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Abstract—This paper focuses on an integrated sensing and
communication (ISAC) system in the presence of signal-
dependent modulated jamming (SDMJ). Our goal is to suppress
jamming while carrying out simultaneous communications and
sensing. We minimize the integrated sidelobe level (ISL) of
the mismatch filter output for the transmitted waveform and
the integrated level (IL) of the mismatch filter output for the
jamming, under the constraints of the loss in-processing gain
(LPG) and the peak-to-average power ratio (PAPR) of the
transmitted waveform. Meanwhile, the similarity constraint is
introduced for information-bearing transmit waveform. We de-
velop a decoupled majorization minimization (DMM) algorithm
to solve the proposed multi-constrained optimization problem.
In contrast to the existing approaches, the proposed algorithm
transforms the difficult optimization problem involving two
variables into two parallel sub-problems with one variable, thus
significantly speeding up the convergence rate. Furthermore, fast
Fourier transform (FFT) is introduced to compute the closed-
form solution of each sub-problem, giving rise to a greatly
reduced computation complexity. Simulation results demonstrate
the capabilities of the proposed ISAC system which strikes a
proper trade-off among sensing and jamming suppression.

Index Terms—Integrated sensing and communication (ISAC),
signal-dependent modulated jamming (SDMJ), loss in-processing
gain (LPG), peak-to-average power ratio (PAPR), decoupled
majorization minimization (DMM).

I. INTRODUCTION

A. Background and Related Work

THE ever-growing wireless devices and digital applica-
tions across the world have led to increasingly congested

spectrum. Against this problem, radar sensing and communica-
tion spectrum sharing (RCSS) has been extensively studied in
recent years, where the goal is to operate both functionalities
simultaneously over the same frequency bands [1], [2]. There
are two major research directions for RCSS [2], [3]: 1) radar-
communication coexistence (RCC); 2) integrated sensing and
communication (ISAC).

In RCC, the radar and communication systems share the
same spectrum, but the transmitted signals for these two are

Yu Zhou, Qiao Shi and Zhengchun Zhou are with the School
of Information Science and Technology, Southwest Jiaotong Univer-
sity, Chengdu 611756, China (e-mail: 2021201698@my.swjtu.edu.cn;
qiaoshi@swjtu.edu.cn; zzc@swjtu.edu.cn). (Corresponding author: Qiao Shi.)

Zilong Liu is with the School of Computer Science and Electronics
Engineering, University of Essex, Colchester CO4 3SQ, U.K. (e-mail: zi-
long.liu@essex.ac.uk).

Pingzhi Fan is with the Key Laboratory of Information Coding and Wireless
Communications, Southwest Jiaotong University, Chengdu 611756, China (e-

designed independently. Because of this, cross-interference
suppression [4] is needed to avoid potential degradation of
their performance [5], [6]. Also, real-time collaboration be-
tween the two systems is required, yet at the expense of
increased system complexity and communication overhead. On
the other hand, ISAC aims at designing an integrated system
by simultaneously performing sensing and communication
tasks at the same hardware platform. Therefore, compared
with RCC, ISAC may provide considerable gains in terms
of spectral/energy/hardware efficiencies as well as significant
mutual enhancement of the two functionalities [7]-[10]. From
the waveform standpoint, there are three main types of ISAC
waveform design schemes [11]: 1) radar waveform-based [12],
[13]; 2) communication waveform-based [14], [15]; 3) joint
waveform design [16]-[18].

The radar waveform-based scheme was advocated in the
early stage of ISAC research, where the communication infor-
mation is embedded by modifying traditional radar waveforms
or utilizing the index modulation (IM) technique [19]. For
example, one can send digital data by applying phase modu-
lation in frequency modulated continuous-wave (FMCW) and
linear frequency modulation waveforms [20], [12]. However,
the radar waveform-based scheme mainly uses inter-pulse
modulation to embed communication information. Thus, the
achievable communication data rate is limited and may not be
able to support many real-world communication needs.

To achieve a superior communication functionality, various
communication waveform-based schemes have been studied,
whereby communication waveforms directly act as a radar
probing signal to locate, detect and track targets [21]. In partic-
ular, as a commonly used waveform in modern communication
systems, orthogonal frequency division multiplexing (OFDM)
has been widely exploited as ISAC waveforms [22], [23].
However, OFDM suffers from the high peak-to-average power
ratio (PAPR) problem, resulting in distorted ISAC waveforms
as well as limited communication and sensing ranges. In
[24], a new waveform design algorithm is proposed to reduce
PAPR in OFDM-based ISAC systems. Furthermore, due to the
randomness of communication data, it is difficult to deliver
guaranteed sensing performance.

The joint ISAC waveform design is more flexible than the
aforementioned two schemes, where an integrated waveform
is developed to deliver both the sensing and communication
functionalities. Many research attempts have been made to
study joint ISAC waveform design [25]-[30]. In [25], ISACmail: pzfan@swjtu.edu.cn). 
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waveform is directly designed by minimizing the multi-user
interference (MUI), in which both the omnidirectional and
directional beam pattern design problems are considered. To
further improve the radar beam pattern performance, the
desired radar beam pattern is realized by imposing constraints
on the covariance matrix of the transmitted signal of each
antenna [26]. In [27], the individual precoders of the radar
and communication are designed to optimize the performance
of the multi-input multi-output (MIMO) radar beamforming
while meeting the signal-to-interference-noise ratio (SINR)
constraint for the users. In [28], a sophisticated beamforming
design for multi-user ISAC systems is proposed by addition-
ally taking the physical layer security into account. Albeit
these works have studied the transmitted waveform design, the
joint design of the transmitted waveform and the receive filter
has not been taken into account. To make a difference, joint
transceiver beamforming designs for MIMO radar and multi-
user communications are studied in [29] and [30], respectively.

B. Motivations

Note that the aforementioned studies mainly focus on
improving the performance of sensing and communication
by minimizing the MUI, maxmizing the SINR, and so on.
An overly simple sensing environment without jamming is
often assumed. However, with the tremendous advances of
the digital and electronic technologies, future ISAC systems
are facing an increasingly complex environment, whereby the
interference consists of not only clutter, but also intentional
jamming [31]. For example, the digital radio frequency mem-
ory (DRFM) jammer, which can store, copy and forward radar
signals, brings serious challenges to radar systems [31]. In this
case, the target detection performance of the aforementioned
designs may not satisfy the practical requirements.

It is worth mentioning that the radar waveform design
problems for suppressing DRFM jamming have been well
studied independently [33]-[39]. There are two types of DRFM
jamming: full pulse repetitive jamming and signal-dependent
modulated jamming (SDMJ). In comparison, the latter is more
interesting because it only samples and forwards part of the
radar pulse, thus giving rise to a superior jamming efficiency
[32]. In [33] and [34], the time-frequency distribution of the
SDMJ is studied, in which a filter is designed to suppress
jamming in the time-frequency domain. In [35], integrated
cross-correlation energy between the transmitted waveform
and the jamming signal is minimized to combat the jamming.
In [36], the transmitted waveform and the mismatch filter are
jointly designed in the presence of the SDMJ. The major
drawback of their scheme is its high computation complexity.
To address this problem, a fast algorithm for designing the
waveform and filter is introduced to suppress jamming [37].
Subsequently, various methodologies are proposed to improve
the performance of DRFM jamming suppression [38], [39].

It is noted that the existing waveform design methods for
radar-only systems cannot be directly applied to ISAC under
jamming. Motivated by this, we propose a transmit waveform
and receive filter design by considering the SDMJ, which
leads to novel transmitted waveforms that can be exploited

for improving sensing and communication. Some preliminary
results have been published in [40], where only phase differ-
ence constraint is considered to realize the communication.
In this paper, we shall provide a more complete and detailed
theoretical and numerical study.

C. Contributions

Specifically, the main contributions of this work are sum-
marized as follows.

