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Static Risk Measures in a Frequency-Severity Framework with
Systematic Risk: Application in Reinsurance

Hirbod Assa
University of Essex, Colchester, United Kingdom

This article presents the concept of static risk measures as an approach to assessing risk by focusing on loss severity within a
frequency-severity framework that encompasses systematic and common shocks. This article will discuss a set of important prop-
erties of static risk measures and compare them with the ruin-based risk measures. It will also give a robust representation of
static risk measures and discuss the implications of such representation to designing optimal reinsurance contracts. By introducing
a flexible framework, the model accommodates additional elements such as systematic and common shocks, enhancing its applic-
ability in the field of reinsurance.

1. INTRODUCTION
This article introduces and studies static risk measures, based on an underlying risk measure, in a frequency-severity frame-

work where the systematic and common shock are part of the setting. A static risk measure is a function of the loss severity,
and the frequency and common shock are assumed to be the same. More precisely, for a fixed frequency and common shock
model and an underlying risk measure, a static risk measure associates with a loss severity the value of the underlying risk
measure on the aggregate losses. It will be seen that though a static risk measure can inherit many of the properties of the
underlying risk measure, such as positive homogeneity, monotonicity, subadditivity, boundedness, and preserving second-order
stochastic dominance (SSD), it cannot inherit some others such as co-monotonic additivity or cash invariance. Static risk meas-
ures can be appealing to actuaries because they fill an important gap in the literature dealing with optimal contracts for the
individual rather than the aggregate losses including systematic and common shocks. For instance, in the case of car insurance,
the setup can be used for optimal reinsurance design when the reinsurance contract is agreed up front for losses due to each
single accident within a year rather than the aggregate losses until the end of the year. This setup also allows for systematic
and common shock events such as years with bad weather conditions, which would increase the number and severity of car
accidents. The benefit of this approach is to convert a dynamic problem to a static one. The robust representation of static risk
measures is also obtained. Finally, the framework is used for reinsurance application. The differences of the optimal reinsur-
ance contracts on aggregate versus individual loss severity are discussed, as well as examples with systematic and common
shocks.

The most similar approach to static risk measures in the literature is the ruin-based risk measures because they are also con-
sidered in the risk processes; that is, a dynamic frequency-severity framework. First, Trufin, Albrecht, and Denuit (2011) intro-
duced and studied a Value at Risk (VaR)-based risk measure. They studied the major properties of a risk measure, including
the stochastic dominance, in their paper. Then Cosette and Marceau (2013) used the idea of risk measures in a risk theory con-
text to examine the capital assessment for an insurance portfolio by VaR and tail VaR (TVaR). W€uthrich (2015) discussed
ruin-based risk measures by modifying the classical Cram�er–Lundberg ruin theory with regards to solvency issues. Cossette
et al. (2020) studied properties of ruin-based risk measures defined within discrete-time risk models and used them for
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insurance applications. Though the reason behind the introduction of ruin-based risk measures is to present a risk measure the-
ory perspective of ruin theory, this article follows a different view, directly based on risk measure theory; that is, the accept-
ability of the risk. More details will be discussed later.

In addition to ruin-based risk measures, note that the type of risk measures discussed in this article can be related to the
dynamic setups. These types of risk measures have also been widely studied; for example, see the early work of Cheridito,
Delbaen, and Kupper (2004). Cheridito, Delbaen, and Kupper (2005) introduced risk measures on general random processes,
and Assa (2011) extended those risk measures to introduce and identify the Lebesgue property on the space of general random
processes.

Systematic and common shocks are other important subjects that are covered by static risk measures that recently have
become important topics in the actuarial research particularly after COVID-19 and other global natural disasters. Milevsky,
Promislow, and Young (2006) studied systematic risk in a mortality problem while the law of large number breaks. They con-
sidered model uncertainty in a problem when the parameters of the loss variables are random. Dahl and Moller (2006) and
Dahl, Melchior, and Moller (2008) considered evaluating and hedging life insurance contracts that are subject to systematic
mortality risk. Deelstra et al. (2020) and Linders (2021) considered valuation methods that value not only the financial and
actuarial risks but also the systematic risk that is neither hedgeable nor diversifiable. Bassamboo, Juneja, and Zeevi (2008) and
Tang, Tang, and Yang (2019) studied a particular model that includes systematic risk and integrates it with the concept of com-
mon shock. In finance, systematic risk is discussed in the financial markets. For instance, in the capital asset pricing model,
systematic risk was formulated and studied more profoundly; see, for example, Choo and deJong (2009, 2016). In Assa and
Boonen (2022), it is shown that in a common shock framework pooling is beneficial, with the assumption that the losses have
the same distribution.

As mentioned earlier, a particularly interesting application of static risk measures is in the design of optimal reinsurance.
The literature on optimal reinsurance design is rather large and starts with seminal papers Borch (1960a), Borch (1960b), and
Borch (1962), that argue why layer policies, such as stop-loss and excess-of-loss policies, are optimal in an economic setup,
using utility functions. However, this study focused on reinsurance design using risk measures. Kaluszka and Okolewski
(2008) extended Arrow’s result on optimal reinsurances, Balb�as, Balb�as, and Heras (2009) studied an optimal reinsurance with
general risk measures, Bernard and Tian (2009) studied optimal reinsurance under tail risk measures, Boonen (2016) consid-
ered reinsurance with heterogeneous reference probabilities, and Han, Liang, and Zhang (2019) considered reinsurance in a
setup where there is a common shock. In this article, a standard formulation of reinsurance problems known as marginal
indemnity functions (MIFs) is employed, as introduced by Assa (2015). Assa (2015) provided an economic interpretation of
admissible reinsurance contracts in terms of MIF and characterized the optimal reinsurance problem from the perspectives of
the ceding entity, reinsurer, and social planner. The use of MIF has become a standard technique, as demonstrated by studies
such as Zhuang et al. (2016) and Boonen (2022). For a more in-depth exploration of reinsurance applications, the reader is
referred to Albrecher, Beirlant, and Teugels (2017).

The rest of the article is organized as follows: Section 2 introduces the necessary notions and notations. In Section 3, a fre-
quency-severity risk model for the business and static risk measure is introduced. In Section 4, the optimal reinsurance for
individual and aggregate risk in the general case is characterized. Section 5 presents the conclusion. Proofs are included in the
Appendix.

2. PRELIMINARIES AND NOTATION
Let ðX,F ,PÞ be a standard and non-atomic probability space, where X represents the “states of nature,” F is a r-field of

measurable sets, and P is the physical probability measure. Let p, q 2 1,1½ � be two numbers such that 1=pþ 1=q ¼ 1: For

p 2 1,1Þ,½ Lp denotes the space of real-valued random variables X, on X, such that kXkp ¼ EðjXjpÞ1p < 1, where E repre-

sents the mathematical expectation. The space L1 consists of all P almost surely bounded random variables; that is, L1 ¼
X 2 L1j9M > 0,PðjXj < MÞ ¼ 1
� �

: The space Lpþ consists of those members of Lp that are P almost surely nonnegative.
In addition to a general non-atomic probability space ðX,F ,PÞ, considered in this article, we will be working with

Lebesgue measurable functions on Rþ: In particular, denote the space of all nonnegative Lebesgue integrable functions on Rþ
by L1ðRþÞþ: Usually, the notation f, g and h is used to denote measurable functions on Rþ:

Consider that Lpþ represents the space of all individual loss variables.1 The cumulative distribution function of a random
variable X 2 Lp, is denoted by FX: There are two random variables X,X0 2 Lp, with the same distribution with X � X0:

1Unlike the finance literature, which considers a profit variable, the loss variable was found to be more convenient to deal with.
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For any random variable X 2 Lp, the left inverse of the cumulative distribution function FX , denoted by F−1
X ðaÞ, is defined as

follows:

F−1
X ðaÞ ¼ inf x 2 RjPðX > xÞ � 1 − a

� �
:

Here the VaR on Lp as VaRaðXÞ ¼ F−1
X ðaÞ is introduced. To be consistent with the literature on risk theory, most of the

time VaRaðXÞ is used instead of F−1
X ðaÞ (but not always).

Finally, X is SSD over Y if and only if
Ð x
−1 FYðtÞdt �

Ð x
−1 FXðtÞdt for all x, with strict inequality at some x. This is equiva-

lent to Eð/ðYÞÞ � Eð/ðXÞÞ, for all concave and nondecreasing functions /, see Dana (2005).

2.1. Risk Measures
Consider a mapping . : Lp ! R: . can have one or a few conditions from the following list.

1. Positive homogeneity of degree one, 8X 2 Lp,8a > 0, .ðaXÞ ¼ a.ðXÞ:
2. Cash invariance, 8X 2 Lp,8c 2 R, .ðX þ cÞ ¼ .ðXÞ þ c:
3. Monotonicity, 8X, Y 2 Lp, if X � Y, a:s:, .ðXÞ � .ðYÞ:
4. Subadditivity, 8X, Y 2 Lp .ðX þ YÞ � .ðXÞ þ .ðYÞ:
5. Law invariance, 8X, Y 2 Lp, if FX ¼ FY .ðXÞ ¼ .ðYÞ:
6. Co-monotone additivity, 8f , g nondecreasing functions, 8 X 2 Lp,

. f ðXÞ þ gðXÞð Þ ¼ . f ðXÞð Þ þ . gðXÞð Þ:

7. Boundedness, 9B. > 0, 8X 2 Lp, .ðXÞj j � B.kXkp:
8. Preserving SSD (or PSSD), 8X, Y 2 Lp, if X SSD dominates Y, then .ðXÞ � .ðYÞ:
9. Lipschitz continuity, 9L. > 0, 8X,Y 2 Lp, .ðXÞ − .ðYÞj j � L.kX − Ykp:

Definition 1. A lower semicontinuous mapping . : Lp ! R with properties 1, 4, and 5 is called a PSL risk measure. PSL
stands for positive homogeneity of degree one, subadditivity, and law invariance. If, in addition, it is monotone, it is called
PMSL.

