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Simultaneous EEG and fNIRS 
recordings for semantic decoding of 
imagined animals and tools
Milan Rybář    ✉, Riccardo Poli & Ian Daly    ✉

Semantic neural decoding aims to identify which semantic concepts an individual focuses on at a given 
moment based on recordings of their brain activity. We investigated the feasibility of semantic neural 
decoding to develop a new type of brain-computer interface (BCI) that allows direct communication 
of semantic concepts, bypassing the character-by-character spelling used in current BCI systems. We 
provide data from our study to differentiate between two semantic categories of animals and tools 
during a silent naming task and three intuitive sensory-based imagery tasks using visual, auditory, 
and tactile perception. Participants were instructed to visualize an object (animal or tool) in their 
minds, imagine the sounds produced by the object, and imagine the feeling of touching the object. 
Simultaneous electroencephalography (EEG) and near-infrared spectroscopy (fNIRS) signals were 
recorded from 12 participants. Additionally, EEG signals were recorded from 7 other participants in 
a follow-up experiment focusing solely on the auditory imagery task. These datasets can serve as a 
valuable resource for researchers investigating semantic neural decoding, brain-computer interfaces, 
and mental imagery.

Background & Summary
Semantic concepts are mental constructs that represent knowledge and understanding in the human mind. They 
play a vital role in how we perceive and process the world around us1. Recent advancements in cognitive neu-
roscience, machine learning, and the science of human language have demonstrated the possibility of semantic 
neural decoding. This decoding involves identifying the specific semantic concepts an individual is concentrat-
ing on or thinking about at a given moment in time by analyzing their brain activity2,3.

Our research aims to investigate the feasibility of applying semantic neural decoding to brain-computer 
interfaces (BCIs) designed for communication4,5. BCIs establish a direct pathway between the brain and external 
devices, bypassing the traditional musculoskeletal system. These systems have been explored for diverse appli-
cations, including assistive technologies for individuals with disabilities6 and entertainment and gaming for the 
general population7. However, current BCIs face challenges, particularly in terms of communication speed and 
accuracy, which remain inferior to conventional methods8–10.

Semantic BCIs, which leverage semantic neural decoding, could enable the direct transmission of conceptual 
meaning. This approach contrasts with existing state-of-the-art BCI spellers, which transmit characters one at 
a time, requiring the completion of entire words to convey meaning6,11,12. Semantic BCIs have the potential to 
address this limitation, offering a more intuitive mode of communication. Nonetheless, it is currently unknown 
whether such systems can achieve the accuracy and speed necessary for practical use.

While current studies highlight the exciting possibility of semantic neural decoding, they employ a wide 
range of semantic concepts, mental tasks, experimental designs, and machine learning techniques3. Importantly, 
not all of these approaches are suitable for BCI applications. A key requirement for semantic BCIs is that they 
must operate without relying on external cues to guide user choices.

The most promising results in semantic neural decoding have been achieved using functional magnetic reso-
nance imaging (fMRI)13–16. This non-invasive, whole-brain neuroimaging technique measures brain activity by 
detecting changes associated with cerebral blood flow. Despite its effectiveness, fMRI has significant limitations, 
including high costs, lack of portability, low temporal resolution, and the restrictive environment of the scanner, 
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which limits the range of cognitive tasks and abilities that can be studied. For these reasons, decoding semantic 
information from neural signals captured non-invasively at the scalp, such as through electroencephalography 
(EEG) or functional near-infrared spectroscopy (fNIRS), has become an attractive alternative for developing 
semantic BCIs. EEG measures electrical activity at the scalp surface. However, because the signals pass through 
multiple layers of non-neural tissue, they are highly attenuated and noisy, resulting in a lower spatial resolution 
of around 2 cm compared to fMRI. Nevertheless, EEG excels in temporal resolution, offering millisecond-level 
precision. fNIRS is a non-invasive technique that measures cortical brain activity up to approximately 2 cm in 
depth by detecting hemodynamic responses associated with neuronal activity, similarly to fMRI. Its key advan-
tages are portability and lower costs compared to fMRI, making it a promising substitute17. Combining EEG 
and fNIRS recordings presents an ideal solution for semantic BCIs, as these techniques complement each other. 
Both are portable, cost-effective, and better suited to real-world applications compared to fMRI. EEG provides 
excellent temporal resolution, while fNIRS has the potential to address EEG’s poor spatial resolution. Together, 
they offer a synergistic approach to improving the ecological validity and practicality of semantic BCIs.

