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Abstract—Molecular communication (MC) is an emerging
framework enabling communication among biological cells and
bio-nanomachines at nano and micro scales through biochemical
molecules. Recent studies have identified exosomal transfer RNA-
derived small RNAs (tsRNAs) as potential biomarkers for epilepsy.
Consequently, researchers are exploring innovative methods to
predict epileptic seizures through tsRNA measurements, using
implantable micro/nanoscale biosensors. This paper presents a
propagation model for biomarkers in a heterogeneous fluidic
environment, composed of the brain extracellular space (ECS),
a polyethersulfone (PES) hollow fiber tube, and a hydrogel (e.g.
collagen) containing bioengineered sensing cells for biomarker
detection. Our proposed model aims to support the design of
biosensing devices for epileptic seizure prediction by characterizing
the propagation of biomarkers released from neuronal cells in
the brain ECS to the implant. We analyse the communication
performance of the proposed system by evaluating propagation loss
under varying conditions—brain ECS tortuosity, fiber membrane
thickness, permeability, and bioengineered sensing cell density. Fur-
thermore, we develop an MC link budget to assess communication
between exosomal tsRNA biomarkers and bioengineered sensing
cells, based on received biomarkers. We observed an approximate
8-fold loss in received signal strength, highlighting the impact
of MC communication media physicochemical characteristics for
accurately designing devices to predict epileptic seizures.

Index Terms—heterogenous channel, loss budget, epilepsy
biomarker, bioengineered implants, neuronal communications,
neuroengineering

I. INTRODUCTION

EPILEPSY is a chronic neurological disorder that affects
more than 50 million people worldwide [1, 2]. This disorder

is characterized by recurring seizures resulting from abnormal
and synchronous firing of neurons within the brain, which
can severely affect people’s lives [3]. During the onset of an
epileptic seizure, various biomarkers are released from brain
cells, such as miRNAs and IL-1β [4]. From those, transfer
RNAs (tRNA) fragments (tsRNA), have emerged as a novel
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type of biomarker associated with epilepsy [5]. They have
also been identified in exosomes [6] released from neurons
and other cell types such as human glioma stem cells [7, 8].
Exosomal tsRNAs are released during epilepsy as part of the
neuronal stress response, often triggered by hypoxia, oxidative
damage, or other adverse conditions. This stress leads to the
cleavage of tRNAs into smaller fragments, mediated primarily by
ribonucleases such as angiogenin and Dicer [6, 9]. Once released
into the extracellular environment, these tsRNA fragments can
contribute to the general pathophysiology of epilepsy. Specifically,
researchers have observed elevated tsRNA levels in individuals
with epilepsy compared to healthy controls, suggesting their
potential as diagnostic and prognostic biomarkers [5]. Hence,
micro and nanoscale biosensors are targeting these biomarkers
as early indicators of the occurrence of epileptic seizures.

Recent advancements in material engineering and nanotech-
nology have facilitated the development of micro/nanoscale
implantable biosensors. These sensors are capable of detecting
biomarkers associated with neurological diseases, such as α-
synuclein for Parkinson’s disease and tsRNA biomarkers for
epilepsy [10, 11]. Despite that, the complex brain microenvi-
ronment during pathological and physiological processes still
poses a challenge for the design of implantable biosensors.
These challenges include requirements for molecular selectivity,
sensitivity, and biocompatibility, all of which can significantly
impact the effectiveness of implantable biosensors. To further
advance this field (including the early prediction of diseases,
such as epilepsy), novel and innovative solutions are fundamental
to overcome such challenges. This includes optimizing both the
physical and logical design of bioengineered implants. For in-
stance, incorporating biological materials into implant designs can
enhance biocompatibility. Additionally, integrating biomolecule
detection capabilities—such as graphene-based sensors to detect
neurotransmitters like dopamine can be crucial for diagnosis
and monitoring neurological disorders, such as Parkinson’s
disease [12, 13]. Furthermore, when these novel implants are
capable of detecting disease related biomarkers, they can be
applied to predict chronic illnesses [12]. Therefore, the further
understanding on the bioavailability of these biomarkers and how
they are transported within biological spaces (e.g., human body) is
essential for the development of effective implantable biosensors.
In this paper, we utilise a MC system to investigate the transport
of exosomal tsRNA from neuron cells towards an implantable
biosensor. Molecular communication (MC) is an interdisciplinary
communication paradigm that investigates the exchange of
molecules among micro/nanoscale entities (either natural or
artificial) [14]. We applied this framework to characterize the
molecular propagation through heterogeneous media and the
effects on the bioavailability of exosomal tsRNA inside of
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Fig. 1: Schematic illustration of MC between cells in a
heterogeneous fluidic environment.

the implantable biosensor. In this study, the heterogeneous
communication channels are composed of three fluids used for
the transport of exosomal tsRNA, while the implantable biosensor
is composed of bioengineered sensing cells encapsulated inside
the PES hollow fiber tube. The primary challenges associated
with the efficacy of an implantable biosensor in the brain is the
complexity of the biological environment where it sits and
its physicochemical properties, which can impact molecule
propagation and consequently reduce the bioavailability of
exosomal tsRNA at the bioengineered sensing cells. Therefore,
this paper aims to provide a further understanding on the
molecular channel properties affecting the exosomal tsRNA
propagation towards the implantable biosensor, and provide a
simple method to assess the molecular concentration losses
that can reduce the sensing performance of the system. By
investigating the interplay between epileptic biomarkers diffusion
and device characteristics, our model may offer valuable insights
into optimizing biosensor design and improving the accuracy
and reliability of micro/nanoscale epileptic seizures prediction
systems.