Definition 2. A coherent risk measure is a lower semicontinuous mapping . : Lp ! R with properties 1, 2, 3, and 4.

A popular example of a risk measure that is not generally subadditive is VaR. This risk measure plays a key role in the char-
acterization of the law-invariant coherent risk measures. A popular example of a coherent risk measure that is law invariant is
the conditional VaR, defined as on Lp :

CVaRaðXÞ ¼ 1
1 − a

ð1
a
VaRtðXÞdt: (2.1)

Here a 2 ð0, 1Þ is a risk aversion parameter. Another popular example is the mean–variance principle on L2 given by

MVðXÞ ¼ brðXÞ þ EðXÞ,

where r is the standard deviation and b > 0 is a number that represents the risk aversion.

Remark 1. Note that PSL risk measures give us the flexibility to consider more general problems including nonmonotone
risk measuresl fir example, mean–variance.

The Fenchel-Moreau dual representation of PSL risk measures can be given as follows.

Proposition 1. Let . : Lp ! R be a PSL risk measure. Then,

.ðXÞ ¼ supZ2D.
E ZXð Þ,
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where D., is a law-invariant closed convex subset of Lq. Law invariance of D. here means 8Z0 2 Lq, such that FZ ¼ FZ0 ,
and we have that Z0 2 D.:

3. RISK MODEL AND STATIC RISK MEASURE
In the following, modeling the loss frequency/severity with common shocks is considered. This setting combines an

extended version of the frequency-severity model with a general counting process and the common shock model similar to
Tang, Tong, and Yang (2021). In Tang, Tong, and Yang (2021), the authors considered both common shocks and systematic
risk factors without any random counting process, unlike the setting in this study.

Let us denote the amounts of the rth individual idiosyncratic risk variable by the nonnegative random variable Xr, where
the sequence Xrf gr¼1, 2, ::: � X is independent and identically distributed (i.i.d.). The common shock variable is denoted by 1,
and a general counting variable N is considered. An individual risk variable Xr occurs if r � N: The three components of the
model that include Xrf gr¼1, 2, :::, 1, and N are mutually independent.

The aggregate losses is modeled by a random variable L as follows:

L :¼ 1
XN
r¼1

Xr,

with the convention that L ¼ 0 for the event N ¼ 0:
In a standard Cram�er-Lundberg model, the counting process is a Poisson process with a constant arrival rate k: However,

because the general counting variable is used, the approach in this study can be regarded more relevant to the Sparre Andersen
model, with an extra major extension by including common shocks.

Remark 2. Our general assumptions give us new possibilities; for example, incorporating systematic risk along with the
common shocks in the model. As is evident, the component 1 can incorporate common shocks. This makes the individual

losses correlated. Indeed, the co-variance of 1X1, 1X2 is ðEðXÞÞ2varð1Þ 6¼ 0, if varð1Þ 6¼ 0: The common shock variable 1 can
be regarded as the scale multiplier after the shock is realized. For instance, consider a case for car insurance. In cold years,
when there is a higher chance of frost events, accidents with greater severity are expected. This can be incorporated by 1 as the
multiplier of the severity. Another way of considering systematic events is when the rate of the loss frequency changes. In
more detail, consider S and its complement set SC to represent systematic and unsystematic events, respectively. Let us con-

sider two Poisson processes NS
t and NSC

t with rates kS > kS
C

, respectively. Assume that Xrf gr¼0, 1, 2, ::, 1S, 1, NS
t

� �
t�0, and

NSC
t

n o
t�0

are independent. Then, introduce N ¼ NS
T1S þ NSC

T 1SC , for a horizon time T (1 year for car insurance). This model

can incorporate the systematic shock in the frequency part. This time in the car accident example in the cold years, a system-
atic event means a higher accident rate during frost events. Systematic risks have been well-studied in the literature. Lindskog
and McNeil (2003), Meyer (2007), Avanzi, Taylor, and Wong (2018), Yuen, Liang, and Zhou (2015), Han, Liang, and Zhang
(2019), and Tang, Tong, and Yang (2021) incorporated common shock in risk management problems. More recently, common
shocks have been used in the context of COVID-19; see, for example, Assa and Boonen (2022) and Ceci, Colaneri, and
Cretarola (2022).

Let us now make some assumptions on the common shock, severity, and frequency parts. First, as mentioned earlier, it is
assumed that X 2 Lpþ for some p 2 ½1,1Þ: Second, it is assumed that 1 > 0 and also 1 2 L1: Actually, this is a technical
assumption; however, as one can observe later, many of the results work if we relax this assumption. Third, it is assumed that
the growth rate of the frequency variable N belongs to Lp: For example, this property readily holds for a counting variable
given by a Poisson process. Furthermore, this condition implies the following evident but useful property:

Proposition 2. If X 2 Lp, then kPN
r¼1 Xrkp � kNkpk1k1kXkp:

3.1. Static Risk Measure
Any optimal allocation of the individual losses is a contract on Xr, r ¼ 1, 2, :::: This implies that any policy based on the

individual risks directly depends on Xrs and indirectly on N and 1: On the other hand, it is known that all individual losses
have the same distribution as 1X: With these in mind, for a given risk variable X, let us introduce a static risk measure as a
function of loss severity X:
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Definition 3. Let . : Lp ! R be a law invariant risk measure. Consider a counting variable N, a common shock variable 1,
and an i.i.d. sequence Xrf gr¼1, 2, ::: � X, and assume that they are independent. Introduce the static risk measure .N, 1 : Lp ! R

as follows:

.N, 1ðXÞ :¼ . 1
XN
r¼1

Xr

 !
: (3.1)

If there is no common shock—that is, 1 ¼ 1—it is simple to show the static risk measure by .N :
Note that the law invariance property of . plays an important role in the definition of .N, 1:

Remark 3. If N � 1 and 1 ¼ 1, then .N, 1 ¼ .N ¼ .: This means that the framework in this article can be considered as an
extension of the static framework.

3.2. Properties of Static Risk Measures
This section is devoted to studying the properties of static risk measures. More precisely, which properties .N, 1 will inherit

will be observed.
Let us begin with the following theorem:

Theorem 1. The following statements hold:

1. If . is positive-homogeneous, so is .N, 1:
2. If . is subadditive, so is .N, 1:
3. If . is monotone, so is .N, 1:
4. If . is bounded, so is .N, 1:
5. If . is PSSD, so is .N, 1:

The first three statements are self-evident. Statement 4 is a result of Proposition 2. As one can see, this statement to some
extent shows that .N, 1 is scaled by k1k1kNkp:

However, the last statement needs a little bit more explanation. It is clear that for the proof it is enough to show that for

i.i.d. sequences Xrf gr¼1, 2, ::: � X and Yrf gr¼1, 2, ::: � Y, independent of N and 1, if X SSD dominates Y, then 1
PN

r¼1 Xr also

SSD dominates 1
PN

r¼1 Yr: This is actually clear for constant N ¼ n: Here is a brief demonstration for n ¼ 2 : let / be a con-
cave and nondecreasing real function. Then we have

E / 1X1 þ 1X2ð Þð Þ ¼ Ð10 Ð10 E / sX1 þ sx2ð Þð ÞdFX x2ð Þd1ðsÞ
� Ð10 Ð10 E / sY1 þ sx2ð Þð ÞdFX x2ð Þd1ðsÞ
¼ Ð10 Ð1

0 E / sy1 þ sX2ð Þð ÞdFY y1ð Þd1ðsÞ
� Ð10 Ð10 E / sy1 þ sY2ð Þð ÞdFY y1ð Þd1ðsÞ

¼ E / 1Y1 þ 1Y2ð Þð Þ:

Now by conditioning on N ¼ n, it is confirmed that

E / 1
XN
r¼1

Xr

 ! !
� E / 1

XN
r¼1

Yr

 ! !
,

for an arbitrary / that is concave and nondecreasing.
Furthermore, it is not very hard to see that if . is PMSL, then .N, 1 is always PSSD. Actually, Dana (2005), theorem 4.1,

and Carlier and Dana (2006), proposition 2.4, showed that for a concave and upper semicontinuous utility function defined on
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a non-atomic probability space, monotonicity and law invariance are equivalent to preserving SSD. Now as an outcome of
statements 1 it 3 it is confirmed that if . is PMSL, so is .N, 1, and therefore it is PSSD.

