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1. Introduction

Currently, deep learning with image processing has made
significant advancements across various domains,[1] including
image scene classification,[2] assistant human,[3] medical field,[4]

safe driving,[5] and computer gaming.[6] This progress has led
to a reduced reliance on traditional machine-learning methods.
Deep neural networks, in particular, have played a crucial role
in this advancement by extracting superior features and pat-
terns[7,8] through deeper and more complex architectures.[9]

In the field of medicine, early diagnosis of eye diseases[10]

with the help of artificial intelligence (AI) significantly helps
doctors.

Many individuals worldwide suffer from ocular diseases
which, if diagnosed early, could prevent disease progression

and result in lower costs for both them-
selves and healthcare organizations.
Extensive efforts have been made in this
regard, and sophisticated medical equip-
ment has been developed to provide clini-
cians with greater insights into patients’
ocular conditions, enabling more thorough
examinations and precise diagnoses of var-
ious diseases. With the advancement of
technology, medical imaging modalities
with high resolution and quality, AI, deep
learning, and machine vision have gar-
nered increased attention and they can
assist clinicians in early disease detection.

One of the challenges in the field of arti-
ficial intelligence in medicine is the scarcity
of data, primarily due to privacy concerns
that healthcare institutions generally do

not permit public access to. Data constitutes the most crucial
component of deep learning; the greater and higher the quality
of the training data, the more effectively the deep learning model
can extract features, learn, and accurately diagnose diseases. For
this challenge, most previous studies have employed transfer
learning and pre-trained models using ImageNet images or con-
ventional data augmentation techniques.[11] However, these
approaches have not effectively achieved high accuracy, indicat-
ing the need for either collecting more data or generating new
data from existing ones. Transfer learning can improve model
performance to some extent by utilizing knowledge gained from
general image datasets; however, medical data often presents
unique characteristics that differ significantly from common
visual data. Consequently, transfer learning alone is insufficient
for achieving optimal performance in complex medical tasks. To
overcome this challenge, effective data synthesis techniques are
essential to enrich the training data. By generating realistic var-
iations of existing data, synthesis methods can expand dataset
diversity, improve model generalization, and enhance the robust-
ness of deep learning models in medical imaging. Thus, data
synthesis strategies is crucial to mitigating the impact of data
scarcity in medical AI systems.

Another significant challenge in deep learning is that when
neural networks become deeper and have more layers to extract
better features, gradient vanishing may occur. This phenomenon
refers to the gradients becoming very small or even disappearing
entirely, preventing the weights of the early layers from being
updated, thereby hindering the learning process of the model.
this issue arises when gradients become extremely small during
backpropagation, preventing effective weight updates in earlier
layers. As a result, the network struggles to learn meaningful fea-
tures from the input data, ultimately limiting its performance.
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Various strategies have been proposed to address this challenge.
For instance, ResNet employs skip connections that allow gra-
dients to flow directly through the network, effectively mitigating
the vanishing gradient problem. Similarly, DenseNet introduces
dense connections, where each layer is connected to every other
layer in a feed-forward manner, promoting feature reuse and
further improving gradient flow. While these architectures have
demonstrated success in combating gradient vanishing, our
proposed model incorporates a modified weight-updating mech-
anism that efficiently combines elements of ResNet and
Inception blocks. This hybrid approach facilitates stable gradient
propagation while enhancing feature extraction capabilities, ulti-
mately improving model performance in complex medical image
analysis tasks.

As stated, deep learning faces challenges such as the shortage
of training data, gradient vanishing, large number of parameters,
long training time, and the need for appropriate hardware. In
this article, the two most important challenges have been
addressed, the first challenge is the shortage of training data,
especially in the field of ophthalmology, and the second challenge
is the gradient vanishing. The key contributions of this study are
as follows:

1.1. New Image Sample Generation

We propose an image processing method that expands the data-
set size up to 12 times, from 1920 to 23 040 images. This method
employs various image processing techniques such as noise
removal, thresholding, morphology, and weighted image fusion.
As a result, new images are generated from existing data, incor-
porating changes introduced by morphology on thresholded
images, and then fusion with the original images. The noise-
removal step enhances image quality by reducing artifacts and
improving feature visibility. Thresholding is then applied to seg-
ment important regions, followed by morphological operations
that refine the segmented regions by eliminating noise and
enhancing object boundaries. The resulting processed images
are subsequently fused with the original images using weighted
image fusion, which combines the complementary features of
both. This comprehensive approach not only increases the data-
set size but also introduces diverse variations in the data, improv-
ing the model’s robustness and generalization ability during
training. These synthesized images effectively simulate potential
changes observed in real-world retinal imaging scenarios. The
intuition behind the data generation process lies in the goal of
enhancing the diversity and robustness of the dataset through
a combination of thresholding and morphological operations.
From a single original image, the process begins by applying
thresholding under four different conditions. These four thresh-
olded images represent diverse segmentations of the original
data, each capturing different aspects of the structure and fea-
tures relevant to the model. After thresholding, the process
moves to the morphological operations stage, where more
sophisticated transformations are applied. Morphology is used
here to modify the geometric structure of the segmented regions,
altering the shapes and boundaries of the objects. These opera-
tions, such as dilation, erosion, opening, and closing, introduce

changes in the angles of lines, as well as the addition or removal
of certain points, refining the segmented structures. This stage
results in eight new images, where two thresholded images
without noise undergoes the morphological transformations to
produce enhanced visual patterns, varying the geometric proper-
ties of the segmented features. These modifications simulate
realistic changes that might occur in real-world imaging, such
as variations in the positioning or angles of anatomical features
due to factors like rotation or scaling.Thus, from a single original
image, the process generates 12 new images: four from the dif-
ferent thresholding conditions and eight from the morphological
transformations applied to the thresholded images. This combi-
nation of thresholding and morphological techniques enriches
the dataset by producing diverse variations, which in turn helps
improve the model’s ability to generalize, better capturing
the wide range of potential scenarios encountered in actual
applications.

1.2. Fast Update of Model Weights

We introduce a deep neural network where the initial layers
can swiftly update their weights. The model integrates two archi-
tectures: ResNet[12] with 3� 3 filters and Inception[13] with 5� 5
filters. The weights of Inception blocks are updated from ResNet
blocks in two stages, while the weights of ResNet blocks
are updated solely from the dense layers in one stage. This
weight-updating mechanism enhances the model’s training pro-
cess, thereby achieving more accurate disease detection. This
combined strategy leverages the strengths of both architectures,
enhancing the model’s capacity to learn complex patterns and
improving its robustness against overfitting. Consequently, this
hybrid weight-updating approach contributes to superior perfor-
mance in identifying subtle retinal abnormalities associated with
multiple diseases.

