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Abstract

We study the computational complexity of finding a solution for the straight-cut and
square-cut pizza sharing problems. We show that computing an 𝜀-approximate solution is
PPA-complete for both problems, while finding an exact solution for the square-cut prob-
lem is FIXP-hard. Our PPA-hardness results apply for any 𝜀 < 1/5, even when all mass
distributions consist of non-overlapping axis-aligned rectangles or when they are point sets,
and our FIXP-hardness result applies even when all mass distributions are unions of squares
and right-angled triangles. We also prove that the decision variants of both approximate
problems are NP-complete, while the decision variant for the exact version of square-cut
pizza sharing is ∃R-complete.
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1 Introduction

Mass partition problems ask to fairly divide measurable objects that are embedded into Euclidean
space [RS20]. Perhaps the most popular mass partition problem is the ham sandwich problem,
in which three masses are given in three-dimensional Euclidean space, and the goal is to find a
single plane that cuts all three masses in half. Recently, there has been interest in pizza sharing
problems, which are mass partition problems in the two-dimensional plane, and in this work we
study the computational complexity of such problems.

In the straight-cut pizza sharing problem, we are given 2𝑛 two-dimensional masses in the
plane, and we are asked to find straight lines (see Figure 1a for a depiction) that simultaneously
bisect all of the masses. It has been shown that this problem always has a solution for when we
have 𝑛 straight lines available: the first result on the topic showed that solutions always exist
when 𝑛 = 2 [BPS19], and this was subsequently extended to show existence for all 𝑛 [HK20].

(a) A set of straight-cuts with
four lines.

(b) A square-cut-path with six
turns (not 𝑦-monotone).

(c) A 𝑦-monotone square-cut-
path with four turns.

Figure 1: An example with 4 masses and various partitions of the plane into two regions, namely
the shaded and non-shaded one. In a solution, each region contains half the area of each mass.

Another related problem is the square-cut pizza sharing. In this problem, there are 𝑛 masses
in the plane, and the task is to simultaneously bisect all masses using cuts, but the method
of generating the cuts is different. Specifically, we seek a square-cut, which consists of a single
path that is the union of horizontal and vertical line segments. See Figure 1b and Figure 1c for
two examples of square-cuts. Intuitively, we can imagine that a pizza cutter is placed on the
plane, and is then moved horizontally and vertically without being lifted in order to produce
the cut. Note that the path is allowed to wrap around in the horizontal axis: if it exits the left
or right boundary, then it re-appears on the opposite boundary. So the cut in Figure 1c is still
considered to be a single square-cut.

It has been shown by [KRPS16] that, given 𝑛 masses, there always exists a square-cut-path
(termed Square-path) which makes at most 𝑛 − 1 turns and simultaneously bisects all of the
masses. This holds even if the Square-path is required to be 𝑦-monotone, meaning that someone
moving on the path would either never head South or never head North (e.g., Figure 1c).

Two-dimensional fair division is usually called land division in the literature. Land division
is a prominent topic of interest in the Economics and AI communities that studies ways of fairly
allocating two-dimensional objects among 𝑛 agents [Cha05, SHNHA17, SNHA20, ESS21, AD15,
IH09, Hüs11]. Popular mathematical descriptions of fair division problems first appeared in
[Ste48], and since then, the existence of allocations under various fairness criteria have been
extensively studied, together with algorithms that achieve them. These problems find appli-
cations from division of resources on land itself, to the Law of the Sea [SS03], to redistricting
[LRY09, LS14].

Consensus halving is a problem that asks us to split a one-dimensional resource into two parts
such that 𝑛 agents have equal value in both parts. Here, we study the same fairness criterion for
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𝑛 agents, but for a two-dimensional resource. One can see that when we have the same fairness
criterion at hand for any 𝑘-dimensional resource, 𝑘 ≥ 2, we can always translate the problem into
its one-dimensional version, by integrating each agent’s measure to a single dimension. Then a
solution can be given by applying consensus halving. However, the solutions we get by doing
so, are not taking into account the dimensionality of the problem, and as a result they might
produce very unnatural solutions to a high-dimensional problem. For example, in land division,
applying consensus halving would produce two parts, each of which can possibly be a union of
⌈𝑛/2⌉ disjoint land strips. Can we get better solutions by exploiting all the dimensions of the
problem?

In this work we investigate different cutting methods of the two-dimensional objects, and
in particular, two pizza sharing methods for which a solution is guaranteed. While based on
intuition one might assume that exploiting the two dimensions would allow the complexity of
finding a solution to be lower, our results show that this is not the case. We present polynomial
time reductions from the one-dimensional problem to the two-dimensional problems showing
that the latter ones are at least as hard as the former, i.e., PPA-hard.

Computational complexity of fair division problems. There has been much interest
recently in the computational complexity of fair division problems. In particular, the complexity
class PPA has risen to prominence, because it appears to naturally capture the complexity of
solving these problems. For example, it has recently been shown by [FRG18, FRG19] that the
consensus halving problem, the ham sandwich problem, and the well-known necklace splitting
problem are all PPA-complete.

More generally, PPA captures all problems whose solution is verifiable in polynomial time
and is guaranteed by the Borsuk-Ulam theorem. Finding an approximate solution to a Borsuk-
Ulam function, or finding an exact solution to a linear Borsuk-Ulam function are both known to
be PPA-complete problems [Pap94, DFMS21]. The existence of solutions to the ham sandwich
problem, the necklace splitting problem, and indeed the square-cut pizza sharing problem can
all be proved via the Borsuk-Ulam theorem1.

Theorem 1 (Borsuk-Ulam). Let 𝑓 : 𝑆𝑑 → R𝑑 be a continuous function, where 𝑆𝑑 is a 𝑑-
dimensional sphere. Then, there exists an 𝑥 ∈ 𝑆𝑑 such that 𝑓(𝑥) = 𝑓(−𝑥).

The other class of relevance here is the class FIXP, defined by Etessami and Yannakakis
[EY10]. This is the class of problems that can be reduced in polynomial time to the problem of
finding an exact fixed point of a Brouwer function. It is known by the aforementioned work, that
FIXP contains the problem Square Root Sum, which has as input positive integers 𝑎1, . . . , 𝑎𝑛
and 𝑘, and asks whether

∑︀𝑛
𝑖=1

√
𝑎𝑖 ≤ 𝑘. The question of whether Square Root Sum is in NP

has been open for more than 40 years ([GGJ76, Pap77, Tiw92]). Furthermore, since there exist
Brouwer functions that only have irrational fixed points, it is not expected that FIXP will be
contained in FNP. In [DFMS21], it was shown that exact consensus halving is FIXP-hard.

Our contribution. We study the computational complexity of the straight-cut and square-
cut pizza sharing problems, and we specifically study the cases where (i) all mass distributions
are unions of weighted polygons (continuous version), and (ii) we are given unweighted point
sets (discrete version). We show that it is PPA-complete to find approximate solutions for the
continuous and discrete versions of the two problems, while their decision variants are NP-
complete. Also, for the continuous version of the square-cut pizza sharing problem, we show
that finding an exact solution is FIXP-hard, while its decision variant is ∃R-complete.

1It has also been shown by [CS17] that the Borsuk-Ulam theorem is equivalent to the ham sandwich theorem
which states that the volumes of any 𝑛 compact sets in R𝑛 can always be simultaneously bisected by an (𝑛− 1)-
dimensional hyperplane.
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To the best of our knowledge, currently, there are no problems in computational geometry
with PPA-hardness results other than discrete ham sandwich [FRG19]. We also note that pizza
sharing problems do not need a circuit as part of the input, which makes them in some sense more
“natural” than problems that are specified by circuits. Other known PPA-hard problems of this
kind are one-dimensional, such as consensus halving [FHSZ20] and necklace splitting [FRG19],
or problems with unbounded dimensions, such as discrete ham sandwich. Here we show the first
known PPA-hardness result for a “natural” two-dimensional problem. It is worth mentioning
that shortly after the appearance of our result, Schnider in [Sch21] proved the following: (a)
the discrete version of straight-cut pizza sharing where each mass is represented by unweighted
points is PPA-complete, and (b) for a more general input representation than ours, to find an
exact solution in its continuous version is FIXP-hard, and the decision variant is ∃R-complete.

For both the straight-cut and the square-cut pizza sharing problems, namely 𝜀-Straight-
Pizza-Sharing and 𝜀-Square-Pizza-Sharing, we show that it is PPA-complete to find an
𝜀-approximate solution for any constant 𝜀 ∈ (0, 1/5). This holds even when 𝑛 + 𝑛1−𝛿 lines
are permitted in a straight-cut pizza sharing instance with 2𝑛 mass distributions, and when
𝑛− 1 + 𝑛1−𝛿 turns of the square-cut path are permitted in a square-cut pizza sharing instance
with 𝑛 mass distributions, for any constant 𝛿 ∈ (0, 1]. Furthermore, the PPA-hardness holds
even when each mass distribution is uniform over polynomially many axis-aligned rectangles,
and there is no overlap between any two mass distributions. The inapproximability for such
high values of 𝜀 is possible due to a recent advancement in the inapproximability of consensus
halving [DFHM25].

The PPA membership of straight-cut and square-cut pizza sharing holds even for inverse
polynomial and inverse exponential 𝜀, respectively, and for weighted polygons with holes (ar-
guably, a very general type of allowed input). To prove the PPA membership of the square-cut
pizza sharing problem, we first turn the original topological proof by [KRPS16] into an algorith-
mic one. Furthermore, we show that there is a constant 𝜀 > 0 such that it is NP-complete to
decide whether an 𝜀-approximate solution of straight-cut pizza sharing with at most 𝑛− 1 lines
(resp. an 𝜀-approximate solution of square-cut pizza sharing with at most 𝑛 − 2 turns) exists.
All of these results hold also for the discrete version of the problems.

We then turn our attention to the computational complexity of finding an exact solution
to the square-cut problem. We show that the problem of finding a Square-path with at most
𝑛 − 1 turns that exactly bisects 𝑛 masses is FIXP-hard. This hardness result applies even if
all mass distributions are unions of weighted axis-aligned squares and right-angled triangles.
In order to prove this, we reduce from the problem of finding an exact Consensus-Halving
solution [DFMS21]. Regarding the decision variant of the square-cut problem, we show that
deciding whether there exists an exact solution with at most 𝑛− 2 turns is ∃R-complete, where
∃R consists of every decision problem that can be formulated in the existential theory of the
reals (see Section 2 for its definition). All of our hardness results are summarized in Table 1 and
Table 2.

From a technical viewpoint, our PPA membership result for straight-cut pizza sharing is
based on a reduction that transforms mass distributions to point sets in general position and
then employs a recent result by [Sch21]. For the membership results of square-cut pizza sharing,
our proof strategy is different, since we are able to directly reduce it to the 𝜀-Borsuk-Ulam
problem (see Definition 26). Our hardness results are obtained by reducing from the consensus
halving problem, historically the first fair-division problem shown to be PPA-complete [FRG18].

Further related work. Since mass partitions lie in the intersection of topology, discrete
geometry, and computer science there are several surveys on the topic; [BFHZ18, DLGMM19,
Mat08, Živ17] focus on the topological point of view, while [AE+99, Ede12, KK03, Mat02]
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Hardness 𝜀 Lines Pieces Overlap Theorem
Point sets

PPA 1/5 𝑛+ 𝑛1−𝛿 - - 14
NP 𝑐 𝑛− 1 - - 16

Mass distributions
PPA 1/5 𝑛+ 𝑛1−𝛿 poly(𝑛) 1 6
NP 𝑐 𝑛− 1 poly(𝑛) 1 7

Table 1: A summary of our hardness results for 𝜀-Straight-Pizza-Sharing. Here, 𝑐 and 𝛿
are absolute, positive constants. “Lines” refers to the number of cut-lines allowed in a solution.
“Pieces” refers to the maximum number of distinct polygons that define every mass distribution.
“Overlap” refers to the maximum number of different mass distributions allowed to contain any
point of [0, 1]2.

Hardness 𝜀 Turns Pieces Overlap Theorem
Point sets

PPA 1/5 𝑛− 1 + 𝑛1−𝛿 - - 15
NP 𝑐 𝑛− 2 - - 17

Mass distributions
PPA 1/5 𝑛− 1 + 𝑛1−𝛿 poly(𝑛) 1 9
NP 𝑐 𝑛− 2 poly(𝑛) 1 10
FIXP 0 𝑛− 1 6 3 19
∃R 0 𝑛− 2 6 3 21

Table 2: A summary of our hardness results for 𝜀-Square-Pizza-Sharing. Here, “turns” refers
to the number of turns a solution (Square-path) is allowed to have. The definitions of 𝑐, 𝛿 and
the semantics of “pieces”, and “overlap” are the same as those of Table 1.
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focus on computational aspects. Consensus halving [SS03] is the mass partition problem that
received the majority of attention in Economics and Computation so far [DFH21, FRFGZ18,
FRG19, FHSZ20, FRHSZ21]. Recently, Haviv [Hav22] showed PPA-completeness of finding fair
independent sets on cycle graphs, having as a starting point the latter problem.

2 Preliminaries

Mass distributions and point sets. A mass distribution 𝜇 on [0, 1]2 is a measure on the
plane such that all open subsets of [0, 1]2 are measurable, 0 < 𝜇

(︀
[0, 1]2

)︀
< ∞, and 𝜇(𝑆) = 0

for every subset of [0, 1]2 with dimension lower than 2. For any given 𝑑 ∈ N* we denote
[𝑑] := {1, 2, . . . , 𝑑}, and we denote by

⨆︀
the union of disjoint sets. For every 𝑆 ∈ [0, 1]2 we denote

by area(𝑆) the Lebesgue measure of 𝑆 on R2, i.e., the area of 𝑆. Let a mass distribution 𝜇 be
described by a finite set of non-overlapping regions 𝑎1, 𝑎2, . . . , 𝑎𝑑, i.e.,

⨆︀𝑑
𝑗=1 𝑎𝑗 = [0, 1]2, such that∑︀𝑑

𝑗=1 𝜇(𝑎𝑗) = 𝜇
(︀
[0, 1]2

)︀
. Then, 𝜇 is piece-wise uniform if for every 𝑗 and every 𝑆 ⊆ 𝑎𝑗 it holds

that 𝜇(𝑆) = 𝑤𝑗 · area(𝑆) for some weight 𝑤𝑗 > 0 independent of 𝑆. When additionally 𝑤𝑗 = 𝑤𝑘

for all 𝑗, 𝑘 ∈ [𝑑] then the mass distribution is called uniform. The support of mass distribution
𝑖 ∈ [𝑛], denoted by 𝑠𝑢𝑝𝑝(𝑖), is the area 𝐴𝑖 ⊆ [0, 1]2 which has the property that for every 𝑆 ⊆ 𝐴𝑖

with area(𝑆) > 0 we have 𝜇𝑖(𝑆) > 0. Let 𝑁 := {𝐼 ⊆ [𝑛] :
⋂︀

𝑖∈𝐼 𝑠𝑢𝑝𝑝(𝑖) ̸= ∅}. A set of mass
distributions 𝜇1, . . . , 𝜇𝑛, or colours, has overlap 𝑘 if max𝐼∈𝑁 |𝐼| = 𝑘. Finally, a mass distribution
is normalised if 𝜇([0, 1]2) = 1. For ease of presentation, all our additive approximation results
on the continuous versions of the problems assume that all mass distributions are normalised,
which is without loss of generality.

A point set 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑑) on [0, 1]2 consists of 𝑑 ∈ N* many non-overlapping point
masses. Throughout this work, the points that will be considered in the discrete versions of our
problems have the same finite weight, so when we partition them (by partitioning [0, 1]2), it
suffices to measure the cardinality of the points in each part.

Set of straight-cuts. A set of straight-cuts, or cut-lines, or simply lines defines subdivisions
of the plane 𝑅. Figure 1a shows an example of a set of straight-cuts. Each line creates two
half-spaces, and arbitrarily assigns number “0” to one and “1” to the other. A subdivision of
𝑅 is labeled “+” (and belongs to 𝑅+) if its parity is odd (according to the labels given to the
half-spaces) and “−” (and belongs to 𝑅−) otherwise. Observe that by flipping the numbers of
two half-spaces defined by a line, we flip all the subdivisions’ labels. Thus, there are only two
possible labelings of the subdivisions.

Square-cut-path. A square-cut-path, denoted for brevity Square-path, is a non-crossing
directed path that is formed only by horizontal and vertical line segments and in addition it
is allowed to “wrap around” in the horizontal dimension. Figure 1b and Figure 1c show two
examples of Square-paths. A turn of the path is where a horizontal segment meets with a
vertical segment. A Square-path is 𝑦-monotone if all of its horizontal segments are monotone
with respect to the 𝑦 axis. Any Square-path partitions the plane 𝑅 into two regions, namely,
𝑅+ and 𝑅−, so that the following holds: for any two points of the plane, if the straight line that
connects them intersects once the path, then the two points have opposite labels.2

Pizza sharing. A set of lines (resp. a Square-path) 𝜀-bisects a mass distribution 𝜇, if
|𝜇(𝑅+) − 𝜇(𝑅−)| ≤ 𝜀. It simultaneously 𝜀-bisects a set of mass distributions 𝜇1, . . . , 𝜇𝑛 if
|𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀 for every 𝑖 ∈ [𝑛].

2Notice that a path can pass multiple times from the same point.
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Definition 2. For any 𝑛 ≥ 1, the problem 𝜀-Straight-Pizza-Sharing is defined as
follows:

• Input: 𝜀 ≥ 0, and mass distributions 𝜇1, 𝜇2, . . . , 𝜇2𝑛 on [0, 1]2.

• Output: A partition of [0, 1]2 to 𝑅+ and 𝑅− using at most 𝑛 lines such that for each
𝑖 ∈ [2𝑛] it holds that |𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀.

Definition 3. For any 𝑛 ≥ 1, the problem 𝜀-Square-Pizza-Sharing is defined as follows:

• Input: 𝜀 ≥ 0, and mass distributions 𝜇1, 𝜇2, . . . , 𝜇𝑛 on [0, 1]2.

• Output: A partition of [0, 1]2 to 𝑅+ and 𝑅− using a Square-path with at most 𝑛−1
turns such that for each 𝑖 ∈ [𝑛] it holds that |𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀.

In [HK20] and [KRPS16] it was proved that 𝜀-Straight-Pizza-Sharing and 𝜀-Square-
Pizza-Sharing, respectively, always admit a solution for arbitrary absolutely continuous masses
with respect to the Lebesgue measure (i.e., area), and for any 𝜀 ≥ 0 (see Theorem 1 of the former,
and Theorem 2.4 of the latter work). While the aforementioned results hold for such general
measures, for the computational problems 𝜀-Straight-Pizza-Sharing and 𝜀-Square-Pizza-
Sharing we need a standardized way to describe the input, and therefore restrict to particular
classes of measures. We consider the class of mass distributions that are defined by weighted
simple polygons with holes. This class consists of mass distributions that can be succinctly
represented in the input of a Turing machine, while at the same time provide great expressive
power.

In particular, we will use the standard representation of 2-dimensional simple polygons in
computational geometry problems, that is, a directed chain of points3. Consider a polygon that
is defined by 𝑘 points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖, 𝑦𝑖 ∈ [0, 1] ∩ Q, for 𝑖 ∈ [𝑘], which form a directed
chain 𝐶 = (𝑝1, . . . , 𝑝𝑘). This chain represents a closed boundary defined by the line segments
(𝑝𝑖, 𝑝𝑖+1) for 𝑖 ∈ [𝑘− 1] and a final one (𝑝𝑘, 𝑝1). Since we consider polygons with holes, we need
a way to distinguish between the polygons that define a boundary whose interior has strictly
positive weight and polygons that define the boundary of the holes (whose interior has zero
weight). We will call the former solid and the latter hollow polygon. To distinguish between the
two, we define a solid polygon to be represented by directed line segments with counterclockwise
orientation, while a hollow polygon to be represented similarly but with clockwise orientation.
Furthermore, each solid polygon 𝐶𝑠, its weight 𝑤 and its 𝑟 ≥ 0 holes 𝐶ℎ1 , 𝐶ℎ2 , . . . , 𝐶ℎ𝑟 in the
interior, are grouped together in the input to indicate that all these directed chains of points
represent a single polygon (𝑤,𝐶𝑠, 𝐶ℎ1 , . . . , 𝐶ℎ𝑟).

Although it is not hard to construct instances of 𝜀-Straight-Pizza-Sharing (resp. 𝜀-
Square-Pizza-Sharing) where 𝑛 lines (resp. 𝑛− 1 turns for any Square-path) are necessary
in order to constitute a solution, there might be cases where a solution can be achieved with
fewer lines (resp. a Square-path with fewer turns). Hence, we also study the decision variant
of these problems, in which we ask whether we can find a solution with at most 𝑘 lines (resp. 𝑘
turns), where 𝑘 < 𝑛 (resp. 𝑘 < 𝑛− 1). Note also that, due to the normalization assumption of
the considered measures, 𝜀 ∈ [0, 1].

Consensus halving. The main hardness results of this work are proved by reductions from
the consensus halving problem.

3From this point on, whenever we refer to polygons we will implicitly assume that they are simple polygons.
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In the 𝜀-Consensus-Halving problem, there is a set of 𝑛 agents with valuation density
functions 𝑣𝑖 : [0, 1] → R≥0, 𝑖 ∈ [𝑛]. For any given interval [𝑎, 𝑏], let us denote 𝑣𝑖([𝑎, 𝑏]) :=∫︀ 𝑏
𝑎 𝑣𝑖(𝑥) 𝑑𝑥. The goal is to find a partition of the [0, 1] interval into subintervals labelled either
“+” or “−”, using at most 𝑛 cuts. This partition should satisfy that for every agent 𝑖, the
total value for the union of subintervals ℐ+ labelled “+” and the total value for the union of
subintervals ℐ− labelled “−” is the same up to 𝜀, i.e., |𝑣𝑖(ℐ+) − 𝑣𝑖(ℐ−)| ≤ 𝜀. Furthermore, in
order for 𝜀 to be meaningful, we consider normalized valuation functions, that is, 𝑣𝑖([0, 1]) = 1
for all 𝑖 ∈ [𝑛], which implies that 𝜀 ∈ [0, 1]. In our results, we will use the following types of
valuation functions (see Figure 2 for a depiction).

• 𝑘-block : consists of at most 𝑘 non-overlapping (but possibly adjacent) intervals
[𝑎ℓ1, 𝑎

𝑟
1], . . . , [𝑎

ℓ
𝑘, 𝑎

𝑟
𝑘] where interval [𝑎ℓ𝑗 , 𝑎

𝑟
𝑗 ] has density 𝑐𝑗 > 0, and 0 otherwise. So,

𝑣([𝑎ℓ𝑗 , 𝑥]) = (𝑥− 𝑎ℓ𝑗) · 𝑐𝑗 for every 𝑥 ∈ [𝑎ℓ𝑗 , 𝑎
𝑟
𝑗 ].