• An important scenario where target sensing and commu-
nication are simultaneously achieved in the presence of
the SDMJ is considered. We formulate an optimization
problem to jointly design the ISAC waveform and the
filter under the constraints of the loss in-processing gain
(LPG1), PAPR, and energy. Our core idea is to minimize
the integrated sidelobe level (ISL) of the mismatch filter
output for ISAC waveform and the integrated level (IL)
of the mismatch filter output for jamming signal. Further-
more, we consider the waveform similarity constraint2

to ensure communication performance by introducing a
penalty term. By adjusting the penalty parameters, one
can strike a flexible trade-off between sensing, jamming
suppression and communication performance.

• A new low-complexity decoupled majorization mini-
mization (DMM) algorithm is developed to solve the
formulated non-convex and NP-hard problem. Unlike the
existing methods that generally solve the above joint
design problem by using the alternating optimization
based majorization minimization (MM) algorithm [37],
[50], we transform the proposed optimization problem
involving two variables into two parallel sub-problems
with one variable, thus significantly speeding up the con-
vergence rate. Meanwhile, fast Fourier transform (FFT) is
introduced to compute the closed-form solution of each
sub-problem. Compared to the alternating optimization
based MM (AMM) algorithm, the proposed DMM algo-
rithm offers a significant improvement in computational
efficiency.

• To analyze the superiority of the proposed DMM algo-
rithm more effectively, the convergence and the computa-
tional complexity of the DMM algorithm is further ana-
lyzed. Finally, simulation results are presented to validate
the excellent performance of the proposed method for par-
tial pulse repeater jamming (PPRJ) and repetitive repeater
jamming (RRJ) scenarios. Specifically, the sensing and
communication performance of the proposed joint design
method outperforms the conventional ISAC waveform in
the presence of the SDMJ.

The rest of the paper is organized as follows. Section II
describes the system model of the ISAC system in the presence
of jamming. In Section III, we first propose a joint optimiza-
tion problem of the ISAC waveform and the filter, and deduce
the solution procedures of the DMM algorithm. We also

1The LPG is defined as the ratio between the radar SNR gathered with
mismatched filter and maximum radar SNR obtained by the matched filter.

2The similarity constraint forces the designed waveform to be close to a
reference waveform with the desirable properties [41].
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analyze the computational complexity and the convergence of
the DMM algorithm. Section IV presents the simulation results
and Section V concludes this work.

Notations: Matrices are denoted by bold uppercase letters
and vectors are denoted by bold lowercase letters. I and O
respectively denote the identity matrix and the zero matrix,
with the size determined by a subscript or from the context.
Superscripts (·)∗, (·)T , (·)H denote the complex conjugate,
transpose, conjugate transpose, respectively. F = (Fm,n)
represents the discrete Fourier matrix with size 2L× 2L, and
Fm,n = e−j 2mnπ

2L , 0 ≤ m,n < 2L. CL and CL×L denote
the L-dimensional complex vector and the L×L-dimensional
complex matrix spaces, respectively. dist(·) indicates the dis-
tance function. |x| and ∥ x ∥2 denote the modulus of x and the
l2 norm of the vector x, respectively. Re{·} and arg(·) denote
the real part and the phase of a complex number, respectively.
The symbol ⌊·⌋ and ◦ denote the floor operation and the
Hadamard product, respectively. Tr(·) indicates the trace of a
square matrix. λmax(X) denotes the largest eigenvalue of X.
Diag(x) is a diagonal matrix formed with x as its principal
diagonal. vec(·) is the vectorization operator.

II. SYSTEM MODEL

We consider a single carrier ISAC system, where the base
station (BS) transmits a waveform with multiple pulses for
sensing a point target and serving a single-antenna com-
munication user, as shown in Fig. 13. The DRFM jammer
intercepts the transmitted ISAC waveform and carries out a
series of operations, including sampling, storage, and signal
reconstruction, to disturb the sensing system.

We assume that N ISAC pulses are transmitted
within a coherent processing interval (CPI) with a
constant pulse repetition frequency (PRF) fr, and
xn = [xn,0, xn,1, · · · , xn,L−1]

T ∈ CL denotes the discrete
baseband signal transmitted within the n-th constant pulse
repetition time (PRT) Tr, where Tr = 1/fr and L is the
discrete length of the baseband signal. Then, the transmitted
signal of the n-th pulse can be expressed as

xn(t) =

L−1∑
l=0

xn,lΩ(t− lTc), n = 0, 1, · · · , N − 1, (1)

where Tc represents a code duration, and Ω(t) denotes a unit
energy baseband shaping pulse, i.e.,

∫ Tc/2

−Tc/2
|Ω(t)|2dt = 1.

Then, on the one hand, we receive and further demodulate
xn(t) at the communication user end. On the other hand,
the ISAC system receives the signal yrad,n(t) and carries out
target sensing by coherent processing, where yrad,n(t) is the
summation of the jamming, target echo and noise, which can
be expressed as

yrad,n(t) =αn,Txn(t− t0)e
j2πfdnTr

+ αn,Jxn,J(t− tJ) + vrad,n(t),
(2)

3This paper considers a mainlobe DRFM forwarding jamming [31], which
has strong directivity and is usually directly sent toward radar receiver, thus
greatly restricting the radar detection ability because of its strong energy and
similarity with the target echo in space, time and frequency dimensions. Based
on this, we assume that the communication user will not be affected by the
jamming.

where αn,T and αn,J respectively represent the responses of
the target and the jamming, t0 and tJ denote the correspond-
ing time delay of the target and the jamming, respectively,
θ = 2πfdTr denotes the normalized Doppler shift, fd is the
Doppler frequency, and vrad,n(t) denotes the additive white
Gaussian noise. The existence of the jamming may result in a
higher radar false alarm probability. Therefore, this paper aims
at suppressing jamming and also ensuring the performance
of sensing and communication via joint designing the ISAC
waveform xn and the receive filter wn ∈ CL.

In Fig. 1, we depict the signal processing block diagram
of the ISAC system. Firstly, based on the priori information
on jamming and the communication symbols to be transmit-
ted in the n-th PRT, the ISAC system jointly designs the
corresponding transmit signal xn and the receive filter wn.
Then, the communication user end acquires the modulated
information symbols through the channel equalization and
demodulation. During this period, the ISAC system receives
the reflected target echo and jamming signal. Afterwards, the
filter group {wne

jnθ1 ,wne
jnθ2 , · · · ,wne

jnθM }, θi = −π +
2π(i − 1)/(M − 1), i = 1, 2, · · · ,M is applied to the radar
receive signals to detect the target. In subsections II.A, II.B
and II.C, the models of the radar, jamming and communication
are described in detail.

A. Radar Model

It is widely known that the sensing performance of pulse
radar depends on the coherent accumulation sum of each
pulse of a CPI after pulse compression. This paper considers
the joint design of the transmitted waveform and the receive
filter in ISAC. Therefore, the sum of coherent accumulation
of the ISAC pulse signal {xn}N−1

n=0 and the receive filter
{wn}N−1

n=0 in a CPI depends on the sum of their aperiodic
cross-correlation function. In the n-th PRT, the aperiodic cross-
correlation function of the transmitted waveform xn and the
receive filter wn can be defined as [42]

Cxn,wn
(k) =


L−k−1∑
l=0

xn,lw
∗
n,l+k, 0 ≤ k ≤ L− 1,

L+k−1∑
l=0

xn,l−kw
∗
n,l, 1− L ≤ k ≤ −1.

(3)

To assure the sensing performance, low sidelobe levels should
be achieved, which can be converted to minimize the ISL of
xn and wn given by

ISL(xn,wn) =
∑
k∈Ω

|Cxn,wn
(k)|2 , (4)

where Ω = {1− L, · · · ,−1, 1, · · · , L− 1}. Furthermore, (4)
can be rewritten as

ISL(xn,wn) =
∑
k∈Ω

∣∣xH
n Ukwn

∣∣2 , (5)

where Uk, k ∈ Ω, are Toeplitz matrices with the k-th diagonal
elements being 1 and 0 elsewhere [48].

Then, the sensing performance can be improved by mini-
mizing ISL(xn,wn). In the following, we propose the SDMJ
principle and establish the jamming model.
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Fig. 1. The signal processing block diagram of the proposed ISAC system.

