1 2 3 4 nF Y Y Y Y Y                                                            (28) 

Each 𝑌ሷ
𝑗 corresponds to the classified fault type for the 𝑗th sequence, and 𝑛 represents the total number of sequences 

in the dataset. After mapping, preprocessed data is segmented for training and validating the BO-optimized Bi-LSTM model 

across defined folds. Under those circumstances, the best-selected intelligent architecture will classify bearing faults. Table 

6 and Table 7 present the BO-based Bi-LSTM best-selected intelligent architecture and optimized parameters. 

 

Table 6. BO-based Bi-LSTM architecture (ℝ) 

 

BO-based Bi-LSTM architecture 

 Layer Architecture Description  Remarks 

1) Sequence Input Initiates processing of variable-length sequences. Matching input feature size 

2) Bi-LSTM Layer Crucial for capturing complex temporal patterns. Bi- temporal learning 

3) Normalization Layer Stabilizes learning via normalizing layer outputs. Improve training efficiency 

4) Dropout Layer Prevents overfitting via randomly omitting units. Ensure model generalization 

5) Bi-LSTM Layer Bi-LSTM Layer 2 Bi-lstmLayer-02 

6) Normalization Layer Normalization Layer 2 batchNormalizationLayer-02 

7) Dropout Layer Dropout Layer 2 dropoutLayer-02 

8) Bi-LSTM Layer Bi-LSTM Layer 3 Bi-lstmLayer-03 

9) Normalization Layer Normalization Layer 3 batchNormalizationLayer-03 

10) Dropout Layer Dropout Layer 3 dropoutLayer-03 

11) Fully Connected Transforms Bi-LSTM features for classification. Dense layer with 100 neurons 

12) ReLU Layer Introduce non-linearity to help the model learn complex patterns.( reluLayer-01) 

13) Dropout Layer Mitigate overfitting post-feature extraction and enhance generalization. 

14) Fully Connected Align output dimension with target classes for classification. 

15) Softmax Layer Converts outputs to probabilities. 𝑌ሷ
𝑔=softmax (W. ℝ(𝑋ሷ

𝑔)+b) 

16) Classification Layer Assign the most probable class to each sequence for fault classification.  
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3.4.1 BO-based Bi-LSTM architecture (ℝ) 

BO incorporates three Bi-LSTM layers to capture temporal dependencies in both forward and backward directions 

of the input sequence. However, vibration sequence can vary significantly in amplitude depending on factors such as sensor 

placement, operating conditions, and even equipment age.  Therefore, normalization layers ensure that features extracted 

by the model are a true reflection of the underlying faults and are not skewed by signal variations that are not relevant. In 

addition to improving convergence, it reduces the risk of becoming stuck in local optima and enhances overall performance. 

To further improve the performance, the ReLU layer introduces non-linearity into the model, allowing it to learn these 

intricate relationships and effectively differentiate between different fault types. This is because vibration sequences exhibit 

complex relationships between features. Especially with Bi-LSTM layers, it enhances model computation compared to 

Sigmoid and Tanh. After capturing patterns through the Bi-LSTM layers, the hidden layer output is sent to a fully connected 

layer as an input, where the refined information is categorized. We can distinguish between normal and abnormal rolling 

element-bearing states by combining softmax and classification layers. However, given the dynamic nature of fault operating 

environments in rotary machines, it is difficult to include all possible fault scenarios; therefore, training samples are usually 

too small. This may expose the conventional Bi-LSTM model to overfitting states, plus the hit-and-trial method of selecting 

hyperparameters is inefficient. Therefore, the following sub-section provides a comprehensive overview of these problems 

and the criteria used to address them. 

3.5 Overfitting Problem 

It is understood that overfitting is a critical issue in fault classifications, as rolling bearing datasets are limited, and 

deep neural networks often overfit over these limited training datasets [41].  It is possible to fit each neural network on the 

same dataset and average the prediction from all models. However, it is impossible to do so on the scale of rotary machines. 

Therefore, dropout is a good solution for overfitting. It is a regularization tool that includes training Bi-LSTM with various 

non-repetitive sub-networks and averaging them. It eliminates neurons from an initial network with the probability 𝑷ሷ . This 

probability rate is enhanced with the help of BO, presented in Table 7. As a result, the proposed architecture (ℝ) generalizes 

well to new data, reduces overfitting, and improves the model stability to diagnose faults accurately on unseen vibration 

signals. 

