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Thesis Abstract 

This thesis reflects an interdisciplinary research project aimed, in part, to address the question: “How 

can Brain-Computer Interface (BCI)-based motor rehabilitation be optimized?” It also sought to expand 

the scientific understanding of the neural processes associated with motor learning. Specifically, we 

investigated three neural correlates of motor control – Event-Related Desynchronization (ERD), Motor 

Related Cortical Potential (MRCP), and the temporal evolution of Corticospinal Excitability (CSE) – with 

the goal of characterizing their interactive relationships and identifying any dynamic changes 

associated with motor learning. Despite the increasing use of these neural markers in contexts such as 

BCI-based post-stroke motor rehabilitation, the functional connectivity, and dynamics of these markers 

during the process of motor learning remain poorly understood. Especially in relation to improving 

performance in motor skill-based tasks. This research aims to clarify these dynamics to optimize BCI 

setups and advance motor rehabilitation. 

Though this thesis is framed around improving motor rehabilitation, its exploratory nature 

necessitated working exclusively with healthy participants, serving as a foundational step toward 

future clinical applications. The first study covers our analysis of data by Daly et al. (2018), to further 

explore their suggested time dependent relationship between ERD and CSE. The second and third 

studies focus on two renditions of a new motor learning experiment, one to behaviorally validate the 

design and the other to collect EEG and TMS response data to replicate and expand on our findings in 

the data by Daly et al. (2018). 

Taken together, our results indicate the temporal evolution of CSE, as measured by MEP amplitude in 

the 2 seconds leading up to Movement Onset, follows an S-like wave (third-degree polynomial). Where 

an initial increase in amplitude is followed by a decline after which it once again changes direction to 

strongly move upward. While ERD measures showed potential for predicting this changing CSE 

timeline, the cubic relationship between CSE and time did not extend to describe the relationship 

between CSE and ERD. Instead, preliminary insights suggest that the CSE-ERD relationship is unstable, 

implying that their connection is more likely correlational—based on a shared temporal progression 

relative to MOn—rather than functionally dependent. Furthermore, both CSE and ERD significantly 

changed with motor learning, with ERD power decreasing further and CSE amplitude reducing 

following early-stage learning but further unchanged. Despite our inability to quantify a stable 

relationship between ERD and CSE, our findings clearly demonstrate that learning affects the reliability 

of deriving CSE from ERD, as their relationship remains unstable over time. 

These findings highlight that ERD dynamics vary between individuals and frequency bands, 

discouraging the use of fixed percentage thresholds to derive optimal excitability. Additionally, because 

learning alters ERD power, it must be accounted for when using ERD to infer CSE dynamics. 

Future research should focus on refining methodologies to better understand these dynamic 

interactions and their implications for motor control and BCI applications. This newfound 

understanding of how motor learning occurs in the brain is of interest to further our understanding of 

how BCI-based rehabilitation works and will help to optimize the development of BCI-driven motor 

recovery paradigms. 
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Preface and Covid-19 statement 

 

“We pass through the present with our eyes blindfolded. We are permitted merely to sense and guess 

at what we are actually experiencing. Only later when the cloth is untied can we glance at the past 

and find out what we have experienced and what meaning it has.”  

― Milan Kundera, Laughable Loves 

 

We predict and anticipate the future, using our experiences and what we have learned from the past. 

This notion is a premise of the theoretical framework of this thesis, and a good description of my PhD 

journey. Coming straight from my MSc in Theoretical and Experimental Psychology, I went into my PhD 

with ideology, passion, and a sense of security. I knew this adventure, this new chapter in my life, 

would be bigger than anything I had navigated before. I knew it would not be easy. Yet, how different 

could it truly be? I try to not be too hard on the naiveté of my past self. Nothing could have prepared 

me for the series of unfortunate events that would stack up and plague this project, my PhD 

experience. I save you my tale of woe. No Tl;Dr (*) needed. Yes, the Corona Panini is a big part of the 

tragedy. However, it mainly functioned as an amplifier for delays and issues that came before. The 

result was a scramble to change course while staying on track to our original destination. Chapter 2 

was unplanned but ultimately fit our story nicely. In hindsight, it was a very good idea. Yet, the whole 

experience came at a cost. The philosophical approach is to embrace the experience, learn from the 

mistakes and go forth to do better. I did. Look at Chapter 4. We regained lab access, and I dug deep for 

my second wind. Chapter 2 took a back seat as we returned to our original course, now at double time.  

Returning to the theme of learning from past mistakes. A nice lesson in consequences of one’s actions. 

I should not have ignored Chapter 2. Nothing grates more than having to write up every single mistake 

when you know better. I tried. However, motivation is like toothpaste. At the end of the tube, you must 

squeeze harder. Yet, no matter how hard you try to squeeze, when you have run out – and the stores 

are closed – there is nothing left. 

The thesis presented to you, readers, and my examiners, does not reflect the PhD project I had 

envisioned. However, is the collection of research that circumstances allowed. I look forward to the 

time when my present is my past. To glance back at this moment and find the silver lining.  

(*) too long, didn’t read.  
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Glossary 

ACC – Accuracy  

ADM – Abductor Digiti Minimi 

BCI – Brain-Computer Interface 

BP – Bereitschaftspotential 

CMS – Common Mode Sensor 

CNS – Central Nervous System 

CNV – Contingent Negative Variation  

CSE – Corticospinal Excitability 

DRL – Driven Right Leg 

EEG – Electroencephalography 

EMG – Electromyography 

ERD – Event-Related Desynchronization 

ERP – Event-Related Potentials 

FDI – First Dorsal Interosseous 

IC – Independent component 

ICA – Independent Component Analysis 

LRP – Lateralized Readiness Potential 

MEP – Motor Evoked Potential 

MI – Motor Imagery  

MOn – Movement Onset  

MRCP – Motor Related Cortical Potential 

NS – Negative slope 

PAS – Paired Associative Stimulation 

RP – Readiness Potential 

SCI – Spinal Cord Injury 

SPN – Stimulus Preceding Negativity 

STDP – Spike Timing Dependency Plasticity 

tDCS – transcranial direct current stimulation 

TMS – Transcranial Magnetic Stimulation 
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Chapter 1: Literature Review and Introduction 

Shortly before our muscles contract to execute an action, neuroscientist can observe patterns in 

neural activity that are assumed to reflect the cognitive processes through which our brain ensures 

the smooth coordination of our movements. The studies in this thesis examined how such movement 

related neural patterns and processes occur together and how these neural patterns and their inter-

pattern dynamics change during motor learning. 

The studies contribute to the broader project goal of improving our understanding of how motor-

related activity changes as we learn to move, and how we can help people re-learn to move. Insights 

into how the brain controls movement and learns are already being applied in new motor 

rehabilitation technologies. Technological advancements such as Brain-Computer Interfaces (BCIs) 

hold great potential to aid rehabilitation, particularly in cases where loss of motor function results 

from brain damage, such as caused by a stroke. However, BCIs are still in early development, with 

progress limited by an incomplete understanding of how to facilitate motor learning. We believe BCI 

setups can be improved by advancing our understanding of the neural activity involved in movement 

control. Such novel insights could provide new access points through which BCIs can help the brain 

support its own recovery. 

1.1 Neural Activity of Motor Control 

One of the most important functions of the brain is to allow us to move around. Look at the animal 

world, where the sea squirt even goes as far as to ingest its own brain once it has found a place to live 

and no longer needs to move (Bussler, 2020; Monniot et al., 1991; Zack, 2006). While the notion of 

“most important function” can be debated, we do have to acknowledge that moving around is the 

most common task the brain must juggle among all the others. The average able-bodied individual will 

not have to put much thought toward maneuvering through a doorway or around another person. 

However, despite the lack of conscious effort, our brain is constantly processing a myriad of input-

output signals, enabling us to be responsive to the changes and demands of a given situation. As such, 

the brain can generally be thought to function as a ‘feedforward – feedback’ (i.e., act and react) system 

(Wolpert & Miall, 1996). In terms of movement, we speak of a feed forward command to act and 

getting (sensory) feedback on the executed actions (Remsik et al., 2017; Wolpert et al., 2001). The 

"act" phase of this ‘feedforward – feedback’ loop (which we shall refer to as the FoFe-loop) starts in 

the brain. Where the intention to initiate a specific movement arises from higher-level cognitive 

processes, such as decision-making and goal setting (Bagozzi & Dholakia, 2014, pp. 23–25; Butterfill & 

Sinigaglia, 2014). The desired movement is then planned and prepared by anticipating the set of 

muscle contractions required. A prediction-based feedforward command is generated and sent to the 
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relevant muscles through the motor neurons of the spinal cord, leading to the initiation and execution 

of the movement (Butterfill & Sinigaglia, 2014). The “react” phase involves the continuous monitoring 

of our environment and the state of our body. The brain obtains sensory feedback (through various 

sensory systems, not just tactile), which is then compared with the intended outcome. Any 

discrepancies result in refinement, correction, or change of the original commands; this update 

involves adjusting the internal motor representations—such as the kinematic and dynamic features of 

actions (e.g., joint displacement, muscle contractions), sensory features (e.g., visual, and tactile 

perceptions), and action outcomes (e.g., grasping or throwing) (Butterfill & Sinigaglia, 2014)—and 

initiating a new start of the “act” phase (Bagozzi & Dholakia, 2014, pp. 21–38; Jeannerod, 1995).  

Motor control refers to the collection of cognitive processes that encompass the entire FoFe-loop, 

governing both the execution and refinement of movement. This thesis focuses specifically on the pre-

movement phase of the FoFe-loop, including intention, anticipation, planning, and preparation. For 

clarity, the term movement preparation will be used to collectively describe these pre-movement 

stages, even though "preparation" also refers to a distinct cognitive process within this phase. 

Conceptually, the FoFe-loop is made up of individual and sequential steps, with a start (act) and end 

point (react) to be repeated in order. This notion aligns with behavioral observations of actions being 

aborted, altered mid-execution, or stopped shortly after initiation. In reality, however, motor control 

is more complex and interactive (Klein-Flügge & Bestmann, 2012). The cognitive processes and 

underlying physiological mechanisms work together and are active simultaneously (Wolpert et al., 

2001). This synchronized nature is further supported by observations of the temporal dynamics of 

brain activity. Although the exact roles and mechanisms of neural activity in motor cortex areas 

controlling muscle activity are not yet fully understood, research has consistently identified specific 

patterns in brain activity that precede voluntary movement. These patterns, observed through 

electroencephalography (EEG), involve changes both over time and in the frequency of brain activity. 

Such recurring changes, associated with an external stimulus or mental task, are referred to as ‘neural 

correlates’ or ‘neural markers,’ terms that will be used interchangeably throughout this thesis.  

Schultze-Kraft et al. (2016) utilized one such neural correlate and illustrated a fundamental aspect of 

the synchronized nature of motor control: its 'constantly updating' quality. Providing support that the 

“react” phase can overlap with or even begin before the completion of the “act” phase (Klein-Flügge 

& Bestmann, 2012). In their study, Schultze-Kraft et al. (2016) instructed participants to press a button 

at their own pace (averaging about 2 seconds) after receiving a ‘go’ signal. Occasionally, a ‘stop’ signal 

(i.e., “do not press the button”) was presented, targeting various time points of a real-time neural 

measure of the participants’ movement preparation. Results showed participants being able to abort 

an action after the initiation of the preparatory processes of movement, up to 200ms prior to 
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movement onset (MOn). This suggests that incoming information can interrupt and update the FoFe-

loop at any step, including prior to movement initiation but only up until a certain point. Any stop 

signals provided past this ‘point of no return’ could not cancel the triggered chain of events and 

prevent movement initiation (Schultze-Kraft et al., 2016). The neural correlate used by Schultze-Kraft 

et al. (2016) is the Movement Related Cortical Potential (MRCP) (Figure 1A). A negative shift in the EEG 

signal potential over the motor cortex, reflecting an increased level of brain activity, starting around 2s 

before MOn (Shakeel et al., 2015; Wright et al., 2011). Most commonly, the MRCP is defined with two 

pre-movement components, which occur in a stereotypical pattern across different experimental 

conditions: 1) Readiness Potential (RP), sometimes also referred to as the Bereitschaftspotential (BP; 

German for ‘readiness potential’), and 2) Negative Slope (NS). Both components are described as 

“gradually arising” during their respective periods, with RP rising more slowly and NS exhibiting a much 

steeper ascent (Shakeel et al., 2015; Wright et al., 2011). The RP is more diffuse and centrally located 

over the scalp, while the NS is lateralized to the contralateral side of the moved limb, thought to reflect 

activation in the supplementary motor area and primary motor cortex, respectively (Fairhall et al., 

2006). There is some disagreement about the name of this neural correlate in the literature. Some 

authors refer to the entirety of the MRCP as the ‘BP’ or ‘RP’ (see example in Figure 1A) (Fairhall et al., 

2006; Leuthold et al., 2004; Schurger et al., 2012; Singh & Natsume, 2022; Travers et al., 2020), while 

others differentiate based on whether the movement is self-paced (i.e., move whenever you want), 

cue based (referred to as Contingent Negative Variation, CNV) or predicted (Stimulus Preceding 

Negativity, SPN) (Brunia et al., 2012; Jankelowitz & Colebatch, 2002; Mrachacz-Kersting et al., 2012; 

Neuper & Pfurtscheller, 2001; Shakeel et al., 2015). Some claim the late CNV component is equivalent 

to the (M)R(C)P (Leuthold et al., 2004; Rohrbaugh & Gaillard, 1983), a view that aligns with the 

observation that, while the CNV is typically measured in a ‘two-warning cue’ paradigm using central 

electrodes (e.g., FCz, Cz, etc.), rather than those over the motor cortices (e.g., C3 or C4), and is 

stimulus-locked (Leuthold et al., 2004). The CNV analysis is often accompanied by a ‘Lateralized 

Readiness Potential’ (LRP) (Figure 1B), calculated using the double subtraction method and focusing 

on electrodes over the motor cortex, which is a response-locked measure. Taken together these 

observations suggest that the CNV holds the information present in the RP component, while the LRP 

extracts the NS component of the MRCP, showing the same steep decline 400-200 ms before MOn 

(Leuthold et al., 2004; Leuthold & Jentzsch, 2002). However, others still argue that the late CNV is not 

exactly like the (M)R(C)P, as the CNV component reflects more than just motor preparation (Hamano 

et al., 1997). Nevertheless, there is a consensus that there is a display of a gradual buildup of electrical 

potential that occurs over the motor areas, reflecting processes of anticipation, planning and 

preparation preceding voluntary movements (Brunia et al., 2012).  
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Figure 1 

Neural Correlates of Motor Control as Reported in the Literature 

Note: The top of the figure (A) shows the MRCP from Wright et al. (2011) (left) and (A) Shakeel et al. (2015) 

(right). The bottom left (B) displays the CNV (top) and LRP (bottom) from Leuthold et al. (2004), while the 

bottom right (C) illustrates the average progression for alpha and beta band ERD around MOn from Cassim et al. 

(2000). 

B C 

A 

Pre-movement Event-Related Desynchronization (ERD) (Figure 1C) is another neural correlate of 

movement and movement preparation (Fairhall et al., 2006). Where MRCP is a motor event induced 

potential shift in the time domain, ERD is a motor event induced shift in the frequency domain, 

specifically in ongoing sensorimotor rhythm power (8 - 20 Hz, i.e., alpha, and low beta band power) 

starting 2 seconds before MOn (Neuper & Pfurtscheller, 2001; Pfurtscheller & Lopes Da Silva, 1999; 

van Wijk et al., 2012). Unlike the MRCP, ERDs manifest contralaterally and become bilateral at the point 

of MOn. Initially, during the pre-movement stages, alpha activity is more spatially focused, while beta 

activity is more widespread (Toro et al., 1994). However, this pattern reverses shortly before and during 

motor execution, with alpha activity becoming more diffuse before refocusing at a later stage when 

the movement is sustained. In contrast, beta activity remains relatively more focused but returns to 

baseline more quickly than alpha, to the point that beta ERD is sometimes absent during motor 

execution (Crone et al., 1998). 
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ERD and MRCP share several similarities. Both are observed during the same voluntary movement 

motor tasks and are generated by both action execution as well as Motor Imagery (MI), where a person 

imagines executing an action, activating the motor areas without acting upon this intention 

(Jankelowitz & Colebatch, 2002; Pfurtscheller & Neuper, 1997). The neural correlates further exhibit 

spatial overlap in cortical areas. Specifically, the regions showing the greatest MRCP amplitude 

correspond to those with the largest ERD response. This is mainly in the alpha band, while beta 

frequencies, being more diffused prior to movement, show less defined spatial similarities. This 

overlap implies the presumed origins of the ERD and MRCP could potentially reside in the same cortical 

structures (Leocani et al., 1997; Toro et al., 1994). However, research also identified differences 

between the neural markers, such as the mirrored lateralization of their topographical patterns and 

their inverted evolution over time leading up to MOn (Shibasaki & Hallett, 2006; Stancák & 

Pfurtscheller, 1996; Toro et al., 1994). Additional findings include the lack of correlation between ERD 

magnitude (in either frequency band) and MRCP amplitude—whether for the NS or peak MRCP 

(100ms after MOn; Toro et al., 1994)—and the preservation of beta frequency ERDs despite neural 

deterioration that leads to reduced MRCP amplitude (Bai et al., 2006; Toro et al., 1994). Preservation 

of one frequency band and not the other, combined with their distinct activity patterns across the 

scalp, further suggests that the two rhythms may also be somewhat independent, each serving a 

unique functional role (van Wijk et al., 2012). Meaning, despite MRCPs and both ERDs origins in 

seemingly the same cortical structures, the physiological mechanisms governing these events may be 

very different.  

Having different generators suggests that the neural correlates provide distinct information, leading to 

the possibility that ERD and MRCP are independent indices of movement preparation (Schultze-Kraft 

et al., 2016). However, as noted by Toro et al. (1994) and discussed earlier, certain consistencies 

emerge in what might initially appear as differences in their topographical patterns, particularly in their 

mirrored and inverted temporal evolution (i.e., the opposing trajectories of ERD and MRCP). In the 

final 500ms before MOn, the bilateral spread of alpha ERD across the scalp coincides with the 

lateralization of the MRCP’s NS/LRP component. Similarly, beta ERD starts more diffusely, aligning with 

the central spread of RP over the scalp, and later becomes more localized over the motor cortices 

(Fairhall et al., 2006), mirroring the lateralization of the NS/LRP component. These findings suggest 

that beta rhythms are more closely associated with motor preparation and execution processes, 

aligning with the presumed role of the NS/LPR component of MRCP (Lattari et al., 2014; Singh & 

Natsume, 2022). In contrast, alpha desynchronization is observed not only in motor areas but also in 

regions related to attention and sensorimotor integration (Crone et al., 1998; Fogassi et al., 2005). The 

progression of alpha ERD, which spreads contralaterally in tandem with increasing RP amplitude and 
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bilaterally with NS/LRP lateralization, suggests that alpha activity may play a broader role in 

coordinating the cognitive networks both before (planning and anticipation) and after (refinement) 

movement execution, likely through sensorimotor processing (Crone et al., 1998; Fogassi et al., 2005; 

Neuper & Pfurtscheller, 2001). Therefore, ERD in both frequencies and MRCP are likely to all be related 

to similar events in motor cortex activation, rather than completely individual and independent 

processes (Toro et al., 1994).  

Despite the apparent similarities in how ERDs and MRCP relate to motor preparation and execution, 

the literature reveals notable inconsistencies in how different studies associate these neural correlates 

with specific cognitive processes. The precise nature of the distinct information these neural markers 

provide on the various stages of movement preparation remains an open debate. Traditionally, MRCP 

is considered to reflect planning and preparation, with its components—RP and NS—corresponding to 

these stages respectively (Shibasaki & Hallett, 2006; Wright et al., 2011). ERD, on the other hand, is 

often said to reflect a more general state of movement intention (Daly et al., 2018; Sakamaki et al., 

2018; van Wijk et al., 2012). However, the MRCP (BP/RP) has also been stated to reflect movement 

intention (Shakeel et al., 2015; Singh & Natsume, 2022) and, conversely, the ERD described as an 

indicator of planning and preparation (Lakany & Conway, 2007). Some researchers argue that the 

classical view of planning and preparation, as captured by the MRCP, oversimplifies the pre-movement 

process. Rather than adhere to the two fixed stages, researchers suggest movement preparation 

processes emerge through a consistent reduction of neural variability prior to movement—a process 

akin to making a decision to act (Khalighinejad et al., 2018; Schurger et al., 2012). Ultimately, the 

literature disputes the precise mechanisms and cognitive functions (planning, preparation, intention, 

or decision-making) represented by these neural markers. This ongoing debate underscores the 

complexity of pinpointing the exact processes driving changes in neural activity. Perhaps the answer 

lies in a both/and perspective rather than an either/or interpretation. As previously discussed, these 

motor preparation and execution processes are inherently interwoven. Neural dynamics further 

illustrate this synchronous operating nature of motor control, with ERD and MRCP appearing to reflect 

overlapping contributions among the stages of movement preparation. Nonetheless, both ERD and 

MRCP are robust precursors of movement (Travers et al., 2020; van Wijk et al., 2012), appear over 

similar timelines to MOn (from approximately 2 seconds prior to movement), and are integral to the 

planning, preparation, and execution of movement. Observing either marker enables the detection of 

a person’s intention to move and can therefore be described and used as such, underscoring their 

utility in movement-related studies and applications (Lakany & Conway, 2007; Shakeel et al., 2015).  

Corticospinal excitability (CSE) is another widely explored component of the motor control neural 

substrate. Unlike ERD and MRCP, which reflect changes in brain activity measured via EEG, CSE 
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represents the activity of the corticospinal pathway and is assessed through Motor Evoked Potentials 

(MEPs). MEPs are changes in muscle activity induced by Transcranial Magnetic Stimulation (TMS) and 

recorded using electromyography (EMG) (Duque et al., 2017). Pre-movement changes in CSE are 

thought to correspond to the preparation of neural populations for movement initiation (Leocani et 

al., 2000, 2001), enabling the generation and transmission of coherent signals necessary for this 

process. As such CSE is often described as a marker of neural readiness for signal transmission, 

reflecting the state of excitability within the corticospinal pathway. Where the changes in neural 

populations prime the corticospinal tract for efficient signal propagation, facilitating rapid and accurate 

motor execution (Ibáñez et al., 2020). 

Higher CSE levels, indicated by increased MEP amplitudes, suggest that the neurons in the pathway 

are optimally prepared for signal transmission, whether to process sensory feedback (Gandolla et al., 

2021) or forward motor commands (Daly et al., 2018; Ibáñez et al., 2020). Interestingly, a notable 

aspect of the temporal evolution of CSE is its reduction shortly before voluntary movement execution. 

It has been suggested that the synchronous nature of the movement preparation processes, 

particularly their interaction with decision-making, gives rise to competition as different action 

representations contend for selection (Duque et al., 2017; Klein-Flügge & Bestmann, 2012). This pre-

movement inhibition is then thought to result from resolving the competition between potential 

movements. However, the pre-movement CSE inhibition has been well-studied in the context of 

(warned/cued) Reaction Time (RT) tasks, which emphasize the execution speed of an already selected 

response (Ibáñez et al., 2020). In these tasks, inhibition is less likely to arise from competition 

resolution. Any competition is more likely to occur during the early stages of movement preparation 

and may contribute to pre-movement inhibition in CSE when the selected movement is not 

predetermined. Instead, this inhibition is proposed to primarily function as a necessary safety 

mechanism to prevent premature movement initiation (Duque et al., 2017). Recent studies by Hannah 

et al. (2018) and Ibáñez et al. (2020) challenge both these interpretations, noting that the temporal 

profile of CSE and its associated inhibition are similar for different types of movement, including 

speeded reactions, predictably timed movements, and self-paced actions (Ibáñez et al., 2020). 

Consequently, it is more likely that the pre-movement CSE reduction serves as an essential and more 

general component of movement preparation and initiation, regardless of how the movement is 

triggered (Ibáñez et al., 2020). Specifically, Ibáñez et al. (2020) propose that the CSE inhibition reflects 

a transition in neural populations toward more stable conditions (i.e., a state of reduced variability in 

their activity), shifting from a state of maintaining constant output to one that initiates movement. 

While the exact purpose of the inhibition remains debated, the various theories proposed in the 
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literature are not mutually exclusive. It is possible reduced CSE has different generators and performs 

distinct functions depending on the movement type, context, and goal (Duque et al., 2017).  

In conclusion, it may seem intuitive or logical that the decision and intention to move must precede 

the planning and preparation of movement, and the act and react phases occur sequentially. However, 

the associated neural activity suggests otherwise. These processes likely occur in tandem. Some 

research even indicates that these neural correlates of movement preparation, along with the 

underlying processes, precede the conscious awareness of the decision to act (Fairhall et al., 2006; 

Haggard & Eimer, 1999; Lavazza, 2016; Libet et al., 1983; Soon et al., 2008). Regardless, these 

processes—reflected by the discussed neural correlates—function as prerequisites for the conscious 

intention to act (Khalighinejad et al., 2018; Travers et al., 2020). Ultimately, the temporal dynamics of 

movement preparation highlight the complexity and simultaneous nature of these processes, which 

are integral to both intentional and habitual action experiences. 

1.2 Motor Learning 

As mentioned at the beginning of this chapter, the average able-bodied individual moves with little 

conscious effort. This lack of effort, however, just reflects our efficiency and extensive practice in 

coordinating these movements. Optimal movement execution relies on the continuous monitoring of 

both our environment and the state of our body, with internal motor representations being constantly 

consulted and updated (Butterfill & Sinigaglia, 2014). This ongoing process of movement refinement 

is inherent to motor control, as demonstrated by the dynamic interactions within the FoFe-loop. 

Consequently, learning to move in new ways and gradually reducing the conscious effort required is 

integral to motor production and control.  

Motor learning can thus be defined as the adaptive process of refining feedforward commands to act, 

based on (sensory) feedback obtained through the repetition of a movement or skill (Kitago & 

Krakauer, 2013; Wolpert et al., 2001; Yang et al., 2017). Initially, this process of motor learning begins 

with predictions formed from limited experience and knowledge, giving rise to early-stage motor 

representations. These representations are then used to generate imprecise or inaccurate feedforward 

commands. As the movement is repeated, these predictions are refined and updated in response to 

sensory feedback, resulting in more accurate and efficient execution over time through a process of 

error correction and adaptation (Butterfill & Sinigaglia, 2014; Wolpert et al., 2001). During automatic 

or well-learned actions, these motor representations are accessed unconsciously. However, they can 

also be accessed consciously, such as when imagining a movement (i.e., motor imagery (Butterfill & 

Sinigaglia, 2014; Jeannerod, 1995) or actively using knowledge to replicate an observed action. This 
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dual mode of access reflects the two ends of the motor learning spectrum: implicit and explicit 

learning.  

Implicit learning underscores the automatic aspects of motor control. It primarily relies on repetition 

and sensory feedback to shape motor representations over time, often without the learner being fully 

aware of the process. For instance, an infant learning to walk relies on early-stage motor 

representations, which are initially formed through observing others—a process thought to be 

supported by the mirror neuron system. Observing others not only aids the formation of these 

representations but is also believed to enable their unconscious access (Cannon et al., 2014; McGregor 

et al., 2017), thought to facilitate mimicry, and enabling the infant to perform actions subconsciously 

(Bardi et al., 2015; Brass & Heyes, 2005; Cannon et al., 2014). Through repeated practice, the infant 

improves without being fully aware or employing intentional strategies aimed at walking better. In this 

way, a new skill is acquired without gaining increasing knowledge of the performance itself 

(Hashemirad et al., 2016; Jongbloed-Pereboom et al., 2015). Explicit learning, in contrast, involves 

conscious effort, knowledge, and goal-directed strategies aimed at improvement (Hashemirad et al., 

2016). For example, when learning to play the piano, individuals follow explicit instructions on finger 

placement, rhythm, and key pressure, consciously monitoring their hand coordination to avoid 

mistakes. In this case, the learner knows the desired outcome, how and what is needed to execute the 

actions, and consciously adjusts aspects of their execution to refine the performance (Hashemirad et 

al., 2016). 

Notably, these modes of learning are not mutually exclusive, nor are they processes with fixed 

sequential orders; they often coexist and interact dynamically, with their relative contributions shifting 

throughout the learning process (Maresch et al., 2021). A beginner might implicitly acquire a skill 

through repetition but later refine their performance by applying explicit strategies. The process of 

learning to walk, for example, is largely implicit during infancy. Infants repeat movements, improving 

without employing, or even being fully aware of, intentional strategies to enhance walking. Over time, 

this practice leads to competence. Later in life, however, a person may explicitly apply techniques to 

improve their gait and posture to reduce knee strain or address other biomechanical concerns. 

Conversely, learning to type on a keyboard initially requires conscious attention to key locations and 

finger movements. As the skill becomes well-learned, however, improvement occurs largely through 

repetition, without intentional focus on specific aspects of performance. These processes can also 

cycle back and forth. For instance, in learning a single action, one might start by applying explicit 

strategies to learn a specific component, then improve through sheer repetition, before advancing to 

the next component of the action. On a broader scale, someone adept at walking and running might 

find their coordination does not immediately transfer to riding a bike. Learning to cycle demands more 
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conscious effort initially, as one must master balance and propulsion. Once basic competence is 

achieved, cycling improves through repetition. If further refinement is desired—such as learning to 

ride without holding the handlebars—conscious effort and explicit strategies are again required. 

Further emphasizing the complementary nature of both learning types, research suggests there is little 

difference in the quality of skill performance once a certain level of proficiency is reached. Showing 

both implicit and explicit learning can result in similar levels of movement automaticity—that is, the 

extent to which a movement can be executed without directing attention to its details (Kal et al., 2018).  

Although both implicit and explicit learning contribute to skill acquisition, certain learning types may 

better suit specific tasks, particularly in terms of the speed of improvement. For instance, while it is 

not improbable to learn to play the piano by repeatedly pressing keys and developing a ‘sense’ for 

melody and rhythm without fully understanding the mechanics, such implicit approaches are often 

less efficient for mastering a complex task. In this specific scenario, and other tasks requiring intricate 

coordination or higher levels of precision, explicit learning, with its structured strategies and conscious 

refinement, is likely to yield faster improvements.  

As discussed thus far, motor control, as conceptualized through the FoFe-loop, encompasses the 

processes central to both acquiring and refining new skills. However, the mechanisms of motor 

learning are not only essential for skill acquisition but also for regaining lost motor functions (Winstein 

et al., 2003). In many cases of motor impairment, the ability to move may be compromised, but the 

underlying principles of motor control often remain intact. This is particularly relevant in cases 

following stroke or injury to the neural motor pathways, where the loss of motor function results from 

impairments in the transmission of feedforward signals or the integration of feedback due to 

disruptions in these pathways, rather than irreversible damage to muscles or absent tissue1 (Winstein 

et al., 2003). A stroke is a neurological event where brain cells die due to a (sudden) cut off blood 

supply or bleeding into the brain (Bonita, 1992; Hossmann, 2006). Given the high prevalence of stroke, 

millions of individuals worldwide live with its consequences, including cognitive and motor 

dysfunctions that significantly impact their quality of life (Hatem et al., 2016; Nys, 2005). While stroke 

symptoms vary depending on lesion location and severity (Barker-Collo et al., 2010; Nys, 2005), motor 

function deficits—particularly of the contralateral upper limbs—are among the most common (Hatem 

et al., 2016). Rehabilitation for stroke-based motor impairments is a key consideration within this 

thesis’s theoretical framework. Stroke is used as the primary example due to its prevalence and well-

documented impact on motor function, but the motor rehabilitation principles discussed extend to 

 
1 Damaged or absent tissues can sometimes be replaced with assistive technologies, such as (robotic) 
prosthetics. In such cases, individuals must relearn to move using the replacement limb, applying motor 
learning principles much as they would when relearning to move with their natural arm.  
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other conditions involving focal central nervous system (CNS) damage, such as spinal cord injury (SCI) 

and brain trauma (Dobkin, 2009). However, the core focus remains on understanding the neural 

mechanisms of motor learning, with the aim of leveraging these insights for motor recovery. To this 

end, this thesis emphasizes the parallels between motor learning and relearning. These principles, 

however, do not apply in the same way to progressive neurodegenerative disorders (conditions like 

multiple sclerosis and Parkinson’s disease), where motor impairments arise from ongoing neuronal 

deterioration rather than a single injury event. Even though both involve damage to CNS, they differ 

in terms of pathology and rehabilitation approach. Any further mention of stroke and rehabilitation 

will refer specifically to motor impairments resulting from stroke-related neural damage, while 

recognizing that similar mechanisms may apply to other focal CNS-related motor deficits. 

When part of the motor control system remains functional—assessable, for instance, through MI and 

EEG showing relevant activity patterns over the motor cortex—motor learning principles can be 

applied as a core part of motor rehabilitation. Through proper assistance and repetitive, task-oriented 

activities—alongside interventions such as increasing muscle strength and sensory processing 

(Bolognini et al., 2016; Chen & Shaw, 2014)—the rehabilitation process mirrors that of initial skill 

acquisition (Maier et al., 2019; Van Peppen et al., 2004). 

For example, stroke patients recovering hand function might perform repetitive grasp-and-release 

tasks using objects of varying sizes to improve (fine) motor control. Therapists may initially guide the 

patient’s hand to correct compensatory movement patterns and ensure proper muscle activation. This 

approach provides real-time feedback through visual and tactile cues from the movement of the 

affected limb, complemented by verbal input from the therapist to reinforce correct performance. As 

the patient’s performance improves, assistance is gradually reduced to encourage independent 

attempts and foster self-regulation. To add challenge and target specific movement struggles, tools 

such as resistance bands or weights may be introduced. These tools can increase the difficulty of 

repetitive movements or enable focused training on distinct components of a movement sequence. 

For instance, repetitive arm extensions or lifting tasks can be practiced in isolation to strengthen 

specific muscles and improve coordination. By breaking down movements into manageable parts, 

therapists help patients refine their control over individual components, ultimately enhancing the 

execution of the complete movement (Franz et al., 2017; Maier et al., 2019). 

As part of motor rehabilitation, these key principles of motor learning—repetition, feedback, and error 

correction—aim to engage the motor control system and adapt motor representations to overcome 

the disruptions in the system’s feedforward and/or feedback pathways, with the goal of restoring 

motor function and supporting recovery (Kitago & Krakauer, 2013). 
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Motor learning is a process that relies heavily on neuroplasticity; the brain’s innate ability to form new 

connections, strengthen existing ones, and prune unnecessary ones, allowing for neural adaptability 

(Dayan & Cohen, 2011; Murphy & Corbett, 2009). Motor relearning, in turn, leverages this capacity to 

overcome disruptions in neural pathways. This capacity for adaptation is intrinsic to the primary motor 

cortex, underscoring the inherent connection between motor control and learning. In particular, 

changes in synaptic strength are thought to represent the neural mechanisms by which motor skills 

are encoded within the nervous system (Kleim, 2009). This same mechanism, by extension, allows 

motor skills to be ‘re-coded’ when necessary, such as during rehabilitation. 