1.3. Conducting Extensive Experiments

Classification of eye diseases using the retinal fundus multi-
disease image database (RFMiD)[14] dataset is presented on
the Grand Challenge website.[15] The dataset is provided under
the Creative Commons Attribution 4.0 International (CC BY 4.0)
license. It offers a cash prize and competition to incentivize fur-
ther research in this domain, thus highlighting its importance.
The highest score recorded on this site so far is 88.5%, while the
score achieved with our proposed data generation model and
method is 93.63%, indicating a 5% improvement. This suggests
that both proposed contributions have significantly enhanced
accuracy and performance.

The rest of the article is organized as follows, Section 2 reviews
related works in this context. Section 3 describes the proposed
method for data generation using image processing techniques.
Section 4 presents the proposed deep learning model and
addresses the challenges along with solutions. Section 5 elabo-
rates on the experiments and results of the proposed methods
on the dataset with tables and graphs. Finally, the article is con-
cluded in Section 6.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 2401039 2401039 (2 of 19) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202401039 by T

est, W
iley O

nline L
ibrary on [28/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


2. Related Works

Existing research in this field can be divided into deep learning
and ensemble learning. Methods based on ensemble learning do
not normally face challenges with parameters and data. However,
generic deep learning methods face such challenges.

2.1. Ensemble Learning Methods

In ref. [16], ensemble learning and transfer learning methods
were used. Five different convolutional neural network (CNN)
architectures were trained to predict the presence of any pathol-
ogy and classify 28 different pathologies. These models were
trained with a modified form of binary cross-entropy to minimize
asymmetric loss. Different CNN architectures such as SE-
ResNeXt, DenseNet-121, Inception V3, EfficientNet-B4, and
EfficientNet-B5 were used for image classification. All networks
were set up with default pre-training in PyTorch on the ImageNet
dataset. In ref. [17], bagging is used to enhance the efficiency and
precision of machine-learning models, and binary logistic regres-
sion algorithms were employed. The deep learning architecture
used in the article includes a combination of pre-trained models,
transfer learning, and ensemble learning techniques to build a
robust model for the detection and classification of retinal
diseases. The models used in the architecture include
DenseNet201 and EfficientNetB4 for detectors, and ResNet152,
InceptionV3, and DenseNet201 for classifiers, all of which were
pre-trained on the ImageNet dataset. In ref. [18], ensemble learn-
ing techniques, deep learning models, and binary cross-entropy
are employed. Preprocessing and image augmentation techni-
ques, along with transfer learning using EfficientNetB4 and
EfficientNetV2S, are utilized. The authors combined all subsets
of the RFMiD data and increased the number of images from
3200 to over 10 000 using image augmentation techniques.
They experimented with various deep learning models such as
ResNet50, EfficientNetB0, DenseNet, and InceptionResNetV2,
ultimately selecting EfficientNetB4 as the best-performing model
for further experimentation. In ref. [19], ensemble learning to
combine the predictive capabilities of various deep convolutional
neural network models is used. The authors trained several mod-
els based on the architectures of DenseNet-201 and EfficientNet-
B4 for disease risk prediction, and architectures of ResNet152,
InceptionV3, DenseNet201, and EfficientNetB4 for disease label
classification. Ensemble learning strategies such as bagging and
stacking were employed, and multiple individual trainings were
conducted. Disease labels and risk prediction were trained using
transfer learning on ImageNet.[20] aims to present a framework
for the classification of multiple diseases. The framework con-
sists of three stages: preprocessing, disease risk detection, and
multi-disease classification. The preprocessing stage includes
methods such as data augmentation, oversampling, resizing,
and normalization. Disease risk detection can be accomplished
using two convolutional neural network (CNN) architectures:
DenseNet201 and EfficientNetB4. The multi-disease classifi-
cation stage uses a hybrid approach incorporating three
convolutional neural network architectures: DenseNet201,
EfficientNetB4, and ResNet105.

2.2. Generic Deep Learning Methods

In ref. [21], a multi-label CNN (ML-CNN) model is proposed for
diagnosing various ocular diseases (ODs) from color fundus
images. The suggested system comprises three main stages: pre-
processing, feature extraction, and multi-label classification (ML-
C), followed by prediction. In the preprocessing stage, image
resizing and data augmentation are applied to standardize the
images and balance the dataset. The ML-CNNmodel architecture
consists of three layers used to extract features and classify ocular
diseases. In ref. [22], “Saliency-Guided Anomaly Awareness”
(SatFormer) is a model with four stages. Each stage includes a
saliency enhancement module (SEM) and sequential
SatFormer blocks. The authors propose a SEM to extract more
prominent indications of lesions and increase the activation of
features related to small and dispersed areas of anomalies at each
stage. The suggested model contains innovative components like
the SEM and an anomaly-awareness attention mechanism, pro-
viding a more comprehensive understanding of diverse lesions
and their interdependencies, thereby achieving improved perfor-
mance in retinal disease classification. The greater part of the
suggested methods in the articles are techniques that have uti-
lized ensembling, transfer learning, stacking, and bagging.
The main reason behind this is the shortage of training data,
which significantly affects the model’s accuracy and perfor-
mance, preventing it from being well-trained and thereby achiev-
ing poor performance on test data. These techniques used in the
articles somewhat improve the accuracy of disease diagnosis.
However, to enhance the accuracy further, effective methods
for data synthesis are required.

Ensembling, stacking, and bagging involve combining multi-
ple models to enhance overall accuracy. While these techniques
can improve the accuracy of disease diagnosis to some extent,
they often do not fully compensate for the fundamental problem
of data scarcity. Generic deep learning methods often rely on
novel architectures or specialized techniques to achieve desired
outcomes, but they may struggle with the complexities of deep
learning, such as managing a large number of parameters,
ensuring stable training, and acquiring sufficient data to avoid
overfitting. To achieve a more significant enhancement in accu-
racy, effective data synthesis methods are needed. These meth-
ods can increase the variety and volume of training data, allowing
models to learn more diverse features and improve their gener-
alization capabilities. Thus, future works should focus on devel-
oping and refining data synthesis methods to complement
existing methods, ultimately improving the reliability and perfor-
mance of deep learning models in medical applications.