Previous research in similar topics (i.e., molecular propagation
in the brain) have been conducted using MC channels. However,
many of them simplify the molecular channel as a single
uniform channel characterized by a constant diffusion coefficient
[15–17]. In other studies [18, 19], the multi-layer molecular
medium has been investigated primarily to determine the average
effective diffusion coefficient. These studies substituted the
individual layers’ diffusion coefficients with the calculated
average, which is then incorporated into expression for molecular
concentration of a single-layer medium. In addition to their
simplified approach, these models lack accuracy in represent-
ing real multi-layer biological environments, especially under
transient conditions. To address the limitation of the approach,
a recent modeling approach was presented in [20], where a
composite diffusive molecular channel was developed with
distinct diffusion properties. While in that work the authors
have considered the physicochemical properties of individual
channels to some extent to evaluate their system performance, we
introduce a novel application involving the diffusion of epileptic
biomarkers towards bioengineered cells for epileptic seizures

prediction, which has not been explored in prior literature. We
also introduce a concept of heterogeneous molecular channel
which comprises of three channels including brain ECS, fiber
membrane (referred to as the membrane in subsequent sections)
and scaffold (hydrogel) as shown in Fig. 1. Additionally, we
delve deeper into the impact of these physicochemical properties
on propagation loss, thereby impacting the sensitivity of epileptic
seizures prediction, offering a more comprehensive understanding
of their effects on communication performance compared to
existing studies. Furthermore, we propose a link budget equation
to assess the performance of our MC system, in terms of
biomarkers received by the bioengineered sensing cells. Our
main contributions to this research work are as follows:
• Modeling and characterizing epileptic biomarker prop-

agation as a MC system: The tsRNA propagation in a
heterogeneous media is represented using MC concepts, and
a propagation loss metric is utilised to assess the performance
of the proposed system.

• Analyse the impact of physicochemical characteristics on
tsRNA bioavailability: We analyse the impact of various
physicochemical properties of brain ECS and the implantable
biosensor to observe their influence on the exosomal tsRNA
bioavailability reduction, which induces losses to the proposed
MC system. Our numerical analysis is based on the data
collected from an experimental setup we have devised.

• Development of MC Link Budget: We propose a link budget
equation to evaluate the communication performance of the
system, in terms of received exosomal tsRNA concentration
by the implantable biosensor. This budget provides insights
into optimizing the design of bioengineered devices to ensure
efficient propagation and bioavailability of epileptic biomarker
signals.
The rest of the paper is organized as follows. In Section II,

we detail the MC model and implantable biosensor physical
design. We describe the heterogeneous media in Section III,
the link budget formulation in Section IV-D. Our results are
presented in Section IV and our conclusions in Section V.

II. SYSTEM MODEL

The proposed system model composed of three biological
fluidic propagation regions namely, Brain ECS, Membrane and
the Scaffold region utilising target molecules (i.e. exosomal
tsRNA biomarkers) as illustrated in Fig. 1. Each region, depicted
in Fig. 1 is connected through MC links based on free
diffusion. In the proposed model, the whole process starts with
the release and propagation of exosomal tsRNA biomarkers
from the neuronal cells, under epileptic seizures, through the
fluidic environment to the bioengineered sensing cells. These
bioengineered sensing cells are encapsulated inside the hollow
fiber tube and entrapped in the scaffold region to detect the
incoming molecules from the brain ECS. Both regions (brain
ECS and scaffold) communicate with each other through a porous
membrane wall. This membrane wall is built with an organic
compound (e.g. PES) that allows the molecules to flow from the
brain ECS to the scaffold region. In this paper, we consider that
the interface between different regions is permeable, allowing
molecules to pass through without undergoing any physical or
chemical reactions [21]. Also, we assume that scaffold boundary
is impermeable to the cells and the cells are firmly adhered to
the scaffold.
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Fig. 2: Molecular Communication (MC) propagation model for
biological heterogeneous fluidic environment.

From the perspective of MC as depicted in Fig. 2, we define
the neuronal cells as the point-source MC transmitter (Tx)
positioned at the point r = r0 in the Brain ECS, which emits
the exosomal tsRNA biomarkers (Q) (i.e., the molecular signal)
instantaneously at the time t = 0 s. The MC channel through
which this signal propagates is a heterogeneous fluidic medium
composed of three different regions: brain ECS, the membrane of
a PES hollow fiber tube, and the scaffold (hydrogel) containing
the bioengineered sensing cells (i.e., the molecular receiver -
Rx responsible for the detection of the incoming exosomal
tsRNAs biomarkers. Each of these regions have well-defined
physicochemical properties that directly affect the propagation
of the molecular signal, which follows a Brownian motion (a
comprehensive overview for each region is provided in Section
III).

The hollow fiber tube is made of PES, which is known to
provide tissue biocompatibility, cytocompatibility, and perme-
ability for the influx and efflux of biomolecules (see Fig. 3).
The tube selected for the wet lab experiments has a 300µm
inner diameter and a 470µm outer diameter resulting in a wall
thickness of 85µm with a pore size of 200 nm. Using a 31G
syringe needle, the tube is filled with a suspension containing
bioengineered sensing receiver cells and 1.5 mg/mL Collagen
Type I hydrogel. The ends of the tube are closed using heat-
sealing, where a sharp heated tip (approximately 200 ◦C) is
used to simultaneously cut and seal the tube. The PES tubes
are placed between a polydimethylsiloxane sheet (PDMS) and a
polyvinylidene fluoride (PVDF) sheet during heat-sealing. The
PDMS sheet is soft to keep the tube in place whereas the PVDF
sheet protects the tube from a direct contact of the heated tip.

III. HETEROGENEOUS MC CHANNELS

Epileptic biomarkers (i.e., exosomal tsRNAs) released from the
neuronal cells travel through a complex biological environment
including brain ECS, the membrane and scaffold of the hollow
fiber tube to reach the targeted bioengineered sensing cells.
Here we defined each one of these diffusion media as a MC
channel, and this propagation process is influenced by the
various physicochemical characteristics of the heterogeneous
MC channels. For instance, the molecular diffusion through the
brain ECS is affected by the tortuosity and volume fraction,
which represents the percentage of the total brain tissue volume
that is accessible to the exosomal tsRNAs. The hindrance to the
molecular propagation leads to an effective diffusion coefficient,
which is lower that the free diffusion coefficient (D) for the

(a)

(b) (c)

Fig. 3: (a) Cross-section of hollow fiber tubes. (b) Cross-section
from a hollow fiber membrane wall. (c) Expanded view of the
hollow fiber wall.

exosomal tsRNA biomarkers. In the context of neurobiology,
the tortuosity is calculated as [22],

λ =

√
D

D∗ , (1)

where D∗ represents the effective diffusivity of exosomes within
the extracellular matrix of the brain. The tortuosity of this matrix
remains relatively consistent, typically λ ≈ 1.6 [22, 23].