The parallels between the behavioral observations of motor learning and neuroplasticity are 

interesting, with the learning-dependent reorganization of movement representations corresponding 

closely to changes at the cortical level. Kleim (2009) even draws a direct comparison: conceptual motor 

representations align with the topography of neural connections in the motor cortex, referred to as 

‘motor maps.’ The refining of motor representations—shaped by feedback and error correction—in 

turn mirrors the changes in synaptic strength within the motor cortical circuits responsible for specific 

movements (Kleim, 2009; Wolpert et al., 2001). This similarity becomes even more pronounced when 

considering the mechanisms of learning, whether acquiring a new skill, such as playing an instrument, 

or recovering from injury. Specifically, the repetitive aspect of learning and refining motor skills 

behaviorally mirrors the iterative adjustments occurring in neural networks (Lisman & Spruston, 2005). 

Just as repeated engagement with the FoFe-loop refines motor control behaviorally, the repeated 

activation of neural pathways strengthens synaptic connections, facilitating the reorganization of 

motor circuits. This iterative activation of specific neural pathways is essential for promoting 

neuroplasticity, driving synaptic strengthening and cortical reorganization of motor circuits (Lisman & 

Spruston, 2005). Ultimately, this improves motor control and enhances interactions with the 

environment (O’Malley et al., 2006; Ward, 2015). By applying motor learning principles, these 

processes can be harnessed to facilitate functional recovery and rehabilitation, supporting the 

restoration of motor skills through cortical reorganization. To continue our earlier example of 

recovering hand function following stroke, damage to the motor cortex often disrupts the pathways 

leading feedforward motor commands to muscle activation. Patients often show some degree of 

spontaneous recovery, as neuroplasticity allows the brain to reestablish connections to a limited extent 

(Murphy & Corbett, 2009). This recovery rate can then be further enhanced through rehabilitation 

therapy, where interventions help optimize the neuroplasticity process, guiding the brain to reorganize 

and strengthen motor pathways that were disrupted. In many cases, some motor commands may still 

pass through, allowing for traditional assistive physical therapy. Such rehabilitation protocols focus on 

reinforcing whatever motor function remains post-stroke, helping the patient regain movement 
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through repetition and error correction. While the original pathways cannot be fully reinstated, new 

neural connections can be forged, allowing the brain to reroute motor commands to the targeted 

muscles. However, in cases where no command can be transmitted at all, rehabilitation protocols can 

still apply motor learning principles to engage the motor system indirectly. For example, techniques 

like motor imagery, where patients respectively imagine performing movements, and action 

observation, where they watch others perform the movements, allow to activate the same neural 

pathways involved in motor control when no movement execution is possible yet (Cannon et al., 2014; 

Maier et al., 2019; McGregor et al., 2017). These methods are often seen as supplementary to physical 

therapy (Woldag & Hummelsheim, 2002), but when physical movement is not possible, these 

approaches can bypass the need for direct execution to still stimulate the motor circuits and help to 

facilitate cortical reorganization despite physical limitations. 

So far, we have established neuroplasticity in a more general sense as the neural mechanism 

underlying learning, drawing parallels to the behavioral observations of motor learning. We noted that 

neuroplasticity is an inherent capacity of the brain, involving changes in the synaptic strength of 

connections between neurons and relying on repeated activation of specific neural pathways to drive 

and consolidate these changes.  

Several theoretical frameworks have been proposed to further explain the principles of neuroplasticity 

and the biological processes that enable it. One of the most well-known is the Hebbian principle, which 

provides a broader functional framework for understanding synaptic strengthening. This theory 

outlines the core principles of what changes in the brain, focusing on the associative relationship 

among neural activity. According to Hebbian learning, the strength of a synaptic connection depends 

on whether the activity of a presynaptic neuron consistently contributes to the firing of a postsynaptic 

neuron. The theory highlights the importance of coordinated activation—either simultaneous or rapid 

sequential—in strengthening synaptic connections and shaping neural circuits. This idea is 

encapsulated in the now iconic phrase: Neurons that fire together, wire together (Feldman, 2012; 

Hebb, 1949). 

Other theories have sought to delve deeper into the biophysical mechanisms underlying 

neuroplasticity at the cellular level. One such theory is Spike Timing-Dependent Plasticity (STDP), which 

mechanistically extends Hebbian principles by focusing on how precisely timed neural activity drives 

synaptic changes. STDP highlights the critical role of millisecond-level timing between pre- and post-

synaptic activity. Not only to address the strengthening of synaptic connections but also incorporating 

the weakening of ineffective synapses. In short, STDP states that, when a presynaptic neuron fires just 

before a postsynaptic neuron, synaptic strength increases, a phenomenon known as long-term 

potentiation (LTP). Conversely, when the postsynaptic neuron fires first, synaptic strength decreases, 
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referred to as long-term depression (LTD). This model underscores a causality that is inherent in neural 

activity patterns and emphasizes that synaptic plasticity depends on the precise temporal coordination 

of neural signals (Feldman, 2012; Stefan, 2000). 

However, critics argue that the processes and principles underlying neuroplastic adaptation, 

particularly synaptic plasticity, are far more complex than those classically defined by STDP (Carson & 

Kennedy, 2013; Lisman & Spruston, 2005). These critics propose an alternative perspective, which 

suggests that neuroplasticity, particularly potentiation, is influenced by the general activity state of the 

neural network (Carson & Kennedy, 2013; Ganguly & Poo, 2013). This activity-dependent plasticity 

framework emphasizes a mechanism where changes in neural circuits extend beyond synapses and 

involve broader biological processes. These changes are proposed to occur over, and are guided, by 

various levels of neural activity (e.g., calcium signaling, gene expression, and protein synthesis) 

(Berridge, 1998), with the magnitude and duration of neuronal activity driving both synaptic and 

structural changes. For instance, this framework describes how neurons subjected to sustained 

activity, through repetitive use or stimuli, undergo alterations in synaptic strength, dendritic growth, 

or pruning (Ganguly & Poo, 2013). 

While incredibly interesting, an in-depth exploration of the biophysical working principles of 

neuroplasticity is beyond the scope of this thesis. For readers seeking further details, we recommend 

the works of Lisman & Spruston (2005), Feldman (2012), Carson & Kennedy (2013) and Ganguly & Poo 

(2013), who provide extensive discussions on the evidence supporting these theories as well as 

critiques and nuances necessary for a more comprehensive understanding. 

How exactly the brain reorganizes (i.e., the precise mechanisms of neuroplasticity) remains a subject 

of ongoing debate, particularly regarding which theoretical framework best explains its workings and 

the driving biological mechanisms. Nevertheless, there is consensus across these theories on certain 

central principles of neuroplasticity. Broadly speaking, the brain is recognized as a self-organizing, 

plastic system that adapts through repeated, sequential activation of neural pathways. While the 

general Hebbian principle holds true across theories, the relationship between neural activity is now 

understood to be more nuanced. It is not simply that cell A must consistently activate before cell B; 

rather, if cell A and cell B fire simultaneously—or if B fires shortly after A—this temporal relationship 

is more likely to be interpreted as causal, thereby increasing the contingency between the two 

neurons. It is then crucial to repeat and sustain activation across this pathway to reinforce lasting 

neural changes. 

 



P a g e  | 21 

 

While the specific mechanisms of neuroplasticity continue to be debated, it is well-established that 

learning is accompanied by the reorganization of synaptic connections—that is, the brain changes. As 

such, when motor learning occurs, it is reasonable to expect that these synaptic and structural changes 

will also manifest as changes in the neural correlates of motor control (Dayan & Cohen, 2011). Existing 

research supports this notion. For example, studies have demonstrated that the amplitude of the 

MRCP increases (i.e., neural marker becomes more negative) during the learning process. However, 

once performance stabilizes and no further improvement is observed, MRCP amplitude often returns 

to baseline or decreases even further. This aligns with findings comparing experts and novices in skilled 

tasks, where experts exhibit smaller MRCP amplitudes and later onset times (Wright et al., 2011). 

Siemionow et al. (1998) further suggest that MRCP amplitude reflects the number of neurons recruited 

for movement execution. Early in learning, when predictions of feedforward commands are inaccurate, 

greater neural resources are engaged, possibly reflecting competing motor commands. As learning 

progresses, movement execution becomes more efficient, requiring fewer resources—following the 

principle of minimal effort, where the most direct and efficient neural pathways are favored. Similarly, 

motor learning is associated with a reduction in oscillatory power, particularly an increase in ERD 

strength over the course of training. Both implicit and explicit learning are accompanied by a decline 

in alpha-band power, particularly at electrode C3 over the motor cortex (Yang et al., 2017; Zhuang et 

al., 1997). However, findings on CSE are more inconsistent. While some studies indicate that skill 

training increases CSE, as reflected in larger MEPs post-training (Kleim, 2009; Leung et al., 2017; 

McGregor et al., 2017), other studies report no significant changes in CSE during skill acquisition 

(Berghuis et al., 2016). The association between CSE and learning has led to the interpretation that 

MEPs may serve as an indirect marker of neuroplasticity (Kleim, 2009). However, CSE changes are more 

accurately understood as evidence that plasticity has occurred—suggesting that learning has already 

taken place rather than being actively in progress (Christiansen et al., 2018). 

Overall, a reduction in neural activity following learning is often assumed to reflect stronger synaptic 

connections and more efficient cortical processing. This forms the foundation for examining how 

learning shapes specific patterns of brain activity, a key focus of this thesis. 

What does this mean for studying the effects of learning? When examining neural changes due to skill 

acquisition, we must avoid the fallacy of reasoning in absolutes—i.e., assuming distinct, fixed levels of 

neural activity for a highly learned skill versus a skill that one has just started acquire. Much of the 

literature on neural correlates, particularly the studies reviewed in 1.1 Neural Activity of Motor 

Control, primarily reflects the average neural activity associated with well-practiced, nearly automatic 

movements. This is especially true for studies using simple movements performed by the dominant 

right hand—actions repeated daily across various contexts, environments, and goals, effectively 
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representing a kind of “final level of learning.” This raises a critical question: how does one establish a 

true equivalent of a “non-trained” state? This issue is particularly important when comparing neural 

activity across different movement conditions, as “final form” patterns in neural activity vary 

depending on factors such as limb type, force exertion, movement abruptness, and execution speed 

(Stancák & Pfurtscheller, 1996). A logical answer would be to compare “dominant hand with none-

dominant.” However, when neural activity across limbs differ handedness further complicates 

comparisons, as left-handed individuals, due to living in a predominantly right-handed world, often 

exhibit ambidextrous tendencies not seen in right-handed individuals (Stancák & Pfurtscheller, 1996; 

Tarkka & Hallett, 1991). 

Therefore, when discussing learning effects, it is more meaningful to focus on the direction of change 

rather than assume rigid start and end points. Instead of searching for an absolute baseline, learning 

can be examined through measurable improvements in motor skill and the corresponding shifts in 

neural activity. One way to approach this is by slightly increasing the complexity of previously studied 

well-practiced right-hand movements, thereby introducing a relative challenge while maintaining 

comparability to existing research (Wright et al., 2011). 

1.3 Brain-Computer Interfaces 

While the learning element inherent to the motor control/FoFe-loop system facilitates improvement 

and refinement through repetition, simply increasing repetition is not always sufficient to restore 

weakened or interrupted connections. Chen et al. (2020) found that even when progressive resistance 

training was increased to 10,000 repetitions over eight weeks (200 per day), there was no significant 

improvement in muscle strength following SCI. While progressive resistance training has been effective 

in enhancing voluntary strength in muscles, its benefits appear limited for muscles weakened due to 

SCI, regardless of the number of repetitions. This issue—where repetition alone is not enough—is also 

evident in robot-assisted therapy. Robots can deliver a higher volume of exercises compared to 

physiotherapists, effectively increasing the amount of therapy provided within the same time span. 

However, clinical results remain inconclusive regarding whether robot-assisted therapy offers 

significant advantages over conventional therapy (Lo et al., 2010; Wagner et al., 2011; Zorowitz & 

Brainin, 2011). One possible explanation is that robot-assisted therapy primarily increases repetition 

without fundamentally altering the underlying rehabilitation model. If mere repetition were enough, 

we would expect clearer benefits. Furthermore, while the quality of an acquired skill is often 

comparable across different learning methods in the context of learning a new skill (i.e., regular motor 

learning), research indicates that implicit learning is often hindered for limbs contralateral to the 

affected side of the brain following stroke (Kal et al., 2016). This aligns with our earlier discussion on 

how different actions and contexts may favor one type of learning over another. In the case of 
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relearning after neurological damage, implicit learning may be less effective, reinforcing the idea that 

mere repetition is insufficient. Instead, relearning may favor explicit learning, where conscious 

engagement plays a critical role in driving recovery. This distinction is important, as reports of post-

stroke rehabilitation where repetitive practice leads to strength improvements typically involve goal-

directed repetition (e.g., task-specific training, constraint-induced movement therapy, assistive 

technology, cycling, etc.) (de Sousa et al., 2018). As such, these studies show that performing a task 

repeatedly strengthens muscles through increased use—an expected outcome. In other words, 

recovery is not driven by repetition alone, but the repeated engagement of the full FoFe-loop. This 

does not contradict the necessity of repetition in relearning to move, but highlights that repetition 

alone is insufficient (de Sousa et al., 2018). 

Altogether, these findings restate our central theme: to induce meaningful neural changes and 

enhance recovery—whether through behavioral exercises, MI and repeated mental practice, or 

electrical stimulation (Mrachacz-Kersting et al., 2012, 2016; Stefan, 2000; Stefan et al., 2002)—

rehabilitative interventions must be timed to align with the FoFe-loop parameters of the brain 

(O’Malley et al., 2006; Wolpert et al., 2001). That is, we must work with and according to the principles 

of motor learning. In the context of relearning and rehabilitation, this means engaging in a structured, 

conscious process: generating an outcome, evaluating it against the intended goal, and iterating 

accordingly. The feedforward command is continuously compared to incoming feedback, motor 

representations are updated, and a revised forward command is generated. As sensory feedback is 

processed, neural pathways contributing to successful outcomes are repeatedly activated, reinforcing 

individual neural connections. These small-scale changes collectively restructure and strengthen the 

larger neural circuits responsible for executing movement successfully. 

When motor function is at least partially retained, traditional assisted therapy (as detailed in Section 

1.2) naturally facilitates engagement in the FoFe-loop. In this rehabilitation context, movement 

attempts are observed, execution is assisted, and proper form is guided to approximate a full run-

through of the FoFe-loop. As such, the rehabilitation interventions help complete and reinforce the 

FoFe-loop by ensuring that actions generate sensory feedback. When a motor command is issued, 

resulting in an action, and sensory feedback informs the quality of the movement, enabling more 

informed repeated attempts.  

However, what happens when no observable movement execution remains? How can we ensure that 

interventions are applied in a way that meaningfully supports recovery? How do we know if our 

assistive interventions align with any aspect of the FoFe-loop beyond simply moving limbs and hoping 

for the best? As noted earlier, MI and movement observation can help strengthen the preparatory 

aspects of movement execution (Maier et al., 2019). During MI, therapists may still assist by moving 
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the patient’s limb, providing sensory feedback that simulates aspects of motor execution. In theory, 

this feedback can engage the FoFe-loop processes, facilitating adaptation. However, whether this 

engagement is sufficient to drive functional recovery remains uncertain. MI is typically considered 

complementary to more action-focused rehabilitation approaches (Maier et al., 2019; Woldag & 

Hummelsheim, 2002), with its precise contribution remaining unclear. Most rehabilitation gains are 

likely achieved through a complex combination of spontaneous and learning-dependent processes 

(Hatem et al., 2016), where recovery rates are enhanced by structured therapy. This raises the 

possibility that any observed benefits of MI and repeated mental practice may, at least in part, be due 

to an interaction with spontaneous recovery processes. Yet, the question remains: Is this enough? How 

crucial is the timing of feedback and these interventions for successful rehabilitation? How important 

is it to engage with the FoFe-loop versus meaningfully engaging with it? As we have argued, it is 

possible to engage with parts of the loop (e.g., generating motor commands without execution, as in 

MI, or receiving feedback without active motor engagement, as in robot assisted activity), but mere 

repetition of such partial interactions is insufficient. For functional recovery, the full cycle must be 

engaged within a way that drives adaptation. 

The natural course of spontaneous recovery follows a logarithmic, nonlinear pattern, with most 

improvements reportedly occurring within the first three months following injury (Hatem et al., 2016). 

Since spontaneous recovery follows its own trajectory, this complicates efforts to isolate the effects of 

intervention (Hatem et al., 2016). Murphy & Corbett (2009) go further, suggesting that the optimal 

time window to engage and direct neuroplasticity to have a positive effect on motor recovery may 

span only a few weeks post-stroke. Beyond this period, the rate of recovery slows, and functional 

improvements become more difficult to attain (Nepveu et al., 2017). However, while challenging, 

recovery is not strictly confined to this early window. Research consistently shows functional progress 

remains possible through adaptive learning strategies alone (Carey et al., 1993; Kübler et al., 2017; 

Yekutiel & Guttman, 1993). Nevertheless, interventions that either promote neuroplasticity early after 

stroke or extend this initial window have the greatest potential to improve motor recovery (Nepveu et 

al., 2017; Pino et al., 2014). 

Technological advancements and an increasing understanding of the human brain have provided new 

prospects to enhance the quality of life for people with disabilities that affect function and mobility 

(Winstein & Requejo, 2015). One such avenue is Brain-Computer Interface (BCI) therapy. By measuring 

brain activity and engaging specific neural signals, BCIs can translate brain activity into commands for 

various external devices, allowing users to interact with computers, robotic devices, or other assistive 

technologies (Guerrero & Spinelli, 2018; Pfurtscheller et al., 2003; Piña-Ramírez et al., 2018; Scherer 

et al., 2017). Traditional rehabilitation methods typically rely on independent movement execution, 
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often beginning with assisted movements. However, when movement execution is not possible, 

interventions are limited to passive limb movement (performed by a therapist or robot) or MI and 

repeated mental practice. Building on earlier discussions, MI can engage motor networks, yet its 

effectiveness is limited in rehabilitation due to the absence of the sensory feedback necessary for 

refining motor commands within the FoFe-loop (Maier et al., 2019). BCI technology offers a potential 

solution to bridge this gap by integrating motor intent detection with external reinforcement. 

Unlike conventional rehabilitation techniques, BCIs use brain activity as a starting point, allowing for 

real-time estimation and tracking of FoFe-loop parameters and progression. This enables BCIs to 

integrate feedback with motor commands, facilitating neuroplastic changes more directly than 

traditional rehabilitation approaches. Noninvasive EEG-based BCIs, in particular, have shown promise 

in supporting motor recovery, helping patients re-learn movement, improve motor strength, and refine 

motor control (Guger et al., 2018). Their potential is especially notable for cases where movement 

execution is not yet possible, but where an individual can still access motor representations and 

cognitively plan movement at a cognitive level despite signal disruption between the brain and 

muscles. These BCIs leverage pre-movement neural signals, such as the ERD and MRCP, which are 

detectable even when overt movement is absent (Jackson & Zimmermann, 2012; Jankelowitz & 

Colebatch, 2002; Pfurtscheller & Neuper, 1997; Scherer & Vidaurre, 2018). These signals remain 

detectable even when the motor cortex is damaged, as seen in stroke patients (Remsik et al., 2017), 

allowing EEG-based BCIs to bridge the gap between movement intention and actual motor execution 

(Pichiorri et al., 2013, 2015). 

This ability to decode movement intention allows BCIs to reinforce the FoFe-loop by providing real-

time sensory feedback, mimicking the role of a therapist when voluntary movement is present. In 

traditional rehabilitation, therapists offer guidance by physically assisting movement, ensuring that 

sensory feedback aligns with the motor command. However, when no movement occurs, therapists 

lack direct indicators of the patient’s movement plan or intent, making it difficult to provide well-timed 

reinforcement. BCIs circumvent this limitation by detecting neural activity linked to movement 

preparation and using this information to trigger sensory feedback in synchrony with detected neural 

markers of movement intent. To this end, the ERD and MRCP – two of the most widely explored neural 

correlates of motor control in EEG – have been recognized as valuable markers in the context of neural 

plasticity and the advancement of clinical rehabilitation protocols. 

When BCI rehabilitation setups transform movement intention into real-time reinforcement 

feedback, this feedback can take various forms (Guger et al., 2018; Hurtier et al., 2016; Remsik et al., 

2017), including: 
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(a) rewarding images or sounds, 

(b) the movement of a virtual avatar performing the intended action (which doubles as visual 

feedback, potentially engaging the mirror system), 

(c) actual movement via a motorized orthosis, providing both visual and proprioceptive feedback, 

(d) functional electrical stimulation (e.g., TMS, tDCS), or 

(e) combinations of these approaches  

By providing feedback in response to movement-related brain activity, BCIs re-establish a closed FoFe-

loop—where a feedforward command to act is met with sensory feedback on the executed action. 

This cycle is a fundamental feature of motor learning and is replicated in BCI-based therapy to support 

neural circuit reorganization (Ward, 2015). Ward (2015) emphasizes that motor learning depends on 

repeated sensorimotor integration and that a complete FoFe cycle is necessary for effective neural 

restructuring. This is where BCIs offer a key advantage over conventional physiotherapy: they allow 

reinforcement of the FoFe-loop even when the individual is unable to generate movement 

independently. By ensuring that sensory feedback is delivered in alignment with detected motor 

intention, BCIs provide a mechanism to sustain neuroplasticity-driven recovery. 

The general belief is that the closer the feedback aligns with movement intent, the greater the 

potential for reinforcing adaptive neuroplastic changes (Hurtier et al., 2016; Remsik et al., 2017). 

Therefore, optimizing feedback timing within the FoFe-loop is thought to be a key factor in maximizing 

rehabilitation outcomes. With BCIs creating opportunities to augment recovery rates both in the 

critical early months post-injury and beyond (Kübler et al., 2017; Remsik et al., 2017). Rather than 

replacing traditional rehabilitation techniques, BCIs offer a complementary tool—enhancing recovery 

by providing precisely timed engagement with brain activity to promote neuroplasticity (Guger et al., 

2018). Meaning, even in cases where some movement is preserved, BCIs can potentially provide more 

precise and timely engagement with the FoFe-loop than standard therapy alone. For example, BCIs 

have the potential to optimize robot-assisted rehabilitation, which has been explored as a means to 

increase therapy volume. While robotic devices can deliver more exercise repetitions than a human 

therapist, clinical outcomes have been inconclusive (Lo et al., 2010; Wagner et al., 2011), possibly 

because repetition alone is insufficient without appropriately timed feedback. BCIs could enhance 

robotic therapy by ensuring that robotic assistance is delivered in synchrony with detected neural 

markers of movement intent, rather than simply providing passive movement. 

Other protocols besides BCI have demonstrated effectiveness in aiding individuals with motor 

impairments by leveraging neuroplasticity through the principles of closing the FoFe-loop. While BCI 

technology has proven effective in facilitating recovery by detecting motor intent and providing 

feedback to reinforce processes related to movement execution, another widely studied method—



P a g e  | 27 

 

Paired Associative Stimulation (PAS)—has been used to modulate neuroplasticity through a different 

mechanism and theoretical underpinning. 

PAS protocols, like BCIs, aim to modulate neural circuits by timing sensory stimulation with cortical 

activity. Specifically, PAS involves the precise pairing of peripheral sensory stimulation (e.g., electrical 

stimulation of afferent pathways) with motor cortex activation, either through direct cortical 

stimulation (e.g., TMS) (Stefan, 2000) or through self-initiated cognitive processes, such as motor 

imagery (Mrachacz-Kersting et al., 2012, 2016). This repeated pairing over an extended period is 

thought to enhance the excitability of corticospinal projections from the primary motor cortex, making 

the neural connections more open/sensitive to input, which will reinforce the neural circuits 

responsible for motor function and thus also lead to changes (Stefan, 2000; Stefan et al., 2002). Unlike 

BCI, PAS relies on highly specific time windows to precisely pair cortical stimulation with afferent 

sensory input. PAS protocols require highly specific, millisecond-scale synchronization windows as 

small as 25 ms for the hands and 50 ms for the legs to maximize plasticity effects (Mrachacz-Kersting 

et al., 2012, 2016; Stefan, 2000). The underlying hypothesis is that optimal PAS effects occur when 

sensory input arrives at the motor cortex concurrently with motor-related cortical activation—a 

principle comparable to the need for synchronized feedforward and feedback interactions in the FoFe-

loop. PAS has been widely used to investigate neuroplasticity mechanisms, and early successes were 

considered direct evidence supporting STDP-based plasticity models, suggesting that strict timing was 

essential for neuroplasticity-based rehabilitation (Feldman, 2012; Lisman & Spruston, 2005; Stefan et 

al., 2002). However, recent critiques challenge the assumption that such rigid time windows are 

necessary for plasticity induction (Carson & Kennedy, 2013). BCI-driven rehabilitation has 

demonstrated the ability to induce similar functional improvements despite not adhering to these 

strict intervals. Studies show that similar enhancements in MEPs have been observed following PAS 

and BCI-based interventions (Mrachacz-Kersting et al., 2012, 2016), suggesting that both approaches 

interact with neuroplastic mechanisms in comparable ways. 

PAS aligns closely to the STDP framework, which emphasizes that a precise temporal relationship 

between sensory input and motor activity dictates whether synaptic connections strengthen or 

weaken. In contrast, BCIs provide real-time feedback in response to motor-related cortical activity 

(e.g., a virtual hand avatar moving in sync with ERD progression; Guger et al., 2018), without requiring 

pre-defined, externally imposed stimulation windows. Both PAS and BCI approaches have 

demonstrated efficacy in promoting neuroplasticity, yet BCIs' ability to dynamically adjust feedback 

based on ongoing brain activity gives them the potential to be a more adaptable and clinically viable 

approach for rehabilitation. This raises an important question: if both approaches can successfully 

leverage neuroplasticity, what is the most effective timing strategy for intervention? PAS suggests that 



P a g e  | 28 

 

millisecond-precision windows are necessary, yet BCI-based approaches have shown improvements 

without adhering to such strict constraints. Given their conceptual similarities, PAS research—

particularly on the relationship between sensory feedback and cortical activation—may offer valuable 

insights for optimizing feedback timing in BCI protocols (Mrachacz-Kersting et al., 2016).  

However, understanding the optimal time window for interaction with the FoFe-loop remains an open 

challenge, highlighting the need for further exploration into which neural correlates should be targeted 

and when feedback should be delivered for maximum impact. 

While BCIs have demonstrated potential in motor rehabilitation (Ang et al., 2011; Guger et al., 2018; 

Remsik et al., 2017; Winstein & Requejo, 2015), the technology remains in early development and 

faces numerous challenges. A key limitation is our incomplete understanding of how BCI-driven 

rehabilitation facilitates recovery and how to optimize its effectiveness—for example in refining the 

type and timing of feedback. We argue that both challenges stem from a broader issue: the lack of a 

well-informed framework linking BCI interventions to the fundamental mechanisms of motor learning 

and the neural circuits of motor control. 

1.4 Problem Statement 

As we have emphasized, effective rehabilitation depends on engaging the FoFe-loop in a way that 

promotes neuroplasticity (Ward, 2015). While traditional physiotherapy likely achieves this, its specific 

operative components remain unidentified (Maier et al., 2019; Woldag & Hummelsheim, 2002). 

Similarly, BCIs offer a unique opportunity to interface directly with motor learning mechanisms, but 

their full potential can only be realized by understanding when and how to engage with neural 

mechanisms underlying motor learning. Yet, the optimal parameters for leveraging BCIs to induce 

neuroplasticity most efficiently and effectively remain to be explored (Lisman & Spruston, 2005; 

O’Malley et al., 2006; Stefan, 2000). On one level, this includes identifying the neural correlates of 

motor control most relevant for recovery; on another, it involves determining the conditions under 

which the correlates are optimally engaged. Addressing these gaps is essential for advancing BCI 

rehabilitation beyond proof-of-concept studies and toward practical clinical application. 

This thesis puts forward two interpretations through which the challenge of optimizing BCI can be 

approached. First, the role of timing in optimizing neuroplasticity-driven recovery is not well 

understood. Effective rehabilitation hinges on closing the FoFe-loop, yet it remains unclear which 

neural correlates are best targeted and what is the optimal point within motor-related brain activity 

for feedback engagement to maximize impact. Second, BCI protocols rely on static assumptions about 

neural markers of movement production, despite established evidence that these markers undergo 

changes as learning progresses. Motor-related brain activity is not fixed; rather, it adapts with 
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experience and skill acquisition, meaning that feedback timing and intervention strategies may also 

need to evolve dynamically.  

1.4.1 Timing in Neuroplasticity & Rehabilitation 

Rehabilitation relies heavily on neuroplasticity—functional recovery through neural reorganization. 

While the precise biological mechanisms underlying neuroplasticity remain debated, there is broad 

consensus on the importance of converging neural activity to (re)shape and reinforce motor pathways 

(Feldman, 2012; Ganguly & Poo, 2013; Hebb, 1949). The existence of a “critical (though heavily 

debated) time interval” for this convergence is left open to interpretation. Different theories propose 

varying constraints on the timing and order of neural activation—ranging from precise millisecond-

scale intervals to broader activity-dependent frameworks (Carson & Kennedy, 2013; Feldman, 2012). 

However, regardless of the specific biophysical mechanisms, closing the loop remains the only widely 

accepted timing requirement for neuroplasticity to drive meaningful motor recovery. Yet, while closing 

the loop is a necessary condition, the optimal parameters—such as which neural correlates to target 

and when to provide feedback—remain largely unknown. 

Most BCI rehabilitation protocols pair feedback with pre-movement motor-related neural activity using 

ERD or MRCP, as these are the most widely explored neural correlates of motor control in EEG and are 

considered valuable in the context of neuroplasticity and clinical rehabilitation (Remsik et al., 2017). 

However, while effective for detecting movement intent, their precise relationship to specific motor 

processes remains unclear (Khalighinejad et al., 2019; Lakany & Conway, 2007; Shakeel et al., 2015; 

Wright et al., 2011). These markers correlate with the progression of the preparatory phase of the 

FoFe-loop, yet may reflect different or only partial aspects along the motor execution timeline. Without 

a more precise understanding of the biophysical mechanisms underlying neuroplasticity, it is uncertain 

whether current BCI timing strategies optimally align feedback with the most effective neural states 

for inducing plasticity. This raises a critical challenge: how to determine the most suitable neural 

correlate for feedback timing, and how best to interact with it—whether by representing its continuous 

progression or, alternatively, by adopting an approach similar to PAS, timing feedback to a specific 

phase within the neural marker’s activation window.  

Where BCIs using ERD and MRCP have optimized rehabilitation by considering neural indicators of 

movement, it has been suggested that CSE may serve as a better neural correlate of motor control for 

timing feedback delivery (Daly et al., 2018). Unlike ERD and MRCP, which primarily indicate movement 

intent, CSE reflects the dynamic interplay between motor preparation and execution, providing a 

functional link to exploit for more precisely aligning feedback with the transition from intention to 

action. 
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1.4.1.1 Corticospinal Excitability as a More Suitable Neural Marker 

It has been argued that learning benefits from, and relearning relies on, increased levels of cortical 

excitability (Clarkson & Carmichael, 2009; Lissek et al., 2013). As discussed in section 1.1 Neural Activity 

of Motor Control, CSE is considered a state of "neural readiness" that changes in response to the 

cortical activity before, during, and after movement (Leocani et al., 2000, 2001). Higher excitability 

increases the likelihood that neurons respond to incoming signals and synaptic connections will be 

strengthened. This heightened state of responsiveness is thought to represent an optimal condition 

for integrating sensory feedback, comparing predicted and actual movement outcomes, and refining 

motor commands; i.e., motor learning (Gandolla et al., 2021). Consequently, cortical excitability has 

been proposed as a neural marker for motor learning and use-dependent plasticity—the process by 

which repeated voluntary movements reshape neural connections within the primary motor 

cortex (M1) (Ackerley et al., 2011; Lissek et al., 2013).  

CSE is particularly relevant within this framework, involved in both transmitting outgoing motor 

commands (Ibáñez et al., 2020) and relaying incoming sensory feedback (Gandolla et al., 2021), as 

both travel via the corticospinal tract. This directly ties CSE to the closure of the FoFe-loop, where 

learning depends on continuously comparing expected and actual sensory consequences of 

movement. The relationship between CSE and motor learning is further supported by its observed role 

in functional motor recovery. Studies show that increased CSE levels correlate with better motor 

performance and learning outcomes (Kleim, 2009; Leung et al., 2017), while impairments in sensory 

feedback transmission—such as proprioceptive deficits (reduced awareness of body in space)—have 

been associated with poor motor learning due to disrupted error correction and adaptation 

mechanisms (Gandolla et al., 2021). Similarly, stroke recovery has been associated with CSE changes, 

with initially low levels increasing as motor function is regained (Clarkson & Carmichael, 2009). 

Because plasticity is inferred from functional changes rather than directly measured, TMS-evoked 

MEPs are often used as an indicator of corticospinal plasticity (Kleim, 2009). Since MEPs are considered 

a measure of CSE, their modulation following rehabilitation suggests that successful motor recovery 

engages neuroplasticity mechanisms. However, it is important to note that while increases in MEP 

amplitude are generally interpreted as evidence of synaptic strengthening, they do not directly 

measure plasticity in real time or reveal its precise mechanisms. Instead, they provide an indirect 

indication that plasticity may have occurred (Kleim, 2009). 

Thus, there is a clear link between CSE, motor learning processes, and the execution and improvement 

of motor skills, with research repeatedly showing that better motor performance and skill acquisition 

are associated with increased CSE levels. Furthermore, studies indicate that modulating CSE directly 

can further influence motor learning and functional improvement. One example is metronome-
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synchronized training, which has been shown to enhance both motor performance and CSE. When 

motor actions are synchronized with a metronome, CSE levels increase, likely reflecting the 

strengthening of synaptic connections involved in the executed movement (Leung et al., 2017). 