Table 7. Optimized Bi-LSTM Hyperparameters 

3.6 Hyperparameter Selection and Training 

During training with extracted features, BO aims to build a Bi-LSTM architecture and improve learning by 

exploring a predefined hyperparameter space to maximize validation performance. This process involves carefully setting 

the search space and tailoring the objective function. The BO objective function incorporates k-fold cross-validation, which 

trains the model on diverse subsets of data and computes the average validation accuracy to guide the optimization process. 

The accuracy metric for multi-class is defined as: 

 

 

 

 

𝑆ሷ is the total number of samples in the validation set for fold 𝑧. ,Pred vald d
Y Y are the predicted and actual labels of the 

Optimized   Bi-LSTM Hyperparameters 

Hyperparameters Search Range BO Selected Parameters 

Hidden units for Bi-LSTM Layer [50 to 200] 89 

Initial Learning Rate (ILR) [1×10-4 to 1×10-2 ] 0.0099 

Mini-Batch Size (MBS) [20 to 128] 94 

Learn Rate Drop Factor (LRDF) [0.1 to 0.9] 0.1943 

Learn Rate Drop Period (LRDP) [1 to 50] 38 

Gradient Threshold (GT) [0.5 to 2] 1.5937 

Number of Epochs (NE) [100 to 300] 173 

Number of Bi-LSTM Layers (NBL) [1 to 5] 3 

Dropout Rate (𝑷ሷ ) [0.1 to 0.5] 0.2230 
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𝑑th sample in the validation set. The expression == generates 1 when the expression within it is true and 0 otherwise. 

 The negated value obtained via Equation 29 assists BO in pinpointing the optimal set of hyperparameters, as 

presented in Table 7. This meticulous adjustment of hyperparameters—including hidden units, initial learning rate (ILR), 

mini-batch size (MBS), learning rate drop factor (LRDF), learning rate drop period (LRDP), gradient threshold (GT), 

number of epochs (NE), number of Bi-LSTM layers (NBL), and dropout rate (𝑷ሷ ) [41]. Specifically, hidden units help to 

learn the complex patterns of the vibrational signal. BO selected 89 hidden units per Bi-LSTM layer, which helps to maintain 

an optimal balance between model complexity and mitigating overfitting issues. ILR = 0.0099 and MBS = 94 aim for fast 

convergence with acceptable noise. This is because ILR controls model weights during training, whereas MBS affects the 

stability and speed of the learning process. To improve this learning process during training, LRDF controls the size of the 

decrease in the learning rate, while the LRDP specifies how frequently (in epochs). GT prevents exploding gradients. 

Gradients are allowed larger updates (GT =1.5937 threshold) for faster learning, balanced by the learning rate factor, and 

drop (LRDF =38 epochs, LRDP = 0.1943 factor) in the training cycle. Incorporating three Bi-LSTM layers helps capture 

complexity without excessive burden. As a result, the model achieved robust performance metrics, including a training 

accuracy of 100% in every iteration. On the validation set, the model exhibited the best accuracy of 90.89 % at the 28th 

iteration with an evaluation time of 1.82 seconds.  
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Figure 7. Hyperparameter variation across observed accuracy (𝑋) on validation sets and BO estimated accuracy (𝑌). 

Figure 7 shows the estimated and observed accuracy of the model for 30 iterations. As the accuracy metric increases, 

BO tends to pick hyperparameter values that are not too big or too small to ensure that the model is balanced and works 

best without overfitting or underfitting. After optimizing hyperparameters via BO and 5-fold CV for efficiency, the best 

model undergoes further exhaustive 10-fold CV to assess its performance across several metrics. Thus ensuring robust 

validation and testing. 

4) Results and Discussion 

This section meticulously assesses the proposed fault classification algorithm across diverse conditions, including 

noise settings, comparison with shallows and DL models, and critical feature extraction techniques. It also has confusion 

matrix analysis and ablation studies (removing PCA, BO-DAE, and BO-based Bi-LSTM) that confirm the model’s reliance 

on both spatial (space) and temporal (time) information.  

4.1 Fault Classification Accuracy 

In this section, we evaluate the fault classification accuracy of the best selected via different metrics. Apart from 

the accuracy metric (29), precision, recall, F1-scores, and Cohen's Kappa metrics are used to validate the model performance. 
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These metrics are mathematically represented as follows.   

 

 

 

 

 

 

 

 

 

 

TP and FP represent true positive and false prediction, whereas FN stands for false negative. op  is observed 

agreement  and ep is expected agreement by chance.These metrics are used to monitor and measure the model’s classification 

accuracy.  
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Figure 8. A radar chart presents precision, recall, and F1 scores for each class with a 10-fold CV (Label info Table 3) 

After segmenting the selected features into training and validation sets 𝑋ሷ
𝑡𝑟𝑎𝑖𝑛, 𝑋ሷ

𝑣𝑎𝑙, 𝐹𝑡𝑟𝑎𝑖𝑛and 𝐹𝑣𝑎𝑙, as described in 

subsection 3.3.1; we proceed to train and evaluate the best model (   ( , )g gY X  ), 𝑔  present any specific sequence. 