When the exosomal tsRNAs enter the membrane of the hollow
fiber tube from the brain ECS, their movement is influenced by
the morphological structure of the membrane such as thickness,
permeability and diffusion coefficient [24, 25]. The entry of
biomarkers primarily occurs through the side walls of the
hollow fiber tube, reflecting our experimental setup, where the
ends of the tube are sealed, restricting molecular entry from
those areas. Additionally, interactions between biomarkers and
the porous network of the membrane, including factors like
void spaces (porosity) and the tortuous path length (tortuosity),
significantly impact this molecular transport. Finally, to continue
their movement to the targeted site, the exosomal tsRNAs must
escape through the pores in the hollow fiber tube membrane into
the cell culture medium compartment (i.e., scaffold), where the
bioengineered sensing cells are located near the inner membrane
wall. The bioavailability of exosomal tsRNAs in the scaffold
region is influenced by factors such as the diffusion coefficient in
the hydrogel-medium suspension (e.g., collagen), bioengineered
cell density and the rate at which they are taken up by the
bioengineered sensing cells (i.e., the uptake rate). Consequently,
these factors collectively dictate the complex dynamics of
exosomal tsRNA transport through the heterogeneous MC
channel, highlighting the interplay between structural elements
and their effects on the MC link.

The following sections detail our proposed mathematical
model for the overall exosomal tsRNA transport through the
heterogeneous MC channels, where we consider their various
physicochemical features and their effects on the bioavailability
of exosomal tsRNA. Therefore, we consider that each region of



the MC channel is finite with a defined length: ECS starts at
the point zero and finishes at length Re, from Re to Rm for the
membrane and from Rm to Rs for the scaffold. Additionally, we
adopt a cylindrical coordinate system to derive a mathematical
solution for the hollow fiber tube, while employing a spherically
symmetric coordinate system for the brain ECS that depends
only on the radial distance. Table I summarizes the notation
used in the subsequent subsections.

A. Transport Across the Brain ECS Region
For the exosomal tsRNA transport through the brain ECS, we

consider the modified version of Fick’s second law of diffusion
as demonstrated by [22], which is represented as follows,

∂Ce

∂t
=

De

λ2
e

∇2Ce − ve · ∇Ce +
S

α
− f(Ce)

α
, (2)

where Ce represents the concentration of exosomal tRNAs in the
brain ECS, S is the source term, f(Ce) represents the uptake by
other cells or loss of exosomal tsRNAs through degradation or
enzymatic processes, α denotes the proportion of the brain ECS
volume, while λe describes how tortuous or convoluted the brain
ECS pathways are within the brain, and finally ve represents
the velocity of the fluid flow in the system. In our case, the
brain ECS is a diffusion-only channel we ignored the advection
term ve · ∇Ce. Also, we omit the uptake function from the
equation, assuming that the neuronal cells act as a point-source
for releasing exosomal tRNAs and do not participate in their
uptake and degradation. Our aim is to quantify the exosomal
tsRNA concentration in the brain ECS without considering any
uptake processes. Furthermore, we consider that the molecular
diffusion occurs in a spherical symmetric bounded environment,
and the bioavailability of exosomal tsRNAs, Ce(r, t) in the brain
ECS is subjected to the influence of tortuosity and exosome
diffusion coefficient in this medium De. By considering the
biomarkers emission rate as an impulsive point-source S(r, t),
we transform (2) as follows,

∂Ce(r, t)

∂t
=

De

λ2
e

∂2Ce(r, t)

∂r2
+ S(r, t), (3)

where,
S(r, t) = Q · δ(r − r0) · δ(t− t0), (4)

δ(.) is the Dirac delta function, t stands for time, r is the
length of the MC channel. In our model, the number of
exosomes released into brain ECS for propagation at time t0
and location r0 follows a Poisson distribution with a mean
Q. The parameter, such as the number of released molecules
in Table I, is chosen to observe significant variations in the
received exosomal tsRNA concentration. The thickness of the
brain ECS (i.e., the propagation distance from the neuronal cell
to the device) is estimated based on literature indicating that it
falls within a range where significant cellular interactions have
been observed around implants [26]. The following initial and
boundary conditions are considered,Ce(r0, t → t0) = Qδ(r − r0),

De
∂Ce(r, t)

∂r
= Dm

∂Cm(r, t)

∂r
at r = Re,

(5)

where (r = Re) is the interface between the brain ECS and
the membrane region, considering that the bioavailability of
exosomal tsRNA remains continuous at the interface.

B. Transport Across the Membrane Region
In this section, we describe the modeling of the exosomal

tsRNA transport through the hollow fiber tube’s membrane. This
structure is a PES hollow fiber tube built to be biocompatible
with the brain environment and to contain the bioengineered
sensing cells. The transport of biomarkers through this membrane
is influenced by its morphological features, including geometry,
porosity, tortuosity, and permeability. In the membrane region,
we assume that no chemical reaction occur [21], and the
exosomal tsRNAs permeates through the membrane by diffusion
process [24] with a diffusion coefficient Dm. The hollow
fiber tube is cylindrical in shape, as shown in Fig. 3b, we
considered the molecular diffusion only depends on the radial
distance and not on the azimuthal angle and axial position, i.e.,
∂Cm(r,φ,z,t)/∂φ = 0 and ∂Cm(r,φ,z,t)/∂z = 0, respectively. In
this context, the majority of molecules are primarily sourced
from the direction of the point-source in the brain ECS. In
our wet-lab experimental setup, bioengineered sensing cells are
positioned near the inner membrane layer of the hollow fiber
tube and the ends of tube are closed, making radial transport
the primary mechanism for delivering biomarkers to these
bioengineered sensing cells. This positioning facilitates effective
interactions with the bioengineered sensing cells, essential for
effective detection and response. This approach aligns with
similar modeling approaches in the literature that use radial
flow models [27–30]. In this case, the transport behaviour in
the membrane region is governed by the following equation,

∂Cm(r, t)

∂t
= Dm

[
∂2Cm(r, t)

∂r2
+

1

r

∂Cm(r, t)

∂r

]
, (6)

where Cm(r, t) is the exosomal tsRNAs concentration in the
membrane region.

By using the principles of transport within porous materials
[24, 31], we can derive an expression for Dm based on membrane
characteristics [24, 32] as,

Dm =
ϕ

λm
·Ds, (7)

where, ϕ is the PES porosity, λm is the membrane tortuosity
and Ds is the diffusion coefficient in scaffold region. The PES
porosity is a measure of the material’s ability to allow molecules
to pass through it. This structural feature is mathematically
modeled by the ratio of volume of voids and the total volume
of the material [14, 24]. Here, we calculate the volume of
voids based on the mean pore size rp =

dp

2 , the number of
surface pores np and the height h, of the hollow fiber tube as
Vp = np × π × (rp)

2 × h. The solid volume of hollow fiber
tube is calculated as Vm = π

(
(rmout)

2 − (rmin )
2
)
h, where rmin

and rmout are the inner and outer radii of the hollow fiber tube
(i.e. device), respectively. Therefore, we model the total porous
membrane volume based on [33][34] as Vt = Vm + Vp and
define the PES porosity as,

ϕ = 1− Vp

Vt
. (8)

The membrane tortuosity (λm) is a measure of the geometric
complexity of a porous medium. Here we assume λm = 2
considering dp = 200 nm and np = 400, which are the same
values found in [35, 36].