3. Proposed Method

3.1. Novel Data Generation

In deep learning, the scarcity of training data presents a signifi-
cant challenge, exerting a substantial impact on the model’s
learning process. Adequate examples are also essential for effec-
tively tuning the parameters of any deep learning model. A
model trained on limited data may experience overfitting. Bad
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training can result in diminished accuracy and performance as
the model cannot extract better features and patterns.

To address this issue for training of models, various methods
such as data augmentation, transfer learning, and the use of sim-
pler models are employed. Data augmentation is a widely used
approach to mitigate this issue. It is used to expand the dataset by
applying minor modifications such as rotation, shifting, scaling,
cropping, reflection, and adjustments to color and brightness, to
the training data (some examples provided in Figure 1). Although
these modifications introduce some diversity to the original
images, they may not sufficiently address the issue of limited
training data.

In this study, we present a novel data synthesis method using
image processing techniques that increases the number of train-
ing data up to 12 times. The image processing techniques used
for data synthesis include thresholding, noise removal, morphol-
ogy, and weighted image fusion. These are divided into four
main stages as shown in Figure 2.

As shown in Figure 2, the input image is first converted to
grayscale before applying thresholding in the initial stage.
Thresholding is purposed to generate a binary image. We employ
adaptive thresholding[23] where the threshold value is selected
according to the local features of image blocks and hence provide
a more accurate binary image.[24] It can be performed through
mean[25] or Gaussian[26] features. This process is often per-
formed both with and without noise removal, resulting in the
generation of four images from a single image. In our proposed
method, the two images that have undergone thresholding but
have not had noise removal applied are further processed using
weighted image fusion. This strategy is employed because, in the
morphological stage, noise may introduce artifacts that could be
mistaken for disease symptoms. The two remaining images,
which have undergone both thresholding and noise removal,

are then processed using morphological operations (to be
explained next). Figure 3 provides a graphical illustration of this
process.

Morphology[27] is another crucial technique in image process-
ing used to manipulate the shape and geometry of photos. These

Figure 1. Six example images a–f ) as a result of performing a random combination of operations including rotation, cropping, zooming, horizontal
rotation, and brightness to the original image.

Figure 2. Four main stages of the proposed data generation method.
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manipulations involve operations such as resizing, removing
specific points, and forming or enhancing edges. There are four
fundamental morphological operators: dilation, erosion, closing,
and opening. Dilation is utilized for geometric expansion, hole
filling, and connecting lines; erosion is employed for reducing
geometric size, eliminating noise, and enhancing edges; closing,
which involves dilation followed by erosion; and opening, which
involves erosion followed by dilation. For a visual representation
of the effects of these operators, the results of applying them to
two images from the previous step are shown in Figure 4 and 5,
resulting in a total of 8 new images. Combined with the previous
four images, a total of 12 new images are obtained per original
image in the dataset. Consequently, using the proposed method,
the amount of training data samples increases from 1920 to
23 040. The morphology operation generates a new image by
adding and removing points, lines, and edges, and altering
the geometric shape within the image. These four images are
then forwarded to the next stage, which is weighted image
fusion.

Considering that the original images are in color and consist
of three channels, utilizing these color channels can lead to better
feature extraction and pattern recognition. Therefore, the images
obtained from thresholding and morphology are fused with the
original images in a weighted manner,[28] as shown in Figure 6.
This enables the model to extract more effective features and be
well-trained. The key advantage of weighted image fusion is that
it allows for the preservation of critical features from the original

images while incorporating additional insights from the thresh-
olded and morphologically transformed images. By fusing these
various images, the resulting dataset provides a more compre-
hensive and nuanced representation of the underlying patterns.
The equation for our proposed weighted image fusion is
expressed as follows

Ifusedðx, yÞ ¼
Pn

i¼1 wi ⋅ Iiðx, yÞPn
i¼1 wi

(1)

Ifusedðx, yÞ: The intensity of the final pixel at position ðx, yÞ in
the fused image.

Iiðx, yÞ: The intensity of the pixel at position ðx, yÞ in the input
image i.

wi: The weight associated with the input image i.
n: The number of input images.
where Fðx, yÞ is the pixel value at position ðx, yÞ in the final

fused image, N represents the number of input images,
wkðx, yÞ shows the weight assigned to the pixel at position
ðx, yÞ in the k-th input image, and Ikðx, yÞ stands for the pixel
value at position ðx, yÞ in the k-th input image. Four thresholding
stage images and eight morphological stage images are fused
separately with the weighted original image, resulting in a total
of 12 generated images. In the final stage, which involves the
weighted image fusion, the final image quality may decrease,
and certain features might not be extracted and could be

Figure 3. Stage 2 of the proposed data generation process. a–c): Results without noise removal—(a) Global thresholding, (b) Adaptive mean thresh-
olding, (c) Adaptive Gaussian thresholding. d–f ): Corresponding results with noise removal—(d) Global, (e) Adaptive mean, (f ) Adaptive Gaussian
thresholding. The global thresholding, i.e., (a) and (d), are ultimately skipped and only four images are generated.
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overlooked during model training. Therefore, enhancing the
quality of the images in the final stage is necessary.

Image quality plays a pivotal role in feature and pattern extrac-
tion,[29] as higher-quality images generally lead to better feature
extraction. One method for enhancing image quality is adaptive
histogram equalization (AHE),[30] which locally smooths differ-
ent regions of the image. In this article, this technique is utilized
to enhance image quality and extract new features, as shown in
Figure 7.

By employing AHE, new sets of images are created, helping to
mitigate overfitting by extracting new features. In this article, two
distinct categories of data are generated: 1) The first category
comprises images derived from the earlier stage where thresh-
olded, morphologically processed, and original images are com-
bined through a weighted fusion technique. This fusion process
creates composite images with enhanced features and additional
variations, providing a broader range of training examples.
2) The second category consists of images from the last step
(weighted image fusion) for which AHE has been applied. By
increasing contrast and emphasizing local details, these images
offer new insights and help extract features that might not be
visible in the original data. This category brings in a different
form of data augmentation, enriching the dataset with higher
contrast and potentially revealing subtle patterns.

It is worth mentioning that, for training deep learning models,
one can use either category individually or a combination of both.