Thereupon, metrics are recorded and averaged across folds to determine the model’s overall effectiveness. While analyzing 

the radar chart in Figure 8, Label 1 exhibited the highest precision at 0.9938, indicating a solid model accuracy. In contrast, 

Label 2 had the lowest precision but a satisfactory recall of 0.9, suggesting a balance between these evaluation metrics. The 

highest recall was observed for Label 4 at 0.9909, demonstrating the model’s effectiveness in identifying true positives. 

Label 10 achieved the highest F1-Score of 0.9819 for steady-state values, with Label 4 leading in non-steady-state scenarios 

with an F1-Score of 0.9952.  
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Figure 9. Confusion matrix of the proposed algorithm. (Label info Table 3) 

Using predicted and actual classes, Figure 9 illustrates the overall accuracy of the dataset, demonstrating the efficacy 

of a confusion matrix tailored to each fault type to evaluate the efficacy of the proposed algorithm. Using this matrix, we 

have assessed how effective the algorithm is in distinguishing between fault types, which achieves 99.60% classification 

accuracy for the CWRU dataset. These findings, with an average 10-fold CV training accuracy of 100%, highlight the 

model’s robust performance across diverse testing scenarios. 

 
Figure 10. Accuracy Bar Chart 

A bar chart in Figure 10 illustrates the importance of macro values when evaluating a classification model’s 

performance in a variety of fault categories, especially in datasets with uneven class distributions. According to its macro 

precision score of 99.50%, macro recall score of 99.60%, and macro F1-Score of 99.57%, this model is reliable and well-

balanced in classification. To further highlight model robustness in complex classification scenarios, training and testing 

accuracies represent an average of 100% for training and 91% for a 10-fold cross-validation test. These well-tested metrics 
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ensure that all classes are assessed uniformly. Thus preventing any single metric from skewing the overall performance 

assessment.  

4.2 Evaluation under Noisy Events 

Considering the working conditions under which mechanical equipment operates, data collected under variable 

conditions might be contaminated with severe noise conditions. To rigorously evaluate the proposed algorithm’s robustness, 

it is deliberately injected with Gaussian white noise under extreme noise conditions at signal-to-noise ratios (SNRs) of 10 

dB, 6 dB, and 2 dB. This way, the algorithm’s performance is tested under realistic and challenging acoustic conditions, 

ensuring it can handle diverse acoustic scenarios. The classification results under different noise levels are presented in 

Table 8.  
Table 8. The recognition rate of faults under noise conditions 

 

 

 

 

 

 

 

 

The high fault classification accuracy of 98.36% for the entire (CWRU) dataset demonstrates the robustness of the 

proposed feature against noise. In comparison, when the denoising Wiener Filtering (WF) technique is applied [53], defined 

as WF (𝐻(𝑓) =
𝑃𝑥𝑥(𝑓)

𝑃𝑥𝑥(𝑓)+𝑆𝑣𝑣(𝑓)
) and trained for 10 dB noise levels, dataset accuracy was 98.12%. This approach removes noise 

using a periodogram to estimate and simplify noise power spectrums 𝑆𝑣𝑣(𝑓) using the signal’s median power 𝑃𝑥𝑥(𝑓). We 

have enhanced signal clarity by mitigating additive Gaussian noise by leveraging FFT with WF filtering and IFFT 

conversion. We also compared with the robust discrete wavelet transform-based denoising technique (DWT-DT) [54]. 

However, samples contaminated with 10 dB noise levels received a classification accuracy of 97.95%, macro precision of 

97.95%, macro recall of 97.97%, and macro F1-Score of 97.95% for the DWT-DT model. Keeping this in mind, the proposed 

features perform well. 