• 𝑘-block uniform: 𝑘-block, where the density of every interval is 𝑐 > 0 (same for all blocks).

• 𝑘-block-triangle: union of a 𝑘-block valuation function and an extra interval [𝑎ℓ1, 𝑎𝑟1], where
interval [𝑎ℓ1, 𝑎𝑟1] has density 2·(𝑥−𝑎ℓ1)·𝑐1 for some 𝑐1 > 0, therefore 𝑣([𝑎ℓ1, 𝑥]) = (𝑥−𝑎ℓ1)2 ·𝑐1
for every 𝑥 ∈ [𝑎ℓ1, 𝑎

𝑟
1]. Also, (𝑎ℓ1, 𝑎𝑟1) ∩ [𝑎ℓ𝑗 , 𝑎

𝑟
𝑗 ] = ∅ for every 𝑗 ∈ [𝑘].

aℓ1 ar1 aℓ2 ar2

(a) 2-block valuation

aℓ1 ar1 aℓ2 ar2

(b) 2-block uniform valuation

aℓ1 ar1 aℓ2 ar2

(c) 1-block-triangle valuation

Figure 2

Complexity classes. 𝜀-Straight-Pizza-Sharing and 𝜀-Square-Pizza-Sharing are exam-
ples of total problems, which are problems that always have a solution. The complexity class
TFNP (Total Function NP) defined in [MP91], contains all total problems whose solutions can
be verified in polynomial time.

In this work, we will focus on a well-known subclass of TFNP, namely PPA, defined by
Papadimitriou [Pap94]. This class captures problems whose totality is guaranteed by the parity
argument on undirected graphs: if there is an odd-degree vertex then there is another one. In
the typical PPA problem, EndOfUndirectedLine, we are given a Boolean circuit 𝑁 with
input of size 𝑛 and output of size 2𝑛, and the circuit has a poly(𝑛) size description. The input
represents the identity of a vertex and the output represents the identities of (at most) two other
vertices. If for two vertices 𝑖, 𝑗 we have 𝑗 ∈ 𝑁(𝑖) and 𝑖 ∈ 𝑁(𝑗), then we consider an undirected
edge between them. This implies an undirected graph structure where the maximum degree of
any vertex is 2. The problem is, given a vertex of degree 1, to find any other vertex of degree
1. Now notice that the graph size is 2𝑛, whereas the input is poly(𝑛) large, therefore, common
algorithms that would solve the problem in case the graph was described explicitly are no longer
useful. As discussed earlier, since the definition of PPA, many problems have been shown to be
complete for the class, yet most of them require a circuit description in their input. The more
interesting cases of PPA-completeness are for problems with more “natural” inputs, in the sense
that they require no such circuit description. The pizza sharing problems we study here are
among those ones.

8



The complexity class ∃R consists of all decision problems that can be formulated in the
existential theory of the reals (ETR) [Mat14, Sch09]. In other words, problems that can be
written in ETR form: ∃𝑃 ∈ R𝑚 · Φ, where Φ is a Boolean formula using connectives {∧,∨,¬}
over polynomials with domain R𝑚 for some 𝑚 ∈ N compared with the operators {<,≤,=,≥, >}.
It is known that NP ⊆ ∃R ⊆ PSPACE [Can88], and it is generally believed that ∃R is distinct
from the other two classes. The class FETR (Function ∃R) consists of all search problems whose
decision variant is in ∃R. The class TFETR is the subclass of FETR which contains only problems
that admit a solution (i.e. all the instances of their decision variant are “yes” instances). Both
FETR and TFETR were introduced in [DFMS21] as the natural analogues of FNP and TFNP
in the real RAM model of computation. For a definition of the real RAM model we refer the
reader to the detailed work of Erickson, van der Hoog, and Miltzow [EvM20].

In this work, our focus regarding complexity classes of TFETR will be on the class FIXP. FIXP
was defined in [EY10] and captures problems whose totality is guaranteed by Brouwer’s fixed
point theorem [Bro11]. An instance of a typical problem in FIXP consists of the description
of a continuous function 𝑔 : 𝐷 → 𝐷, where 𝐷 is a nonempty, compact, and convex set. 𝑔
is represented by an algebraic circuit, and a solution of the instance is any 𝑥 ∈ 𝐷 such that
𝑔(𝑥) = 𝑥. An algebraic circuit is a circuit that operates on real numbers, and uses gates from
the set {𝑐,+,−,×𝑐,×,max,min}; a 𝑐-gate outputs the constant 𝑐, a ×𝑐-gate multiplies the input
by a constant 𝑐, and all other gates behave according to their standard definitions, where 𝑐 ∈ Q.
It is worth noting that, since each of these gates’ output is a continuous function of its input,
any function 𝑔 constructed using those gates is continuous on 𝐷.

3 Hardness results

Here we show all hardness results regarding the exact and approximate versions of our pizza
sharing problems for mass distributions, as well as for point sets. For the PPA- and NP-hardness
results on mass distributions, the instances we construct are such that there is no overlap between
any two mass distributions. Notice that the case of non-overlapping mass distributions is the
most simple type of an instance, since we can easily reduce it to one where an arbitrarily large
number of masses overlap.4

Our PPA-hardness proofs of the continuous versions of 𝜀-Straight-Pizza-Sharing and
𝜀-Square-Pizza-Sharing are via reductions from the 𝜀-Consensus-Halving problem (The-
orem 6 and Theorem 9, respectively). Consequently, by a general construction (Lemma 13),
we reduce those to their discrete versions to get PPA-hardness. We also show that the decision
variants of the approximation problems are NP-hard by using our PPA-hardness constructions
to reduce from the respective decision variant of Consensus-Halving from [FRFGZ18] (The-
orem 7 and Theorem 10, respectively), and the NP-hardness is attained in the discrete prob-
lems too. Finally, for the exact version of Square-Pizza-Sharing, via reductions from exact
Consensus-Halving, we show that the problem is FIXP-hard (Theorem 19), while its decision
variant is ∃R-hard (Theorem 21).

4Given an 𝜀-Straight-Pizza-Sharing (resp. 𝜀-Square-Pizza-Sharing) instance with 2𝑛 (resp. 𝑛) mass
distributions, we can pick an arbitrary distribution 𝑖 and create an extra (2𝑛+1)-st (resp. (𝑛+1)-st) distribution
by copying 𝑖. Then, a solution to the resulting instance is a solution to the initial instance, and vice versa. Notice
that in the latter instance at least 2 mass distributions overlap, and we can repeat this “copying” procedure as
many times as needed to achieve any number of overlapping distributions.
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3.1 Hardness of approximate Straight-Pizza-Sharing

We start by proving that 𝜀-Straight-Pizza-Sharing is PPA-hard for any 𝜀 < 1/5, even for
very simple mass distributions. We prove our result via a reduction from 𝜀-Consensus-Halving
with 𝑘-block valuations, which for the special case of 3-block uniform valuations has been shown
to be PPA-complete [DFHM25]. In addition, we explain how to combine the machinery of our
reduction with that of [FRFGZ18] in order to get NP-hardness for 𝜀-Straight-Pizza-Sharing,
where 𝜀 > 0 is a small constant.

The reduction. We reduce from Consensus-Halving with 2𝑛 agents, and for each agent
we create a corresponding mass in Straight-Pizza-Sharing. Firstly, we finely discretize the
[0, 1] interval into blocks and we place the blocks on 𝑦 = 𝑥2, where 𝑥 ≥ 0. So, the [0, 1] interval
corresponds to a part of the quadratic equation. This guarantees that every line can cut this
“bent” interval at most twice and in addition the part of each mass that is in 𝑅+ is almost the
same as value of the corresponding agent for the piece of [0, 1] labelled with “+”.

Next we show how to construct an instance 𝐼𝑃 of (𝜀− 𝜀′)-Straight-Pizza-Sharing with
2𝑛 mass distributions, for any constant 𝑟 ≥ 1, and 1/𝑛𝑟 ≤ 𝜀′ < 𝜀 ≤ 1, given an instance 𝐼CH of
𝜀-Consensus-Halving with 2𝑛 agents with 𝑘-block valuations.

Let 𝑐max := max𝑖∈[2𝑛],𝑚∈[𝑘] 𝑐𝑖𝑚, where 𝑐𝑖𝑚 is the value density of agent 𝑖’s 𝑚-th block in
𝐼CH, and observe that 𝑐max ≥ 1 since the total valuation of any agent over [0, 1] is 1. In what
follows, it will help us to think of the interval [0, 1] in 𝐼CH as being discretized in increments
of 𝑑 := 1

⌈8·𝑛·𝑐max/𝜀′⌉ . We refer to the subinterval [(𝑗 − 1) · 𝑑, 𝑗 · 𝑑] as the 𝑗-th 𝑑-block of interval
[0, 1] in 𝐼CH, for 𝑗 ∈ [1/𝑑].

We now describe the instance 𝐼𝑃 . We consider two kinds of square tiles; 1/𝑑 large square
tiles of size 𝑑2

24 ×
𝑑2

24 , each of which contains 2𝑛 smaller square tiles of size 1
2𝑛

𝑑2

24 ×
1
2𝑛

𝑑2

24 on its
diagonal. We will call the former type big-tile and denote it by 𝑡𝑗 and the latter one small-tile
and denote it by 𝑡𝑖𝑗 for some 𝑖 ∈ [2𝑛], 𝑗 ∈ [1/𝑑].

For every agent 𝑖 ∈ [2𝑛] of 𝐼CH we will create a uniform mass distribution 𝜇𝑖 that consists of
at most 1/𝑑 many axis-aligned small-tiles. Each big-tile 𝑡𝑗 is centered at ( 𝑗𝑑2 ,

𝑗2𝑑2

4 ), 𝑗 ∈ [1/𝑑], and
in it, each small-tile 𝑡𝑖𝑗 , 𝑖 ∈ [2𝑛], belonging to mass distribution 𝜇𝑖 has its bottom left corner
at
(︁
𝑗𝑑
2 −

𝑑2

48 + (𝑖−1)𝑑2

48𝑛 , 𝑗
2𝑑2

4 −
𝑑2

48 + (𝑖−1)𝑑2

48𝑛

)︁
. Each small-tile 𝑡𝑖𝑗 contains total mass (belonging

to 𝜇𝑖) of 𝑣𝑖𝑗 · 2
𝑛

(︁
𝑑2

24

)︁2
, where 𝑣𝑖𝑗 is the total value that agent 𝑖 has for the 𝑗-th 𝑑-block in

𝐼CH. Observe that, by definition, we have 𝑣𝑖𝑗 ≤ 𝑑 · 𝑐max ≤ 𝜀′

8𝑛 < 1
8𝑛 , where the last inequality

comes from the fact that 𝜀′ < 1, and therefore 𝑣𝑖𝑗 · 2
𝑛

(︁
𝑑2

24

)︁2
fits inside the small tile of size

1
2𝑛

𝑑2

24 ×
1
2𝑛

𝑑2

24 . In particular, the mass inside 𝑡𝑖𝑗 has width 1
2𝑛

𝑑2

24 and height 𝑣𝑖𝑗 · 4𝑑
2

24 . Finally,
it is easy to check that all big-tiles are in [0, 1]2: by construction, the big-tiles are placed such
that the 1-st big-tile’s bottom-left corner has the smallest 𝑥- and 𝑦-coordinates, while the 1/𝑑-
th big-tile’s top-right corner has the largest 𝑥- and 𝑦-coordinates among points that belong to
mass distributions of 𝐼𝑃 . The aforementioned points’ coordinates are

(︁
𝑑
2 −

𝑑2

48 ,
𝑑2

4 −
𝑑2

48

)︁
, and(︁

1
2 −

𝑑2

48 + 𝑑2

24 ,
1
4 −

𝑑2

48 + 𝑑2

24

)︁
=
(︁
1
2 + 𝑑2

48 ,
1
4 + 𝑑2

48

)︁
, respectively, and both are in [0, 1]2 since 𝑑 ≤ 1.

Figure 3 and Figure 4 depict our construction.
Next, we prove the following auxiliary claim.

Claim 4. Any straight line in [0, 1]2 cannot have distance at most 𝑑2

24 with more than two centers
of big-tiles.

Proof. For the sake of contradiction, suppose there are three tiles, 𝑡𝑎, 𝑡𝑏, 𝑡𝑐, with centers 𝑝𝑗 =
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jd
2

(j+1)d
2

(j+2)d
2

j2d2

4

(j+1)2d2

4

(j+2)2d2

4

Figure 3: Placing the big-tiles on the 𝑦 = 𝑥2 curve. The 𝑗-th, (𝑗 + 1)-st and (𝑗 + 2)-nd big-tiles
are centered on the curve. Their size is small enough to prevent any straight line (red/dashed)
from intersecting more than two big-tiles.

(a) The (𝑗+1)-st (left) and (𝑗+2)-nd
𝑑-block (right) of the Consensus-
Halving instance.

(b) The (𝑗+1)-st (left) and the (𝑗+2)-nd (right) big-tile of the
Straight-Pizza-Sharing and the Square-Pizza-Sharing
instance with their small-tiles. The small-tiles contain the mass
distributions of the (𝑗 + 1)-st and (𝑗 + 2)-nd 𝑑-block, respec-
tively.

Figure 4: The construction for a part of an instance with four mass distributions.
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(𝑥𝑗 , 𝑦𝑗), 𝑗 ∈ {𝑎, 𝑏, 𝑐}, such that every 𝑝𝑗 has distance at most 𝑑2

24 from a line ℓ. Then, let us move
ℓ in parallel until it passes through 𝑝𝑎. Next, rotate the line around 𝑝𝑎 until it passes through
𝑝𝑏 as well. These two movements of ℓ resulted in a new line ℓ′ whose distance from 𝑝𝑐 is at most
3 · 𝑑224 = 𝑑2

8 , since each movement costed an extra distance of at most 𝑑2

24 .
The distance between ℓ′ and 𝑝𝑐 is

|(𝑦𝑏 − 𝑦𝑎)(𝑥𝑎 − 𝑥𝑐)− (𝑦𝑎 − 𝑦𝑐)(𝑥𝑏 − 𝑥𝑎)|√︀
(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2

=

⃒⃒
(𝑑2/4)(𝑎− 𝑐)(𝑏− 𝑐)

⃒⃒√︀
1 + (𝑑2/4)(𝑎+ 𝑏)

,

where the equality comes after substituting the coordinates of the centers of 𝑡𝑎, 𝑡𝑏 and 𝑡𝑐 as
defined by our construction and simplifying the expression. Now recall that 𝑎, 𝑏, 𝑐 ∈ [1/𝑑], which
means that they are integers, and additionally, pairwise different, since otherwise they would be
less than three distinct points. This means that we can bound from below the minimum distance
between ℓ′ and 𝑝𝑐 for |𝑎 − 𝑐| = |𝑏 − 𝑐| = 1 and 𝑎 = 𝑏 = 1/𝑑. In other words, the minimum
distance between ℓ′ and 𝑝𝑐 is at least

𝑑2/4√︀
1 + (𝑑2/4)(2/𝑑)

=
𝑑2/4√︀
1 + 𝑑/2

>
𝑑2

8
,

a contradiction.

Now we are ready to prove the following.

Lemma 5. Fix constants 𝛿 ∈ (0, 1], 𝑟 ≥ 1, and let 1/𝑛𝑟 ≤ 𝜀′ < 𝜀 ≤ 1. Let ℒ = {ℓ1, . . . , ℓ𝑚} be
a set of lines, where 𝑚 ≤ 𝑛 + 𝑛1−𝛿. If ℒ is a solution to (𝜀 − 𝜀′)-Straight-Pizza-Sharing
instance 𝐼𝑃 , then we can find in polynomial time a solution to 𝜀-Consensus-Halving instance
𝐼CH with at most 2(𝑛+ 𝑛1−𝛿) cuts.

Proof. We will first prove that there is no line that intersects more than two big-tiles of 𝐼𝑃 . This
comes almost directly from Claim 4. In particular, recall that each big-tile has size 𝑑2

24 ×
𝑑2

24 ,
therefore it fits inside a circle with radius 𝑑2

24 , whose center is the barycenter of the big-tile. If
any line could intersect more than two big-tiles, then it would intersect also their corresponding
circles, which means that it would have distance at most 𝑑2

24 , contradicting Claim 4.
Now, given a solution of 𝐼𝑃 , we define the cuts and labels for the Consensus-Halving

instance, 𝐼CH. We consider the big-tiles of 𝐼𝑃 in sequential order and we add one cut at 𝑗 · 𝑑
whenever we find two big-tiles 𝑡𝑗 and 𝑡𝑗+2 that belong to different regions, i.e. “+”, “−”, or vice
versa. This change of region can happen at most 2(𝑛 + 𝑛1−𝛿) times. Hence, we have at most
2(𝑛+𝑛1−𝛿) cuts in the instance 𝐼CH. Each 𝑑-block of 𝐼CH follows the label of its corresponding
big-tile of the solution of 𝐼𝑃 , except for those that correspond to intersected big-tiles. The latter
𝑑-blocks are arbitrarily given one of the two labels.

The aforementioned arbitrary labeling of the intersected big-tiles will cause some extra dis-
crepancy in the solution of 𝐼CH. In particular, each such big-tile will be adding to each valua-
tion 𝑣𝑖, 𝑖 ∈ [2𝑛] of 𝐼CH, discrepancy 2 · 𝑣𝑖𝑗 ≤ 2 · 𝑑 · 𝑐max ≤ 𝜀′

4𝑛 , by construction of 𝐼CH. Since
|ℒ| ≤ 𝑛 + 𝑛1−𝛿, and each line of ℒ can intersect two big-tiles, all lines of ℒ collectively add
discrepancy 𝑣𝑖 of value at most 2(𝑛+ 𝑛1−𝛿) · 𝜀′

4𝑛 ≤ 𝜀′.
Let us denote by ℐ+ and ℐ− the regions in 𝐼CH as translated from the solution of 𝐼𝑃 according

to the aforementioned process. Then, |𝑣𝑖(ℐ+)−𝑣𝑖(ℐ−)| ≤ |𝜇𝑖(𝑅
+)−𝜇𝑖(𝑅

−)|+𝜀′ ≤ (𝜀−𝜀′)+𝜀′ = 𝜀.
Therefore, this is a solution to 𝜀-Consensus-Halving.

Finally, notice that the construction of 𝐼𝑃 from 𝐼CH is a polynomial time reduction. In
particular, since 𝜀′ ≥ 1/𝑛𝑟 for some constant 𝑟 ≥ 1, we have that 1/𝑑 = ⌈8 · 𝑛 · 𝑐max/𝜀

′⌉ ≤
⌈8 · 𝑛 · 𝑐max · 𝑛𝑟⌉ is a value polynomial in the input size, and the creation of each of the 1/𝑑
big-tiles can be done in polynomial time.
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This, together with the fact that 𝜀-Consensus-Halving is PPA-hard for any 𝜀 < 1/5, due
to [DFHM25], implies the main theorem of this section.

Theorem 6. 𝜀-Straight-Pizza-Sharing with 2𝑛 mass distributions is PPA-hard for any
constant 𝜀 < 1/5, even when 𝑛+ 𝑛1−𝛿 lines are allowed for any given constant 𝛿 ∈ (0, 1], every
mass distribution is uniform over polynomially many rectangles, and there is no overlap between
any two mass distributions.

We will now shift our attention to studying the decision variant of the problem, where we
are asking to find a solution that uses at most 𝑛 − 1 straight lines, and notice that there is no
guarantee for such a solution. We employ the NP-hard instances of 𝜀-Consensus-Halving for
their constant 𝜀 from [FRFGZ18], and reduce them according to the above reduction procedure
to (𝜀 − 𝜀′)-Straight-Pizza-Sharing instances for some 𝜀′ that is inverse polynomial in the
input size, e.g., 𝜀′ = 1/𝑛2. This gives the following.

Theorem 7. There exists a constant 𝜀 > 0 for which it is NP-hard to decide if an 𝜀-Straight-
Pizza-Sharing instance with 2𝑛 mass distributions admits a solution with at most 𝑛− 1 lines,
even when every mass distribution is uniform over polynomially many rectangles, and there is
no overlap between any two mass distributions.

3.2 Hardness of approximate Square-Pizza-Sharing

In this section, we prove hardness results for 𝜀-Square-Pizza-Sharing. We provide a reduc-
tion from 𝜀-Consensus-Halving with 𝑘-block valuations, which was shown to be PPA-complete
in [DFHM25] for any constant 𝜀 < 1/5 even for 3-block uniform valuations. Also, the machin-
ery that we present, combined with the reduction by [FRFGZ18], implies NP-hardness for the
decision variant of 𝜀-Square-Pizza-Sharing, where 𝜀 > 0 is a small constant.

The reduction. We reduce from a general 𝜀-Consensus-Halving instance to an 𝜀-Square-
Pizza-Sharing instance, and the idea is to create a mass for each agent. For any constant
𝑟 ≥ 1, and 1/𝑛𝑟 ≤ 𝜀′ < 𝜀 ≤ 1, given an instance 𝐼CH of 𝜀-Consensus-Halving with 𝑛 agents
and 𝑘-block valuations we will show a polynomial time construction to an (𝜀 − 𝜀′)-Square-
Pizza-Sharing instance 𝐼SC.

For our construction, we will use the same components as those in the proof of Lemma 5.
In particular, let 𝑐max := max𝑖∈[𝑛],𝑚∈[𝑘] 𝑐𝑖𝑚, where 𝑐𝑖𝑚 is the value density of agent 𝑖’s 𝑚-th
block in 𝐼CH (and again note that 𝑐max ≥ 1 since the total valuation of the agent over [0, 1]
is 1). Similarly to the aforementioned proof, we will discretize the [0, 1] interval of 𝐼CH in
increments of 𝑑 := 1

⌈4·𝑛·𝑐max/𝜀′⌉ . Also, let us restate that for any given 𝑗 ∈ [1/𝑑], the subinterval
[(𝑗 − 1) · 𝑑, 𝑗 · 𝑑] is called 𝑗-th 𝑑-block of interval [0, 1] in 𝐼CH.

We will be using the same gadgets that were constructed for the proof of Lemma 5, namely
the big-tiles, which contain small-tiles. In particular, we have 1/𝑑 square big-tiles of size 𝑑× 𝑑,
each of which contains 𝑛 square small-tiles of size 𝑑

𝑛 ×
𝑑
𝑛 on its diagonal. For any 𝑖 ∈ [𝑛],

𝑗 ∈ [1/𝑑], we denote them by 𝑡𝑗 and 𝑡𝑖𝑗 , respectively.
In this construction, however, the positioning of big-tiles will be different than that of the

aforementioned proof. In particular, we will be placing them on the diagonal of [0, 1]2 as shown
in Figure 4b. For every agent 𝑖 we will create a uniform mass distribution 𝜇𝑖 that consists of at
most 1/𝑑 many axis-aligned small-tiles. For each 𝑗 ∈ [1/𝑑], the bottom-left corner of big-tile 𝑡𝑗
is at ((𝑗 − 1)𝑑, (𝑗 − 1)𝑑). In it, each small-tile 𝑡𝑖𝑗 , 𝑖 ∈ [𝑛], belonging to mass distribution 𝜇𝑖 has
its bottom left corner at

(︀
(𝑗 − 1)𝑑+ (𝑖− 1) 𝑑𝑛 , (𝑗 − 1)𝑑+ (𝑖− 1) 𝑑𝑛

)︀
.