The interface between two diffusive environments with differ-
ent diffusion coefficients requires a flow continuity condition.



Therefore, we define the following boundary conditions for the
interface between the brain ECS and the membrane regions
(r = Re) based on [20, 24, 37] as,Dm

∂Cm(r, t)

∂r
= De

∂Ce(r, t)

∂r
,

Cm(r, t) = PmCe(r, t),
(9)

where Pm = Dm/Rm is the PES membrane effective permeability
(given in µm/s), Rm and Dm refers to thickness and effective
diffusivity of the membrane, respectively.

C. Transport Across the Scaffold Region
The scaffold region is the medium inside of the hollow fiber

tube (Rm < r < Rs). It is composed of a hydrogel and it houses
the bioengineered sensing cells. In this region, the propagation
of exosomal tsRNA biomarkers is characterised by the diffusion
coefficient and consumption by the bioengineered sensing cells,
which is modelled via diffusion-reaction equation [38] as follows,

∂Cs(r, t)

∂t
= Ds

[
∂2Cs(r, t)

∂r2
+

1

r

∂Cs(r, t)

∂r

]
−Rcell, (10)

where, Cs(r, t) is the molecular concentration of exosomal
tsRNAs in scaffold region, Ds is the diffusion coefficient in the
scaffold region, and is given by the Stokes-Einstein equation
[20] as,

Ds =
kBT

6πηa
. (11)

Here, kB = 1.38×10−23 J/K represents the Boltzmann constant,
T = 310.15 denotes the absolute temperature of the medium
in Kelvin [39], and η = 0.01 is the hydrogel (i.e., collagen)
viscosity constant measured in Pa · s [40], and a is the radius of
the diffusing exosome. Furthermore, Rcell is the rate of exosomal
tsRNAs consumption by the bioengineered sensing cells. This
rate follows Michaelis-Menten kinetics, and it is a function of the
maximum uptake rate (Vmax), the half saturation concentration
(kH), and the cell seeding density (N0). Therefore, Rcell can be
expressed as,

Rcell = Vmax ·
N0Cs(r, t)

kH + Cs(r, t)
. (12)

Here, Vmax (mol./cell·s) is calculated based on [41] as Vmax =
Q/N0·t·µL, where Q is the number of molecules, t is time in
seconds, N0 (cells/µL) is the number of biosensing cells in the
medium volume (µL).

We assume that the exosomal tsRNA bioavailability remains
continuous at the interface between the inner radius of the
membrane and the scaffold region (r = Rm). Therefore,Ds

∂Cs(r, t)

∂r
= Dm

∂Cm(r, t)

∂r
,

Cs(r, t) = PmCm(r, t).
(13)

IV. NUMERICAL RESULTS AND DISCUSSION

We evaluated the performance of the MC system through a
comprehensive analysis of the parameters affecting the propaga-
tion loss and the MC link budget including: tortuosity, thickness,
porosity, permeability, uptake rate and the bioengineered sensing
cell densities. To ensure clarity in interpretation, targeted
parameter simulations were conducted with other factors held

TABLE I: Values, definitions and sources for the parameters
used to compute (1)-(18). Please note that the notation “mol.” is
used as a shorthand for “molecules”.

Parameter Value Description Source

Q 700 mol. # of released tsRNA See section III-A
Re 95 µm Thickness of brain

ECS
See section III-A

Rm 85 µm Thickness of PES
membrane

Experimental data

Rs 150 µm Thickness of Scaffold
(Hydrogel)

Experimental data

De 15 µm2/s Brain ECS diffusion
coefficient

[23]

λe 1.67 Tortuosity of Brain
ECS

[23]

λm 2 PES membrane tortu-
osity

[24]

rout 235 µm PES membrane outer
radius

Experimental data

rin 150 µm PES membrane inner
radius

Experimental data

h 7 mm Height of device (Hol-
low fiber tube)

Experimental data

N0 3000
cells/0.7 µL

Bioengineered sensing
cells seeding density

Experimental data

kH 3.8×1014

mol./µL
Half-saturation
constant

[42]

constant, as detailed in Table I. The simulations in this study
were implemented using MATLAB® and Python. We used
MATLAB® to run a finite difference method (FDM) algorithm
to solve the partial differential equations (PDEs) governing
molecular diffusion across the channel, while Python was used
for calculating confidence intervals for the exosomal tsRNA
concentration obtained in our analysis. We simulated 10 runs for
each scenario to capture the variability in the release of exosomal
tsRNA and obtain a robust estimation of its concentration
profiles. Each one of them run for T = 500 s with a time
step of 0.01 s (these values were chosen to ensure a significant
observation period and impactful variation on the exosomal
tsRNA concentration).

A. Impact of Physicochemical Factors on Molecular Propagation

As detailed in Section III, the exosomal tsRNA concentration
is affected by the physicochemical properties of the different MC
channels. Therefore, we first assess the temporal dynamics of the
exosomal tsRNA propagation through the three regions (brain
ECS, membrane and scaffold). Separate y-axes are used for each
region to represent the varying concentration profiles, as shown
in Fig. 4. Here, we considered the propagation distances and the
physicochemical factors as presented in Table I (please note that
the propagation distance are denoted as brain ECS, membrane
and scaffold thickness). Exosomal tsRNA are initially released
into the brain ECS at time t = 0 s, and propagation is governed
by continuity flux boundary conditions at the interfaces between
the brain ECS, membrane and scaffold. Please note that the
results shown in Fig. 4 is a superposition, in a single graph, of the
temporal dynamics of exosomal tsRNA propagating through each
communication channel. Each region has a distinct y-axis scale to
reflect its specific peak concentration values. The differences in
peak concentrations observed across regions are due to variations
in propagation distances and diffusion coefficients. Specifically,
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Fig. 4: Temporal evaluation of exosomal tsRNA propagation
through the brain ECS, membrane, and scaffold. The graph shows
a superposition of tsRNA propagation dynamics, highlighting
variations in concentration profiles due to different propagation
distances and diffusion coefficients. The plot illustrates the mean
concentration profile along with a 95% confidence interval.