Notably, repeated execution of the same movement without metronome guidance did not produce 

the same increase in CSE levels. Leung et al. (2017) proposed that this temporal coordination of action 

leads to increased activation of the motor cortex and supporting areas. More specifically, this effect is 

thought to result from stimulus-driven phase-locking of neural oscillations in these cortical regions, 

which modulate neuronal excitability and generate periods of maximal sensitivity to input (Crasta et 

al., 2018). This suggests that metronome-guided training fosters repeated activation of specific cortical 

areas, creating a more favorable neural state for integrating sensory information, inducing plastic 

changes, and ultimately reinforcing use-dependent plasticity (Leung et al., 2017; Van Der Cruijsen et 

al., 2021). The auditory and motor systems share rich interconnectivity across cortical, subcortical, and 

spinal levels (Schaefer et al., 2014; Thaut & Abiru, 2010), suggesting metronome pacing may influence 

broader motor control networks rather than directly modulating CSE. This idea—that rhythmic 

auditory stimulation potentially creates a more favorable state for motor learning—is further 

supported by studies showing that stimuli such as music or paced beats can alter alpha and beta power 

in the motor cortex during movement preparation, (Abbasi & Gross, 2020; Ivaldi et al., 2017; Ross et 

al., 2022). Specifically, it is suggested that the pre-activating or priming of the sensorimotor areas 

results into a beneficial increased state of excitability (Neuper & Pfurtscheller, 2001).  

In a similar manner, neurostimulation techniques have also demonstrated the ability to enhance CSE 

and facilitate motor recovery. Repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS) 

are widely studied as tools for modulating neural plasticity and supporting functional recovery in stroke 

rehabilitation (O’Malley et al., 2006). For instance, applying rTMS at 10Hz for 15 minutes has been 

shown to increase CSE up to 4 minutes post-stimulation. Given that CSE is a key mediator of motor (re-

)learning, increasing excitability through neurostimulation may provide additional therapeutic benefits 

for individuals recovering from motor impairments. However, a major challenge is determining when 

crucial neural events occur, making it difficult to precisely time TMS or other forms of stimulation. This 

underscores the potential of CSE fluctuations as both a potential neural indicator of motor learning 

and a key variable for optimizing neuroplasticity-driven interventions. Aligning feedback delivery with 

periods of heightened excitability may provide a more effective window for enhancing plasticity-driven 

recovery. However, whether these excitability changes originate primarily at the cortical or spinal level 

remains difficult to determine and may be secondary in importance. Notably, single pulse TMS-evoked 

MEPs alone cannot distinguish whether observed changes reflect excitability in the motor cortex, 

descending axons, spinal motor neurons, or a combination of these (Weavil & Amann, 2018). Given 
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that motor learning and functional recovery depend on the coordination of multiple neural processes 

across hierarchical levels, the precise source of excitability shifts may be less relevant than their 

functional connectivity within the broader motor control system. Regardless of whether these changes 

originate at the cortical or spinal level, changes in excitability measures are linked to plasticity. 

Meaning, changing CSE levels provide a dynamic marker of motor learning and may serve as a key 

variable for identifying optimal states for engaging neuroplasticity-driven interventions. 

1.4.1.2 Functional Connectivity & Neural Interactions 

While CSE presents a promising neural correlate for optimizing feedback timing, a major challenge in 

utilizing it for real-time BCI applications is that it cannot be continuously measured like EEG-based 

signals. Unlike ERD or MRCP, which are recorded non-invasively from the scalp in real time, CSE is 

typically inferred through TMS-evoked MEPs. While MEPs serve as widely accepted indicators of 

changes in cortical activity (Kleim, 2009; Leocani et al., 2000, 2001), they provide only intermittent 

snapshots of excitability rather than a continuous signal that can be tracked during movement 

execution. This limitation can be circumvented by examining how motor-related neural signals interact 

over time. Since motor execution involves the coordinated activity of multiple neural circuits, 

investigating how these signals synchronize could refine our understanding of how excitability evolves 

in real time. By mapping these interactions and exploring the functional relationships between neural 

markers, we can develop indirect but reliable measures of CSE and improve feedback timing strategies 

in BCI rehabilitation. This approach also contributes to broader efforts to further our understanding of 

the neural substrate of motor activity and could help clarify relationships between neural circuits 

involved in motor control dynamics in the brain, offering insights that may challenge or refine existing 

frameworks of motor control. 

Given the challenge of directly measuring CSE in real time, studies suggest that ERD—mu rhythm 

desynchronization, specifically in the alpha and beta bands over the motor cortex—may serve as such 

a proxy for real-time changes in CSE. Providing a functional index for CSE in both healthy individuals 

and stroke patients (Aono et al., 2013; Daly et al., 2018). If ERD progression reliably reflects shifts in 

CSE, then ERD could offer an indirect but practical solution for estimating optimal feedback timing in 

BCI-driven rehabilitation. The link between ERD and CSE follows logically from evidence showing that 

MI-based ERD-driven BCI paradigms are associated with improved functional recovery from stroke 

(Daly et al., 2018; Pichiorri et al., 2015). Moreover, how the same MI techniques that consistently 

produce ERD for BCI have been shown to engage the motor system and enhance motor cortical 

excitability, further supporting a functional link between ERD and CSE (Cicinelli et al., 2006; Stinear et 

al., 2006). Individual variability in MI ability has also been linked to differences in ERD strength (Müller-

Putz et al., 2014; Williams et al., 2012), reinforcing the idea that ERD-based interventions play an active 
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role in modulating excitability rather than merely reflecting motor preparation. i.e., tapping into the 

FoFe-loop via ERD comes with increased CSE. Complementary findings indicate that CSE increases 

following tDCS interventions coincide with ERD enhancements, further suggesting a broader functional 

link between these neural markers (Aono et al., 2013). Together, these studies indicate that ERD-based 

BCI feedback is capable of modulating CSE as they aim to do (Daly et al., 2018), supporting the idea 

that CSE, rather than ERD, might be the neural marker we ultimately want to target. 

Several studies have investigated the relationship between ERD and CSE more directly, with findings 

suggesting that stronger ERD correlates with increased MEP amplitudes—a direct measure of CSE. 

Early studies reported that this relationship only becomes apparent within the final 100ms before MOn 

(Chen et al., 1998; Leocani et al., 2000, 2001; van Wijk et al., 2012). Similarly, Neuper & Pfurtscheller 

(2001) noted that ERD strength correlates with increased excitability during MI, while subsequent 

event-related synchronization (ERS) is associated with decreased CSE. Lepage et al. (2008) further 

demonstrated that MI training-induced changes in the motor cortex are associated with MEP 

modulation. More specifically, modulation in the low to mid-range beta band (12-18 Hz) correlated 

with MEP size during both rest and movement execution, whereas no clear relation was found with 

alpha activity. This suggests that specific ERD frequency bands may be more closely associated with 

CSE than others. While Chen et al. (1998) suggests that the early onset of ERD, or MRCP for that matter 

(Leocani et al., 2001), is unlikely to be associated with CSE, more recent findings indicate a broader 

temporal relationship between ERD-CSE. Aono et al. (2013) found that CSE increases in tandem with 

ERD strength following a relative reduction in power from 10% to 30%. Notably, the 10% (as well as 

the 30%) decrease in power for the average ERD occurs prior to the earlier mentioned 100 ms window 

(Cassim et al., 2000). This pattern has been observed in both healthy individuals and stroke patients 

(though with substantial individual variability in the latter) (Aono et al., 2013), suggesting the gradual 

increases in ERD corresponding to heightened excitability levels to be a robust association between 

the two neural markers. 

While these findings support the idea that ERD can serve as an indirect measure of CSE, critical 

questions remain. How precisely does ERD progression align with CSE fluctuations over time, what do 

those temporal dynamics of CSE exactly look like? Can ERD not only reflect CSE but also predict the 

optimal moment for delivering sensory feedback? 

1.4.1.3 Identifying the Optimal Timepoint for Feedback Engagement 

In considering when to interact with the FoFe-loop, PAS research provides valuable insights. PAS 

protocols have long emphasized that the precise timing between afferent sensory signals and efferent 

motor commands plays a crucial role in shaping synaptic connectivity. While the strict time constraints 

of PAS protocols remain debated, their core principle—that neural activity follows distinct temporal 
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windows for optimal information integration—offers a useful perspective (Daly et al., 2018). Following 

this logic, if CSE reflects a neural state most conducive to motor learning, rehabilitation protocols 

should aim to engage with CSE at its optimal point to enhance recovery. This raises two key questions: 

When is CSE optimally increased for facilitating plasticity? And how does this point relate to the 

progression of ERD to determine the ideal moment for sensory feedback delivery? 

The concept of "optimal excitability," however, remains underdefined. The reasonable interpretation 

suggests that sensory stimulation should be delivered when excitability is maximized, as this may 

provide the most favorable conditions for reinforcing new motor patterns. However, identifying when 

this peak occurs and whether it represents the best moment for feedback engagement remains an 

open question.  

Daly et al. (2018) investigated the broader nature of the temporal relationship between CSE and ERD 

strength. Whereas earlier studies examined only limited ERD thresholds (e.g., 10% and 30% power 

reduction; Aono et al., 2013), Daly et al. (2018) analyzed CSE changes across a more continuous range 

of ERD progression (10%, 20%, 30%, and 40%). Their findings revealed an approximately nonlinear 

relationship between ERD strength and CSE, with CSE peaking at 20–30% ERD strength before declining 

at 40%. This suggests that maximal excitability does not coincide with the strongest ERD signal but 

rather occurs at an intermediate point. The implication is that sensory feedback, whether in the form 

of artificial stimulation (e.g., tDCS) or natural cues (e.g., visual feedback), may be most effective when 

delivered during this 20–30% ERD phase. This window could represent an optimal period for engaging 

neuroplastic mechanisms, allowing sensory feedback to be integrated most effectively into motor 

learning processes. Beyond assessing ERD-CSE dynamics, Daly et al. (2018) also examined whether 

visual feedback itself directly modulated CSE levels. While prior studies have linked ERD-based visual 

feedback to functional recovery and increased CSE, Daly et al. (2018) found no direct effect of visual 

feedback on CSE changes. This finding was unexpected given prior evidence suggesting that ERD-driven 

visual feedback contributes to neuroplastic adaptations. However, Daly et al. (2018) their results could 

not confirm a direct causal link between visual feedback and CSE enhancement. This raises an 

important question: How, if at all, does ERD based feedback interact with excitability? Further research 

could investigate different types of feedback interactions to explain this (absence of) finding. One 

possibility is that the relationship between CSE and feedback is mediated by learning rather than direct 

stimulation effects. If so, investigations should focus on contexts where feedback leads to recovery or 

learning rather than assessing feedback in isolation. Nonetheless, Daly et al. (2018) provide further 

support for the idea that CSE evolves dynamically throughout ERD progression rather than being 

limited to the final 100 ms before movement onset. Daly et al. (2018) ultimately put forward the same 

core argument we make in this thesis: optimizing BCI rehabilitation may require aligning sensory 
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feedback delivery with periods of optimal excitability. Their findings propose that “optimal excitability” 

equates to maximal excitability, which can be inferred from a 30% reduction in ERD power. However, 

whether maximal excitability is truly the most effective point for feedback engagement remains an 

open question—one that requires further investigation into how ERD and CSE evolve dynamically over 

time. 

To begin with, while Daly et al. (2018) provide a valuable starting point, their assumption that maximal 

excitability falls around 20–30% ERD strength fails to align with other findings on the temporal 

evolution of CSE. Most studies on CSE timing have focused on pre-movement inhibition, reporting a 

suppression of CSE between 500 to 200 ms pre-MOn, with a flat baseline before this point, and a rapid 

increase in excitability post-suppression (starting approximately 100 ms pre-MOn) (Ibáñez et al., 2020; 

Leocani et al., 2000, 2001; van Wijk et al., 2012). Additionally, correlations between ERD-CSE were 

primarily observed in the final 100 ms before MOn (Chen et al., 1998; van Wijk et al., 2012). If maximal 

CSE truly represents the ideal window for feedback engagement, then—based on PAS research—

stimulating closer to MOn may be more effective, or in case of MI-based paradigms, closer to when 

movement execution would have occurred. This does not fully align with the reported findings of Daly 

et al. (2018), who claim that CSE peaks at 30% ERD strength, as this window precedes the CSE 

suppression phase in the final 200 ms leading up MOn (Cassim et al., 2000). This discrepancy suggests 

that the increase observed by Daly et al. (2018) may instead reflect a preparatory increase in CSE prior 

to its inhibition phase, rather than a true “peak of excitability”. As such we still do not know where 

maximal excitability truly lies, not in the least caused by CSE having been primarily studied in the 

context of inhibition, rather than its full progression relative to movement onset. 

This represents a major gap in the current research. If ERD and CSE are truly linked, then earlier 

changes in ERD should correspond to earlier shifts in CSE. Yet, while studies have attempted to 

establish this relationship (Aono et al., 2013; Daly et al., 2018), currently known research lacks a clear 

depiction and understanding of CSE’s temporal evolution and its relationship to neuroplasticity. As 

such, before we can optimize intervention timing in relation to “optimal excitability,” we must first 

establish how CSE unfolds over time relative to MOn. 

Furthermore, to optimize intervention timing in relation to “optimal excitability,” it is also possible that 

maximal excitability is not the ideal state for feedback engagement. Much of the existing CSE research 

focuses on its suppression as part of pre-movement inhibition, which plays a crucial role in motor 

planning. However, physiological inhibition does not necessarily equate to functional inhibition. The 

spotlight hypothesis proposes that this suppression promotes rapid action preparation and execution, 

by selectively reducing competing activity and facilitating motor output (Duque et al., 2017). 

Alternatively, Ibáñez et al. (2020) and Hannah et al. (2018) argue that CSE suppression does not 
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function to select movement per se but rather indicates a transition in cortical activity toward an 

"optimal" state for movement initiation—characterized by reduced signal variance. Regardless of the 

mechanism underlying the CSE inhibition, Ibáñez et al. (2020) further demonstrated that stimulation 

coinciding with this inhibitory dip in MEP amplitudes accelerated movement execution, though only 

for RT and self-paced movements, not predictive movements. These findings imply that the ideal 

excitability state for feedback delivery may depend on both the type of movement and the type of 

feedback applied—whether visual feedback (as studied by Daly et al. (2018)) or neurostimulation (e.g., 

TMS, as commonly used in PAS protocols; Stefan et al., 2002). Moreover, CSE inhibition lines up time 

wise to the "point of no return" in movement intention, as indicated by MRCP (Schultze-Kraft et al., 

2016). Given this, a larger inhibitory dip may facilitate faster, more efficient movement execution, 

meaning that providing sensory feedback at the point of inhibition has just as much theoretical 

justification to enhance neuroplastic effects as interacting with “maximal excitability” just prior to or 

after inhibition. CSE suppression may also be a key functional marker for intervention as peak 

excitability. 

1.4.1.4 Current Insights & Next Steps in Optimizing Feedback Timing 

Thus far, the literature provides a compelling rationale for exploring CSE as a target for optimizing 

feedback timing, with ERD serving as a potential online indicator of CSE dynamics. However, the precise 

temporal evolution of CSE remains poorly understood, and current assumptions regarding the 

"optimal" feedback timing window may be incomplete or misaligned. This highlights a critical gap in 

the literature—if BCI rehabilitation aims to optimize feedback timing, then accurately mapping the full 

temporal dynamics of CSE is essential. Additionally, a better understanding of functional connectivity 

among motor-related neural markers is necessary to determine how CSE, ERD, and MRCP interact 

within the FoFe-loop. 

While arguments exist for inferring CSE through other, more easily measurable neural markers, we find 

it striking that despite the vast research on CSE, ERD, and MRCP as independent markers, their 

interactions remain poorly studied. ERD and MRCP originate from overlapping cortical regions, follow 

a similar preparatory timeline (both beginning approximately 2 seconds before MOn) and are 

discussed in relation to each other (Bai et al., 2006; Schultze-Kraft et al., 2016). Moreover, both have 

been individually linked to CSE (Daly et al., 2018; Leocani et al., 2001). Yet, research that investigates 

all simultaneously, especially in relation to CSE, is exceedingly scarce (Toro et al., 1994). This lack of 

integration leaves fundamental questions unanswered—could MRCP function just as well as ERD in 

predicting CSE? (Mrachacz-Kersting et al., 2016). How do these markers collectively contribute to 

motor preparation, execution, and feedback? How are they similar or different in their contribution?  
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Beyond these functional interactions, we lack a clear picture of the CSE timeline itself. Research 

investigating the temporal dynamics of CSE has been largely limited to brief windows close to MOn, 

primarily focusing on pre-movement inhibition. Early studies (Chen et al., 1998; Leocani et al., 2000, 

2001) suggested that early onset ERD and MRCP were unlikely to be associated with CSE, yet no direct 

investigations were conducted. More recent studies, which inadvertently included early onset ERD 

measures (e.g., 10% and 20% ERD threshold associated with timepoints as early as 1.5s before MOn; 

Cassim et al., 2000; Neuper & Pfurtscheller, 2001), hint that a broader temporal relationship may exist. 

However, even these studies fail to provide a comprehensive temporal model. Most research looking 

at ERD-CSE focused on the 100 ms before MOn, or the relation between post movement inhibition and 

ERS (van Wijk et al., 2012), while ignoring potential fluctuations occurring much earlier. Whereas the 

current idea of premovement CSE indicates a temporal profile of up to -1sec before MOn (Ibáñez et 

al., 2020; Klein-Flügge & Bestmann, 2012) where the preparatory increase at 30% ERD also seems to 

fall more around -500 ms (Cassim et al., 2000; Neuper & Pfurtscheller, 2001), raising the possibility 

that previous studies simply overlooked earlier CSE dynamics. 

Without a full understanding of how CSE evolves over time, any attempt to correlate it with ERD—or 

to determine optimal excitability for intervention—is premature. The first step should be to establish 

the full temporal profile of CSE relative to movement onset, exploring its fluctuations beyond the well-

studied suppression phase. Does CSE ramp up earlier than previously assumed? How does it fluctuate 

across different movement types? Answering these questions will lay the foundation for future work 

aimed at defining optimal excitability states for feedback timing in neurorehabilitation. Once we 

establish a more comprehensive CSE timeline, we can further refine its functional relationships with 

ERD and MRCP—determining whether these markers provide reliable, predictive indicators of CSE 

fluctuations. Investigating these dynamics in parallel will allow us to assess how well ERD and MRCP 

reflect CSE activity at different points in time, ultimately helping to refine BCI-based rehabilitation 

strategies. 

1.4.2 Accounting for the Changing Neural Landscape during BCI 

A second challenge in the development of BCI-based rehabilitation stems from its failure to account 

for how neural activity changes as individuals learn and regain motor function. While BCI protocols are 

designed to promote neuroplasticity, they largely rely on static assumptions about neural markers of 

movement production, even though learning inherently drives changes in the brain. 

As highlighted by Maier et al. (2019), a major limitation in rehabilitation science is how current 

approaches often lack exact operationalization of insights gained from research on skill learning into 

practical applications. Their review specifically points to the absence of a bridge between motor 
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learning theory and clinical work, arguing that this disconnect hinders the ability to guide and optimize 

interventions. While Maier et al. (2019) focused on traditional rehabilitation techniques, the same 

issue holds true for BCI-based rehabilitation, which depends on our ability to measure and interpret 

changes in brain activity related to motor learning. 

BCI rehabilitation is explicitly designed to reshape neural activity, promoting synaptic changes that 

support motor recovery. There is clear evidence that neural correlates of movement change as a result 

of learning (see 1.2 Motor Learning). However, to the best of our knowledge, BCI protocols designed 

for motor recovery do not account for these changes. The neural markers used in BCI protocols—such 

as ERD and CSE—are typically treated as stable, unchanging features, rather than recognizing them as 

dynamic signals that evolve with learning. This is paradoxical, as the goal of rehabilitation is to drive 

neuroplasticity—i.e., to change the brain itself.  

BCI-based feedback paradigms have already been shown to increase functional recovery following 

stroke (Ang & Guan, 2013; Guger et al., 2018; Hurtier et al., 2016; Pichiorri et al., 2013, 2015; Remsik 

et al., 2017). If CSE is a key neural marker for optimizing BCI feedback timing, and if ERD is used as a 

proxy for real-time CSE fluctuations, the success of these protocols does not mean that the relationship 

between ERD, CSE, and motor recovery remains constant over time. Lepage et al. (2008) noted that 

while the ERD-CSE relationship has been investigated in a limited capacity, it has not yet been explored 

in a longitudinal context—i.e., how these markers change over the course of learning. The work of Daly 

et al. (2018) represents an important step in understanding this relationship, but their findings still 

reflect a static and incomplete view of CSE-ERD dynamics. Their study does not examine whether CSE 

and ERD evolve at the same rate during learning, nor does it account for potential nonlinear changes 

that may emerge as neural circuits reorganize. 

This raises a fundamental question: how does neural activity change as motor function improves, and 

how should BCI protocols adapt accordingly? If BCI rehabilitation is designed to promote change, then 

BCI models must incorporate how these neural signals themselves evolve during learning. Otherwise, 

protocols risk being misaligned with the very plasticity they are trying to induce. Addressing these 

issues requires answering several key questions regarding the relationship between ERD and CSE over 

time. For instance: How does CSE change over time relative to ERD? Do ERD and CSE develop in parallel, 

or does one change more rapidly than the other? If ERD shifts at a different pace than CSE, does this 

create a moving target for feedback timing that BCI protocols must continuously adjust to? If timing 

strategies are based on an inferred relationship between ERD and CSE, we must determine whether 

this relationship remains stable over time, or if changes in one marker leads to a misalignment in 

feedback delivery as learning progresses. 
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If BCI feedback timing is based on an inferred relationship between ERD and CSE, then it is critical to 

understand whether this relationship remains stable over time. If the link between ERD and CSE shifts 

with learning, then timing strategies based on early measurements may become misaligned as 

recovery progresses. It remains unclear whether these changes impact rehabilitation outcomes, but 

their potential influence must be investigated to ensure that BCI protocols are not working against the 

very neural adaptations they seek to facilitate. As such, BCI protocols must either (1) rule out that 

changes in neural signals affect the efficacy of existing and new feedback strategies, or (2) develop 

methods to adjust for these changes dynamically. This may involve real-time recalibration, feedback 

adjustments based on behavioral milestones, or staged interventions that adapt at key points in neural 

recovery. 

1.4.3 Bridging the Gaps: Summary of Challenges 

While we may not yet fully understand the exact mechanisms of plasticity, various protocols have 

proven effective in assisting individuals with motor impairments. We have identified two significant 

limitations that hinder the advancement and optimization of BCI-driven rehabilitation:  

(1) the absence of a clearly defined neural target and timing strategy for feedback delivery. 

(2) the static assumptions underlying current BCI protocols, despite clear evidence that neuroplasticity 

leads to changes in motor-related brain activity. 

Addressing these issues is essential for improving the precision and adaptability of rehabilitation 

paradigms. 

On refining the neural target and timing strategy, our review supports CSE as a more suitable neural 

marker for feedback engagement compared to ERD or MRCP. However, two key challenges remain. 

First, CSE cannot be measured in real time, requiring indirect estimation through other neural markers. 

Second, the temporal evolution of CSE remains poorly understood, making it difficult to determine the 

true optimal state of excitability for feedback delivery. While studies suggest that peak excitability 

occurs at 30% ERD strength, conflicting findings on CSE suppression and inhibition raise questions 

about whether maximal excitability is indeed the ideal point of interaction. Before feedback timing can 

be reliably optimized, a more comprehensive understanding of CSE’s full temporal profile is needed. 

Concerning the static nature of BCI, BCI protocols currently operate under the assumption that the 

neural markers they target remain functionally consistent throughout rehabilitation, yet 

neuroplasticity inherently involves dynamic changes. Evidence from motor learning research suggests 

that as synaptic connections reorganize, neural activation patterns shift in ways that may meaningfully 

affect feedback timing strategies over time. This is particularly relevant in the context of CSE and ERD, 

as both are subject to change during learning, yet their interaction remains poorly understood. If 
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neural markers of movement intent and execution change as rehabilitation progresses, BCI feedback 

parameters should adapt accordingly. However, current BCI models do not account for these evolving 

neural states, potentially limiting their long-term effectiveness. 

Moving forward, this thesis aims to investigate these questions by: 

1. Mapping the temporal evolution of CSE relative to movement onset—establishing a clearer 

timeline of its fluctuations before movement execution. 

2. Determining whether ERD and MRCP can serve as real-time predictors of CSE changes—

assessing their reliability in estimating excitability fluctuations. 

3. Investigating how the neural markers change in relation to one another over the course of 

motor learning—assessing whether their relationship remains stable or requires continuous 

recalibration. 

By addressing these fundamental gaps, we seek to refine the theoretical framework underlying BCI-

based motor rehabilitation and contribute to the broader goal of designing more precise, adaptive, 

and effective interventions for individuals recovering from motor impairments. While this thesis is 

framed within the context of improving motor rehabilitation, the studies conducted exclusively 

involved healthy participants. This approach was taken as a necessary first step in laying the 

groundwork for future clinical applications, allowing for a controlled investigation of the neural 

mechanisms underlying motor learning and feedback timing before extending these findings to patient 

populations. 
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Chapter 2: Preliminary Insights from Existing Data 

2.1 Introduction  

Throughout Chapter 1, we extensively argued that to realize the full potential of motor rehabilitation 

BCIs, we need to better understand when and how to engage with the neural mechanisms underlying 

motor learning. While review of the literature indicates that CSE is a valuable neural target and that 

points of optimal excitability could be inferred from associated, more easily measurable neural markers 

such as the ERD or MRCP. To explore the concept of optimal excitability and estimate its occurrence in 

real time through other, but correlated, neural measures, we first need to develop a better 

understanding of how these neural markers evolve over time. By establishing and exploring the 

temporal evolution of these markers, as well as their progression relative to each other, we will lay the 

groundwork for future studies to investigate the efficacy of different points of excitability, as well as 

mediators to the neural window considered ‘optimal’ for intervention.  

To this end, this first study primarily focused on characterizing the temporal dynamics of CSE, as it 

remains mostly unknown in the literature. Daly et al. (2018), building on the work of Aono et al. (2013), 

provided one of the most complete timelines of CSE changes available, particularly by including 

measures at earlier time points. However, their CSE measures were gathered and analyzed relative to 

ERD power percentages, meaning their insights into CSE dynamics are inherently tied to changes in 

ERD rather than presenting an independent assessment of changes in CSE. This dependency makes it 

difficult to integrate their findings on changes in early onset CSE with existing literature, as most prior 

research on CSE is discussed in time relative to MOn. A further complication of discussing CSE relative 

to ERD is the assumption that ERD power decreases in a consistent trajectory across individuals. In 

actuality, there is considerable inter-individual variability in how a given frequency band exhibits ERD, 

particularly in terms of its power decline profile as presented in percentages (Cassim et al., 2000; 

Neuper & Pfurtscheller, 2001; Pfurtscheller & Lopes Da Silva, 1999). Daly et al. (2018) reported that 

CSE peaks around 20-30% of a person’s ERD strength. When literature describes that the average ERD 

power decrease of 20–30% would fall between -1s and -0.5s relative to MOn (Cassim et al., 2000; 

Neuper & Pfurtscheller, 2001), these values are meaningful when discussing theoretical underlying 

processes. However, for practical applications—such as inferring CSE state in real time—relying on a 

single fixed percentage-based metric that varies between individuals and across trials is problematic. 

At the very least, BCI set ups should account for this variance. For example, a 30% ERD power reduction 

may occur closer to MOn in one individual, but earlier in another. Without fully understanding how 

CSE behaves relative to ERD power percentages, we do not yet know whether to define an ‘ideal CSE 
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points’ based on ERD’s relative reductions in power or adjust the to target ERD strength within 

individuals to target a specific CSE time point.  

By re-analyzing the Daly et al. (2018) dataset using a novel methodological approach, guided by a 

slightly different research goal, we aim to better understand Daly et al. (2018) and their findings by 

replicating and expanding on their results. A key methodological distinction is that we approached the 

data from a more conventional ‘offline’ analysis perspective. Rather than relying on the experimental 

conditions under which the data were originally collected – as part of an online BCI setup, i.e., relative 

ERD decrease in power was calculated in real time with TMS applied to specific ERD thresholds – we 

recalculated the data points relative to MOn. This should produce the same general findings as 

reported by Daly et al. (2018) while filling in the gaps stemming from the lack of a direct 2 second 

timeline-based definition of CSE progression. 

While we noted our concerns regarding the reported peaking of CSE around 20-30% ERD not 

necessarily holding on a trial-by-trial or interindividual basis. We do recognize that trial-averaged 

results offer a valuable starting point. Accordingly, our analysis first assessed average neural marker 

dynamics across trials, allowing for direct comparisons with previous studies on which we based our 

hypotheses. However, recognizing the practical need to translate findings to a trial-by-trial basis, we 

followed up our initial analysis with trial-by-trial assessments. Specifically, we used a predictive model 

of ERD relative to MOn, allowing for a descriptive assessment of how well within-subject ERD dynamics 

can predict concurrent changes in CSE, given the variability that exists on an individual trial level.  

Beyond ERD, we also explored MRCP as a potential predictor of changes in CSE as suggested by Daly 

et al. (2018). MRCP has previously been associated with CSE changes in protocols similar, but not 

identical, to BCI-based interventions for neuroplasticity induction (Leocani et al., 2001; Mrachacz-

Kersting et al., 2012, 2016). Expanding the investigation to include MRCP allows us to examine whether 

its temporal progression provides additional insight into CSE dynamics, potentially enhancing our 

ability to estimate optimal intervention timing or at least contributing to our understanding of 

functional connectivity within the motor neural circuit. 

Most importantly, we argue for exploring CSE and ERD over time (i.e., in milliseconds) relative to MOn, 

rather than anchoring CSE fluctuations to ERD strength thresholds. Specifically, we aimed to provide 

an initial characterization and visualization of the pattern underlying the evolution of CSE over time. 

Additionally, we sought to explore how changes in CSE relate to the ERD and MRCP when assessed on 

the same timescale—from 2 seconds leading up to movement execution. While our initial analyses are 

largely descriptive, our goal is to provide a foundational characterization of CSE’s temporal evolution. 

In the longer term, we hope these insights can serve as the basis for developing predictive models that 

function as a tool to estimate CSE state based on either ERD or MRCP progression. 
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As such, in this first study, we will gain preliminary insights from existing data to address the first two 

of our research questions. To this end, we propose the following hypotheses (see also Figure 2): 

Regarding What do the temporal dynamics of CSE look like on a timeline relative to movement onset? 

Hypothesis 1: With the aim of establishing a clearer timeline of the fluctuations in CSE before 

movement execution. We expect changes in CSE activity, as indicated by MEP, to follow an S-like wave 

in the 1.5 to 2 seconds leading up to movement execution (i.e., MOn), which can be described by a 

third-degree polynomial function. This trajectory is expected to include:  

- An initial increase in MEP amplitude, beginning around -2 to -1.5 seconds before movement 

onset, peaking intermediately at approximately -800 to -500 ms 

- A subsequent decline in amplitude, bottoming out between -200 ms and -100 ms 

- A final steep increase immediately preceding MOn 

These exact timepoints are derived from existing literature on CSE alone, as well as recent insights on 

CSE behavior based on its relation to progression of ERD strength. Most research on CSE focuses on 

late pre-movement phases starting about 500 ms before MOn. Ibáñez et al. (2020) explored the 

temporal evolution of CSE, in view of its inhibitory characteristic, for three types of voluntary 

movements (a reactor (RT; as fast as possible to unannounced presentation of a cue), predictor (PT; 

react to cue that is being count down) and self-paced (SP)). Found a similar degree of premovement 

inhibition for all three types of voluntary movement; reducing around 200 ms prior to “GO” cue for 

both RT and PT and 140 ms (between 180 ms and 100 ms) prior of SP movements. Important to note, 

this dip is short lived. Inhibited CSE activity seemingly declines slowly (around 800 ms from base to dip 

at 200 ms), it rises again (relatively fast) at 60 ms and even steeper at the 30 ms stimulation points (RT 

and PT) with similar findings for self-paced actions showing an increase for CSE -80 ms to 0 ms prior to 

movement onset.  

Unfortunately, not much is known about CSE before this point. However, we can piece a prediction 

together by comparing the different puzzle pieces in the literature on the neural circuit of motor 

control. We know ERD and MRCP on average start between 2 and 1.5 seconds prior to MOn as 

measured by EMG (Toro et al., 1994). CSE is described as part of the same neural network, thus we 

took 2 seconds before MOn as our starting point to explore any consistent tendencies in the activity. 

Furthermore, Daly et al. (2018) described an CSE peaking around 30% ERD strength. From the literature 

we know that ERD rise is slow-paced, with 30% typically occurring between the 1s and 0.5s before 

MOn; though this heavily depends on the individual and the frequency band. Specifically, alpha 

frequency band (8-12 Hz) seems to reach an average ERD strength of around 50% at MOn, peaking at 

approximately 60-70% 1 second post-MOn. Beta (13 -35 Hz), on the other hand, reaches around 30-
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45% at MOn and peaks in that same interval approximately 500 ms post-MOn (Cassim et al., 2000; 

Neuper & Pfurtscheller, 2001). 

Regarding What are the relationships and dynamics between the three neural markers of motor 

control: ERD, MRCP and CSE? Can we replicate the findings and claims from studies on the individual 

neural markers all in one dataset? How can we quantify these relationships?  

Hypothesis 2: With the aim of assessing ERD and MRCP their reliability in estimating excitability 

fluctuations, whether they can serve as real-time predictors of CSE. We expect to replicate previous 

findings on the temporal evolution of each individual neural marker when calculated from the same 

dataset. Including 

- ERD, where alpha frequency band (8-13Hz) will on average increase in ERD strength by around 

50% at MOn, peaking at approximately 60-70% 1 second post-MOn. Lower beta (14 - 20 Hz), 

on the other hand, reaches around 30-45% at MOn and peaks in that same strength interval 

approximately 500 ms post-MOn. Expecting both frequencies to reach about half of their ‘at 

MOn strength’ at the 500 ms to MOn point.  

- MRCP to slowly progress until about 500 ms before MOn (RP), followed by a steeper incline 

until about 200 ms before MOn (NS) followed by a peak negativity shortly after MOn (Schultze-

Kraft et al., 2016; Wright et al., 2011)  

We specifically expect to replicate the findings of Daly et al. (2018) showing an initial preparatory 

increase in MEP amplitude at around 30% reduction in power for ERD. Both to occur around 500 ms 

prior to MOn. Furthermore, Daly et al. (2018) suggested MRCP peak may also line up with their 

proposed “CSE peak” at 20-30% ERD strength. However, MRCP is noted to peak within 100 ms post-

MOn, and ERD supposedly peaks at 45-75% strength 500-750 ms after MRCP (depending on the 

frequency). As such, considering all ERD strength measures are pre-MOn, going with the time point of 

500 ms before MOn for 30% ERD strength, and considering the confusion in the literature on the 

terminology of MRCP and its individual components, we presume this ‘peak MRCP’ moment to mean 

the point where RP switches for NS. 