Inside a given big-tile 𝑡𝑗 , each small-tile 𝑡𝑖𝑗 contains total mass (belonging to 𝜇𝑖) of 𝑣𝑖𝑗 · 4𝑑
2

𝑛 ,
where 𝑣𝑖𝑗 is agent 𝑖’s total value for the 𝑗-th 𝑑-block in 𝐼CH. The mass inside the small-tile is
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rectangular, with width 𝑑
𝑛 and height 𝑣𝑖𝑗 · 4𝑑. Observe that 𝑣𝑖𝑗 ≤ 𝑑 · 𝑐max ≤ 𝜀′

4𝑛 < 1
4𝑛 , where

the first inequality is by definition of a 𝑑-block in 𝐼CH, the second one is by definition of 𝑑, and
the last one is due to 𝜀′ < 1. Therefore the total mass of 𝑣𝑖𝑗 · 4𝑑

2

𝑛 fits inside the small-tile. By
definition of the big-tiles positioning and size, it is straightforward that they are inside [0, 1]2.
Figure 4 depicts our construction.

Now we are ready to prove the following lemma.

Lemma 8. Fix constants 𝛿 ∈ (0, 1], 𝑟 ≥ 1, and let 2/𝑛𝑟 ≤ 𝜀′ < 𝜀 ≤ 1. Let a Square-path
with at most 𝑛− 1+𝑛1−𝛿 turns be a solution to (𝜀− 𝜀′)-Square-Pizza-Sharing instance 𝐼SC.
Then we can find in polynomial time a solution to 𝜀-Consensus-Halving instance 𝐼CH with
at most 𝑛+ 𝑛1−𝛿 cuts.

Proof. We have to specify how a solution of 𝐼SC, i.e., a Square-path, is translated back to a
solution of 𝐼CH, i.e., a set of cuts. This is identical to the one used in the proof of Lemma 5. In
particular, we consider again the big-tiles in sequential order and we add one cut at 𝑗 ·𝑑 whenever
we find two big-tiles 𝑡𝑗 and 𝑡𝑗+2 that belong to different regions. Suppose that, following the
aforementioned procedure, the next 𝐼CH cut falls at 𝑗 ·𝑑′ for some 𝑑′ > 𝑑. If 𝑡𝑗 belongs to region
“+” (resp. “−”) and 𝑡𝑗+2 belongs to “−” (resp. “+”), then the interval [𝑗 · 𝑑, 𝑗 · 𝑑′] gets label “+”
(resp. “−”), and vice versa. It is easy to see that this translation takes polynomial time.

What remains is to prove that the translation of the aforementioned solution of a (𝜀 − 𝜀′)-
Square-Pizza-Sharing instance 𝐼SC into a solution of the 𝜀-Consensus-Halving instance
𝐼CH is indeed correct. Notice that, if the solution of 𝐼SC has 𝑟 ∈ N many turns on the Square-
path, there can be at most 𝑟 + 1 small-tiles that are intersected by it (since there are 𝑟 + 1 line
segments). For our reduction, let 𝑟 = 𝑛− 1+ 𝑛1−𝛿 for any constant 𝛿 ∈ (0, 1]. Consider sequen-
tially the big-tiles 𝑡1, . . . , 𝑡1/𝑑, and without loss of generality, let 𝑡′1, . . . , 𝑡′𝑟+1 be its subset, where
𝑡′𝑗 is the 𝑗-th big-tile that has an intersected small-tile. In the big-tile sequence of 𝑡1, . . . , 𝑡1/𝑑,
the change of region can happen at most 𝑛+ 𝑛1−𝛿 times. Therefore, we have at most 𝑛+ 𝑛1−𝛿

cuts in 𝐼CH with the corresponding labels as defined previously. Each 𝑑-block of 𝐼CH follows the
label of the corresponding big-tile in 𝐼SC, except for those corresponding to intersected big-tiles.
These 𝑑-blocks are given an arbitrary label.

The above translation of the Square-path to 𝐼CH cuts indicates that, each line segment of
the Square-path that intersects a big-tile, introduces a discrepancy between the “+” and “−”
regions of 𝐼CH, of value at most 2 · 𝑐max · 𝑑 ≤ 𝜀′

2𝑛 for each valuation 𝑣𝑖, 𝑖 ∈ [𝑛]. Taking into
account the entire Square-path, this results in total discrepancy of at most (𝑛+𝑛1−𝛿) · 𝜀′2𝑛 ≤ 𝜀′

for each agent 𝑖.
We now denote by ℐ+ and ℐ− the regions in 𝐼CH according to the above translation from

a solution of 𝐼SC to a solution of 𝐼CH. We have |𝑣𝑖(ℐ+) − 𝑣𝑖(ℐ−)| ≤ |𝜇𝑖(𝑅
+) − 𝜇𝑖(𝑅

−)| + 𝜀′ ≤
(𝜀− 𝜀′) + 𝜀′ = 𝜀, therefore, this is indeed a solution to 𝜀-Consensus-Halving.

Again, notice that the construction we described can be done in polynomial time, since the
creation of each big-tile can be done in polynomial time, and we have 1/𝑑 many big-tiles, where
1/𝑑 = ⌈4 · 𝑛 · 𝑐max/𝜀

′⌉ ≤ ⌈4 · 𝑛 · 𝑐max · 𝑛𝑟⌉ for some constant 𝑟 ≥ 1.

The above, together with the fact that 𝜀-Consensus-Halving is PPA-hard for any 𝜀 < 1/5
([DFHM25]) implies the main theorem of this section.

Theorem 9. 𝜀-Square-Pizza-Sharing with 𝑛 mass distributions is PPA-hard for any constant
𝜀 < 1/5, even when 𝑛− 1 + 𝑛1−𝛿 turns are allowed in the Square-path for any given constant
𝛿 ∈ (0, 1], every mass distribution is uniform over polynomially many rectangles, and there is no
overlap between any two mass distributions.
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Similarly to the case of the decision variant of 𝜀-Straight-Pizza-Sharing (Theorem 7), we
can get the following result by reducing from the NP-hard instances of 𝜀-Consensus-Halving
for constant 𝜀.

Theorem 10. There exists a constant 𝜀 > 0 for which it is NP-hard to decide if an 𝜀-Square-
Pizza-Sharing instance with 𝑛 mass distributions admits a solution consisting of a Square-
path with at most 𝑛− 2 turns, even when every mass distribution is uniform over polynomially
many rectangles, and there is no overlap between any two mass distributions.

3.3 Hardness of discrete Straight-Pizza-Sharing and Square-Pizza-
Sharing

In this section, we study the discrete versions of Straight-Pizza-Sharing and Square-
Pizza-Sharing.

Definition 11. For any 𝑛 ≥ 1, the problem 𝜀-Discrete-Straight-Pizza-Sharing is
defined as follows:

• Input: 𝜀 ≥ 0, and 2𝑛 point sets 𝑃1, 𝑃2, . . . , 𝑃2𝑛 on [0, 1]2.

• Output: One of the following.

(a) Three points that can be intersected by the same line.

(b) A partition of [0, 1]2 to 𝑅+ and 𝑅− using at most 𝑛 lines such that for each
𝑖 ∈ [2𝑛] it holds that ||𝑃𝑖 ∩𝑅+| − |𝑃𝑖 ∩𝑅−|| ≤ 𝜀 · |𝑃𝑖|.

A point that is intersected by a line does not belong to any of 𝑅+, 𝑅−.

Definition 12. For any 𝑛 ≥ 1, the problem 𝜀-Discrete-Square-Pizza-Sharing is de-
fined as follows:

• Input: 𝜀 ≥ 0, and 𝑛 point sets 𝑃1, 𝑃2, . . . , 𝑃𝑛 on [0, 1]2.

• Output: One of the following.

(a) Two points with the same 𝑥- or 𝑦-coordinate.

(b) A partition of [0, 1]2 to 𝑅+ and 𝑅− using a 𝑦-monotone Square-path with at
most 𝑛−1 turns such that for each 𝑖 ∈ [𝑛] it holds that ||𝑃𝑖 ∩𝑅+| − |𝑃𝑖 ∩𝑅−|| ≤
𝜀 · |𝑃𝑖|.

A point that is intersected by a line does not belong to any of 𝑅+, 𝑅−.

Notice that the first kind of allowed output for both problems (Definition 11(a), Definition 12(a))
is a witness that the input points are not in general position or that their 𝑥- or 𝑦-coordinates
are not unique, respectively, which can be checked in polynomial time. The second kind of
output (Definition 11(b), Definition 12(b)) is the one that is interesting and can encode the
hard instances studied here. In case the first kind of output does not exist, the other one
is guaranteed to exist due to [Sch21] for 𝜀-Discrete-Straight-Pizza-Sharing, while for 𝜀-
Discrete-Square-Pizza-Sharing its existence is guaranteed for every 𝜀 ∈ [0, 1] due to a
reduction we present in Section 4.3 which shows PPA membership.
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The definition of 𝜀-Discrete-Straight-Pizza-Sharing is a slightly modified form of the
one that appears in [Sch21], where it is referred to as DiscretePizzaCutting. In our defini-
tion, we avoid having to “promise” an input of points that are in general position, by allowing
as output a witness of an inappropriate input. Furthermore, the definition we present is more
general, since it accommodates an approximation factor 𝜀; in particular, for 𝜀 < min𝑖{1/|𝑃𝑖|}
we get the definition of the aforementioned paper. Similarly, we define 𝜀-Discrete-Square-
Pizza-Sharing, which to the best of our knowledge, has not been stated in previous work. Note
that, if the input of any of the discrete versions of the problems consists of points that are in
general position and furthermore have pairwise different 𝑥- and 𝑦-coordinates (a property that
the instances in our reductions have), in any 𝜀-Discrete-Straight-Pizza-Sharing solution,
a line can only intersect up to two points, while in any 𝜀-Discrete-Square-Pizza-Sharing
solution, a line segment can intersect up to one point.

Recall that in 𝜀-Square-Pizza-Sharing we are given 𝑛 mass distributions, while in 𝜀-
Straight-Pizza-Sharing we are given 2𝑛 mass distributions as input. In Appendix A, we
describe a general construction that takes as an input 𝑞 ∈ {𝑛, 2𝑛} mass distributions 𝜇1, . . . , 𝜇𝑞

normalized on [0, 1]2, represented by weighted polygons with holes (see Section 2 for the detailed
description), and turns it into 𝑞 sets of points 𝑃1, . . . , 𝑃𝑞 on [0, 1]2. The points that constitute
those sets’ union are in general position, and additionally, they have unique 𝑥- and 𝑦-coordinates.
We prove that, if a set of at most 𝑛 lines or a Square-path of at most 𝑛−1 turns partitions [0, 1]2
into 𝑅+ and 𝑅− such that ||𝑃𝑖 ∩𝑅+| − |𝑃𝑖 ∩𝑅−|| ≤ (𝜀− 𝜀′) · |𝑃𝑖|, then the same set of lines or
Square-path, respectively, separates the mass distributions such that |𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀.

Let 𝑁 ≥ 2𝑛 be the input size of any of our two pizza sharing problems, and let the smallest
area triangle in the mass distributions’ triangulation be 𝛼. For any 𝜀′ < 𝜀, where 𝜀 and 𝛼
are at least inverse polynomial in 𝑁 , the construction results in a polynomial time reduction
from 𝜀-Straight-Pizza-Sharing to (𝜀− 𝜀′)-Discrete-Straight-Pizza-Sharing and from
𝜀-Square-Pizza-Sharing to (𝜀− 𝜀′)-Discrete-Square-Pizza-Sharing. The reduction can
be performed in time polynomial in the input size and in 1/𝛼. It consists of two parts: (i) First we
“pixelate” the mass distributions finely enough so that they are represented by a sufficiently large
number of pixels. This will ensure a high enough “resolution” of the pixelated distributions. (ii)
The pixels will then be turned into points, which we have to perturb in order to guarantee they
are in general position and with unique coordinates, as required. In particular, in Appendix A,
we prove the following.

Lemma 13. Let 𝑁 be the input size of an approximate pizza sharing problem (either 𝜀-
Straight-Pizza-Sharing or 𝜀-Square-Pizza-Sharing) whose triangulation has no trian-
gle with area less than 𝛼 > 0. Also, let 𝜀′ ∈

[︀
6
𝑁𝑐 , 𝜀

)︀
, where 𝑐 > 0 is a fixed constant, and

6
𝑁𝑐 < 𝜀 < 1. Then, the instance can be reduced in time poly(𝑁, 1/𝛼) to its approximate discrete
version, that is, (𝜀− 𝜀′)-Discrete-Straight-Pizza-Sharing or (𝜀− 𝜀′)-Discrete-Square-
Pizza-Sharing, respectively.

Given Theorem 6 and Theorem 9, and since their instances are constructed such that 𝛼 is an
at least inverse polynomial function of the input size, Lemma 13 implies the following hardness
results.

Theorem 14. 𝜀-Discrete-Straight-Pizza-Sharing with 2𝑛 point sets is PPA-hard for any
constant 𝜀 < 1/5, even when 𝑛+ 𝑛1−𝛿 lines are allowed for any given constant 𝛿 ∈ (0, 1].

Theorem 15. 𝜀-Discrete-Square-Pizza-Sharing with 𝑛 point sets is PPA-hard for any
constant 𝜀 < 1/5, even when 𝑛− 1 + 𝑛1−𝛿 turns are allowed in the Square-path for any given
constant 𝛿 ∈ (0, 1].
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We note that PPA-hardness for 𝜀-Discrete-Straight-Pizza-Sharing was so far known
only for any 𝜀 ∈ [0,min𝑖{1/|𝑃𝑖|}) (which is equivalent to 𝜀 = 0), due to [Sch21]. Since, in the
aforementioned paper’s constructions, min𝑖{1/|𝑃𝑖|} ∈ 𝑂(1/poly(𝑁)), our result strengthens the
hardness of the problem significantly.

Lemma 13 is general enough to allow us to derive NP-hardness results for the decision variants
of the two discrete versions of the pizza sharing problems. If we ask for a solution with at most
𝑛−1 straight lines or 𝑛−2 turns in (𝜀−𝜀′)-Discrete-Straight-Pizza-Sharing and (𝜀−𝜀′)-
Discrete-Square-Pizza-Sharing, respectively, then we can easily reduce to them from the
instances of Theorem 7 and Theorem 10, picking 𝜀′ to be some inverse polynomial function of
𝑁 , e.g., 𝜀′ = 1/𝑁 . In particular, we get the following.

Theorem 16. There exists a constant 𝜀 > 0 for which it is NP-hard to decide whether a solution
of 𝜀-Discrete-Straight-Pizza-Sharing with 2𝑛 point sets and at most 𝑛− 1 lines exists.

Theorem 17. There exists a constant 𝜀 > 0 for which it is NP-hard to decide whether a
solution of 𝜀-Discrete-Square-Pizza-Sharing with 𝑛 point sets and a Square-path with at
most 𝑛− 2 turns exists.

3.4 Hardness of exact Square-Pizza-Sharing

In this section, we show hardness results for exact Square-Pizza-Sharing, that is, Definition 3
for 𝜀 = 0. We prove that solving Square-Pizza-Sharing is FIXP-hard and that deciding
whether there exists a solution for Square-Pizza-Sharing with fewer than 𝑛 − 1 turns is
∃R-hard.

As mentioned earlier, computing an exact solution of a FIXP-hard problem may require
computing an irrational number. To showcase this for Square-Pizza-Sharing, consider the
following simple instance. Let us have a single mass distribution in the shape of a right-angled
triangle, whose corners are on (0, 1), (1, 1), and (1, 0). It is normalised, i.e., its total mass is 1,
therefore its weight is 2. An exact solution of Square-Pizza-Sharing is either a horizontal
or a vertical straight line (with 0 turns), which cuts the triangle such that each half-space has
half of the mass, that is, 1/2. One can easily check that the solution is either the horizontal line
𝑦 =
√
2/2, or the vertical line 𝑥 =

√
2/2.

We provide a main reduction from (exact) Consensus-Halving to (exact) Square-Pizza-
Sharing, whose gadgets are then employed to show the ∃R-hardness of the decision variant.
This time, as a starting point, we will use the instances of Consensus-Halving constructed
as end-points of the reductions in [DFMS21]. In particular, when clear from context, 𝐼DFMS

CH
will denote an arbitrary instance satisfying properties 1, 2, and 3 (see next paragraph). When
requesting a solution of 𝐼DFMS

CH with at most 𝑛 cuts, we get FIXP-hardness, while when requesting
to decide if it is solvable with 𝑛 − 1 cuts we get ∃R-hardness. Both of these results are due to
[DFMS21], and hold even for 6-block-triangle valuations. We note that here the input consists
of sets of points with rational coordinates, i.e., we describe polygons by their vertices. For a
detailed description of the input representation, see Section 2. In the aforementioned work,
the problems’ input is 𝑛 algebraic circuits capturing the cumulative valuation of 𝑛 agents on
[0, 1], which are piece-wise polynomials of maximum degree 2. In particular, since their (density)
valuation functions are piece-wise linear, the input of Square-Pizza-Sharing suffices to consist
of very simple shapes, namely, only rectangles and triangles.

The reduction. Here we show the main reduction, which will conclude with the proof that
finding an exact solution to Square-Pizza-Sharing is FIXP-hard. Then, this reduction’s
construction will be used to show that the problem’s decision variant is ∃R-hard. We reduce
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from a Consensus-Halving instance 𝐼DFMS
CH with 𝑛 agents and 6-block-triangle valuations to

a Square-Pizza-Sharing instance 𝐼SC with 𝑛 mass distributions.
The key difference between this reduction and the previous reductions on the approximate

versions is that the starting point of the reduction, i.e., instance 𝐼DFMS
CH , besides rectangular-

shaped (constant) pieces, also contains triangular-shaped (linear) pieces in the valuation density
functions for some agents. More specifically, all of the following properties hold for 𝐼DFMS

CH :

1. the valuation function of every agent is 4-block-triangle, or 6-block;

2. for any given agent 𝑖 ∈ [𝑛], every triangle (linear piece) of her valuation function has height
2 and belongs to exactly one interval of interest of the form [𝑥𝑗 , 𝑥𝑗+1] for 𝑗 ∈ [𝑚], where
𝑚 ≤ 12𝑛+ 1 (see below for the definition of those intervals);

3. for every agent 𝑖 ∈ [𝑛] there exists an interval [𝑎𝑖, 𝑏𝑖] that contains more than half of their
total valuation (i.e., more than 1/2 cumulative valuation), and in addition, for every 𝑖′ ̸= 𝑖
we have (𝑎𝑖, 𝑏𝑖) ∩ (𝑎𝑖′ , 𝑏𝑖′) = ∅.

Also, in this reduction, the resulting Square-Pizza-Sharing instances will contain weighted
mass distributions (see definition in Section 2).

The first step is to partition [0, 1] of 𝐼DFMS
CH into subintervals that are defined by points of

interest. We say that a point 𝑥 ∈ [0, 1] is a point of interest if it coincides with the beginning
or the end of a valuation block or triangle of an agent; formally, 𝑥 is a point of interest if
𝑥 ∈ {𝑎ℓ𝑖𝑗 , 𝑎𝑟𝑖𝑗} for some agent 𝑖 ∈ [𝑛] and some valuation block 𝑗 or triangle of hers (for this
notation see Section 2). These points conceptually split [0, 1] into intervals of interest, since
in between any pair of consecutive points of interest, all agents have a non-changing valuation
density. Let 0 =: 𝑥1 < 𝑥2 < . . . < 𝑥𝑚 < 𝑥𝑚+1 := 1 denote the points of interest, and each
interval of interest [𝑥𝑗 , 𝑥𝑗+1], 𝑗 ∈ [𝑚] is called the 𝑗-th subinterval. Observe that 𝑚 ≤ 12𝑛+ 1:
as a base case consider a single block or triangle produces at most two points of interest and
therefore at most three intervals, so 𝑚 ≤ 3; for any block or triangle we add, we increase by at
most 2 the points of interest; each valuation function has either 4 blocks and 1 triangle, or 6
blocks, therefore the total number of blocks and triangles is at most 𝑛 · 6 (by Property 1 above).

Here it is important to mention that in our reduction we are allowed to only use FIXP
gates (see Section 2 for details). As representation of the 𝐼DFMS

CH instance,5 for each agent
𝑖 ∈ [𝑛] we consider ℓ𝑖 ordered pairs of points in [0, 1] interpreted as consecutive intervals’ end-
points, together with their corresponding valuation density function in the form of a circuit:(︁
(𝑟

(𝑖)
𝑘 , 𝑟

(𝑖)
𝑘+1), 𝑓

(𝑖)
𝑘 (𝑥)

)︁
𝑘∈[ℓ𝑖]

, where 𝑟
(𝑖)
1 := 0 and 𝑟

(𝑖)
ℓ𝑖+1 := 1 for all 𝑖 ∈ [𝑛]. In particular, according

to 𝐼DFMS
CH , for any 𝑖 ∈ [𝑛], 𝑘 ∈ [ℓ𝑖], either 𝑓

(𝑖)
𝑘 (𝑥) = 𝑐𝑖𝑘 or 𝑓 (𝑖)

𝑘 (𝑥) = 2(𝑥− 𝑟
(𝑖)
𝑘 )𝑐𝑖𝑘, where 𝑐𝑖𝑘 ≥ 0

is a constant.
The next step is to do some preprocessing of the input in order to incorporate the intervals

of interest. The points of interest can be identified using an algebraic circuit by a sorting
network (e.g., [Knu98]) which takes as input all points

(︁
𝑟
(𝑖)
𝑘

)︁
𝑖∈[𝑛],𝑘∈[ℓ𝑖]

and outputs them in

non-decreasing order (𝑥𝑗)𝑗∈[𝑚+1]. Then, we turn the 𝐼DFMS
CH instance representation into the

following form for each agent 𝑖 ∈ [𝑛]:
(︁
(𝑥

(𝑖)
𝑗,𝑘, 𝑥

(𝑖)
𝑗+1,𝑘), 𝑓

(𝑖)
𝑘 (𝑥)

)︁
𝑘∈[ℓ𝑖],𝑗∈[𝑚]

, where

𝑥
(𝑖)
𝑗,𝑘 = max{𝑟(𝑖)𝑘 ,min{𝑥𝑗 , 𝑟(𝑖)𝑘+1}}.