Using the first category (weighted image fusion) allows for a
diverse range of images with various features, while the second
category (weighted image fusion with AHE) provides enhanced
contrast and distinct details. Combining both categories can fur-
ther increase the variety in the training dataset, thereby achieving
more robust models that generalize better.

The choice of which category to use for training depends on
the specific application and the desired outcomes. If overfitting is
a concern, utilizing both categories can help create a more varied
dataset, reducing the chances of the model memorizing the train-
ing data. On the contrary, using a single category might be ben-
eficial if the goal is to focus on a specific type of feature extraction
or image enhancement technique. Overall, employing AHE and
weighted image fusion offers a flexible approach to augmenting
training data, providing deep learning models with a richer and
more diverse set of inputs. This approach can lead to improved
performance and accuracy, especially in applications where
detailed image analysis is required.

The AHE can be mathematically expressed as follows:
1) Histogram for each image block

HbðiÞ ¼
X

ðx, yÞ∈block
δðIðx, yÞ � iÞ (2)

where:
HbðiÞ: Histogram value for intensity level i in the block.
δ: Dirac delta function.

Figure 4. Morphological operations on the image that have been applied
Adaptive mean thresholding and noise removal.

Figure 5. Morphological operations on the image that have been applied
adaptive gaussian thresholding and noise removal.
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Iðx, yÞ: Intensity of the pixel at position ðx, yÞ.
2) Contrast enhancement

Hclipped
b ðiÞ ¼ minðHbðiÞ, ClipLimitÞ (3)

where:

Hclipped
b ðiÞ: Clipped histogram value for intensity level i.

ClipLimit: Threshold value to limit the histogram.
3) Cumulative distribution function (CDF)

CDFbðiÞ ¼
Xi

j¼0

Hclipped
b ðjÞ (4)

where:
CDFbðiÞ: Cumulative distribution function value for intensity

level i in the block.
4) Intensity mapping

I0ðx, yÞ ¼ Imin þ
CDFbðIðx, yÞÞ � CDFbðIminÞ
number of pixels in block

� ðImax � IminÞ

(5)

where:
I0ðx, yÞ: Enhanced intensity of the pixel at position ðx, yÞ.
Imin: Minimum intensity value in the image.

Imax: Maximum intensity value in the image.
number of pixels in block: Total number of pixels in the cur-

rent block (block size= 8� 8).
The pseudocode for all stages of the proposed data generation

method is provided in Algorithm 1.

3.2. Deep Learning Model

Although data synthesis is an essential step for the success of
deep learning models, most deep neural networks suffer from
a phenomenon known as “Vanishing Gradient”. It especially
occurs as the depth of the network increases, thus, presenting
a challenge to the training process. In deep neural networks,
the backpropagation algorithm[31] is commonly used to update
weights during training. This algorithm calculates gradients
by propagating errors from the output to the input layer.
However, as the gradients are propagated backwards through
multiple layers, they often diminish significantly, approaching
zero. This diminishing gradient problem can hinder weight
updates in earlier layers of the network, resulting in suboptimal
training or even causing the training process to stall.

To address this issue, a deep neural network called “VNet”,
derived from the term “Vanishing” is proposed here. As shown
in Figure 8, one side of this network (left) consists of blocks of
convolutional layers, while on the opposite side (right), there are

Figure 6. Stage 4: The weighted fusion of the adaptive mean thresholding and adaptive gaussian thresholding without noise removal with the original
image.
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dense layers that are connected in a star-shaped manner to all the
convolutional blocks. In what follows, the proposed model is
described in detail.

The side comprising convolutional layers utilizes two net-
works, namely “ResNet” and “Inception”. The Inception network
comprises three blocks, each containing two convolutional layers
with filter sizes of 5� 5 for feature extraction and 1� 1 for updat-
ing the previous layer and block. These Inception blocks are
designed to extract diverse features from the input data, with
the larger 5� 5 filters capturing broader patterns and the smaller
1� 1 filters providing efficient updating within each block. The
5� 5 filters are particularly useful for detecting high-level spatial
features, while the 1� 1 filters improve computational efficiency,
serve as dimensionality reducers, and effectively combine

information across channels. This combination of filter sizes
allows for more flexible feature extraction and helps prevent
information loss as the data moves through the network. The
structure and input/output Equation (7)–(10) of the block layers
are shown in Figure 9.

Layer (5� 5) of Inception with input X, Output a1

z1 ¼ Wx þ b (6)

a1 ¼ gðz1Þ (7)

Layer (1� 2) of Inception with input X, Output a2

z2 ¼ Wx þ b (8)

Figure 7. Implementation of global histogram and adaptive histogram on the original image.
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a2 ¼ gðz2Þ (9)

Output of Inception with inputs (a1,a2, Output O(x)

OðxÞ ¼ ða1Þ þ ða2Þ (10)

where g is activation function Relu, W is weight, and b is bias.
The first block in Figure 9 consists of 32 filters, the second

block has 64, and the third block has 128 filters, all of which
are connected to the blocks of the ResNet network. In addition,
to ensure that weights are updated from the shortest path to

prevent the occurrence of vanishing gradients, both networks
collaborate in feature extraction.

The ResNet network with 3� 3 filters consists of four blocks,
each of which can have two sub-blocks. The 3� 3 filters are par-
ticularly effective for detecting fine-grained textures, edges, and
detailed features within the images. Additionally, they contribute
to increasing the receptive field while maintaining efficient
parameter usage. The first block has 32 filters with one sub-block,
the second block has 64 filters with two sub-blocks, the third
block has 128 filters with two sub-blocks, and the fourth block
has 256 filters with one sub-block. The structure and input
and output Equation (12)–(16) of the block layers are shown
in Figure 10.

Layer 1 of ResNet with input X, Output a1

z1 ¼ Wx þ b (11)

a1 ¼ gðz1Þ (12)

Algorithm 1. Enhanced data generation for training deep learningmodels.