We expect to quantify the correlative nature of the ERD and the temporal evolution of CSE leading up 

to movement initiation, including the MRCP in a descriptive way through predictive modeling.  

Our rationale for approaching the ERD-CSE relationship differently is to establish a framework for real-

time BCI applications, where CSE state can be inferred from ERD progression in a subject-specific 

manner. Defining their relationship on a uniform time scale (relative to movement onset) rather than 

through static ERD power percentages, which are highly variable across individuals and trials. Not only 
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will this function better to have an overview of all the neural markers and dynamics in the same 

framework from the start. There is also the practical aspect of people having different progressions of 

ERD strength. For example, the average ERD strength reaches 50% right after MOn, this will not be the 

case for everyone. As such, working with a fixed point of 30% ERD will result in landing on variable 

timepoints compared to MOn depending on the individual. Instead with BCI use in mind, establish a 

‘to target point of CSE’ in time relative to MOn (e.g., 500 ms before MOn). Then establish what level 

of ERD strength a particular individual has at 500 ms to MOn. likely different per person. The use of a 

fixed ERD percentage across individuals only applies if, for example, the CSE inhibition always occurs 

at an ERD strength of 40% in the alpha frequency band. However, before we can decide one over the 

other, we need to further explore their relation. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. This schematic visually represents the described expected inter-dynamics of the neural markers ERD, MRCP, and CSE. 

The red line specifically illustrates the expected temporal evolution of CSE in the 2 seconds preceding MOn. Orange and 

blue lines depict the more generalized expected trajectories of MRCP and ERD, respectively, in relation to CSE and each 

other. The y-axis is intentionally undefined, as each neural markers measure on a different scale. For ERD and MRCP, 

assume an inverted y-axis (negative values at the top). 

Figure 2 

Schematic Representation of Hypotheses 1 and 2 
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2.2 Method 

2.2.1 Data description 

In this study we made use of data originally collected by Daly et al. (2018), consisting of EEG and EMG 

data recorded from 12 healthy individuals (seven female, eight right-handed) between the ages of 21 

and 36 years old (as reported by Daly et al. (2018)). EEG data was recorded during movement execution 

alongside TMS in order to explore changes in CSE. Throughout the experiment participants were 

instructed to keep their right arm and hand resting with open palm facing up. Presentation of a cue 

told participants to either stay relaxed and still (‘rest’ cue) or to flex and extend their right-hand fingers 

(‘move’ cue). Participants were instructed to repeat the movement for the five seconds the ‘move’ cue 

was on the screen (noted as the trial ‘action phase’), at a speed that was comfortable to them. For all 

movement trials a single-pulse TMS (either sham or real) was delivered (during the action phase) over 

the participants motor cortex. The different time points and corresponding 5 trial types of TMS delivery 

were determined by the ERD’s time course, specifically aiming for a relative decrease in power of 10%, 

20%, 30% or 40%, as well as at a fixed time point of 33ms after cue presentation. All 12 participants 

completed 4 runs of 50 trials each, 10% being rest trials, amounting to a total 2400 trials. 

Delivering TMS in direct relation to the ERD time course allows us to evaluate the relationship between 

ERD strength and cortical excitability (measured through MEP, a TMS induced change in EMG data), 

making it a suitable dataset for our analysis. 

The setup for the acquisition of the experimental EEG data used 32 channels, recording at a 500 Hz 

sample rate and impedances kept below 10 kΩ, with the electrodes arrangement focused over the left 

motor cortex, using FCz as reference. EMG was recorded with a sample rate of 4000Hz, via electrodes 

placed on the right forearm over the flexor digitorum superficialis muscle and with the ground 

electrode placed over the ulnar styloid process near the wrist. TMS was delivered using a figure 8 coil 

(10 mm diameter) at 120% of the participants resting motor threshold. The present analysis focused 

on the offline measures of EEG neural markers, opposed to the online measures obtained through the 

BCI set up in the original data collection experiment, and is independent of the specific data 

processing, research questions and results previously published (Daly et al., 2018). 

2.2.2 Data Evaluation and Preprocessing 

 2.2.2.1 Trial Removal 

In the initial analysis, reported by Daly et al. (2018), 4 runs were excluded (across participants) from 

the dataset. In addition to these 4 runs, we also excluded the remaining 3 runs from participant 6 due 

to large TMS artifacts within our epoch and channel of interest (C3, see section 2.2.3 Neural Marker 

Characterization). Specifically, within these runs we observed amplitude shifts greater than 100µV in 

the EEG channel baseline activity, taking up to a second or longer to return to equilibrium (i.e., slow 
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decay artifacts; Varone et al., 2021) (Figure 3A). Similar artifacts were present in other channels, for 

multiple participants. However, only participant 6 exhibited the artifact in channel C3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

EEG and EMG Signal Variations Induced by TMS 

Note. This figure illustrates different EEG and EMG responses to TMS. (A) shows examples of TMS induced baseline 

shifts in EEG, highlighting how extreme artifacts affected interpolation attempts: spinal interpolation (left) and cubic 

interpolation (right). (B) presents a typical TMS pulse artifact in EEG with successful cubic interpolation. (C) displays a 

standard EMG signal containing a TMS pulse artifact, and EMG bursts indicating muscle contraction. The green line 

marks the onset of the first muscle contraction after TMS, indicating MOn. Sample rate 500Hz. 
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We further removed trials from our analysis if any of the following conditions were met. 

(i) The trial was a Rest trial.  

(ii) Found no event code indicating TMS delivery within the EMG signal set. 

(iii) Found no event code indicating TMS delivery within the EEG signal set. 

(iv) Presence of artefacts within the fixation cross or action phase. Specifically, trials were 

excluded if EMG and/or movement artefacts were identified on one or more EEG 

channels (identified by visual checking as reported in Daly et al., (2018). 

(v) Trials are not relevant to our analysis, as indicated by no movement registered during 

the trial, or movement onset occurring prior to stimulation (see section 2.2.2.2 

Determining Movement Onset). 

Removing these trials from the dataset before further analysis ensures the results are based on trials 

where: 1) the participant-initiated movement, 2) delivery of TMS happened prior to movement, and 

3) there is no artefact contamination.  

 2.2.2.2 Determining Movement Onset  

The data were not gathered with the intention to establish a measure relative to MOn. Leaving us with 

the task to identify the exact moment of participant-initiated movement. A common approach to 

identify MOn is to include a mechanical indicator as part of the experimental design such as pressing 

a button (e.g., Demandt et al., 2012; Maslovat et al., 2018; Travers et al., 2020) and/or to manually 

determine the exact point of MOn from EMG data (e.g., Cassim et al., 2000; Jankelowitz & Colebatch, 

2002). 

It has been argued the only way to be truly sure MOn is correctly determined in an EMG signal is by 

manually inspecting every trial (Kamen & Gabriel, 2010). However, the process of visual inspection is 

tedious, time-consuming and the level of accuracy relies on the investigator’s subjective judgment and 

experience. This has led increasing numbers of researchers to develop and rely on automated 

detection methods to increase processing speed, objectivity, and data reliability (Micera et al., 2001). 

As a result of the growing interest, a variety of options are available. Some algorithms share similarities 

in their process to detect MOn through a common precursor (Avila & Chang, 2014; Hodges & Bui, 

1996), others are entirely new creations (Trigili et al., 2019). Looking at more recently developed 

algorithms we see an increased focus to detect MOn in EMG signals for movement prediction in real 

time, intended for robotic assistive devices (Avila & Chang, 2014; Gandolla et al., 2017; Tabie & 

Kirchner, 2013; Trigili et al., 2019). The issue with online oriented methods is the need to adapt for 

offline processing, and may require similar data collection set up (e.g., the number of EMG electrodes 

used; Gandolla et al., 2017) that needs to be considered in advance. Overall, the different approaches 

are similar in performance of MOn detection, but caution is needed when applying them in relation to 
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the type of movement recorded, data quality, and intended analysis; all of which can affect the 

detection accuracy (Hodges & Bui, 1996; Van Boxtel et al., 1993). It is furthermore suggested to not 

use any automated detection algorithm on their own, but include a ‘catch method’ on the side to avoid 

big misses in detection, for example by cross referencing with reaction times (Van Boxtel et al., 1993). 

Our data does not include markers to tell when participants start moving, or provide information for a 

catch method, and in the absence of a ‘general standard’ among detection algorithms (Hodges & Bui, 

1996; Tabie & Kirchner, 2013; Van Boxtel et al., 1993) we looked for our own reliable and appropriate 

method to detect MOn in the EMG data (taking inspiration from common approaches). The successful 

method would 1) accurately identify trials with no movement or where movement started early 

(before TMS) and 2) reliably determine the MOn timepoint. 

Our method starts by defining a 5.25 second epoch, from the final 250 ms of the fixation cross 

presentation up until the end of the 5-second-long action phase. We then zeroed the signal mean and 

converted the signal into absolute values. A 70 ms window (-10 to +60 ms relative to the TMS pulse) is 

cut out of the signal epoch to split the epoch into pre- and post-TMS windows, and to remove both 

the TMS artefact and any MEP related activity as they will affect the movement detection method. 

Part of the fixation cross is included in the pre-TMS window to identify trials where the participant had 

initiated movement prior to the ‘Go’ cue (i.e., the start of the action phase). The majority (94%) of the 

trials had TMS applied in the first 2 seconds of the action phase with movement following shortly after. 

As such, movement during the fixation cross would qualify as ‘movement before TMS’. 

For the movement detection process (see also Figure 4), we took the 99th percentile value of the 

amplitude of the pre-TMS epoch as a baseline value. We then, first, ascertained whether the trial had 

early or no movement by searching in the post-TMS epoch for a value higher than 2.4 times the base 

value (or 240% of the base value). Not finding a value would indicate there was no movement, or 

(early) movement present in baseline, causing the 240% threshold to overshoot all post-TMS values. 

Next, continuing with those trials identified as having valid movement activity, we identified the MOn 

timepoint. Using the same baseline value, but now looking for the first value bigger than 1.8 times the 

base value (or 180%). 

These thresholds (i.e., 99th percentile, 240% and 180%) were determined by manually comparing the 

performance of different baseline measures (Max value, 90th ,95th ,99th percentile) and deviation (1 to 

3 SD, 100% to 320%) from these baseline values. Using a sub-set of the dataset of 51 trials (of which 

32 trials were considered valid movement trials, 37.5% with a clear movement burst and low noise, 

62.5% with high noise or less clear movement bursts. In all these trials MOn was manually identified 

via visual inspection, see Figure 3C for an example. The remaining 19 trials in this set had early or no 
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movement. We then chose the threshold set with the highest accuracy (94.12%) to differentiate trials 

(240% of the 99th percentile was chosen over alternative options with competitive accuracy, as the less 

conservative option. It allows us to reliably identify all movement trials but occasionally let an early 

movement trial pass as being a valid movement trial) and had the smallest median distance to the 

manual defined MOn (180% of the 99th percentile had the overall smallest Median < 10 ms, and 68.8% 

of the movement trials a deviation of < 20 ms). 

Figure 4 

Flowchart on Process for Movement Onset Detection. 

 

2.2.2.3 TMS Artefact Removal 

All our trials of interest contain a large amplitude TMS artefact. To avoid contamination of our neural 

marker measures we removed this artefact by first cutting the EEG data centered around the TMS 

artefact (-0.02 to +0.1s) from each trial and then using the preceding and proceeding EEG data to 

reconstruct the cut-out data.  

Specifically, to remove the artefact, we first defined a 0.15s search window around the point of TMS 

delivery (-0.05 to +0.1s) (defined as the start position of the TTL trigger that indicated TMS 

stimulation). We then defined a window of length 0.12s around the maximum absolute value of the 

EEG (-0.02s to +0.1s). New datapoints were constructed via interpolation, using the Piecewise Cubic 

Hermitian Interpolation Polynomial (PCHIP) approach (Fritsch & Butland, 1984; Fritsch & Carlson, 

1980). Prior to this interpolation, we filtered the data using a low pass IIR Butterworth 2nd order filter 

at 30 Hz; to ensure the interpolated data reflected our frequency bands of interest (Alpha, 8-13 Hz, 
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and low beta, 14-20 Hz). The difference in frequency range, however, would result in the interpolated 

datapoints having sharp connections with the remaining EEG data, affecting the neural marker 

calculations. To further ensure a smooth connection between interpolated and real data we low pass 

filtered the interpolated datapoints (with an additional 0.02s on each tail end) again using an IIR 2nd 

order low-pass Butterworth filter at 45 Hz. It is important not to confuse the signal filtering described 

in 2.2.2.3 TMS Artefact Removal with the filtering applied in 2.2.2.4 ICA and Filtering. The filtering in 

2.2.2.3 TMS Artefact Removal was used exclusively during the interpolation process and applies only 

to the interpolated data points. In contrast, the filtering in 2.2.2.4 ICA and Filtering pertains to the final 

state of the signal as used in further analysis. Figure 3B illustrates this distinction—after successful 

interpolation, only the interval surrounding the TMS pulse was modified, while the rest of the signal 

remained identical to the original raw data. 

2.2.2.4 ICA and Filtering 

We then used Independent Component Analysis (ICA) to subtract blink artefacts from the, now cleaned 

of TMS artifacts, EEG data. First, we filtered the EEG data using a 1 Hz high-pass filter (IIR Butterworth, 

3rd order) to remove slow drifts in lower frequencies, as per recommended practice (Makoto’s 

Preprocessing Pipeline. (n.d.).; Winkler et al., 2015), and (though not required for ICA) further filter 

the data using a 50 Hz notch-filter (6th order) to remove line noise, and applied a low-pass filter at 40 

Hz (6th order) to further remove line noise and ensure ICA decomposition focuses on our frequency 

range of interest. Then we excluded bad channels, flagged by based on joint probability (using EEGLAB, 

version 2019.0, pop_rejchan function, with trimmed normalization and threshold set at 5 SD; (Delorme 

& Makeig, 2004), and further confirmed via visual inspection, before running the ICA. Independent 

components (ICs) that contain blinks (identified by visual inspection) are then removed from the EEG 

data. However, the data from which ICs were removed held a different (lower) high-pass filter than the 

data on which the ICA was ran. A 1 Hz high-pass filter has been reported to diminish the low frequency 

components of event related potentials (ERP) (Rousselet, 2012). The MRCP has been reported to only 

occur in frequencies around 0-5 Hz (Wright et al., 2011), having led previous researchers to apply either 

no high-pass filter at all (Bai et al., 2006; Khalighinejad et al., 2018) or use one below 1 Hz (Mrachacz-

Kersting et al., 2016) to preserve changes in the lower frequencies. As such we adjusted our filters in-

kind. Keeping a 50 Hz notch and 40 Hz low-pass (both 6ths order) but high-pass was now 0.01 Hz (3rd 

order) instead of the 1 Hz used to run the ICA (Makoto's preprocessing pipeline (n.d.)). As a final step 

we interpolated the bad channels removed prior to running the ICA. 

2.2.3 Neural Marker Characterization 

For every trial the Epoch of Interest (EoI) was defined as a time window of 3 seconds relative to the 

MOn. Specifically, our window started 2.25 seconds before and ended 0.75 seconds after MOn. The 
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EoI covers 2.5 seconds (2s before and 0.5s after MOn). With an additional 250 ms added onto both 

ends of the interval to account for edge effects. The start of the epoch is based on the premise both 

ERD and MRCP start, on average, 2 seconds before MOn (Park et al., 2013; Shibasaki & Hallett, 2006). 

As we are using the EEG signal to look at (right-hand) movement preparation, we extract the relevant 

information from the contralateral motor regions. When recording the ERD and MRCP, researchers 

often select the electrodes for which the largest ERD response and/or MRCP amplitude was observed, 

noting the main recording locations (according to the international 10/20 system) to be C3, C3’ 

(positioned 1cm in front of C3), Cz and FCz (Bai et al., 2006; Cannon et al., 2014; Cassim et al., 2000; 

Jankelowitz & Colebatch, 2002; Khalighinejad et al., 2018; Neuper & Pfurtscheller, 2001; N. J. Seo et 

al., 2019; Wright et al., 2011). Unfortunately, our dataset was recorded using FCz as a reference 

electrode, making it unavailable to us and Cz is most likely compromised because it is directly adjacent 

to the reference site. 

We also do not have an option to re-reference the data as the asymmetric electrode set up prevents 

average referencing, nor are mastoid or related electrodes recorded. Furthermore, the electrodes that 

could work for re-referencing (i.e., the ones that were symmetrically present, e.g., T7-T8, P7-P8) held 

baseline shift artefacts in some participants. As such we focus on recordings from C3 for both MRCP 

and ERD measures. 

2.2.3.1 ERD pre-processing 

The ERD is expressed as the power decrease in the EoI, in relation to a baseline interval, here defined 

as the 500 ms before the start of the EoI. 

Working with time series data (such as EEG recordings) means information is presented over, or in 

function of, time (Buzsáki, 2011). Meaning, for some aspects of the time series, it is not possible to 

take a single measure to represent a single time point. However, we can try to estimate the measure 

of a single timepoint as close as possible. Such is the case for frequency band power. The issue with 

frequency is that frequency is defined over time, it is a cycle over time, where power is the squared 

amplitude of the defined cycle (e.g., a frequency of 1 Hz means one cycle covers 1 second, 8 Hz means 

one cycle covers 1/8th of a second (0.125s), or alternatively understood as a rhythm of eight cycles per 

1 second) (Buzsáki, 2011). By moving a window over the time series in certain defined steps we can 

calculate frequency power within the boundaries of this sliding window. The power measure will then 

in turn correspond to the timepoints covered by the window. Take for example a time series of 3 

seconds, using a window the size of 1 second and moving over the time series in steps of 1 second 

(i.e., window size is equal to stepping size, there is no overlap between the windows). We now have 3 

measures of frequency power in the time series. We could say these 3 measures represent frequency 

power at the 1st second, 2nd second and 3rd second marker of the time series. Meaning, to discuss 
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changes in power over time, we say “1 second into the recorded time the signal band power measured 

X, which was different (or not) to the measured band power Y, at 2 seconds, and a band power measure 

of Z at the 3rd second”. However, we need to practice caution with such interpretation of (time series) 

information gathered within a (moving) window of time. The measure reported at the 2nd second 

marker does not reflect just band power at that specific point. It reflects power of the entire time 

interval covered by the (in this case 2nd) window, spanning everything between the 1st and 2nd second 

marker. We merely chose to present the calculated band power at the most right edged point of the 

window. We could have also chosen 0.5s, 1.5s and 2.5s as timepoints instead, indicating the middle of 

the window.  

It shows that our estimated values of a single time point depend on how we go about calculating 

frequency power (window size and stepping size) as well as how we interpreted the calculated output 

(i.e., start, middle or end of the window). A bigger window will cover more cycles of the frequency of 

interest, which comes with a higher frequency resolution, however, at the cost of a smaller temporal 

resolution (and vice versa) (Cohen, 2019). To increase our temporal resolution (estimate closer to a 

specific timepoint), without having to sacrifice our spectral resolution, we can move the window (same 

size) with smaller steps (i.e., the window moves with overlap). As a result, we have more values at 

different timepoints, giving us a better idea of how the time series changes in respect to a specific 

characteristic (e.g., band power). Take the same 3 second time series and a window size of 1 second 

from our last example, however, now we move the window in steps of 0.1s. We now have 21 different 

frequency measures. If we again choose to present the window values at their most right edge, 1st 

value would correspond to 1st second, 2nd value would be 1.1s, 3rd value would be 1.2s … 12th value to 

2.1s and so on. Note that, because our window size was unchanged 1st, 11th and 21st measure will (in 

respective order) hold the same values as the 3 points of the previous example. Besides providing 

more measures to reflect changes over time, moving the window with overlap also results in more 

balanced estimates. The window only moves 100 ms at a time, meaning the difference between 2 

timepoint estimates is only due to the information in those new 100 ms. The other 900 ms of data 

were present in both windows. Here lies the argument to report the band power measures at the 

timepoint on the window’s right edge. If the window moves from left to right, the difference lies in 

those 100 ms on the right side of the moving window. On the other hand, reporting to the window’s 

right edge side means there are no band power measures described before the 1st second of the time 

series. Take the first 5 values from our earlier example, reported as band power values in 100 ms 

intervals between 1s and 1.4s. However, the window over which the band power of these first 5 values 

was calculated largely consisted of the first second in our 3 second time series, yet, will not represent 

any of it. If we choose to report the calculated band power at the middle of the time window, there 
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will be a more even spread of the time series as whole. Take the 3 second time series example, 

reporting estimated time values to the middle of the window would give us the 1st value at 0.5s, 2nd 

value at 0.6s, 3rd at 0.7s, 4th at 0.8s … 12th at 1.6s… and the final 21th value at 2.5 seconds of the time 

series. Choosing to present window calculations at the midpoint further addresses another point in 

need of caution when calculating band power. Namely edge effects: the occurrence or introduction of 

a distortion or artifact at the boundaries of a time series when applying a certain analysis technique. 

For band power calculation, specifically, the datapoints towards both ends of the time series 

boundaries will contribute to fewer windows (and thus band power estimates for timepoints) than in 

the middle of the time series. Potentially skewing the interpretation of the true differences in changing 

band power over time. E.g. the datapoints between 0 to 0.1s will only be included in the first window 

of our earlier example. Data from the 0.1s to 0.2s time interval will only be included in the first two 

steps of the window. Whereas the datapoints between the 1st and 2nd second timepoint will all equally 

contribute the maximum amount a data point can be included in a window (10 times for a 1-second-

wide window moving in steps of 100 ms). Similar case for the values at the end of the time series. Edge 

effects are another reason for why a moving window cannot cover the entire time series equally, 

regardless of whether you choose to report the calculated output left, middle or right to the window. 

If you report to the right edge, you are short on calculations at the start of the series, if you report left 

edge, you are equally short at the end of the series. Even when you report to the middle of the window 

you will miss some timepoints on both ends. See our example, reporting to the middle turns our 3 

second time series in values between 0.5 and 2.5s. The issue here is, to get those earlier values (e.g., 

0.2s) the window would only be partially filled with datapoints. What holds no data is interpreted as 

“no power” which will result in faulty output. A meaningful output will only come from having a 

meaningful data point for the entire window. A solution to both edge effect issues is to make the actual 

time series bigger than the points you are interested in. A bigger time series and reporting to the 

middle of the window ensures a more balanced representation of the timepoints contributing to the 

band power calculations, e.g., the difference in band power over the first 1.5 seconds is presented 

between 0.5s and 1s rather than between 1s and 1.5s. As well as an equal number of data points 

contributing to the window calculations. 

As such, in our interest to investigate the changes of power over time the EoI relative to the baseline, 

for both time intervals band power was calculated in the alpha (8-13 Hz) and lower beta (14-20 Hz) 

frequency bands (BioSig toolbox bandpower function; Vidaurre et al., 2011) using a sliding window of 

626 ms, to cover 5 cycle lengths of the lowest frequency of interest to avoid aliasing and retain a high-

resolution spectral precision (Cohen, 2019). The window then moved over the epoch in steps of 1 

sample point for maximal overlap and to compensate for the temporal resolution we lost by choosing 
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a wide sliding window. Resulting in a single band power value for each sample point. The timescale 

was adjusted to reflect the midpoint of the sliding window. Generally, ERD can then be quantified for 

every trial by subtracting the average baseline band power from each sample point band power value. 

Subsequent averaging over trials and sample points would then be used to get individual participant 

ERD values. Followed by averaging over participants to estimate the grand average ERD. 

However, further analysis steps required a more generalizable description of the event related 

decrease in power. To obtain a more generalizable interpretation of the event related decrease in 

power, we calculated the decrease as a percentage relative to baseline (also referred to as baseline 

normalization of the time series; Khalighinejad et al., 2018). As a decrease of 40% translates easier to 

other datasets than a decrease of ‘0.2’ on the log10() scale of the power (as calculated by the BioSig 

toolbox bandpower function using; Vidaurre et al., 2011). 

Before we calculate the ERD strength, we need to consider the effect of removing the TMS artefacts. 

With cubic interpolation we ensured the new datapoints reflect the signal’s (average) amplitude and 

no false data was introduced (as would have been the case with, for instance, spline interpolation; 

(Fritsch & Carlson, 1980). By covering a period of 120 ms (i.e., at least 1 cycle length for all frequencies 

of interest), however, the interpolated data forms a flat line; i.e., the signal holds no variance for this 

period. For band power calculation, where the measure relies on the divergence of the signal from its 

equilibrium within the sliding window, no variance is perceived as ‘no power.’ This results in up to 750 

ms of datapoints with band power calculations corrupted by the ‘no variance’ window due to the size 

of the sliding window. To safeguard against this lack of variance introducing errors into subsequent 

analysis steps, all 750 ms of affected datapoints were replaced by NaN (Not a Number; representing 

missing data points in a dataset) values before averaging. Specifically, the no variance window resulted 

in such low power values that the log10() transformation (as part of the bandpower function used) 

returned negative power values. These negative power values in turn skewed the percentage 

calculations. Replacing the affected sample points with NaN values, which in turn would be ignored 

when averaging sample points, circumvented this issue. 

Baseline normalization was then calculated as described by Graimann & Pfurtscheller (2006), by first 

averaging the band power per sample point (first within subject, then across), then subtracting the 

average baseline power (R) from every sample point (individually) band power (P) (i.e., how we 

calculated ERD on a trial level) and then by dividing by the average baseline power (P-R/R). With 

negative values indicating the frequency power at a specific time point was lower than the average 

power of that same frequency during the baseline interval. i.e., a decrease in power reflecting an 

increase in regional desynchronization. 
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2.2.3.2 MRCP pre-processing  

For the MRCP we, once again, have our EoI and a baseline interval defined as the 500 ms before the 

start of the EoI. We baseline correct every trial by subtracting the mean baseline amplitude from every 

sample point in the EoI; after which all EoIs are averaged within participant. Note that, for the MRCP, 

we work directly with the signal amplitude. Unlike the ERD, the interpolated sections of the EEG signal 

do not cause significant issues for ERP interpretation as individual sample points still hold a value 

reflecting a close approximation of the signal amplitude. 

2.2.3.3 Corticospinal Excitability 

Motor evoked potentials (MEPs), as a measure for corticospinal excitability, were measured in terms 

of their peak-to-peak difference (max – min value) in amplitudes in the time interval of 0.015–0.040 

seconds relative to delivery of the TMS (either real or sham). MEP values were then standardized (z-

scored) within participants, to account for inter-individual differences in the amplitude measures, so 

all datapoints are comparable on the same scale. 

Signal to Noise Ratios (SNRs) were calculated to ensure the values included were actual MEPs. 89.12% 

of the SHAM trials were seen to have a SNR value lower than or equal to 1 (meaning the signal has a 

similar or a lower value than the noise), compared to 16.99% of the TMS trials. As our control condition 

SHAM trials are assumed to have no MEPS, only noise. Therefore, we took the 90th percentile (SNR 

=1.1) of the SHAM SNR distribution to identify trials with no MEP. 

2.2.4 Data Preparation and Quantification for Analysis 

The trial rejection process resulted in 35.76% of all included trials (2050) being rejected, of which 

37.93% were rejected due to early or no movement and 27.83% were rejected because they were rest 

trials. This left a total of 1317 trials (675 SHAM and 642 TMS) in the dataset over all participants.  

 

 

Table 1 

Number of Trials Remaining, per Original Experiment Condition, After Initial Trial Removal.  

 ERD 10% ERD 20% ERD 30% ERD 40% Fixed 33ms total 

TMS 135 127 118 108 154 642 

SHAM 136 113 135 125 166 675 

Total 271 240 253 233 320 1317 

Note. Trials are presented per experimental condition to show we retain a relatively even spread of MEP values 

per theoretical time point/ key moments (i.e., points relative decrease in % relative to which TMS was applied as 

defined by Daly et al. (2018)). The experimental conditions used in the original data acquisition are not considered 

in our further analysis. 
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For the CSE, we further excluded all trials with an SNR equal to or lower than 1.1, reducing the TMS 

trials to 532. Looking at the distribution of retained MEP datapoints (see Figure 5), however, shows 

how most of the datapoints fall in the second half of our EoI. Note how, while our general EoI covers 

the 2 seconds leading up to Mon, our hypotheses describe (see 2.1 Introduction as well as Figure 2) an 

activity window of interest (in terms of the CSE peak and inhibition points in relation to ERD strength 

(as percentage)) from around -1s to 0s relative to MOn. As such we will focus all further analysis where 

most of the data is located, and the CSE data that fell outside of this smaller activity of interest time 

window (i.e., MEP values occurring more than 1 second before Mon; 9.39% of 532) were further cut. 

Bringing us to a total of 481 remaining TMS trials to be included for the analysis of the CSE. 

To assess each neural marker their changes over time, we converted the -1s to 0s time interval with 

500 sample points into a discrete variable with 10 levels by working with 100 ms intervals, calculating 

the mean value for each interval. Using linear models with categorical predictors, we encoded the 

factors using sigma parameter restrictions (i.e., effect coding, where the sum of the regression 

coefficients equal zero). Furthermore, we applied SAS type III to construct the sums of squares in the 

rmANOVA table (opposed to type I or II). Where Mauchly's Test of Sphericity indicated sphericity 

assumptions were violated, Greenhouse-Geisser corrections are applied to degrees of freedoms and 

p-values. Significant effects for time intervals are followed up with trend analysis using polynomial 

contrasts to see if the differences in neural activity follow the expected progressive trends (linear for 

the ERD and MRCP, cubic for CSE). 

2.3 Results 

2.3.1 Statistical Assessment of the Neural Markers 

The focus of the analysis was to compare the ERD strength, MRCP and CSE timeline and assess the 

relationship dynamic between these neural markers in terms of timing relative to MOn. A visual 

comparison of the 3 neural markers is displayed in Figure 5. 

We first assessed the neural markers’ changes across time to ensure our measures are meaningful and 

reliable measures of motor control. We would expect to see a statistically significant difference 

(specifically a decrease for the EEG measures) in amplitude or power, relative to the baseline (average 

amplitude or power calculated over the 500 ms before start EoI) and progressively overtime. Lack of 

significant changes relative to baseline and over time would mean a marker is not really a movement 

potential, and thus despite what we see in Figure 5 cannot continue with it in analysis. 
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Note. Measures are plotted with precise alignment to EMG burst onset, with the x-axis representing time in seconds 

relative to t₀ = movement onset. ERD and MRCP represent grand averages across participants. The top panel shows the 

relative decrease in ERD strength (%), where each time point reflects band power at the midpoint of the sliding window. 

The middle panel displays z-scored MEP values, with a cubic regression model fitted to all data points to describe the 

temporal evolution of CSE over time (see 2.3.2.1 CSE dynamics over Time). The bottom panel depicts MRCP, with a 

reversed y-axis for both MRCP and ERD. 

Figure 5 

Changes in Neural Markers over Time Leading up to MOn 

Time Relative to MOn (0s) 
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2.3.1.1 ERD  

For both alpha and beta ERD, the transition from a smooth to jagged line between -500 ms and MOn 

in Figure 5 indicates where TMS was removed, and consequentially a reduced number of trials 

contributing to the calculation of the ERD averages. Time points of MEP values (see dots Figure 5, 

middle) visualize (consider a 15-40 ms latency period of MEP following TMS) the time points of TMS 

stimulation, with 86.28% falling between -500 ms to -50 ms before MOn. The concentration of MEP 

values reflects the degree of noise introduction in ERD, where at -500 ms to MOn only 20% trials were 

left, with the lowest number of trials contributing to the ERD at any point being 18% of the total 

number of trials at -445 ms. Despite the significant replacement of data values with NaN for EEG 

recording, only one participant had one time interval that ended up having no values. 

A one-way repeated measures ANOVA (ran twice, once for each frequency) with time intervals as 

factor with 10 levels showed significant differences, over time, in power decrease relative to base line 

(quantified as percentage) for both alpha [F(2.31, 20.79) = 9.38, p < .001 , ŋ² = .143] and beta [F(1.95, 

17.56) = 6.25, p = .009 , ŋ² = .07]. Follow up tests with linear contrasts (with separate error terms) 

indicated a statistically significant decrease of strength in power over time, for both alpha [t(9) = -4.9, 

p < .001] and beta [t(17) = 6.22, p < .001]. Together these tests indicate that, despite being noisy and 

affected by cutting in trials, ERD strength significantly increased over time for both alpha and beta. 

2.3.1.2 MRCP 

The same one-way rmANOVA with time intervals as factor showed no significant differences in 

amplitude (relative to baseline) over time for the MRCP [F(1.71, 17.13) = 2.04, p = 0.16 , ŋ² = .029]. Ten 

additional one-sample t-tests showed how none of the 10 intervals covering the 1 second timeline to 

MOn could be considered significantly different from 0 (i.e., baseline; [t(10) = -1.16 to 0.55, all ps > 

.05]). Indicating there was no statistically significant decrease in amplitude relative to baseline. As such 

the MRCP, as measured in our data, is an overall not meaningful or reliable measure ad indicator of 

movement preparation and will be discontinued from further analysis. 

2.3.1.3 CSE  

Ideally, we would also assess the changes in CSE over time using a rmANOVA. However, due to low 

numbers of retained trials per participants in EMG recordings, many participants had missing values 

for parts of the time leading up to MOn. When presented with imbalanced responses, rmANOVAs drop 

participants from the test in their entirety. As such, we used one sample t-tests as an alternative to 

assess each interval individually. The middle panel in Figure 5 shows CSE changes overtime. What we 

need to know is whether the change in an interval is on average significantly different from 0. Values 
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not being different from zero would imply there is no difference to the individuals’ average MEP 

response (considering amplitudes were z-scored within participants). 

One sample t-test for the CSE showed the only 2 out of 10 time-intervals (the 5th covering -0.6s to -

0.5s [M = 0.52, SD = 0.354; t(5)= 3.561 p = .016] and 10th for -0.1s to 0s to MOn [M = 1.46, SD = 1.75; 

t(8)= 2.513 p = .036]) to be significantly different from 0. Being positive z-scores means for those 

intervals the participants MEP values were significantly higher than their average MEP amplitude. 

Figure 5 (middle) further shows the MEPs of the 481 remaining TMS trials plotted on a timeline in 

terms of their z-scored amplitude and position relative to Movement onset. There is a visually apparent 

functional relationship between CSE and time, following the pattern of a third-degree polynomial as 

described in our hypotheses. The time intervals that showed to be significantly different from zero are 

in accordance to where increased amplitude was expected (see hypotheses Figure 2). As such, based 

on the statistical output our, CSE measure can be considered a meaningful measure of motor control, 

and further supports the predicted third-degree polynomial trend observed in our initial plotting 

(Figure 5). 

2.3.2 Predictive Modeling 

Continuing with the two neural markers considered meaningful in this analysis we aimed to further 

quantify and test the hypothesized trends (i.e., CSE over time) and relationships (i.e., dynamics of CSE 

in relation to the decrease of event related band power (ERD %) over the motor cortex). 