B. Jamming Model

We mainly consider the problem of SDMJ suppression in
this paper. Specifically, two types of the SDMJ are considered,
i.e., partial pulse repeater jamming (PPRJ) and repetitive
repeater jamming (RRJ) [38]. The principle of these two types
of jamming is shown in Fig. 2, where Tp = LTc is assumed
to be the pulse width of the ISAC signal.

• PPRJ: The DRFM jammer immediately intercepts,
copies and forwards a part of the ISAC pulse signal
to generate the PPRJ signal, as shown in Fig. 2(b). TL

denotes the sampling time of the DRFM jammer, and the
PPRJ signal is forwarded by M1 times.

• RRJ: The DRFM jammer firstly intercepts and samples
the ISAC signal at a specific period. Then, it immediately
forwards the sampling fragment until the next sampling
time arrives. The operation will repeat until the pulse
ends, as shown in Fig. 2(c), where Ts and Q = ⌊Tp/Ts⌋
represent the sampling interval and the sampling times,
respectively, M2 = ⌊Ts/TL⌋−1 is the number of repeat.

It is assumed that the jammer keeps its characteristics con-
stant within a CPI. According to the aforementioned principles
of jamming, we can establish discrete jamming model as

xn,J = Jxn,J ̸= IL, (6)

where xn,J represents the jamming, J denotes the jamming
transfer matrix with size L × L. For the PPRJ signal, the
transfer matrix JPPRJ can be expressed as

JPPRJ =

M1


Ic1
...
Ic1

O . . . O
...

. . . O
O . . . O

O O . . . O

 , (7)

where c1 = ⌊TL/ts⌋ denotes sampling sequence length of
jamming, ts represents the sampling time interval with the

(a)

(b)

(c)

Fig. 2. The principle of the two types of the SDMJ. (a) ISAC signal; (b)
PPRJ signal; (c) RRJ signal.

signal bandwidth as the sampling rate. Besides, the transfer
matrix J of the RRJ signal can be expressed as

JRRJ =


D O . . . O
O D . . . O
...

...
. . . O

O O . . . D

 ,D =

M2


Ic2
...
Ic2

. . . O
. . . O
. . . O

O . . . O


(8)

where D a matrice with size Ls × Ls, Ls = ⌊Ts/ts⌋, and
c2 = ⌊TL/ts⌋.

Similarly, the IL of the jamming xn,J and the receive filter
wn can be defined as

IL(xn,J ,wn) =
∑
k∈ΩJ

∣∣xH
n,JUkwn

∣∣2 , (9)

where ΩJ = {1 − L, · · · ,−1, 0, 1, · · · , L − 1}. It is noted
that J is often assumed to be known based on the cognitive
method [38], [43]. As a result, the jamming can be suppressed
by minimizing IL(xn,J ,wn).
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C. Communication Model

At the communication receiving end, a multi-path time-
invariant wireless channel is considered. For the n-th PRT,
the received single carrier signal after passing a channel is

ycom,n(t) =

P∑
i=1

hixn(t− τi) + vcom,n(t), (10)

where hi ∼ CN (0, 1), i = 1, 2, · · · , P denotes the commu-
nication channel response of the i-th path, P is the number
of resolvable paths, τi indicates delay of the i-th path, and
vcom,n(t) is the additive white Gaussian noise. Further, the
discrete representation of the received signal at the communi-
cation user in L symbol times is given by

ycom,n = Hxn + vcom,n, (11)

where H ∈ CL×L is the effective channel matrix, which is
assumed to be perfectly known and remains constant in a CPI,
i.e.,

H =

P∑
i=1

hiΨlτi
,Ψlτi

=

[
Olτi×(L−lτi )

Ilτi
IL−lτi

O(L−lτi )×lτi

]
,

(12)
where lτi = ⌊τi/Tc⌋, i = 1, 2, · · · , P is the number of the
delay bins of the i-th path.

Furthermore, denote by sn the desired communication
waveform, where sn = [sn,0, sn,1, · · · , sn,L−1]

T , sn,l ∈ O,
n = 0, 1, · · · , N−1, l = 0, 1, · · · , L−1, and O denotes the set
of the employed constellation points. For the communication
purpose, we aim at designing a transmitted signal xn which is
very close to sn. For this, we introduce the following similarity
constraint

∥ xn − sn ∥22≤ ζ, (13)

where ζ is a parameter for controlling the degree of the simi-
larity. Clearly, the closer xn to sn, the better for its desirable
properties. However, such a strict constraint would have severe
impact on the performance of the sensing system, as well.
Since the similarity constraint is related to the communication
system only, a more flexible approach can be done by relaxing
this constraint and letting it as a penalty term in the objective
function of the optimization problem [30]. Therefore, the goal
of this paper is to solve the following minimization problem

min
xn,wn

ρISL(xn,wn)+ (1−ρ)IL(xn,J ,wn)+ ϵ ∥ xn− sn ∥22,
(14)

where ρ ∈ [0, 1] is the weight factor that determines the weight
between the sensing and jamming suppression performance in
the ISAC system, ϵ is the penalty parameter whose purpose is
to control the degree of similarity between the designed ISAC
waveform and the desired communication waveform.

III. JOINT DESIGN OF THE ISAC WAVEFORM AND FILTER

In this section, we first construct the optimization model
for a joint design of ISAC waveform and filter. Then, we put
forward the DMM algorithm to solve the formulated problem.
Through the convergence and complexity analysis, the feasi-
bility of the proposed algorithm is proved theoretically.

A. Problem Formulation

To achieve sensing and communication functions in the
jamming environment, we establish the following optimization
problem aiming to minimize ISL(xn,wn) and IL(xn,J ,wn)
and subject to the constraints of the similarity, energy, pulse
compression peak level, and PAPR, i.e.,

P0



min
xn,wn

ρISL(xn,wn) + (1− ρ)IL(xn,J ,wn)

+ ϵ ∥ xn − sn ∥22
s.t. C1 :∥ xn ∥22= L, ∥ wn ∥22= L

C2 : xH
n wn = amax

C3 : xH
n,Jwn = amin

C4 : PAPR(xn) ≤ γ2,

(15)

where C1 is the energy constraint of xn and wn, which should
be constrained to a given power L. The constraint C2 should
be formulated to control the LPG, which is caused by the
mismatched filter. Besides, to suppress jamming, the minimum
peak constraint C3 is introduced to limit the pulse compression
peak of the jamming and the receive filter. C4 corresponds
to the PAPR constraint. In practical systems, in order for the
radio frequency amplifier to operate at its maximum efficiency
and avoid nonlinear effect, waveforms with low PAPR are
desirable. Therefore, C4 is introduced to limit the peak power
of the ISAC waveform, where γ2 ≥ 1 is the upper bound of
PAPR(xn), and the PAPR of xn is defined as [44]

PAPR(xn) =

max
l=0,1,··· ,L−1

{|xn,l|2}
1
L ∥ xn ∥22

. (16)

For the special case of γ = 1, the PAPR constraint C4

becomes the constant-modulus (CM) constraint, i.e.,

|xn,l| = 1, l = 0, 1, · · · , L− 1. (17)

It is interesting to note that when the similarity constraint
is not considered, (15) degenerates into a waveform design
problem related to radar only, and the sensing and anti-
jamming integrated waveform can be designed. Similarly, we
can set ρ = 1 and ignore constraint C3 to realize the ISAC
waveform design without jamming.