1: Step 1: Convert to Grayscale

2: Input: Original color image

3: Output: Grayscale image

4: gray image ¼ convert to grayscaleðoriginal imageÞ
5: Step 2: Adaptive thresholding

6: Input: Grayscale image

7: Operations:

8: Adaptive mean thresholding with and without noise removal

9: Adaptive gaussian thresholding with and without noise removal

10: Output: Four thresholded images

11: thresholded mean noise ¼ adaptive mean thresholding
ðgray image, noise removal ¼ TrueÞ

12: thresholded mean no noise ¼ adaptive mean thresholding
ðgray image, noise removal ¼ FalseÞ

13: thresholded gaussian noise ¼ adaptive gaussian thresholding
ðgray image, noise removal ¼ TrueÞ

14: thresholded gaussian no noise ¼ adaptive gaussian thresholding
ðgray image, noise removal ¼ FalseÞ

15: Step 3: Morphological Operations

16: Input: Thresholded images with noise removal

17: Operations: Dilation, Erosion, Closing, Opening

18: Output: Eight new images per thresholded image

19: dilated image ¼ dilationðthresholded imageÞ
20: eroded image ¼ erosionðthresholded imageÞ
21: closed image ¼ closingðthresholded imageÞ
22: opened image ¼ openingðthresholded imageÞ
23: Element size: A 5� 5 square with all values equal to one.

24: Step 4: Weighted Image Fusion and Quality Enhancement

25: Input: Thresholded and Morphologically Processed Images

26: Operations:

27: Weighted fusion of images with the original image

28: Image quality enhancement with Adaptive Histogram Equalization

29: Output: Final enhanced images

30: f used image ¼ weighted image fusion
ð½original image, thresholded image,morphed image�, weightsÞ

31: enhanced image ¼ adaptive histogram equalizationðf used imageÞ
32: End of Algorithm

Figure 8. a) The general structure of the proposed model and
b) visualization of the deep learning architecture.

Figure 9. Blocks of inception network in the proposed model.
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Layer 2 of ResNet with input layer 1(a1), Output a2

z2 ¼ Wa1 þ b (13)

a2 ¼ gðz2Þ (14)

Layer 3 of ResNet with input (layer 2(a2),Y), Output a3

z3 ¼ Wa2 þ b (15)

a3 ¼ gðz3 þ YÞ (16)

Each sub-block of the ResNet network contains three convolu-
tional layers, and each block has two outputs: one output is
directed to the next Inception block to utilize features extracted
by the 5� 5 filters and also to facilitate rapid weight updates.

The second output is linked to a global average pooling layer,
which in turn connects to all dense layers on the opposite side to
ensure optimal, faster, and more efficient weight updates. In this
approach, even the weights of the first convolutional layer can be
updated from the last dense layer or other layers, thereby
addressing the challenge of the vanishing gradient problem.
As shown in Figure 11 and 12, the shapes of filters and feature
maps in the third block of ResNet and the third block of inception
vary, thereby achieving the extraction of distinct features.

In a model that uses two different networks with 3� 3 and
5� 5 filters, the filter values and their weights change when
applied to the layers, which causes different feature maps to
be created, resulting in diversity. In Figure 13, one can see
the Grad-CAM[32] images for several sample images from the
training dataset, where part (c), that is, the heat map, shows
which regions of the image contributed most to disease predic-
tion. In addition to the blood vessels, other regions such as dam-
aged spots, areas with color or texture variations, and regions
with abnormal features indicative of ocular diseases are also
highlighted in the Grad-CAM images. This can enhance the
understanding of the model’s decision-making process and help
identify critical features for disease diagnosis.

Figure 10. Sub-blocks of ResNet network in the proposed model that each
block can have one or two sub-blocks.

Figure 11. The shapes of the filters in block three of the proposed model: a) filter 3� 3 of ResNet, b) filter 5� 5 of inception.
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As a result of feature maps and filter shapes in the network,
the model is better trained and makes more accurate decisions.
Employing diverse networks and combining them with different
filters allows for various features to be extracted, facilitating
improved training of the model and enhancing its accuracy
and efficiency. Simultaneous utilization of both inception and
ResNet networks with varying 3� 3 and 5� 5 filters enables
the extraction of diverse and varied features, thus helping to pre-
vent overfitting and effective network training. The network con-
sists of 28 convolutional layers, seven blocks, and five dense
layers, totalling approximately three million parameters. The
learning rate was initially set to 0.001 and adjusted dynamically
during training. If the loss reduction over two consecutive epochs
was less than 0.004, the learning rate decreased by 30%; addition-
ally, it spiked to ten times its current value at predefined epochs.
In this network, ReLU,[33] Batch Normalization,[34] and
Dropout[35] are used in all blocks. In each convolutional block,
a dropout rate of 0.25 was applied, while a dropout rate of 0.5
was used after each dense layer. The model was implemented,
trained, and tested on a Dell laptop equipped with 16 GB of
RAM, an NVIDIA RTX 3060 GPU with 6 GB of memory, and
an 11th-generation 7-core CPU.

In machine learning, particularly in deep learning, handling
imbalanced data poses a significant challenge.[36] Imbalanced
data occurs when there is a substantial disparity in the number
of samples across different classes. This imbalance can lead to
several issues, such as improper parameter adjustment, reduced
accuracy, bias toward the majority class, and potential overfitting.
When training data includes unequal samples for each class, the
model may overfit to the majority class and underperform on the
minority class, thereby compromising overall performance.
Various methods have been suggested to address this issue,
including adding samples to underrepresented classes or
removing samples from overrepresented classes. However, these

approaches may not be very effective, especially when the overall
training data is limited. In this article, weighted binary cross
entropy[37,38] is considered as a solution to this problem

Lw ¼ �E½w1 ⋅ yt ⋅ logðypÞ þ w0 ⋅ ð1� ytÞ ⋅ logð1� ypÞ� (17)

where E represents the expectation or the average, w1 is the
weight for the positive class (class 1), w0 is the weight for the
negative class (class 0), yt is the true label, which can be either
0 or 1, and yp is the predicted probability for the positive class
(class 1).

Equation (17) resembles the standard binary loss function, but
with the distinction that it assigns varying weights to classes
depending on the number of training samples they contain.
This adjustment aims to mitigate the possibility of overfitting
the training data. By applying this method, the model can better
handle situations characterized by small and imbalanced training
datasets, thereby enhancing both accuracy and efficiency. The
pseudocode for deep learning model (VNet) is provided as a
reference in Algorithm 2.