2.3.2.1 CSE dynamics over Time 

There is a visually apparent, functional relationship between CSE and time. We wanted to discover (a) 

what this relationship is and (b) how robust the relationship is over participants. Visually the 

relationship seems to follow the pattern of a third-degree polynomial, the same pattern as theorized 

and described in our hypothesis for temporal dynamics of CSE. Using a third-degree polynomial, we 

aimed to establish a model to mathematically describe the hypothesized underlying pattern of the 

changes in CSE (as measured by MEP) over time, relative to the Movement Onset. 

Fitting our CSE model to all the data (481 MEP values; see middle panel Figure 5, Polynomial graph 

illustrates model fit f(x) = 2.72 + 17.80x + 37.35x² + 22.74x³) showed time relative to Movement Onset 

explains approximately 10.6% (R²= 0.106) of the variability in MEP amplitude. 

We would test the fit of a cubic trend to describe CSE over time using polynomial contrast. However, 

the low number of retained trials, and 86% of the measures falling between -500 ms and MOn leading 

to an imbalance in responses, makes contrast testing not an option. Instead, to determine whether 

our model is truly the best fit to describe the CSE pre-movement onset timeline, we compared our 
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model with other candidate models in terms of their ability to describe and predict our data. The 

candidate models are: Zero slope (f(x) = a), linear regression (f(x) = a + bx), and an exponential model 

(f(x) = a *𝑒𝑏𝑥). These classic models are chosen to compare our model to the potential scenarios of 1) 

there not being a relation at all, what we find is a coincidence (zero-slope), 2) expressing the simplest 

relation between two variables (linear) and 3) the alternative relation we can observe in the visual 

presentation of CSE in time (exponential, Figure 5). R2 is used as our main differentiating measure and 

tells us how well a model explains the variation in the response variable, going from 0 to 1. With a 0-

value indicating the model does not explain any of the variance in our data. 95th percentile confidence 

intervals (CI) were calculated as a precision estimate, by generating a sample distribution through jack-

knife resampling (Efron, 1982) (i.e., 11 resamples, leaving one participant and their datapoints out at 

each iteration), for each of the 4 models around their observed sample statistics (R² when fit the 

function to all the retained MEP values). 

Jackknife resampling (see also Figure 6) indicated the third-degree polynomial model explained 

between 8.5 to 12.85% of the variability, with a point estimate of 10.6% (R2 95% CI: [0.085, 0.129]), the 

zero-slope model explained 0% (R2 95% CI: [0, 0]), the linear model explained 1.15% (R2 95% CI: [0.005, 

0.025]) and the exponential model explained 7.65% (R2 95% CI: [0.044, 0.108]). Out of the 4 models to 

describe CSE based on time relative to movement onset, all but the zero-slope model explained a 

significant portion of the variance in the MEP amplitude (i.e., the 95% CI did not include 0; Du Prel et 

al., 2009). Furthermore, while the third-degree polynomial models’ 95% CI overlapped with the 

exponential model their 95% CI, there was no overlap with either linear or zero-slope model. Meaning, 

the third-degree polynomial model is a statistical significantly better fit than the linear and zero-slope 

model in terms of explained variability (Tan & Tan, 2010). Following the third-degree polynomial and 

exponential overlap, a pairwise sample test was done on the point estimates of each iteration, to 

further determine statistical difference. Results showed the cubic model explained, on average, 

significantly more of the variance in the data than the exponential model [t(10) = 13.4, p < .001]. 
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We used cross validation to further test and compare the goodness of fit of the models to the data; 

focusing on the models’ predictive power as measured by the Mean Absolute Error value (MAE; Li, 

2016, 2017) (indicating how far of the mark, on average, the predicted CSE values were from the 

observed values, measured as the test set’s average absolute distance between estimated and 

observed MEP amplitudes). i.e., how well did the models predict the observed values in function of 

time. 

Most classic cross validation methods describe the resampling of individual datapoints. Where the 

chosen type of cross validation (e.g., leave p out, k fold, etc.) determines how datapoints are handled 

and how many assigned are to training compared to test set). Consistent across cross validation 

methods is that the difference in data size between training and test set remains constant throughout 

the process (i.e., for every resampling). However, our data was obtained through a within-subject 

design. Meaning, the datapoints are not independent from each other and cannot be handled as such. 

Nor did we retain enough datapoints to execute a cross-fold validation model training and testing 

process on an individual participant basis (see Table 2 for number retained trials per participant; 

median = 45, min - max = [18 - 67]). Therefore, resampling of the data into training and test sets will 

need to happen with respect to the independent structure of the data. Meaning, rather than focus on 

Figure 6 

R² values and 95CI for 4 Candidate Models to Describe the Temporal Evolution of CSE 
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the individual datapoints to organize the data in training and test sets, we resampled participants and 

handled their respective retained trials as fixed subsets. Another issue is the unequal distribution of 

retained trials and MEP measures across participants. As we resample datapoints via participant, 

training and test sets will constantly change in size. Thus, we decided to approach the cross validation 

using a leave-5 out cross-fold validation scheme. Having only 11 participants we are limited to the 

number of data point combinations we have. The number of participants in the held-out set (5) was 

chosen to optimize the ratio of training and testing set sizes and to use the maximum number of 

combinations possible (i.e., 462 unique combinations). Having an odd number of participants, the 6-

to-5 split will further lead to the training set to (on average) be bigger than the test set. Furthermore, 

will a 50-50 split in participant allocation help to approximate a consistent size of training and test set 

over the different resampling iterations as the participants with a lower number of trials will be 

prevented to have too much weight. Specifically, at 240.5 is exactly half of our 481 retained trials. 

Leaving p = 5 out training and test sets swing on average between [220, 260] trials (see Appendix A1 

for more details). 

Taken together, this means we assessed the fit of a third-degree polynomial model compared to an 

exponential model, using the training-based coefficient estimates to predict the Y (MEP values) values 

for every X (time relative to MOn) value in the test dataset, consisting of the combination of the 5 

remaining participants. We focused exclusively on the exponential model who, despite explaining 

statistically significantly less variance, remains the second-best contender in describing the temporal 

dynamics of CSE. 

Cross-fold validation outcome shows how, on average, predictions by the third-degree polynomial 

(mean ± SD = 0.71 ± 0.053, 95CI: [0.61,0.82]) were, according to a pair wise t-test, not significantly 

different [t(461) = 1.81, p = .065] in error rate from the predictions made by the exponential model 

(mean ± SD = 0.71 ± 0.044 , 95CI: [0.62, 0.8]). Indicating that, while the third-degree polynomial model 

explains more variance in the MEP values, it does not perform differently from an exponential model 

in terms of predicting MEP amplitude based on time relative to Movement Onset. 

Table 2  

Number of MEP Values Included per Participant 

Participant  1 2 3 4 5 6 7 8 9 10 11 

Number of trials 24 45 52 43 36 67 27 18 55 55 59 

Note. Number of trials reflects number of MEP values retained after all exclusion criteria applied. 
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2.3.2.1 CSE dynamics in Relation to ERD 

Our analysis aim was to further explore the suggested relation between the ERDs relative increased 

strength (quantified as percentage) and CSE. We are interested in the general ability to predict CSE 

based on ERD strength (i.e., how consistent would a 30% decrease in band power predict the raised 

MEP amplitudes between -1 and 0.5s to MOn?). Also, whether the changes in relative ERD strength 

proportional to MOn would be better able to predict CSE values, compared to a model purely on time 

relative to MOn. Earlier results showed the ERD strength to change linearly over time leading up to 

MOn and the changes for CSE on the same timeline to be best described with a third-degree 

polynomial (Figure 5). As such we expected the relation of CSE and ERD to resemble the cubic relation 

of CSE and time; i.e., MEP values will increase and decrease in function of decreasing ERD power 

following the pattern of a third-degree polynomial. To determine how well a third-degree model can 

describe the CSE-ERD relationship, we applied the same cross validation methodology as described in 

section 2.3.2.1 CSE dynamics over Time. However, focusing on the third-degree polynomial model and 

assessing its ability to predict CSE in function of ERD power percentages, with lower error rates 

indicating a third-degree polynomial appropriately described the synchronized progression over the 

same timeline. Comparing the predictions for alpha to those of beta. 

The analysis beyond this point is exploratory, because we have reached the extent of what we can get 

out of this data. The following describes our best effort to investigate the CSE and ERD relationship 

considering limited and noisy data. We struggled particularly with mapping the ERD measures directly 

to the corresponding CSE measures. As described in section 2.3.1.1 ERD, the highest number of CSE 

values are where the lowest concentration of ERD data is. Leaving time points without any data or high 

noise. As an alternative we attempted to capture a delayed effect using reliable data points in the time 

window of -1s to -0.4s before MOn for ERD strength and -0.4s to 0s before MOn for CSE (for CSE this 

means a reduction in data points of 21.8%; from 481 to 376). Y(CSE at time t) = X(ERD% at time t-n) 

where n = -400 ms so that CSE at t = -100 ms (i.e., 100 ms before MOn) gets predicted by the last “clean 

point” (i.e., not TMS contaminated) of ERD at -0.5s. 

Cross-fold validation outcome shows how, on average, predictions for CSE values using the third-

degree polynomial were significantly more accurate [t(461) = -10.5, p < .001] when made based on the 

changing power leading up towards MOn in the alpha frequency band (mean ± SD = 10339.04 ± 

10995.04, 95CI: [-11151.3, 31949.3]) than the beta frequency band (mean ± SD = 82766.21 ± 

150116.14, 95CI: [-211461.8, 376994.2]). 
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2.4 Discussion 

It has been argued that learning benefits from, and relearning relies on, increased cortical excitability 

(Clarkson & Carmichael, 2009; Lissek et al., 2013). CSE is considered to reflect a state of "neural 

readiness" that changes in response to the cortical activity (Leocani et al., 2000, 2001). As a result, 

cortical excitability has been proposed as a neural marker for motor learning and use-dependent 

plasticity. Previous work suggests a link between CSE and ERD strength, indicating that changes in CSE 

may be deduced from its association with ERD, a neural marker that is easier to measure (Daly et al., 

2018). However, the exact nature of this relationship—including how it is shaped and how stable it is 

over time and contexts—is still unclear. Since the temporal dynamics of CSE play an important role in 

shaping its relationship with ERD, it is essential to establish a clearer timeline of CSE fluctuations before 

movement execution. This would allow to assess the reliability of the CSE and ERD association, both in 

general and as a means of inferring excitability fluctuations. 

2.4.1 Temporal Dynamics of CSE 

Our preliminary insights into the broader CSE timeline tentatively support our first hypothesis—that 

the temporal dynamics of CSE leading up to MOn are best described as an S-like wave. Our results 

indicate that a third-degree polynomial explains significantly more variance in MEP amplitudes as a 

function of time compared to other theoretically plausible descriptive models. However, to further 

evaluate the dependability of this model—i.e., how well the progression of CSE over time can 

consistently be described by an S-like wave or a third-degree polynomial (cubic) relationship with 

time—we assessed how accurately it estimated MEP values based on time. Despite the third-degree 

polynomial having the strongest descriptive fit, it did not outperform the exponential model in this 

predictive test. Furthermore, while both models were at times less far off from observed values, 

neither was ever truly accurate, as indicated by the fact that neither model’s CI included or was close 

to 0, which would signify no difference from the observed values. This suggests that the cubic model’s 

ability to characterize CSE dynamics may not be as stable or generalizable as initially expected. At the 

same time, these results do not disprove the cubic model’s suitability to characterize CSE dynamics. 

Especially as this lack of difference in performance could potentially be explained by the severe 

imbalance of data distribution over time. As shown in Figure 5, 86% of retained data points fell 

between -500 ms and MOn—exactly where we both hypothesized and observed the CSE to decrease 

before a steep increase. As a result, in the most data-heavy window, we have a pattern that closely 

resembles an exponential trajectory, artificially advantaging the exponential model simply because 

most of the data fell within the portion of the timeline where amplitude naturally increased sharply. 

This data imbalance likely may have skewed the models’ outcomes, causing the cubic model to perform 

worse while the exponential model did better than it otherwise would. The issue would then have 
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been further amplified by the already small dataset, which was then split for either training or testing, 

effectively limiting both model’s ability to capture the full trajectory of CSE dynamics. 

It is entirely possible that the third-degree polynomial’s ability to explain higher variance is due to 

overfitting rather than capturing meaningful structure in the data. However, if overfitting was an issue 

here, we would expect overall higher R² values. Furthermore, if our model was overfitted to capture 

the specific variance in this dataset we would also expect the overfitted model to outperform less well 

fitted models when testing predictability. Instead, our R² are rather low and the cubic model did not 

do great predicting MEP amplitudes, let alone do better than less fitted models. 

While generally low R² values indicate that the cubic model does not explain a large proportion of 

variance, it did explain more variance than other, simpler models that also had valid theoretical 

justification for describing the observed trend in the data. Furthermore, it was never the goal or 

expectation of this study to identify the exact trajectory of the data on our first attempt. Our intent 

was to provide a first attempt at describing and quantifying the temporal evolution and dynamics of 

CSE over a broader timeline, and test our hypothesis that these dynamics appear to follow a cubic 

trend. To this end, while an S-like wave represented by a cubic function may not be the best fit or fully 

explain all the nuances underlying the CSE structural nature, our results indicate there is some merit 

to this hypothesis, enough to explore further as stronger evidence is needed for both disproving or 

supporting our claim. 

2.4.2 Inter-Dynamics of the Neural Markers 

We expected to replicate previous findings on the temporal evolution of individual neural markers 

when calculated from the same dataset and anticipated that these markers will align with descriptions 

found in the literature.  

A visual evaluation of the MRCP in Figure 5 (bottom panel) aligns with the test results, showing that 

the negative potential shift never diverges significantly from zero. Indicating that the signal amplitude 

in the two seconds leading up to MOn never significantly differed from baseline. While we do observe 

the classical MRCP shape, its amplitude ranges from 0 to -2 µV, which is substantially lower than the -

5 to -30 µV range typically reported in the literature (Schultze-Kraft et al., 2016; Shakeel et al., 2015; 

Wright et al., 2011). Specifically, we seem to observe the late lateralization of the NS component 

between -500 ms and MOn. However, the characteristic slow decrease in amplitude of the RP between 

-2s and -1s is absent. A likely explanation lies in how the data was recorded. The FCz electrode (frontal-

central scalp location) was used as the reference during recording (Daly et al., 2018). Since the RP 

arises as a diffuse, central distributed signal across the scalp (Fairhall et al., 2006), it was likely largely 

removed due to volume conduction (Holsheimer & Feenstra, 1977). In contrast, the NS, as a lateralized 

and more spatially focused component, was less affected. Unfortunately, the asymmetrical electrode 
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set up (see Figure 3 in Daly et al., (2018)), absence of mastoid electrodes, and the inconsistent 

presence of artifacts in several channels left no reasonable options to re-reference the data to recover 

the lost RP. Consequently, MRCP measures could not contribute further to this study’s analysis. 

However, in the absence of the RP, a graphical review still provided valuable insights, allowing for 

comparisons between the MRCP, CNV, and LRP (as briefly discussed in 1.1 Neural Activity of Motor 

Control). Notably, there are clear similarities between our (presumably) retained NS component and 

the LRP. Both occur over a 500 ms window and while the NS—when following an RP buildup—will 

normally reach higher amplitudes, our observed -2 µV aligns well with the average LRP amplitude 

(around -2.5 µV) (Leuthold et al., 2004; Leuthold & Jentzsch, 2002). In contrast, the amplitude range 

we did not reach due to an absent RP closely resembles the range typically observed for CNV. This is 

particularly noteworthy because these similarities emerge in a context of self-paced voluntary actions, 

rather than the “two-warning cue’ paradigm typically used to assess the CNV, and by some used as a 

reason to differentiate form MRPC. 

While these insights, based on visual assessment, do not directly contribute to the answering of the 

study’s hypotheses, they provide interesting observations in the broader framework of understanding 

neural circuit of motor control.  

Looking at Figure 5 (top panel), we observe, supported by test result, that the grand average ERD 

strength significantly increased across participants relative to baseline. By 500 ms before MOn, ERD 

strength reached around 20% (alpha) and 30% (beta), followed by a 50% strength increase at MOn 

(beta, compared to approximate 29% for alpha).  

Overall, the observed ERD strength pattern is consistent with our expected 20-30% range around -500 

ms to MOn and 50% at MOn. However, we note some interesting differences between the ERD 

measures of the alpha and low-beta frequency bands. Specifically, most studies report higher relative 

ERD strength in alpha compared to beta (Cassim et al., 2000; Neuper & Pfurtscheller, 2001), we 

observed the inverse of this expected differences in ERD magnitude between alpha and beta. While 

alpha ERD follows its expected trajectory, reaching an average 25% increase in strength shortly after 

the predicted -500 ms to MOn mark, it then unexpectedly peaks at 30% shortly thereafter and remains 

constant until MOn. In contrast, the low-beta frequencies unexpectedly also reached the 30% 

threshold at -500 ms, even more unexpected is that beta then went on to peak at 50% and did so 

ahead of the predicted point of MOn. The most likely explanation for this pre-mature peaking is the 

“flattening” of the ERD strength trajectory curve, as observed in Figure 5 (top panel). This effect is likely 

due to the high density of TMS pulses within the -500 ms to MOn window, which required extensive 

signal-cleaning measures to prevent contamination, as detailed in section 2.2.3.1 ERD pre-processing. 

Although our inverted strength trajectories appear to contradict previous literature, rigorous 
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verification of our methodology confirmed that this discrepancy was not due to procedural or 

analytical errors. 

Regarding the correlative nature of the ERD and the temporal evolution of CSE leading up to movement 

initiation, as well as our attempts to quantify it, a qualitative and comparative assessment of the 

individual CSE and ERD trajectories suggest that we did replicate Daly et al. (2018) their original 

findings to some degree through our alternative, time-based approach.  

As discussed in section 2.4.1 Temporal Dynamics of CSE, we cannot make definite claims that an S-like 

wave is the best representation of CSE evolution, nor can we conclude that time relative to MOn alone 

is sufficient to reliably estimate CSE. However, our results do indicate a cubic model explains a 

significant portion of the variance and performs better than alternative models in that regard. This 

suggests that the hypothesis of an S-like wave as a descriptor of CSE dynamics remains the most 

promising avenue for further exploration. This interpretation is further supported by our findings that 

for CSE, significant differences from zero average amplitude were observed in the intervals -0.6s to -

0.5s and -0.1s to 0s relative to MOn. The positive z-scores in these time windows indicate that 

participants' MEP values were significantly higher than their individual average MEP amplitude, 

aligning with expectations based on Daly et al. (2018) their “peak CSE”. This, combined with the 

increase in CSE between -100 ms and MOn—which is in line with prior literature—supports the idea 

that the increase in CSE around -500 ms reflects a preparatory phase increase preceding pre-

movement inhibition. Together, these two findings suggest that we successfully replicated the two 

main characteristics of CSE—drawn from different parts of the literature—which informed our 

conceptualization of an S-like wave for CSE dynamics when analyzed over a broader timeline within a 

single dataset. Furthermore, we found that both alpha and beta ERD reached a 20-30% strength 

increase around the -500 ms time point. While the observation of alpha and beta their inversed 

strength trajectories contradicts the existing literature, and one leans to 20% the other 30%, these ERD 

magnitudes remain in line with Daly et al. (2018) their findings. it is important to note that Daly et al. 

(2018) did analyze separate frequency bands but instead calculate a single ERD measure over the wider 

8-20 Hz range, capturing the full sensorimotor rhythm. Since this combined frequency range (spanning 

both alpha and low beta) contains the majority of ERD during motor execution tasks (Daly et al., 2018; 

van Wijk et al., 2012), this likely explains the observed consistency between our results and theirs. 

When it comes to quantifying the relationship between ERD and CSE and evaluating how well ERD 

functions as a real-time predictor to CSE, our results are rather inconclusive. Specifically, we were 

unable to determine how well a cubic model works to describe their relationship. We attempted to 

quantify this through predictive modeling, but results were difficult to interpret. Our findings do not 
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provide strong evidence or clear insight into whether a cubic model is the best representation of this 

relationship. 

Given the high error rates (MAE), it is challenging to assess how well a cubic model consistently and 

reliably describes CSE activity based on ERD progression. The high MAE values suggest that the model 

struggles to account for the high variance in the data and is likely overfitting to noise rather than 

capturing an underlying trend. The most likely causes of overfitting in our case are: 1) having noisy 

data. A solution would be to use a more and cleaner data, but this was not applicable in our study as 

the data was as clean as possible while maximizing retention. 2) Additional variance caused by training 

and testing on between-subject data. We know there is high inter individual differences for 

neuroimaging data. We know that neuroimaging data exhibits high inter-individual variability. While 

we addressed this issue for CSE by standardizing MEP amplitudes, no comparable solution was 

available for ERD power values. 

Despite the significant linear increase in both alpha and beta ERD (as shown in Figure 5) and the higher 

magnitude of beta ERD, predictive modelling performed better for alpha than for beta. Although both 

models had extremely high error rates, alpha ERD exhibited a significantly lower error rate, suggesting 

that the relationship between ERD and CSE is more stable when using alpha. This difference is likely 

rooted in the higher inter-individual variance in beta power, which is consistent with prior literature. 

Alpha power tends to peak consistently around C3, whereas beta power is more spatially distributed 

across the scalp (Crone et al., 1998; Fogassi et al., 2005; Neuper & Pfurtscheller, 2001; Toro et al., 

1994). This greater spatial and individual variability in beta ERD may explain why predictive modeling 

performed worse in this frequency band. 

Overall, we have pushed the limits of what can be extracted from this dataset. The high noise levels 

and limited statistical power due to low level of retained trials constrain the strength of our 

conclusions. Nevertheless, our findings indicate a probable relationship between ERD and CSE. At the 

very least, there appears to be a correlation driven by a shared factor—both progress and change over 

the same timeline leading up to MOn. 

2.4.3 Bridging Research and Application in BCI 

Preliminary considerations on using ERD measures to anticipate changes in CSE via a cubic model as 

representation of this relationship, particularly in terms of predictive capabilities. 

Our findings indicate that alpha ERD performs better than beta ERD in predicting CSE, but given the 

high error rates, it is reasonable to question whether either measure is truly useful in this context. One 

likely explanation for the observed difference between alpha and beta is the higher variance in beta 

power. A more practically informed approach—such as determining which electrode sites to focus 
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on—could improve predictive performance. This ties back into the need to better understand how ERD 

behaves across different frequency bands and their spatial distribution over the cortex. Currently, 

there is no clear consensus on whether to focus on a single frequency band or a combination of bands. 

For example, should low-beta be ignored in favor of alpha, or should we work with combined 

frequency bands (like the cross-frequency approach used by Daly et al. (2018), where a single ERD was 

calculated across alpha and low-beta and the strongest response was selected). Regardless of the 

chosen method, further research is needed to establish a clearer understanding of ERD dynamics 

independently and to establish its relationship with CSE. 

Taken at face value, our findings suggest that estimating CSE from ERD strength via a cubic model is 

not useful in a practical application. However, this interpretation must be considered within the 

context of our specific study design and analytical approach. For starters, our primary aim was to 

describe and quantify the relationship between ERD and CSE, rather than to optimize a real-time 

predictive model. We sought to determine whether CSE changes could be described as a third-degree 

polynomial over the linear progression of time, and we hypothesized that this S-like pattern might also 

describe CSE changes as a function of the linear progression ERD strength over time. Predictive 

modeling was then used as a quantification tool, as a means of testing whether a cubic model could 

effectively capture this pattern. Furthermore, our specific cross-validation approach (across 

participants) and the MAE metric may not necessarily be the most appropriate way to establish, 

capture, or describe this relationship. However, given the high noise levels and limitations of our 

dataset, it is difficult to determine whether these methodological choices truly affected the results or 

whether the data itself was simply insufficient. 

While we agree that there is potential value in using one measure to inform changes in the other over 

time (e.g., using ERD to anticipate CSE), our current model is not yet viable for practical application, 

regardless of the frequency band used.  

Furthermore, what remains unclear is whether the observed changes in CSE hold a functional 

relationship or merely a correlational one to ERD. Either scenario would allow ERD to be used as a 

predictor of CSE, enabling more precise timing of feedback relative to (planned) movement initiation. 

However, the previously discussed differences in alpha and beta ERD behavior should be carefully 

considered. Alternatively, it may be beneficial to adopt a more standardized approach by measuring 

ERD over the broader range of sensorimotor rhythms (8–20 Hz) (Daly et al., 2018)—particularly in BCI 

applications. 
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BCI setups tend to differ from each other and conventional ERD research in two key ways: 

Referencing Methods: Many BCI systems process EEG signals differently in real-time (i.e., online), such 

as bipolar referencing (e.g., Daly et al. (2018)) versus single-electrode referencing with mastoids or 

earlobes (e.g., Mrachacz-Kersting et al. (2016)). This contrasts with most published ERD research, 

which typically involves offline processing. Feature Selection: Many BCIs select the strongest power 

response for each participant, prioritizing consistency over meaning.  

This is reasonable for general BCI applications, where neural signals do not need to encode complex 

meanings beyond consistent event-related responses. For instance, using MI of the right hand to move 

a video game character (Scherer et al., 2017). However, when the goal is to predict the behavior of one 

neural marker based on another, greater attention must be given to the sources of variance in ERD 

power responses. These include differences between frequency bands, electrode placements, and 

individual participants. 

Based on both our findings and prior literature, the temporal evolution of CSE remains largely 

theoretical—let alone the precise point of "optimal" excitability. Furthermore, do MEP amplitudes 

exhibit high variability both across and within individuals, influenced by several factors such as: Coil 

positioning shifts if a participant moves, stimulation timing within an oscillatory cycle, Hormonal 

fluctuations (e.g., menstrual cycle effects in females) (Rivas-Grajales et al., 2023). However, despite 

this variability, both previous research and our preliminary findings suggest that CSE follows a general, 

consistent trend leading up to MOn. This trend appears to be stable across different movement types 

(Ibáñez et al., 2020). If there is a functional dependence between CSE and ERD, a fixed point of relative 

ERD strength (such as the 30% increased strength suggested by Daly et al. (2018)) may serve as a 

reliable indicator of CSE changes. Further research is needed to define the conditions necessary for 

consistency. Conversely, if CSE and ERD are only correlational, meaning they occur on a similar timeline 

(approximately 2 seconds before MOn) but as independent contributors to a larger movement 

preparation mechanism, their temporal alignment may be more variable. Under this scenario, a 30% 

increase in ERD strength would not consistently map to the same phase of CSE evolution across 

participants, frequency bands, or electrodes. Instead, the timing of this increase relative to MOn would 

shift depending on these factors. 

The existence of this variability and the tentative evidence supporting a correlational relationship 

between ERD and CSE are further reinforced by an exploratory visual analysis (see Figure 7). In this 

analysis, we plotted MEPs relative to MOn based on the relative ERD power decrease used by Daly et 

al. (2018) to differentiate experimental conditions. We expected power to decrease linearly relative to 

MOn, with MEP values obtained at 10% occurring before a 30%. However, Figure 7 contradicts this 
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expectation, showing that MEPs measures at 10% ERD strength occurred at the same distance from 

On as MEPs from 30% ERD. 

Granted, further investigation is necessary to understand the underlying causes of this inconsistency. 

One possible approach would be to recalculate the ERD percentage for these trials and compare it to 

values obtained by Daly et al. (2018). Additionally, we could assess whether these findings remain 

consistent at C3, which we used in this study, as well as explore the alternative bi-polar reference 

approach used by Daly et al., and select the electrode with the strongest response. 

Another important avenue for exploration is to examine the changes in ERD across both frequency 

bands and their spatial distribution over the scalp, particularly in relation to the temporal evolution of 

Figure 7 

Changes in MEP Amplitude over Time Relative to MOn by to ERD % Condition 

Note. MEP values are plotted relative to MOn (0s) and categorized based on the relative ERD strength 

at the time of stimulation, as measured by Daly et al. (2018). “Fixed” condition refers to stimulation 33 

ms after ‘go’ cue, regardless of time of movement initiation. The figure illustrates how the reported 

MEPs do not follow the linear progression relative to MOn we would expect to see based on the ERD 

strength categories (i.e., clustered together and 10% on the left side of the graph with 40% more on 

the right, with fixed spread throughout). 
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CSE. A potential solution for more accurate CSE prediction could involve a BCI setup that monitors ERD 

changes across multiple electrodes rather than relying on a single fixed location. 

Ultimately, we believe there is significant promise in leveraging ERD to infer changes in CSE over time. 

However, this depends on both measures being well characterized and understood. In the context of 

this study, the still under-researched and poorly understood temporal trajectory of CSE remains a 

major limitation to the development of a reliable predictive model. Until CSE dynamics are better 

characterized, actively advancing such a model remains premature. 

2.4.4 Future Directions and Next Steps 

This study has laid the foundation for future research to further explore the timelines of these neural 

markers and their correlational relationship. Additionally, it provides a basis for investigating whether 

the specific dynamics and quantifiable measures of these markers could offer deeper insight into their 

relationship—whether it remains purely correlational or whether systematic changes in one marker 

induce measurable effects in the other, indicating a potential causal link. 

As we mentioned earlier, we exhausted all available information from the dataset by Daly et al. (2018). 

Despite probably being the most suitable existing dataset for our research intent, we must recognize 

it does not suffice to appropriately challenge our hypotheses. As such, a follow up study is needed with 

an experimental design that allows us to fully control the collected data. With the highest priority being 

an even distribution of CSE measures across the two second timeline leading up to MOn. 

One avenue for future research lies in the practical application of the relationship between CSE and 

ERD to optimize BCI and rehabilitation protocols. Where a key focus should be determining the precise 

point within the CSE timeline that is optimal for pairing stimulation or feedback with movement 

execution. Understanding when to intervene in relation to CSE fluctuations could enhance motor 

rehabilitation strategies and improve BCI efficiency. Another crucial direction is the investigation of 

factors that mediate CSE activity and, by extension, this "optimal point". 

Among these, learning is particularly relevant mediating factor for both BCI based rehabilitation and 

the CSE timeline with its ERD association. Learning comes with changes in the brain, and it is a primary 

mediator of CSE fluctuations (Kleim, 2009; Kleim et al., 2007), alongside variations in movement type. 

If learning modifies CSE activity, it may also shift the optimal point for stimulation or feedback. Thus, 

before directly exploring "optimal excitability", future research should aim to refine our understanding 

of the CSE timeline and how it behaves in the intended application context (i.e., BCI use for 

rehabilitation and motor learning). 
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In the following chapters (3 and 4), we aim to broaden the foundation of knowledge on CSE using our 

own experimental design and collected data. Doing so we hope to further explore our preliminary 

findings as well as ensuring that future research exploring the optimal point in a learning-based 

rehabilitation context can account for CSE changes induced by learning. Specifically, by looking at the 

neural markers’ dynamics in a motor learning task we investigate whether quantifiable measures of 

neural markers, their timelines, and their correlational relationship provide additional insight into their 

interaction. However, establishing causality will be challenging, as learning itself could act as a third 

variable influencing both CSE and ERD simultaneously. Instead, our focus will be on assessing the 

consistency and reliability of their relationship. If CSE and ERD exhibit strong parallels in how they are 

affected by learning, this would suggest a stable, reliable relationship, strengthening the case for 

predictive applications. If their changes are less synchronized, it would indicate a weaker dependency, 

suggesting that their correlation may arise from shared involvement in motor system processes rather 

than direct dependency or interaction. Nonetheless, even in the absence of direct causality, a well-

characterized correlation between CSE and ERD could still be leveraged for practical applications, 

provided their interaction is systematically mapped and understood. 
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Chapter 3: Behavioral Experiment 

3.1 Introduction 

Ultimately, the theoretical background of this project is framed around optimizing BCI setups for motor 

rehabilitation, primarily for—but not limited to—stroke-related impairments. The research in this 

thesis addresses this by exploring the concept of an “optimal point” for providing feedback, specifically 

to enhance interactions with preserved elements of the FoFe-loop in motor control. CSE is considered 

central to identifying this optimal point. To this end, Chapter 2 provides preliminary insights into the 

viability of using ERD strength to infer CSE dynamics and CSE’s potential role in determining the timing 

of feedback. Another key aspect this thesis explores is how learning-related neural changes could 

affect BCI setups that work with static assumptions of neural markers. Specifically, this involves 

examining learning as a mediator of CSE and improving our understanding of ERD and MRCP 

dynamics—two of the most commonly used neural markers of motor control in BCI—independent of 

their relationship to CSE. As argued in 1.4.2 Accounting for the Changing Neural Landscape during BCI, 

BCI rehabilitation setups that focus solely on relative changes in ERD strength—such as simple hand-

opening/closing paradigms or their motor imagery equivalents—should still be aware of and account 

for learning-driven shifts in ERD progression rather than blindly updating their models. This raises a 

further concern: if ERD or MRCP is used to guide CSE inference, how stable is this relationship over 

time? If one or both neural markers change, does the inferred link to CSE remain valid? 

As noted in the discussion of Chapter 2, our research questions and hypotheses are highly specific. We 

utilized the Daly et al. (2018) dataset to its fullest extent, but we are not aware of any other existing 

dataset suitable for further exploration of our research questions or hypothesis testing. Therefore, we 

must collect the data ourselves. Beyond simply gathering more and better-quality data to investigate 

neural marker relationships, the primary application of this research—its relevance in a learning 

context—necessitates examining learning effects directly. Consequently, we must design an 

experiment that enables this investigation. 

Motor skill learning has been investigated using a range of experimental tasks and paradigms, such as 

juggling, continuous tracking, visuomotor tracking, and isometric force-production tasks (Christiansen 

et al., 2018; Dayan & Cohen, 2011; Yang et al., 2017). 

When designing our experiment and selecting a task, we need to ensure movement measurements 

are comparable to previous research. This ensures that our neuroimaging data and measure align with 

existing findings, allowing for meaningful comparisons. To achieve this, our experiment task must: (1) 

involve right-hand-dominant participants, (2) be reasonably paced, (3) remain simple, and (4) allow 

the hand to be fully at rest between trials to obtain pre-movement CSE measures via MEPs. The 
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challenge lies in designing an experiment that meets these criteria while maintaining compatibility 

with prior studies. 

Some of the simplest real-life examples of hand motor learning involve tapping-based skills, such as 

typing or playing musical instruments, and even knitting—activities that require practicing sequential 

movements. Motor sequence learning is fundamental to skill acquisition, many complex tasks in daily 

life emerge from such smaller, well-practiced sequences of actions (Hashemirad et al., 2016), and has 

been shown to lead to lasting improvements beyond baseline performance over time (Dayan & Cohen, 

2011). This inherent ability to learn sequential actions plays a crucial role in human motor skill 

development, enabling us to perform everything from simple button presses to intricate musical 

performances (Hashemirad et al., 2016). 