B. Proposed DMM Algorithm

Since P0 is a non-convex problem, which is difficult to solve
directly, we develop a DMM algorithm to solve the problem
P0. To simplify the derivation, the two optimization vectors xn

and wn are reconstructed as one vector, i.e., zn = [xT
n ,w

T
n ]

T .
Similarly, let zn,J = [xT

n,J ,w
T
n ]

T . Moreover, in order that
the objective functions of the problem P0 is a quartic with
respect to the variable zn, we first disregard the similarity
constraint. Then, the problem is derived under the framework
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of the majorization minimization (MM) [48]. The problem P0

can be rewritten as

P1



min
zn

ρ
∑
k∈Ω

|zHn Ũkzn|2 + (1− ρ)
∑
k∈ΩJ

|zHn,JŨkzn|2

s.t. zn = [xT
n ,w

T
n ]

T , zn,J = [xT
n,J ,w

T
n ]

T

C1 :∥ xn ∥22= L, ∥ wn ∥22= L

C2 : zHn Γzn = 2amax

C3 : (J zn)
HΓJ zn = 2amin

C4 : PAPR(xn) ≤ γ2,
(18)

where

Ũk =

[
O Uk

O O

]
, Γ =

[
O I
I O

]
, J =

[
J O
O I

]
. (19)

Since zHn Ũkzn = Tr(Ũkznz
H
n ), the minimization problem

of P1 can be simplified as

min
Zn

vec(Zn)
HWvec(Zn), (20)

where Zn = znz
H
n , W = ρA+ (1− ρ)B. Herein,

A =
∑
k∈Ω

vec(Ũk)vec(Ũk)
H , (21)

B =
∑
k∈ΩJ

vec(ŨJ,k)vec(ŨJ,k)
H , (22)

and

ŨJ,k =

[
O JHUk

O O

]
. (23)

Please see Appendix A for the proof. ■
Obviously, (20) is a quadratic function corresponding to

Zn, and W is a Hermitian matrix. To solve the problem (20)
using the MM method, the key step is to find a majorization
function of the objective function. For that purpose, we need
the following result.

Lemma 1. [47] Let L be an n×n Hermitian matrix and M be
another n × n Hermitian matrix such that M ⪰ L. Then for
any point x0 ∈ Cn, the quadratic function xHLx is majorized
by xHMx+ 2Re{xH(L−M)x0}+ xH

0 (M− L)x0 at x0.

Then, we can construct an optimization function for (20)
by selecting the matrix M = λuI, where λu = λmax(W) =
ρλmax(A) + (1 − ρ)λmax(B) is the maximum eigenvalue of
the matrix W. Owing to the special structures of A and B, it
can be shown that λmax(A) and λmax(B) can be computed
efficiently in closed form.

Lemma 2. Let A and B be two matrices defined in (21)
and (22), respectively. Then, the maximum eigenvalues of A
and B are given by λmax(A) = L − 1, and λmax(B) =
max

k
{vec(JHUk)

Hvec(JHUk)|k ∈ ΩJ}.

Please see Appendix B for the proof. ■
Thus, the maximum eigenvalue of W is given by

λu =ρ(L− 1)

+ max
k∈ΩJ

{(1− ρ)vec(JHUk)
Hvec(JHUk)}. (24)

Let Z
(t)
n = z

(t)
n (z

(t)
n )H . Then, the objective function in (18)

can be majorized by the following function at Z(t)
n

u1(Zn,Z
(t)
n ) =λuvec(Zn)

Hvec(Zn)

+ 2Re
{

vec(Zn)
H(W − λuI)vec(Z(t)

n )
}

+ vec(Z(t)
n )H(λuI−W)vec(Z(t)

n ).
(25)

Since vec(Zn)
Hvec(Zn) = (zHn zn)

2 = 4L2, the first term of
(25) is a constant. Thus, (25) can be further simplified to

u1(Zn,Z
(t)
n )

=2Re
{

vec(Zn)
H(W − λuI)vec(Z(t)

n )
}
+ 8λuL

2

− ρ
∑
k∈Ω

|C(t)
xn,wn

(k)|2 − (1− ρ)
∑
k∈ΩJ

|C(t)
xn,J ,wn

(k)|2,

(26)

where C
(t)
xn,wn(k) represents the aperiodic cross-correlation

of xn and wn at iteration t, and C
(t)
xn,J ,wn(k) denotes the

aperiodic cross-correlation of xn,J and wn at iteration t. After
ignoring the constant terms, the majorized problem of (25) is
given by

min
Zn

Re
{

vec(Zn)
H(W − λuI)vec(Z(t)

n )
}
. (27)

Then, substituting W into (27), the majorized problem of (27)
is further transformed into

min
zn

Re{zHn (Q− λuz
(t)
n (z(t)n )H)zn}, (28)

where

Q =

[
O ρΦ
O O

]
+

[
O (1− ρ)JHΦJ

O O

]
, (29)

and

Φ =
∑
k∈Ω

C(t)
wn,xn

(−k)Uk, ΦJ =
∑
k∈ΩJ

C(t)
wn,xn,J

(−k)Uk.

(30)
Please see Appendix C for the proof. ■
We can see that the Φ and ΦJ are Hermitian Toeplitz

matrices, thus we can introduce FFT and IFFT to efficiently
compute them by the Lemma 4 in [48], we easily have

Q =

[
O

ρ

2L
FH

:,1:LDiag(µ)F:,1:L

O O

]

+

[
O

1− ρ

2L
JHFH

:,1:LDiag(µJ)F:,1:L

O O

]
,

(31)

where µ = F(ω ◦ c),µJ = F(ωJ ◦ cJ), ω =
[0,1L−1, 0,1L−1]

T ,ωJ = [1,1L−1, 0,1L−1]
T , 1L−1 is an all

ones row vector of length L− 1, and

c = FH
(
(F[(w(t)

n )T ,01×L]
T )∗ ◦ (F[(x(t)

n )T ,01×L]
T )
)
,

(32)
cJ = FH

(
(F[(w(t)

n )T ,01×L]
T )∗ ◦ (F[(x(t)

n,J)
T ,01×L]

T )
)
.

(33)
Since Q− λuz

(t)
n (z

(t)
n )H in (28) is not a Hermitian matrix,

the optimization problem (28) is not a traditional unimodular
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quadratic programming (UQP) defined in [45]. To solve this
problem, we can add the conjugate term QH − λuz

(t)
n (z

(t)
n )H

to (28), which does not change the optimization results. Then,
(28) can be equivalently written as

min
zn

Re{zHn (Q+QH − 2λuz
(t)
n (z(t)n )H)zn}. (34)

To effectively control the LPG and suppress jamming, we
consider the constraints C2 and C3. Without loss of generality,
the constraints C2 and C3 can be relaxed by regarding them
as penalty terms in the objective function [46], i.e.,

g(zn) = |zHn Γzn − 2amax|2 + |(J zn)
HΓJ zn − 2amin|2.

(35)
Then, the objective function can be further given as

Re{zHn (Q+QH − 2λuz
(t)
n (z(t)n )H

− 2β1amaxΓ
H − 2β2amin(JHΓJ )H)zn},

(36)

where β1 and β2 are the penalty factors with β1 + β2 = 1,
which control the weighs of LPG and the jamming peak.

Furthermore, we consider the similarity constraint. Let s̃n =
[sTn ,01×L]

T . Then, the penalty term of the objective function
in problem P0 can be equivalently written as ∥ zn − s̃n ∥22,
which can be transformed into

−2Re{zHn (s̃ns̃
H
n )zn}. (37)

Therefore, the problem P0 can be further written as

P2


min
zn

Re{zHn Rzn}

s.t. zn = [xT
n ,w

T
n ]

T

C1 :∥ xn ∥22= L, ∥ wn ∥22= L

C4 : PAPR(xn) ≤ γ2,

(38)

where

R =Q+QH − 2λuz
(t)
n (z(t)n )H

− 2β1amaxΓ
H − 2β2amin(JHΓJ )H − ϵs̃ns̃

H
n .