Before implementing mental tasks without external cues in BCIs, it is essential to validate these mental tasks 
within an experimental design where participants are cued with a specific semantic concept. This design should 
clearly separate the cue presentation period from the mental task period18. To this end, we designed an experi-
ment to explore the feasibility of distinguishing between the semantic categories of animals and tools using four 
distinct mental tasks.

The first mental task, silent naming, required participants to silently name a displayed object on the screen in 
their minds. This task has been widely used in previous studies19–23, but its feasibility for semantic neural decod-
ing using fNIRS had not yet been evaluated. We addressed this gap by testing silent naming in our experiment24.

Several studies14,15,21,25–37 have instructed participants to think about the properties or meanings of concepts 
or to generate mental images. Research consistently shows that perceiving objects and imagining them elicit 
similar brain activity patterns38–41. Following this approach, we focused on mental imagery tasks38,42– 44, where 
participants freely used mental imagery to think about concepts. Mental imagery is a core cognitive ability com-
mon to most people38,45,46, making it a natural basis for mental tasks. Building on this, we introduced three novel 
sensory-based imagery tasks grounded in visual, auditory, and tactile modalities. Participants were instructed 
to: (a) visualize the object in their minds, (b) imagine the sounds the object might produce, and (c) imagine the 
feeling of touching the object.

Simultaneous EEG and fNIRS data were collected from 12 participants during these four mental tasks. 
Additionally, a simplified version of the experiment focused solely on the auditory imagery task was conducted, 
with only EEG data recorded from 7 participants. We refer to the primary dataset as Dataset 1 and the simpli-
fied version as Dataset 2. We believe these datasets will prove valuable for researchers studying semantic neural 
decoding, BCIs, or mental imagery38,42– 44,46,47.

Methods
Participants.  Dataset 1.  Twelve right-handed native English speakers (3 males, 9 females) were recruited 
from the student and staff community at the University of Essex. Participants ranged in age from 20 to 57 years, 
with a mean age of 32.75 years and a standard deviation of 11.55 (see Table 1 for additional details). To mitigate 
potential variability in the neural representation of semantic concepts caused by language differences48,49, only 
native English speakers were included, a factor particularly relevant to the silent naming task. All participants 
had normal or corrected-to-normal vision and received £16 as compensation for their time. They all read, under-
stood, and signed a consent form for their data to be made publicly available in anonymized form for research 
purposes. The study was approved by the Ethics Committee of the University of Essex on 25 October 2018. The 
experiment was performed in accordance with relevant guidelines and regulations. This experiment was also 
described in18,24,50.

Participant Age Sex Handedness
fNIRS 
montage

1 26 female right frontal

2 32 female right frontal

3 57 male right frontal

4 47 female right frontal

5 23 female right frontal

6 21 female right frontal

7 29 female right temporal

8 50 female right temporal

9 27 female right temporal

10 33 female right temporal

11 28 male right temporal

12 20 male right temporal

Table 1.  Participant information for Dataset 1. Adapted from50.
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Dataset 2.  Seven right-handed individuals (5 males, 2 females) were recruited from our lab. Their ages ranged 
from 27 to 44 years, with a mean age of 34 years and a standard deviation of 5.98 (see Table 2 for additional 
details). Unlike Dataset 1, this experiment did not include the silent naming task, so native English fluency 
was not required. In fact, none of the participants were native English speakers. All participants had normal or 
corrected-to-normal vision and provided written informed consent prior to the experiment for their data to be 
made publicly available in anonymized form for research purposes. The research protocol was approved by the 
Ethics Committee of the University of Essex on 20 February 2023 (ETH2223-0805). The experiment was per-
formed in accordance with relevant guidelines and regulations. This experiment was also described in18.

Mental tasks.  Dataset 1.  Participants were shown images representing concepts from two semantic catego-
ries: animals and tools. After viewing each image, they performed four distinct mental tasks: silent naming, visual 
imagery, auditory imagery, and tactile imagery. The order of these mental tasks was randomized across blocks.