Commonly used sequential motor learning tasks include the Serial Reaction Time Task (SRTT). In this 

paradigm, participants respond to a visual cue appearing in one of four horizontal locations on a screen 

by pressing a corresponding key. Some trials follow a random order, while others present a recurring 

sequence, allowing participants to learn and anticipate responses, resulting in faster reaction times 

(Dayan & Cohen, 2011; Robertson, 2007). Although the stimuli follow a repeating sequence, only one 

stimulus appears at a time, making the learning process implicit (Vernet et al., 2011). A modified 

version of the SRTT by Zhuang et al. (1997) distinguished between implicit and explicit learning by 

asking participants to reproduce the 10-item sequence they had been exposed to. The rationale was 

that the knowledge required for consciously recalling task elements in the correct temporal order 

constituted explicit learning. Another task used to study sequential learning is the sequential visual 

isometric pinch force task (SVIPT), where participants (primarily through implicit learning) learn to 

control fingertip force in a specific sequence of target force levels. Performance is typically assessed 

through changes in movement speed, accuracy, and overall skill (a combination of both), serving as 

behavioral measures of improvement in motor sequence learning (Hashemirad et al., 2016). The 

Sequential Finger Tapping Task (SEQTAP) is another widely used paradigm for studying motor 

sequence learning. In this task, participants press buttons corresponding to a series of numbers 

(usually 1–4) displayed on a screen. While SEQTAP is often used to assess explicit learning but can also 

involve implicit learning. For example, Walker et al. (2002) used an implicit version in which 

participants were aware of the task but did not receive feedback on their performance. 

Note how these sequential motor learning tasks can be categorized into two groups: explicit and 

implicit. In Chapter 1 (Section 1.2 Motor Learning), we introduced the learning spectrum, ranging from 

implicit to explicit learning. Explicit learning involves the use of conscious knowledge to execute 

actions and guide motor performance, whereas implicit learning occurs without a corresponding 

increase in awareness of skill execution (Jongbloed-Pereboom et al., 2015; Robertson, 2007).  
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To investigate learning-induced neural changes in healthy, able-bodied participants we designed an 

experiment with the aim to simulate a motor rehabilitation context. In stroke rehabilitation, patients 

engage in goal-directed (i.e., explicit) learning by repeatedly practicing specific movements to improve 

motor skills and restore voluntary function. Since our study examines motor learning within this 

framework, the experimental design must reflect rehabilitation principles—emphasizing repetitive, 

task-oriented activities that promote neuroplasticity and the re-establishment of functional motor 

patterns. Furthermore, is an explicit learning context is not only encouraged for its similarity to 

rehabilitation but also further reinforced by evidence against using implicit learning. Research shows 

that following a stroke, implicit learning mechanisms are disrupted on the affected side (pertaining to 

affected hemisphere and the contralateral body side). This further emphasizes the focus on 

consciously, goal-directed practicing of specific movements repeatedly to improve motor skills.  

Another issue with many existing learning tasks, particularly implicit ones, is their reliance on response 

time reductions as a primary measure of motor skill learning. Typically, improvements are assessed 

through faster reaction times, fewer errors, and changes in movement synergy and kinematics (Dayan 

& Cohen, 2011) However, ERD—our main neural marker of interest—is highly sensitive to movement 

type. Increased movement speed has been shown to influence ERD strength (Cassim et al., 2000; 

Stancák & Pfurtscheller, 1996; Tarkka & Hallett, 1991), adding unnecessary variability. Given the natural 

interindividual differences in ERD strength, allowing participants to respond at different speeds would 

introduce further variance in our neural measures. 

To mitigate this, our task should prioritize lower error rates and encourage consistently paced 

movements both within and across individuals. While improved response time may still be a factor in 

a button-press task, the goal is to integrate it as part of a structured skill—ensuring movements occur 

at a controlled, consistent pace rather than simply becoming faster. 

For these reasons, we chose the SEQTAP task as it provides a simple, hand-based movement paradigm 

that meets key experimental criteria. (1) It is comparable in movement to existing (not necessarily 

learning focused) research, (2) it allows for reliable CSE and EEG measurements, and (3) it offers 

flexibility in task design. Unlike self-paced tasks, a reaction-time (RT) and preparatory (PT) setup 

ensures controlled timing without compromising CSE (Ibáñez et al., 2020) or ERD, CNV, and MRCP 

dynamics. 

The biggest challenge in designing this experiment was ensuring the task was challenging enough to 

observe learning effects in the well-trained dominant right hand (Hund-Georgiadis & Von Cramon, 

1999) while remaining simple enough to allow for comparisons with previous research. 
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We drew inspiration from Hund-Georgiadis & Von Cramon (1999) and Furuya et al. (2011), particularly 

their work and task design relating to hand kinematics in expert pianists. The study discussed in this 

chapter details our experimental design aimed to replicate the conscious motor learning task of playing 

the piano. Furuya et al. (2011) analyzed joint motions during piano playing, where participants played 

short excerpts (9–24 notes) from various classical pieces. Keystrokes were executed sequentially, with 

inter-keystroke intervals set by a metronome (125 ms). From a sequential tapping perspective, this 

task represents structured, multi-finger sequential tapping task, where pianists played fixed keypress 

sequences with each digit in a controlled, rhythmic manner. Their study analyzed five successive 

keypresses, focusing on motion coordination and independence. Seeing the sequence in full and 

receiving auditory feedback made the task goal directed—the objective was to play the melody 

accurately— ensuring explicit learning, as participants consciously used performance feedback to 

correct and refine their movements. 

Building on these principles, our experiment was designed to replicate key aspects of conscious motor 

learning observed in piano playing while removing unnecessary complexities such as hand posture 

requirements or musical literacy. The task ensured explicit learning by providing auditory feedback, 

allowing participants to consciously monitor performance and refine motor execution. Instead of 

focusing on full piano playing, our task isolated finger sequencing and timing, using musical notes only 

as feedback to guide improvements of button order and timing. Specifically, participants learned and 

executed sequences of finger taps in different orders. We expected improvements in execution 

accuracy over repeated trials, reflecting increased motor control. Additionally, we anticipated a 

generalized learning effect, where participants would improve at executing sequences more efficiently 

overall—further reinforcing the explicit learning framework embedded in our design. 

To conclude in the following study, we aimed to behaviorally validate our experimental paradigm by 

examining whether participants show improvements in motor skill within our adapted sequential 

tapping task. Specifically, we asked: Does our task elicit measurable motor skill improvement? 

Hypotheses: We expect participants to improve in accuracy, which includes both reaction time and the 

precision of individual taps within a sequence. Improvement should be observed at two levels: (1) 

within a single sequence over repeated trials and (2) across blocks, reflecting a more generalized 

enhancement in sequential tapping performance 
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3.2 Materials and Method 

3.2.1 Participants 

In total 18 students (6 male, between 18 and 31 years of age; mean ± SD = 23.94 ± 3.98) at the 

University of Essex participated in our experiment after giving informed consent for the study. In return 

for their participation each student received 1 course credit. All participants were self-declared right-

handed healthy adults, with normal or corrected-to-normal vision and no history of motor impairment. 

67% reported to have some form of musical background and training (between 0.5 and 15 years of 

active practice; median = 2.5 and Inter Quartile Range (IQR) = 7.5), of which 75% was in some form of 

key-based instrument. Only 42% indicated they actively practiced (in any capacity) at the time of 

testing. Out of all participants, 44% reported some video game background (playing between 2 to 24h 

per week; median = 5 and IQR = 11). The study was conducted in accordance with ethical guidelines 

and was approved by the University of Essex Research Ethics Board (ETH2122-0179). 

3.2.2 Experiment Design and Protocol  

Upon arrival participants were asked to read a briefing, provide informed consent and fill out a short 

survey on their self-reported music proficiency and video game experience. The survey was included 

to assess if a background in music or gaming would affect the learning outcome due to pre-existing 

extensive training in hand muscle skills and contained the following open-ended questions (see 

Appendix A2 for the complete survey). For musical skills we enquired about: Any type of musical 

practice (e.g., Instruments, Singing, Dance, etc.), Self-taught or traditional music education, Number 

of years they have actively practiced to play music, period of active practice (e.g., from age 5-15), 

whether they were currently playing, and any other information the participant considered relevant 

or wanted to share. For the participants gaming background we asked: Do you play any games (video 

or physical) involving high amounts of dexterity, if yes please specify the type. If video-based gaming, 

please circle type of controls: hand-held controller/mouse and keyboard. How often do you game 

(specified in average amount of hours per week). 

Participants sat in an electrically shielded test booth, on a TMS-Robot chair (Axilum Robotics, 

Strasbourg, France), at 3 meters from a screen (32inch, refresh rate 60 Hz) placed at eye level outside 

the booth. They were instructed to sit in a relaxed position with their right hand placed on a standard 

UK qwerty keyboard. The response keys, chosen to encourage a neutral and relaxed hand position, 

were: index finger - X key, middle finger - F, ring finger - G and the little finger on the N (or M, according 

to participant’s preference; e.g., participants with very big hands may prefer the M key).  

The experimental paradigm was custom-made in MATLAB (MathWorks, MA, USA) using the 

Psychophysics Toolbox extensions (Psychtoolbox-3, version 3.0.18; Brainard, 1997; Kleiner et al., 2007; 
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Figure 8 

Flowchart Detailing Behavioral Experiment Protocol 

Pelli, 1997); in addition to LoopMIDI (Version 1.0.16.27, Erichsen, 2019) and KONTAKT 6 PLAYER 

software (version 6.2.2 (R51), Library: Kontakt Factory Selection, Ragtime Piano – Grand Piano; Native 

Instruments GmbH, Berlin, Germany) for audio output (via Genlec speakers placed in the test booth). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experiment consisted of a 1h session and aimed to train participants’ right hand finger motor 

control skills by simulating learning to play the piano. Taking inspiration from Furuya et al., (2011), we 

adapted a sequential finger tapping task to include both auditory and visuomotor elements. Auditory 

feedback was provided in an ecological manner, replicating the natural setting of playing piano and 

receiving sensory feedback to monitor performance, to measure goal directed (explicit) motor 

learning. The task was designed to be challenging enough to observe learning in the well-trained 

dominant right hand (Hund-Georgiadis & Von Cramon, 1999); yet a simple enough movement to 

compare with previous research. 

Participants were presented with different numeric sequences made up of 4 numbers (‘1’, ’2’, ’3’ and 

‘4’). Where each number was associated to a specific finger (1= index, 2 = middle, 3 = ring and 4 = little 

finger) and music note. Specifically, following the piano key format, the notes (C-D-E-G/F) were scaled 

to go up with the finger order. As such, the index finger (1) would always hold the lowest note (C) and 

the little finger (4) the highest note (G or F). To avoid participants starting to anticipate tones instead 

of focusing on motor planning, sequences were split-up over two sets of notes. The notes in the sets 

were identical, except for the octave and the highest note (C4 (4=G) or C5 (4=F)) (see Figure 9). As the 

sequence scrolled over the screen, participants had to tap their fingers, pressing buttons when doing 

so, in the right order, at the right time, and for the right duration; receiving the associated auditory 
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feedback of the buttons they had pressed. Pressing the correct button at the correct time made the 

sequence play out a melody. 

Before data collection, participants read through detailed task instructions and went through 2 stages 

of task familiarization. They pressed the F key (middle finger) to navigate forward. The first practice 

stage focused on finger/key and number association. A single white number was presented against a 

black background in the middle of the screen. Participants were asked to press the button (i.e., make 

a tapping motion with the associated finger) corresponding to the number on the screen. A pressed 

button resulted in feedback being given to the participants on their performance; by presenting the 

words ‘CORRECT key’ in green or ‘INCORRECT’ key in red. As well as auditory feedback through the 

number associated note (using only the C4 scale at this stage for simplicity). If no button was pressed 

after 2 seconds participants were shown the message ‘’too slow’’ for 1 second. A total of 8 numbers 

were presented, each of the four number stimuli were presented twice in the following order: the first 

run order was Index-middle-ring-little finger (1-2-3-4) and a second run with the order randomized 

(e.g., 3-2-4-1). In the second stage, participants were given two practice trials that were identical to 

the test trial setup, to ensure everyone knew what to expect and understood the task. A trial (see 

Figure 10) would start with a countdown. A fixation cross, with 4 green circles at the end of each axis 

(Y+, X+, Y- , X-), was presented in the middle of the screen. Over a period of 2 seconds the green circles 

moved smoothly, in increments of 100 ms, towards the middle of the fixation cross, counting 

A 
 

 

 

B 

Figure 9 

Music Notes of the Melodic Phrases Underlying the Numeric Sequence Presented to Participants 

Note. (A) Notes C D E and G; starting at middle C (i.e., C4). (B) Notes C D E and F; starting an octave above middle C (i.e., C5). 

The number and letter below each note indicate that note their associated numeric stimuli and to be pressed down 

finger/response key. E.g., The number 1 requires the participant to press the X button with their index finger, which will then 

play the C note. However, the notes were associated directly with the response keys. Meaning if the number 1 was 

presented on the screen, but the participant wrongly pressed down their middle finger (and thus the F key). They would hear 

a D note instead of a C. The melody would sound ‘off’, reinforcing and informing the participant they made a mistake. 
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participants in for their performance, as a conductor would. It was specified to participants that the 

fixation cross did not indicate rhythmic timing and merely functioned as a countdown. Next, the 

sequence was presented with the first number in the middle of the screen and the next 6 numbers 

lined up on the right. Initially, all numbers were presented in white, against a black background, with 

the first number turning blue after a 200 ms delay. A number remained blue for either 0.5s or 1s, after 

which all numbers would shift one position to the left with the next number in the sequence now blue 

and in the middle of the screen. As such the sequence would scroll over the screen from right to left, 

all numbers equally spaced, with the target number always in blue and in the middle of the screen. 

The format of sequence presentation was designed to minimize head and eye movements (the target 

number always appeared at the same spot, in the middle of the screen), and to allow explicit 

movement preparation without involving the cognitive strain of working memory (Walker et al., 2002). 

A trial would end with the presentation of the fixation cross with 4 green circles remaining stationary 

for 2 seconds. After which a new trial would start with the circles counting down. 

Participants were asked to respond to the visual cue by pressing the corresponding button with the 

corresponding finger. A number turning blue indicated when and which key/finger needed to be 

pressed. The duration for which the number remained blue indicated how long they needed to keep 

their finger down. The practice session was limited to 2 trials to avoid too much learning during the 

familiarization stage. An additional difference between practice and test trials was that we used the 

recognizable tune of Jingle Bells for the practice sequence melody. A recognizable tune was used to 

further encourage understanding of the rhythmic nature of the task. First, numbers repeating in the 

sequence requires the finger to be lifted and pressed down again for each number (e.g., ‘3   3   3’ 

required the ring finger to be pressed down three times). Another point was the need to keep the key 

pressed down for the duration that the number remained blue and in the middle of the screen and 

that the sequences should play out a melody. The test sequences, though also taken from existing 

music compositions, were mostly unfamiliar so as not to influence motor skill learning. 

The familiarization session was concluded with an opportunity to ask any remaining questions and a 

general learning tip to, going forward in the experiment, “focus on the order of the button presses and 

timing with changes on the screen, before worrying about duration of a button press.”  

Continuing to the test part of the task, participants ran through 10 test blocks of 24 trials each. There 

were 10 unique sequences to learn, which were presented in a random order over the blocks with 1 

sequence per block. The sequences were 8 to 11 notes long (mean ± SD = 9.6 ± 0.96) melodies, made 

up of combinations of 3 or 4 of the available different notes. All notes were quarter or half notes at a 

4/4 time signature and a tempo of 120 beats per minute; making the total duration of a sequence 

between 4.9s and 7.4s (mean ± SD = 6.35s ± 0.6s) .The melodies were excerpts from the following 
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compositions: “The Cookie Jar, Lemonade Stand and 3 Finger Parallel Movement Challenge” all by Yigal 

Kaminka, and “For The Beauty Of The Earth” by Folliott S. Pierpoint (arranged by Carolina Savchuk); 

some with slight adjustments (see Appendix A4 for specific sequences and melodies). MuseScore 

(version 3.4.2, MuseScore Ltd, Limassol, Cyprus) was used to ensure adjustments did not feel musically 

off. These compositions were chosen as they were inconspicuous melodies, beginner friendly and 

made up of the same 4 notes. Sequences were further set up so 40% of the trials started with the 

index finger and 40% the little finger. The remaining 20% of the trials would start with either the ring 

or middle finger. Every block started with a visual presentation of the full sequence for that block. 

Participants would then press the F key (middle finger) to start the first trial of the block, with a total  

 of 24 tries to execute the melody as accurately as possible. 

Participants had the opportunity to take a small break of up to 5 minutes between blocks or, after 30 

seconds, press the F key to continue to the next block. At the midway point, after block 5, participants 

took a compulsory 5-minute break, irrespective of any earlier breaks taken. The midway point break 

was in response to pilot findings and feedback relating to our future intentions to measure EEG and 

Figure 10 

Visual Representation of a Single Trial 

 
 
Note. The top part of the figure shows how trials were presented to the participants during the experiment. The lower 

part illustrates the conversion of a melodic phrase (here Jingle Bells, used for the practice trials) to a numeric sequence. 

Numbers illustrate how the sequence was presented to participants. The number of seconds below each number 

indicate note duration (i.e., the time participants need to press the button down for), converted according to 120 beats 

per minute and a 4/4 time signature. 
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TMS responses. The combination of sitting still and up, in a relatively uncomfortable chair, for the 

length of the experiment resulted in a strain and discomfort for the participant, leading to decline in 

attention and increased fidgeting. After the enforced 5-minute break, participants were reseated, their 

hands were repositioned, and they resumed with the second part of the task. 

3.2.3 Data preparation and planned analysis 

Improved motor control of sequential finger movements was measured by learning the responses to 

numerical sequences and the underlying melody. As such participants had to learn a) to press the 

correct buttons in the correct order, b) to press a button down at the correct time and c) keep the 

button pressed down for the correct duration. Performance accuracy was quantified for the whole 

sequence. The melodical aspects (i.e., b and c) were added to increase the degree of control required 

and add to the challenge rate of the sequential tapping task. 

Button responses were recorded as a time series. However, because of the variable elements in the 

recording process throughout a trial, the sample rate (SR) (i.e., number of, and time difference (few 

milliseconds) between iterations) was inconsistent over trials. Based on pilot data, looking at the 

shortest sequence of 4 seconds, we know the minimal number of sample points were consistently over 

8500. As such we took 8500 samples at 4 seconds to establish a constant behavioral SR of 2151 Hz, 

and sequences of larger magnitude will be down sampled to this SR. Meaning a key press of duration 

0.5s would be represented as a key press of 1076 samples. 

Overall accuracy of performance was defined as the percentage of a participant’s response that was 

correct compared to “the perfect sequence.” We compared participants response series time point 

per time point with a “perfect sequence” at SR of 2151. Matching timepoints were given a value of 1 

and timepoints that did not match a value of 0. The values were added up and then averaged over the 

total number of time points in the respective sequence series, and multiplied by 100 to have 

performance as an accuracy percentage.  

Data analysis was performed using Rstudio in R statistical software (R Core Team, 2023). With our 

experimental set up, a 24 (tries per sequence) x 10 (different sequences) factorial design, the analysis 

we apply here will cover repeated-measures analysis of variance (rmANOVA) and variations of it (rstatix 

package; Kassambara, 2023). 

Accuracy (ACC) rates were submitted to rmANOVAs to assess the effects of learning a specific tapping 

sequence (scores for sequential trials within a block - improving over 24 attempts - will further be 

referred to as factor ‘Trials’), general improved coordination and motor control of the right hand 

(scores for sequential blocks - general improvement over 10 different sequences - will further be 

referred to as factor ‘Blocks’), and to investigate differential effects of participant’s musical training on 

both these dimensions (groups of people having a musical background or not). Using linear models 
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with categorical predictors, we encoded the factors using sigma parameter restrictions (i.e., effect 

coding, where the sum of the regression coefficients equals zero). Furthermore, we applied SAS type 

III to construct the sums of squares in the rmANOVA table (opposed to type I or II). Where Mauchly's 

Test of Sphericity indicated sphericity assumptions were violated, Greenhouse-Geisser corrections are 

applied to degrees of freedoms and p-values. Significant effects for Trials and Blocks are followed up 

with trend analysis using polynomial contrasts to see if the differences in performance (ACC scores), 

i.e., the learning effect, follow the expected linear trend. 

3.3 Results 

As responses influenced by attention slips can confound the learning effects, we removed extreme 

values (outliers) in the ACC scores. As executing a sequence with 50% accuracy may be an uncommonly 

high score for one participant, but an average performance to another. Outliers were determined for 

every participant individually to account for the interindividual differences in performance scores. 

Using Tukey’s method (Dhana, 2016; S. Seo, 2006) no trials were identified as needing to be removed 

as outliers. However, for one participant, 4 trials were removed from further analysis due to no 

recorded button press. In total 0.09% (4 out of 4320 trials) of the trials were removed. 

A one-way rmANOVA indicated a significant difference [F(9,153) = 4.66, p < .001, ŋ² = .063] when 

comparing average ACC scores between different sequences, irrespective of their sequential order 

(i.e., Trial and Block order not being considered). Specifically, pairwise post-hoc analyses with 

Bonferroni adjustment revealed ACC scores for sequence 3 (see Appendix A4, third bar) were 

statistically significantly lower than four of the other sequences [p < .05; see Table 3 and Figure 11], 

while no such notable differences existed among the other nine sequences [p > .05; see Table 3]. This 

means, considering the randomized (and thus semi balanced) presentation of the stimuli order, 

participants performed consistently worse on sequence 3; regardless of this sequence being presented 

as one of the first or later ones in the experiment. As such, we violated our theoretical assumption 

that our chosen sequences were of equivalent difficulty. 
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Figure 11 

Mean Performance Accuracy per Participant per Sequence, Irrespective of Presentation Order 

Note. Sequence order was randomized before presentation for every participant. Individual datapoints indicate 

average accuracy score per participant per sequence. Horizontal black line indicates the overall average performance 

accuracy per sequence across participants irrespective or presentation order. Significance of p-values as presented in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

P-values of Pairwise Post-Hoc tests for a One-Way rmANOVA on Equivalence of Sequence Difficulty 

Sequences Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10 

Seq 1 1 1 .046* 1 1 1 1 1 1 1 

Seq 2  1 .360 1 1 1 1 1 1 1 

Seq 3   1 .002** .205 .082 .268 .004** .033* 1 

Seq 4    1 .163 1 1 1 1 .200 

Seq 5     1 1 1 1 1 1 

Seq 6      1 1 1 1 1 

Seq 7       1 1 1 1 

Seq 8        1 1 1 

Seq 9         1 .374 

Seq 10          1 

Note: Differs significantly from each other, * at p < 0.05 (Bonferroni adjusted). See appendix A3 for associated t test statistics. 
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The present paradigm was designed to test motor learning, while also containing a musical aspect. 

Therefore, we evaluated the impact of pre-existing advantages from trained musicality, and any 

resulting training in hand muscle skills, confound learning outcomes. A three-way mixed effect ANOVA, 

including musical background as a between subject factor with two levels (yes or no) alongside Trials 

and Blocks, showed no such confounding effects. There was no statistically significant difference 

between the overall performance scores for those with and without musical background [F(1,15) = 

1.04, p = .325, ŋ² = .038] (see Figure 12 and Appendix A7). Neither were there any interactions between 

musical background and Trials [F(23,345) = 0.74, p = .800, ŋ² = .002] or Blocks [F(4.78,71.75) = 0.65, p 

= .655, ŋ² = .008]. This indicates that people with musical training did not have an advantage in the 

task or had their performance at a rate any different than those with no musical background. 

 

 

 

Figure 12 

Mean Performance Accuracy for Different Blocks and Trials, Split over Musical Background. 

Note. Figures show the differences in average performance scores over blocks and trials between participants with and 

without a musical background. Showing a general difference in ACC score, where those without musical background 

score on average slightly lower than those with musical background. 
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As there was no effect, musical background was removed from the model to further assess learning 

effects. The two-way rmANOVA with Trials and Blocks showed a significant effect in difference of 

performance scores over Trials [F(23,368) = 13.24, p < .001, ŋ² = .026] as well as over Blocks 

[F(4.92,78.64) = 2.69, p = .028, ŋ² = .028], however no significant interaction was found between the 

two factors [F(207,3312) = 1.1, p = .171, ŋ² = .014]. Follow-up tests with linear contrasts (with separate 

error terms) indicated performance ACC to increase linearly over both Trials [t(17) = 6.22, p < .001] 

and Blocks [t(17) = 3.64, p = .002]. Meaning participants performed, on average, significantly and 

consistently worse on their first try to tap out a sequence compared to the last try of that same 

sequence, with performance differences increasing linearly over the sequential order of the trials in 

between the first and the last trial. Participants then became significantly better at tapping out 

sequences in general, with the average performance scores increasing linearly between the first 

sequence (first block) and the last (sequence, i.e., block), without significantly affecting the learning 

trend for any individual and new sequence. 

The 10x24 design (2x(10x24) if we count musical background) is intricate. The abundance of levels and 

potential interactions can make future analysis appear convoluted and chaotic. Especially when having 

the intent to employ the present paradigm as base for a neuroimaging study where additional factor 

variables will be introduced. Therefore, we simplified the analysis, and reran the previous tests with 

the redefined variables to check if we preserve the observed learning effects in condensed form. We 

collapsed the factor levels according to the main turning points of learning we can see in Figure 12. 

Blocks became a 2-level factor variable, to reflect the overall difference of the first compared to the 

second half of the experiment (i.e., split around the 5-minute mid experiment break); split in half by 

averaging the 1st five blocks combined and again averaging over the last five blocks combined. Trial 

levels were combined to form a 4-level factor variable, averaging measures per 6 trials; reflecting how, 

seemingly (Figure 12), most learning happens over the first 12 trials and scores plateau in the later 12 

trials. The simplified three-way mixed effect ANOVA, once again showed no difference in the overall 

performance scores [F(1,16) = .74, p = .403, ŋ² = .041] or learning trends [over Blocks F(1,16) = 1.57, p 

= .228, ŋ² = .005; or Trials F(1.41,22.58) = .60, p = .501, ŋ² < .001] between those with and without 

musical background. Similarly, a simplified two-way rmANOVA retained the significant learning trends 

for both learning an individual sequence [F(1.42,24.2) = 33.1, p < .001, ŋ² = .040], as well as learning 

over sequences in general [F(1,17) = 11.11, p = .004, ŋ² = .031], without significantly affecting the 

learning trend for any individual and new sequence [F(3,51) = 1.84, p = .152, ŋ² < .001]. 

To inform our future intentions to use the current paradigm to measure EEG and TMS responses 

relative to movement onset, we need to know the consistency and changes relating to the average 

timing of the first button press in a trial. Trial reaction times (RT) were measured as the difference in 
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time between the first button press and the first number turning blue. We then removed extreme 

values (outliers) in the RT responses, once again using Tukey’s method (Dhana, 2016; S. Seo, 2006). 

Given that some people are naturally faster than others, we took interindividual RT differences into 

account by determining and removing outliers for every participant individually. In total 1.69% (73 out 

of 4320 trials; incl. the 4 ‘no response’ trials), spread over 16 participants (between 1 and 13 trials per 

person; mean ± SD = 4.31 ± 2.84), of the observations were identified as outliers and removed. The 

remaining 4247 trials were used to look at the changes in RTs over the course of trials and blocks for 

every participant. Once again using the simplified analysis set up [2x(2x4)], a two-way rmANOVA 

showed participants became significantly faster in their response to the start of a trial as they became 

more practiced in the sequences and task. Specifically, participants consistently [F(3,51) = 1.135, p = 

.344, ŋ² < .001] sped up over trials within a block [F(3,51) = 41.09, p < .001, ŋ² = .046], even when they 

overall got faster over blocks [F(1,17) = 18.38, p < .001, ŋ² = .080]. Specifically, participants generally 

decreased their response time over the course of the experiment, shown as a significant difference in 

the average RT in the first half of the experiment compared to the second half. Participants also 

responded consistently faster over the course of learning a specific sequence, as indicated by the linear 

trend of the differences over trials in a block [linear contrasts with separate error term showing a 

significant downwards trend, t(17) = -7.86, p < .001]. A three-way mixed effect ANOVA showed these 

findings did not change when including musical background. Meaning regardless of musical training 

participants sped up in equal measures over trials [F(1.97,31.58) = .57, p = .571, ŋ² < .001, and over 

blocks F(1,16) = 1.05, p = .322, ŋ² = .005]. While Figure 13 implies people with musical background on 

average respond faster and more consistently, this difference is not significant [F(1,16) = 1.03, p = .325, 

ŋ² = .054]. 

 

 

 

Table 4 

RT of First Button Press in Seconds Per Condition 

                          Median (IQR)  

 Trials 1-6 Trials 7-12 Trials 13-18 Trials 19-24 Total Total min-max 

1st half 0.379 (0.121) 0.346 (0.171) 0.295 (0.116) 0.314 (0.181) 0.337 (0.170) 0.097 – 0.690 

2nd half 0.292 (0.197) 0.249 (0.196) 0.265 (0.174) 0.245 (0.196) 0.269 (0.190) -0.019 – 0.551 

Total 0.341 (0.163) 0.301 (0.199) 0.290 (0.161) 0.275 (0.197)   

Total min-max 0.113 - 0.690 -0.012 - 0.628 -0.019 - 0.635 0.001 - 0.583   
Note: 1st half experiment denotes scores averaged over Blocks 1 to 5, 2nd half experiment denotes scores averaged over Blocks 6 to 10. Values 

calculated over participant averages of each condition. E.g., The total for the 1st half of the experiment was calculated over 18*4 values. 



P a g e  | 90 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 5 

P-values of Pairwise Post-Hoc tests for RT over Trials 

Trial 
Levels 

Trial    
1 – 6 

Trial   
 7 – 12 

Trial  
13 –18 

Trial  
19 – 24 

Trial    
1 – 6 

1 <.001*** <.001*** <.001*** 

Trial   
 7 – 12 

 1 .068 <.001*** 

Trial 
 13 –18 

  1 .411 

Trial  
19 – 24 

   1 

Note: Differs significantly from each other, * at p < 0.05 (Bonferroni 

adjusted). See appendix A5 for associated t test statistics. T7-12 was 

significantly diff from T13-18 before corrections.  

Figure 13 

Mean RT for First Button, for Trials in the First and Second Half of the Experiment, Split over Musical 

Background. 

Note. Figure shows response time for the first button press only, measured from the “you can start” cue (i.e., first number 

turning blue). Assessment of a mechanical element of design with the sole purpose to explore people their consistency in 

starting the tapping sequence. Not to be confused with the average RT across all presses, which pertains to learning the 

rhythm and is part of sequence performance measure. Insight required for intended TMS use in Chapter 4, where 

stimulation is timed relative to a theoretically predicted button press. Greater consistency increases the likelihood that 

TMS pulses occur at their intended time. 
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3.4 Discussion 

We set out to create an experimental paradigm to measure explicit motor learning in the dominant 

right hand. We expected participants to become better in executing sequences over the course of 

several trials, with increased performance accuracy used as an indicator for increased motor control. 

Our results showed participants did indeed learn. In line with our expectations, we observed 

participants consistently and significantly improved at performing a specific sequence (i.e., learning 

over trials within a block) and became better at executing sequences in general (i.e., learning over 

blocks) without affecting the learning rate of the individual sequences. These learning effects were 

further preserved when we simplify the analysis by collapsing trials and blocks. Based on these 

outcomes we can consider our task to be successful in tasking participants to learn to tap out 

sequences and use real-time feedback to improve their motor coordination, to tap out the sequence 

in accordance to the more high-level demands of timing (the release and pressing down of buttons), 

beyond just getting the order of the buttons right and responding as fast as possible. 

The present paradigm was designed to test motor learning. However, it contained a musical aspect 

consequential to our chosen methods of setting up the task to encourage explicit learning. While our 

data indicated participants with a musical background had higher overall performance scores, our test 

results showed that this difference was not statistically significant, nor was there a difference in the 

relative increase of performance accuracy. More importantly, participants having trained musicality 

(and any resulting advantages in musical or motor skills) did not confound the tasks’ ability to train 

motor control and measure motor learning. Similarly, everyone speeds up when pressing the first 

button in response to the first number turning blue (“go cue”), both over trials and blocks, with 

participants with a musical background seemingly, though not statistically significantly, responding 

faster on average. This suggests that while musical experience may influence initial performance, it 

does not affect the ability to learn or improve in our task. As such, our present findings do not provide 

reason to exclude these participants from future data collections that use the same task. 

While statistically a musical background seems to have no effect, we do have to note the reasonable, 

though small, effect sizes (at the very least they are of the same size as the effect sizes for trial and 

block). As well as our small sample size that underpowers our analysis (n=18 per condition instead of 

the advised n=30) (Billingham et al., 2012; Button et al., 2013) and the unbalanced split of 12 

participants with some form of musical experience (though a wide spread of how much) compared to 

the 5 participants with no experience at all. However, even if there is a true effect of musical training, 

and as a thought experiment let us assume for a bit that there is (such as responding on average faster 

response to 1st cues and having on average higher performance scores; see Appendix A7), it does not 

seem to interfere with our behavioral measures of interest or the tasks’ ability to pick up on them. 
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What we mean is, performance wise we are not interested in absolute performance scores; but in 

improvement of the scores, presumed to reflect improved motor control (i.e., motor learning). The 

task appears difficult enough that it is highly unlikely for someone to start with perfect scores or have 

a ceiling effect (i.e., maxing out before the end of the experiment is reached, resulting in us no longer 

being able to observe changes in motor learning). As such, participants of a certain group starting at a 

higher performance score does not impede the task in terms of our ability to train motor control and 

observe improved performance scores over trials and blocks (see Figure 11); as indicated by our results 

and main effects, even with a sample size as small as ours (though we will need more replications to 

rule out our findings as a case of serendipity). Potentially a full sample of participants with no musical 

background would display a steeper learning curve. However, this is outside of the scope of the present 

research study and interests, where we are looking for a measure of motor learning rather than 

investigating how different variables affect the rate of motor learning. Though in future research it 

would be interesting to see if such differences exist and whether a different learning curve goes 

together with a different rate of changes in brain activity. 