5This is not the same input representation as the one defined in [DFMS21] for exact Consensus-Halving.
However, it is easy to check that the FIXP-hardness reduction of the aforementioned work goes through if we
require this new input representation of Consensus-Halving.
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Observe that, by definition, for any 𝑖 ∈ [𝑛], 𝑘 ∈ [ℓ𝑖], and 𝑗 ∈ [𝑚], either [𝑥𝑗 , 𝑥𝑗+1]∩ [𝑟(𝑖)𝑘 , 𝑟
(𝑖)
𝑘+1] =

[𝑥𝑗 , 𝑥𝑗+1], or [𝑥𝑗 , 𝑥𝑗+1] ∩ [𝑟
(𝑖)
𝑘 , 𝑟

(𝑖)
𝑘+1] is singleton or empty. So, we have the following cases:

(a) 𝑥𝑗 ≤ 𝑟
(𝑖)
𝑘 (and 𝑥𝑗+1 ≤ 𝑟

(𝑖)
𝑘 ): The first inequality implies 𝑥𝑗 ≤ 𝑟

(𝑖)
𝑘+1 and so, 𝑥(𝑖)𝑗,𝑘 = 𝑟

(𝑖)
𝑘 . The

second inequality implies 𝑥𝑗+1 ≤ 𝑟
(𝑖)
𝑘+1), and so, 𝑥(𝑖)𝑗+1,𝑘 = 𝑟

(𝑖)
𝑘 . Therefore, 𝑥(𝑖)𝑗,𝑘 = 𝑥

(𝑖)
𝑗+1,𝑘 =

𝑟
(𝑖)
𝑘 .

(b) 𝑥𝑗 ≥ 𝑟
(𝑖)
𝑘+1 (and 𝑥𝑗+1 ≥ 𝑟

(𝑖)
𝑘+1): Similarly to above case, 𝑥(𝑖)𝑗,𝑘 = 𝑥

(𝑖)
𝑗+1,𝑘 = 𝑟

(𝑖)
𝑘+1.

(c) 𝑥𝑗 ≥ 𝑟
(𝑖)
𝑘 and 𝑥𝑗+1 ≤ 𝑟

(𝑖)
𝑘+1: By definition, 𝑥𝑗 ≤ 𝑥𝑗+1, so we get 𝑥(𝑖)𝑗,𝑘 = 𝑥𝑗 and 𝑥

(𝑖)
𝑗+1,𝑘 = 𝑥𝑗+1.

This way, using FIXP gates we managed to copy the valuation density function 𝑓
(𝑖)
𝑘 (𝑥) to all the

intervals [𝑥𝑗 , 𝑥𝑗+1] that are inside [𝑟
(𝑖)
𝑘 , 𝑟

(𝑖)
𝑘+1], while for those that are outside of it, we created

artificial singleton intervals which do not contribute to the cumulative valuation function (since
𝑓
(𝑖)
𝑘 is a density function).

Now we are ready to construct the Square-Pizza-Sharing instance 𝐼SC. For each subin-
terval 𝑗 ∈ [𝑚] of 𝐼DFMS

CH , we will construct a tile 𝑡𝑗 of size 𝑑𝑗 × 𝑑𝑗 in which we will place our
measures, where 𝑑𝑗 := 𝑥𝑗+1−𝑥𝑗 , and notice that always 𝑑𝑗 > 0. These tiles will be placed diag-
onally in [0, 1]2, starting from the bottom-left corner (see Figure 5b for a depiction). The points
describing 𝑡𝑗 are 𝐿𝐿 := (𝑥𝑗 , 𝑥𝑗), 𝐻𝐿 := (𝑥𝑗+1, 𝑥𝑗), 𝐻𝐻 := (𝑥𝑗+1, 𝑥𝑗+1), and 𝐿𝐻 := (𝑥𝑗 , 𝑥𝑗+1).
Inside each tile 𝑡𝑗 , we place triangles 𝑧

(𝑖)
𝑗,𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [ℓ𝑖], each with vertices 𝐻𝐿, 𝐻𝐻, and

𝐿𝐻. Triangle 𝑧
(𝑖)
𝑗,𝑘 has weight 𝑤(𝑖)

𝑗,𝑘 = 𝑑−2
𝑗 · (𝑥

(𝑖)
𝑗+1,𝑘 − 𝑥

(𝑖)
𝑗,𝑘) · 𝑓

(𝑖)
𝑘 (𝑥

(𝑖)
𝑗+1,𝑘). Notice that here we have

also used a division gate.6 Also, we place triangles 𝑧*(𝑖)𝑗,𝑘 for all 𝑖 ∈ [𝑛], 𝑘 ∈ [ℓ𝑖], each with vertices

𝐿𝐿, 𝐻𝐿, and 𝐻𝐻. Triangle 𝑧
*(𝑖)
𝑗,𝑘 has weight 𝑤*(𝑖)

𝑗,𝑘 = 𝑑−2
𝑗 · (𝑥

(𝑖)
𝑗+1,𝑘 − 𝑥

(𝑖)
𝑗,𝑘) · 𝑓

(𝑖)
𝑘 (𝑥

(𝑖)
𝑗,𝑘) (notice the

change in the argument of 𝑓 (𝑖)
𝑘 ).

By the above construction, if 𝑓 (𝑖)
𝑘 (𝑥) = 𝑐𝑖𝑘, then 𝑤

(𝑖)
𝑗,𝑘 = 𝑤

*(𝑖)
𝑗,𝑘 = 𝑑−2

𝑗 ·(𝑥
(𝑖)
𝑗+1,𝑘−𝑥

(𝑖)
𝑗,𝑘)·𝑐𝑖𝑘, and by

multiplying all parts with 𝑑2𝑗 we get that for every colour 𝑖 ∈ [𝑛] the area of the 𝑗-th subinterval

equals its measure inside tile 𝑡𝑗 , and has square shape. Similarly, if 𝑓 (𝑖)
𝑘 (𝑥) = 2(𝑥− 𝑟

(𝑖)
𝑘 )𝑐𝑖𝑘, then

𝑤
(𝑖)
𝑗,𝑘 = 𝑑−2

𝑗 · (𝑥
(𝑖)
𝑗+1,𝑘 − 𝑥

(𝑖)
𝑗,𝑘) · 2(𝑟

(𝑖)
𝑘+1 − 𝑟

(𝑖)
𝑘 )𝑐𝑖𝑘, and 𝑤

*(𝑖)
𝑗,𝑘 = 0. By multiplying both sides of the

former equation with 𝑑2𝑗/2 we get that for every colour 𝑖 ∈ [𝑛] the area of the 𝑗-th subinterval
equals its measure inside tile 𝑡𝑗 , and has triangular shape (see Figure 5).

Now we need to show how an exact solution of 𝐼SC, that is, a Square-path with 𝑛 − 1
many turns is mapped back to a solution of 𝐼DFMS

CH with 𝑛 cuts. This is straightforwardly done
in the following way. Let the solution be represented by an ordered tuple of (𝑛 − 1) points
(𝑝1, . . . , 𝑝𝑛−1) interpreted as the turns of the Square-path. Then, 𝑝1’s coordinates correspond
to the first two cuts in [0, 1] of 𝐼DFMS

CH , and for the remaining 𝑛−2 points, those with even index
encode a cut at their 𝑦-coordinate, while those with odd index encode it at their 𝑥-coordinate.

It remains to prove that this is a solution of 𝐼DFMS
CH . To do this, we will use the following

crucial observation.

Claim 18. In any solution of 𝐼SC created by 𝐼DFMS
CH , there can be no turn inside a tile.

Proof. The truth of the statement can become apparent if one considers Property 3 of the above
facts on 𝐼DFMS

CH , together with the fact that the endpoints of each [𝑎𝑖, 𝑏𝑖] are points of interest.
6The division gate is among those available in FIXP and can be used as long as there is no division with 0.

However, it is known that the definition of the class does not need it since there are FIXP-hard problems that do
not use this gate. For a proof of this, see [EY10].
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(a) Part of the Consensus-Halving instance
with two agents and the corresponding regions of
interest.

(b) The corresponding part of the Square-
Pizza-Sharing instance.

Figure 5

It is implied then, that in any of the 𝐼DFMS
CH solutions, there needs to be at least one cut in each

interval [𝑎𝑖, 𝑏𝑖] for each 𝑖 ∈ [𝑛]. And since we are allowed to draw at most 𝑛 cuts, there will be a
single cut in each of those intervals. Also, due to the fact that 𝑎𝑖, 𝑏𝑖 are points of interest, each
cut in [𝑎𝑖, 𝑏𝑖] belongs to a different subinterval, and therefore, there will be exactly 𝑛 cuts in 𝑛
distinct subintervals. Focusing now on our 𝐼SC construction, the Square-path with 𝑛−1 turns
consists of a total of 𝑛 horizontal and vertical line segments. If any of those does not intersect
any tile, then this Square-path will correspond to a set of at most 𝑛− 1 cuts in 𝐼DFMS

CH , which
cannot be a solution. Therefore, every line segment intersects some tile.

Notice that, due to the diagonal placement of tiles, any Square-path that is a solution has
to be positively 𝑥-monotone and positively 𝑦-monotone, i.e., to have a “staircase” form. Also,
this diagonal placement of tiles dictates that, if there was a turn of the Square inside a tile,
then two line segments are used to intersect it instead of one. This means that at most 𝑛 − 1
tiles will be intersected, and therefore this translates to a set of at most 𝑛 − 1 cuts in 𝐼DFMS

CH ,
which cannot be a solution.

Put differently, having a turn inside a tile would be a “waste”, and in our instances, all turns
are needed in order for a solution to exist. Now, if we focus on any tile 𝑡𝑗 for some 𝑗 ∈ [𝑚],
as shown in the construction, it will contain exactly the same measure that the corresponding
colour has inside the 𝑗-th subinterval of 𝐼DFMS

CH . Furthermore, if the density is rectangular then
the measure in the tile is square. Having a square on the entire region of the tile allows us to
immediately translate a line segment of Square-path that intersects the square into a 𝐼DFMS

CH
cut, since we translate in the same manner both horizontal and vertical such segments. Similarly,
if the density is triangular, then so is the measure in the tile half of whose area it occupies, and
the right angle of the triangle is at the top-right of the tile. This again allows us to translate any
line segment, horizontal or vertical, straightforwardly into a cut of 𝐼DFMS

CH , since the measure
at the bottom or left, respectively, part of the triangle has exactly the same area as that of the
corresponding triangle’s part at the left of the 𝐼DFMS

CH cut.
The above analysis shows that, for any 𝑖 ∈ [𝑛], in each individual tile the total “+” mass

is equal to the total “+” value of the corresponding subinterval. Therefore, given a solution to
𝐼SC where the total mass of 𝑅+ will equal that of 𝑅− for every 𝑖 ∈ [𝑛], the induced cuts on 𝐼CH
constitute a solution. Finally, by construction of 𝐼DFMS

CH , at any given point in [0, 1], no more
than three agents have positive valuation density, therefore, 𝐼SC has overlap at most 3. Due to
the FIXP-hardness of exact Consensus-Halving shown in [DFMS21], we get the following.
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Theorem 19. Square-Pizza-Sharing is FIXP-hard even when every mass distribution con-
sists of at most six pieces that can be unit-squares or right-angled triangles, and have overlap at
most 3.

We can also show that deciding whether there exists an exact Square-Pizza-Sharing
solution with 𝑛 − 2 turns is ∃R-hard. For this, we will use a result of [DFMS21], where it was
shown that deciding whether there exists an exact Consensus-Halving solution with 𝑛 agents
and 𝑛 − 1 cuts is ∃R-hard. We give a reduction from this version of Consensus-Halving to
the decision problem for Square-Pizza-Sharing. The reduction uses the same ideas that we
presented for the FIXP-hardness reduction.

Before we prove the theorem, let us give a brief sketch of the ∃R-hardness proof of the
aforementioned Consensus-Halving decision variant of [DFMS21]. We are given an instance
of the following problem which was shown to be ∃R-complete (Lemma 15 of the aforementioned
paper).

Definition 20 (Feasible[0,1]). Let 𝑝(𝑥1, . . . , 𝑥𝑚) be a polynomial. We ask whether there
exists a point (𝑥1, . . . , 𝑥𝑚) ∈ [0, 1]𝑚 that satisfies 𝑝(𝑥1, . . . , 𝑥𝑚) = 0.

Given the polynomial 𝑝, we first normalize it so that the sum of the absolute values of its
terms is in [0, 1] (thus not inserting more roots), resulting in a polynomial 𝑞. Then, we separate
the terms that have positive coefficients from those that have negative coefficients, thus creating
two positive polynomials 𝑞1, 𝑞2 such that 𝑞 = 𝑞1− 𝑞2. Therefore, 𝑝(�⃗�) = 0 for some �⃗� ∈ [0, 1]𝑚 if
and only if 𝑞1(�⃗�) = 𝑞2(�⃗�). We then represent 𝑞1, 𝑞2 in a circuit form with gates that implement
the operations {𝑐,+,×𝑐,×} (where 𝑐 ∈ [0, 1] ∩ Q is a constant input, and ×𝑐 is multiplication
by constant). By the scaling we know that 𝑞1, 𝑞2 ∈ [0, 1], and in addition, the computation of
the circuit using the aforementioned operations can be simulated by a Consensus-Halving
instance with 𝑛 − 1 agents, where 𝑛 − 1 ∈ poly(#𝑔𝑎𝑡𝑒𝑠); the argument of 𝑝 becomes a set of
“input” cuts and according to the circuit implementation by Consensus-Halving, two output
cuts encode 𝑞1 and 𝑞2. Finally, checking whether 𝑞1 = 𝑞2 is true is done by an additional 𝑛-th
agent that can only be satisfied (have her total valuation split in half) if and only if 𝑞1(�⃗�) = 𝑞2(�⃗�)
for some �⃗� ∈ [0, 1]𝑚. In other words, the Consensus-Halving instance has a solution if and
only if there are “input” cuts �⃗� = (𝑥1, . . . , 𝑥𝑚) ∈ [0, 1]𝑚 that force the rest of the cuts (according
to the circuit implementation) that encode the values 𝑣𝑚+1, . . . , 𝑣𝑛−1 at the output of each of
the circuit’s gates such that they also cut the 𝑛-th agent’s valuation in half without the need for
an additional cut.

We are now ready to prove the following theorem.

Theorem 21. It is ∃R-hard to decide if an exact Square-Pizza-Sharing instance admits
a solution with a Square-path with at most 𝑛 − 2 turns, even when every mass distribution
consists of at most six pieces that can be unit-squares or right-angled triangles, and have overlap
at most 3.

Proof. We will use exactly the aforementioned technique from [DFMS21] up to the point where
we have a Consensus-Halving instance that checks whether 𝑞1 = 𝑞2. Then, we use the gadgets
described in the FIXP-hardness reduction (proof of Theorem 19) that reduce the valuation func-
tions of 𝑛 agents in Consensus-Halving into mass distributions of a Square-Pizza-Sharing
instance with 𝑛 colours. According to Claim 18, in any solution of the resulting Square-Pizza-
Sharing instance, the Square-path does not have turns inside any unit-square. This means
that each horizontal/vertical segment of the Square-path that cuts a unit square in Square-
Pizza-Sharing has a 1-1 correspondence to a cut of a Consensus-Halving solution, thus a
Consensus-Halving solution that uses 𝑛 − 1 cuts would correspond to a Square-path with
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𝑛 − 1 line segments, i.e., 𝑛 − 2 turns. Therefore, if and only if there is a Square-path that
solves Square-Pizza-Sharing with 𝑛 colours and 𝑛−2 turns, there is a (𝑛−1)-cut that solves
Consensus-Halving with 𝑛 agents. Equivalently, there is a �⃗� ∈ [0, 1]𝑚 such that 𝑝(�⃗�) = 0,
making the Feasible[0,1] instance satisfiable.

4 Membership results

Up to this point, we have showed that Straight-Pizza-Sharing and Square-Pizza-Sharing
are PPA-hard for their approximate versions for any discrepancy 𝜀 < 1/5, even when the input
consists of point sets. We have also showed that the decision variants of the problems are NP-
hard. Furthermore, we have studied the exact version of Square-Pizza-Sharing and proved
that it is FIXP-hard, while its decision variant is ∃R-hard.

In this section, we present membership results for the exact and approximate versions of
the aforementioned pizza sharing problems. Our PPA membership result for Straight-Pizza-
Sharing is achieved by reducing the problem to its discrete version, which was recently shown
by [Sch21] to be in PPA (Theorem 22). For Square-Pizza-Sharing, our results revolve around
the original existence proof of [KRPS16] which, additionally to the Borsuk-Ulam theorem, uses
other involved topological techniques. We present a new algorithmic proof based on the original
one, where now the only topology tool used is the Borsuk-Ulam theorem (Theorem 24). Then,
by showing how to algorithmically compute the measure contained in the positive part of an
arbitrary Square-path (Appendix B), we turn this into a PPA membership proof (Theorem 27).
Finally, we study the corresponding decision variants of the problems and acquire NP member-
ship for the approximate continuous and discrete versions of the problems and ∃R membership
of exact Square-Pizza-Sharing.

4.1 Membership results for approximate Straight-Pizza-Sharing

Here we prove that 𝜀-Straight-Pizza-Sharing with 2𝑛 mass distributions is in PPA for any
𝜀 ∈ Ω(1/poly(𝑁)) and 𝛼 ∈ Ω(1/poly(𝑁)), where 𝑁 is the input size and 𝛼 is the smallest area
among the triangles of the triangulated mass distributions of 𝜀-Straight-Pizza-Sharing. This
answers a big open question left from [DFM22], where PPA membership was elusive. We also
show that deciding whether a solution with at most 𝑛 − 1 straight lines exists is in NP. Both
those results are derived by reducing the problem to its discrete version, namely Discrete-
Straight-Pizza-Sharing, where instead of mass distributions, the input consists of points,
and the goal is to bisect (up to one point) each of the 2𝑛 point sets using at most 𝑛 straight
lines. Discrete-Straight-Pizza-Sharing, was recently shown by [Sch21] to be in PPA.

PPA membership. We will use Lemma 13 in a straightforward way. In particular, given
an 𝜀-Straight-Pizza-Sharing instance for some 𝜀 ∈ Ω(1/poly(𝑁)), we will pick an 𝜀′ < 𝜀
as prescribed in the aforementioned lemma, and reduce our problem to Discrete-Straight-
Pizza-Sharing in time poly(𝑁, 1/𝛼).

Theorem 22. 𝜀-Straight-Pizza-Sharing with 2𝑛 weighted mass distributions with holes is
in PPA for any 𝜀 ∈ Ω(1/poly(𝑁)) and 𝛼 ∈ Ω(1/poly(𝑁)), where 𝑁 is the input size and 𝛼 is
the smallest area among the triangles of the triangulated mass distributions.

NP membership. Observe that Lemma 13 shows how to turn a set of 2𝑛 mass distributions
(weighted polygons with holes) into a set of (unweighted) points, which, if cut by at most 2𝑛
straight lines, will result to an approximate cut of the mass distributions relaxed by an extra
additive 𝜀′ ∈ Ω(1/𝑁 𝑐) for any 𝑐 > 0. When the number of straight lines is at most 𝑛 − 1, this
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gives straightforwardly a reduction to 0-Discrete-Straight-Pizza-Sharing, since we can
check how many of the polynomially many points of the latter instance are in 𝑅+ and 𝑅−.

Theorem 23. Deciding whether 𝜀-Straight-Pizza-Sharing with 2𝑛 weighted mass distribu-
tions with holes has a solution with at most 𝑛−1 straight lines is in NP for any 𝜀 ∈ Ω(1/poly(𝑁))
and 𝛼 ∈ Ω(1/poly(𝑁)), where 𝑁 is the input size and 𝛼 is the smallest area among the triangles
of the triangulated mass distributions.

4.2 Membership results for approximate Square-Pizza-Sharing

Here we show that the problem of finding a solution to 𝜀-Square-Pizza-Sharing is in PPA
even for exponentially small 𝜀, while deciding whether there exists a solution (a Square-path)
with at most 𝑘 ∈ N turns is in NP. The latter is almost immediate by the fact that any candidate
solution is verifiable in polynomial time. The former is shown by reducing 𝜀-Square-Pizza-
Sharing to 𝜀-Borsuk-Ulam which is in PPA (e.g., see [DFMS21]).

Existence of a Square-Pizza-Sharing solution. We begin by proving that a solution
to exact Square-Pizza-Sharing always exists (and therefore, a solution to the approximate
version exists too). This proof holds for arbitrary mass distributions, but for our algorithmic
results, we will only consider the case where the mass distributions are unions of polygons with
holes. Our proof is based on that of Karasev, Roldán-Pensado, and Soberón [KRPS16]. However,
they use more involved techniques from topology, which we would like to avoid since our goal is
to give an algorithmic proof.

Theorem 24 (originally by [KRPS16]). Let 𝑛 be a positive integer. For any 𝑛 mass distributions
in R2, there is a path formed by only horizontal and vertical segments with at most 𝑛− 1 turns
that splits R2 into two sets of equal size in each measure. Moreover, the path is 𝑦-monotone.

Proof. Let 𝑆𝑛 denote the 𝐿1 sphere in 𝑛+1 dimensions. The Borsuk-Ulam theorem states that if
𝑓 : 𝑆𝑛 → R𝑛 is a continuous function, then there exists a point �⃗� ∈ 𝑆𝑛 such that 𝑓(�⃗�) = 𝑓(−�⃗�).
Consider 𝑛 mass distributions in R2. For some given 𝑑 ∈ N*, we will show how to decode
Square-paths from points in 𝑆𝑑, and then we will construct a function 𝑓 : 𝑆𝑑 → R𝑛 for which
𝑓(�⃗�) = 𝑓(−�⃗�) implies that the Square-path corresponding to �⃗� is a solution to the Square-
Pizza-Sharing problem. In particular, we will show a general way to decode Square-paths
(with 𝑑 − 1 turns) from points in 𝑆𝑑 for a suitable dimension 𝑑 ∈ N* to be determined later.
It will turn out that, to guarantee a Square-Pizza-Sharing solution given 𝑛 measures, the
Borsuk-Ulam theorem will require 𝑑 = 𝑛. However, we will have 𝑑 undetermined for as long as
we can, making the proof transparent enough to help in the understanding of the cases where
𝑑 ̸= 𝑛 (see Theorem 28, Theorem 32, and their proofs).