In the silent naming task, participants were instructed to silently name the displayed object in their minds 
in their mother tongue (English). In the visual imagery task, they were asked to visualize the object, focusing 
on their own mental representation rather than the specific image presented. For the auditory imagery task, 
participants imagined the sounds associated with the object. For instance, the sounds made by an animal (such 
as the mewing of a cat) or the sounds produced when using a tool (such as the banging of a hammer). Finally, in 
the tactile imagery task, participants imagined the feeling of touching the object, such as petting an animal or 
touching different parts of a tool.

Descriptions of these mental tasks, including the above-mentioned examples, were provided beforehand, 
but participants were encouraged to use the imagery strategy that felt most natural to them. During each mental 
task, participants were instructed to remain engaged for the full 3-second duration and to minimize physical 
movements, including eye movements, facial expressions, and head or body motions. To avoid biasing partic-
ipants’ interpretations of the images, all images were shown to them before the experiment. The name of an 
image was only provided if a participant could not identify it; otherwise, they were free to rely on their own 
interpretation.

Dataset 2.  The experimental design for Dataset 2 was similar to that of Dataset 1, with two key differences: (1) 
participants only performed the auditory imagery task, and (2) the duration of the mental task was extended to 
5 seconds, compared to the 3 seconds used in Dataset 1.

Stimuli.  The study utilized a set of 18 animals and 18 tools. These semantic categories and cuing using the 
visual modality (images) have been extensively used in prior semantic decoding studies3. The selected concepts 
were chosen for their suitability across all mental tasks and their recognizability by a broad audience. For example, 
certain animals were excluded if they were deemed unsuitable for the auditory imagery task, as many participants 
might struggle to recall and imagine the sounds those animals produce. Images were sourced from the Internet 
under licenses permitting non-commercial reuse with modifications. Each image was converted to gray-scale, 
cropped, resized to 400 × 400 pixels, and contrast stretched. The objects were presented against a white back-
ground. Photographic images were used instead of line drawings to allow for a greater set of potential images.

The selected concepts are as follows:

Animals. bear, cat, cow, crab, crow, dog, donkey, duck, elephant, frog, lion, monkey, owl, pig, rooster, sheep, 
snake, and tiger.

Tools. axe, bottel-opener, broom, chain saw, computer keyboard, computer mouse, corkscrew, hammer, hand 
saw, hoover, kettle, knife, microwave, pen, phone, scissors, shovel, and toothbrush.

Experimental design.  Dataset 1.  The structure of a single concept trial is shown in Fig. 1. Each concept 
trial started with a black fixation cross displayed on a white background for a duration of 1–2 seconds (uniformly 
distributed). Following this, the image of a concept was shown for 0.6 seconds. To minimize visual persistence 
and eliminate potential effects of perceptual-processing-related neural activity following the image presentation51, 
a checkerboard mask was displayed for another 0.6 seconds. Afterward, a blank white screen appeared for 0.5 
seconds before a sequence of four mental tasks. Each mental task lasted for 3 seconds, with a blank white screen 
displayed for 0.2 seconds between mental tasks. The type of mental task was indicated by text on the screen 
throughout the mental task duration: “Silently name”, “Visualize”, “Listen”, or “Feel”. After completing the final 
mental task, a 2-second break followed, represented by a blank screen that gradually transitioned from white to 

Participant Age Sex Handedness

1 44 male right

2 33 male right

3 35 female right

4 37 male right

5 25 female right

6 37 male right

7 27 male right

Table 2.  Participant information for Dataset 2.
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black and back to white. Overall, a single concept trial lasted 17.3–18.3 seconds, depending on the duration of 
the fixation cross.

Each concept was presented five times, resulting in a total of 90 trials per category (18 concepts, 5 repetitions 
each). The experiment consisted of 15 blocks, each containing 12 concepts, lasting 207.6–219.6 seconds per 
block. Blocks were separated by breaks of at least 30 seconds, with a longer break of at least 3 minutes occur-
ring in the middle of the experiment. The experiment began with two additional short familiarization blocks 
(86.5–91.5 seconds), each containing a random subset of five concepts repeated twice.