4. Experimental Results

4.1. Database

The RFMiD is a new public dataset designed to facilitate research
in eye disease diagnosis and identification using retinal fundus
images. The RFMiD dataset is available on the Grand Challenge
platform, which serves as a dedicated space for medical imaging
challenges and dataset sharing. This platform was utilized solely
for accessing the dataset; no additional tools or benchmarking
features from the platform were employed in this study. The
RFMiD is unique in its composition, containing 3200 retinal fun-
dus images taken with three different fundus cameras and

Figure 12. The shapes of the feature maps in block 3 of the proposed model: a) feature maps of ResNet, b) feature maps of inception.
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annotated for 46 different conditions, including both common
and rare diseases. The dataset is divided into three sections: train-
ing, validation, and testing, which make up 60%, 20%, and 20%
of the images, respectively. This dataset comprises a diverse array
of retinal fundus images annotated for 46 different conditions,
offering a wide range of diseases commonly observed in clinical
settings. The images in this dataset were reviewed and validated
by a project team lead. Each condition is described in detail,
including its visual features and clinical significance. The model
used for testing has been trained and tested exclusively on this
dataset.

4.2. Evaluation Metrics

AUC is a common metric for evaluating multi-label classification
models, where a higher AUC indicates better performance. The

ROC curve shows the relationship between the false positive
rate (FPR) and true positive rate (TPR); a curve closer to the
upper-left corner signifies improved model performance. The
PR (precision-recall) metric is useful for imbalanced datasets,
measuring the trade-off between precision and recall. Higher
PR curves indicate better performance. Accuracy is a straight-
forward measure that represents the proportion of correct pre-
dictions. High accuracy may indicate a good model, but in
unbalanced data conditions, it may be misleading because
the model may have high accuracy by focusing on the dominant
class without performing well in predicting the minority class.
This metric is not appropriate for this dataset. The accuracy
metric in imbalanced data does not correctly reflect the model’s
performance because it simply measures the number of correct
predictions relative to the total predictions. When the data is
imbalanced, meaning the number of samples in one or more

Figure 13. Grad-CAM images for several samples from the training dataset. a) original image, b) feature map, and c) heat map.
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classes is much higher than in other classes, accuracy can be
misleading.

4.3. Results

In RFMiD dataset, the quantity of training samples for each class
is severely low and imbalanced. The proposed method in
Section 3.1 is used to mitigate this issue. Furthermore, the pro-
posed VNet model in Section 3.2 is applied to address the van-
ishing gradient problem. The training process was conducted in
two rounds: 1) The model was initially trained using the data
from the first category, where local histogram equalizer was
not applied. This initial training round lasted for 150 epochs,
allowing the model to learn from a diverse range of generated
samples. This step focuses on establishing a baseline and allow-
ing the model to capture essential features from the augmented
data. 2) After the first round, the model’s weights were retained,
and the same model was trained again with data from the second
category, where the AHE was applied. This round also lasted for

150 epochs. The use of an AHE in the second category enhances
image contrast and helps extract new features, providing addi-
tional learning opportunities for the model.

This two-round training approach serves several purposes:
Data Augmentation: By training initially with data from the

first category, the model gains exposure to a broader set of train-
ing samples, reducing the risk of overfitting and allowing it to
generalize better.

Gradient Stability: The proposed model’s architecture is
designed to address the vanishing gradient problem, ensuring
that gradient flow is maintained throughout the training process.
This stability is crucial for deep learning models, especially when
dealing with imbalanced and low-sample datasets.

Feature Refinement: The second round of training with AHE
provides an opportunity for further refinement. The improved
contrast helps the model learn from additional features that
might not have been evident in the first round, contributing
to better accuracy and robustness. By following this training
strategy, the proposed method and model work together to over-
come the challenges of data scarcity, imbalance, and vanishing
gradients, resulting in a more reliable and accurate deep learning
model.

The model was trained for three different types of classifica-
tion, each with varying complexity and number of classes. Here’s
a detailed explanation of each type, along with the corresponding
AUC metrics for the training, validation, and test datasets:

Binary classification: Disease or Not Disease, meaning two
classes. This represents the initial stage of the proposed system,
as seen in Figure 14, in the article, where the AUC metric was
99.98 on the training and validation dataset and 96.34 on the test
dataset.

Training on 27 classes plus an additional “other” class, as
shown in Table 1, totalling 28 classes. This corresponds to the
second stage of the proposed system, where the AUC metric
was 99.96 on the training and validation dataset and 95.44 on
the test dataset.

Training on 45 classes. In this stage, the proposed system
achieved an AUC metric of 99.87 on the training and validation
dataset and 94.53 on the test dataset.

Algorithm 2. Deep learning model (VNet).

Input: Deep neural network structure

Output: Deep learning model

1) Addressing Vanishing Gradient Problem

• Use Backpropagation to update weights during training.

• Identify gradient diminishment through multiple layers, which can stall
training.

• Introduce VNet architecture to mitigate vanishing gradient issues.

2) Design VNet Structure

• Left side: Convolutional layers for feature extraction.

– Use “Inception” and “ResNet” networks.

– Inception: Apply 5� 5 filters for broader patterns, 1� 1 for updates.

– ResNet: Apply 3� 3 filters across 4 blocks to enhance feature diversity.

• Right side: Dense layers connected to convolutional blocks to ensure
efficient weight updates.

3) Inception Block Configuration

• Block 1: 32 filters; Block 2: 64 filters; Block 3: 128 filters.

• Capture varied features, preserving information through 5� 5 and 1� 1
filters.

4) ResNet Block Configuration

• Block 1: 32 filters with one sub-block; Block 2: 64 filters with two
sub-blocks; Block 3: 128 filters with two sub-blocks; Block 4: 256 filters
with one sub-block.

• Propagate features to next inception block and global average pooling
layer to optimize updates.

• Global average pooling layer connects to all dense layers

5) Imbalanced Data Handling

• Apply weighted binary cross entropy loss to balance class representation:

Lw ¼ �E½w1 ⋅ yt ⋅ logðypÞ þ w0 ⋅ ð1� ytÞ ⋅ logð1� ypÞ�
• Adjust weights based on class frequency to enhance model performance
on small and imbalanced datasets.

Output: deep learning model

Figure 14. The framework of the proposed system.
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To validate the effectiveness of the proposed data generation
method, we conducted an experiment where we trained the pro-
posed model twice. The first training session involved using the
original dataset for both training and testing. In the second ses-
sion, we utilized the data generated by the proposed data gener-
ation method for both training and testing. The goal was to
compare the model’s performance between these two conditions.
The training procedure for each scenario was as follows:

First training session (original data): The model was trained
for 30 epochs using the original dataset for both training and
testing. This provided a baseline for evaluating the model’s per-
formance without additional data augmentation.