(39)

Obviously, R is a Hermitian matrix. Thus, the Re{·} of the
objective function of P2 can be further removed. According
to Lemma 1, we can choose

M = λvI, (40)

where λv = Tr(Q +QH) = Tr(Q) + Tr(QH) denotes the
upper bound of the maximum eigenvalue λmax(R) of R, i.e.,

λv ≥ λmax(Q+QH) ≥ λmax(R). (41)

By observing (31), it can be found that Q is an upper triangular
matrix with zero principal diagonal elements, and thus λv = 0.
Then, the objective function in problem P2 can be optimized
by the following function

u2(zn, z
(t)
n ) = 2Re{zHn Rz(t)n }+ (z(t)n )HRz(t)n . (42)

Note that although we have applied the majorization-
minimization scheme twice at the point z(t)n , it can be viewed

as directly majorizing the objective function of P0 at z(t)n by
the following function

u(zn, z
(t)
n )

= u2(zn, z
(t)
n ) + 8λuL

2

− ρ
∑
k∈Ω

|C(t)
xn,wn

(k)|2 − (1− ρ)
∑
k∈ΩJ

|C(t)
xn,J ,wn

(k)|2

= −2Re{zHn P(z(t)n )}+ 16λuL
2

− ρ
∑
k∈Ω

(
|C(t)

xn,wn
(k)|2 + |C(t)

wn,xn
(k)|2

)
− (1− ρ)

∑
k∈ΩJ

(
|C(t)

xn,J ,wn
(k)|2 + |C(t)

wn,xn,J
(k)|2

)
− 4β1a

2
max − 4β2a

2
min − 2Lϵs̃ns̃

H
n ,

(43)

where

P(z(t)n ) =4λuLz
(t)
n + ϵs̃ns̃

H
n z(t)n − (Q+QH)z(t)n

+ (2β1amaxΓ
H + 2β2amin(JHΓJ )H)z(t)n ,

(44)

and

(2β1amaxΓ
H + 2β2amin(JHΓJ )H + ϵs̃ns̃

H
n )z(t)n

=

[
2β1amaxwn + 2β2aminJ

Hwn + ϵsns
H
n xn

2β1amaxxn + 2β2aminJxn

]
,

(45)

(Q+QH)z(t)n

=

 ρ

2L
FH

:,1:L(µ ◦ fwn
) +

1− ρ

2L
JHFH

:,1:L(µJ ◦ fwn
)

ρ

2L
FH

:,1:L(µ
∗ ◦ fxn

) +
1− ρ

2L
FH

:,1:L(µ
∗
J ◦ fxn,J

)

 ,

(46)

where fxn
= F[(x

(t)
n )T ,01×L]

T , fwn
= F[(w

(t)
n )T ,01×L]

T ,
fxn,J

= F[(x
(t)
n,J)

T ,01×L]
T .

After neglecting the constant terms of u(zn, z
(t)
n ), the ob-

jective function of the optimization problem P0 is given by

min
zn

−2Re{zHn P(z(t)n )}. (47)

Then, the optimization problem P0 can be rewritten as

P3


min
zn

∥ zn −P(z(t)n ) ∥2

s.t. zn = [xT
n ,w

T
n ]

T

C1 :∥ xn ∥22= L, ∥ wn ∥22= L

C4 : PAPR(xn) ≤ γ2,

(48)

Obviously, the objective function of P3 is a linear optimization
problem that yields a closed-form solution of zn. When
constraints are not considered, we can directly obtain the
solution of the xn

x
(t+1)
n,l = |x(t+1)

n,l |e
jarg(Px(z

(t)
n,l)), l = 0, 1, · · · , L− 1, (49)

where Px(z
(t)
n,l) is the l-th element of the Px(z

(t)
n ), and

Px(z
(t)
n ) denotes the 1 to L rows of the P(z

(t)
n ). Meanwhile,

by considering the energy constraint C1, we can obtain an
optimal solution of wn as

w(t+1)
n =

√
L/ ∥ Pw(z

(t)
n ) ∥22Pw(z(t)n ), (50)
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where Pw(z
(t)
n ) indicates the L+1 to 2L rows of the P(z

(t)
n ).

Moreover, to address the PAPR problem of the ISAC
waveform, we propose the modulus constraint to design the
optimal ISAC waveform, which is written as

|x(t+1)
n,l | = min{δ|Px(z

(t)
n,l)|, γ}. (51)

In addition, to satisfy the energy constraint C1, we have

δ ∈ {δ | f(δ) = 0, δ ∈ (0, δu)} ,

f(δ) =

L−1∑
l=0

min{γ2, δ2|Px(z
(t)
n,l)|

2} − L,
(52)

where δu = γ/min{|Px(z
(t)
n,l)|, |Px(z

(t)
n,l)| ̸= 0}. Since the

function f(δ) is monotonically increasing in the interval
(0, δu) and f(0) < 0, δ can be determined by the bisection
method (BM) in Algorithm 1.

Algorithm 1 BM for Solving δ in (52)
Input: Search interval: (δ1, δ2), set eps = 1 × 10−12, δ1 =

0, δ2 = δu, and δ ∈ (δ1, δ2) ;
Output: δ;
1: while |δ1 − δ2| ≥ eps do
2: δ = (δ1 + δ2)/2;
3: if f(δ) > 0 then
4: δ2 = δ;
5: else
6: δ1 = δ;
7: end if
8: end while

Combining (49) and (51), the optimal solution xn of the
problem P0 can be obtained as

x̃
(t+1)
n,l =

{
δ|Px(z

(t)
n,l)|e

jarg(Px(z
(t)
n,l)), δ|Px(z

(t)
n,l)| ∈ [0, γ),

γejarg(Px(z
(t)
n,l)), δ|Px(z

(t)
n,l)| ≥ γ.

(53)
In this way, we obtain the solution xn = x̃n for the optimiza-
tion problem P0.

In summary, the joint design problem of the transmitted
waveform and the receive filter is transformed into a single
vector iterative optimization problem, and the MM algorithm
is used in each iteration to simplify the problem. According
to the principle of the MM algorithm [48], it is known that
the DMM algorithm proposed in this paper is monotonic and
convergent, and we will give the proof in the sequel. Algorithm
2 summarizes the detailed procedures for solving the problem
P0. The algorithm can be terminated if the relative change of
the variables is smaller than a predefined threshold η, i.e.,

eps =∥ x(t+1)
n − x(t)

n ∥2 + ∥ w(t+1)
n −w(t)

n ∥2≤ η. (54)

Since the convergence rate of the MM algorithm is usually
related to the constructed optimization functions, an accel-
eration method was proposed in [47] based on the squared
iterative method (SQUAREM), to guarantee the convergence
of the original algorithm. To further improve the convergence
rate of the DMM algorithm, the SQUAREM can also be used
in this paper to accelerate the DMM algorithm.

Algorithm 2 DMM Algorithm for Solving P0

Initialize: t = 0,x
(0)
n ,w

(0)
n , sn, and x

(0)
n = sn;

Input: γ, ρ, β1, β2, ϵ;
Output: x(t+1)

n ,w
(t+1)
n ;

1: while eps > η do
2: Compute w

(t+1)
n according to equation (50).

3: Calculate δ by using the Algorithm 1, and compute
x
(t+1)
n according to equation (53).

4: Compute eps according to equation (54).
5: t← t+ 1.
6: end while

C. Algorithm Convergence Analysis

To prove the convergence of the DMM algorithm, the fol-
lowing three conditions should be satisfied [50], 1) sufficient
decrease condition; 2) a subgradient lower bound for the
iterates gap; and 3) Kurdyka–Lojasiewicz (KL) property [49].

For the proposed DMM algorithm, the objective function
f(xn,wn) is firstly transformed into f(zn) and then solved
by exploiting the MM algorithm twice. Since z

(t+1)
n =

argmin
zn

u(zn, z
(t)
n ) denotes the optimal solution at t + 1

iteration, according to the principle of the MM algorithm [47],
it is easy to obtain

f(x(t+1)
n ,w(t+1)

n ) =f(z(t+1)
n )

≤ u(z(t+1)
n , z(t)n )

≤ u(z(t)n , z(t)n )

= f(z(t)n ) = f(x(t)
n ,w(t)

n ).