the brain ECS, with a propagation distance of 95µm and a
relatively high diffusion coefficient, reaches its peak concentration
at t = 180 s, as shown on a y-axis scale of 10−3 mol./µL.
Although the high diffusion coefficient facilitates rapid spreading
of exosomal tsRNA, the longer distance results in a delayed
peak. The membrane, with a shorter propagation distance of
85µm and slightly lower diffusion coefficient, reaches its peak
at around t = 80 s, due to the reduced distance allowing faster
propagation. This results in a peak concentration measured on a
y-axis scale of 10−10 mol./µL, which is lower than the peak
concentration observed in the brain ECS. The scaffold, with a
propagation distance of 150µm and a higher diffusion coefficient
than the membrane, achieves its peak at t = 120 s reflecting
the faster propagation from the membrane but also accounts
for the longer distance required for the molecules to traverse.
The resulting peak concentration is measured on a y-axis scale
of 10−20 mol./µL, which is lower than the peak concentration
observed in the brain ECS and the membrane. Moreover, we
can observe that for the first few seconds (between ≈ 20−40 s),
the concentration of exosomal tsRNA remain zero across all
regions, representing the delay required by molecules to start
to accumulate at the end of each region due to the molecule
diffusion dynamics. Next, we varied the physicochemical factors
of each MC channel and observed their impact on the exosomal
tsRNA concentration in respect of time. The results obtained
from this analysis are illustrated in Fig. 5, where exosomal tsRNA
are released from a point-source in brain ECS and diffuses across
each region toward their respective endpoints (i.e., the boundary
or the beginning of another region). We have chosen these
endpoints as observation locations for measuring exosomal tsRNA
concentrations to understand the overall diffusion dynamics,
which may, in turn, affect the detection capabilities and response
of the bioengineered sensing cells. Note that the plots show
a mean concentration profile with a 95% confidence interval
(calculated using the method outlined in [43]) to represent the
variance associated with our simulation.

For the brain ECS, we analysed the impact of tortuosity (λe)
and this medium thickness on the exosmoal tsRNA propagation.

From equation (1), we observed an inversely proportional
relationship between the effective diffusion coefficient and the
brain ECS tortuosity, which also result in a delay in the temporal
evolution of the concentration profiles. This relationship can be
observed in Fig. 5a, where the peak concentration decreases as
λe increases for λe = {1.40, 1.67, 1.80}. Additionally, lower
tortuosity values (i.e. λe = 1.40) result in a shorter time
delay of ≈ 140 s, while higher tortuosity (i.e. λe = 1.80)
leads to a longer time delay of ≈ 180 s for the diffusion
of molecules through the brain ECS. A similar behaviour
can be seen when varying the distance between the point-
source MC transmitter and the membrane, i.e., the brain ECS
thickness (see Fig. 5b). When transmitting the exosomal tsRNA
biomarkers for the smaller brain ECS thickness value (i.e.,
Re = 70µm), we observed the highest peak concentration,
with a shorter time delay of ≈ 125 s, from the brain ECS
thickness chosen values. Conversely, as the transmission distance
increased to Re = 80µm and Re = 90µm, we noted a
decrease in peak concentration accompanied by a longer time
delay ≈ 145 s and ≈ 160 s, respectively. This trend suggests
that longer transmission distances lead to molecular transport
delays, resulting in lower peak concentrations. Notably, the
peak concentration decrease by a factor of 5, when distances
increases from Re = 70µm to Re = 90µm. By comparing Fig.
5a and 5b, we noted that the peak exosomal tsRNA biomarker
concentration was higher, and reached quicker, when varying
the brain ECS thickness values than modifying this medium
tortuosity. This indicates that the brain ECS tortuosity is more
detrimental for the exosomal tsRNA biomarker concentration
than the medium thickness, becoming the main design factor
for transporting molecular signals in the brain ECS.

While crossing the hollow fiber tube’s surface to reach the
bioengineered sensing cells, the exosomal tsRNA propagation
is affected by the membrane’s physicochemical factors such as
permeability (Pm), porosity (ϕ), and thickness (Rm). Here, we
vary the values of these parameters and observe their impact
on the exosomal tsRNA concentration. First we investigated
the impact of permeability (Pm), see Fig. 5c, we considered
the following values Pm = {0.001, 0.01, 0.1}µm/s in our
analysis. We observed that an increase in permeability resulted in
increasing the exosomal tsRNA distribution across the membrane,
thereby reducing the time it takes to reach the peak concentration
(≈ 50 s), as shown in Fig. 5c. Specifically, the exosomal tsRNA
concentration increased by twofold and threefold when increasing
the membrane permeability from 0.001µm/s to 0.01µm/s, and
from 0.001µm/s to 0.1µm/s, respectively. Next, we analysed
the impact of porosity (ϕ) on the propagation of exosomal
tsRNAs across the membrane. Our analysis considered three
porosity values ϕ = {0.5, 0.7, 0.9}, as shown in Fig. 5d.
We observed that the highest porosity value leads to a rapid
increase in exosomal tsRNA concentration, indicating that a larger
number of molecules can efficiently pass through the membrane.
Conversely, the lowest porosity value requires more time in
reaching peak concentration because only a limited number of
molecules can pass through the membrane. For the membrane, we
found that the peak exosomal tsRNA concentration was increased
by factor of approximately 2 and 4 when ϕ increases from 0.5 to
0.7 and from 0.5 to 0.9, respectively. The last physicochemical
we analysed for the membrane was its thickness. By observing
Fig. 5e, we can see an inverse relationship between the membrane
thickness and the exosomal tsRNA peak concentration, and



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: The impact of physicochemical parameters on exosomal tsRNA concentration profiles. (a) Tortuosity λe in the brain ECS.
(b) Separation distances Re from point-source MC transmitter to the membrane. (c) Membrane permeabilities Pm. (d) Membrane
porosity values ϕ. (e) Membrane wall thickness Rm. (f) Membrane permeabilities Pm in the scaffold. (g) Uptake rates Vmax in the
scaffold. (h) Bioengineered sensing cell densities N0 in the scaffold. Please note that observations were made at the end of each
region (brain ECS, membrane, and scaffold), and each plot shows the mean concentration profile with a 95% confidence interval.

with the time required to reach this maximum value. When
the membrane thickness is higher, such as Rm = 85µm, the
exosomal tsRNA peak concentration decreases, and the time
required to reach this peak increases (and the opposite is also
true). This observation suggests that a thicker membrane causes
more resistance and hinders diffusion, resulting in a gradual
accumulation of a small exosomal tsRNA concentration. It is
also important to note that a small increase (from Rm = 75µm
to Rm = 85µm) on the membrane thickness results in a
threefold decrease on the exosomal tsRNA peak concentration.
From the three physicochemical factors investigated for the
membrane, the porosity was the one that showed a greater
impact on the exosomal tsRNA concentration. By modifying
the porosity we observed a decrease in the overall exosomal
tsRNA concentration and an increase in the time required to
reach its peak, when compared to the other two physicochemical
factors investigated for the membrane. Furthermore, none of the
membrane physicochemical factors have a distinct impact on the
molecular concentration profiles’ peak, but they shorten the time
required to reach their maximum exosomal tsRNA concentration
values when compared to the brain ECS parameters.