In addition, this discussion can help to find out more about the Schur concavity. A functional is said to be Schur concave if
it preserves the concave order. Dana (2005), proposition 2.1, showed that being SSD-preserving is equivalent to being Schur-
concave and monotone. As a by-product of discussion above, similar results hold for PMSL . and hence .N, 1:

Finally, this also helps to obtain a dual representation for .N, 1 when . is PMSL. Dana (2005), theorem 3.1, provided a rep-
resentation on L1 of the Schur-concave functionals as follows:

.N, 1ðXÞ ¼ sup
Z2L1

ð1
0
F−1
X ðtÞF−1

Z ðtÞ − .N, 1
� ��ðZÞ, (3.2)

where ð.N, 1Þ� is a Schur-concave functional on L1: There are two points to mention here: first the theorems in Dana (2005)
are in L1, which can easily be extended to Lp: This, however, warrants a short explanation. In the proof of theorem 3.1 in
Dana (2005), the main technical materials in use are the Schur concavity, Hardy-Littlewood’s inequality, and the lower
semicontinuity in rðL1,L1Þ: All of these can be legitimately replicated in Lp and rðLp, LqÞ:

Second, because there is a positive homogeneous function, ð.N, 1Þ� is a characteristic function. This means that there is a

law-invariant closed convex set D.N, 1 � L1 so that ð.N, 1Þ�ðZÞ ¼ 0, Z 2 D.N, 1

1, o:w:
:

�
Note that the same notation D.N, 1 is used in

the representation of Theorem 3, because they are evidently identical.
Let us also add a technical point. The representation (3.2) is very useful in the proof of Theorem 3 if we wanted only to use

PMSL. However, the proof shows that this also works for PSL risk measures.
It is also important to note that in general for a PSL risk measure ., .N, 1 is not SSD preserving. For that consider the PSL

mean–variance risk measure .ðXÞ ¼ rðXÞ þ EðXÞ: As we have seen, .NðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
EðNÞp

rðXÞ þ EðNÞEðXÞ, which based on
Dana (2005), theorem 4.1, and Carlier and Dana (2006), proposition 2.4, cannot be SSD because it is not monotone.

Though positive homogeneity, subadditivity, monotonicity, boundedness, and PSSD are inherited by .N, 1, the same is not
necessarily true for other properties. For instance, if . is cash-invariant or co-monotone additive, the same is not true for .N, 1:
To see this, let us simply look at .NðX þ cÞ (i.e., 1 ¼ 1) for a constant number c. In the following theorem it is shown that
cash-invariant and co-monotone additivity do not hold for CVaRN

a (see the proof in the Appendix). The importance of this the-
orem can be seen when realizing that CVaRa, a 2 ð0, 1Þ, are the building blocks of all law-invariant coherent risk measures
(see Kusuoka (2001)):

Theorem 2. If Nk
t

� �
t�0 is a Poisson process with parameter k, then for any i.i.d. sequence 1Arf gr¼1, 2, ::: � 1A, with

PðAÞ > 0, independent of Nk
t

� �
t�0 and an a 2 ð0, 1Þ, we have

CVaR
Nk
T

a 1A þ 1ð Þ < CVaR
Nk
T

a 1Að Þ þ CVaR
Nk
T

a ð1Þ: (3.3)

This shows that static risk measures do not inherit co-monotone additivity and cash invariance.
Equation (3.3) clearly indicates why co-monotone additivity does not hold. For cash invariance, however, we need a short

explanation. It is clear by cash invariance that we need to have CVaR
Nk
T

a ð1A þ 1Þ ¼ CVaR
Nk
T

a ð1AÞ þ 1: On the other hand, if we
consider a measurable set N with PðN Þ ¼ 0, as 1N þ 1 ¼ 1 and

PNT
i¼1 1N i

¼ 0, both almost surely, by cash invariance one

must have CVaR
Nk
T

a ð1Þ ¼ CVaR
Nk
T

a ð1N þ 1Þ ¼ CVaR
Nk
T

a ð1N Þ þ 1 ¼ CVaRað
PNT

i¼1 1N i
Þ þ 1 ¼ 1: Combining these relations

with (3.3), we get CVaR
Nk
T

a ð1AÞ þ 1 ¼ CVaR
Nk
T

a ð1A þ 1Þ < CVaR
Nk
T

a ð1AÞ þ CVaR
Nk
T

a ð1Þ ¼ CVaR
Nk
T

a ð1AÞ þ 1, which is a contra-

diction. Actually, the crux here is that by a (false) cash invariance assumption it could be shown that CVaR
Nk
T

a ð1Þ ¼ 1, which
is not in general true.

3.3. Robust Representation of Static Risk Measures
This section provides a robust representation of the static risk measures. The robust characterization provided in Theorem 3

in the following is similar to the robust representation approach of coherent and convex risk measures known mainly from
seminal works by Artzner et al. (1999), Delbaen (2002), F€ollmer and Schied (2002), F€ollmer and Schied (2002), Frittelli and
Rosazza Gianin (2002), and Frittelli and Rosazza Gianin (2005).
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First, we need the following definition. A set D � Lq, for 1 < q < 1, is bounded if supZ2D kZkq < 1: One can easily see
that because kZkq ¼ supkXkp�1 EðZXÞ, boundedness in Lq is equivalent to

sup
kXkp�1

sup
Z2D

E ZXð Þ < 1:

It is well understood that in Lp boundedness of D is equivalent to weak compactness. Additionally, one can see that for a
PSL risk measure ., the boundedness of D. is equivalent to the boundedness of ., with B. ¼ supkXkp�1 supZ2D.

EðZXÞ:
Finally, both are equivalent to Lipschitz continuity of a PSL risk measure . with a Lipschitz parameter L. ¼ B.:

Now we have the following theorem.

Theorem 3. Let . : Lp ! R be a PSL risk measure. The following statements hold:

1. .N, 1 is characterized as follows: 8X 2 Lp

.N, 1ðXÞ ¼ supZ2D.N, 1
E ZXð Þ,

where D.N, 1 is a law-invariant closed convex subset of Lq:

1. If D. is bounded in Lq, so is D.N, 1 :
2. If . is PMSL, D.N, 1 is nonnegative.
3. The set D.N, 1 is equal to the closed convex hull of I given as follows:

I :¼ Ẑ �
XN
r¼1

Zr

Zr ¼ F−1
1Z Wrð Þ, r 2 N, for some Z 2 D. where

Wr,Uð Þ � U,Urð Þ, r 2 N, on PXn ,Xnð Þ
for some,U � U 0, 1ð Þ and
Urf gr¼1, 2, :::, i:i:d: � U 0, 1ð Þ,N, 1 are independnt

��������

9>>=
>>;,

8>>><
>>>:

(3.4)

where Xn ¼ N ¼ nf g:
Finally, let us look at a few examples. Let us consider pðXÞ ¼ ð1þ qÞEðXÞ, for a positive number q: In this case,

Dp ¼ 1þ qð Þ1X
� �

,

which is evidently bounded, implying that DpN, 1 is bounded. In addition, it is trivial that because ð1þ qÞEðLÞ ¼ ð1þ
qÞEð1PN

r¼1 XrÞ ¼ ð1þ qÞEðNÞEð1ÞEðXÞ, then DpN, 1 ¼ ð1þ qÞEðNÞEð1Þ1X
� �

:

Another example is CVaR:

DCVaRa ¼ Z 2 Lq EðZÞ ¼ 1, 0 � Z � 1
a

����
	
,

(

which is again clearly a bounded set in Lq: As a result, DCVaRN, 1
a

is also bounded.

For the mean–variance risk measure, let us take p ¼ 2: Then we have

DMV ¼ b Z − EðZÞð Þ þ 1; kZk2 � 1
� �

,

which is bounded in L2, implying that DMVN, 1 is also bounded. It is also possible to explicitly identify DMVN, 1 , where N ¼
Nk
T is the Poisson process with rate k: First, the mean–variance risk measure in this case is

MVN, 1ðXÞ ¼ br 1
XN
r¼1

Xr

 !
þ kT 	 Eð1ÞEðXÞ:
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So, we have to find the two parts of the risk measure. By applying the law of total variance, we get the following:

Var 1
XN
r¼1

Xr

 !
¼ E Var 1

XN
r¼1

Xr 1j Þ
 !

þ Var E 1
XN
r¼1

Xr 1j Þ
 !  

¼ E 12Var
XN
r¼1

Xr

 ! !
þ Var 1E

XN
r¼1

Xr

 ! !

¼ E 12
� �

Var
XN
r¼1

Xr

 !
þ EðNÞ2EðXÞ2Varð1Þ

¼ E 12
� �

	 kT 	 E X2ð Þ þ kTð Þ2EðXÞ2Varð1Þ

¼ C1E X2ð Þ þ C2EðXÞ2,

where C1 ¼ kT 	 Eð12Þ > 0 and C2 ¼ ðkTÞ2Varð1Þ � 0: Now let us benefit from the Hilbert space properties to give a dual
representation of rð1PN

r¼1 XrÞ: Consider an inner product on L2 as follows:

hX,YiNew ¼ C1E XYð Þ þ C2EðXÞEðYÞ: (3.5)

It is easy to check that h
, 
iNew satisfies all the properties of an inner product. So, the following new norm on L2 is intro-
duced:

kXkNew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX,XiNew

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1E X2ð Þ þ C2EðXÞ2

q
¼ r 1

XN
r¼1

Xr

 !
:

By Jensen’s inequality applied to (3.5), it is clear that

ffiffiffiffiffiffi
C1

p
kXk2 � kXkNew �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ C2

p
kXk2:

This confirms that ðL2, h
, 
iNewÞ is isomorphic to ðL2, h
, 
iÞ, where hX,Yi ¼ EðXYÞ, so it is a Hilbert space. It is understood
that the norm of a Hilbert space can be given as follows:

kXkNew ¼ sup
kZkNew�1

hX, ZiNew:

This gives

r 1
XN
r¼1

Xr

 !
¼ sup

C1E Z2ð ÞþC2EðZÞ2�1

C1E XZð Þ þ C2EðXÞEðZÞ:

Therefore, we have

MVN, 1ðXÞ ¼ br 1
XN
r¼1

Xr

 !
þ EðNÞEð1ÞEðXÞ

¼ supC1E Z2ð ÞþC2EðZÞ2�1 bC1E XZð Þ þ bC2EðXÞEðZÞ
� �þ kT 	 Eð1ÞEðXÞ

¼ supC1E Z2ð ÞþC2EðZÞ2�1 E X bC1Z þ bC2EðZÞ þ kT 	 Eð1Þð Þð Þ� �
:
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From here we have

DMVN, 1 ¼ bC1Z þ bC2EðZÞ þ kT 	 Eð1Þ C1E Z2ð Þ þ C2EðZÞ2 � 1
��� o

:

�

For the special case where we remove the common shock risk factor—that is,—1 ¼ 1, we get

DMVN ¼ b kTð ÞZ þ kTjkT 	 E Z2ð Þ � 1
� �

¼ kT 	 bZ þ 1 kZk2 �
1ffiffiffiffiffiffi
kT

p
����

	
:

(

Remark 4. There is an interesting connection to mathematical finance here, as we have the robust representation. The
members of D. play the role of a state price density process, if . is a pricing rule or premium function; see Bernard,
R€uschedorf, and Vanduffe (2014). In the literature they are also known as the stochastic discount factor. The structure of the
set given in Theorem 3 shows that they more look like a frequency-severity model, even though there are some major differen-
ces; for instance, the severity is no longer independent of the frequency.