(55)

Therefore, the objective function of the optimization problem
proposed in this paper is monotonically decreasing. Combining
with the relative error condition, we have

dist(0, ∂f(x(t+1)
n ,w(t+1)

n ))

≤ c(∥ x(t+1)
n − x(t)

n ∥2 + ∥ w(t+1)
n −w(t)

n ∥2),
(56)

where c is a positive number, and the detailed derivation of
(56) can be found in [50]. Thus, each (x

(t)
n ,w

(t)
n ) in the design

process is a stationary point of the objective function.
Further, the objective function f(zn) can be converted into a

real function with respect to the real and imaginary parts of zn.
Since all real functions satisfy the KL property [51], {f(z(t)n )}
generated by the DMM algorithm is a Cauchy sequence, which
proves the convergence of the DMM algorithm. Specifically,
the DMM algorithm does not need to acquine the optimal
solution in an alternate iteration way, which accelerates the
speed of convergence.

D. Computational Complexity Analysis

The computational complexity of the proposed DMM al-
gorithm is mainly related to the number of iterations and
the updates of the variable zn. The computational complexity
for updating variable zn mainly comes from calculating the
P(zn) and the BM to find δ, where the computation of P(zn)
involves matrix-vector multiplication. In the calculation of
P(zn), we introduce the FFT operation for rapidly computing
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Fig. 3. Convergence performance of the objective function value with respect to the number of iterations. (a) Without communication; (b) 16QAM; (c) QPSK.

Qzn with a computational complexity of O(2L log2(2L)).
For other matrix-vector multiplication, the computational com-
plexity is O(L2). The computational complexity of the BM to
find the δ is O(I(L)), where I is the number of iterations of
the BM. Therefore, the computation of DMM in one iteration
is O(2L log2(2L)) +O(L2) +O(I(L)).

IV. NUMERICAL EVALUATIONS

In this section, we demonstrate the performance of the
proposed algorithm through numerical and simulation results.
Three sets of simulation experiments are designed: 1) the
performance analysis of the proposed DMM algorithm; 2) the
jamming suppression performance analysis of the proposed
ISAC waveform; and 3) the communication symbol error rate
(SER) performance analysis of the proposed ISAC waveform.
Moreover, the performance curves are obtained through 103

times Monte-Carlo simulations. Finally, all the numerical sim-
ulations are performed on a standard PC with CPU Intel Core
i5-12400 and 16 GB RAM.

Since the jamming signal is usually accompanied by energy
suppression, the jamming-to-signal ratio (JSR) of the jamming
signal with respect to the target is defined as [52]

JSR = 10 log10
|αn,J |2

|αn,T |2
(dB). (57)

In addition, the LPG is defined as the ratio between the radar
SNR gathered with the mismatched filter and the maximum
radar SNR obtained by the matched filter [53]

LPG = 10 log10
∥ wH

n xn ∥22
∥ wn ∥22∥ xn ∥22

(dB). (58)

We assume that the path from the BS to the communication
user consists of one line-of-sight (LoS) path and two non-line-
of-sight (NLoS) paths, and the delay of the NLoS paths relative
to the LoS path is 0.5µs and 0.8µs, respectively.

A. DMM Algorithm Performance Analysis

This subsection first analyzes the convergence of the pro-
posed DMM algorithm. Assume that the ISAC waveform pulse
width is Tp = 25.6 µs, bandwidth B = 10 MHz, the sampling
time interval is ts = 0.1 µs, and the discrete ISAC waveform
length is L = 256. The jamming type is assumed to be the
PPRJ, with the sampling time TL = 4 µs and the number

of repeat M1 = 4. Moreover, we introduce a weight factor
ρ = 0.4 to compromise the optimal sensing and anti-jamming
performance. To analyze the LPG caused by the unmatched
filter, we set amax = L and amin = amax · 10−4. Further,
we give the weight factors β1 = 0.12 and β2 = 0.88 to
compromise the pulse compression peak of the target response
and the performance of jamming suppression.

Fig. 3 illustrates the curves of the objective function value
with respect to the number of iterations for the following
three cases: 1) without communication; 2) 16 quadrature
amplitude modulation (16QAM); and 3) quadrature phase
shift keying (QPSK). It is seen that the proposed DMM
algorithm converges quickly whether the communication is
considered or not. In Fig. 3(a), we compare the proposed
DMM algorithm with the AMM algorithm proposed in [50],
and we set γ = 1 to consider the CM constraint. It is shown
that the DMM algorithm converges much faster than the AMM
algorithm, since the former does not require alternate iteration.
Besides, when we set ρ = 1, i.e., only the sensing function is
considered, the convergence speed is quite fast. It is worth
highlighting that when we set ρ = 0.5, both the sensing
and jamming suppression functions can be achieved, but the
convergence speed is decreased. When the communication
constraint is considered, as shown in Figs. 3(b) and 3(c), it can
be seen that the proposed DMM algorithm converges rapidly to
a stationary point under different communication modulations.
The penalty parameter ϵ = 2 corresponds to a lower value of
the objective function than in the case of ϵ = 3, which is
because the feasible set of solutions is smaller for the case of
ϵ = 3 than the case of ϵ = 2. Moreover, the results in Fig. 3(b)
show that the value of the objective function decreases with the
increase of the maximum modulus γ of the ISAC waveform.
In particular, the value of the objective function at γ = 1.5 is
almost the same as the case of γ = 2. The reason is that the
PAPR constraint is weaker than the communication constraint
when γ is greater than the maximum modulus 3

√
5/5 of

16QAM symbols. Fig. 3(c) demonstrates that the objective
function value remains almost constant with the increase of γ.
This is because the QPSK symbols are all constant-modulus,
and also the communication constraint is stronger than the
PAPR constraint when γ > 1. Therefore, to obtain the optimal
solution under different communication modulations, we set
γ = 1.5 in the next numerical experiments. Without loss of
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generality, we assume that QPSK is used for communication
modulation in all simulations unless otherwise stated and set
the penalty parameter ϵ = 2.

TABLE I shows the computational complexity and running
time of Fig 3(a), where the maximum number of iterations
is set to 2 × 103. In Fig. 3(a), since we consider the CM
constraint, which does not involve the step of the BM, the
computational complexity of the proposed DMM algorithm is
O(2L log2(2L))+O(L2). As can be seen, since the proposed
DMM algorithm introduces FFT to compute the closed-form
solution of each sub-problem, it greatly reduces the computa-
tional complexity compared to the AMM algorithm. Besides,
the experimental results shown in TABLE I also demonstrate
that the proposed DMM algorithm requires less running time
than that of the AMM algorithm under the same conditions.

TABLE II shows the running time of Figs. 3(b) and 3(c)
for the proposed DMM algorithm and the BM, where the
maximum number of iterations is set to 1× 102. We consider
different communication modulations and PAPR constraints.
Due to the PAPR constraint, the iterative step of the DMM
algorithm involves the BM. We can see that the proposed
DMM algorithm still has a low runing time and the BM does
not cause excessive computation time. This also shows the
superiority of the proposed algorithm.

TABLE I
COMPARISON OF ALGORITHM COMPLEXITY AND RUNNING TIME

Algorithms Complexity Running time (s)
ρ = 1 ρ = 0.5

AMM [50] O(L3) +O(L2) 36.53 181.69
Proposed DMM O(2L log2(2L)) +O(L2) 0.34 38.71

TABLE II
RUNNING TIME OF THE PROPOSED DMM ALGORITHM AND THE BM

Modulations Parameter Running time: DMM/BM (s)
γ = 1.1 γ = 1.3 γ = 1.5

16QAM ϵ = 2 2.78/0.15 2.69/0.15 2.73/0.15
ϵ = 3 2.73/0.15 2.72/0.15 2.95/0.15

QPSK ϵ = 2 2.71/0.15 2.73/0.16 2.72/0.15
ϵ = 3 2.79/0.16 2.78/0.15 2.82/0.15

To analyze the impact of parameter β1, Fig. 4 illustrates
the variation trend of LPG, jamming peak and communication
SER with different values of β1. It can be seen that the LPG
increases with the growth of β1. On the contrary, the jamming
peak is suppressed when the β1 decreases. However, LPG and
communication SER are coupled to each other, and in Fig.
4 one can see that an increase in β1 leads to an increase
in SER. Thus, the weight β1 should be reasonably chosen
to precisely control LPG, jamming peak and communication
SER. By weighing between the target peak, the jamming peak
and communication SER, we set β1 = 0.12 in subsequent
simulations.