For the sake of simplicity, we normalize them so that they fit inside [0, 1]2 by scaling them
down if needed, preserving their relative positions. Figure 6 gives an overview of our decoding
to Square-paths, which actually results in 𝑦-monotone Square-paths. First, we will consider
the case of even 𝑑, and then explain how the odd 𝑑 case is proved. We will decode �⃗� :=
(𝑧0, 𝑧1, . . . , 𝑧𝑑) ∈ 𝑆𝑑 into horizontal slices 𝑦1, 𝑦3, . . . , 𝑦𝑑−1 and vertical cuts 𝑥1, 𝑥3, . . . , 𝑥𝑑−1. For
ease of presentation, let us also define 𝑦0 := 0 and 𝑦𝑑+1 := 1. We set 𝑦1 := |𝑧0|, and 𝑦𝑗 :=

𝑦𝑗−2 + |𝑧𝑗−2| + |𝑧𝑗−1|, for 𝑗 ∈ {3, 5, . . . , 𝑑 + 1}. It is immediate that 𝑦𝑑+1 =
∑︀𝑑

𝑗=0 |𝑧𝑗 |, which
equals 1 as it should (since �⃗� ∈ 𝑆𝑑). So, the bottom strip [𝑦0, 𝑦1] has width |𝑧0|, and the strips
[𝑦𝑗 , 𝑦𝑗+2] for 𝑗 ∈ {1, 3, . . . , 𝑑− 1} have width |𝑧𝑗 |+ |𝑧𝑗+1|.

Let us focus on one such strip [𝑦𝑗 , 𝑦𝑗+2] to define its respective 𝑥𝑗 . We have the following
cases. (i) If |𝑧𝑗 | + |𝑧𝑗+1| > 0 and 𝑧𝑗 · 𝑧𝑗+1 ≥ 0, then 𝑥𝑗 ∈ {0, 1}; in particular, if 𝑧𝑗 + 𝑧𝑗+1 > 0
then 𝑥𝑗 = 1, and if 𝑧𝑗 + 𝑧𝑗+1 < 0 then 𝑥𝑗 = 0. (ii) Otherwise, 𝑥𝑗 has to satisfy the equation
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Figure 6: An instance with 𝑛 = 8 polygon-shaped mass distributions and 𝑑 = 8. A vector
(𝑧0, . . . , 𝑧8) ∈ 𝑆8 corresponds to horizontal slices and vertical cuts, which define a 𝑦-monotone
Square-path with 7 turns. Here, we have 𝑧0, 𝑧1, 𝑧4, 𝑧6, 𝑧8 > 0 and 𝑧2, 𝑧3, 𝑧5, 𝑧7 < 0. For an
example of the figure’s notation, notice that in the top strip [𝑦7, 1], the area to the left of 𝑥7 is
|𝑧7| and to the right of 𝑥7 is |𝑧8|.

(|𝑧𝑗 |+ |𝑧𝑗+1|) ·𝑥𝑗 = |𝑧𝑗 |; in other words, if |𝑧𝑗 |+ |𝑧𝑗+1| > 0 and 𝑧𝑗 ·𝑧𝑗+1 < 0, then 𝑥𝑗 =
|𝑧𝑗 |

|𝑧𝑗 |+|𝑧𝑗+1| ,
whereas if |𝑧𝑗 |+ |𝑧𝑗+1| = 0, then 𝑥𝑗 can take any value in [0, 1]. Notice that in the latter subcase,
𝑧𝑗 = 𝑧𝑗+1 = 0, and the width of the strip is 0, so no matter what the value of 𝑥𝑗 is, it will not
contribute to the Square-path’s structure.

Finally, we need to label each of the (at most two) parts of each strip. In case (i) above, if
𝑧𝑗 + 𝑧𝑗+1 > 0 (resp. 𝑧𝑗 + 𝑧𝑗+1 < 0), then the whole strip belongs to 𝑅+ (resp. 𝑅−), depicted
with a non-shaded (resp. shaded) area. In case (ii), if 𝑧𝑗 ≥ 0 and 𝑧𝑗+1 ≤ 0 (resp. 𝑧𝑗 ≤ 0 and
𝑧𝑗+1 ≥ 0), then the part of the strip to the left of 𝑥𝑗 belongs to 𝑅+ (resp. 𝑅−) and that to the
right of 𝑥𝑗 belongs to 𝑅− (resp. 𝑅+). Similarly, for the strip [𝑦0, 𝑦1], if 𝑧0 > 0 (resp. 𝑧0 < 0)
then the whole strip belongs to 𝑅+ (resp. 𝑅−), while if 𝑧0 = 0 its width is zero and there is no
need to specify where it belongs.

Now, having the slices 𝑦𝑗 , the cuts 𝑥𝑗 , and the labels (𝑅+ or 𝑅−) of the slices they define,
we can use Algorithm 1 to recover the underlying Square-path.

What remains is the definition of the required Borsuk-Ulam function. For any given point
�⃗� = (𝑧0, 𝑧1, . . . , 𝑧𝑑) ∈ 𝑆𝑑, the Borsuk-Ulam function is defined to be the total “+” (positive)
measure on [0, 1]2 induced by �⃗�, and we denote 𝑓𝑖(�⃗�) = 𝜇𝑖(𝑅

+; �⃗�) for 𝑖 ∈ [𝑛]. The total positive
measure 𝜇𝑖(𝑅

+; �⃗�) is a continuous function of its variables: by our definition of slices, cuts, and
labelling, the area of 𝑅+ is the sum of individual areas |𝑧𝑗 | for those 𝑗 ∈ {0, 1, 2, . . . , 𝑑} for
which 𝑧𝑗 > 0 (see non-shaded area of Figure 6); the slices 𝑦𝑗 and the cuts 𝑥𝑗 are continuous
functions of the 𝑧𝑗 ’s;7 in each such individual area, the contained measure 𝑗 ∈ {0, 1, . . . , 𝑑}

7It is true that, e.g., for some fixed 𝑧𝑗+1 > 0 and some moving 𝑧𝑗 → 0− we have 𝑥𝑗 → 0+, while when 𝑧𝑗 = 0,
immediately 𝑥𝑗 = 1. However, this is considered a continuous behaviour of 𝑥𝑗 since it is allowed to wrap around
in the horizontal dimension. Also, notice that this has no effect on the sign of any other individual area, creating
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Algorithm 1 Mapping (𝑧0, 𝑧1, . . . , 𝑧𝑑) to a Square-path with 𝑑− 1 turns

Input: A vector (𝑧0, 𝑧1, . . . , 𝑧𝑑) ∈ 𝑆𝑑.
Output: A Square-path with 𝑑− 1 turns.

1: Let 𝑠1 := |𝑧0|, and 𝑠𝑗 := |𝑧𝑗−2|+ |𝑧𝑗−1| for 𝑗 ∈ {3, 5, . . . , 𝑑+ 1} (resp. 𝑗 ∈ {3, 5, . . . , 𝑑+ 2})
when 𝑑 is even (resp. odd).

2: Find the set 𝑇 = {𝑡1 . . . , 𝑡𝑟} ⊆ {1, 3, . . . , 𝑑+1} (resp. {1, 3, . . . , 𝑑+2}) when 𝑑 is even (resp.
odd), where 𝑡1 < · · · < 𝑡𝑟, and for each ℓ ∈ [𝑟] it holds that 𝑠𝑡ℓ > 0.

3: if 𝑧0 > 0 then
4: create an artificial cut 𝑥0 = 1 in strip [𝑦0, 𝑦1], and set 𝑡0 := 0
5: if 𝑧0 < 0 then
6: create an artificial cut 𝑥0 = 0 in strip [𝑦0, 𝑦1], and set 𝑡0 := 0
7: if 𝑑 odd and 𝑧𝑑 > 0 then
8: create an artificial cut 𝑥𝑑 = 1 in strip [𝑦𝑑, 𝑦𝑑+2]
9: if 𝑑 odd and 𝑧𝑑 < 0 then

10: create an artificial cut 𝑥𝑑 = 0 in strip [𝑦𝑑, 𝑦𝑑+2]
11: Give an upward direction to all cuts within strips.
12: For any given ℓ ∈ [𝑟], let 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ denote the directed horizontal line segment belonging
to slice 𝑦𝑡ℓ that connects the head of cut 𝑥𝑡ℓ−1

and the tail of cut 𝑥𝑡ℓ . Also, let 𝑥𝑡ℓ−1
𝑦𝑡ℓ𝑥𝑡ℓ

denote its complementary directed line segment with the same start and end points that
wraps around the 𝑥-axis.

13: ℓ← 1
14: while ℓ ≤ 𝑟 do
15: if 𝑥𝑡ℓ−1

, 𝑥𝑡ℓ ∈ (0, 1) and 𝑧𝑡ℓ−1
· 𝑧𝑡ℓ > 0 then

16: create 𝑥𝑡ℓ−1
𝑦𝑡ℓ𝑥𝑡ℓ

17: if 𝑥𝑡ℓ−1
, 𝑥𝑡ℓ ∈ (0, 1) and 𝑧𝑡ℓ−1

· 𝑧𝑡ℓ < 0 then
18: create 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ
19: if 𝑥𝑡ℓ−1

, 𝑥𝑡ℓ ∈ {0, 1} and 𝑥𝑡ℓ−1
̸= 𝑥𝑡ℓ then

20: create 𝑥𝑡ℓ−1
𝑦𝑡ℓ𝑥𝑡ℓ

21: if 𝑥𝑡ℓ−1
∈ {0, 1} and 𝑥𝑡ℓ ∈ (0, 1) then

22: if 𝑧𝑡ℓ > 0 then
23: create 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ
24: if 𝑧𝑡ℓ < 0 then
25: create 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ
26: if 𝑥𝑡ℓ−1

∈ (0, 1) and 𝑥𝑡ℓ ∈ {0, 1} then
27: if 𝑧𝑡ℓ−1

> 0 then
28: create 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ
29: if 𝑧𝑡ℓ−1

< 0 then
30: create 𝑥𝑡ℓ−1

𝑦𝑡ℓ𝑥𝑡ℓ
31: ℓ← ℓ+ 1
32: Remove artificial cuts from strips [𝑦0, 𝑦1] and [𝑦𝑑, 𝑦𝑑+2] (odd 𝑑 case), if any.

changes continuously with the boundaries of the area; also, one can easily check that in order
for an individual area corresponding to 𝑧𝑗 to change sign, 𝑧𝑗 will have to pass from 0, and the
magnitude |𝑧𝑗 | of the area is a continuous function of 𝑧𝑗 .

no discontinuities. Moreover, the only case where the cut of a strip can arbitrarily take values in (0, 1) is when
for its components 𝑧𝑗 , 𝑧𝑗+1 we have 𝑧𝑗 = 𝑧𝑗+1 = 0, in which case the strip’s width is also 0, and so it does not
contribute to 𝜇(𝑅+; �⃗�).
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When 𝑑 is odd, the decoding of �⃗� = (𝑧0, 𝑧1, . . . , 𝑧𝑑) into a Square-path is similar. The
horizontal slices are 𝑦1, 𝑦3, . . . , 𝑦𝑑, and we set 𝑦0 := 0 and 𝑦𝑑+2 := 1. These define strips
similarly to the even 𝑑 case. The vertical cuts are 𝑥1, 𝑥3, . . . , 𝑥𝑑−2, meaning that the bottom
strip [𝑦0, 𝑦1] and the top strip [𝑦𝑑, 𝑦𝑑+2] are not vertically cut.

Also, it is easy to see that one could consider the path to be again 𝑦-monotone but in the
opposite direction, meaning that there is no line segment pointing upwards.

Given 𝑛 measures, if 𝑑 = 𝑛 the Borsuk-Ulam theorem applies on 𝑓 , ensuring that there
exist two antipodal points �⃗�*,−�⃗�* ∈ 𝑆𝑛 such that 𝑓(�⃗�*) = 𝑓(−�⃗�*). Notice that for any 𝑖 ∈
[𝑛], 𝑓𝑖(−�⃗�) = 𝜇𝑖(𝑅

−; �⃗�), since by flipping the signs of the variables of �⃗�, we consider the “−”
(negative) measure of [0, 1]2 induced by (the Square-path of) �⃗�. Therefore, when 𝑓(�⃗�*) =
𝑓(−�⃗�*) we will have 𝜇𝑖(𝑅

+; �⃗�*) = 𝜇𝑖(𝑅
−; �⃗�*) for every 𝑖 ∈ [𝑛], that is, in each of the 𝑛 measures,

the positive total measure equals the negative one. Therefore, the Square-path corresponding
to �⃗�* (see Algorithm 1) is a solution to Square-Pizza-Sharing. The total number of turns of
the directed path is 𝑑− 1 = 𝑛− 1.

Remark 25. Note that a symmetric proof exists, where the slices are vertical instead of hori-
zontal, and the cuts within the strips are horizontal instead of vertical. The analysis is similar
to the one we give here, and it guarantees the existence of a Square-path which is allowed to
wrap around in the vertical dimension, it bisects all 𝑛 measures and is 𝑥-monotone with either
no line segment heading left or no line segment heading right.

PPA membership. The following theorem shows PPA membership of 𝜀-Square-Pizza-
Sharing via a reduction to the 𝜀-Borsuk-Ulam problem which is in PPA. The latter problem
was introduced and shown to be in PPA by [Pap94] with its definition involving essentially a
polynomial-time algorithm for the computation of the Borsuk-Ulam function. In [DFMS21], the
definition of the problem uses an algebraic circuit as the representation of that function. The
PPA membership is shown via a reduction to Tucker (see [Pap94]), and for both versions of
the 𝜀-Borsuk-Ulam problem the reduction goes through. Here we state the most inclusive
version of the problem.

Definition 26 (𝜀-Borsuk-Ulam).

• Input: 𝜀 > 0, and a continuous function 𝑓 : 𝑆𝑑 → R𝑑 whose Lipschitz constant is
claimed to be 𝜆. The function can be presented as either an algebraic circuit or a
polynomial-time algorithm.

• Task: Find one of the following.

(a) Two points 𝑥, 𝑦 ∈ 𝑆𝑑 such that ‖𝑓(𝑥)− 𝑓(𝑦)‖∞ > 𝜆 · ‖𝑥− 𝑦‖∞.

(b) A point 𝑥 ∈ 𝑆𝑑 such that ‖𝑓(𝑥)− 𝑓(−𝑥)‖∞ ≤ 𝜀.

If the first task is accomplished, then we have found witnesses 𝑥, 𝑦 ∈ 𝑆𝑑 that function 𝑓 is not
𝜆-Lipschitz continuous in the 𝐿∞-norm as required.8 But if the second task is accomplished
then we have an approximate solution to the Borsuk-Ulam problem.

Theorem 27. 𝜀-Square-Pizza-Sharing for weighted polygons with holes is in PPA.
8The 𝜆-Lipschitzness of 𝑓 is necessary for the correctness of the reduction from 𝜀-Borsuk-Ulam to Tucker

in [DFMS21], where the latter problem is known to be in PPA. In particular, the reduction triangulates the
𝑆𝑑 sphere such that the triangulation’s vertices have distance at most 𝑂(𝜀/𝜆), therefore, if 𝑓 is not Lipschitz
continuous (i.e., 𝜆 is unbounded), the solutions of Tucker are not guaranteed to correspond to 𝜀-Borsuk-Ulam
solutions.
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Proof. We will turn our existence proof of Theorem 24 into a polynomial time reduction from 𝜀-
Square-Pizza-Sharing to 𝜀-Borsuk-Ulam in which the Borsuk-Ulam function is computable
via a polynomial-time algorithm. Given the 𝜀-Square-Pizza-Sharing instance with 𝑛 mass
distributions, we just have to construct the Borsuk-Ulam function 𝑓 : 𝑆𝑛 → R𝑛 using the
procedure described in Appendix B, for 𝑑 = 𝑛. The entire procedure involving the preprocessing
part and the construction of 𝑓 is a polynomial-time algorithm.

Furthermore, the function captures the 𝑅+ part of each involved colour 𝑖 ∈ [𝑛] by creating a
Square-path as described in the proof of Theorem 24, where we showed that 𝑓 is continuous.
Also, it is easy to verify from the final step of the construction in Appendix B.2 that 𝑓 is
piece-wise polynomial with respect to �⃗�, and therefore it is 𝜆-Lipschitz continuous for 𝜆 =

max𝑛𝑗=0

{︁
sup�⃗�

⃦⃦⃦
𝜕𝑓(�⃗�)
𝜕𝑧𝑗

⃦⃦⃦
∞

}︁
(and note that points where 𝑓𝑖(�⃗�), 𝑖 ∈ [𝑛] is non-differentiable do not

matter for Lipschitzness). By the construction of 𝑓 (Appendix B.2), one can see that 𝜆 is
constant: the polynomial pieces of 𝑓 are of degree at most 2, and the partial derivative of each
𝑓𝑖 is determined by the rational points (given in the input) that define the polygons.

So far we have showed how to formulate any given instance of 𝜀-Square-Pizza-Sharing
as an 𝜀-Borsuk-Ulam instance in polynomial time. What remains is to show how to
turn a solution �⃗�* of the latter to a solution of the former again in polynomial time. As
we showed in the proof of Theorem 24, any �⃗� ∈ 𝑆𝑛 can be efficiently translated into a
Square-path using Algorithm 1. The Square-path corresponding to �⃗�* (for which we have
‖𝑓(�⃗�*)− 𝑓(−�⃗�*)‖∞ ≤ 𝜀) is the solution to 𝜀-Square-Pizza-Sharing. To see this, notice that
from the aforementioned proof we have 𝑓𝑖(�⃗�*) = 𝜇𝑖(𝑅

+; �⃗�*) and 𝑓𝑖(−�⃗�*) = 𝜇𝑖(𝑅
−; �⃗�*), therefore,

‖𝜇𝑖(𝑅
+; �⃗�*) − 𝜇𝑖(𝑅

−; �⃗�*)‖∞ ≤ 𝜀. Finally, since �⃗�* ∈ 𝑆𝑛, the Square-path has at most 𝑛 − 1
turns as required by an 𝜀-Square-Pizza-Sharing solution.

NP membership. Here we show that for any 𝑘, 𝑛 ∈ N, deciding whether there exists a solution
for 𝜀-Square-Pizza-Sharing with 𝑛 measures and at most 𝑘 turns is in NP. Notice that, for
any such instance, we can verify a candidate solution in polynomial time. In particular, suppose
we are given a Square-path with at most 𝑘 turns that splits [0, 1]2 into 𝑅+ and 𝑅− regions. Let
the path be represented by the starting and ending points of its line segments, and the regions
be defined by labels to the left and right of each vertical segment. Each measure 𝑖 ∈ [𝑛] consists
of a set of polygons with holes which can be preprocessed in polynomial time as described in
Appendix B.1 to result in only axis-aligned right-angled triangles. Then, using the Square-
path, the measures 𝜇𝑖(𝑅

+) and 𝜇𝑖(𝑅
−) (in a similar way) can be computed in polynomial time

as described in Appendix B.2, where now 𝑑 = 𝑘 + 1. Finally, for the given 𝜀, we can check
whether |𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)| ≤ 𝜀 is true for all 𝑖 ∈ [𝑛]. Therefore, we get the following.

Theorem 28. Deciding whether there exists a Square-path with at most 𝑘 ∈ N turns that is a
solution of 𝜀-Square-Pizza-Sharing with 𝑛 ∈ N mass distributions is in NP.

4.3 Membership results for discrete Square-Pizza-Sharing

It has already been shown in [Sch21] that 𝜀-Discrete-Straight-Pizza-Sharing is in PPA
even for 𝜀 = 0. We complete the picture regarding inclusion of discrete pizza sharing problems,
by showing that 𝜀-Discrete-Square-Pizza-Sharing is also in PPA for 𝜀 = 0, and therefore,
for every 𝜀 ∈ [0, 1]. We will reduce 𝜀-Discrete-Square-Pizza-Sharing to 𝜀′-Square-Pizza-
Sharing for 𝜀 = 0 and 𝜀′ = 1/2𝑁 , where 𝑁 is the input size. Finally, as one would expect from
the discrete version, its decision variant is in NP since its candidate solutions are verifiable in
polynomial time.
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PPA membership. Consider an instance of 𝜀-Discrete-Square-Pizza-Sharing with point
sets 𝑃1, . . . , 𝑃𝑛, and denote 𝑃 := 𝑃1 ∪ · · · ∪ 𝑃𝑛. We intend to turn each point into a mass of
non-zero area. To do so, we need to first scale down the landscape of the points, to create some
excess free space as a “frame” around them. It suffices to scale down by an order of 3 and center
it in the middle of [0, 1]2, that is, to map each point (𝑥, 𝑦) to

(︀
1
3 + 𝑥

3 ,
1
3 + 𝑦

3

)︀
. Now all our points

are in [1/3, 2/3]2. For convenience, for each 𝑖 ∈ [𝑛], we will be still denoting by 𝑃𝑖 the new set
of points after scaling and centering.

Now, we check whether for any pair 𝑖 ̸= 𝑗 we have 𝑃𝑖,𝑗 := 𝑃𝑖 ∩ 𝑃𝑗 ̸= ∅, which means that
two points of two point sets have identical positions. Consider all 𝑃𝑖,𝑗 ̸= ∅ and let their union
be 𝑃 ′. Now consider all points that do not belong in 𝑃 ′, that is 𝑅 := 𝑃 ∖ 𝑃 ′. We want to find
the minimum positive difference in the 𝑥- and 𝑦-coordinates between any pair of points in 𝑅.
Let a point of 𝑅 be denoted 𝑝𝑡 = (𝑥𝑡, 𝑦𝑡), and let us denote

𝑥min := min
𝑝𝑎,𝑝𝑏∈𝑅
𝑥𝑎 ̸=𝑥𝑏

|𝑥𝑎 − 𝑥𝑏|, and by 𝑦min := min
𝑝𝑎,𝑝𝑏∈𝑅
𝑦𝑎 ̸=𝑦𝑏

|𝑦𝑎 − 𝑦𝑏|,

and finally, 𝑑 := min{𝑥min, 𝑦min}.
We now turn each point of 𝑃𝑖 into an axis-aligned square of size 𝑑

3 ×
𝑑
3 , with its bottom-left

corner having the point’s coordinates. Notice that the total area of the squares is |𝑃𝑖| · 𝑑
2

9 ,
therefore, by setting the weight of each square to 9

|𝑃𝑖|𝑑2 we have the full description of a mass
distribution 𝜇𝑖. Notice that, since 𝑑 ≤ 1/3, all of the mass distributions are in [1/3 − 1/3 ·
3, 2/3 + 1/3 · 3] = [2/9, 7/9]2.

Lemma 29. Any Square-path that is a solution to the resulting 𝜀-Square-Pizza-Sharing
instance for 𝜀 = 1/2𝑁 , can be turned into a solution of 𝜀′-Discrete-Square-Pizza-Sharing
for 𝜀′ = 0 in polynomial time.