The order of concepts and mental tasks was pseudo-randomized with the following constraints: (1) no con-
cept was repeated twice in succession, (2) all mental tasks within a block had the same order, and (3) no mental 
task order was repeated in the following block.

Dataset 2.  Dataset 2 was recorded using a simplified version of the Dataset 1 experiment, focusing only on 
the auditory imagery task (see Fig. 1). The cue presentation time for the concept image was extended to 1 sec-
ond, and the auditory imagery task duration was increased to 5 seconds. Additionally, the blank screen before 
the mental task was adjusted to last 0.5–1 second (uniformly distributed). Each concept trial lasted 10.1–11.6 
seconds. Concepts were presented seven times, increasing the total number of trials per category to 126 (18 
concepts, 7 repetitions each). The experiment consisted of 14 blocks, each containing 18 concepts, lasting 181.8–
208.8 seconds per block. Breaks between blocks were the same as in the first experiment. Concept order was 
pseudo-randomized as in Dataset 1 to prevent consecutive repetitions of the same concept, with an additional 
constraint to balance semantic categories within each block.

Data acquisition.  Dataset 1.  EEG data were recorded using a BioSemi ActiveTwo system with 64 elec-
trodes placed according to the international 10-20 system. Two additional electrodes were positioned on the 
earlobes as references. Galvanic skin response (GSR) was measured using two electrodes on the left hand, and 
respiration was recorded using a belt placed around the waist; all signals were recorded by the same BioSemi 
ActiveTwo system. The sampling rate for EEG, GSR, and respiration was 2048 Hz. fNIRS data were recorded 
using a NIRx NIRScoutXP continuous wave imaging system equipped with 4 light detectors, 8 light emitters 
(sources), and low-profile fNIRS optodes. Both EEG electrodes and fNIRS optodes were placed into a NIRx 
NIRScap for integrated fNIRS-EEG layouts. Synchronization between EEG and fNIRS signals was achieved by 
sending triggers from the experimental control computer at the onset of each event. Triggers were delivered to 
both systems via a parallel port and an active parallel port splitter box.

The selection of brain regions for fNIRS optode placement was guided by the semantic processing network 
identified by Binder et al.52 Their meta-analysis of 120 functional neuroimaging studies revealed a left-lateralized 
network associated with semantic processing comprised of 7 regions: posterior inferior parietal lobe (angular 
gyrus and adjacent supramarginal gyrus), middle temporal gyrus (and posterior portions of the inferior tempo-
ral gyrus), fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus (especially 

Silently 
name

Visualize Listen Feel

         1-2s                    0.6s                     0.6s                    0.5s                      3s                      0.2s 

Fixation cross      Image              Mask                                       Task 

Task                                       Task                                      Task                Break

                          3s                       0.2s                      3s                       0.2s                     3s                         2s

e

             0.5s                      3s                      0.2s0.6s                     0.6s       

Listen

         1-2s                     1s                      0.6s                   0.5-1s                     5s                       2s 

Fixation cross      Image              Mask                                       Task              Break

    Dataset 1

    Dataset 2

Fig. 1  Illustration of a single concept trial in Datasets 1 and 2. In Dataset 1, the order of mental tasks was 
randomized across blocks. Based on18.
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pars orbitalis), ventromedial prefrontal cortex, and posterior cingulate gyrus (and adjacent ventral precuneus). 
These findings are consistent with semantic decoding studies3. Given that fNIRS can only measure cortical 
activity close to the scalp, we focused on three left-lateralized regions accessible to fNIRS: the posterior inferior 
parietal lobe, the middle temporal gyrus, and the dorsomedial prefrontal cortex.

Two distinct fNIRS montages were created due to limitations in the number of channels available with our 
equipment (see Fig. 2). The montages were designed using the fOLD toolbox53, which optimizes optode place-
ment based on regions of interest. The first montage targeted the left temporal lobe and the posterior inferior 
parietal lobe. Regions of interest for the fOLD toolbox were the left-lateralized inferior parietal lobe, angular 
gyrus, middle and inferior temporal gyrus. Optodes with the lowest specificity to target regions were excluded 
to meet hardware constraints. The montage included 4 detectors and 7 sources, producing 11 channels with a 
sampling rate of 8.92 Hz. The second montage focused on the left frontal cortex. Regions of interest for the fOLD 
toolbox were Brodmann areas 9 and 46. The montage included 4 detectors and 8 sources, producing 14 channels 
with a sampling rate of 7.81 Hz. The inter-optode separation for both montages was approximately 3 cm. The 
frontal montage was used for the first six participants, while the temporal montage was used for the remaining 
six participants (see Table 1).