To further highlight the resistance of our proposed framework, we have tested the baseline shallow ML and DL 

models under low SNR conditions by injecting Gaussian white noise into the vibration signals. The results are tabulated in 

Table 9. Decrement in accuracy (%) measures the average performance drop under noise (10 dB, 6 dB, 2 dB) compared to 

clean data. These additional experiments and analyses demonstrate that our framework achieves state-of-the-art 

performance with minimal decrement (1.3%), outperforming SVM (14.55%) and KNN (18.63%) due to robust features and 

optimized hyperparameters. 
Table 9. Comparisons of proposed framework and baseline models under low SNR conditions 

4.3 Comparison with Shallow Networks 

In this section, we compared traditional shallow networks such as Support Vector Machine (SVM) with a Medium 

Gaussian kernel, Cosine K-Nearest Neighbors (KNN), Logistic Regression kernel (LRK), and Naïve Bayes Classifier (NBC) 

against a proposed algorithm using PCA & BO-DAE features on the CWRU dataset. The assessment is based on 

classification accuracy under normalized and proposed feature sets with robust 10-fold CV. The classification accuracy, 

macro precision, recall, and F1-Score for all shallow networks are tabulated in Table 10. Considering the dynamics and 

complicated operating environments for bearing, these shallow networks are prone to mis-convergence and lower accuracy 

rates. 

 

 

The recognition rate of faults under noise conditions 

Noise (dB) Entire Dataset Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1-Score (%) 

10 dB  99.12 99.23   99.24    99.23 

6 dB  98.86 98.63   98.66    98.64 

2 dB  97.10 97.10   97.20    97.12 

  Average (%)                 98.36                                98.32                          98.40                          98.33 

Comparisons of proposed framework and baseline models on the CWRU dataset under low SNR conditions (10 dB, 6 dB, and 2 dB) 

Algorithms Selected Features 
Entire Dataset 

Accuracy 

Accuracy @  

10 dB 

Accuracy @ 

6 dB 

Accuracy @  

2 dB 

Decrement in 

Accuracy (%) 

SVM Normalized features 80.68% 78.55% 73.10% 55.18%  14.55% 

KNN Normalized features 75.21%  68.50%  62.30% 52.80%  18.63% 

LSTM Proposed Features 98.03%  97.76%  94.20% 88.50%  04.60% 

Bi-LSTM Proposed Features 99.32% 98.46% 96.98% 94.12%         02.82% 

      Proposed Algorithm    +     Proposed features 99.60%  99.12%   98.86%  97.10%  01.30% 
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Table 10. Comparisons of diagnostic results with shallow networks with 10-fold CV. 

We tested 12-15 shallow networks for given scenarios and presented models that stood out, but our proposed model 

still outperformed them all. Figure 11 presents the confusion matrix for the SVM model with normalized features. It provides 

better results than other shallow networks. However, a 49.5% decrease in accuracy is observed for SVM with the proposed 

features. On the contrary, despite being less adept at handling reduced features, the KNN performed well with the proposed 

features. It underlines the importance of feature selection for improving classification.   

The choice of hyperparameters, such as the kernel function, box constraint, and kernel scale, plays a crucial role in 

enhancing SVM classification performance [55]. For validation, BO-optimized SVM models using the proposed features 

achieved 80.68% accuracy with a Gaussian kernel function, a kernel scale of 29.26, and a box constraint of 156.86. The box 

constraint determines the trade-off between maximizing generalization and minimizing classification errors. A high value 

of 156.86 makes the model more complex and imposes stronger penalties for misclassifications. However, when BO 

employed a polynomial kernel function with a scale of 1 and a box constraint of 9.93, it suggested that SVM used a non-

linear boundary to separate the data better. The lower box constraint allowed the model to generalize better with low 

penalties for misclassifications, leading to a substantial improvement in accuracy of 93.76%. 
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Figure 11. Confusion matrix of the SVM with normalized vibrational features. 

Comparisons of diagnostic results with shallow networks 

Algorithms Selected Features 
Entire Dataset 

Accuracy (%) 

Drop off in   

Accuracy (%) 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

SVM  Normalized features 80.68%           18.92% 80.68% 84.43% 79.91% 

KNN Normalized features 75.21%  24.39% 75.39% 79.82% 75.28% 

Logistic Regression Normalized features 77.26%  22.34% 77.26% 78.51% 77.08% 

Naïve Bayes Normalized features 51.54%  48.06% 51.54% 57.42% 52.11% 

SVM Proposed features 50.10%  49.50% 50.10% 53.34% 49.71% 

KNN Proposed features 77.18%  22.42% 77.44% 80.50% 76.84% 

BO-SVM  Proposed features 84.20% 15.40% 87.10% 84.20% 83.62% 

BO-SVM  Normalized features 93.76% 05.84% 94.42% 93.76% 93.73% 

Proposed Algorithm Proposed features                            99.60% 99.50% 99.60% 99.57% 
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Comparisons of diagnostic results with deep neural networks 