Furthermore, in Fig. 5, we illustrate the value of LPG with
respect to the number of iterations under different values of
the penalty parameter ϵ. It is shown that the LPG increases
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with the increase of the number of iterations, but it will
gradually stabilize. Besides, the LPG can be further decreased
by reducing the values of penalty parameter ϵ.

B. Performance of Sensing and Jamming Suppression

In this section, simulation results are performed to verify the
anti-jamming effect and sensing performance of the proposed
ISAC waveform. We assume that the weight factor is ρ = 0.4,
and the algorithm convergence threshold is η = 1×10−5. Sim-
ulation and jamming-related parameters are given in TABLE
III. Moreover, two benchmarks, an anti-jamming waveform
proposed in [38] using the decoupled alternating direction
penalty method (DCADPM) algorithm and an IASC waveform
proposed in [25], are adopted for comprison. Particularly, in
the case of a single-antenna, the ISAC waveform based on
trade-off design proposed in [25] is formulated as

min
xn

ρ ∥ Hxn − sn ∥22 +(1− ρ) ∥ xn − xrad,n ∥22

s.t. ∥ xn ∥22= L,

PAPR(xn) ≤ γ2,

(59)

where xrad,n is the given optimal radar waveform, which is
assumed as the linear frequency modulation (LFM) in the
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Fig. 6. Sensing and jamming suppression performance comparison (γ = 1.5). (a) Pulse compression results without jamming; (b) Jamming suppression
performance for PPRJ scenario (JSR = 15 dB); (c) Jamming suppression performance for RRJ scenario (JSR = 15 dB).

following. The pulse width and bandwidth of the LFM signal
are consistent with the ISAC waveform.

To simplify the notation, in the following, “Anti-jamming
ISAC waveform” denotes the proposed design in this work,
“ISAC waveform” represents the waveform obtained by [25]
and “Anti-jamming waveform” is acquired by [38].

TABLE III
SIMULATION PARAMETERS

Parameters
Value

Sensing Jamming
PPRJ RRJ

Pulse width Tp 25.6 µs − −
Bandwidth B 10 MHz − −

Pulse repetition frequency fr 5 kHz − −
Sampling time interval ts 0.1 µs 0.1 µs 0.1 µs

Jamming sampling time TL − 4 µs 1 µs
Jamming sampling interval Ts − − 6.4 µs

The number of repeats − 4 5
Jammer relative target echo delay − 1 µs 1 µs

Jamming-to-signal ratio (JSR) − 15 dB 15 dB
Signal-to-noise ratio (SNR) 10 dB − −

Fig. 6(a) presents the pulse compression results without
considering jamming. To ensure superior sensing performance,
we set ρ = 0.1 for the ISAC waveform, and set ρ = 0.4
for the Anti-jamming waveform. As can be seen, the peak
sidelobe level ratio (PSLR) [53] of the ISAC waveform and
the Anti-jamming waveform are −13.36 dB, −37.29 dB,
respectively. When ϵ = 2, i.e., communication function is
considered, the PSLR of the proposed Anti-jamming ISAC
waveform is −23.51 dB. Compared to the ISAC waveform, the
proposed Anti-jamming ISAC waveform has shown significant
improvements in terms of PSLR performance. However, it is
important to note that the ISAC waveform uses the LFM as the
optimal radar waveform, which presents good ambiguity prop-
erties while performing well in distinguishing moving targets
[54]. Additionally, when ϵ = 0, i.e., without communication,
the PSLR of the proposed Anti-jamming ISAC waveform is
−43.52 dB. In conclusion, though the Anti-jamming ISAC
waveform dispalys sensing performance degradation compared
with the Anti-jamming waveform in the ISAC scenario, it
shows superior PSLR property without considering the com-
munication function. Further, the pulse compression results in
the presence of PPRJ and RRJ are shown in Figs. 6(b) and 6(c),

respectively. It is seen that when transmits the ISAC waveform,
the false targets and the true target appear simultaneously,
resulting an increase of the radar false alarm probability. On
the contrary, when using the proposed Anti-jamming ISAC
waveform and the Anti-jamming waveform, both the PPRJ and
RRJ can be effectively filtered and suppressed, realizing the
improvement of sensing performance. For the sake of analysis,
the jamming type is assumed to be the PPRJ in the subsequent
simulations.
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Fig. 7. The Delay-Doppler images for PPRJ scenario (N = 64, JSR = 15
dB, γ = 1.5). (a) ISAC waveform [25]; (b) Anti-jamming ISAC waveform
(ϵ = 2); (c) Anti-jamming waveform [38]; (d) Anti-jamming ISAC waveform
(ϵ = 0).

Fig. 7 demonstrates the Delay-Doppler images in the PPRJ
scenario. We assume that the normalized Doppler shift θ =
1 rad of the target and the jamming. It can be seen that when
the ISAC waveform is used, the real target is obscured by
jamming. Nevertheless, false targets generated by PPRJ are
effectively suppressed by using the proposed Anti-jamming
ISAC waveform and the Anti-jamming waveform. It is worth
noting that the proposed method has a higher target SNR
gain on the radar the Delay-Doppler image compared to the
DCADPM algorithm proposed in [38] when communication
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is not considered, which further proves the effectiveness of the
proposed method.
Remark 1. In Fig. 7, the filter group {wne

jnθ1 ,wne
jnθ2 , · · · ,

wne
jnθM }, θi = −π+2π(i−1)/(M −1), i = 1, 2, · · · ,M is

applied to the radar receive signal to detect the target, where
M = 201. The Doppler resolution of the Delay-Doppler maps
is higher for larger M . In addition, the target delay is obtained
by coherent accumulation sum of each pulse within a coherent
processing interval. Therefore, increasing the number of pulses
N could further reduce the sidelobes of the Delay-Doppler
images and improve the resolution.
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Fig. 8. The variation trends of the PSLR under different error κ of the
jamming sampling time (ϵ = 2).

Moreover, the cognitive-based method usually does not
exactly obtain the relevant parameters of the jamming in
practice, resulting in appearing error in estimated jamming
parameters. To analyze the effect of jamming cognitive errors
on the performance of the proposed method, Fig. 8 depicts
the trend of the PSLR with respect to the estimated error κ
of the jamming sampling time, where the estimated jamming
sampling time T̂L = 4µs and κ = TL − T̂L, TL is actual
jamming sampling time. In Fig. 8, it can be seen that the
PSLR is lowest when the estimated error κ = 0µs, i.e., the
actual TL is the same as the estimated T̂L. Not surprisingly,
the PSLR performance is deteriorated in the case of appear-
ing estimation error. However, although inaccurate jamming
information leads to a degradation of the jamming suppression
performance, it also ensures the target detection in the case of
a low JSR.

In Fig. 9, we aim at explicitly showing the trade-offs be-
tween the sensing and anti-jamming performance with differ-
ent values of the penalty parameter ϵ. We use the ISL(xn,wn)
and the IL(xn,J ,wn) as the metrics of sensing and jamming
suppression performance, respectively. As can be seen, the
sensing and anti-jamming performance increase with the de-
crease of ϵ, indicating that the ISL(xn,wn) and IL(xn,J ,wn)
can be further minimized by sacrificing the communication
performance. Besides, there is a trade-off between the jamming
suppression and sensing. It is evident from the optimization
problem P0 that a larger ρ imposes a greater weight on the
ISL, whereby the sensing performance is more enhanced than
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Fig. 9. Trade-off between ISL(xn,wn) and IL(xn,J ,wn).

the jamming suppression performance. Therefore, a trade-off
between the jamming suppression and sensing can be achieved
by reasonably adjusting ρ in practice.

C. Communication Performance

To evaluate the communication performance of the ISAC
system, the communication SER is evaluated in this section.