3.4. Literature and Static Risk Measures
Let us finish discussion on the properties of static risk measures by comparing them with their closest peers, ruin-based risk

measures. These risk measures have been studied in several papers, including Trufin, Albrecht, and Denuit (2011), Cosette and
Marceau (2013), W€uthrich (2015), Cossette et al. (2020), and Assa and Constantinescu (2021). The mindset behind these risk
measures is to develop a setup that can embed ruin theory into risk measure theory.

In addition, such risk measures can also be viewed as a link between the measure of individual loss distribution and the
measure of aggregate loss distribution. In practice, the insurer is interested in the aggregate risk (which is the actual liability of
the insurer), whereas many estimations and modifications are done on the individual loss level. Given the frequency N and the
common shock variable 1, .N, 1ðXÞ measures individual loss X directly, and the value represents the aggregate loss exposure. It
can help the insurer to better understand the impact of any changes in the individual risk level on the aggregate risk level.

For example, let us look at the definition of the ruin-based risk measure in Trufin, Albrecht, and Denuit (2011). Consider a

surplus model uþ ct −
PNk

t

k¼1
Xk, where Nk

t

� �
t is a Poisson process with rate k: The minimum capital requirement for the insur-

ance company to keep the business solvent is given by

inf u 2 R P inf
t�0

uþ ct −
XNk

t

k¼1

Xk

0
@

1
A < 0

0
@

1
A � 1 − a

������
9=
;,

8><
>: (3.6)

where a is a (small) ruin probability. Interestingly, this value can be identified as follows:

u ¼ VaRa sup
t�0

XNk
t

r¼1

Xk − ct

0
@

1
A

0
@

1
A: (3.7)

With this in mind Trufin, Albrecht, and Denuit (2011) introduced a risk measure as follows:

.aðXÞ ¼ VaRa sup
t�0

XNk
t

r¼1

Xr − gkEðXÞt
0
@

1
A

0
@

1
A, (3.8)

where g > 1 is a constant and Xr � X:
The ruin-based risk measure fills a gap in the literature to relate two theories of ruin theory and risk measure theory that are

essentially designed to find the minimum capital required to keep the insurance solvent. In essence, it looks like the definition
in 3.8 is similar to a static risk measure because it also focuses on the severity. However, the major concern in ruin-based risk
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measures is the ruin probability. This implies a major difference to include the supremum over time in addition to including
the premium gkEðXÞt: The same mindset is not relevant in the risk measure theory, based on which the static risk measures is
introduced. In risk measure theory the concern is to make sure that the insurance risk position is within a set of acceptable
positions. It is important to note that from a technical perspective this supremum adds an extra layer of complexity to the
model that is usually difficult to deal with, particularly when it is considered for some application such as optimal reinsurance
design. Another point in relation to ruin-based risk measures is that they do not perform well when it comes to continuity; see
Assa and Constantinescu (2021). Actually, they are not continuous unless for L1 topology. From a technical perspective this
is again a result of the supremum above that is taken over time; actually, it has the same supremum for all loss severity like
X ¼ 1A, regardless of the probability PðAÞ, either large or small. However, in many cases static risk measures can be continu-
ous owing to their robust representation. Particularly when . is PSL and bounded, as discussed, both . and .N, 1 are Lipschitz
continuous in Lp:

It is also important to mention that the assumption of having i.i.d. Xrf gr¼1, 2, :::, though necessary in our setup, is to some
extent restrictive. This can be dealt with in ruin-based risk measures; see Cossette et al. (2020).

Finally, as one can see, even though .N, 1 is a risk measure on the aggregate losses in a dynamic framework, it only deals
with the individual losses in a static framework. By .N, 1, a technique to embed a problem in a dynamic setup into a static one
is introduced. Similar ideas have been used in the past in the literature; for instance, Assa (2011) introduced some sort of static
risk measure associated with a dynamic risk measure with the same Lebesgue property.

4. REINSURANCE APPLICATION
In this section, static risk measures are used to design optimal reinsurance, dealing with individual loss severity. From a

practical point of view, this problem sounds difficult because we need to deal with a dynamic setup where the number of the
contracts to consider is not prespecified. The approach in this article, however, will reduce the problem to a nondynamic one,
by introducing static risk measures. One must also note that this setup is rich enough to include other concepts such as system-
atic and common shocks. Reinsurance in the presence of common shocks has previously been studied; see, for example, Han,
Liang, and Zhang (2019).

Considering the presence of a common shock variable, there are two distinct approaches for risk sharing between the insur-
ance and reinsurance companies. The first option involves jointly sharing the risk of individual risks, which encompasses both
systematic and idiosyncratic risks. The alternative approach entails a risk sharing strategy of the idiosyncratic component
beforehand (ex ante) and subsequently sharing the risk associated with the systematic component (ex post). Mathematically,
the former shares the risk of the rth individual as allocated by Wr

1 and Wr
2, where Wr

1 þWr
2 ¼ 1Xr, and the latter shares the

risk in the form of Wr
1 and Wr

2, where Wr
1 þWr

2 ¼ Xr: In this article, the second option was chosen because it was assumed
that due to the systematic nature of the risk variable 1, the risk of the systematic part needs to be realized before making any
decision to share it.

Therefore, let us assume that an insurance company wants to share the risk of each individual risk Xr with a reinsurance
company to minimize the total risk. In other words, we are looking for an optimal allocation ðWr

1,W
r
2Þ of any individual risk

Xr; that is, Xr ¼ Wr
1 þWr

2, where 0 � Wr
1,W

r
2 � Xr: However, if this allocation is based on a contract that is agreed by the par-

ties up front, it is rather natural to assume that the sequence ðWr
1,W

r
2Þ

� �
r¼1, 2, :::

is i.i.d. Also assume that this sequence, N, and

1 are independent. Let us denote the insurance and the reinsurance loss respectively as

L1 ¼ 1
XN
r¼1

Wr
1,L2 ¼ 1

XN
r¼1

Wr
2:

It is clear that L ¼ L1 þ L2:
In this article, it is assumed that the reinsurance company uses the expectation principle for pricing. Therefore, the global

risk position of the insurance company is given as follows:

L1 þ 1þ qð ÞE L2ð Þ,

where q is a risk loading factor. Now let us assume that the insurance company is using a cash-invariant PSL risk measure
. to assess the risk. So, the insurance total risk is given by

. L1 þ 1þ .ð ÞE L2ð Þ� � ¼ . L1ð Þ þ 1þ .ð ÞE L2ð Þ:
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If we assume that ðWr
1,W

r
2Þ � ðW1,W2Þ, it is clear that the total risk is identical to

.N, 1 W1ð Þ þ 1þ qð ÞEðNÞEð1ÞE W2ð Þ:

In addition, in the existing literature, the consideration of co-monotonicity to mitigate moral hazard risk is quite common
when analyzing loss risks. To materialize this concept, the following set of indemnity functions is introduced:

C ¼ f 2 L1 Rþð Þþ
f and id − f are
nondecreasing

����
	(

Here id is the identity function. The following proposition plays an important role in our understanding of the indemnity
functions (see Assa (2015)).

Proposition 3. If f 2 C, then f is Lipschitz of degree 1 and there are functions 0 � h � 1 so that f ðxÞ ¼ Ð x0 hðsÞds:
Now for the loss X � 0, let us introduce the set of contracts

CðXÞ ¼ f ðXÞ f 2 Cj g:�

By Proposition 3, it is clear that CðXÞ is a closed convex set in Lp: It is also bounded because 0 � f ðXÞ � X for any f 2 C:
So essentially the insurance company has to search for an optimal policy in the set CðXÞ: Because the insurance company
wants to minimize the total risk, this article focused on the solutions to the following problems:

min
W 2 CðXÞ

.N, 1ðWÞ þ cE X −Wð Þ, (4.1)

where c ¼ ð1þ qÞEðNÞEð1Þ: Now, the following theorem (see the proof in the Appendix) is presented.