Second training session (generated data): The model was
trained again for 30 epochs, but this time using the data gener-
ated by the proposed data generation method for both training
and testing. This allowed us to assess the impact of the data syn-
thesis techniques on the model’s performance.

As shown in Figure 15 and 16, the data generated by the pro-
posed method demonstrates significantly better performance in
terms of error rate, accuracy, and AUC score on the test set com-
pared to the original data. Specifically, in terms of AUC score, the
proposed data generation method shows a 13% improvement
over the original data when tested on the model after the initial
30 epochs. Overall, these results highlight the effectiveness of the
proposed data generation method in improving the model’s per-
formance across various metrics. The increased AUC score,
lower error rate, and higher accuracy demonstrate the benefits
of using data synthesis techniques to overcome data scarcity
and enhance deep learning model training.

The training of the proposed model in all three classification
types did not result in overfitting due to the larger amount of
data. Additionally, the network architecture prevented vanishing
gradients, thereby achieving improved model performance.
The AUC curves for the 28 classes are depicted in Figure 17,
offer a comprehensive view of the model’s effectiveness in

distinguishing between classes, demonstrating its robustness
and reliability in handling complex classification tasks.

In Figure 18, one can observe the weighted image fusion after
morphological operations on a training sample without adaptive
histogram equalization, while the application of adaptive histo-
gram equalization is provided in Figure 19. These images repre-
sent different stages in the data generation and synthesis
pipeline, contributing to a more diverse and robust training data-
set for deep learning models. Adaptive histogram equalization is
known for enhancing image contrast by adjusting the distribu-
tion of pixel intensities across smaller sections of the image. This
technique improves the quality of the generated images, allowing
the deep learning model to extract a wider range of features and
patterns, ultimately thereby achieving improved performance.

Finally, when we trained the proposed model on 28 classes
using the original training dataset, we acquired an AUC value
of 85.17 on the test set. However, when the proposed model
was trained with the same classification on our proposed gener-
ated dataset, we achieved an AUC of 95.44 on the test set, indicat-
ing an improvement of�10%. The proposed model did not suffer
from overfitting during training due to the larger amount of data.

After successfully training the model with data generated using
the proposed method, we applied 5-fold cross-validation on the
model using the original data. Table 2 presents the results for
the detector (Disease, Not Disease) and the classifier (28 classes,

Table 1. The second type consisted of 27 classes plus an additional
“other” class. For the full list of abbreviations, please refer to Appendix.

k Disease k Disease

1 DR 15 ARMD

2 MH 16 DN

3 MYA 17 BRVO

4 TSLN 18 ERM

5 LS 19 MS

6 CSR 20 ODC

7 TV 21 CRVO

8 AH 22 ODP

9 ODE 23 ST

10 AION 24 PT

11 RT 25 RS

12 CRS 26 EDN

13 RPEC 27 MHL

14 RP 28 OTHER

Figure 15. The result of original data for 30 epochs on the model. a) ROC
and PR values during training, b) accuracy and error values during training.
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as shown in Table 4C). According to Table 3, the proposed model
outperforms other architectures based on the AUC metric.

The proposedmodel, along with the generated data, achieved a
score of 93.5% (Average of 2 classes (disease or non-disease) and

28 classes) on the test data, improving the score recorded on the
Grand Challenge website[15] by 5%, from 88.5% to 93.5%, as
shown in Figure 20. This significant improvement highlights
the crucial role of training data quantity in the model’s training
and accuracy. Regardless of how well a model is designed or how
advanced transfer learning networks are, if the training data is
insufficient, the accuracy will be suboptimal, and parameter
adjustment will be challenging.

As seen in Table 4 and 5, ensembling and transfer learning
models have high learning parameters, and they are trained on
other datasets with only a few final layers trained on a limited
amount of new data. There is no guarantee that they will learn
the new data well or that the parameters will be properly adjusted.
They may even overfit, especially if the data is imbalanced. On the
contrary, if the model has appropriate parameters and sufficient
data, it is possible to set themodel’s parameters effectively, thereby
achieving good learning and accurate classification. The proposed
model, with significantly fewer parameters compared to ensem-
bling and transfer learning models, and trained with the data gen-
erated using the suggested method, achieved acceptable
performance. It reduced both training and testing times and
required less hardware. The proposed data generation method
greatly contributed tomodel building, allowing for clear evaluation
and correction of model performance as parameter and layer
changes were made. Increasing the training data allows for more
features to be extracted, improving the model’s accuracy.

According to the presented findings, the DenseNet-201 model
has demonstrated remarkable performance in disease classifica-
tion across several studies, often achieving results comparable to
ensemble models. Specifically, in Table 3 and 5, DenseNet-201
performed nearly as well as the ensemble model in disease clas-
sification. Furthermore, in Table 4, DenseNet-201 outperformed
other models, including EfficientNet-B4 and ResNet-152, in clas-
sification tasks. These results highlight the effectiveness of
DenseNet’s densely connected architecture in improving infor-
mation and gradient flow within deep networks.

Despite the positive results reported in previous studies, our
proposed model achieved superior performance compared to
DenseNet-201 and other state-of-the-art models. Notably, our
model achieved the highest AUROC in disease classification
(0.9752) and disease detection (0.9893). This improved perfor-
mance is particularly significant given that our proposed model
contains only three million parameters, substantially fewer than
DenseNet-201’s 20.2 million parameters. These results indicate
that our model effectively extracts meaningful features for both
classification and detection tasks through an optimized design
with reduced computational complexity.

A key factor contributing to the enhanced performance of our
proposed model was the use of image processing techniques in
the data synthesis process. This synthesis strategy improved the
model’s robustness when exposed to diverse and challenging
data variations. Moreover, data augmentation played a critical
role in mitigating overfitting and improving parameter tuning,
ultimately enhancing the model’s overall performance.

In addressing the vanishing gradient problem, DenseNet’s
architecture effectively mitigates this issue by introducing direct
connections between input and output layers, facilitating
improved gradient flow. This method enhances training stability.
In contrast, ResNet adopts skip connections to tackle the

Figure 16. The results of the proposed data generation method for 30
epochs on the model. a) ROC and PR values during training,
b) accuracy and error values during training.

Figure 17. ROC curves for a multi-class classification with 28 classes,
which involves creating a average ROC curve for all classes, considering
each class as the positive class and the rest as the negative class.
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Figure 18. Weighted image fusion after morphological operations on a training sample without adaptive histogram equalization.