Algorithms Selected Features 
Training 

Accuracy 

Testing 

Accuracy 

Entire Dataset 

Accuracy 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

Cohen's 

Kappa 

GRU Proposed Features 40.23% 23.90% 72% 26.00% 26.27% 26.10% 44.33% 

MLP Normalized features 99.70% 50.00% 95.3846% 95.539% 95.385% 95.462% 94.872% 

LSTM Proposed Features 100% 75.47% 98.0342% 98.081% 98.034% 98.037% 97.816% 

LSTM Normalized features 100% 65.40% 97.351% 97.50% 97.35% 97.37% 97.10% 

1d-CNN Normalized features 96.952% 42.393% 42.393% 46.161% 41.414% 41.578% 36.162% 

1d-CNN Proposed features 95.44% 29.402% 29.402% 29.886% 29.275% 28.311% 21.667% 

BO-1d-CNN Normalized features 100% 78.923% 78.547% 77.919% 80.405% 78.219% 76.186% 

Bi-LSTM Proposed Features 99.99% 86.8376% 99.32% 99.00% 99.00% 99.00% 99.00% 

Proposed Algorithm Proposed features 100% 91% 99.60% 99.50% 99.60% 99.57% 99.53% 
 

Figure 12. Comparison of diagnostic results with deep neural networks with 10-fold CV. 

4.4 Comparison with Deep Neural Networks 

In this evaluation, we compared the performance of various deep neural networks for fault classification tasks. The 

results are visualized in Figure 12, "Descending order" and "Ascending order" in the table to indicate how the algorithms 

are arranged according to their stepwise implementation. Apart from other evaluation metrics employed, we included 

Cohen’s Kappa coefficient (𝐶𝜅) as an additional measure, Kappa assesses how much two observers agree on categorizing 

items, effective for subjective and unordered categories. With 𝐶𝜅 = 99.53%, the proposed algorithm with proposed features 

demonstrates robust performance.  

In models like the gated recurrent unit (GRU) and 1d-CNN, performance falters when applied with proposed 

features, even after incorporating ReLU activation, normalization, and dropout layers. For instance, the GRU model 

achieved an average testing accuracy of 23.90%, with 𝐶𝜅 = 44.33%, reflecting significant challenges in generalizing the 

learned patterns. The Multi-Layer Perceptron (MLP) model with normalized features and LSTM (both with proposed and 

normalized features) presented a dichotomy in performance. For illustration, MLP with epoch =100 and batch size =150 

obtained via the hit and trial hyperparameters settings cannot be generalized well with a testing accuracy of 50%. LSTM, 

especially with proposed features, showed superior performance (average training accuracy of 100%, CWRU dataset 

classification of 98.03%, 𝐶𝜅  = 97.82%). This indicates that the proposed spatial features integrate well with temporal 

learning mechanisms.  

To further enhance performance, we introduced the BO-1d-CNN model, with 12 optimized hyperparameters and 

multiple relevant layers. This model outperforms conventional 1d-CNN models with an average testing accuracy of 78.92% 

and 𝐶𝜅 = 76.19% [56]. In another case, it is observed that conventional Bi-LSTM (similar architecture to BO tuned Bi-

LSTM without optimized hyperparameters) with proposed features also showed notable results, closely following the 

proposed algorithm with an entire dataset accuracy of 99.32%, testing accuracy of 86.84%, and uniform scores of 99% 

across precision, recall, and F1-score, along with 𝐶𝜅  = 99.00%. While analyzing Figure 13, the proposed algorithm 

underscores the Bi-LSTM model in terms of evaluation metrics, and the average training time for each fold is 50 sec, which 

is three times less than the Bi-LSTM model (125 sec). This indicates a robust capacity for spatial and temporal feature 

representation with increased convergence speed and superior fault classification. 
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Figure 13. Validation accuracy (testing accuracy) across each deep neural network fold. 
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Figure 14. Kernel density estimation of errors for different networks 

Kernel density estimation helps visualize algorithm performance across various metrics. Based on Figure 14, the 

accuracy distribution graph demonstrates that the proposed algorithm with tailored features excels. Kernel distribution is 
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approximately 100% with sharp peaks, showing high accuracy and consistency. In contrast, the GRU model with the 

proposed feature exhibits a peak at lower accuracy levels, dipping below 60%, showing poor performance and inconsistency. 

Meanwhile, the LSTM model with proposed features has a median accuracy of around 80%. However, the LSTM model 

for the normalized features has a median peak of around 65%, illustrating the importance of feature selection. In addition 

to a tighter distribution of around 90% with better performance, the Bi-LSTM model with proposed features surpasses the 

aforementioned LSTM models. On the other hand, 1d-CNN and BO-1d-CNN models with standard features have shown a 

broader accuracy distribution. It determines that the proposed BO enhances the accuracy of the 1d-CNN model. Secondly, 

the median accuracy falls below 50% for the MLP model, emphasizing the need for feature selection. Overall, this 

comparative analysis highlights the importance of feature learning and optimization.  