On the part of having musical training leading to faster reaction times to the first cue; again, while 

there may be difference in the absolute RT values of the first button press for the two groups, we are 

more interested in, and concerned about, the progression of RT scores over the course of the 

experiment. The increase in speed, for some participants, resulting in them responding too early 

(before cue change), is a general issue (shared by and observed in both groups) for our future intent 

of wanting a consistent estimate of movement onset. As well as skewing the learning curve, affecting 

the interpretation of ‘degree of improved performance reflects degree of skill improvement (i.e., true 

degree motor control improvement is lower than scores imply). While getting the tap timing right when 

switching from one finger to the next (i.e., RT to individual number cues in the sequences changing 

from white to blue) is part of learning the sequences, RT to the first cue is less a matter of planning 

and preparing a sequence of actions, and more a matter of timing action initiation. As such, future use 

of this task should implement a form of training to ensure participants respond to the first cue within 

a certain response range (Ibáñez et al., 2020). Useful both for our intent of having a (relatively) 

consistent estimate of movement onset, as well as to have a more accurate measure of motor control 

learning. 

Manipulation of sequence difficulty could be considered mostly successful as most of the sequence 

stimuli appeared to be of equivalent difficulty; based on similar average performance scores (assuming 

any order differences get canceled out due to randomized presentation. Meaning some participants 

had a sequence at the start, whereas others had that same sequence later). However, participants 

performed consistently worse on sequence 3, implying this one sequence was generally experienced 
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as more difficult than others. While this is not ideal, it did not affect the tasks’ ability to measure 

learning. Any issues this ‘more difficult’ sequence could have brought were most likely canceled out 

because of stimuli randomization. Potentially, with more balanced stimuli (i.e., sequences) 

presentation, the task effects would be more profound. It is difficult to identify why some sequences 

were perceived as more challenging than others. This is unlikely to be due to the melodical aspects of 

the sequences, and instead has likely more to do with the kinematic aspect of the associated fingers. 

E.g., it is easier to tap fingers in the order of little finger to index, rather than index to little finger. While 

index to little finger movements were present in all sequence stimuli, only sequence 3 (also the 3rd 

sequence in Appendix A4) had the switch from index to ring finger and then focused for nearly half of 

its taps on switching between ring finger and little finger. However, due to (pandemic induced) time 

constraints we did not change this stimulus or look further into the aspects driving differences in 

sequence performance (nor was there any mention of knowing factors, or how to choose sequences, 

in literature on classical SEQTAB tasks regarding any standardized or conventional used sequences that 

we know of (Furuya et al., 2011; Hashemirad et al., 2016; Walker et al., 2002). Instead, we prioritized 

data collection and analysis. 

There follow some notes to consider when implementing the present experiment in a neuro imaging 

context: It intuitively makes sense for a behavioral task to enforce breaks to retain attention, however, 

with further feedback from our pilot experiments, in a context of a TMS study, this would boil down to 

asking participants to just sit still for 30 seconds staring at a black screen. They would therefore not be 

able to gain any of the benefits participants normally would enjoy from having a break (e.g., changing 

posture, stretching, moving around). 

We further found no evidence to support the exclusion of future participants based on their musical 

background. While our results showed that musicians start on average with higher ACC scores, they 

overall still improved in terms of motor skill. Original concern stemmed from studies showing how 

music familiarity and expertise affecting melody prediction (i.e., how the sequence might continue 

after a certain part) (Pesek et al., 2020). For similar reasons, during task design, gaming expertise was 

considered an important factor that could possibly confound learning outcomes. Original reasons to 

include the gaming expertise questions was to account for any unfair hand dexterity advantage. 

However, upon further consideration of gaming set ups and participant feedback, we realized: console 

gamers mainly use thumbs, right-handed PC gamers would use mouse and key combos would be 

executed with left hand. Similarly, why we should not be too surprised for no motor control advantages 

for right-handed musicians, of the most played instruments pianist and flutists would have sequence 

training with both hands, however string players would use their dominant hand for rhythm (bows on 

cello and violin, guitar, etc.) while the left hand is used for chords and different placement. 
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In conclusion, we are satisfied to move forward with the presented experiment in a neuroimaging 

context. Confident there is enough of a behavioral basis to explore the dynamics of neural markers 

when we learn in this experiment paradigm. 
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Chapter 4: Neuroimaging Experiment 

4.1 Introduction  

Effective rehabilitation depends on closing the FoFe-loop. If CSE represents a neural state most 

conducive to motor learning, rehabilitation protocols should aim to engage with CSE at its optimal 

point to enhance recovery. This optimal timing for feedback engagement—to maximize 

neuroplasticity-driven recovery—has been suggested to correspond with maximal excitability. 

Previous studies have attempted to identify this point using single time markers, such as when ERD 

reaches 30% (Daly et al., 2018). However, this approach assumes a static relationship between ERD 

and CSE, despite evidence that both evolve dynamically during learning (Berghuis et al., 2016; Dayan 

& Cohen, 2011; Yang et al., 2017). 

Learning induces changes in the brain’s functional connectivity (Dayan & Cohen, 2011; Ganguly & Poo, 

2013). Consequently, motor learning is expected to produce synaptic and structural changes that 

manifest in the neural correlates of motor control. BCI rehabilitation is explicitly designed to reshape 

neural activity, promoting synaptic changes that support motor recovery. To effectively use neural 

information—such as recurring brain activity patterns—to facilitate learning, we must ensure that our 

approach accounts for potential learning-induced changes as they unfold. At the very least, verify and 

guarantee the efficacy of the protocol remains unaffected by such changes. 

In Chapter 2, we focused on expanding our understanding of the temporal dynamics of CSE, as it has 

been proposed as a key marker for determining the optimal time to interact with motor control and 

production processes. Additionally, we explored its relationship with other neural measures that may 

help infer CSE dynamics and estimate this optimal point. 

However, the data in Chapter 2 was suboptimal, leaving our findings rather inconclusive towards our 

first two research questions. Specifically, our preliminary insights were limited by high levels of noise 

and a substantial loss of trials due to data cleaning and exclusion criteria. As a result, the analysis in 

Chapter 2 was underpowered (Billingham et al., 2012; Button et al., 2013), owing to a dataset that was 

not designed to directly test our hypotheses. Despite these limitations, our preliminary findings 

provided some support for the hypothesis that CSE activity, as indicated by MEPs, follows an S-like 

wave in the 1.5 seconds leading up to movement onset. However, we were unable to determine the 

extent to which a cubic model accurately describes the relationship between ERD and CSE. Even less 

conclusive was whether one measure could be used to predict changes in the other over time (e.g., 

using ERD to anticipate CSE dynamics). 
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In this chapter, we aimed to replicate and extend our findings from Chapter 2, this time using data 

specifically collected to establish a more conclusive descriptive timeline of CSE relative to MOn over a 

broader range, while ensuring sufficient data points. Additionally, using the experiment detailed in 

Chapter 3, we sought to expand our understanding of how neural markers behave in a learning 

environment—particularly regarding the need to account for learning-induced changes when inferring 

CSE dynamics in practical applications. When discussing our findings in Chapter 2 we indicated that 

our current model, which uses the S-like pattern (descriptive for CSE changes over time) to predict 

MEP amplitudes based on of the linear progression of ERD strength over time, is not yet viable for 

practical application, regardless of the frequency band used. However, we propose that this model can 

still provide valuable insights into how learning-induced changes impact neural markers by comparing 

its performance when continuously updated versus left static. 

Ultimately, the model should be designed to account for learning-based changes, rather than being 

blindly updated. However, we hypothesize that any form of updating will outperform a non-adaptive 

model. If a difference is observed, it would indicate that learning affects the stability of the CSE-ERD 

relationship, reinforcing the need to investigate comparative learning effects on neural markers before 

relying on CSE alone to target optimal excitability. 

The present study utilized the experiment designed in Chapter 3, which was specifically developed to 

investigate how motor learning affects the three neural markers of motor control—ERD, MRCP, and 

CSE—as motor function improves. The primary goal was to assess whether the relationships between 

these markers remain stable or require continuous recalibration in a BCI context. 

We expect these neural markers to change both individually and in relation to one another as motor 

skill performance improves. As discussed in 1.2 Motor Learning, neural activity is generally expected 

to decrease with learning, as reduced cortical activation is thought to reflect stronger neural 

connections and more efficient resource utilization (Siemionow et al., 1998; Wright et al., 2011). 

Specifically, for MRCP, we anticipate an initial increase in amplitude (i.e., greater negativity) over trials 

as participants learn a sequence. However, by the final trials and the end of the experiment, we expect 

MRCP amplitude to return to baseline or decrease even further (Wright et al., 2011). Similarly, we 

predict a continued reduction in relative power for both alpha and beta bands as performance 

improves (Yang et al., 2017; Zhuang et al., 1997). 

Expectations for CSE are less clear, partly because, to our knowledge, no study has examined how 

learning affects the temporal dynamics of CSE—particularly over as broad a time scale as we intend to 

investigate. The literature generally suggests that skill training increases CSE when comparing MEPs 

before and after training (Kleim, 2009; Leung et al., 2017; McGregor et al., 2017). However, findings 

on CSE dynamics during skill acquisition remain inconsistent, with some studies reporting an increase 
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and others showing no change (Berghuis et al., 2016). Given these inconsistencies, we tentatively 

expect CSE to retain its characteristic shape while increasing in amplitude as participants' performance 

improves both within and across sequences. With our current level of knowledge, it is furthermore 

difficult to predict how learning-related changes will impact the relationship between neural markers 

or how these changes will manifest in the measures attempting to quantify the relationship. 

In general, we expect to replicate our earlier findings while expanding the analysis to include MRCP. 

Specifically, we anticipate observing a preparatory CSE peak around -500 ms relative to MOn. At this 

same time point, we expect to see a 30% increase in ERD strength and the approximate transition point 

between the MRCP’s RP and NS components. After this point, we expect ERD and MRCP to continue 

their linear trajectories, while CSE begins to decrease. Additionally, we hypothesize that the CSE pre-

movement suppression will peak alongside the MRCP’s NS component around 200–100 ms before 

MOn. However, it remains unclear whether these patterns will be evident from the start of the 

experiment or emerge only in later trials as learning progresses. Specifically, for CSE, it is uncertain 

whether learning will affect only MEP magnitude or if the hypothesized cubic trajectory of CSE will also 

be altered. Furthermore, it is unclear how individual learning-driven changes will impact the ability to 

predict CSE based on ERD. For instance, Daly et al. (2018) aligned the CSE (now considered preparatory 

and pre-inhibition) peak with 30% ERD strength in highly trained movements. Whether a similar 

preparatory peak will be present early in learning remains an open question. 
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4.2 Materials and Method 

4.2.1 Participants 

All 59 participants (33 female and 2 non-binary, between 18 and 41 years of age, mean ± SD = 23.22 ± 

4.72) filled out a questionnaire screening for any contraindication for TMS, based on the recommended 

screening procedures outlined by Rossi et al. ( 2009, 2011) as well as Wassermann (1998). All were 

self-declared right-handed healthy adults, with normal or with corrected-to-normal (via contacts) 

vision and had no (history of) neurologic or psychiatric disorders, or any (history of) alcohol or 

substance abuse. All participants indicated they were free of any medicinal treatments, conditions, or 

history likely to modulate their cortical excitability. 75% reported to have some form of musical 

background and training (between 1 month and 17 years of active practice; median = 3 years, IQR is 

between 2 and 5), of which 36% included some form of key-based instrument (to 25% string based, 

9% wind based instrument and 30% non-instrument-based music related experience, e.g., dancing, 

singing, etc.) Only 25% of the participants indicated they actively practiced music at the time of testing, 

of which nearly half (45%) specified they only practice occasionally for their own enjoyment. 

One participant was excluded from both behavior and neural analysis due to excessive movement, and 

unusable data leading to early termination of the recording. 

The study was conducted in accordance with ethical guidelines and was approved by the University of 

Essex Research Ethics Board and the Neuromodulation committee (ETH2122-0179). 

4.2.2 Experiment design 

4.2.2.1 Recordings 

Participants sat in an electrically shielded test booth, on a TMS-Robot chair (Axilum Robotics, 

Strasbourg, France) (see Figure 14), at 3 meters from a screen (32inch, refresh rate 60 Hz) placed at 

eye level outside the booth, with Genlec speakers placed in the test booth for audio output. They were 

instructed to sit in a relaxed position with their head resting against the headrest. Their right upper 

arm was vertically oriented along the body, with the elbow at an angle of about 90° and their forearm 

resting on a pillow for support. Supports (head, back, and arm) were adjusted for the participant to 

obtain a comfortable resting position. The right hand was placed on a standard UK qwerty keyboard. 

The response keys were chosen to encourage a neutral and relaxed hand position: index - X key, middle 

- F, ring - G and the little finger on the N (or M, according to participant preference, e.g., participants 

with very big hands may prefer the M key). Visual inspection of the participant’s EMG signal was used 

to ensure a relaxed position. Specifically, we looked for the EMG signal to be comparable to the hand 

hanging completely at rest next to the body (i.e., to show no sign of muscle tension or contractions). 
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Hand and keyboard positions were adjusted until satisfactory signals were realized and participants 

could maintain the position without strain. 

EEG and EMG signals were recorded using an ActiveTwo Biosemi system (BioSemi, Amsterdam, The 

Netherlands), all electrodes were TMS compatible and applied according to the manufacturer’s 

guidelines. Participants wore a 64-channel EEG cap (10/20 placement system) and reference 

electrodes were positioned on the mastoid bones behind the right and left ears. A trigger channel was 

used to mark experiment events on the signal. EMG signals were obtained from the right first dorsal 

interosseous (FDI; i.e., the index finger) and abductor digiti minimi (ADM; i.e., the little finger) muscle; 

using a bipolar set up of active flat surface electrodes. The recording electrodes were placed on the 

muscle bellies, with reference electrodes above (FDI) or below (ADM) the closest 

metacarpophalangeal joint. The diameter of each electrode was 0.3 cm and the distance between two 

electrodes within a pair was approximately 5 cm. 

Both EEG and EMG signals were amplified and recorded at a 2048 Hz sampling rate without re-

referencing or filtering applied. Specifically, Biosemi records signals against a feedback loop between 

a Common Mode Sensor (CMS) active electrode and a Driven Right Leg (DRL) passive electrode as 

Figure 14 

TMS-Robot Chair Setup in an Electrically Shielded Test Booth 

Note. The left image shows the general set up with a participant wearing EEG while seated in the TMS-Robot Chair inside a 

faraday cage. The right image shows the empty TMS-Robot Chair. The left image was obtained from the university of Essex 

website https://www.essex.ac.uk/departments/computer-science-and-electronic-engineering/research/brain-computer-

interfaces-and-neural-engineering/facilities 
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ground and no reference (for more information see Biosemi website). During the experiment, the CMS 

and DRL electrodes were placed in the cap as part of the standard EEG electrode set up, serving as 

ground for both EMG and EEG electrodes. However, while EEG electrodes were fully set up for the 

TMS hotspot hunting (detailed further below), they were not plugged in to the amplifier and an 

alternative CMS and DRL loop was set up (the CMS electrode was placed at the center of the dorsal 

side of the right hand and the DRL electrode was placed over the right wrist styloid) to serve as ground 

to the EMG electrodes. The cap placed CMS and DRL did not adversely affect the MEP signal quality 

(as verified in the offline recordings), they did, however, make the TMS artifact very wide (> 50-100 

ms, called decay artifacts (Hernandez-Pavon et al., 2022; Varone et al., 2021)). Offline data analysis 

can work around TMS artifacts by, for example, fitting an exponential function to bring the pulse 

artefact back to its standard form (Ilmoniemi & Kičić, 2010; Litvak et al., 2007). The online display of 

the signal, which we used for TMS hotspot hunting in our experiments, did not have this option, with 

the wide artifact making it impossible to observe MEPs and their differences. As such the alternative 

set up was used for the TMS hotspot hunting procedure and removed afterwards in favor of the EEG 

cap CMS/DRL loop. 

Once EEG and EMG were set up, each participant their TMS hotspot was located. TMS was delivered 

in single pulses via a MagStim D70² figure 8-coil (MagStim, Dyfed, UK), equipped with a force sensor, 

plugged into a Magstim 200² TMS stimulator (MagStim). The coil was controlled using a TMS-Robot 

(Axilum Robotics) and neuro-navigation software (Localite GmbH, Bonn, Germany). Providing a 

procedure with, compared to the traditional TMS set up with the coil stationary in a clamp or held by 

researcher, increased accuracy and control of the position, orientation, and contact pressure of the 

stimulation coil relative to the participants’ head (Ginhoux et al., 2013). The coil was placed at a 45° 

angle to the sagittal plane with the handle pointing backwards; inducing a posterior to anterior current 

flow (Adank et al., 2018; Gomez-Tames et al., 2018). The hotspot was defined as the cortical target 

giving the largest Motor Evoked Potentials (MEPs) in the contralateral FDI and ADM for a given stimulus 

intensity. The favorable coordinate gave the highest response for both FDI and ADM, however for 

unclear ADM responses the position that produced the highest MEPs for the FDI was chosen. 

For each participant the stimulation threshold and location were identified following procedural steps 

outlined in Rossini et al. (2015). First, the robot held stimulation coil was directed systematically 

through a 7x7 grid (7 mm apart, top edge placed parallel to the interhemispheric fissure; Giuffre et al., 

2021; Raffin et al., 2020), placed over the left hemisphere and centered around a theoretical cortical 

target for the FDI (located using the anatomical landmark of the precentral gyrus hand knob; Yousry et 

al., 1997; referential coordinate in the standard Montreal Neurological Institute (MNI) dataset frame: 

-40, -13, 68). We began by stimulating at each of the four cardinal points around the center, while 
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visually inspecting the recorded EMG signals. Visual inspection of the MEP responses in the signal 

further informed the coil trajectory through the grid. Then, once the hotspot was found, the resting 

motor threshold (rMT) intensity was determined for every participant by adjusting the TMS intensity 

until the EMG signal displayed 5 out of 10 MEPs for which the peak-to-peak amplitude was at least 50 

μV. The experimental threshold (eMT) was then set at rMT + 2% of the maximum TMS output (e.g., for 

an rMT of 65% the eMT is set to 67%), rather than the more conventional 120% of rMT. The 120% 

scaling is disproportional at higher intensities (e.g., 120% of 55 is 66) compared to lower intensities 

(e.g., 120% of 30 is 36). Without EEG electrodes placed on the participant’s scalp, the rMT tends to be 

around 30-40% of the stimulators maximum power. We found, with EEG, the average stimulation 

power needed to be around 55-65% of the stimulators maximum power. The difference to the 

conventional range of stimulation power is most likely caused by an increased distance between coil 

and scalp due to the EEG electrodes, requiring a higher stimulation intensity to elicit equivalent MEP 

responses. Thus +2% functioned as an alternative to the conventional 120% of rMT intensity used as 

thresholds for experiments. 

Participants wore ear plugs to reduce the influence of the loud sounds resulting from the TMS 

discharges. 

Stimuli presentation and recording of neural activity happened on different computers. The 

experimental paradigm was custom-made in MATLAB (Version R2022b; MathWorks, MA, USA) using 

the Psychophysics Toolbox extensions (Psychtoolbox-3, version 3.0.18; Brainard, 1997; Pelli, 1997; 

Kleiner et al, 2007); in addition to LoopMIDI (Version 1.0.16.27, Erichsen, 2019) and KONTAKT 6 PLAYER 

software (version 6.2.2 (R51), Library: Kontakt Factory Selection, Ragtime Piano – Grand Piano; Native 

Instruments GmbH, Berlin, Germany) for audio output. Remote stimulation of the TMS pulses was 

realized using the MAGIC toolbox (Habibollahi Saatlou et al., 2018) and an inhouse made serial cable 

to control the Magstim 200² TMS stimulator (MagStim) from the stimuli presentation PC. Data analysis 

was carried out using custom-made MATLAB functions and R software. 

4.2.2.2 Procedure 

Participants were asked to read a briefing, provide informed consent, and fill in a short survey (see 

Appendix A3 for the complete updated survey) on their self-reported motor skill level and music 

proficiency upon arrival. The survey consisted of two 9-point Likert scales. First, “How would you rate 

your right-hand dexterity / muscle control?” (1 = Far worse than most, 3 = Worse than most, 5 = 

Average, 7 = Better than most, 9 = Far better than most). Followed by, “What would you rate your 

general musical competence?” (1 = Very poor, 5 = Average , 9 = Excellent). Likert scales were followed 

by open questions enquiring about any background relating to music. The questions were: Type of 

musical practice (e.g., Instruments, Singing, Dance, etc.), Total number of years actively practiced, Time 
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period of active practice (e.g., from age 5-15), Currently playing, and any other information the 

participant considered relevant or wanted to share (e.g., Self-taught, or traditional music education). 

 

The experiment consisted of one 3h session (of which 2h were needed for set up) and aimed to train 

participants’ right hand finger motor control skills using the piano learning task introduced in Chapter 

3. During the experiment EEG and EMG were recorded and TMS was delivered at 6 predefined key 

time points, at -1.250s, -1s, -0.750s, -0.500s, -0.200s, -0.100s, relative to a fixed estimated time point 

at which movement onset (MOn; t0) was assumed to occur in the EMG signal. MOn was estimated 

based on the following parameters: 1) An electromechanical delay of around 90 ms between MOn and 

button press detection 2) the average response delay in a reaction time task is around 300 ms (Ibáñez 

et al., 2020). Consequently, the average MOn time was estimated to be 200 ms after the signal for the 

first button press (first target number turning blue, see the description of the learning task in 3.2.2 

Experiment Design). These exact stimulation timepoints were chosen considering our timepoints of 

interest as described in the hypotheses: 1) wanting to have a better idea of the CSE timeline between 

-1.5s and -0.5s to MOn, 2) exploring the relation of EEG neural markers to the pre-movement dip in 

CSE occurring between -0.5s and -0.2s, as well as the observed increase between -0.1 to 0s to MOn 

and 3) to ensure a better and more equal spread of TMS across the 2 second timeline before MOn to 

improve the data quality of both EMG and EEG and address the issues outlined in Chapter 2. Presenting 

the stimulation timepoints at fixed times in the experiment combined with a variable MOn further 

encouraged more spaced-out measures of the evolution of the CSE timeline. 

Figure 15 

Flowchart Detailing Neuroimaging Experiment Protocol 
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Before data collection, participants read through detailed task instructions and went through 3 stages 

of task familiarization. They pressed the F key (middle finger) to navigate forward in these instructions. 

The TMS coil was not aligned and no stimulation was applied during familiarization. The first and 

second stage were identical to the learning task described in Chapter 3. The third stage of the 

familiarization process focused on the timing of the first button press in the sequence; and was added 

to encourage reliable timing for our assumed MOn (Ibáñez et al., 2020), and minimize the learning 

curve for timing the initial button presses from influencing the measure of learning the sequence. 

To train their response times, we ran participants through 4 blocks of 12 abbreviated trials (stopped 

short after the first number in the sequence turned blue, participants had up to 800 ms after the cue 

change to respond) and gave feedback immediately after each response. Reaction times (RTs) between 

50 ms and 350 ms after the cue change from white to blue resulted in the words ‘’well timed!” being 

presented on screen. RTs before and up to 50 ms after the cue change resulted in a message informing 

the participants that they were ‘’too fast’’, and any response later than 350 ms resulted in the words 

‘’too slow’’ presented to participants. Each block had a different sequence (once again different from 

the one used in the test part of the experiment) and started with a different finger so participants 

received timing training with all four fingers. 

The familiarization was concluded with an opportunity to ask any remaining questions, a message to 

emphasize participants to keep their hand in the relaxed position obtained at the start of the 

experiment, and a general learning tip to, going forward in the experiment, “focus on the order of the 

button presses and timing with changes on the screen, before worrying about the duration of a button 

press.” 

Before starting the test part of the experiment, the TMS coil was aligned with the previously defined 

stimulation target. Once contact was established the participant was given the signal to proceed with 

the experiment. 

For the task, participants ran through 10 test blocks, presented (in a random order) with 1 of the 10 

unique sequences to learn per block. For each block they were given a total of 24 tries to execute the 

melody as accurately as possible (see the learning task described in 3.2.2 Experiment Design). Because 

we are interested in neural activity in the pre-movement period, sequences were further setup so that 

a recorded muscle related to the first number in 80% of the trials, split evenly between index and little 

fingers. The remaining 20% of the trials would start with either the ring or middle finger. Participants 

were shown, albeit of a smaller magnitude, muscle responses of their middle and ring finger in the 

EMG signals during set up. Giving the intentional impression that middle and ring finger would also be 

picked up with the electrodes placed over the index and little finger. Every block started with a visual 
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presentation of the full sequence for that block. Participants would then press the F key (middle finger) 

to start the first trial of the block. 

During the test trials, a single TMS pulse was given at one of six predefined time points: 1.150s, 1.400s, 

1.650s, 1.900s, 2.200s or 2.300 seconds relative to the start of the fixation cross. Which is equivalent 

to -1.250s, -1s, -0.750s, -0.500s, -0.200s and -0.100 seconds before the estimated observation of MOn 

in the EMG signal, which was expected to occur around 200 ms after cue change. Stimulation occurred 

a total of 4 times per time point per block, in a semi randomized order (to avoid order effects while 

ensuring an even spread of our measures, e.g., avoiding all stimulations at 500 ms relative to MOn to 

happen in the first 4 trials) per 12 trials. Meaning, all 6 stimulation points will be randomly allocated 

twice over the first 12 trials in a block, and again for the next 12 trials in the block. 

Participants had the opportunity to take a small break of up to 5 minutes between blocks or to press 

the F key to continue to the next block. However, participants were informed to, even when taking a 

break, avoid moving as their head was still in contact with the TMS coil. 

At the midway point, after block 5, participants took a compulsory 5-minute break, irrespective of any 

earlier breaks taken. At this point the researcher unaligned the TMS coil and allowed participants to 

stand up, have a drink of water and stretch their legs. The midway point break was in response to pilot 

findings and feedback. Previously, the combination of sitting still and up, in a relatively uncomfortable 

chair, for the length of the experiment resulted in strain and discomfort for the participant, leading to 

a decline in attention and an increase of fidgeting. After the enforced 5-minute break, participants 

were reseated, their hand was repositioned until satisfactory EMG signal was reobtained, the TMS coil 

was realigned and the participant resumed with the second part of the task. 

Upon completing the task participants were freed of electrodes, got a chance to ask any remaining 

questions and to wash their hair. 

4.2.3 Data preparation and planned analysis 

4.2.3.1. Behavioral data 

Improved motor control of sequential finger movements was measured by learning the responses to 

numerical sequences and the timing of each response based on an underlying melody. Button 

responses were measured as a time series, and performance accuracy was defined as the percentage 

of correspondence between a participant’s response series and that of ‘a perfect sequence’. Trial 

reaction times (RT) were measured as the difference in time between the first button press and the 

first number turning blue. Both accuracy (ACC) rates and RTs were submitted to rmANOVAs following 

our simplified design version; with Blocks as a 2-factor variable and Trials as a 4-factor variable. 

For full details on data preparation and planned analysis of behavioral output see 3.2.3 Data 

preparation and planned analysis. 
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Figure 16 

EEG Signal With Both Regular and Irregular TMS Induced Artifacts 

Note. Raw, unreferenced, EEG from a single electrode for two participants. TMS was applied to every trial, these 

expected TMS artifacts show consistent within individuals despite inter-individual differences (e.g., A vs. B). 

Unexpectedly, some trials show large artifact shifts beyond typical TMS-induced effects. 

In total 10 trials, spread over 8 participants (between 1 and 3 trials per person; mean ± SD = 1.25 ± 

0.71), were removed from further analysis due to no recorded button presses. Additional trials with 

outliers were removed, once again identified using Tukey’s method (Dhana, 2016; S. Seo, 2006). A total 

of 0.15% (16 out of 13920 trials) of the trials were removed for ACC scores, and 3.30% (459 out of 

13920 trials) were removed for analysis relating to RT (both totals include the 10 ‘no response’ trials). 

4.2.3.2. Neuro imaging data 

Biosemi saves EEG and EMG recordings as one data file. As such, datasets were initially loaded in 

without reference. We re-referenced the 64 EEG electrodes to the average of both mastoids. EMG 

signals were bipolarly referenced to their respective reference electrodes. 

Artefact removal. Large amplitude artefacts, such as those introduced by TMS, are known to 

negatively interact with (i.e., introduce additional artifacts surpassing the duration of the original 

artifact) steps of the data preparation process further down the line (e.g., ICA, filtering, etc.). All large 

amplitude artefacts were removed through the interpolation process described in 2.2.2.3 TMS 

Artefact Removal, with the difference that the smoothing of the edges now covered 5 ms on each side 

(compared to the 20 ms utilized in Chapter 2). 

First, major TMS induced negative baseline amplitude shifts (difference > 5000 µV, see Figure 16) 

observed on some trials (having very sharp points of offset and return to baseline, unlike the slow 

decay return described in Chapter 2) were interpolated for both EEG and EMG over a window of 1s, 

starting 0.02s before the TMS event marker. Other oddities, observed through visual inspection, were 

removed at the same time via interpolation. With manually defined window sizes of minimal length 

required we removed the noted artefact. 
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Second, we interpolated the TMS pulse artefact present in all our trials of interest (see Figure 17 for 

removal process). Once again, many trials and channels showed TMS pulses with a decay artefact 

(Hernandez-Pavon et al., 2022; Varone et al., 2021). However, spanning tens of milliseconds and thus 

looking more like wide TMS pulses (see also Figure 18B) rather than a shift in baseline as noted in 

Chapter 2. The slow dissipation of electrical charge, resulting in the observed decay, shows an 

exponential curve (Varone et al., 2021). To not interpolate (and thus lose) more data than necessary, 

we fitted an exponential function to bring the pulse artefact back to its standard form (Figure 17B) of 

spanning around 7 ms (Ilmoniemi & Kičić, 2010; Litvak et al., 2007). Specifically, we high-pass filtered 

both EEG and EMG (IIR Butterworth, 4th order; EEG at 0.01 Hz and EMG at 0.1 Hz). Filter frequencies 

were chosen to be high enough to center the waveform around the zero-amplitude line, and low 

enough not to introduce additional artifacts or violate theoretical filtering requirements (2.2.2.4 ICA 

and Filtering, EEG pre-processing for MRCP). This was followed by fitting and subtracting an 

exponential function for each channel and trial (both EEG and EMG). Finally, the TMS pulse was 

removed by interpolating a window of 12 ms around the maximum absolute value (-0.002s to +0.01s) 

for EEG and 17ms (-0.005s to +0.012s) for EMG (22 ms and 27 ms respectively when including the 5 

ms edge smoothing on each side of the window). Window sizes were chosen to retain as much data 

as possible (i.e. as small as possible), while ensuring a consistent result across participants in an 

automated process. 

Note. The general TMS artifact interpolation process was identical for both EEG and EMG, shown here is an EMG signal with a 

very small MEP. (A) illustrates how the decay artifact compromises the interpolation attempt and completely obscures the 

presence of an MEP. (B) shows the signal before and after fitting and subtracting the exponential, with a now discernable MEP. 

(C) presents the successful interpolation of the TMS pulse artifact. Dotted green line shows the stimulation marker in EEG 

overlaps with the location of the TMS pulse artifact. 

Figure 17 

Process of TMS Artifact Interpolation  
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EMG data was then high-pass filtered at 20 Hz (FIR filter, 4020th order) (Nikolov et al., 2021)and both 

EEG and EMG were down sampled to 1024 Hz (Ives & Wigglesworth, 2003). 

EEG was subjected to further cleaning. Using ICA to remove blink artefacts, as well as reoccurring robot 

induced artifacts (Figure 19), from the EEG data, now cleaned of TMS artifacts. As described in 2.2.2.4 

ICA and Filtering, we first filtered the EEG data using a 1 Hz high-pass filter (IIR, 4th order), a 50 Hz 

notch-filter (IIR, 6th order), and a low-pass filter at 40 Hz (FIR filter, 4020th order). Bad channels, flagged 

based on joint probability (using EEGLAB, version 2023.1, pop_rejchan function, with trimmed 

normalization and threshold set at 5 SD; Delorme & Makeig, 2004), and further confirmed via visual 

inspection, were excluded before running the ICA. Independent Components (ICs) were then identified 

by visual inspection. Once again, the data from which ICs were removed held a different (lower) high-

pass filter than the data on which the ICA was ran (0.01 Hz (IIR, 4th order) instead of the 1 Hz used to 

run the ICA) (Makoto's preprocessing pipeline, n.d.). To finalize data cleaning and preprocessing we 

interpolated the bad channels removed prior to running the ICA. 

 

 

Figure 18 

EMG Signal Showing TMS Artifacts, MEPs and Muscle Contraction Bursts 

Note. Bipolar referenced FDI-EMG single for two 

participants. 

(A) shows a typical TMS pulse followed by a 

clear MEP and unexpected post-stimulation 

noise that occurred at 200 ms post-pulse, 

identified as line noise burst over lapping in 

intervals of 50 Hz (50, 100, 150, etc.). However, 

for EMG this artifact fell outside of our window 

of interest. 

(B) shows a TMS-pulse with an MEP appearing 

fused to the decay artifact, resembling a normal 

but wider pulse artifact. Shortly followed by an 

EMG muscle contraction burst. Further showing 

inter-individual differences in the post 

stimulation line noise. Here still present but 

smaller. 
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Unchanged from Chapter 2, the Epochs of Interest (EoI) were defined as a time window of 3 seconds 

relative to the MOn. Starting 2 seconds before and ended 0.5 seconds after MOn, with an additional 

250 ms added onto both ends of the interval to account for edge effects. MOn was once again defined 

as onsets of increased EMG activity to indicate movement initiation. However, different to Chapter 2, 

the data was gathered with the intention to establish a measure relative to MOn. As such it contained 

a mechanical indicator as part of the experimental design (reflecting the exact time point a button was 

pressed) to obtain these EMG onset times in each trial. To properly estimate these EMG-based MOns, 

timepoints of a button press were shifted 90 ms earlier to account for the electromechanical delay 

between electrical muscle activation and production of force output (Demandt et al., 2012; Ibáñez et 

al., 2020; Klein-Flügge & Bestmann, 2012). 

Trial Removal. 5 participants were excluded from further analysis as a whole, due to uncorrectable 

issues with the recording. An additional 7 participants were excluded for different parts of the analysis 

due to low quality of their data or retained less than 1/3 of their trials following the exclusion criteria 

listed below. Specifically, 4 were excluded for the EEG analysis and 3 for the EMG based analysis. 

Note. Segment of EEG signal from multiple channels highlighting different artifacts. (A) shows a blink artifact. (B) displays unexpected post-

stimulation noise at 200 ms, identified as line noise bursts at 50 Hz intervals, previously shown in EMG. In EEG, this artifact was effectively 

removed with low-pass filtering at 40 Hz. (C) highlights a repetitive yet irregular robot-induced artifact. Both A and C were successfully 

removed using ICA. 