Theorem 4. Let . be a PSL risk measure with bounded D. and X � 0 be a loss variable. Then there exists Z� 2 D.N, 1 such

that a solution to (4.1) is given by W� ¼ Ð X0 h�ðtÞdt, where

h�ðtÞ ¼ 1, if CVaRFXðtÞ Z
�ð Þ < c

0, if CVaRFXðtÞ Z
�ð Þ > c

:

(
(4.2)

h� can take any value between 0,1 if CVaRFXðtÞðZ�Þ ¼ c. As a result, an optimal solution for individual risks can be repre-
sented by ðWr

1,W
r
2Þ ¼ ðXr � a�, 0�ðXr − a�ÞÞ, where a� can be any number in the following range:

sup t;CVaRFXðtÞ Z
�ð Þ < c

n o
, inf t;CVaRFXðtÞ Z

�ð Þ > c
n oh i

:

The proof of this theorem is presented in the Appendix; however, a sketch of the proof is discussed here. As one can see by
Proposition 3, any f 2 C can be identified by an MIF h. The major idea behind the proof of Theorem 4 is based on a standard
technique known as the MIF formulation introduced and developed in Assa (2015) and later in Zhuang et al. (2016) and
Boonen (2022). That is why representation such as that in (4.2) would be expected. To make use of this method, we need to
find an equivalent problem to (4.1) where the risk measure is co-monotone and subadditive. To make this happen, we have to
follow a path that gives a similar representation to (3.2).

The results in Theorem 4 can readily be compared to those from Cai and Tan (2007), Cai et al. (2008), Cheung (2010), Chi
and Tan (2013), Cheung et al. (2014), and, in particular, Assa (2015) and Zhuang et al. (2016), where a similar methodology is
adopted. As the results also show, the solutions are layered policies; that is, excess-of-loss and stop-loss policies. A major
point, though, is that like most of the literature, the optimal solution is stop-loss for insurance and excess-of-loss for reinsur-
ance. This may be perceived as a moral hazard promoter, even though the no-moral-hazard condition is met. But this is mainly
a result of the fact that the problem is solved from the insurance company’s perspective, though one can also solve it from the
reinsurance company perspective. For more discussion on that and alternative setups, see Assa (2015).
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It is worth mentioning that the results in this study can be compared with those in Ludkovski and Young (2009), in which
there is layering via a lower envelope of distortions.

It should also be mentioned that the frequency N and common shock 1 explicitly play important roles in the definition of
the static risk measures. Therefore, the results of Theorem 4 depend on the choice of N and 1: Actually, these are the main fac-
tors to specify the static risk measure and, accordingly, Z�: This is important to make a decision up front. In fact, it is almost
impossible to know the number of losses in a given year until the end of that year. Any particular process would affect our
optimal decisions, which in finding the optimal risk sharing for individual losses it should not be of great importance.

Remark 5. Following discussions in Chateauneuf, Dana, and Tallon (2000) and Filipovi�c and Svindland (2008), for any set
of monotone, law-invariant, and convex mappings, the solutions to the risk sharing problems are co-monotone. This means
that if . is monotone, we can remove the moral hazard condition because it is automatically achieved.

4.1. Individual versus Aggregate
Now it is possible to compare the two frameworks managing the individual and aggregate risks. As we will see, there is a

huge difference between the risk sharing problem when we consider the aggregate losses versus when we consider the individ-
ual losses. This is shown in an example.

In this example, we look at an easier case where 1 ¼ 1, because there is a clear difference between the two frameworks,
managing the individual and aggregate risks in this case, which shows that the issue would be even more complicated when 1
is not a constant random variable. To find an optimal allocation on aggregate loss variable L, we have to find L1,L2 2 Lpþ with
L1 þ L2 ¼ L so that for any other allocation L01,L

0
2 2 Lpþ with L01 þ L02 ¼ L, we have .ðL1Þ þ pðL2Þ � .ðL01Þ þ pðL02Þ: The indi-

vidual problem is to find an optimal allocation on an individual basis.
The solutions to these two problems can be quite different. To see the difference, let us study a specific example, which is

inspired by discussions from corollary 2 in Assa (2015). This example, however, can easily be generalized. Let us assume that
the insurance company uses the risk measure . ¼ CVaRa (for some fixed 0 < a < 1), where a > q

1þq : Furthermore, we make

two assumptions:

Assumption 1: Assume X > 0 a.s. and X is unbounded above; that is, for any number M > 0, PðX > MÞ > 0: For
instance, X can have an exponential distribution.

Assumption 2: For all n 2 N, PðN ¼ nÞ > 0: For instance, if Nk
t

� �
t�0 is a Poisson process, N ¼ Nk

T for a give horizon
time T.

Now, consider the following two problems.
Problem 1. First, consider an optimal allocation of the aggregate risk variable L by finding L1 and L2 in Lpþ that solve

inf
L1, L2 2 Lpþ
L1 þ L2 ¼ L

CVaRa L1ð Þ þ 1þ qð ÞE L2ð Þ:

In corollary 2 of Assa (2015), it is shown that the solution to this problem has the following form:

L1 ¼
0, L < a�

L − a�, a� � L < b�

b� − a�, L � b�
and L2 ¼ L − L1,

8<
: (4.3)

where a� and b� are the endpoints of an interval I ¼ ða�, b�Þ: It is clear that L is not bounded; however, L1 is.
Problem 2. For the same aggregate loss risk measure and premium as in Problem 1, we consider the optimal reinsurance on

and individual basis. According to Theorem 4, there is a Lebesgue measurable function h� : Rþ ! ½0, 1� so that the optimal

solution is given by ðWr
1,W

r
2Þ

� �
r¼1, 2, :::

¼ ðÐ Xr

0 h�ðtÞdt, Ð Xr

0 ð1 − h�ðtÞÞdtÞ
n o

r¼1, 2, :::
: Now, we observe two cases.

Case 1: The function h� is l (Lebesgue measure) almost everywhere equal to 1 on Rþ: In this case, for all r 2 N, Wr
2 ¼ 0

a.s. This means the insurance allocation
PNT

r¼1 W
r
1 is a.s. equal to L and is unbounded.
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Case 2: There is a positive number d > 0 and a Lebesgue measurable set I � Rþ with lðIÞ > 0 so that h�jI > d: In this
case, it is shown that the insurance optimal risk variable

PNT
r¼1 W

r
1 is unbounded above.

First, we claim that there is � > 0 such that for all r 2 N we have Pð Wr
1 > �f gÞ > 0: Consider M > 0 is large enough so

that the set J ¼ I \ ½0,M� has a positive Lebesgue measure. Now, for any x 2 Xr > Mf g we have Wr
1ðxÞ ¼

Ð XrðxÞ
0 h�ðtÞdt �ÐM

0 h�ðtÞdt > ÐI\½0,M�ddt ¼ dlðJÞ > 0: This implies Xr > Mf g � Wr
1 > dlðJÞ� �

: Because X is unbounded, this implies that

Pð Wr
1 > dlðJÞ� �Þ � PðXr > MÞ ¼ PðX > MÞ > 0: Therefore, one can take � ¼ dlðJÞ:

Because Wr
1, r ¼ 1, 2, ::: and Ntf gt�0 are all independent, then by Assumption 2, 8u 2 N, Pðð\u

r¼1 Wr
1 > �f gÞ \

NT ¼ uf gÞ ¼ ðPu
r¼1Pð Wr

1 > �f gÞÞ 	 Pð NT ¼ uf gÞ > 0: On the other hand, on ð\u
r¼1 Wr

1 > �f gÞ \ NT ¼ uf g, we havePNT
r¼1 W

r
1 ¼

Pu
r¼1 W

r
1 > u�: So, for any large number K > 0, if we take u 2 N larger than K=�, on the positive measure set

ð\u
r¼1 Wr

1 > �f gÞ \ NT ¼ uf g we have
PNT

r¼1 W
r
1 > K: This means that in Case 2,

PNT
r¼1 W

r
1 is unbounded above.

Comparing the two problems above, in Problem 2, the insurance optimal allocation
PNT

r¼1 W
r
1 is either L or is unbounded

above, whereas the insurance optimal allocation risk variable L1 in Problem 1 is nonzero and bounded.
Now, let us delve into the implications of this example, particularly from the reinsurance company’s perspective. This view-

point is crucial because the problem is primarily addressed from the insurance standpoint, seemingly favoring their interests.
Consequently, the reinsurance company can evaluate whether the contract should be structured on an an aggregate or individ-
ual basis.

In the framework utilizing the static risk measure, the policy is based on each individual risk, whereas the alternative frame-
work adopts an approach based on aggregate risk. An important implication of individual risk sharing is that the insurance
company’s exposure to risk can potentially become substantial, because there is no limitation on the number of incidents that
may occur within the given time period, T. On the other hand, the policy based on aggregate risk is constrained by an indem-
nity level.

Consequently, with individual risk contracting, the reinsurance company gains a clearer understanding of their involvement
in the risk. Conversely, it can be argued that the aggregate framework’s risk may be advantageous for the reinsurance company
by allowing it to set a high indemnity level. Thus, determining which discussion truly matters to the reinsurance company
becomes challenging in the absence of clear criteria, which are currently unavailable within this context.

4.2. Systematic and Common Shock Cases
New research is now more concerned with the systematic risk after large-scale economic losses like the COVID-19 pan-

demic Assa and Boonen (2022). As discussed in Remark 2, we can consider a common shock model when we include a non-
constant common shock variable 1 and a systematic shock when we consider two independent Poisson variables NS and NSC

with rates kS > kS
C

, respectively. This part considers both cases when dealing with the mean–variance risk measure and stud-
ies some numerical results.

First case: systematic shock with 1 ¼ 1 and independent Poisson variables NS ¼ NkS
T and NSC ¼ NkS

C

T : Let us first con-

sider a case where there is a systematic shock in the rate of the losses. Assume Xrf gr¼0, 1, 2, ::, 1S, N
S, and NSC are independent,

where PðSÞ ¼ 1 − PðSCÞ ¼ p: The rate kS represents the rate of losses in systematic events and kS
C

represents the rate of losses

when there is no systematic event. So, let us introduce N ¼ NS1S þ NSC1SC as the number of losses in a given time period.
Here we take two approaches. First, we consider the ex ante policies and then the ex post policies, which have recently
received more attention because they appear to be more useful for large-scale events; see Assa and Boonen (2022). Note that
the ex post approach introduced here is different than the one we discussed for the common shock variable 1 in the beginning
of Section 4, because we now make the realization with respect to two cases of systematic and unsystematic events S and SC:
Here the ex post means considering two different problems for two distinct cases of systematic and unsystematic shocks. This
gives the premium and the reinsurance design based on the realization of the systematic event.