We analysed the impact of different physicochemical properties
on the propagation of exosomal tsRNA biomarkers within the
scaffold region due to change on the membrane permeability, the
maximum uptake rate and the number of bioengineered sensing
cells. Fig. 5f illustrates the effect of changing the permeability of
the membrane on the received concentration of exosomal tsRNA
in the scaffold region. As the membrane permeability (Pm)
increases, more molecules are able to pass through the membrane
and reach the scaffold. Consequently, more molecules reach the
bioengineered sensing receiver cells in a shorter period, thereby

reducing the time required to reach their peak concentration
(increase by a factor of approximately 2 and 3 when permeability
increases from 0.001µm/s to 0.01µm/s, and from 0.001µm/s
to 0.1µm/s, respectively). In this case, while the membrane
permeability has a similar effect on the exosomal tsRNA
peak concentration when propagating through the membrane, it
increases the time required to return to zero when propagating
through the scaffold region (i.e., the molecules linger at their
destination for a longer period). Next, we analysed the impact
of varying uptake rates on the concentration of exosomal tsRNA
within the scaffold region. Uptake rate reflects the efficiency
of bioengineered sensing receiver cells for absorbing exosmal
tsRNA from their surrounding environment. This parameter
imposes an interesting trade-off for this system, as a higher
maximum uptake rate value means a quicker consumption of the
exosomal tsRNA available at the scaffold region, but at the same
time it can affect the operation of the bioengineered sensing
cells (not all of them would bind enough exosomal tsRNA to
activate their functions). Fig. 5g shows an inversely proportional
relationship between maximum uptake rate and exosomal tsRNA
concentration availability in the region. We obtained a higher
exosomal tsRNA peak concentration while assuming a lower
maximum uptake rate value (e.g., Vmax = 0.84e−6 mol./cell·s),
and vice-versa. The final physicochemical factor evaluated for the
scaffold region is the bioengineered sensing cells seeding density,
which is directly associated with the maximum uptake rate. From
Fig. 5h, we observed that for our highest cell density value
(i.e., 4000 cells/µL) we obtained the lowest exosomal tsRNA
concentration, indicating a pronounced uptake of biomarkers by
the receiver cells. In contrast, for lower bioengineered sensing cell
seeding densities, such as 2000 cells/µL, resulted in significantly



0.0 0.5

Tortuosity of Brain ECS (a.u.)

20

40

60

80

100

E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.
L
o
ss
(d
B
)

0 10 20 30 40 50

Time (s)

0

1

2

3

4

5

x10-4

E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.

D
if
fe
re
n
ce
(m
o
l.
/μ
L
)

e= 1.40 to 1.67

e= 1.67 to 1.80

1.0 1.5 2.0

(a)

18

19

20

0.0 0.1 0.2 0.3 0.4 0.5
12

13

14

15

16

17

E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.
L
o
ss
(d
B
)

Membrane Permeability ( m/s)

-6

-4

-2

0
x10-11 Pm= 0.01

to 0.1 m/s

Pm= 0.001

to 0.01 m/s

0 10 20 30 40 50

Time (s)E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.

D
if
fe
re
n
ce
(m
o
l.
/
L
)

(b)

E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.
L
o
ss
(d
B
)

20

30

40

50

60

70

x10-6Uptake Rate (mol./cell.s)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

x10-18

8

6

2

0
0 10 20 30 40 50

Time (s)E
x
o
so
m
a
l
ts
R
N
A
C
o
n
c.

D
if
fe
re
n
ce
(m
o
l.
/c
el
l.
s)

4

v
max
= 1.84e-6 to

2.84e-6 mol./cell.s

v
max
= 0.84e-6 to

1.84e-6 mol./cell.s

(c)

Fig. 6: The exosomal tsRNA concentration loss is assessed for each communication channel in respect to time, tortuosity, membrane
permeability and uptake rate. Please note that we plotted the outer graphs using t = 50 s to provide a more accurate representation
of the parameter’s impact on the exosomal tsRNA concentration loss. (a) Tortuosity λe in the brain ECS. (b) Permeability Pm of
the membrane. (c) Uptake rate Vmax in the scaffold region.

higher concentrations. The results obtained for both maximum
uptake rate and bioengineered sensing cells seeding density
(Fig. 5g and 5h) indicates that a proper control mechanism
should be implemented to increase the overall efficiency of this
communications system. Furthermore, the difference between
the higher and the lower exosomal tsRNA peak concentration
is by a factor of three for these two physicochemical factors
(considering the values used in our investigation), indicating
that they should be defined based on the system requirements to
avoid over-consumption of molecular signals.

B. Channel Propagation Loss Formulation
In our previous analyses we characterised the effects of

the physicochemical factors on the temporal dynamics of the
exosomal tsRNA concentrations when propagating through the
three MC channels investigated in this paper. Due to the observed
impact of such factors in the investigated MC system, we
utilised (3)-(13) to evaluate the propagation losses in the MC
channels. Here we first analysed the individual impact of the
physicochemical factors investigated in Section IV-A to formulate
mathematical functions that describe the channel propagation
loss, and then used these same expressions to observe the
combined effect of multiple physicochemical factors on the
channel propagation loss.