Fig. 10(a) and Fig. 10(b) respectively display the SER of
the 16QAM and QPSK modulations. For comparison, we
consider the case of the communication only (COM-ONLY),
and the ISAC waveform proposed in [25]. It can be seen
that as the penalty parameter ϵ increases, the performance of
proposed method gradually approaches the COM-ONLY. The
reason is that according to the optimization problem (15), a
larger ϵ indicates more resources are allocated to optimize the
communication performance, resulting in a better SER perfor-
mance, but one loses the performance of sensing and jamming
suppression as shown in Fig. 9. Thus, an appropriate ϵ should
be selected according to the actual requirements. Moreover,
we see that the SER of the ISAC waveform proposed in [25]
can be further reduced by increasing the weighting factor ρ,
but the communication SER is still higher than that of the
proposed method.

As the final part of this section, the impact of the similarity
constraint on the transmitted waveform is investigated. We
assume that the ISAC system sends a QPSK signal to the
communication receiver, and the amplitude of the desired
QPSK signal is 1 and the symbol bits are randomly generated.
Fig. 11 shows the phases of the desired QPSK signal and
the designed ISAC waveform at different ϵ. We can see that
the phases of the designed ISAC waveform approximate the
desired communication signal at different ϵ, and high penalty
parameter ϵ result in a better approximation of the phases of
the desired communication signal.

V. CONCLUSIONS

In this paper, the joint design of the transmitted waveform
and the receive filter for the ISAC system has been proposed
in the presence of the SDMJ. Specifically, we have developed
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Fig. 10. The SER comparison for different ϵ. (a) SER performance with
16QAM modulation; (b) SER performance with QPSK modulation.
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Fig. 11. The phases of the desired QPSK signal and the designed ISAC
waveform at different ϵ.

an objective optimization criterion through merging the ISL
of the transmitted waveform and the IL of the jamming,
which enables a flexible performance trade-off between the
sensing and the jamming suppression. The communication per-
formance of the ISAC system is further ensured by considering
the similarity constraint. To solve the formulated non-convex

problem, we have first developed an efficient DMM algorithm
based on the MM framework, and then an acceleration al-
gorithm based on the square iteration method has been used
to speed up the convergence rate. Moreover, we have derived
a closed-form solution to the proposed problem, and proved
the convergence of the proposed solution. The results show
that the proposed DMM algorithm has a faster convergence
rate and lower complexity compared to the traditional MM
algorithm based on alternating iterations. It is shown that the
proposed scheme can effectively suppress PPRJ and RRJ, and
also exhibit superior sensing and communication performance.
Note that the proposed method cannot control the value of the
LPG accurately. Besides, the pulse compression performance
gets deteriorated for large Doppler shift. As a future work,
Doppler-resilient ISAC waveforms may be designed.
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APPENDIX A
PROOF OF (20)

Proof : By calculating, we have

ρ
∑
k∈Ω

|zHn Ũkzn|2 + (1− ρ)
∑
k∈ΩJ

|zHn,JŨkzn|2

=ρ
∑
k∈Ω

|Tr(ŨkZn)|2 + (1− ρ)
∑
k∈ΩJ

|Tr(ŨJ,kZn)|2

=ρ
∑
k∈Ω

vec(Zn)
Hvec(Ũk)vec(Ũk)

Hvec(Zn)

+ (1− ρ)
∑
k∈ΩJ

vec(Zn)
Hvec(ŨJ,k)vec(ŨJ,k)

Hvec(Zn)

=vec(Zn)
H

[
ρ
∑
k∈Ω

vec(Ũk)vec(Ũk)
H

]
vec(Zn)

+ vec(Zn)
H

[
(1− ρ)

∑
k∈ΩJ

vec(ŨJ,k)vec(ŨJ,k)
H

]
vec(Zn),

(60)

where Zn = znz
H
n , and

ŨJ,k =

[
O JHUk

O O

]
. (61)

Then, it is easy to verify that the objective function of the P1

can be rewritten as (20). The proof is completed. ■

APPENDIX B
PROOF OF LEMMA 2

Proof : It is easy to see that the set of vectors {vec(Ũk)|k ∈
Ω} are mutually orthogonal. For k ∈ Ω, we have

Avec(Ũk) =

L−1∑
i=1−L,i̸=0

vec(Ũi)vec(Ũi)
Hvec(Ũk)

= vec(Ũk)vec(Ũk)
Hvec(Ũk)

= (L− |k|)vec(Ũk).

(62)
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Thus, (L− |k|), k ∈ Ω, are the nonzero eigenvalues with cor-
responding eigenvectors vec(Ũk), k ∈ Ω. Then, the maximum
eigenvalue of A is given by max

k
{(L− |k|)k ∈ Ω} = L− 1.

For the same reason, we have

Bvec(ŨJ,k) =

L−1∑
i=1−L

vec(ŨJ,i)vec(ŨJ,i)
Hvec(ŨJ,k)

= vec(ŨJ,k)vec(ŨJ,k)
Hvec(ŨJ,k)

= [vec(ŨJ,k)
Hvec(ŨJ,k)]vec(ŨJ,k)

= [vec(JHUk)
Hvec(JHUk)]vec(ŨJ,k).

(63)

Therefore, vec(JHUk)
Hvec(JHUk) are the nonzero eigen-

values with corresponding eigenvectors vec(ŨJ,k), k ∈
ΩJ . Then, the maximum eigenvalue of B is given by
max

k
{vec(JHUk)

Hvec(JHUk)|k ∈ ΩJ}. The proof is com-
pleted. ■

APPENDIX C
PROOF OF (28)

Proof : According to (27), we have

Re
{

vec(Zn)
H(W − λuI)vec(Z(t)

n )
}

=ρRe
{

vec(Zn)
HAvec(Z(t)

n )
}

+ (1− ρ)Re
{

vec(Zn)
HBvec(Z(t)

n )
}

− Re
{

vec(Zn)
H(λuI)vec(Z(t)

n )
}
.

(64)

Firstly, according to (21), we can obtain

Re
{

vec(Zn)
HAvec(Z(t)

n )
}

=Re

{
vec(Zn)

H

(∑
k∈Ω

vec(Ũk)vec(Ũk)
H

)
vec(Z(t)

n )

}

=Re

{∑
k∈Ω

(Tr(Ũ−kZ
(t)
n )Tr(ŨkZn))

}

=Re

{
Tr

(∑
k∈Ω

C(t)
wn,xn

(−k)ŨkZn

)}
=Re {Tr(Q1Zn)} ,

(65)

where

Q1 =

[
O Φ
O O

]
, Φ =

∑
k∈Ω

C(t)
wn,xn

(−k)Uk. (66)

Similarly, by (22) we can compute

Re
{

vec(Zn)
HBvec(Z(t)

n )
}

=Re

{
vec(Zn)

H

( ∑
k∈ΩJ

vec(ŨJ,k)vec(ŨJ,k)
H

)
vec(Z(t)

n )

}

=Re

{∑
k∈ΩJ

Tr(ŨJ,−kZ
(t)
n )Tr(ŨJ,kZn)

}

=Re

{
Tr

( ∑
k∈ΩJ

C(t)
wn,xn,J

(−k)ŨJ,kZn

)}
=Re {Tr(Q2Zn)} ,

(67)

where

Q2 =

[
O JHΦJ

O O

]
, ΦJ =

∑
k∈ΩJ

C(t)
wn,xn,J

(−k)Uk. (68)

Since vec(Zn)
H(λuI)vec(Z(t)

n ) = λuTr(Z
(t)
n Zn), (64) can

be written as

Re
{

vec(Zn)
H(W − λuI)vec(Z(t)

n )
}

=Re
{
ρTr(Q1Zn) + (1− ρ)Tr(Q2Zn)− λuTr(Z

(t)
n Zn)

}
=Re

{
zHn

(
ρQ1 + (1− ρ)Q2 − λuz

(t)
n (z(t)n )H

)
zn

}
=Re

{
zHn (Q− λuz

(t)
n (z(t)n )H)zn

}
,

(69)

where Q = ρQ1 + (1− ρ)Q2. The proof is completed. ■
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