First, consider the ex ante policy. Letting j ¼ ;, S, SC,Xf g, we find the risk measure by computing the variance based on
the law of total variance:

Var
XN
r¼1

Xr

 !
¼ Var E

XN
r¼1

Xr jj Þ
 !

þ E Var
XN
r¼1

Xr jj Þ
 !  
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¼ Var kSEðXÞ1S þ kS
C

EðXÞ1SC

 �

þ E kSE X2ð Þ1S þ kS
C

E X2ð Þ1SC

 �

¼ EðXÞ2 kS − kS
C

� �2
Var 1Sð Þ þ E X2ð Þ kSpþ kS

C

1 − pð Þ
� �

¼ EðXÞ2 kS − kS
C

� �2
p 1 − pð Þ þ E X2ð Þ kSpþ kS

C
1 − pð Þ

� �
:

Therefore, by Theorem 4, the reinsurance problem is given by

inf
f S 2 C

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1E X � a�ð Þ2


 �
þ D2 E X � a�ð Þð Þ2

r
þ D3E X � a�ð Þ, (4.4)

where D1 ¼ ðkSpþ kS
Cð1 − pÞÞ, D2 ¼ ðkS − kS

CÞ2pð1 − pÞ, and D3 ¼ −ðkSpþ kS
Cð1 − pÞÞTq: An interesting observation

here is that the risk depends on the value of systematic probability p and the difference between the systematic and unsys-

tematic rates kS − kS
C

: Even though these parameters are assumed to be provided, however, the estimation of p, kS, kS
C

must
be challenging because the estimators do not need to be independent (the rate of a systematic event and the probability of
the systematic event can be correlated).

By Theorem 4 we have to find a� so that

inf
a�

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1E f ðXÞ2


 �
þ D2E f ðXÞð Þ2

r
þ D3E X � a�ð Þ: (4.5)

So by equalizing the derivative to zero, we get

b
D1a�SX a�ð Þ þ D2SX a�ð ÞE X � a�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1E X � a�ð Þ2


 �
þ D2E X � a�ð Þ2

r þ D3SX a�ð Þ ¼ 0: (4.6)

Now let us consider the ex post approach. For an ex post policy, LS ¼P1SNS

i¼1 Xi and LS
C ¼P1SCN

SC

i¼1 Xi are considered separ-
ately. Let us consider the problem when systematic event S is observed. Then the aggregate loss of the systematic event can be
rewritten as follows:

LS ¼
X1SNS

i¼1

Xi ¼ 1S
XNS

i¼1

Xi:

In the following, a setup that considers that an individual risk sharing platform can be much easier when dealing with the
optimal reinsurances is considered. First, let us look at the aggregate loss problem, which is given as follows:

inf
L1, L2 2 L2þ
L1 þ L2 ¼ LS

br L1ð Þ þ E L1ð Þ þ 1þ qð ÞE L2ð Þ:

This can be simplified to

inf
f S 2 C

br f S LSð Þ� �
− qE f S LSð Þ� �

: (4.7)

To solve the problem, we need to have a good understanding of the distribution of LS ¼P1SNS

i¼1 Xi, which is unknown.
Second, we will focus on the individual risk sharing platform. Let us find the variance. To do so, we need
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E
XNS1S

r¼1

Xr

0
@

1
A

2
0
B@

1
CA ¼ pkST VarðXÞ þ kST EðXÞð Þ2


 �

and,

E
XNS1S

r¼1

Xr

0
@

1
A ¼ pkST 	 EðXÞ:

These give us

Var
XNS1S

r¼1

Xr

0
@

1
A ¼ pkST VarðXÞ þ 1 − pð ÞkST EðXÞð Þ2


 �

¼ pkST E X2ð Þ þ 1 − pð ÞkST − 1
� �

EðXÞð Þ2

 �

:

Given Theorem 4, we then have to find the minimum to

inf
a�

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkST E X � aSð Þ2


 �
þ 1 − pð ÞkST − 1
� �

E X � aSð Þð Þ2

 �r

− pkSTq	 E X � aSð Þ:

Similar to the previous example, by equalizing the derivative to zero, we get

b
aS þ 1 − pð ÞkST − 1

� �
E X � aSð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E X � aSð Þ2

 �

þ 1 − pð ÞkST − 1
� �

E X � aSð Þð Þ2

 �r −

ffiffiffiffiffiffiffiffiffiffiffi
pkST

p
q ¼ 0:

A similar result is obtained for the unsystematic case.
Now let us look at some numerical examples to compare the first approach and the ex post approach. In the numerical

results, we consider X � exp ð1=xÞ and X � LogNormalðx, 1Þ, for the idiosyncratic risk where x is a parameter to change

the shape of the idiosyncratic distribution. Setting b ¼ 0:01, T ¼ 1, q ¼ 0:25, we have the following cases for kS
C ¼ 0:1, kS ¼

0:2 and for a range of x 2 0:1, 0:2½ �: Samples of size 1,000,000 are used when simulating the random variables. The results of
the numerical cases are presented in Figures 4.1 and 4.2.

As one can see, in both cases of exponential and Lognormal distributions, when the models are riskier (i.e., x increases),
the level of indemnity also increases. Nonetheless, it is worth noting that the level of contribution where the risk is shared
without dividing it into two different policies is consistently higher compared to the ex post policy. This disparity can be attri-
buted to the fact that the risk is more explicitly accounted for in the ex post policy scenario. Furthermore, in the ex post policy
case, the insurance company assumes a greater share of the risk sharing responsibility when confronted with unsystematic
events that entail lower risk. In this case, insurance pools two independent events of systematic and unsystematic events, which
is less risky, thus contributing more.

Second case: common shock with 1 nonconstant and Poisson variables Nk ¼ Nk
T : Now consider a common shock where

there is no systematic shock. Assume Xrf gr¼0, 1, 2, ::, N
k, and 1 are independent. By the discussions on the mean–variance risk

measure and Theorem 4, and after some simple reorganization of the expressions, the following problem needs to be solved to
find the optimal reinsurance solution:

infa� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihX�a� ,X�a�iNew

p þ EðNÞEð1Þ − EðNÞEð1Þ 1þ qð Þ� �
E X � a�ð Þ

¼ infa� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1E X � a�ð Þ2


 �
þ C2E X � a�ð Þ2

r
− qkT 	 Eð1ÞE X � a�ð Þ:
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Let us denote C3 ¼ −qkT 	 Eð1Þ and equalize the derivative to zero:

b
C1a� þ C2E X � a�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1E X � a�ð Þ2

 �

þ C2E X � a�ð Þ2
r þ C3 ¼ 0: (4.8)

Some numerical examples were chosen for illustration. Letting T ¼ b ¼ 1, based on (4.8), recall the following constants in
Table 1 that we need to find:

Now let us explore the impact of the common shock; that is, 1: As one can see, we need to specify the first and second
moments of 1; that is, Eð1Þ and Eð12Þ: Because it is always possible to consider a bounded distribution given the first and

second moments as long as Eð12Þ � Eð1Þ2, these are considered parameters. Therefore, in the simulations we consider
ðEð1Þ,Eð12ÞÞ ¼ ð1þ g, 4þ gÞ, where g 2 1, 1:1f g:

In the numerical results we consider X � exp ð1=xÞ and X � LogNormalðx, 1Þ, for the idiosyncratic risk where x is a par-
ameter to change the shape of the idiosyncratic distribution. Setting q ¼ 0:25, we have the following cases for k ¼ 0:1, 0:2 for
a range of x 2 0:5, 1:5½ �: A sample of size 1,000,000 is used and the results are shown in Figures 4.3 and 4.4.

FIGURE 4.1. Ex Post and Ex Ante Indemnities for Exponential Model.

FIGURE 4.2. Ex Post and Ex Ante Indemnities for Lognormal Model.
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Upon closer examination, it becomes evident that when k is smaller, indicating lower risk, the likelihood of the insurance
company’s involvement increases. Similarly, a smaller value of g, indicating a larger impact of the common shock, leads to a
decrease in the indemnity level. These findings align with our observations from the previous example, where higher levels of
risk discourage the insurance company from actively participating in risk sharing. Finally, the differences between the common
shock and the systematic shock in the models are examined. In Figure 4.1, as x 2 ½0:1, 0:2�, which is also the mean of X,
increases, the optimal a� falls in the range [0, 0.8]. In Figure 4.3, for x 2 ½0:5, 1:5�, the optimal a� is in the range [0, 0.025],
which is extremely small compared to the value of x: This shows the difference between the common shock model and the
systematic shock model.

TABLE 1
Parameters for Mean–Variance

C1 Eð12Þ 	 k
C2 k2ðEð12Þ − Eð1Þ2Þ
C3 −qkEð1Þ

FIGURE 4.3. Indemnities for Exponential Model.