 

Figure 15. Accuracy Bar Chart with the replacement of the PCA component with 1d-CNN for 10-fold CV. 

While DL models like 1d-CNN excel at hierarchical feature learning, PCA was preferred due to no requirement for 

training and avoids the risk of overfitting with small and limited datasets. To evaluate the trade-offs between PCA and deep 

hierarchical extractors, PCA was replaced with 1d-CNN’s latent features and combined with BO-DAE’s outputs (𝑋ሷ
𝑇𝑜𝑡𝑎𝑙 =

{𝑋ሷ
1d−CNN, 𝑋ሷ

𝐴𝐸} ). With an initial learning rate of 0.001, 100 epochs, and a mini-batch size of 32, the 1d-CNN took 32 

seconds to train and extract features. Figure 15 shows that the proposed algorithm achieved training accuracy of 93%, testing 

accuracy of 72.4%, and macro precision, recall, and F1-Score of 73.0%, 72.4%, and 72.2%. Despite excelling at hierarchical 

feature learning, the 1d-CNN model demonstrated signs of overfitting to extract features. This analysis highlights the 

challenge of implementing 1d-CNN to small datasets. 

Table 11. Proposed algorithm training and test results with PCA DAE for CWRU datasets with a 10-fold CV 

4.5 Comparison with Different Feature Selection Models 

This section presents the study to compare different feature selection and dimension reduction techniques as 

individuals and in combination with the proposed encoder. Techniques like t-SNE [52], ICA [46], and random projection 

(RP) [57] offered slightly improved results when used with the proposed encoder and trained with the proposed algorithm. 

PCA, along with the encoder, helps to capture variance much better than ICA and preserve better information than t-SNE, 

as shown in Figure 16. Subsequently, techniques like isometric feature mapping (ISO MAP) [57] and kernel PCA [47] tend 

BO-based Bi-LSTM algorithm training and test results with PCA and DAE for CWRU datasets with a 10-fold CV. 

Optimization 
Feature Selection 

Method 
Classifier 

                                                    Values 

Train  

Accuracy  

Test   

Accuracy  

Macro 

Precision 

Macro 

Recall 

Macro F1 

Score 

Macro 

Kappa 

Entire Dataset Accuracy 

(%) 

BO 

PCA Bi-LSTM 100% 83.76% 98.90% 98.89% 98.89% 98.77% 98.89% 

BO-DAE Bi-LSTM    94.00% 62.10% 92.00% 92.00% 92.00% 91.00% 91.71% 

PCA + BO-DAE Bi-LSTM 100% 91.00% 99.50% 99.60% 99.57% 99.53% 99.60% 
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to overfit, whereas sequential feature selection (FS) underperforms for all metrics [58]. All these results were obtained using 

MATLAB® 2023b, a 13th Generation Intel core(TM) i9-13900H@ 2.60GHz (24 Cores) with 32 GB RAM and NVIDIA RTX 

2000 Ada Generation Laptop GPU running on Windows 11 Pro 22H2. Under these circumstances, the proposed model does 

not overfit while avoiding sensitivity and mal-operation issues. This is because it contains a sophisticated feature selection 

routine with optimized hyperparameters, which prevents maloperation from occurring.  

Table 11 compares the performance of PCA and BO-DAE in terms of their impact on proposed model performance. 

It was observed that PCA performed better than BO-DAE features; however, it tends to struggle to extract non-linear patterns. 

Therefore, when BO-DAE is assembled with PCA, it leads to better and balanced model performance.  

18.9%

19.3%

6.1%
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17.1%
 Encoder+ICA

 Encoder +tNSE
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 ISO MAP

 kernel PCA
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Comparisons of diagnostic results with different features 

Selected Features 
Training 

Accuracy 

Testing 

Accuracy 

Entire Dataset 

Accuracy 

Macro 

Precision 

Macro 

Recall 

Macro 

F1-Score 

Cohen's 

Kappa 

Encoder+ICA 88.70% 45.90% 79.74% 79.74% 80.90% 79.90% 77.51% 

Encoder +tNSE 100% 66.33% 95.98% 95.98% 96.00% 95.98% 95.54% 

Encoder + RP 100% 66.50% 95.64% 95.64% 95.70% 95.63% 95.16% 

Sequential FS 31.71% 22.65% 30.86% 32.22% 30.85% 29.27% 23.33% 

ISO MAP 99.92% 40.43% 93.50% 93.25% 93.25% 93.23% 92.50% 

kernel PCA 98.24% 40.90% 91.03% 91.03% 91.28% 91.09% 90.03% 

 
Figure 16. Comparison of Feature selection models trained with 10-fold CV and the proposed algorithm. 
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Figure 17. Confusion matrix of the proposed algorithm with 10-fold CV. 