Proof. If a horizontal (resp. vertical) line segment of the Square-path solution intersects two
squares (of any two mass distributions), this means that their corresponding points in Discrete-
Square-Pizza-Sharing had the same 𝑦- (resp. 𝑥-) coordinate. To see this, without loss of
generality, suppose that the two squares are intersected by the same horizontal line segment,
and that their corresponding points do not have the same 𝑦-coordinate. Then, the distance
between their bottom-left corners is positive but no greater than 𝑑/3, which implies that 𝑑 ≤ 𝑑/3
(by definition of 𝑑), a contradiction. A symmetric argument holds for two squares that are
intersected by the same vertical line segment. In both the above cases, we return as a solution
to 0-Discrete-Square-Pizza-Sharing the two corresponding points of the squares, which
are of the kind of “Output (a)” in Definition 12.

Let 𝑃max := max𝑖∈[𝑛] |𝑃𝑖|. Suppose |𝑃𝑖| is odd for every 𝑖 ∈ [𝑛]. Then, since we are asking
for an 1/2𝑁 -Square-Pizza-Sharing solution, its Square-path cannot be non-intersecting
with any of the squares, otherwise |𝜇𝑖(𝑅

+) − 𝜇𝑖(𝑅
+)| ≥ 1/|𝑃𝑖| ≥ 1/𝑃max > 1/2𝑃max ≥ 1/2𝑁 ,

a contradiction. Therefore, at least one square of 𝑃𝑖 is intersected, and this holds for every
𝑖 ∈ [𝑛]. If no line segment of the Square-path intersects two squares, we conclude that the
Square-path with 𝑛−1 turns and 𝑛 line segments will intersect at most 𝑛 squares. But since, as
discussed above, at least one square of each mass distribution has to be intersected by Square,
we get that Square intersects exactly one square of each mass distribution. Each side, 𝑅+ and
𝑅− of the Square-path includes at least ⌊|𝑃𝑖|/2⌋ entire squares for every 𝑖 ∈ [𝑛], and therefore,
their bottom-left corners, i.e., the corresponding points of Discrete-Square-Pizza-Sharing.
This is a solution to the 0-Discrete-Square-Pizza-Sharing instance.

Now suppose |𝑃𝑖| is even for some 𝑖 ∈ [𝑛]. We can remove an arbitrary square from all mass
distributions that come from point sets with even cardinality, and perform the aforementioned
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reduction to 1/2𝑁 -Square-Pizza-Sharing. Then, let us call “𝑖-th segment” the one that
intersects one square of 𝑃𝑖, called 𝑖-th square, and let it be a vertical segment, without loss of
generality. By placing back the removed square, its bottom-left corner will be: (i) either on
opposite sides with that of the 𝑖-th square, (ii) or on the same side (notice that due to the
allowed discrepancy 1/2𝑁 < 1/2𝑃max, the 𝑖-th segment cannot fall on the bottom-left corner
of the 𝑖-th square). Then, in case (i) each side contains exactly |𝑃𝑖|/2 bottom-left corners of
squares (i.e., points). By scaling up the positions of Square-path’s segments (recall that we
have scaled down), this is a solution to the 0-Discrete-Square-Pizza-Sharing instance. In
case (ii), suppose without loss of generality that both the inserted square and the bottom-left
corner of the 𝑖-th square are on the left side of the 𝑖-th segment. We modify the Square-path
by shifting the 𝑖-th segment to the left such that it is now located 𝑑/3 to the left of 𝑖-th square’s
bottom-left corner. Notice that this position is to the right of the inserted square since there is at
least 2𝑑/3 distance between the two squares. We do the same for every 𝑖 ∈ [𝑛] has even number
of points/squares. Then, each side of the Square-path for every 𝑖 ∈ [𝑛] has exactly |𝑃𝑖|/2
bottom-left corners of squares which represent the initial points. After scaling up the positions
of the Square-path’s segments, this is a solution to 0-Discrete-Square-Pizza-Sharing.

Finally, it is clear that the aforementioned operations can be performed in poly(𝑁) time.

By the PPA membership of 1/2𝑁 -Square-Pizza-Sharing (see Theorem 27), we get the
following.

Theorem 30. 𝜀-Discrete-Square-Pizza-Sharing is in PPA for any 𝜀 ∈ [0, 1].

NP membership. It is also easy to see that, by checking whether each of the points of each 𝑃𝑖

is in 𝑅+ or 𝑅− as defined by a candidate Square-path solution, we can decide in polynomial
time if indeed it is a solution or not to 0-Discrete-Square-Pizza-Sharing (since the points
are polynomially many in 𝑁 , by definition).

Theorem 31. Deciding whether there exists a Square-path solution to 𝜀-Discrete-Square-
Pizza-Sharing is in NP for any 𝜀 ∈ [0, 1].

4.4 ∃R membership for the decision variant of exact Square-Pizza-
Sharing

Here we show that deciding whether there exists an exact Square-Pizza-Sharing solution
(Square-path) with at most 𝑘 turns and 𝑛 measures is in ∃R, for any 𝑘, 𝑛 ∈ N. To do so, we
turn our decision problem into an ETR formula in polynomial time. As discussed in Section 2,
an ETR expression has the form: ∃𝑃 ∈ R𝑚 ·Φ, where Φ is a Boolean formula using connectives
{∧,∨,¬} over polynomials with domain R𝑚 for some 𝑚 ∈ N compared with the operators
{<,≤,=,≥, >}. The ETR problem is to decide whether there is a truth assignment 𝑃 ∈ R𝑚

that satisfies Φ.
We will use the proof of Theorem 24 and the explicit construction of the Borsuk-Ulam

function from Appendix B. Recall that the aforementioned sections provide a polynomial time
algorithm that takes the problem’s input, i.e., 𝑛 sets of polygons with holes, and computes a
Borsuk-Ulam function, 𝑓 : 𝑆𝑑 → R𝑛, for some given 𝑑 ∈ N*. This is done by first mapping any
point �⃗� ∈ 𝑆𝑑 to a Square-path with at most 𝑑− 1 turns, and then computing 𝑓𝑖, 𝑖 ∈ [𝑛], which
captures the 𝑖-th measure’s intersection with the 𝑅+ region (where the 𝑅+, 𝑅− regions have
been determined by the Square-path). In Appendix B.2 we showed how to explicitly construct
𝑓 in polynomial time and showed that it is piece-wise polynomial.

Now notice that for every 𝑖 ∈ [𝑛], 𝑓𝑖(�⃗�) = 𝜇𝑖(𝑅
+; �⃗�), therefore, 𝑓𝑖(�⃗�) = 𝑓𝑖(−�⃗�) is equivalent

to 𝜇𝑖(𝑅
+; �⃗�) = 𝜇𝑖(𝑅

+;−�⃗�) = 𝜇𝑖(𝑅
−; �⃗�), where the last equality comes by the definition of the
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Square-path decoded from �⃗�. In other words, �⃗� ∈ 𝑆𝑑 is a solution to 𝑓(�⃗�) = 𝑓(−�⃗�) if and only
if its corresponding Square-path is a solution to 𝜇(𝑅+; �⃗�) = 𝜇(𝑅−; �⃗�). Let us set 𝑑 = 𝑘 + 1.
What remains is to turn the decision problem of whether such a �⃗� exists into an ETR formula.

We start by replacing the domain �⃗� ∈ 𝑆𝑘+1 with �⃗� ∈ R𝑘+2 and adding in the ETR formula
the constraint

∑︀𝑘+1
𝑗=0 |𝑍𝑗 | = 1. Then, we turn all the aforementioned polynomial time computa-

tions (that result to 𝑓) into ETR form. We can use a standardized method to do so in a generic
manner by efficiently expressing in ETR form any computation belonging to NP. In particular, it
is clear that any such computation can be turned in polynomial time into a Boolean satisfiability
(SAT) formula, and sequentially transform it into a CNF formula. To turn this formula into
an ETR expression is easily done in the following way (e.g., see [BPR06]). Consider the CNF
formula 𝐵 over 𝑚 ∈ N Boolean variables {𝑥1, . . . , 𝑥𝑚}. This can be turned in polynomial time
into an equisatisfiable ETR formula: ∃�⃗� ∈ R𝑚 ·

⋀︀𝑚
𝑖=1((𝑋𝑖 = 0) ∨ (𝑋𝑖 = 1)) ∧ 𝐵′, where 𝐵′ is

constructed in the following way. For each 𝑖 ∈ [𝑚], let 𝑦𝑖 ∈ {𝑥𝑖,¬𝑥𝑖} be a literal in 𝐵. We turn
all disjunctions 𝑦𝑗 ∨ 𝑦𝑘 ∨ · · · ∨ 𝑦ℓ of 𝐵 into the inequality 𝑌𝑗 + 𝑌𝑘 + · · ·+ 𝑌ℓ > 0 in 𝐵′, where for
each 𝑖 ∈ [𝑚], 𝑌𝑖 = 𝑋𝑖 if 𝑦𝑖 = 𝑥𝑖 and 𝑌𝑖 = 1−𝑋𝑖 if 𝑦𝑖 = ¬𝑥𝑖. Finally, the auxiliary variables 𝐹𝑖,
𝐹 ′
𝑖 , 𝑖 ∈ [𝑛], contain the values of 𝑓𝑖(�⃗�)’s and 𝑓𝑖(−�⃗�)’s computed from 𝐵′.
The above induce the following ETR expression, which is true if and only if there is an exact

solution (Square-path) with at most 𝑘 turns for the Square-Pizza-Sharing problem with 𝑛
measures.

∃(�⃗�; �⃗�;𝐹 ) ∈ R𝑘+2+𝑚+2𝑛 ·

⎛⎝𝑘+1∑︁
𝑗=0

|𝑍𝑗 | = 1

⎞⎠ ∧ 𝑚⋀︁
𝑖=1

((𝑋𝑖 = 0) ∨ (𝑋𝑖 = 1)) ∧𝐵′ ∧

(︃
𝑛⋀︁

𝑖=1

𝐹𝑖 = 𝐹 ′
𝑖

)︃
.

This gives us the following theorem.

Theorem 32. Deciding whether there exists a Square-path with at most 𝑘 ∈ N turns that is
an exact solution for Square-Pizza-Sharing with 𝑛 ∈ N mass distributions is in ∃R.

5 Conclusions

For 𝜀-Straight-Pizza-Sharing we have shown that finding a solution is PPA-complete for
any 𝜀 ∈ [1/𝑁 𝑐, 1/5), where 𝑁 is the input size and 𝑐 > 0 is a constant. This result holds for
both its continuous (even when the input contains only axis-aligned squares) and its discrete
version. We have also shown that the same result holds for 𝜀-Square-Pizza-Sharing, where
the PPA membership holds even for inverse exponential 𝜀. One open question that remains is
“Can we prove PPA membership of 𝜀-Straight-Pizza-Sharing for inverse exponential 𝜀?”.
For the decision variant of both these problems, we show that there exists a small constant 𝜀
such that they are NP-complete. For both these problems and their search/decision variants, a
big open question is “What is the largest constant 𝜀 for which the problem remains PPA-hard
and NP-hard, respectively?”. The most interesting open question is “Are there any algorithms
that guarantee a solution in polynomial time for some constant 𝜀 ∈ [1/5, 1), even when slightly
more lines (resp. turns in a Square-path) are allowed?”.

We have also shown that exact Square-Pizza-Sharing is FIXP-hard. The interesting ques-
tion that needs to be settled are “Is the problem in the class BU (defined in [DFMS21]) similarly
to exact Consensus-Halving?”, and “For what complexity class is the problem complete?”.
Schnider in [Sch21] showed that exact Straight-Pizza-Sharing is FIXP-hard for a more gen-
eral type of input than ours. So, some natural questions are “When the input consists of weighted
polygons with holes, is the problem FIXP-hard and/or inside BU?”, and “Is it complete for any
of the two classes?”. For a strong approximation version of Consensus-Halving, [BHH21]
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showed that the problem is BU𝑎-complete. We conjecture that the same holds for the two pizza
sharing problems studied here.

In the Square-Pizza-Sharing problem, a path is allowed to wrap around on either the 𝑥-
axis or the 𝑦-axis, suggesting a cylindrical shape of the underlying space. It would be intriguing
to study the case of a torus or even that of a plane. Another couple of questions that remain open
are: “What is the complexity of 𝜀-Straight-Pizza-Sharing and 𝜀-Square-Pizza-Sharing
when every mass distribution consists of a constant number of non-overlapping rectangles?”, and
finally, “What is the complexity of the pizza sharing problems when we ask to fairly split the
plane into more than two equal parts?”.

A Proof of Lemma 13

Pixelation. We will start with the task of pixelating the mass distributions. Consider the
input of an 𝜀-Square-Pizza-Sharing or an 𝜀-Straight-Pizza-Sharing instance, that is,
𝑞 ∈ {𝑛, 2𝑛} mass distributions, respectively, on [0, 1]2 consisting of weighted polygons with holes
(see Section 2 for details on the input representation). Let the instance’s input size be 𝑁 ≥ 2𝑛
(by definition). As a first step, we perform a pixelation procedure: each polygon will be turned
into a union of smaller squares that will have approximately the same total area as the polygon.

As shown in Appendix B.1, it is possible to decompose a polygon into a union of disjoint
non-obtuse triangles (Proposition 38). Each of those triangles’ area is rational since it can
be computed by adding and subtracting the areas of five right-angled triangles with rational
coordinates, which additionally, are axis-aligned (Proposition 39). Furthermore, the cardinality
of the non-obtuse triangles is a polynomial function in the input size of the polygon’s description,
that is, the coordinates of the points that define its corners and the value that defines its weight.
Therefore, the exact area of any mass distribution can be computed in polynomial time.

As we have discussed earlier, in order for our approximation parameter 𝜀 ∈ [0, 1] to make
sense, we consider normalized mass distributions, meaning that 𝜇𝑖

(︀
[0, 1]2

)︀
= 1 for all 𝑖 ∈ [𝑞].

Notice that it can be the case that some mass distributions have total area constant (in which
case their weight is constant), while some others might have total area exponentially small
(and therefore exponentially large weight). Therefore, in our analysis, we make sure that the
“resolution” we provide to any polygon 𝐹 is relative to its actual area area(𝐹 ) rather than its
measure 𝜇𝑖(𝐹 ).

(a) The triangulation with only non-obtuse tri-
angles. After the standard triangulation, extra
line segments (in red colour) are added to ensure
non-obtuseness.

(b) A non-obtuse triangle Ï𝐴𝐵𝐶 and its de-
composition into axis-aligned right-angled trian-
gles: area(Ï𝐴𝐵𝐶) = area(Ï𝑋𝑌 𝐵) + area(Ï𝑋𝐵𝑍) −
area(Ï𝐴𝑌 𝐵)− area(Ï𝑋𝐴𝐶)− area(Ï𝐶𝐵𝑍).

Figure 7
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Consider some polygon 𝐹 of mass distribution 𝜇𝑖 for 𝑖 ∈ [𝑞] and let it be triangulated into
non-obtuse triangles, all with strictly positive area. We will focus on one of 𝐹 ’s non-obtuse
triangles, Ï𝐴𝐵𝐶 (see Figure 7b) with area 𝑆 := area

(︁Ï𝐴𝐵𝐶
)︁
> 0 and perimeter 𝑇 > 0. Notice

that since Ï𝐴𝐵𝐶 is in [0, 1]2, we have 𝑆 ≤ 1 and 𝑇 ≤ 3 ·
√
2 < 5. Suppose that among all

triangles of all 𝜇𝑖’s, the minimum area triangle has area 𝛼. The first step is to pixelate Ï𝐴𝐵𝐶.
Let our pixels be thought of as squares of size 𝑡 × 𝑡 for 𝑡 := 1

⌈15𝑁1+𝑐/𝛼⌉ , where 𝑐 > 0 is any
fixed constant. In other words, consider an axis-aligned square grid on [0, 1]2 with edge length
𝑡, where the closed region defined by four edges is called a pixel (see Figure 8a for a depiction).
We create a pixel for Ï𝐴𝐵𝐶 if and only if the pixel’s intersection with Ï𝐴𝐵𝐶 has strictly positive
area. Then, the pixelated version of the triangle, denoted Ï𝐴𝐵𝐶𝑝, has area 𝑆+𝑆′, where 𝑆′ is the
excess area induced by the pixels intersected by the three sides of the triangle. By definition, 𝑆′

is at least 0, and at most the area of pixels that intersect the three sides of Ï𝐴𝐵𝐶. Therefore, by
denoting the number of such pixels for each side by 𝑛𝐴𝐵, 𝑛𝐵𝐶 , 𝑛𝐶𝐴 and referring to Figure 7b,
we have 𝑛𝐴𝐵 ≤

⌈︀
𝐴𝑌
𝑡

⌉︀
+ 1 +

⌈︀
𝑌 𝐵
𝑡

⌉︀
+ 1 ≤ 𝐴𝑌

𝑡 + 𝑌 𝐵
𝑡 + 4, and similarly for 𝑛𝐵𝐶 , 𝑛𝐶𝐴. Now also

notice that 𝑡 ≤ 𝛼
15𝑁1+𝑐 ≤ 𝑆

15 < 𝑆
3𝑇 , where the second inequality comes from the fact that 𝑆 ≥ 𝑎

by definition, and the third one is due to 𝑇 < 5 as argued above. Then, we also have to use the
known formula that connects 𝑆 and 𝑇 , namely,

𝑆 =

√︃
𝑇

2

(︂
𝑇

2
−𝐴𝐵

)︂(︂
𝑇

2
−𝐵𝐶

)︂(︂
𝑇

2
− 𝐶𝐴

)︂
<

√︃(︂
𝑇

2

)︂4

=
𝑇 2

4
,

which implies 𝑆
𝑇 < 𝑇

4 , and therefore 𝑡 < 𝑇
12 .

Putting everything together, we get

𝑆′ ≤ 𝑡2 · (𝑛𝐴𝐵 + 𝑛𝐵𝐶 + 𝑛𝐶𝐴)

≤ 𝑡2 ·
(︂
𝐴𝑌

𝑡
+

𝑌 𝐵

𝑡
+

𝐵𝑍

𝑡
+

𝑍𝐶

𝑡
+

𝐶𝑋

𝑡
+

𝑋𝐴

𝑡
+ 12

)︂
≤ 𝑡 · ((𝐴𝑌 + 𝑌 𝐵) + (𝐵𝑍 + 𝑍𝐶) + (𝐶𝑋 +𝑋𝐴) + 12𝑡)

≤ 𝑡 · (2 ·𝐴𝐵 + 2 ·𝐵𝐶 + 2 · 𝐶𝐴+ 12𝑡) (since 𝐴𝐵,𝐵𝐶,𝐶𝐴 are hypotenuses)

= 𝑡 · (2 · 𝑇 + 12𝑡) (since 𝑡 <
𝑇

12
),

< 3 · 𝑇 · 𝑡

<
𝛼

𝑁1+𝑐
(since 𝑇 < 5). (1)

We want to bound the proportion of excess area due to the pixelation compared to the
triangle’s actual area, that is, 𝑆′/𝑆. We have

𝑆′

𝑆
<

𝛼

𝑆 ·𝑁1+𝑐
,

which, together with he fact that 𝑆 ≥ 𝛼 (by definition of 𝛼), gives the following.

Claim 33. The pixelation of Ï𝐴𝐵𝐶 results in Ï𝐴𝐵𝐶𝑝, where area
(︁Ï𝐴𝐵𝐶𝑝

)︁
<
(︀
1 + 𝛼

𝑆·𝑁1+𝑐

)︀
·

area
(︁Ï𝐴𝐵𝐶

)︁
. In particular, area

(︁Ï𝐴𝐵𝐶𝑝

)︁
<
(︀
1 + 1

𝑁1+𝑐

)︀
· 𝑆

Consider a straight line ℓ that cuts Ï𝐴𝐵𝐶𝑝, splitting it into two shapes 𝐿𝑝 and 𝑅𝑝 with areas
area(𝐿𝑝) and area(𝑅𝑝), respectively. Let the corresponding two shapes that ℓ creates when
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intersecting Ï𝐴𝐵𝐶 be 𝐿 and 𝑅, with areas area(𝐿) and area(𝑅), respectively. Also, let 𝑀 be
the set of pixels of Ï𝐴𝐵𝐶𝑝 that are intersected by ℓ, and 𝑀𝐿,𝑀𝑅 be a partition of 𝑀 . When
clear from the context, we will slightly abuse the notation by denoting 𝐷 the set of points in
the union of squares on [0, 1]2 corresponding to pixel set 𝐷.

Claim 34. The total area of 𝑀 is at most 𝛼/5𝑁1+𝑐.

Proof. We start from the easy observation that the length of ℓ∩Ï𝐴𝐵𝐶𝑝 is at most
√
2 < 2 since

we are in [0, 1]2. Therefore, the number of pixels that ℓ intersects is at most 2
𝑡 resulting to their

area being at most 𝑡2 · 2𝑡 = 2𝑡 < 𝛼
5𝑁1+𝑐 .

Claim 35. For any disjoint 𝑀𝐿,𝑀𝑅 with 𝑀𝐿 ∪ 𝑀𝑅 = 𝑀 , we have |(area(𝐿) − area(𝑅)) −
(area(𝐿𝑝 ∪𝑀𝐿)− area(𝑅𝑝 ∪𝑀𝑅))| ≤ 2𝛼/𝑁1+𝑐.

Proof. It suffices to show that 0 ≤ area(𝐿𝑝 ∪𝑀𝐿) − area(𝐿) ≤ 2𝛼/𝑁1+𝑐. The first inequality
is easy to see, since 𝐿 ⊆ 𝐿𝑝 ∪𝑀𝐿, which implies area(𝐿) ≤ area(𝐿𝑝 ∪𝑀𝐿). For the second
inequality, we have

area(𝐿) >
area(𝐿𝑝)

1 + 𝛼/𝑆𝑁1+𝑐
(by Claim 33)

= area(𝐿𝑝) ·
(︂
1− 𝛼

𝑆𝑁1+𝑐 + 𝛼

)︂
≥ (area(𝐿𝑝 ∪𝑀𝐿)− area(𝑀)) ·

(︁
1− 𝛼

𝑆𝑁1+𝑐

)︁
≥ area(𝐿𝑝 ∪𝑀𝐿)−

𝛼

5𝑁1+𝑐
− 𝛼

𝑆𝑁1+𝑐
·
(︁
area(𝐿𝑝 ∪𝑀𝐿)−

𝛼

5𝑁1+𝑐

)︁
(by Claim 34)

≥ area(𝐿𝑝 ∪𝑀𝐿)−
𝛼

5𝑁1+𝑐
− 𝛼

𝑆𝑁1+𝑐
· area

(︁Ï𝐴𝐵𝐶𝑝

)︁
> area(𝐿𝑝 ∪𝑀𝐿)−

𝛼

5𝑁1+𝑐
− 𝛼

𝑆𝑁1+𝑐
· 𝑆
(︂
1 +

1

𝑁1+𝑐

)︂
(by Claim 33)

≥ area(𝐿𝑝 ∪𝑀𝐿)−
𝛼

5𝑁1+𝑐
− 3

2

𝛼

𝑁1+𝑐
(since 𝑁 ≥ 2)

≥ area(𝐿𝑝 ∪𝑀𝐿)−
2𝛼

𝑁1+𝑐
.