FIGURE 4.4. Indemnities for Lognormal Model.
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5. CONCLUSIONS
This article introduced and studied static risk measures. It also discussed how static risk measures can be characterized and

how they can inherit properties from their underlying risk measures. Some important properties are directly inherited, such as
positive homogeneity, subadditivity, law invariance, boundedness, and PSSD, whereas they cannot inherit others, such as co-
monotone additivity and cash insurance. The optimal reinsurance design was also studied in this setup, in addition to the differ-
ences in the reinsurance contracts in the setting in this study and the aggregate loss models. How one can include systematic
and common shocks in the model was also discussed. This will yield ex post policies.
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6. APPENDIX

6.1. Proof of Theorem 3

� First of all, by Proposition 1, ,N, 1 is PSL. So, by Proposition 1, one can validate the dual representation and that D,N, 1 is
law invariant.

� For the boundedness of D,N, 1 , we need to use Proposition 2. First, because the set D, is bounded, we know that B, ¼
supZ2D,

||Z||q < 1: On the other hand, by using Proposition 2, we have Y ¼PN
i¼1 Xi; ||X||p � 1

n o
�

Y 2 Lp; ||Y ||p � |N|pf g: Applying these, we have
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supkXkp�1 supZ2D.N, 1
E ZXð Þ


 �
¼ supkXkp�1 .

N, 1ðXÞ

¼ supkXkp�1 . 1
XN
i¼1

Xi

 !

� supkYkp�kNkp supZ2D.
E 1ZYð Þ � B. 	 k1k1 	 kNkp:

� Because based on Proposition 1 ,N, 1 is also monotone, the nonnegativeness of D,N, 1 is obvious.
� Now let us focus on the dual representation by identifying D,N, 1 : First of all, let us introduce

I0 ¼
XN
r¼1

Zr

Zr ¼ F−1
1Z Wrð Þ, r 2 N, for some Z 2 D. where

Wr,Uð Þ � U,Urð Þ, r 2 N, on PXn ,Xnð Þ
for some U � U 0, 1ð Þ and
Urf gr¼1, 2, :::, i:i:d: � U 0, 1ð Þ,N, 1 all independent

��������

9>>=
>>;:

8>>><
>>>:

Take the following three steps:

� Step 1: First we need to explain a process that will help us in the proof of steps 2 and 3. Let us consider in a general
non-atomic probability space we have an i.i.d. sequence Wrf gr¼1, 2, :: � W and a random variable V. Then, one can find
an i.i.d. sequence Urf gr¼1, 2, :: and UV of uniform random variables so that Wr ¼ F−1

W ðUrÞ and V ¼ F−1
V ðUVÞ: Now con-

sider ~Ur

� �
r¼1, 2, ... so that ð~Ur,UVÞ � ðUV ,UrÞ: From this we can construct ~W ¼ F−1

W ðUVÞ and ~Vr ¼ F−1
V ðUrÞ

� �
r¼1, 2, ...:

Note that ~Vr

� �
r¼1, 2, ... is i.i.d.

E V
Xn
r¼1

Wr

 !
¼
Xn
r¼1

E F−1
V UVð ÞF−1

W Urð Þ

 �

¼
Xn
r¼1

E F−1
V

~Ur

� �
F−1
W UVð Þ


 �
¼ E

Xn
r¼1

~Vr

 !
~W

 !
:

(6.1)

This procedure is used mainly on the probability space ðXn,PXnÞ in the following.

� Step 2: Let us take Z 2 D, and an i.i.d. sequence Xrf gr¼1, 2, ... � X: Assume that this sequence, N, and 1 are independent.
Note that the independence of Xrf gr¼1, 2, ... and N implies that for each n, 1XnXrf gr¼1, 2, ... is i.i.d. in the probability space
ðXn,PXnÞ with the same distribution as X. Let us consider Un

r ¼ FXðXrÞ in ðXn,PXnÞ: By the independence assumption
Xr � FX in ðXn,PXnÞ, Un

r � Uð0, 1Þ: Let us check that the sequence Urf gr¼1, 2, ..., where Ur ¼
P1

n¼1 U
n
r 1Xn , is i.i.d. and

uniformly distributed and that Urf gr¼1, 2, ..., N, and 1 are independent. For that we just need to see the following:

P U1 � u1, :::,Ur � ur,N ¼ n, 1 � sð Þ
¼ P Un

1 � u1, :::,Un
r � ur,N ¼ n, 1 � sð Þ

¼ P F−1
X 1XnX1ð Þ � u1, :::,F−1

X 1XnXrð Þ � ur,N ¼ n, 1 � s
� �

¼ P F−1
X 1XnX1ð Þ � u1, :::,F−1

X 1XnXrð Þ � ur,N ¼ n
� �

P 1 � sð Þ
¼ P Un

1 � u1, :::,Un
r � ur,N ¼ nð ÞP 1 � sð Þ

¼ P Un
1 � u1, :::,Un

r � ur N ¼ nj ÞP N ¼ nð ÞP 1 � sð Þ ¼ u1 	 
 
 
 	 ur 	 P N ¼ nð ÞP 1 � sð Þ:�

Let U ¼ F1Zð1ZÞ, and construct Wr so that ðWr,UÞ � ðU,UrÞ on ðPXn ,XnÞ , r ¼ 1, 2, :::: Let Ẑ ¼PN
r¼1 Zr, where Zr ¼

F−1
1Z ðWrÞ: By step 1 one can see that

E Z1
XN
r¼1

Xr

 !
¼
X1
n¼1

E Z1
Xn
r¼1

Xr Xnj ÞP Xnð Þ
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¼
X1
n¼1

E F−1
1Z ðUÞ

Xn
r¼1

F−1
X Urð Þ

 !
Xnj ÞP Xnð Þ

 

¼
X1
n¼1

E
Xn
r¼1

F−1
1Z Wrð Þ

 !
F−1
X ðUÞ Xnj ÞP Xnð Þ

 

¼ E
XN
r¼1

Zr

 !
F−1
X ðUÞ

 !
:

Because Ẑ ¼PN
r¼1 Zr 2 I0, this shows that

.N, 1ðXÞ � sup
~X�X

supPN
r¼1

~Zr2I0

E ~X
XN
r¼1

~Zr

 !0
BB@

1
CCA ¼ sup

Ẑ�
PN
r¼1

Zr2I0

E ẐXð Þ: (6.2)

� Step 3: Let us take X 2 Lp and
PN

r¼1 Zr 2 I0: Let us introduce Xr ¼ F−1
X ðUrÞ: By assumption, it is clear that

Xrf gr¼1, 2, ..., N, and 1 are independent. Let X̂ ¼ F−1
X ðUÞ, �Z ¼ F−1

1Z ðUÞ=1 ðWr,UÞ � ðU,UrÞ: Note that because �Z � Z,
this implies that �Z 2 D,: On the other hand, by construction and (6.1), we have

E
XN
r¼1

Zr

 !
X̂

 !
¼
X1
n¼0

E
Xn
r¼1

Zr

 !
X̂ jXn

 !
P Xnð Þ

¼
X1
n¼0

E 1�Z
Xn
r¼1

Xr

 !
jXn

 !
P Xnð Þ

¼ E 1�Z
XN
r¼1

Xr

 ! !
:

(6.3)

Given that Xrf gr¼1, 2, ::: is i.i.d. and independent of N and 1, the relation above shows

sup
Ẑ�
PN

r¼1
Zr2I0

E ẐXð Þ � .N, 1ðXÞ: (6.4)

Combining (6.2), (6.4) completes the proof.

6.2. Proof of Theorem 2
The following two lemmas are presented and will be used next. The proof for the first one can be found in Assa and

Constantinescu (2021) and the proof of the second one is an immediate result of the first one.

Lemma 1. If Xk ¼ 1Ak , k ¼ 1, 2::: where Akf gk¼1, 2, ::: is a sequence of independent sets, independent of a Poisson process

Nk
t

� �
t�0 with parameter k, such that 8k,PðAkÞ ¼ x, then Yt ¼

PNk
t

k¼1
1Ak has a Poisson distribution with parameter kTx:
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Lemma 2. Following the same assumptions and notations of the previous lemma, we have

VaRsðYÞ ¼ l, if s 2 PðNkx
T � l − 1Þ,PðNkx

T � lÞ� �
VaRsðYÞ ¼ 0 if s 2 0,PðNkx

T ¼ 0Þ
 �
8<
: (6.5)

Now we prove the theorem by way of contradictions. Let us assume that CVaRS
a is cash invariant for all a 2 ð0, 1Þ:

Then, for any set A 2 F , with PðAÞ ¼ x, we must have

CVaRS
a 1A þ 1ð Þ ¼ CVaRS

a 1Að Þ þ CVaRS
að1Þ:

Using the definition of CVaRS
a, this means

CVaRa

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
A ¼ CVaRa

XNk
T

r¼1

1Ar

0
@

1
Aþ CVaRa Nk

T


 �
,8a 2 ð0, 1Þ:

By definition of CVaRa, this implies

ð1
a
VaRs

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
Ads ¼

ð1
a
VaRs

XNk
T

r¼1

1Ar

0
@

1
Adsþ

ð1
a
VaRs Nk

T


 �
ds, 8a 2 ð0, 1Þ:

Taking derivative with respect to a, we get

VaRs

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
A ¼ VaRs

XNk
T

r¼1

1Ar

0
@

1
Aþ VaRs Nk

T


 �
, 8s 2 ð0, 1Þ: (6.6)

To have a contradiction, it is shown that for some s 2 ð0, 1Þ the right-hand side and the left-hand side of this equality
cannot hold.