Dataset 2.  In Dataset 2, only EEG data were recorded. EEG acquisition followed the same protocol as in 
Dataset 1, with additional electrooculography (EOG) recordings to monitor eye movements. Two electrodes 
were placed above and below the right eye to capture the vertical oculogram, while two more electrodes were 
placed near the canthus of each eye to record the horizontal oculogram. Unlike in Dataset 1, galvanic skin 
response was not measured. Instead, two electrodes were placed on the left and right wrists for additional phys-
iological measurements (e.g., heart rate variability).

Order of tasks in Dataset 1.  During data analysis, a minor scripting error was identified in the experimen-
tal program used for Dataset 1. Specifically, the random number generator responsible for shuffling the order of 
concepts and mental tasks was initialized with the same seed for all participants except participant 1. As a result, 
participants 2–12 were presented with identical sequences of mental tasks and concepts. Figure 3 illustrates the 
frequency distribution of mental tasks appearing in the first, second, third, and fourth positions within blocks. 
The distribution is non-uniform, with a skew toward presenting the auditory imagery and tactile imagery tasks 
more frequently as the first task, and the auditory imagery task more often as the second task. Note that if the ease 
of semantic decoding is influenced by the position of the mental task within the sequence of four tasks, the ran-
domization seed initialization error could adversely impact the results. For example, if the first mental task pre-
sented, irrespective of its type, consistently provides the most distinguishing features for differentiating between 
semantic categories, this could lead to a bias. In particular, the tactile and auditory imagery tasks, which were 
presented more frequently than the other tasks (especially compared to the visual imagery task), may benefit from 
this bias. As a result, they may contribute more samples to the training process within the classification pipeline, 
potentially leading to higher classification performance for these mental tasks.

Fig. 2  The frontal and temporal montages used for fNIRS data acquisition in Dataset 1 alongside the joint EEG 
system with 64 electrodes, following the international 10-20 system. The fNIRS sources (depicted as circles) and 
detectors (depicted as squares) were positioned according to the 10-5 system, forming channels (depicted as 
small circles) located between the sources and detectors.
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Data Records
Datasets can be accessed from the OpenNeuro platform via https://doi.org/10.18112/openneuro.ds004514.
v1.1.254 for Dataset 1 and https://doi.org/10.18112/openneuro.ds004517.v1.0.255 for Dataset 2. All datasets 
have been structured following the Brain Imaging Data Structure (BIDS) standard56, which supports EEG57 and 
fNIRS58 data. In compliance with this standard, files are first organized by participant and then categorized into 
modality-specific folders. EEG data are stored in BioSemi .bdf files, with corresponding event annotations and 
channel information saved in .tsv files. fNIRS data are stored in the Shared Near Infrared Spectroscopy Format 
(SNIRF) as .snirf files, with corresponding event annotations, channel information, and optode locations also 
stored in .tsv files. At the root level, participant information is stored in a .tsv file, accompanied by a .json file that 
describes each column. All stimulus images are located in the stimuli folder, with references to these images 
included in the stim_file column of the event .tsv files. The original data were converted into BIDS format 
with the help of the MNE-BIDS package59.

Technical Validation
The quality of the EEG and fNIRS signals was ensured through multiple procedures conducted both during and 
after data acquisition. EEG electrode quality was assessed during setup using voltage offsets displayed in Biosemi 
ActiView software and the quality of the EEG time series. The voltage offsets were monitored to ensure they 
remained within the acceptable range (below 20). Similarly, the quality of each fNIRS channel was evaluated 
using the calibration procedure in NIRx NIRStar software, which provided initial feedback on signal quality for 
each channel. It was not always possible to obtain good-quality fNIRS channels due to variations in participants’ 
hair size, thickness, and density60,61. The datasets contain raw EEG and fNIRS data including bad channels. This 
allows users the flexibility to apply their preferred preprocessing methods.