Similarly, 0 ≤ area(𝑅𝑝 ∪ 𝑀𝑅) − area(𝑅) ≤ 2𝛼/𝑁1+𝑐, or equivalently, −2𝛼/𝑁1+𝑐 ≤
−(area(𝑅𝑝 ∪𝑀𝑅)− area(𝑅)) ≤ 0. Therefore,

−2𝛼/𝑁1+𝑐 ≤ (area(𝐿𝑝 ∪𝑀𝐿)− area(𝐿))− (area(𝑅𝑝 ∪𝑀𝑅)− area(𝑅)) ≤ 2𝛼/𝑁1+𝑐

Recall that, in an 𝜀-Straight-Pizza-Sharing solution, at most 2𝑛 lines can intersectÏ𝐴𝐵𝐶

and Ï𝐴𝐵𝐶𝑝 (even though the standardized version of the problem requires at most 𝑛 straight
lines, as we showed in Theorem 6, PPA-hardness holds even for at most 𝑛 + 𝑛1−𝛿 lines for any
constant 𝛿 ∈ (0, 1]). Similarly for an 𝜀-Square-Pizza-Sharing solution, since its Square-
path comprises of at most 𝑛− 1 turns, i.e., 𝑛 straight line segments (and again, by Theorem 9
PPA-hardness holds even for at most 𝑛 + 𝑛1−𝛿 line segments for any constant 𝛿 ∈ (0, 1]) By
inductively applying Claim 34 and Claim 35 𝑁 times (recall that 𝑁 ≥ 2𝑛), we get the following.

Lemma 36. Let at most 2𝑛 straight lines intersect Ï𝐴𝐵𝐶𝑝, and the side of each pixel be 𝛼/15𝑁1+𝑐

for any 𝑐 > 0. Also, let 𝑀 be the set of its pixels that are intersected by the lines, and 𝑀𝐿,𝑀𝑅 be
an arbitrary partition of 𝑀 . Then, area(𝑀) ≤ 𝛼/5𝑁 𝑐, and furthermore, |(area(𝐿)− area(𝑅))−
(area(𝐿𝑝 ∪𝑀𝐿)− area(𝑅𝑝 ∪𝑀𝑅))| ≤ 2𝛼/𝑁 𝑐.
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Turning pixels into points in general position with unique 𝑥- and 𝑦-coordinates. So
far, for 𝜀-Square-Pizza-Sharing and 𝜀-Straight-Pizza-Sharing, with 𝑞 ∈ {𝑛, 2𝑛} mass
distributions, respectively, we have described how to turn each distribution 𝜇𝑖, 𝑖 ∈ [𝑞] into a
pixelated version of it. We will now turn each of those pixels into a set of points. Let 𝜇𝑖 consist of
𝑏 many polygons, and recall that each polygon has its own weight 𝑤𝑖,𝑗 > 0, 𝑗 ∈ [𝑏]. Let 𝑇 𝑖,𝑗 ∈ ℱ𝑖

be a non-obtuse triangle belonging to the 𝑗-th polygon of 𝜇𝑖, and ℱ𝑖 be the set of these triangles
composing 𝜇𝑖. Suppose a pixel contains triangles (whose area is strictly positive) {𝑇 𝑖,𝑘}𝑘∈𝐷 for
some 𝐷 ⊆ [𝑏], and let us denote 𝑤𝑖

max := max𝑘∈𝐷 𝑤𝑖,𝑘. Observe that, due to our assumption that
the mass distributions are normalised, we have 1 =

∑︀
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 · area(𝑇 𝑖,𝑗) ≥
∑︀

𝑇 𝑖,𝑗∈ℱ𝑖
𝑤𝑖,𝑗 ·𝛼,

therefore,

𝑤𝑖
max ≤

∑︁
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 ≤ 1/𝛼. (2)

We will place
⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
points at the pixel’s bottom-left corner, that is, all having the same

position. Each of the pixels of mass distribution 𝑖 has no weight, as desired, and they form a
set 𝑃𝑖. Notice that each of the 𝑃𝑖’s we created contains at most 2𝑁𝑐

𝑡2𝛼
≤ 512𝑁2+3𝑐

𝛼3 points, i.e.,
polynomially many in the instance’s description size and 1/𝛼. That is because its pixels can be

at most 1
𝑡 ·

1
𝑡 ≤

(︁
15𝑁1+𝑐+1

𝛼

)︁2
≤
(︁
16𝑁1+𝑐

𝛼

)︁2
≤ 256𝑁2+2𝑐

𝛼2 many, with each pixel containing at most⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
≤ 𝑁𝑐

𝛼 + 1 ≤ 2𝑁𝑐

𝛼 points.
Observe, however, that in the discrete version of the pizza sharing instance we created, the

points of the 𝑞 ∈ {𝑛, 2𝑛} point sets lie on vertices of a square grid with edge length 𝑡 = 1
⌈15𝑁1+𝑐/𝛼⌉ .

These points are not guaranteed to be in general position or with unique 𝑥- and 𝑦-coordinates,
and therefore, not all solutions of that instance can be translated back to a solution of the
original corresponding continuous version of the instance. For the rest of this section, we will
show how to turn this instance into one where the points in 𝑃1 ∪ · · · ∪𝑃𝑞 are in general position
and with unique 𝑥- and 𝑦-coordinates. Additionally, we will ensure that each point remains in
its original pixel.

For each pixel, let us create a 𝑘 × 𝑘 square grid with edge length 𝑡
𝑘+1 , where 𝑘 := 48𝑛2𝑁2𝑐

𝑡6𝛼2 ,
which is placed at the center of each pixel. The purpose is to place each point of 𝑃1 ∪ · · · ∪ 𝑃𝑞

belonging to a pixel on the pixel’s corresponding grid, such that all the aforementioned points
are in general position and have unique 𝑥- and 𝑦-coordinates.

As shown above, for every 𝑖 ∈ [𝑞], |𝑃𝑖| ≤ 2𝑁𝑐

𝑡2𝛼
. Therefore, the points that a pixel can contain

are at most 𝑞 · 2𝑁𝑐

𝑡2𝛼
≤ 4𝑛𝑁𝑐

𝑡2𝛼
=: 𝐺 many. Suppose now we place the points of the pixel in distinct

vertices of the corresponding grid.

1. Any pair of those defines a line, and to satisfy the “general position” condition, that line
should not intersect any other point that is placed on any other pixel’s grid. There are at
most

(︀
𝐺
2

)︀
many such lines. For each line, we will forbid the placement of other points on

it by removing the grid vertices it intersects throughout all pixels’ grids. This means that,
for each line, at most 𝑘 grid vertices have to be removed due to a pair of points of a single
pixel. Therefore, overall, at most

(︀
𝐺
2

)︀
·𝑘 · 1

𝑡2
grid vertices have to be removed to satisfy the

“general position” condition.

2. Each point defines one horizontal and one vertical line that intersects it. To satisfy the
“uniqueness of 𝑥- and 𝑦-coordinates” condition, we have to forbid any other point from
being placed on these two lines. To do so, it suffices that among all pixels’ grids we remove
the vertices that are intersected by these two lines. Each line removes at most 𝑘 grid
vertices in a single pixel, so overall, at most 𝐺 · 2 · 𝑘 · 1

𝑡2
grid vertices have to be removed

to satisfy the “uniqueness of 𝑥- and 𝑦-coordinates” condition.
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In total, at most
(︀
𝐺
2

)︀
· 𝑘 · 1

𝑡2
+𝐺 · 2 · 𝑘 · 1

𝑡2
= 𝑘

𝑡2
𝐺2+3𝐺

2 ≤ 2𝑘𝐺2

𝑡2
grid vertices have to be removed

from each pixel’s grid in order to respect the above conditions. For each pixel’s grid, since it
initially contained 𝑘2 vertices, its remaining vertices that can be used for points of the pixel to
be placed on are at least 𝑘2 − 2𝑘𝐺2

𝑡2
= 9𝐺4

𝑡4
− 6𝐺4

𝑡4
= 3𝐺4

𝑡4
≥ 𝐺, where the first equality comes by

our choice of 𝑘 := 48𝑛2𝑁2𝑐

𝑡6𝛼2 = 3𝐺2

𝑡2
. Recall that each pixel contains at most 𝐺 points, therefore

there are enough vertices for them to be placed on.
So far we have shown that we can slightly perturb each point from the bottom left corner of

a pixel so that it remains in the pixel, and furthermore, all points are in general position with
unique 𝑥- and 𝑦-coordinates. It remains to show that we can do this perturbation in polynomial
time. Indeed, it is easy to check that the following procedure achieves this task and requires
only polynomially many steps: choose an arbitrary pixel and an arbitrary grid vertex in it to
place one of the pixel’s points on; from all pixels, remove all other grid vertices which have the
same 𝑥- or 𝑦-coordinate with any of the pair’s points (this can be done in polynomial time by
exhaustively checking each of the 𝑘2/𝑡2 grid vertices); next, while there is still a point of that
pixel which has not been placed on its grid, place it on one of the non-removed vertices of its
grid, then remove every other vertex from all pixels if (i) they have the same 𝑥- or 𝑦-coordinate,
or (ii) if they are colinear with the pair formed by the new point and any of the older points
(this again can be done by checking colinearity in polynomial time for all grid vertices); repeat
the previous step for all pixels’ points until all points from all pixels (polynomially many) have
been placed on the respective grids.

(a) An example of the pixelated masses. All three
masses overlap on the red pixel.

(b) The bottom-left pixel corresponds to the red
pixel of Figure 8a.

Figure 8: Turning pixels into points in general position with unique 𝑥- and 𝑦-coordinates. In
Figure 8b, three of the red pixel’s points are placed one by one in its grid. First, the blue point
(shaded disk) is placed on an arbitrary vertex; this “forbids” all points that follow to be placed
on the blue hollow disks. Then the green point (shaded square) is placed on an arbitrary “non-
forbidden” vertex; this, in turn, “forbids” the green hollow squares. Finally, the red point (shaded
rhombus) is placed on one of the remaining vertices; this “forbids” the red hollow rhombuses. The
black dots denote “non-forbidden” vertices where the next available point from the corresponding
pixel can be placed on.

Lemma 37. The perturbed points are in general position, they have unique 𝑥- and 𝑦-coordinates,
and each has remained in its initial pixel.

We are now ready to prove the lemma.

Proof of Lemma 13. Consider the input of an 𝜀-Square-Pizza-Sharing or an 𝜀-Straight-
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Pizza-Sharing instance, meaning, the description of 𝑞 ∈ {𝑛, 2𝑛} sets, respectively, of weighted
polygons with holes on [0, 1]2. By definition, its size is 𝑁 ∈ Ω(𝑛). In time poly(𝑁), we
perform a triangulation of each polygon into non-obtuse triangles, therefore, in total we require
poly(𝑁) time for this task. Then, we perform the “pixelation” procedure, which requires, for
each of 𝑞 mass distributions, checking whether each of 1/𝑡2 =

⌈︀
225𝑁2+2𝑐/𝛼2

⌉︀
pixels has a non-

empty intersection with a triangle. This task can be performed in poly(𝑁, 1/𝛼) time, since
𝑐 > 0 is a fixed constant. Next, the points of each point set 𝑃𝑖 created from the respective
pixels are perturbed so that they are in general position, and they have unique 𝑥- and 𝑦-
coordinates (Lemma 37). This procedure has as a result that Output (a) of Definition 11 and
Definition 12 cannot be produced. Finally, notice that the number of points to be fairly divided
is poly(𝑁, 1/𝛼).

We claim that the lines ℓ1, . . . , ℓ𝑚 for some 𝑚 ≤ 2𝑛 that are a solution to 𝜀-Discrete-
Straight-Pizza-Sharing or the line segments of the Square-path solution of 𝜀-Discrete-
Square-Pizza-Sharing (recall that in Theorem 6 and Theorem 9 we allowed almost 2𝑛 lines
and line segments, respectively) are also a solution to (𝜀 − 𝜀′)-Straight-Pizza-Sharing and
(𝜀 − 𝜀′)-Square-Pizza-Sharing, respectively, for any 𝜀, 𝜀′ with 6/𝑁 𝑐 ≤ 𝜀′ < 𝜀 ≤ 1, where
𝑐 > 0 is a constant. What remains is to show the correctness of this statement. Notice that,
after “pixelation”, we placed a set of at most 2𝑁 𝑐/𝛼 points at the bottom-left corner of the
corresponding pixel. Then, we perturbed each point such that it remained in its initial pixel
while ensuring that all points are in general position and unique 𝑥- and 𝑦-coordinates.

Consider now a line (resp. a line segment) ℓ that is part of a solution of the (𝜀−𝜀′)-Discrete-
Straight-Pizza-Sharing (resp. (𝜀 − 𝜀′)-Discrete-Square-Pizza-Sharing) instance, and
intersects the corresponding non-obtuse triangle from mass distribution 𝑖 ∈ [𝑞], where 𝑞 = 2𝑛
(resp. 𝑞 = 𝑛). The triangle has been pixelated, and its corresponding points belonging to 𝑃𝑖

have been created. As we discussed above, each point is inside its corresponding pixel. The
line that cuts through the triangle can be thought of as intersecting a set 𝑀 of the pixels of
the triangle’s pixelated version. The points that correspond to the pixels of 𝐿𝑝 are clearly in
the 𝐿-part of the cut; the points that correspond to the pixels of 𝑅𝑝 are clearly in the 𝑅-part
of the cut. No matter what part of the cut the points corresponding to 𝑀 join, Claim 35 and
Lemma 36 apply. In the aforementioned results, notice that 𝐿𝑝 ∪𝑀𝐿 and 𝑅𝑝 ∪𝑀𝑅 correspond
to regions that are defined by whole pixels, meaning that they are the union of pixel regions.
Therefore, their respective areas are of the form 𝑘𝐿 · 𝑡2 and 𝑘𝑅 · 𝑡2, where 𝑘𝐿, 𝑘𝑅 ∈ N represent
the number of pixels on each part of the cut. By construction, if our triangle at hand belongs
to 𝜇𝑖 and has weight 𝑤𝑖,𝑗 , then each of the 𝑘𝐿 pixels contains at least ⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉ points, and
similarly for 𝑘𝑅.

Suppose we have turned the 𝜀-Straight-Pizza-Sharing (resp. 𝜀-Square-Pizza-
Sharing) to (𝜀−𝜀′)-Discrete-Straight-Pizza-Sharing (resp. (𝜀−𝜀′)-Discrete-Square-
Pizza-Sharing) as described above, so that all points are in general position (resp. have unique
𝑥- and 𝑦-coordinates). A solution for the latter problems always exists due to [Sch21] and
Lemma 29. Let us have a solution of any of the latter two problems, that is, a set of lines (resp.
line segments) ℓ1, . . . , ℓ𝑚 for 𝑚 ≤ 2𝑛, that partition [0, 1]2 to 𝑅+ and 𝑅− and for every 𝑖 ∈ [𝑞],
where 𝑞 ∈ {2𝑛, 𝑛}, we have ||𝑃𝑖 ∩𝑅+| − |𝑃𝑖 ∩𝑅−|| ≤ (𝜀− 𝜀′) · |𝑃𝑖|.

Recall that 𝑇 𝑖,𝑗 ∈ ℱ𝑖 is a non-obtuse triangle which belongs to the 𝑗-th polygon of 𝜇𝑖, and
ℱ𝑖 is the set of such triangles that compose 𝜇𝑖. By 𝑇 𝑖,𝑗

𝑝 we denote the pixelated version of
𝑇 𝑖,𝑗 , while 𝑀 𝑖,𝑗

+ ,𝑀 𝑖,𝑗
− are 𝑇 𝑖,𝑗

𝑝 ’s respective parts of the pixels intersected by lines, that join the
𝑅+ and the 𝑅− sides, respectively. From our earlier analysis, we have an upper bound of 2𝑁𝑐

𝑡2𝛼
for |𝑃𝑖|, however, here we need a better one, namely where a factor of 𝛼 is removed from the
denominator. To that end, we will use the fact that

∑︀
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 ·area(𝑇 𝑖,𝑗) = 1, or equivalently,
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∑︀
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 ·𝑁 𝑐 · area(𝑇 𝑖,𝑗) = 𝑁 𝑐. We have∑︁
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 ·𝑁 𝑐 · area(𝑇 𝑖,𝑗) +
∑︁

𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖
max ·𝑁 𝑐 · 𝛼

𝑁1+𝑐
· area(𝑇 𝑖,𝑗) ≤ 𝑁 𝑐 + 𝑤𝑖

max ·𝑁 𝑐 · 𝛼

𝑁1+𝑐
,

and since
∑︀

𝑇 𝑖,𝑗∈ℱ𝑖
area(𝑇 𝑖,𝑗) ≤ 1, we get∑︁

𝑇 𝑖,𝑗∈ℱ𝑖

⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉ · area(𝑇 𝑖,𝑗) +
∑︁

𝑇 𝑖,𝑗∈ℱ𝑖

⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
· 𝛼

𝑁1+𝑐
· area(𝑇 𝑖,𝑗) ≤ 𝑁 𝑐 + 1 +

(︀
𝑤𝑖
max ·𝑁 𝑐 + 1

)︀
· 𝛼

𝑁1+𝑐
.

Now observe that, after pixelation, only the pixels at the boundary of each triangle 𝑇 𝑖,𝑗

can correspond to
⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
points instead of ⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉. Therefore, using the notation of

Equation (1), where 𝑆 := area(𝑇 𝑖,𝑗), only at most a fraction 𝑆′/𝑆 can correspond to
⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
points. So,

|𝑃𝑖| ≤
∑︁

𝑇 𝑖,𝑗∈ℱ𝑖

⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉ · area(𝑇
𝑖,𝑗)

𝑡2
+

∑︁
𝑇 𝑖,𝑗∈ℱ𝑖

⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
· 𝛼

𝑁1+𝑐
· area(𝑇

𝑖,𝑗)

𝑡2

≤ 1

𝑡2
·
(︁
𝑁 𝑐 + 1 +

(︀
𝑤𝑖
max ·𝑁 𝑐 + 1

)︀
· 𝛼

𝑁1+𝑐

)︁
≤ 1

𝑡2
·
(︂
𝑁 𝑐 + 1 +

(︂
𝑁 𝑐

𝛼
+ 1

)︂
· 𝛼

𝑁1+𝑐

)︂
≤ 1

𝑡2
·
(︂
𝑁 𝑐 + 1 +

2

𝑁

)︂
≤ 1

𝑡2
· (𝑁 𝑐 + 3) , (3)

where the second to last inequality comes from the fact that 1 ≤ 𝑁 𝑐/𝛼.
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Putting everything together, we have

⃒⃒
𝜇𝑖(𝑅

+)− 𝜇𝑖(𝑅
−)
⃒⃒
=

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 · area(𝑇 𝑖,𝑗 ∩𝑅+)−
∑︁

𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 · area(𝑇 𝑖,𝑗 ∩𝑅−)

⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑇 𝑖,𝑗∈ℱ𝑖

𝑤𝑖,𝑗 ·
(︀
area(𝑇 𝑖,𝑗 ∩𝑅+)− area(𝑇 𝑖,𝑗 ∩𝑅−)

)︀⃒⃒⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒⃒ ∑︁
𝑇 𝑖,𝑗
𝑝 ∈ℱ𝑖

𝑤𝑖,𝑗 · (area(𝑇 𝑖,𝑗
𝑝 ∪𝑀 𝑖,𝑗

+ )− area(𝑇 𝑖,𝑗
𝑝 ∪𝑀 𝑖,𝑗

− ))

⃒⃒⃒⃒
⃒⃒⃒+ 2𝛼

𝑁 𝑐
·
∑︁
𝑇 𝑖,𝑗
𝑝

𝑤𝑖,𝑗

≤

⃒⃒⃒⃒
⃒⃒⃒ ∑︁
𝑇 𝑖,𝑗
𝑝 ∈ℱ𝑖

𝑤𝑖,𝑗 ·
(︂
|𝑃𝑖,𝑗 ∩𝑅+|
⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉

· 𝑡2 − |𝑃𝑖,𝑗 ∩𝑅−|
⌈𝑤𝑖,𝑗 ·𝑁 𝑐⌉

· 𝑡2 + 1 · 𝑡2
)︂⃒⃒⃒⃒⃒⃒⃒+ 2

𝑁 𝑐

≤ 𝑡2 ·

⃒⃒⃒⃒
⃒⃒⃒ 1

𝑁 𝑐
·
∑︁

𝑇 𝑖,𝑗
𝑝 ∈ℱ𝑖

|𝑃𝑖,𝑗 ∩𝑅+| − 1

𝑁 𝑐
·
∑︁

𝑇 𝑖,𝑗
𝑝 ∈ℱ𝑖

|𝑃𝑖,𝑗 ∩𝑅−|

⃒⃒⃒⃒
⃒⃒⃒+ 𝑡2

𝛼
+

2

𝑁 𝑐

≤ 𝑡2 · 1

𝑁 𝑐
·
⃒⃒
|𝑃𝑖 ∩𝑅+| − |𝑃𝑖 ∩𝑅−|

⃒⃒
+

𝑡2

𝛼
+

2

𝑁 𝑐

≤ 𝑡2 · 1

𝑁 𝑐
· (𝜀− 𝜀′)|𝑃𝑖|+

𝑡2

𝛼
+

2

𝑁 𝑐

≤ (𝜀− 𝜀′) · 1

𝑁 𝑐
· (𝑁 𝑐 + 3) +

𝛼

225𝑁2+2𝑐
+

2

𝑁 𝑐
(by Equation (3))

≤ 𝜀− 𝜀′ +
3

𝑁 𝑐
+

𝛼

225𝑁2+2𝑐
+

2

𝑁 𝑐

≤ 𝜀− 𝜀′ +
6

𝑁 𝑐

≤ 𝜀,

where the first inequality is acquired by the reverse triangle inequality in combination with
Lemma 36, the second inequality is due to the fact that the number of points in a pixel of 𝑇 𝑖,𝑗

𝑝 is⌈︀
𝑤𝑖
max ·𝑁 𝑐

⌉︀
, where 𝑤𝑖

max ≥ 𝑤𝑖,𝑗 , by definition, and the last inequality is by definition of 𝜀′.

B Exact computation of polygons’ positive measure given a
Square-path

Consider an input of exact Square-Pizza-Sharing, i.e., the one of Definition 3, where we
additionally restrict the mass distributions to be weighted polygons with holes in the represen-
tation form described in Section 2. We have so far ensured that our polygons are in [0, 1]2.
For the computation of function 𝑓 described in the proof of Theorem 24 we need a way of
computing the “positive” measure of a polygon, as dictated by a given �⃗� ∈ 𝑆𝑑 (and its induced
Square-path). To simplify this computation, we will first use some well-known algorithm (e.g.,
[GJPT78, AAP86, Meh84, GM91]) that triangulates polygons with holes in 𝑂(𝑁 log𝑁) time
(which is optimal), where 𝑁 is the input size, without inserting additional vertices. Then, we
will triangulate the polygon further to end up with only non-obtuse triangles, which can be de-
composed into axis-aligned right-angled triangles. Algorithm 2 describes the two preprocessing
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steps. To prove the algorithm’s correctness we need to obtain the preliminary results of the
following section.