First, we need to look closer at equation (6.6). On both sides of the equality we have values at risk of a random variable
that takes value in N [ f0g: Therefore, to find the VaR of such random variables we have to find the intervals over which
the commutative distribution function is equal to a member of N [ f0g: More precisely, let us consider X is a random vari-
able taking values in N [ f0g; then to find the values at risk we have to look at the intervals 0,PðX ¼ 0Þ½ � and ðPðX �
n − 1Þ,PðX � nÞ�, for n ¼ 1, 2::: Indeed, by definition, VaRaðXÞ ¼ 0 if a 2 0,PðX ¼ 0Þ½ � and VaRaðXÞ ¼ n,
when a 2 ðPðX ¼ n − 1Þ,PðX ¼ nÞ�:

Now let us go back to our problem, where we wanted to show that the equality in (6.6) cannot hold for some s. Note
that

P
XNk

T

r¼1

1Ar þ Nk
T ¼ 0

0
@

1
A ¼ P Nk

T ¼ 0

 �

and

P
XNk

T

r¼1

1Ar þ Nk
T ¼ 1

0
@

1
A ¼ P 1A1 ¼ 0 and Nk

T ¼ 1
� �

¼ P 1A1 ¼ 0ð ÞP Nk
T ¼ 1

� � ¼ 1 − xð ÞP Nk
T ¼ 1

� �
:
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Therefore, we have

VaRs

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
A ¼ 1

if s 2 I1 :¼ P Nk
T ¼ 0

� �
,P Nk

T ¼ 0
� �þ 1 − xð ÞP Nk

T ¼ 1
� �� �

and

VaRs

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
A � 2

if s > P Nk
T ¼ 0

� �þ 1 − xð ÞP Nk
T ¼ 1

� �
:

(6.7)

On the other hand, from Lemmas 1 and 2 we know

VaRs

XNk
T

r¼1

1Ar

0
@

1
A ¼ VaRs Nkx

T

� � ¼ 1, if s 2 I2 :¼ PðNkx
T ¼ 0Þ,PðNkx

T � 1Þ� �
VaRs Nk

T

� � ¼ 1, if s 2 I3 :¼ PðNk
T ¼ 0Þ,PðNk

T � 1Þ� � :

8>>><
>>>:

(6.8)

Now we want to see how intervals I1, I2 and I3 overlap. First, let us show that PðNk
T ¼ 0Þ þ ð1 − xÞPðNk

T ¼ 1Þ <
PðNkx

T ¼ 0Þ: By definition of a Poisson process, we need to show that e−kT þ ð1 − xÞkTe−kT < e−kTx: But note that this is
equivalent to showing that 1þ ð1 − xÞkT < ekTð1−xÞ, which, by Taylor’s expansion of exponentiation function, obviously
holds true. This means the right endpoint of I1 is smaller than the left endpoint of I2, so I1 \ I2 ¼ ;: On the other hand, if x
is very close to 1, PðNkx

T ¼ 0Þ < PðNk
T � 1Þ: This means that the right endpoint of I3 is greater than the left endpoint of I2:

Finally, note that the left endpoints of I1 and I3 are the same.
All of these facts imply that there exists a non-empty open interval B such that B � I3, B > I1 and B < I2: For the read-

er’s convenience, how B exists is shown in Figure 6.1.

For any s 2 B, by (6.7) and (6.8), we have VaRsð
PNk

T

r¼1
1Ar þ Nk

TÞ � 2, VaRsð
PNk

T

r¼1
1ArÞ ¼ 0 and VaRsðNk

TÞ ¼ 1: Therefore,

VaRs

XNk
T

r¼1

1Ar þ Nk
T

0
@

1
A � 2 > 0þ 1 ¼ VaRs

XNk
T

r¼1

1Ar

0
@

1
Aþ VaRs Nk

T


 �
, 8s 2 B,

which contradicts (6.6).

FIGURE 6.1. Illustration of the Intervals I1, I2, I3, and B.
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6.3. Proof of Theorem 4
Step 1. Using the representation of .N, 1, the optimal problem (4.1) can be written as follows:

inf
W2CðXÞ

sup
Z2D.N, 1

E ZWð Þ þ cE X −Wð Þ� 	
: (6.9)

First, observe that because CðXÞ is a closed, convex, and bounded subset of Lp, by the Banach-Alaoglu theorem,2 it is
weakly compact. On the other hand, by Theorem 3, we know that D.N, 1 is also weakly compact in Lq: Theorem 2.132 and
proposition 2.105 in Barbu and Precupanu (2012) guarantee that a mini-max problem on linear objective functions and on
compact sets always has a saddle point solution. Therefore, the mini-max problem (6.9) has a saddle point solution and
therefore

min
W2CðXÞ

sup
Z2D.N, 1

E ZWð Þ þ cE X −Wð Þ� 	
¼ max

Z2D.N, 1
min

W2CðXÞ
E ZWð Þ þ cE X −Wð Þ� �� 	

:

Let us denote the saddle point (or the solution) with W� 2 Lp, Z� 2 Lq:
Step 2. In this step, using the result in step 1, a new risk measure ~. is introduced and it is shown that in the sense of

(4.1), their optimal solution is W�: Let

D :¼ Z0 2 LqjZ0 � Z�� �
and introduce the risk measure ~. as follows:

~.ðYÞ :¼ sup
Z2D

EðZYÞ, Y 2 Lp:

Let us claim that D � D.N, 1 : To prove this claim, let Z 2 D be taken arbitrarily. By definition, we know FZ ¼ FZ� : But
based on Proposition 3, D.N, 1 is law invariant. Knowing this, because Z� 2 D.N, 1 and FZ ¼ FZ� , we get Z 2 D.N, 1 : Because
Z was an arbitrary member of D, this implies that D � D.N, 1 :

Now, because D � D.N, 1 and Z� 2 D, we have that W� is a solution to the following problem:

inf
W2CðXÞ

~.ðWÞ þ cE X −Wð Þ: (6.10)

Step 3. In this step, we find a particular representation for ~. that will help us to find the form of the optimal solution
W� in step 4.

For any Y 2 Lp, by the extended Hardy-Littlewood theorem (see theorem A.28 in F€ollmer and Schied (2004)),

~.ðYÞ :¼ sup
D¼ Z02LqjZ0�Z�f g

EðZ0YÞ ¼
ð1
0
VaRtðZ�ÞVaRtðYÞdt:

Note that ~. is positive-homogeneous of degree 1, subadditive, monotone, and law invariant. If the function
a 7! Ð a

0 VaRtðZ�Þdt is denoted by UðaÞ, then dUðtÞ ¼ VaRtðZ�Þdt: This allows us to rewrite ~. as follows:

~.ðYÞ ¼
ð1
0
VaRtðYÞdUðtÞ,8Y 2 Lp: (6.11)

Step 4. Using the representation of the risk measures ~. in step 3, in this step we find the form of the optimal solutions.

2For the Banach-Alaoglu theorem, see Rudin (1991).

STATIC RISK MEASURES IN A FREQUENCY-SEVERITY FRAMEWORK WITH SYSTEMATIC RISK 117



The optimal risk allocation is of the form ðf ðXÞ,X − f ðXÞÞ, when f 2 C: Thus, we can consider the following problem
instead of (6.10):

inf
f2C

~. f ðXÞð Þ þ cE X − f ðXÞð Þ:

For any f 2 C, using the fact that VaRt always commutes with nondecreasing functions, we have

~. f ðXÞð Þ þ cE X − f ðXÞð Þ
¼ Ð 10 VaRt f ðXÞð ÞdUðtÞ þ cE X − f ðXÞð Þ
¼ Ð 10 f VaRtðXÞð ÞdUðtÞ þ cE X − f ðXÞð Þ:

(6.12)

Based on Proposition 3, let us assume that f ðxÞ ¼ Ð x0 hðsÞds, for a function 0 � h � 1: Therefore, using these representa-
tions for f, in (6.12), we have

~. f ðXÞð Þ þ cE X − f ðXÞð Þ
¼ Ð 10 ÐVaRtðXÞ

0 hðsÞdsdUðtÞ þ c
Ð 1
0

ÐVaRtðXÞ
0 1 − hðsÞð Þdsdt:

By Tonelli’s theorem, we have

~. f ðXÞð Þ þ cE X − f ðXÞð Þ
¼ Ð/0 Ð 1

FXðsÞ dUðtÞhðsÞ þ c
Ð 1
FXðsÞ dt 1 − hðsÞð Þ

h i
ds

¼ Ð/0 Uð1Þ − U FXðsÞð Þð ÞhðsÞ þ c 1 − FXðsÞð Þ 1 − hðsÞð Þ½ �ds:
(6.13)

Now for every s � 0 let us look a bit closer at ðUð1Þ − UðFXðsÞÞÞhðsÞ þ cSXðsÞð1 − hðsÞÞ: For a fixed s � 0, the min-
imum of this last expression for 0 � h � 1 is

min Uð1Þ − U FXðsÞð Þ, cSXðsÞ
� �

:

This makes it clear that the minimum to be attained is

h�ðsÞ ¼ 1, if Uð1Þ − U FXðsÞð Þ < cSXðsÞ
0, if Uð1Þ − U FXðsÞð Þ > cSXðsÞ:

(

Finally, because Uð1Þ ¼ Ð 10 VaRtðZ�Þdt ¼ EðZ�Þ and UðFXðtÞÞ ¼
Ð FXðtÞ
0 VaRsðZ�Þds, we get the following result:

h�ðtÞ ¼
1, if

Ð 1
FXðtÞ VaRs Z�ð Þds < cSXðtÞ

0, if
Ð 1
FXðtÞ VaRs Z�ð Þds > cSXðtÞ

:

8<
:

This clearly gives

h�ðtÞ ¼ 1, if CVaRFXðtÞ Z
�ð Þ < c

0, if CVaRFXðtÞ Z
�ð Þ > c

:

(
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