4.6 Bearing Fault Diagnosis using Drivetrain Dynamics Simulator (Test 2) 

This work also used SpectraQuest’s Drivetrain Dynamics Simulator (DDS) to verify the proposed algorithm’s 

efficacy [47]. This simulator simulates industrial drivetrains for educational and experimental purposes. It uses two parallel-
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shaft gearboxes with ER-16K bearing models, connected to opposing shafts through magnetic brakes by a bearing loader. 

The wheel has a diameter of 15.16 mm and a diameter of 3.125 mm for the rolling elements, a total of nine, and a zero-

contact angle. We conducted experiments with a sampling frequency of 12.8 kHz, a motor of 20 Hz, and no load condition, 

and we generated a matrix size of 200,000 *1. There are 800 samples, 200 for each condition, with a sample size of 1024 

for normal, inner, outer, and rolling element defects. Figure 17 illustrates the overall classification accuracy of 99% (with 

99.50%, 100%, 95.5%, and 99% for each class). Hence, with training accuracy of 100%, the macro average for precision = 

98.50%, recall =98.52%, F1-Score=98.50%, and 𝐶𝜅 = 98%, the proposed algorithm demonstrates proficient results.  

The proposed algorithm helps to capture long-term dependencies and identify characteristic variations at optimal 

learning rates. Despite the complexity of the rolling bearing network, it fully exploits the intrinsic characteristics of Bi-

LSTM, such as pattern classification and high generalization capability. In comparison, the earlier mentioned Bi-LSTM 

model that closely mimics the proposed algorithm achieves 98% classification accuracy of the entire dataset, with the macro 

average for precision = 98.00%, recall =98.02%, F1-Score=98.00%, and 𝐶𝜅 = 97%. 

4.7 Computational Complexity Breakdown 

The proposed framework incorporates three main components: PCA, BO-DAE, and BO-based Bi-LSTM. For the 

CWRU datasets, PCA performs the SVD of the input matrix to reduce the features from 1024 to 276 while keeping 95% of 

the variance. This step is computationally light, with a processing time of approximately 0.05 ms per sample on a personal 

computer.  

However, optimizing a large set of hyperparameters to adjust the DL architecture based on the data characteristics 

can be computationally intensive. This process often requires days or even weeks of computation on specialized high-

performance hardware [59]. The BO-DAE process completed 30 BO iterations (parallelized) in 10,598.6 seconds for 6 

hyperparameters, including a 5-fold CV for each iteration of BO. In addition, rigorous BO-driven optimization was applied 

to optimize 9 hyperparameters for the Bi-LSTM, with an extensive search range. The proposed parallel BO achieves 63.33% 

faster convergence than the sequential BO method by evaluating multiple configurations simultaneously. The final model 

involves training the Bi-LSTM model for 173 epochs (selected by BO) with a 10-fold CV and an evaluation time of 1.82 

seconds per iteration. Once the BO training with parallel setting was completed, the optimized sparse DAE and Bi-LSTM 

models took approximately 1.32×10-3  seconds to process a single 1024-point raw signal, making the system suitable for 

real-time fault diagnosis.  

In the literature, as tabulated in Table 12, particle swarm optimization (PSO) [42], grid search (GS) [44], and BO 

[43] have been used to optimize the architecture of shallow machine learning algorithms with a limited number of 

hyperparameters. However, PSO and GS are not well-suited for handling a large number of hyperparameters with an 

extensive search range [55]. For deep learning algorithms, such as the deep convolution-gated recurrent unit [45], BO has 

been employed to optimize five hyperparameters with a limited search range and without extensive validation. In contrast, 

to the best of the authors' knowledge, this is the first attempt where extensive validation is conducted with a broad search 

range of hyperparameters for rolling bearing fault classification. In future work, lightweight surrogate models for BO will 

be explored further to reduce computational overhead while retaining accuracy. Plus, adaptive and semi-supervised studies 

will be explored as well [60-62].  