B.1 Computing areas of polygons via axis-aligned right-angled triangle de-
composition

Here we first show how an arbitrary triangle can be decomposed into right-angled triangles whose
right angle is additionally axis-aligned.

Recall that the Borsuk-Ulam function 𝑓 : 𝑆𝑑 → R𝑛 we defined in the proof of Theorem 24,
namely, 𝑓(�⃗�) = 𝜇(𝑅+; �⃗�) captures the 𝑅+ part of each of 𝑛 measures when cut by a Square-
path (induced by �⃗�) with 𝑑 − 1 turns. From this, it is apparent that we need to be able to
compute parts of the area of a polygon, depending on where the Square-path cuts it. We
first need to preprocess the input by: (i) decomposing each polygon into non-obtuse triangles
(Proposition 38), and (ii) decomposing each such triangle into 5 axis-aligned right-angled trian-
gles (Proposition 39). Then, we provide a Borsuk-Ulam function which, given a Square-path,
captures the measure found on the 𝑅+ region. The aforementioned decomposition, allows our
function to be relatively simple, in the sense that it only needs to consider a single shape, that
of axis-aligned right-angled triangles.

We start by showing a simple polynomial time routine that achieves the first decomposition
step.

Proposition 38. Any polygon with holes can be decomposed into non-obtuse triangles in poly-
nomial time.

Proof. We first use a standard polynomial-time algorithm to triangulate the given polygon, for
example, the technique of [AAP86]. Next, we check the obtuseness of each triangle Ï𝐴𝐵𝐶 of the
triangulation by computing the squared lengths of its sides 𝐴𝐵2, 𝐵𝐶2, 𝐴𝐶2 (each is rational; a
sum of squares of rationals), taking the largest one, w.l.o.g. 𝐴𝐶2 and then checking whether
𝐴𝐵2 +𝐵𝐶2 < 𝐴𝐶2. If the inequality is not true then Ï𝐴𝐵𝐶 is non-obtuse and we proceed with
the next available triangle. Otherwise, we add the line segment 𝐵𝐷 that starts from 𝐵 and ends
at 𝐷 on side 𝐴𝐶, where 𝐵𝐷𝐶 = 𝐴𝐷𝐵 = 90∘.9 The coordinates (𝑥𝐷, 𝑦𝐷) of 𝐷 are rationals
since they are the solution of the following two equations: (a) one that dictates that 𝐷 is on
𝐴𝐶: 𝑦𝐷−𝑦𝐴

𝑥𝐷−𝑥𝐴
= 𝑦𝐴−𝑦𝐶

𝑥𝐴−𝑥𝐶
, and (b) one that captures the fact that 𝐵𝐷 and 𝐴𝐶 are perpendicular:

𝑦𝐵−𝑦𝐷
𝑥𝐵−𝑥𝐷

· 𝑦𝐴−𝑦𝐶
𝑥𝐴−𝑥𝐶

= −1. In fact,

𝑥𝐷 =
𝑁𝑢𝑚

𝐷𝑒𝑛
, and 𝑦𝐷 =

𝑦𝐴 − 𝑦𝐶
𝑥𝐴 − 𝑥𝐶

(𝑥𝐷 − 𝑥𝐴) + 𝑦𝐴,

where 𝑁𝑢𝑚 =(𝑦𝐴 − 𝑦𝐷)[(𝑦𝐵 − 𝑦𝐴)(𝑥𝐴 − 𝑥𝐶) + (𝑦𝐴 − 𝑦𝐶)𝑥𝐴] + 𝑥𝐵(𝑥𝐴 − 𝑥𝐶)
2,

and 𝐷𝑒𝑛 =(𝑥𝐴 − 𝑥𝐶)(𝑥𝐴 − 𝑥𝐶 + 𝑦𝐴 − 𝑦𝐶)

This results in two right-angled triangles Ï𝐴𝐵𝐷 and Ï𝐵𝐶𝐷. We then proceed with the next
available triangle of the triangulation, until there is none left.

It is easy to see that the triangulation results in polynomial many triangles, and the above
check and potential split of each triangle requires at most polynomial time.

9We will denote by Ï𝐴𝐵𝐶 a triangle with vertices 𝐴,𝐵,𝐶 and, when clear from context, we will also use the
same notation to indicate the area of the triangle. Two intersecting line segments 𝐴𝐵, 𝐵𝐶 define two angles,
denoted 𝐴𝐵𝐶 and 𝐶𝐵𝐴. The order of the vertices implies a direction of the segments, i.e., in the former angle
we have 𝐴𝐵, 𝐵𝐶 and in the latter we have 𝐶𝐵, 𝐵𝐴. We consider the direction of the segments and define the
angle to be the intersection of the left half-spaces of the segments. Therefore 𝐴𝐵𝐶 = 360∘ − 𝐶𝐵𝐴. This order
will not matter if clear from context (e.g., in triangles).
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At this point, the triangulation of each polygon consists of non-obtuse triangles (see Fig-
ure 7a). The next proposition decomposes further each non-obtuse triangle into axis-aligned
right-angled triangles.

Proposition 39. The area of any non-obtuse triangle can be computed using the areas of five
axis-aligned right-angled triangles.

Proof. Consider a non-obtuse triangle Ï𝐴𝐵𝐶. A proof by picture is presented in Figure 7b,
where we draw a segment from the top-left corner to the bottom-right one, and area(Ï𝐴𝐵𝐶) =

area(Ï𝑋𝑌 𝐵) + area(Ï𝑋𝐵𝑍)− area(Ï𝐴𝑌 𝐵)− area(Ï𝑋𝐴𝐶)− area(Ï𝐶𝐵𝑍).
The proof is immediate if we show that every non-obtuse triangle Ï𝐴𝐵𝐶 can be inscribed

inside a rectangle such that all of its vertices touch the rectangle’s perimeter and one of them
touches a corner of the rectangle while each of the other two vertices touches one of the rectangle’s
non-incident sides to that corner. To see this, consider a rectangle of minimum perimeter, which
contains Ï𝐴𝐵𝐶 and its sides are parallel to the axes. Since its perimeter is minimum, each side
touches at least one of the triangle’s vertices, otherwise the perimeter could be reduced. And
since the triangle has only three vertices, at least one of them has to be touching two sides
of the rectangle, i.e., a corner of the rectangle. If only one triangle vertex touches a corner of
the rectangle, then each of the other two vertices touches one of the non-incident sides of the
rectangle’s corner, otherwise the rectangle’s perimeter can be reduced. If two triangle vertices
are on corners of the rectangle, then the third vertex has to be on another corner (i.e., it is a
right-angled triangle); otherwise, either the rectangle does not have minimum perimeter (the
two corners have a common side), or it is obtuse (the two corners do not have a common side),
both being contradictions.

Due to the above, the coordinates to each of the rectangle’s corners are
(𝑥𝐿, 𝑦𝐿), (𝑥𝐿, 𝑦𝐻), (𝑥𝐻 , 𝑦𝐻), and (𝑥𝐻 , 𝑦𝐿), where 𝑥𝐿, 𝑥𝐻 , 𝑦𝐿, 𝑦𝐻 denote the minimum and maxi-
mum 𝑥- and 𝑦-coordinates of Ï𝐴𝐵𝐶’s vertices, respectively.

Finally, using the above auxiliary results, Algorithm 2 shows how to decompose each given
polygon into axis-aligned right-angled triangles in polynomial time.

B.2 Constructing the Borsuk-Ulam function

Here we show how to construct the Borsuk-Ulam function 𝑓 : 𝑆𝑑 → R𝑛 given 𝑛 sets of weighted
polygons, where 𝑑, 𝑛 ∈ N. We will focus on an arbitrary colour 𝑖 ∈ [𝑛] and present the coordinate
𝑓𝑖. As discussed earlier, our function will capture the measure 𝜇𝑖 in the 𝑅+ region of any given
Square-path. Furthermore, after the preprocessing step achieved by Algorithm 2, the function
suffices to be able to capture the measure of simple shapes, namely axis-aligned right-angled
triangles.

Consider the 𝜏 ≥ 1 weighted polygons of the 𝑖-th colour, and let us focus on a particular
polygon 𝑡 ∈ [𝜏 ]. We have triangulated the polygon into 𝑚𝑡 non-obtuse triangles. Consider one
such triangle 𝑇𝑠, corresponding to some 𝑠 ∈ [𝑚𝑡], and the virtual triangles 𝑇 1

𝑠 , 𝑇
2
𝑠 , 𝑇

3
𝑠 , 𝑇

4
𝑠 , 𝑇

5
𝑠 ,

which are the five axis-aligned right-angled triangles that Algorithm 2 gave as output (also see
Figure 7b). W.l.o.g. we consider 𝑇 1

𝑠 and 𝑇 2
𝑠 to be the positively contributing triangles and the

rest to be the negatively contributing triangles. For each of them, we will be computing the
positive measure determined by the Square-path induced from the given point �⃗� ∈ 𝑆𝑑 (see
proof of Theorem 24). By the axis-aligned right-angled triangle decomposition described in the
proof of Proposition 39, it suffices to show how to compute parts of areas of such a triangle, for
all of its four possible orientations: 𝑄𝐼 , 𝑄𝐼𝐼 , 𝑄𝐼𝐼𝐼 , 𝑄𝐼𝑉 , where 𝑄𝑜 is the orientation when, by
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Algorithm 2 Preprocessing: decomposing polygons into axis-aligned right-angled triangles
Input: A polygon 𝑃 represented by its ordered vertices (see Section 2).
Output: A set 𝐻 consisting of 5-tuples; each 5-tuple 𝑠 ∈ [|𝐻|] corresponds to a non-obtuse

triangle 𝑇𝑠 such that
⨆︀

𝑠∈[|𝐻|] area(𝑇𝑠) = area(𝑃 ); each tuple (𝑇 1
𝑠 , 𝑇

2
𝑠 , 𝑇

3
𝑠 , 𝑇

4
𝑠 , 𝑇

5
𝑠 ) consists of

5 axis-aligned right-angled triangles such that area(𝑇𝑠) = area(𝑇 1
𝑠 ) + area(𝑇 2

𝑠 )− area(𝑇 3
𝑠 )−

area(𝑇 4
𝑠 )− area(𝑇 5

𝑠 )

Preprocessing step 1:
1: Run a poly-time algorithm to triangulate the given polygon (e.g., [AAP86]), and let 𝐺 be

the set of the resulting triangles.
2: while there is an unchecked triangle 𝑇 ∈ 𝐺 do
3: Check the obtuseness of 𝑇
4: if 𝑇 is obtuse then
5: Split it into two right-angled triangles 𝑇𝐼 , 𝑇𝐼𝐼 (Proof of Proposition 38).
6: 𝐺← 𝐺 ∪ {𝑇𝐼 , 𝑇𝐼𝐼}

Preprocessing step 2:
7: 𝐻 ← ∅
8: while 𝐺 ̸= ∅ do
9: Consider a (non-obtuse) triangle 𝑇 ∈ 𝐺.

10: Define the tuple 𝑟 := ((𝑥𝐿, 𝑦𝐿), (𝑥𝐿, 𝑦𝐻), (𝑥𝐻 , 𝑦𝐻), (𝑥𝐻 , 𝑦𝐿)), where 𝑥𝐿, 𝑥𝐻 , 𝑦𝐿, 𝑦𝐻 denote
the minimum and maximum 𝑥- and 𝑦-coordinates of 𝑇 ’s vertices, respectively.

11: Find a point in 𝑟 which corresponds to a non-right angle of 𝑇 and name that vertex 𝐵
(Guaranteed by the proof of Proposition 39).

12: Let 𝐵 be element 𝑟(𝑖) for some 𝑖 ∈ [4], and name the following points: 𝑌 = 𝑟(𝑖 (mod 4)+
1), 𝑋 = 𝑟(𝑖+ 1 (mod 4) + 1), and 𝑍 = 𝑟(𝑖+ 2 (mod 4) + 1).

13: Name 𝐴 the vertex of 𝑇 located on the segment 𝑌 𝑋, and 𝐶 the vertex of 𝑇 on the segment
𝑋𝑍 (Both guaranteed to be in these segments by the proof of Proposition 39).

14: Define the tuple 𝑣 ← (Ï𝑋𝑌 𝐵,Ï𝑋𝐵𝑍,Ï𝐴𝑌 𝐵,Ï𝑋𝐴𝐶,Ï𝐶𝐵𝑍).
15: 𝐻 ← 𝐻 ∪ {𝑣}
16: 𝐺← 𝐺 ∖ {𝑇}

shifting the triangle so that the vertex of the right angle is on (0, 0), the whole triangle is in the
𝑜-th quadrant.

First, we identify the orientation of our triangle. For a fixed colour 𝑖 ∈ [𝑛], for each possible
category 𝑄𝑜, 𝑜 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉 } we show how to compute the term that an axis-aligned right-
angled triangle 𝑇 𝑣

𝑠 , 𝑠 ∈ [𝑚𝑡], 𝑣 ∈ [5], contributes to the Borsuk-Ulam function 𝑓𝑖(�⃗�), where 𝑇𝑠 is
a non-obtuse triangle Ï𝐴𝐵𝐶 as in Figure 7b. We will show this for a 𝑄𝐼 triangle with the help
of Figure 9. The constructions for 𝑄𝐼𝐼 , 𝑄𝐼𝐼𝐼 , 𝑄𝐼𝑉 are omitted since they are symmetric to it.

In what follows, for any point 𝑊 of [0, 1]2 we will denote by 𝑥𝑊 , 𝑦𝑊 its coordinates. Suppose
we are given the 𝑄𝐼 triangle Ï𝐴𝑌 𝐵 (as in Figure 7b). We are also provided with some Square-
path induced by �⃗� ∈ 𝑆𝑑, and we focus on the strip [𝑦𝑗 , 𝑦𝑗+2] for some 𝑗 ∈ {0, 1, 3, 5, . . . , 𝑑 − 1}
(resp. 𝑗 ∈ {0, 1, 3, 5, . . . , 𝑑}) when 𝑑 is even (resp. odd), and 𝑧𝑗 , 𝑧𝑗+1 which induce the vertical
cut 𝑥𝑗 and define an 𝑅+ and an 𝑅− region of the slice (see the proof of Theorem 24 for details).
We also add all the artificial cuts needed in the bottom and top strips (see Algorithm 1). We
are only interested in the part of Ï𝐴𝑌 𝐵 in the 𝑅+ region, but since this could be either to the
left or to the right of 𝑥𝑗 , let us denote by areaℓ𝑗(Ï𝐴𝑌 𝐵) and area𝑟𝑗(Ï𝐴𝑌 𝐵) the areas of Ï𝐴𝑌 𝐵 to
the right and left part, respectively, of 𝑥𝑗 in the 𝑗-th slice.
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Figure 9: An example of a 𝑄𝐼 triangle Ï𝐴𝑌 𝐵. The given �⃗� ∈ 𝑆𝑑 has 𝑧𝑗 < 0 and 𝑧𝑗+1 > 0,
therefore, the 𝑅+ part ofÏ𝐴𝑌 𝐵 is area𝑟𝑗(Ï𝐴𝑌 𝐵) = area(𝐸𝐹𝐺𝐾) and its 𝑅− part is areaℓ𝑗(Ï𝐴𝑌 𝐵) =
area(𝐹𝐷𝐻𝐺).

Using Figure 9, we have areaℓ𝑗(Ï𝐴𝑌 𝐵) = area(𝐹𝐷𝐻𝐺), and area𝑟𝑗(Ï𝐴𝑌 𝐵) = area(𝐸𝐹𝐺𝐾).
We have the following cases. (i) 𝑥𝑗 ∈ (0, 1): if 𝑧𝑗 ≥ 0 and 𝑧𝑗+1 ≤ 0 (resp. 𝑧𝑗 ≤ 0 and 𝑧𝑗+1 ≥ 0),
then areaℓ𝑗(Ï𝐴𝑌 𝐵) belongs to 𝑅+ (resp. 𝑅−) and area𝑟𝑗(Ï𝐴𝑌 𝐵) belongs to 𝑅− (resp. 𝑅+). (ii)

𝑥𝑗 ∈ {0, 1}: if 𝑧𝑗+𝑧𝑗+1 ≥ 0 (resp. 𝑧𝑗+𝑧𝑗+1 ≤ 0), then the part of Ï𝐴𝑌 𝐵 that belongs to the 𝑗-th
strip, denoted area𝑗(Ï𝐴𝑌 𝐵), belongs entirely to 𝑅+ (resp. 𝑅−).10 So, w.l.o.g., we can say that
areaℓ𝑗(Ï𝐴𝑌 𝐵) and area𝑟𝑗(Ï𝐴𝑌 𝐵) have opposite signs (and it is possible that one of these areas is
0).

Since the slices 𝑦𝑗 , 𝑦𝑗+2, and cut 𝑥𝑗 , in general, can have values that do or do not intersectÏ𝐴𝑌 𝐵, we create truncated versions of them as follows:

𝑦𝑡𝑟𝑗 := max{𝑦𝐵,min{𝑦𝐴, 𝑦𝑗}} =

⎧⎪⎨⎪⎩
𝑦𝐴, 𝑦𝑗 > 𝑦𝐴

𝑦𝑗 , 𝑦𝑗 ∈ [𝑦𝐵, 𝑦𝐴]

𝑦𝐵, 𝑦𝑗 < 𝑦𝐵,

and similarly, 𝑦𝑡𝑟𝑗+2 := max{𝑦𝐵,min{𝑦𝐴, 𝑦𝑗+2}}, and 𝑥𝑡𝑟𝑗 := max{𝑥𝐴,min{𝑥𝐾 , 𝑥𝑗}}. Given these,
we need to define properly the 𝑦-coordinate of points 𝐹,𝐺, and the 𝑥-coordinate of points
𝐾,𝐸, so that the points stay on the boundary of the trapezoid 𝐸𝐷𝐻𝐾. Observe that the
line passing from points 𝐴,𝐵 is described by 𝑦 = 𝑦𝐵 + 𝑥𝐵−𝑥

𝑥𝐵−𝑥𝐴
(𝑦𝐴 − 𝑦𝐵), or equivalently, 𝑥 =

10Notice that cases (i) and (ii) include the subcase 𝑧𝑗 = 𝑧𝑗+1 = 0. However then, the sign(s) of the (possibly
two) parts of the 𝑗-th strip do not matter since the strip has width 0 and therefore does not contribute to the
Borsuk-Ulam function.

42



𝑥𝐵 − 𝑦−𝑦𝐵
𝑦𝐴−𝑦𝐵

(𝑥𝐵 − 𝑥𝐴), so using these we get:

𝑦𝐹 := max

{︃
𝑦𝐵,min

{︃
𝑦𝑡𝑟𝑗+2, 𝑦𝐵 +

𝑥𝐵 − 𝑥𝑡𝑟𝑗
𝑥𝐵 − 𝑥𝐴

(𝑦𝐴 − 𝑦𝐵)

}︃}︃
,

𝑦𝐺 := max{𝑦𝐵,min{𝑦𝑡𝑟𝑗 , 𝑦𝐹 }},

𝑥𝐾 := 𝑥𝐵 −
𝑦𝑡𝑟𝑗 − 𝑦𝐵

𝑦𝐴 − 𝑦𝐵
(𝑥𝐵 − 𝑥𝐴),

𝑥𝐸 := 𝑥𝐵 −
𝑦𝑡𝑟𝑗+2 − 𝑦𝐵

𝑦𝐴 − 𝑦𝐵
(𝑥𝐵 − 𝑥𝐴).

Now we are ready to compute the length of our line segments. We have, 𝐸𝐹 = max{0, 𝑥𝐸 −
𝑥𝑡𝑟𝑗 }, 𝐺𝐾 = max{0, 𝑥𝐾 − 𝑥𝑡𝑟𝑗 }, 𝐹𝐺 = 𝑦𝐹 − 𝑦𝐺, 𝐻𝐾 = 𝑥𝐾 − 𝑥𝐴, 𝐷𝐸 = 𝑥𝐸 − 𝑥𝐴, and 𝐷𝐻 =
𝑦𝑡𝑟𝑗+2 − 𝑦𝑡𝑟𝑗 . Using these, we can compute the quantities of interest:

area𝑟𝑗(Ï𝐴𝑌 𝐵) = area(𝐸𝐹𝐺𝐾) =
(𝐺𝐾 + 𝐸𝐹 ) · 𝐹𝐺

2
,

areaℓ𝑗(Ï𝐴𝑌 𝐵) = area(𝐹𝐷𝐻𝐺) = area(𝐸𝐷𝐻𝐾)− area(𝐸𝐹𝐺𝐾)

=
(𝐻𝐾 +𝐷𝐸) ·𝐷𝐻

2
− (𝐺𝐾 + 𝐸𝐹 ) · 𝐹𝐺

2
.

Using the above, we pick the element from
{︁
areaℓ𝑗(Ï𝐴𝑌 𝐵), area𝑟𝑗(Ï𝐴𝑌 𝐵)

}︁
that belongs to 𝑅+,

and let us denote this quantity 𝑝𝑣𝑠(𝑗). This quantity represents the part that only the 𝑗-th strip
contributes to the positive measure of the Borsuk-Ulam function due to triangle 𝑇 𝑣

𝑠 , for some
𝑠 ∈ [𝑚𝑡] and 𝑣 ∈ [5]. Consequently, the positive measure that the entire (unweighted) non-obtuse
triangle 𝑇𝑠 contributes to the Borsuk-Ulam function according to the Square-path induced by
�⃗� is

𝑞𝑠 :=
∑︁
𝑗∈𝐽

(︀
𝑝1𝑠(𝑗) + 𝑝2𝑠(𝑗)− 𝑝3𝑠(𝑗)− 𝑝4𝑠(𝑗)− 𝑝5𝑠(𝑗)

)︀
,

where 𝐽 := {0, 1, 3, 5, . . . , 𝑑− 1} (resp. 𝐽 := {0, 1, 3, 5, . . . , 𝑑}) when 𝑑 is even (resp. odd).
Finally, recall that colour 𝑖 ∈ [𝑛] has 𝜏 many weighted polygons, each of weight 𝑤𝑡, 𝑡 ∈ [𝜏 ].

Also, each polygon has been decomposed into 𝑚𝑡 many non-obtuse triangles. Then, 𝑖’s positive
measure (i.e., the 𝑖-th coordinate of the Borsuk-Ulam function) is

𝑓𝑖(�⃗�) =
𝜏∑︁

𝑡=1

𝑤𝑡

𝑚𝑡∑︁
𝑠=1

𝑞𝑠.
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