To obtain the channel propagation losses we extended the
methodology applied in Section IV-A to compute the temporal
dynamics of the exosomal tsRNA concentration for the main
physicochemical factors that affect their diffusion through the
MC channel (i.e., tortuosity, membrane permeability and uptake
rate), considering a set range of values for these parameters.
We calculated the concentration profiles for exosomal tsRNA
using the parameter ranges: brain ECS tortuosity (λe =
[1.40, 1.67] and λe = [1.67, 1.80]), membrane permeability
(Pm = [0.001, 0.01]µm/s and Pm = [0.01, 0.1]µm/s), and
uptake rate (Vmax = [0.84, 1.84]e−6 mol./cell·s and Vmax

= [1.84, 2.84]e−6 mol./cell·s). Then we took the differences
between the exosomal tsRNA concentrations obtained using
the maximum and minimum values for each parameter range.
In this context, ‘maximum’ refers to the concentration profile
derived from the highest value within each parameter’s range,
while ‘minimum’ refers to the profile calculated using the lowest

value. For the brain ECS, the tortuosity has the most impact
on the exosomal tsRNA concentration, which will reduce the
rate of molecular movement within this MC channel and lead to
loss of the diffused biomarkers. When computing the temporal
dynamics for two ranges of values for this physicochemical
factor (λe = [1.40, 1.67] and λe = [1.67, 1.80]), we observed
that the exosomal tsRNA concentration difference follows an
exponential growth (see inner plot of Fig. 6a). Therefore, we
obtained the tortuosity-induced loss (PLe) based on [44–46] as
follows,

PLe(dB) = Le · 10 log10(Re), (14)

where, Le = eλe is the tortuosity-induced loss factor. Using (14),
we calculated the exosomal tsRNA concentration loss which
is depicted in Fig. 6a. From these result, we observed that at
the lower tortuosity value, the (PLe) model showed minimal
concentration loss. However, at higher tortuosity values, there
was a substantial increase in concentration loss—approximately
10 times greater than that observed at lower tortuosity level. This
suggests that beyond a certain point, the structural complexity of
the ECS significantly hinders the movement of molecules. These
findings indicates that tortuosity is an important parameter for
ensuring the efficient propagation of molecules within a brain
ECS. Therefore, it is important to consider and control tortuosity
to optimize the transport of biomarkers within communication
channel.

During propagation along the membrane, the exosomal tsRNA
can be lost due to several physicochemical factors, including
the membrane’s thickness, porosity, permeability, tortuosity and
diffusion coefficient. Based on the results from Section IV-A and
following a similar methodology applied to compute PLm, we
considered two ranges of values for the membrane permeability
(Pm = [0.001, 0.01]µm/s and Pm = [0.01, 0.1]µm/s) and
observe that the exosomal tsRNA concentration difference can
be represented by a sigmoid function (see inner plot of Fig.
6b). Moreover, due to the number of physicochemical factors
affecting the diffusion of the exosomal tsRNA molecules, we
formulated the propagation loss for this MC channel as the
measure of the collective impact of these parameters on the
exosomal tsRNAs’ propagation as [44–46],

PLm(dB) = Lm · 10 · log10(Rm), (15)
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Fig. 7: Exosomal tsRNA concentration loss for different physicochemical parameter values. (a) Tortuosity λe and brain ECS
thickness. (b) Porosity ϕ and membrane thickness. (c) Uptake rate Vmax and cell seeding density.

where Lm = 1
1+e−λm·Rm

is the membrane loss factor, λm =
(Dsϕ)/(Pm·Rm) is the tortuosity factor for this MC channel. It
is obtained by combining the membrane’s permeability and
diffusion coefficient equations, see Section III-B. By evaluating
(15), we observed that the exosomal tsRNA concentration loss
decreased sigmoidally when the permeability (Pm) increased
from 0.01µm/s to 0.5µm/s. Specifically, a significant decrease
in concentration loss was observed at the permeability 0.5µm/s,
where the concentration loss decreased by approximately 32%.
These findings contributed to our understanding of how the
permeability parameter impacted molecular diffusion, offering
valuable implications for the hollow fiber tube’s membrane
design (e.g., choice of the biomaterial and techniques to prepare
membranes with the permeability required for the desired MC
system).

The propagation of exosomal tsRNA in the scaffold region is
affected by the presence of bioengineered sensing cells, as shown
in Fig. 5g and 5h. The consumption of exosomal tsRNA by these
cells within the scaffold contributes significantly to the overall
loss of molecules during propagation along the channel. Applying
a similar approach used to formulate the channel propagation
loss on the other MC channels, we selected two ranges of
values for the maximum uptake rate Vmax = [0.84, 1.84]e−6

mol./cell·s and Vmax = [1.84, 2.84]e−6 mol./cell·s and observed
the temporal dynamics of the exosomal tsRNA concentration
difference, which can be represented as an exponential growth,
see inner plot of Fig. 6c. Therefore, we defined a loss factor that
considers the impact of bioengineered sensing cells on molecule
uptake to express the channel propagation loss for the scaffold
region as [44–46],

PLs(dB) = Ls · 10 · log10(Rs), (16)

where Ls = eυ is the scaffold loss factor. The consumption
coefficient, represented as υ = (N0·Vmax)/kH, remains constant
and is determined by the properties of the MC channel
components, see Section III-C. Using (16), we calculated the
exosomal tsRNA concentration loss, which is depicted in Fig. 6c.
From these result, we observed that at the uptake rate of 0.8e−6

mol./cell·s, the PLs model showed minimal concentration loss.
However, at 2.0e−6 mol./cell·s uptake rate value, there was a
significant increase in concentration loss—approximately 3 times
higher than that observed at lower uptake rate. This indicates
that higher uptake rates substantially reduce the availability of
exosomal tsRNA in the scaffold region, due to quicker absorption

by bioengineered sensing cells. Therefore, a careful balance is
necessary to achieve optimal uptake by bioengineered sensing
cells while maintaining sufficient levels of exosomal tsRNA in
the scaffold region for effective cell function.

C. Channel Propagation Loss Analysis
Using (14)-(16) we analysed the performance for the exosomal

tsRNA diffusion in all three MC channels. For the brain ECS,
we investigated the impact of both tortuosity (λe) and thickness
(Re) on the propagation of exosomal tsRNA molecules traveling
through the brain ECS region, as shown in Fig. 7a. Specifically,
we considered four different brain ECS thickness values as
[20, 40, 60, 80]µm and tortuosity values of [1.40, 1.67, 1.80].
From Fig. 7a, we observed that, as the ECS thickness increases,
there is a corresponding rise in concentration loss. For instance,
when comparing an ECS thickness of 20µm with 80µm, the
later showed a significantly higher loss, likely due to the increased
resistance and hindered diffusion through thicker ECS region.
Similarly, when analysing the tortuosity values, a higher value
of λe = 1.80 resulted in increased loss compared to λe = 1.40.
This suggests that more convoluted pathways within the ECS
hinders the propagation of tsRNA molecules, contributing to
higher loss, consistent with the results shown in Fig. 6a. These
findings provide insights into the factors influencing molecular
transport in the brain and can help in optimizing the performance
of devices implanted in the brain by balancing the thickness and
tortuosity of the brain ECS.