The EEG data were analyzed in our previous manuscripts18,50. EEG signals were referenced to the mean of 
electrodes placed on the left and right earlobes. Manual inspection was performed to identify electrodes exhib-
iting abnormal signal behavior. This inspection was based on visual assessment of raw EEG traces for artifacts 
such as excessive noise, drifts, or flat signals. Participant 8 in Dataset 1 was excluded from further EEG analysis 
due to overall poor signal quality and the presence of artifacts in the majority of concept trials. Eye-blink arti-
facts were identified and suppressed using component analysis62,63. Full details can be found in our previous 
manuscripts18,50. Figure 4 shows example average event-related potentials (ERPs) for a single participant with 
respect to image presentation from each dataset, demonstrating a clear neural response to the stimulus. The 
shown EEG signals were filtered between 0.1 and 30 Hz. Additionally, Fig. 5 shows the grand average visual ERP 
for each participant, showing consistent patterns of brain activity related the image presentation.

The fNIRS data were analyzed in our previous manuscripts24,50. Bad channels were identified using the scalp 
coupling index (SCI)64. The most prominent artifact in the fNIRS signal is the cardiac cycle, visible at approx-
imately 1 Hz. This artifact reflects intracranial physiological activity and serves as a marker of good contact 
between the optical probe and the scalp65,66. Bad channels identified by the SCI generally matched those flagged 
during the initial calibration process. Two participants (participants 5 and 12) were excluded from further fNIRS 
analysis because they had the majority of channels removed. Figure 6 shows the average power spectrum for 
each participant, where the cardiac cycle is clearly visible and varies across individuals. Motion artifacts caused 
by relative motion between the optical fibers and the scalp were corrected using a wavelet transform method67–69 
implemented in the Homer2 software package70. Motion-corrected signals at wavelengths 785 nm and 830 nm 
were converted into changes in concentration of oxygenated and deoxygenated hemoglobin using the modified 
Beer-Lambert law71. The resulting hemoglobin concentration signals were filtered between 0.01 and 0.7 Hz to 
remove low-frequency drift and the cardiac cycle. Full details can be found in our previous manuscripts24,50. 
Figure 7 shows example fNIRS event-related responses for a single participant of each montage, demonstrating 
clear changes in oxygenated and deoxygenated hemoglobin concentrations with respect to image presentation. 
These responses follow the expected relationship between changes in oxygenated and deoxygenated hemoglobin.

Usage Notes
The data are stored in the BIDS format56–58, ensuring easy accessibility using standard software and analysis pack-
ages. The provided datasets include raw EEG signals recorded with the BioSemi system. These signals are not 
referenced. It is recommended to apply referencing prior to analysis, such as using the mean of the ear references.

Fig. 3  The frequency of mental task appearances as the first, second, third, and fourth tasks in the shared order 
of mental tasks for participants 2 to 12 in Dataset 1.
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One notable limitation of these datasets is the relatively small number of participants for the fNIRS data 
in Dataset 1 (6 participants per montage) and for the EEG data in Dataset 2 (7 participants). While the data 
collected from these participants provided valuable insights and allowed for the investigation of the research 
questions, the limited sample size may impact the generalizability of the findings. A small sample size can reduce 
the statistical power of the analysis and may increase the likelihood of Type I or Type II errors. Additionally, the 
variability inherent in individual differences among participants may not be fully captured, potentially affecting 
the robustness of the conclusions. Future research should aim to include a larger and more diverse cohort of 
participants to validate and extend the findings. This would help ensure that the results are more representative 
of the broader population and enhance the reliability of the conclusions.

Fig. 4  Examples of average EEG ERPs with respect to the image presentation for a single participant from 
Dataset 1 and 2. Nave represents the number of trials over which the channel data were averaged.

Fig. 5  The grand average visual EEG ERP with respect to the image presentation for each participant. The black 
bold line indicates the average across participants.

Fig. 6  The average fNIRS power spectrum for each participant in Dataset 1.
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Code availability
We have prepared example scripts to demonstrate how to load the EEG and fNIRS data into Python using MNE72 
and MNE-BIDS59 packages. These scripts are located in the code directory.
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