Figure 19. Weighted image fusion after morphological operations on a training sample with the application of adaptive histogram equalization.
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vanishing gradient problem. While ResNet-152 has demon-
strated reasonable performance in some studies, the results from
our study and previous research indicate that DenseNet-201 out-
performs ResNet-152 in both disease detection and classification
tasks. This observation suggests that DenseNet’s dense connec-
tions may offer superior gradient propagation and feature learn-
ing capabilities compared to ResNet’s skip connections.

This study emphasize that our proposed model, through its
optimized architecture, effective utilization of image processing
techniques for data augmentation, and improved parameter
tuning, achieved superior performance while maintaining signif-
icantly fewer parameters than competingmodels. This highlights
the importance of model structure optimization, appropriate
image processing strategies, and data synthesis in enhancing
the accuracy and stability of deep networks.

In this study, we proposed a data generation method that sig-
nificantly enhances the training dataset by using image processing
techniques. This approach increases the dataset size by 12 times
through methods such as noise removal, thresholding, morpho-
logical operations, and weighted image fusion. To provide a com-
prehensive understanding, it is beneficial to compare this method
with generative adversarial networks (GANs),[39] which are also
widely used for data synthesis. One of the limitations of this study
is the ability to generate a limited number of data. It is suggested
that future research explore other image processing techniques,
such as segmentation using different methods, to generate more
data and further enhance model performance.

Table 2. Result from 5-fold CV on the proposed model with original data.

k Loss-
classification (28)

Loss- detection Classification (28) AUC Detection AUC

1 0.0216 0.1936 0.9778 0.9849

2 0.0228 0.2263 0.9760 0.9843

3 0.0218 0.2058 0.9765 0.9913

4 0.02304 0.1186 0.9733 0.9962

5 0.0236 0.1880 0.9722 0.9895

Table 3. Performance comparison of the proposed model with other
architectures based on the AUC metric.[17]

Model Architecture AUROC

Classification DenseNet-201 0.9715

Classification EfficientNet-B4 0.9666

Classification ResNet-152 0.9697

Classification Inception-V3 0.9215

Classification Proposed model 0.9752

Detection DenseNet-201 0.9685

Detection EfficientNet-B4 0.9822

Detection Proposed model 0.9893

Figure 20. Final challenge results. Score recorded on the Grand Challenge website.[15]

Table 4. AUROC scores for disease detection and classification.[16]

k Model Disease
Detection AUROC

Disease
Classification AUROC

1 Inception V3 0.9569 0.9091

2 SE-ResNeXt 0.9587 0.9066

3 DenseNet-121 0.9519 0.9298

4 EfficientNet-B4 0.9477 0.9030

5 EfficientNet-B5 0.9540 0.9163

6 Ensemble 0.9613 0.9295

7 Proposed model 0.9634 0.9452
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Python Codes are available in binary classes,[40] 28 classes,[41] 45
classes,[42] and Image processing.[43] These Python code repositories
offer a practical resource for researchers and developers interested
in implementing the proposed system or exploring its underlying
concepts. By providing code for different types of classification, the
system demonstrates its versatility in handling various scenarios,
from simple binary tasks to complex multi-class problems.

5. Conclusion

In this study, we addressed data scarcity and gradient vanishing
in deep learning for eye disease diagnosis. To combat data scar-
city, we used image processing techniques for data augmenta-
tion, increasing samples twelvefold, which enhanced model
performance and reduced overfitting. To prevent gradient van-
ishing, we employed ResNet and inception networks, optimizing
weight updates for improved performance. Our method, com-
pared to several transfer learning techniques, offers simplicity,
computational efficiency, and precise control over image quality,
making it suitable for resource-constrained environments. The
study highlights the importance of data synthesis and neural net-
work optimization in developing accurate models for early eye
disease detection, suggesting further research into these areas
for improved diagnostics in medical applications.
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Table 5. Parameters and AUC score in the articles.[18]

k Authors Model Total param AUC

1 Dominik Muller[19] ResNet152 60.4 M 0.9700

InceptionV3 23.9 M 0.9320

DenseNet201 20.2 M 0.9730

EfficientNetB4 19.5 M 0.9690

Ensemble – 0.9610

2 Amogh Jayant Dabholkar[17] ResNet152 60.4 M 0.9697

InceptionV3 23.9 M 0.9215

DenseNet201 20.2 M 0.9715

EfficientNetB4 19.5 M 0.9666

Ensemble – 0.9573

3 E. Sudheer Kumar[20] Densenet201 20.2 M 0.9700

EfficientNetB4 19.5 M 0.9600

ResNet150 58 M 0.9700

4 Young-tack Oh[44] EfficientNetB0 5.3 M –

EfficientNetB1 7.9 M –

EfficientNetB2 9.2 M –

5 Omar Salman[18] EfficientNetB4 variant 1 19.5 M 0.9491

EfficientNetB4 variant 2 19.5 M 0.9631

EfficientNetB4-V1V2 39 M 0.9644

EfficientNetV2S variant 2 21.6 M 0.9417

EfficientNetV2S variant 2 21.6 M 0.9585

EfficientNetV2S-V1V2 43.2 M 0.9545

FinalEnsemble 107 M 0.9730

6 – Proposed model 3 M 0.9752

Table A1. Abbreviations and their definitions.

Abbreviation Definition

DR Diabetic Retinopathy

MH Macular Hole

MYA Myopic Atrophy

TSLN Tessellated Fundus

LS Laser Spots

CSR Central Serous Retinopathy

TV Toxoplasmosis

AH Arterial Hypertension

ODE Optic Disc Edema

AION Anterior Ischemic Optic Neuropathy

RT Retinal Tear

CRS Central Retinal Artery Occlusion

RPEC Retinal Pigment Epithelium Changes

RP Retinitis Pigmentosa

ARMD Age-Related Macular Degeneration

DN Diabetic Neuropathy

BRVO Branch Retinal Vein Occlusion

ERM Epiretinal Membrane

MS Macular Scar

ODC Optic Disc Coloboma

CRVO Central Retinal Vein Occlusion

ODP Optic Disc Pit

ST Stargardt Disease

PT Papilledema

RS Retinal Scar

EDN Endophthalmitis

MHL Macular Hole Large

OTHER Other Conditions
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