Table 12. Comparative Efficiency of BO vs. Existing Methods for Hyperparameter Tuning in Fault Diagnosis 

Comparative Efficiency of BO vs. Existing Methods for Hyperparameter Tuning in Fault Diagnosis 

Metric Proposed Framework Existing Methods ([42], [43], [44], [45]) 

Hyperparameters 15 parameters (BO-DAE+ BO based Bi-LSTM) ≤5 parameters (e.g., SVM kernels, shallow networks) 

Search Range 4–5 orders of magnitude  Narrow 

Validation Rigor 5-fold + 10-fold CV Limited validation (e.g., single hold-out) 

Training Time Higher Faster but lower accuracy 

Table 13 compares the benchmark performance of the BO-driven framework against existing models. Liao et al. 

[63] achieve higher accuracy than the proposed framework, but it requires twice the input size (2048 data points vs. 1024 

in our framework). When compared to other state-of-the-art models, our framework stands out for its full autonomy and 

reliability than [64] and [43]. This makes it more efficient, reliable, and user-friendly as an off-the-shelf device through its 

autonomous feature extraction and end-to-end optimization, setting a new standard for predictive maintenance and fault 

diagnosis in industrial applications.  
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Table 13. Comparison with Existing State-of-the-Art Models 

4.8 Experimental Validation of BO Advantages 

Table 14 compares the performance of the proposed BO method with baseline optimization techniques for the 

CWRU datasets. As an initial step, we employed a Bi-LSTM model for grid search (GS ) to evaluate in sequence all potential 

combinations of hyperparameters within a predefined search space. Although GS guarantees that no potential configuration 

is overlooked, it becomes high resource-intensive when dealing with a large set of hyperparameters. Subsequently, our 

framework was unable to utilize this approach [55]. BO and random search (RS) are more computationally efficient in high-

dimensional space. With a random approach, RS provides a balance of exploration and exploitation. However, the 

probabilistic nature of BO (30 iterations) gives better results than RS (30 iterations) in our case. Furthermore, the proposed 

BO with a batch size of 8, GP kernel of Matérn 5/2 and =0.75 reduces optimization time by 63.33 % compared to EI and 

57.63 % compared to EIpS with better entire dataset accuracy.  

Table 14. Proposed BO method vs. Baseline Methods with 10-fold CV 

Proposed BO method vs. Baseline Methods 

Optimization Method 
Time of Convergence 

(Hours) 

Decline in Time of 

Convergence  

Number of 

Iterations 

Training 

Accuracy 

Testing 

Accuracy 

Entire Dataset 

Accuracy (%) 

Grid Search (GS)   Not applicable    

Random Search (RS) 3.13 11.82 % 30 100% 87% 87.10% 

Standard BO (EI) 7.50 63.33 % 30 100% 91% 99.15% 

Standard BO (EIps) 6.49 57.63 % 30 100% 94% 99.20% 

Proposed BO (EIps+) 2.76 Not applicable 30 100% 91% 99.60% 

5) Conclusion 

This paper introduces an advanced diagnostic approach for rolling element bearing faults using a BO-based method 

designed for adaptive feature extraction of bearing faults. Unlike other DL solutions, the proposed BO-DAE and BO-Bi-

LSTM emphasize optimizing parameters and the backbone network structure. Through a probabilistic optimization 

algorithm, this approach refines network structure and hyperparameters that strengthen generalization and feature extraction 

capabilities. The incorporation of parallel BO with EIps+ proved essential in speeding up hyperparameter tuning and 

optimizing computational resources while preserving high model performance. The rigorous evaluation highlights the 

effectiveness of our approach, with metrics such as a macro precision of 99.50%, recall of 99.60%, F1-Score of 99.57%, 

and Cohen’s Kappa metric (Cκ) of 99.53%. These metrics highlight the high accuracy and reliability of our model in 

accurately classifying bearing faults. Furthermore, comparative analysis against shallow and deep learning models reveals 

the superiority of our approach in terms of efficiency and accuracy. Our method outperforms these models across various 

performance metrics, reinforcing its effectiveness in dealing with various engineering challenges in diagnostic scenarios. 

Overall, the results demonstrate that our proposed framework, integrating PCA, BO-DAE, and BO-enhanced Bi-LSTM, 

effectively captures the complex spatial and temporal dependencies in vibrational signals with better generalization and 

mitigating overfitting issues. This comprehensive approach facilitates precise fault classification, offering a promising 

solution for predictive maintenance in mechanical systems. These results underscore the potential of our method to 

significantly reduce downtime, minimize financial losses, and enhance operational safety in industrial settings.  

In future work, we plan to explore autonomous data labelling techniques based on active learning to further enhance 

the robustness of the framework against mislabelled data. Active learning involves the model finding uncertain or ambiguous 

samples and asking a human for the correct label.  
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