Next, we investigated the impact of both porosity (ϕ) and
thickness (Rm) on the propagation of exosomal tsRNA molecules
traveling through the membrane region, as shown in Fig. 7b.
We considered four different membrane thickness values as
[50, 100, 150, 200]µm and porosity values of [0.5, 0.7, 0.9].
From Fig. 7b, it is observed that as thickness increases, there
is rise in concentration loss due to the hindered diffusion
of molecules through thicker membranes. However, a higher
porosity value (e.g., ϕ = 0.9) counteracts this trend and reduces
loss by approximately 33%, resulting in an increase in the number
of molecules passing through the membrane. This result can
provide insights on the factors influencing molecular transport
through a device implanted in the brain. Furthermore, this
indicates that the membrane porosity and membrane thickness
becoming the main design parameters for transporting molecular
signals to the bioengineered sensing cells and have major impact
on overall performance of the system. It is also important to



Fig. 8: Link budget analysis in terms of received signal strength
for each region (observed using t = 50 s). Please note that we
plotted the inner graph to show the received signal strength for the
same distance across each communication channel, highlighting
the distinct effects on the link budget.

find a good balance between the thickness of the membrane
and its porosity to optimize the performance of this molecular
transport.

In Fig. 7c, we analyse the impact of both the bioengineered
sensing cells seeding density (N0) and uptake rate (Vmax)
of bioengineered sensing cells on the propagation of exoso-
mal tsRNA biomarkers traveling through the scaffold region.
For this analysis, we considered four cell seeding density
values [1000, 2000, 3000, 4000] cells/µL and uptake rates of
[0.84, 1.84, 2.84]e−6 mol./cell·s. It is observed that as the cell
seeding density value increases from N0 = 1000 cells/µL to
N0 = 4000 cells/µL, there is rise in concentration loss due to
the greater uptake of tsRNA molecules by the increased number
of cells in the scaffold, resulting in a reduction in overall molecule
concentration. At the highest uptake rate (i.e., Vmax = 2.84e−6

mol./cell·s), a higher concentration loss is observed, indicating
that a higher uptake rate leads to a more rapid removal of
tsRNA molecules from the scaffold, further contributing to the
reduction in molecular concentration. These findings emphasize
the impact of bioengineered sensing cell density and uptake rate
on exosomal tsRNA biomarker propagation loss. By optimizing
these parameters, we can enhance the efficiency and accuracy
of biomarker detection, which in turn could improve diagnostic
and therapeutic applications.

D. Molecular Link Budget Formulation and Analysis
Inspired by typical communications systems, which have their

link budget formulated based on the combined effect of the
signal power from transmitter, receiver, gains and losses, we
defined the link budget for our investigated MC system as [47],

SRx(dB) = STx(dB) + GTx(dB)− PLT(dB) + GRx(dB),
(17)

where SRx is the received molecular signal strength; GTx

and GRx are the gains of the transmitting and receiving cells,
respectively; and PLT(dB) is the total loss for the proposed
heterogeneous MC channel as described in [47], and is given

by the combined propagation losses formulated in Section IV-B.
Therefore,

PLT(dB) = PLe(dB) + PLm(dB) + PLs(dB). (18)

We used (18) to observe how these heterogeneous MC channels
affect the molecular transport of exosomal tsRNA molecules. In
this link budget analysis, we considered the initial transmission
of Q = 700 molecules from neuronal cells (Tx) in the brain ECS
at Re = 0µm and t = 0 s to the bioengineered sensing cells
(Rx) located at the distance of 180µm in the scaffold region,
through device membrane wall. Fig. 8 illustrates that as these
molecules traverse from brain ECS towards the bioengineered
sensing cells, a notable decrease in received signal strength
(i.e. exosomal tsRNA concentration) is observed, indicating an
approximate 8-fold loss in the MC link. This reduction in signal
strength is due to the physicochemical factors investigated in the
previous sections. We believe that by addressing these channel
propagation losses and refining design parameters based on our
findings, bioengineers could improve the accuracy and reliability
of implantable biosensors for the prediction of epileptic seizures.

V. CONCLUSION

In this paper, we designed a MC model based on wet-lab
experimental data to characterize the propagation of epileptic
biomarkers (i.e. exosomal tsRNAs) within the heterogeneous
fluidic environment. Our model aims to facilitate the design
of biosensing devices for the prediction of epileptic seizures
by characterizing the propagation of these biomarkers from
neuronal cells in the brain ECS to a bioengineered implant. In
this work, we investigated the influence of various physicochem-
ical characteristics, including tortuosity, membrane thickness,
permeability, porosity, bioengineered cell seeding density, and
uptake rate within each channel, on the propagation of molecules.
In our study, we used two performance metrics for evaluation
of the communication system: propagation loss and molecular
communication (MC) link budget. These metrics are used to
explore the impact of different properties of heterogeneous
channels (i.e., brain ECS, membrane, and hydrogel) on both the
propagation of molecules and the received molecular signals
by bioengineered sensing cells in the context of prediction
of epileptic seizures. Our findings indicate that concentration
loss increases with increased tortuosity of the brain ECS and
membrane thickness. However, higher membrane permeability
and porosity improve molecular propagation, thus reducing loss.
Furthermore, higher cell seeding density and uptake rates result
in greater concentration loss, because the increased density and
uptake rate lead to a more rapid removal of tsRNA molecules
from the scaffold, further contributing to the reduction in
molecular concentration. In addition, the strength of the received
signal demonstrates a decrease as these molecules traverse
the brain ECS toward bioengineered sensing cells, indicating
an approximate 8-fold loss in the molecular communication
(MC) link. The obtained results lay the foundation for key
design parameters that are needed in designing and optimizing
bioengineered devices for prediction of epileptic seizures and
for other neurological diseases.

In future work, we plan to extend this research to observe other
molecular diffusion scenarios by allowing molecules to enter
from various locations within the cylinder, particularly near the
ends of the tube (i.e., device). For this, we will incorporate both



radial and axial molecular flow to capture the spatial complexity
of molecular propagation and its influence on the diffusion
dynamics and detection capabilities of bioengineered sensing
cells. Additionally, we aim to find optimal parameters that can
improve the detection capability of bioengineered sensing cells
and their response sensitivity. This can result in the development
of more efficient biosensing systems capable of detecting and
predicting neurological disorders with higher accuracy and faster
response times.
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