Figure 19 

EEG Signal with Blink, Robot-Induced, and Post-TMS Line Noise Artifacts 
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For the remaining participants (50 for EEG, 51 for EMG) we further removed individual trials in 

accordance of the following conditions: 

(i) Absence of a response (i.e., no button presses within the presentation of the first two 

numbers of a sequence). 

(ii) Incorrect first response. 

(iii) Presence of major TMS induced baseline amplitude shifts (> 5000) in both EEG (µV) 

and EMG (mV), spanning a duration between 0.8s and 1s. 

Exclusively for EEG measures, trials were further removed due to 

(iv) Presence of artefacts between the start of the fixation cross and 1st button press. 

Specifically, trials were excluded if EMG and/or movement artefacts were identified 

on one or more EEG channels (identified by visual checking). 

Exclusively for EMG (MEP) measures, trials were further removed due to 

(v) Absence of TMS delivery. 

(vi) Middle or Ring finger as a sequence start response. 

(vii) Trials were not relevant to our analysis, as indicated by movement onset occurring 

prior to, during or more than 2 seconds removed from stimulation. 

Removing these trials from the dataset before further analysis ensures the results are based on trials 

where: 1) the participant-initiated movement, 2) there is no artefact contamination and 3) for EMG 

(i.e., MEP measures) we have reliable measures of the relevant muscle with the delivery of TMS that 

happened prior to movement. 

Differences in trial removal criteria for EEG to EMG measures is dictated by the different types of data 

presenting different challenges (both practical and theoretical) to what makes a trial measure 

informative. Consequentially, a higher number of trials were able to contribute to EEG measures than 

to EMG measures, as EEG measures are not dependent on the contraction of a specific muscle, nor 

require the presence of TMS. See 4.3.2 Neuroimaging result for exact numbers. 

Neural marker Characterization. These were once again near identical to the characterization defined 

in Chapter 2 (2.2.3 Neural Marker Characterization). With the difference that, for ERD, the sliding 

window to calculate the frequency band power (which was 625 ms to cover 5 cycle lengths of the 

lowest frequency (i.e., 8 Hz) in Chapter 2) was adjusted to 250 ms. Still covering a minimum of 2 cycles, 

as calculated on the lowest frequency, to avoid aliasing (as per the Nyquist theorem; Por et al., 2019) 

but smaller for a more balanced time-frequency trade-off (a wider window yields a higher frequency 

resolution at the cost of a decreased temporal precision; Cohen, 2019) (i.e., reduce the unnecessary 
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high spatial resolution handled in Chapter 2). Final TMS interpolation for EEG once again covered 120 

ms, as described in Chapter 2, as we were unable to consistently remove the TMS induced artifacts in 

an adequate and timely manner. However, combined with the adjusted sliding window for power 

calculation, only 370 ms (compared to the 750 ms in Chapter 2) of calculated band power is affected 

by the lack of variance in the interpolated window and needs to be replaced by NaN values before 

averaging. 

The MEPs, as a measure for corticospinal excitability, were once again measured in terms of their peak-

to-peak difference (max – min value) in amplitude, 0.015–0.045 seconds after TMS delivery. Signal to 

Noise Ratios (SNRs) were calculated to ensure the values included were actual MEPs. In absence of 

SHAM trials to function as a control measure, we retained the 90th percentile (SNR =1.1) of the SHAM 

SNR distribution in Chapter 2, to differentiate between trials with and without MEPs. 

Remaining MEP values were then log transformed (to the base e) to ensure normality of samples, and 

standardized (z-scored) per finger and per participant, to ensure comparability of amplitude across 

response type (i.e., finger) and individuals. 

No changes were made in the calculation of MRCP. 

The focus of the analysis was to compare the ERD strength, MRCP and CSE timeline. Specifically, to 

assess the evolution of CSE over time relative to MOn and its relationship to the EEG-based neural 

markers on this same timeline. We then wanted to know how learning affects the neural markers 

individually, as well as the relationship dynamic between all 3 of the neural markers in terms of timing 

relative to MOn. 

To assess the effect of learning on each neural marker their evolution over time, the timeline relative 

to MOn was converted from a continues to a discreet variable. Focus was on 7 timepoints informed 

by, and best suited to test, our hypotheses: -1.25, -1, -0.75, -0.5, -0.25, -0.1, -0.05 seconds relative to 

MOn. We calculated the value of each neural marker for each timepoint per participant, by first 

averaging the neural measures over trials and then as an average of the surrounding timepoints 

according to the following time intervals (in order of the prior listed timepoints): ]-1.375,-1.125], ]-

1.125,-0.625], ]-0.625,-0.375], ]-0.375,-0.150], ]-0.150,-0.075], ]-0.075,0]. Meaning, all participants 

ended up with 7x2 aggregated measure values for Blocks and 7x4 for Trials; per neural marker. Where 

for example, participant 20 their MRCP amplitude was at -1s to MOn in first half of the experiment, 

this resulted from first averaging all trials in the first half of the experiment, and then averaging all 

average amplitude values between 1.125 and 0.625s before MOn.  

Each neural marker was then subjected to two two-way rmANOVAs; containing the discreet timeline 

as a 7-level factor (further referred to as “Timepoints”) and one of the two ‘learning conditions’ (Block 

as a 2-factor variable or Trial as a 4-factor variable). Two-way rmANOVAs were chosen over one three-



P a g e  | 111 

 

way rmANOVA as the learning interaction of blocks and trials held little relevant meaning as indicated 

by the behavioral data (see 4.3.1 Behavioral results). 

The neural marker relationships (i.e., dynamics of CSE in relation to changes in neural activity over the 

motor cortex) were further quantified by exploring the neural markers in EEG their ability to describe 

and predict MEP amplitudes. However, without the delay effect described in 2.3.2.1 CSE dynamics in 

Relation to ERD. In Chapter 2, replacing part of the band power measure with NaN lead to severely 

reduced number of contributing trials (with only 18% trials remaining at its lowest), the current study 

provides a better spread of TMS over the 2 seconds leading up to MOn, with 73% of the total number 

being the lowest number of trials contributing to the ERD measure at -0.065 ms to MOn. The effect of 

learning is then assessed by comparing the model’s ability to predict datapoints within and across the 

different stages of learning. Another difference in the predictive modeling approach from Chapter 2 to 

Chapter 4 is that the current study MEP amplitudes matched with the participant’s unique average 

ERD % at that time. This is different from the predictive modeling in Chapter 2, where the relative 

decrease in band power needed to be calculated from sample point values averaged over all the 

subject averages. The reason for this difference lies in the low number of trials retained in Chapter 2 

and the overlap of TMS timepoints, and thus overlap in windows removed by NaN. This led to several 

of the participant in Chapter 2 to have an average ERD measure that would still be plagued by having 

no value or a value determined by a single trial. Working with an across subject average to calculate 

the relative decrease in ED (i.e., percentage) was a work around for this issue. The better spread of 

TMS stimulation and higher number of retained trials in Chapter 4 means we do not need to have 

these extra measures and can work with the participant averages directly. 

4.3 Results 

4.3.1 Behavioral results 

Having music-based training can improve an individuals’ musical competence. Playing an instrument 

can, in addition, result in increased hand dexterity and/or muscle control. However, for both musical 

competence and hand muscle control, a higher-than-average capability can exist outside of musical 

(or any) training. In the current study the participant sample had a 44 to 15 (yes/no) ratio on the 

questions of having any musical background and training. On a 9-point Likert scale, those with music-

based training rated their own musical competence as “average” (M ± SD = 5.36 ± 2.04), which was 

significantly higher [t(57)= -2.95, p = 0.005] than those with no music training who rated their musical 

competence as “below average” (M ± SD = 3.60 ± 1.88). No such difference was observed for self-

reported muscle control of the right-hand [t(57)= -0.56, p = 0.578] where both those with a musical 

background (M ± SD = 6.64 ± 1.33) and those without (M ± SD = 6.4 ± 1.64) perceived their right-hand 

muscle control, on average, better than most. Based on these results we can confidently move forward 
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with the factor of ‘having musical training or not’ to further assess any confounding effects of 

musicality on our task performance and learning curves. We conclude that any differences in 

performance on the task between the groups is due to an advantage of musicality and not in (self-

perceived) muscle dexterity. Additionally, if no such difference in performance is found, our task is well 

made and suitable to allow us to conclude that any observed learning effects are motor learning 

effects. 

The three-way mixed effect ANOVA, including musical background as a between subject factor with 

two levels (yes or no) alongside Trials and Blocks, once again showed no confounding effects of pre-

existing advantages from trained musicality. There was no significant difference between the general 

performance scores for those with and without musical background [F(1,56) = 0.13, p = .721, ŋ² = .002]. 

Neither were there any interactions between musical background and Trials [F(1.67,93.32) = 0.61, p = 

.515, ŋ² < .001] or Blocks [F(1,56) = 2.26, p = .138, ŋ² = .003] indicating people with musical background 

did not have any general advantage in the task or improvements in performance scores at a rate any 

different than those with no musical background. 

A two-way rmANOVA with Trials and Block showed the expected significant differences of performance 

scores over Trials [F(1.68,95.57) = 113.68, p < .001, ŋ² = .066] as well as over Block [F(1,57) = 13.19, p 

< .001 ŋ² = .017], as well as an unexpected interaction between the two [F(2.27,129.54) = 21.515, p < 

.001, ŋ² = .006]. While the interaction term is statistically significant, the eta squared implies the effect 

is of a negligible size. Two separate (Bonferroni corrected) one-way rmANOVA follow-up tests showed 

our significant learning effect over trials is retained in both the first half [F(1.7,96.7) = 112, p < .001, ŋ² 

= .106] and second half [F(2.12,121) = 50.9, p < .001, ŋ² = .035] of the experiment. However, with 

notably different F and eta square values. These results are in line with the observations in Figure 20 

showing a present, yet slightly less pronounced sequential increase in performance ACC over trials in 

the second half of the experiment. Four Bonferroni corrected pairwise comparisons were used to 

further explore the interaction and the difference between the first and second half of the experiment 

for the average performance accuracy of the first 6 trials [Trial 1-6; t(57) = -6.66, p < .001], the second 

6 trials [Trial 7-12; t(57) = -2.82, p = .007], third set of 6 trials [Trial 13-18; t(57) = -2.21, p = .031] and 

the final 6 trials [Trial 19-24; t(57) = -1.68, p = .098]. All showed a significant difference between the 

first and second half of the experiment, except in the last 6 trials. Taken together, our results here show 

participants do learn, and performance significantly improved over trials (learning an individual 

sequence) and the experiment in general (learning over several sequences). The learning curve for an 

individual sequence, however, became less steep as participants became better. 
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Figure 20 

Mean Performance Accuracy per 6 Trials Split over First and Second Half of the Experiment 
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We once again tested the theoretical assumption of equivalence among sequence difficulty. The one-

way rmANOVA indicated a significant difference [F(6.4,364.66) = 27.39, p < .001, ŋ² = .128] when 

comparing average ACC scores between different sequences, irrespective of their sequential order 

(i.e., Trial and Block order not being considered). Specifically, pairwise post-hoc analyses with a 

Bonferroni adjustment revealed ACC scores of four sequences (3, 4, 7 and 10; see corresponding bars 

in Appendix A4) were statistically significantly different than nearly all the other sequences [p < .05; 

see Table 6], while no such notable differences existed among the six other sequences [p > .05; see 

Table 6]. Meaning, based on Figure 21 and the randomized (and thus semi balanced) presentation of 

the sequence order, participants performed significantly worse on the sequences 3, 7 and 10; 

regardless of these sequences being presented as one of the first or later ones in the experiment. 

While sequence 7 appeared to be significantly more challenging than other sequences, scores were 

still not as low as on sequence 3 and 10; as indicated by significant difference between sequence 7 and 

3 [t(57) = -3.62, p = .028] and 10 [t(57) = 3.57, p = .033]. On the other hand, participants scored equally 

low on sequences 3 and 10 [t(57) = -.63, p = 1], implying these sequences were experienced, by 

participants as being of similar difficulty. Differences in scores with sequence 4 on the other hand 

resulted from participants scoring on average higher on sequence 4 compared to other sequences. 

The difference is seemingly driven by sequence 4 being experience as easier than the others. 

Table 6 

P-values of Pairwise Post-Hoc tests for a One-Way rmANOVA on Equivalence of Sequence Difficulty 

Sequences Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10 

Seq 1 1 1 
< .001 

*** 
.283 1 1 

< .001 
*** 

.148 1 
< .001 

*** 

Seq 2  1 
< .001 

*** 
.028* 1 1 .003** 1 1 

< .001 
*** 

Seq 3   1 
< .001 

*** 
< .001 

*** 
< .001 

*** 
.028* 

< .001 
*** 

< .001 
*** 

1 

Seq 4    1 .001** .023* 
< .001 

*** 
< .001 

*** 
.023* 

< .001 
*** 

Seq 5     1 1 .082 1 1 
< .001 

*** 

Seq 6      1 .022* 1 1 
< .001 

*** 

Seq 7       1 .419 .054 .033* 

Seq 8        1 1 
< .001 

*** 

Seq 9         1 
< .001 

*** 

Seq 10          1 

Note: Differs significantly from each other, * at p < 0.05 (Bonferroni adjusted). See appendix A3b for associated t test statistics. 
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We had two issues regarding RTs of 1st button presses in Chapter 3. First, that participants sped up 

significantly over the course of the experiment. Second, the magnitude of the increase in speed. To 

assess the training effects from the 3rd familiarization stage, on the timing of the first button press in a 

trial, we first ran a three-way rmANOVA and ensured there was once again no significant difference in 

RT for those with trained musicality. We found no general main effect [F(1,56) = 0.48, p = .493, ŋ² = 

.007], nor interaction on the level of Trial [F(2.08,116.23) = 0.11, p = .907, ŋ² < .001] or Block [F(1,56) 

= 0.15, p = .700, ŋ² < .001] (see Figure 22). Following up with a two-way rmANOVA showed us 

participants still became significantly faster in their response to the start of a trial as they become 

more practiced in the sequences and task. As seen in Figure 23, participants consistently sped up as 

they practiced individual sequences [F(2.08,118.35) = 31.84, p < .001, ŋ² = .024], even when they got 

faster over the course of the experiment [F(1,57) = 57, p < .001, ŋ² = .046]. Results also indicated the 

rate participants sped up over as they learned an individual sequence differed between the first and 

Figure 21 

Mean Performance Accuracy per Participant per Sequence, Irrespective of Presentation Order 

Note. Sequence order was randomized before presentation for every participant. Individual dots indicate average accuracy 

score per participant per sequence. Horizontal black line indicates the overall average performance accuracy per sequence 

across participants irrespective or presentation order. Significance of p-values indicate general difference between the 

specific sequence and others as presented in Table 6. 
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second half of the experiment [F(3,171) = 4.06, p = .008, ŋ² = .002]. Though, once again, while the 

interaction term is statistically significant, the eta squared value implies the effect is negligible. Two 

separate Bonferroni corrected one-way rmANOVAs showed a retained significant decrease in RT over 

trials in both the first half [F(2.33,133) = 25.1, p < .001, ŋ² = .038] and second half [F(2.57,147) = 18.9, 

p < .001, ŋ² = .018] of the experiment. However, with notably different F and eta square values. These 

results are in line with the observations in Figure 23 showing a present, yet slightly less pronounced 

sequential decrease in RT over trials in the second half of the experiment. Where for ACC scores the 

interaction was driven by an absence of differences in Trial level scores between first and second half 

of the experiment, Figure 23 shows how for RT the interaction term is driven by different trial levels 

not being different within each of the experiment halves. Specifically, in the first half of the experiment 

participants started out with consistent RTs and then sped up over the final 12 trials of learning a new 

sequence (i.e., they became faster the more times they try to get a sequence right). On the other hand, 

in the second half of the experiment participants sped up in their first 12 tries of a new sequence but 

found a consistent response time in the later 12 trials. Twelve Bonferroni corrected pairwise 

comparisons were used to further explore the interaction. Showing how, as seen Figure 23, all levels 

differed significantly from each other [p < .001, see Table 7] except for the first 6 and the 2nd 6 trials 

(i.e., combined the first 12 trials) [Trials 1-6 vs Trials 7-12; t(57) = 2, p = .305] and 2nd 6 from 3rd 6 [Trials 

7-12 vs Trials 13-18; t(57) = 2.36, p = .130; note: this was a significant difference at p = .022 before 

correction], in the first half of the experiment. As well as the final 3 sets in the second half of the 

experiment [Trials 7-12 vs Trials 13-18; t(57) = 1.84, p = .427; Trials 13-18 vs Trials 19-24; t(57) = 1.40, 

p = .167; Trials 7-12 vs Trials 19-24; t(57) = 2.73, p = .051; note: the last effect was significantly different 

at p = .009 before correction]. 

Table 7 

P-values of Pairwise Post-Hoc tests for RT over Trials 

 1st half experiment 2nd half experiment 

Trial 
Levels 

 Trial 
1 – 6 

Trial 
7 – 12 

Trial 
13 –18 

Trial 
19 – 24 

 

Trial 
1 – 6 

Trial 
7 – 12 

Trial 
13 –18 

Trial 
19 – 24 

Trial 
1 – 6 

1 .305 < .001*** < .001*** 1 < .001*** < .001*** < .001*** 

Trial 
 7 – 12 

 1 .130 < .001***  1 .427 .051 

Trial 
 13 –18 

  1 < .001***   1 .167 

Trial 
19 – 24 

   1    1 

Note. Differs significantly from each other, * at p < 0.05 (Bonferroni adjusted). See appendix A for associated t test statistics. 
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Table 8 

RT in seconds Per Condition  

                          Median (IQR)  

 Trials 1-6 Trials 7-12 Trials 13-18 Trials 19-24 Total Total min-max 

1st half 0.340 (0.107) 0.343 (0.107) 0.322 (0.090) 0.299 (0.091) 0.331 (0.103) 0.144 – 0.735 

2nd half 0.309 (0.110) 0.289 (0.108) 0.274 (0.114) 0.273 (0.098) 0.284 (0.105) 0.079 – 0.781 

Total 0.319 (0.109) 0.317 (0.131) 0.296 (0.105) 0.285 (0.089)   

Total min-max 0.148 - 0.702 0.098 - 0.705 0.079 - 0.782 0.095 - 0.733   
Note. 1st half experiment is scores averaged over Blocks 1 to 5; 2nd half experiment is scores averaged over Blocks6 to 10. Values calculated over 

participant averages of each condition. E.g., Total for 1st half experiment was calculated over 58*4 values. 

Note. Figure shows response time for the first button press only. Assessment of a mechanical element of design with 

the sole purpose to explore people their consistency in starting the tapping sequence. Not to be confused with the 

average RT across all presses, which pertains to learning the rhythm and is part of sequence performance measure. 

Figure 22 

Mean RT for First Button, for Trials in the First and Second Half of the Experiment, Split over 

Musical Background. 
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As such training did not prevent RTs decreasing over the course of the experiment. When it comes to 

the magnitude of the decreased speed, however, it gets tricky. Table 4 and Table 8 show how median 

RT is around 0.3s, within our desired range (see 4.2.2.2 Procedure) for all conditions in both 

experiments. For the behavioral experiment the difference in median RT between first and second half 

of the experiment was 0.068s. Meaning in the behavioral experiment the average RT decreased by 68 

ms. For the neuroimaging experiment this same difference came down to 0.047s. Similarly, the 

difference in median RTs over trials, when comparing the first set of 6 trials and last set of 6 trials, is 

0.0.66s in the behavioral experiment and 0.034s for the neuroimaging experiment. These differences 

are in line with the RT rmANOVA results in both experiments, displaying once again how, regardless of 

training, participants sped up over the course of the experiment. Participants without training (i.e., 

those in the behavioral experiment of Chapter 3) did, however, on average speed up slightly more 

(0.068s-0.047s = 0.021s) over the course of the experiment compared to those with training. Or 

alternatively we could say after training participants were slightly more consistent in their responses, 

because difference in response times between the first and second half of experiment was on average 

21 ms smaller for those with training (i.e., participants in Chapter 4). According to the Asymptotic 

Wilcoxon-Mann-Whitney Tests these differences of speeding up by 32 ms over trials [Z=3.42, p < .001] 

and 21 ms over the course of the whole experiment [Z=2.16, p= 0.031] were statistically significant. 

While statistically we can say training had a positive effect in the direction of our desired outcome. We 

can argue these differences are not of a magnitude relevant for our experiment. This is not surprising, 

considering the central tendency values in Table 4 and Table 8 are all around 300 ms. The differences 

in median RT over the course of both experiments imply training did not change much in terms of the 

magnitude by which participants sped up over the experiment. 

A better indicator for any change in magnitude is when we compare both experiments in terms of their 

difference between the points where participants responded the slowest (the average of 1st 6 trials in 

the first half of the experiment) and where they responded the fastest (the average of last 6 trials in 

the second half of the experiment) (see also Figure 13 and Figure 23). Here we see a difference of, on 

average, 0.134s for the behavioral experiment (0.379-0.245) and 0.067s for the neuroimaging 

experiment (0.340-0.273). Meaning, on average, participants without training (in Chapter 3) sped up 

nearly twice as much between their slowest and fastest point, compared to participants who had 

training (in Chapter 4) [Z=3.03, p = .002]. 
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4.3.2 Neuroimaging result 

For EEG, the trial rejection process removed 6.88% of all included trials (12000). For the EMG (CSE), an 

initial 20% of trials were removed because they started with middle or ring finger movements. A 

further 18% of trials were rejected due to TMS being absent or outside our window of interest relative 

to MOn. Of the remaining 7584 EMG trials we excluded all trials (16.32 %) with an SNR equal or lower 

than 1.1. This left us a total of 11175 EEG trials, and 5986 EMG trials to be submitted to further analysis. 

Specifically for EMG measures. Table 9 shows us the spread of TMS stimulation across the timeline 

leading up to MOn was successful. In that we hit our intended timepoints, as well as were successful 

in obtaining a natural spread across the timeline. Table 10 further indicates that even after trial 

removal, a relatively even spread of trials was retained to cover all timepoints of interest equally. 

Figure 23 

Mean RT to Start of Trial per 6 Trials Split over First and Second Half of the Experiment 
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Table 9 

Timepoint of stimulation (MEP) relative to MOn: intended time and average real time 

 TMS -1,25s TMS -1s TMS -0,75s TMS -0,5s TMS -0,2 TMS -0,1s  

Mean ± SD 
-1.22s ± 

0.16s 

-0.98s ± 

0.16s 

-0.71s ± 

0.16s 

-0.48s ± 

0.17s 

-0.24s ± 

0.16s 

-0.24s ± 

0.2s 
 

Median -1.20s -0.97s -0.70s -0.47s -0.21s -0.16s  

Note. the table shows the actual timepoint of applied TMS relative to MOn relative to the fixed ‘assumed’ and aimed for 

theoretical point. Measures of central tendency show our set out intent with the bonus of continues spread over the timeline 

was successful. 

 
Table 10 

Number of EMG trials remaining, per experiment condition, after trial removal. 

 TMS -1,25s TMS -1s TMS -0,75s TMS -0,5s TMS -0,2 TMS -0,1s total 

EMG 

> 1,1SNR 
1154 1013 1227 1036 917 639 5986 

FDI 618 538 672 568 511 348 3255 

ADM 536 475 555 468 406 291 2731 

Note. Trials are presented per experimental condition to show we retain a relatively even spread of MEP values per 

theoretical time point (i.e., points relative to assumed MOn, based on time progression since start of fixation cross). 

 

4.3.2.1 Individual neural markers 

For ERD, two rmANOVAs (one for each frequency band) with Timepoints and Block showed the 

expected significant differences in power over time for both alpha [F(2.22,108.76) = 16.32 , p < .001, 

ŋ² = .05] and beta [F(2.07,101.55) = 30.88, p < .001, ŋ² = .09]. However, only alpha showed an overall 

significant change (a more severe decrease) in power for the second half of the experiment compared 

to the first [F(1,49) = 5.14, p = .028, ŋ² = .018]. Any observed difference for Beta showed not to be 

significant [F(1,49) = 3.52, p = .067, ŋ² = .01]). With neither alpha [F(3.2,156.94) = 0.27 , p = .720, ŋ² < 

.001] or beta [F(3.32,162.62) = 0.47 , p = .828, ŋ² < .001] showing an interaction. 

Similarly, the rmANOVAs with Timepoints and Trials showed once again a significant change in power 

over time for both alpha [F(2.23,109.4) = 16.22, p < .001, ŋ² = .043] and beta [F(2.55,110.49) = 31.25, 

p < .001, ŋ² = .067]. Yet, only for alpha [F(3,147) = 4.19, p = .007, ŋ² = .016] were changes in decreased 

band power, related to learning over trials, considered statistically significant (beta [F(3,147) = 1.92, p 

= .130, ŋ² = .006]). Neither alpha [F(8.34,408.48) = 1.2, p = .290, ŋ² = .004] nor beta [F(6.56,321.6) = 

0.66, p = .700, ŋ² = .003] showed a significant interaction between the timepoints and stages of 

learning. 

Taken together, both frequencies showed a notably linear decrease in power leading up to MOn. A 

trend persisting irrespective of any learning conditions or effects (linear contrasts, separate error 
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terms, alpha Trial [t(49) = -5.4, p< .001] and Block [t(49) = -5.05, p< .001]; Low beta Trial [t(49) = -7.04, 

p< .001] and Block [t(49) = -6.84, p< .001]). The power decrease was further found to be, on average, 

of a significantly larger magnitude in the second half of the experiment compared to the first, for all 

time points, though, only for alpha. Similarly, only alpha showed a significant decrease in power over 

the course of learning an individual sequence. Pairwise follow-up tests with a Bonferroni adjustment 

showed the individual sequence learning effect to be driven by the average differences between the 

first 12 trials and the latter 12 trials. Specifically, there was no significant difference in average power 

decrease among the first 12 trials [Trials 1-6 compared to Trials 7-12 t(349) = 0.69, p = 1] or latter 12 

trials [Trials 13-18 compared to Trials 19-24 t(349) = -1.29, p = 1]. Whereas every other comparison 

was significantly different [t(349) = 3.97 to 5.6, and all ps < .001]. This means that we observed an 

increased event-related desynchronization as participants displayed improved motor skill. Both on the 

level of learning an individual sequence (Trial) and integrating the learned skill more generally (Block; 

learning over several sequences). However, the differences were found to only be statistically 

significant for alpha frequencies.  

MRCP, too, showed the expected significant changes in amplitude over time for both the model with 

Block [F(1.43,70.25) = 18.44, p < .001, ŋ² = .029] and Trials [F(1.43,70.19) = 17.9, p < .001, ŋ² = .019]. 

Linear contrasts (with separate error terms) once again showed a linear trend leading up to MOn, over 

both Trials [t(49) = -4.62, p < .001] and Blocks [t(49) = -4.69 , p < .001]. Meaning, amplitude decreased, 

on average, consistently and significantly in the time leading up to MOn. However, none of the 

observed amplitude changes related to improved motor performance showed to be of any statistically 

significance (Trials [F(2.46,120.75) = 2.23, p = .1, ŋ² = .02] or Block [F(1,49) = 0.002, p = .97, ŋ² < .001]). 

Nor was there a significant interaction between learning and the timepoints (Trials [F(2.16,105.66) = 

0.75, p = .480, ŋ² = .001] or Block [F(1.37,67.03) = 0.57, p = .510, ŋ² < .001]). 
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 Figure 24 

Mean ERD % for Alpha and Beta frequencies per learning condition 
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For CSE, we faced the challenge of missing values, as when presented with imbalanced responses, 

rmANOVAs drops participants from the test in their entirety. As such, the Timepoints variable was 

adjusted to have 6 levels instead of the original 7. In more detail, the lowest number of retained trials 

are those categorically closest to MOn (see Table 10). Meaning, for all participants, we were less likely 

to retain any MEP values for timepoints -0.1s and -0.05s. To have more participants contribute to the 

test output (i.e., not be dropped) we combined participant their values for the last two levels of 

Timepoint, resulting in 6 levels total, with the final one reflecting as average amplitude around -0.075s. 

As shown in Figure 26 this will not affect test output or interpretation given the constant increase over 

time for CSE in the final 3 timepoints. As indicated by the degrees of freedom in the tests that follow. 

While the combined level could not save all, the number of dropped participants went from 22 to 1 

for Blocks and from 42 to 15 for Trials. 

The two separate rmANOVAs for CSE, Timepoints having 6 levels, again showed significant changes in 

amplitude over time, in both the model with Block [F(2.85,136.71) = 81.71, p < .001, ŋ² = .468] and 

Trials [F(2.43,85) = 71.24, p < .001, ŋ² = .388], unaffected by any learning effects present (Trials 

[F(8.78,307.44) = .47, p = .89, ŋ² = .007] or Block [F(4.04,193.71) =1.76 , p = .140, ŋ² = .010]). With 

polynomial contrast follow up tests further showing the changes over time did follow the expected 

cubic trend (Block [t(50) = 4.05, p < .001]; Trial [t(50) = 4.53, p < .001]). Motor skill improvement had a 

significant effect on MEP amplitude when learning an individual sequence (Trials [F(3,105) = 5.48, p = 

Figure 25 

MRCP Amplitude per Learning Condition 
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.002, ŋ² = .017]). With no notable differences for the observed generalized learning; i.e., when 

comparing the average MEP amplitude in the first to the second half of the experiment (Block [F(1,48) 

=1.52, p = .220, ŋ² = .006]). Pairwise follow up tests with a Bonferroni adjustment showed the effect 

of learning a new tapping sequence on CSE, was driven by the average MEP amplitude in the first 6 

trials to be significantly higher compared to all later trials [Trials 1-6 compared to Trials 7-12 t(297) = 

3.47, p < .001; to Trials 13-18 t(296) = 3.24, p = .001 and to Trials 19-24 t(299) = 4.85, p < .001]. While 

Figure 26 shows a trend of steady decrease in amplitude as participants further improve in their 

sequential tapping, the changes are not big enough to be of notable statistical significance [Trials 7-12 

compared to Trials 13-18 t(294) = -0.7, p = 1; Trials 7-12 compared to Trials 19-24 (298) = 1.19, p = 1 

and Trials 13-18 to Trials 19-24 t(296) = 1.88, p = .367]. 

 

4.3.2.2 Predictive Modeling 

Predictive modelling (PM) was used to assess the ERD’s ability to predict MEP values (as a reflection of 

CSE) and to describe their relationship over the shared timeline in the 2 seconds leading up to MOn. 

More specifically, through PM we sought to test how consistent these predictions are when applied to 

a motor learning context, as would be the case with rehabilitation. 

Figure 26 

CSE Amplitude per Learning Condition 

Note. Left shows changes in CSE as participants improved in general. Right shows changes in CSE as participants improved in their 

performance of a single sequence. Figure on the right was visually manipulated along the x-axis to increase visual differentiation 

amongst lines between -0.25s and 0. Figures show original 7 timepoints, for analysis timepoints between -0.1s and 0 were 

combined. 
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With a within-subject design, the datapoints are not independent from one another and cannot be 

handled as such. Ideally, model performance and the effects of learning would be assessed by training 

and testing on data from a single participant. However, as only learning over trials showed a 

consistently significant difference in neural activity (i.e., ERD alpha and CSE), further analysis required 

splitting the data over four learning stage (one stage per 6 trials). This means that, despite the current 

study retaining twice the number of EMG trials per participant, compared to Chapter 2, we still do not 

have enough remaining datapoints per participant per learning stage (median = 30, min - max = [21 - 

40]) to execute a cross-fold validation model training and testing process on an individual participant 

basis. As such, rather than focusing on individual datapoints, we (as in 2.3.2 Predictive Modeling) 

performed cross validation across participants by treating their data as a single, non-split up, collection 

when allocating it into train and test sets. In other words, we used the data of one group of participants 

to predict the data of another group, specifically by using a leave-2 out cross-fold validation scheme. 

The test set size (2 participants) was chosen to optimize the ratio between training and testing set sizes 

while maintain a manageable number of combinations, which increases exponentially (i.e., 1081 

unique combinations for p = 2 vs 16 215 unique combinations for p = 3). We then used the coefficient 

estimates from the training set to predict the Y (MEP values) for each X (ERD % at timepoint of MEP, 

relative to MOn) in the test dataset, consisting of the combined data of the 2 remaining participants. 

For each of the 1081 iterations, the same train and test dataset were used to produce a Mean Absolute 

Error (MAE) value for each of the four learning stages. Each iteration was then stored and analyzed as 

if it were a single participant with 4 dependent response values (MAE values). This approach ensured 

that, while participants were split as whole units, the within-subject structure of the data was still 

respected when comparing model performance across learning stages. For example, when assessing 

performance on trials 1–6 (first learning stage) versus trials 19–24 (fourth and final learning stage), the 

response values originated from the same two participants in the test set. 

The test results, described in section 4.3.2.1 Individual neural markers, indicate that the overall shape 

of the neural measures remained consistent across learning conditions, with any learning effects 

manifesting solely as changes in the magnitude of the neural markers. Consequently, we expected no 

difference in error rates when predicting CSE based on ERD when the model was consistently updated 

to account for learning-induced amplitude changes. Since the model was adjusted to account for the 

significant variations in magnitude for either neural marker, and both training and test data originate 

from the same leaning stage, we anticipated that the error rates would remain stable—for instance, 

between the first six trials and the last six trials. A one-way rmANOVA across the different learning 

stages showed an unexpected significant difference between the MAE for the ‘within’ model, as shown 

in Figure 17, [F(2.72,2932.49) = 291.46, p < .001, ŋ² = .106]. Follow up tests, in line with observations 
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from Figure 27, further showed that the error rate when predicting MEP values based on the relative 

progression of ERD strength was significantly lower in the early stages of learning compared to the 

later stages, where the error rate progressively increased [t(1080) = -24 to -11.5, all ps < .001], except 

between T16 and T1318 [t(1080) =1.21, p =1]. These results suggest that, despite updating the model 

to account for learning-induced changes in amplitude, predictions of CSE (in terms of MEP amplitude) 

end on average further from the true observed values as learning progressed. On the other hand, we 

did expect an increased error rate when the model was not adjusted to account for the learning 

induced amplitude changes. Specifically, when training had happened on data from the first learning 

stage, to then try to predict CSE values based on ERD levels from a later stage of learning. For example, 

predicting the CSE’s MEP values in the last 6 trials when the model was trained on data from the first 

6 trials. A one-way rmANOVA over the different learning stages showed, did show a significant 

difference between MAE resulting from model training and testing ‘across’ a level [F(2.31,2491.58) = 

12.84, p = < .001, ŋ² = .005], however as we can see in Figure 27 instead of predictions getting worse, 

the error rates are progressively going down. Follow up tests showed the error rate when predicting 

MEP values based on the relative progression of ERD strength was significantly higher in the early 

stages of learning compared to the later stages [t(1080) = 1.24 to 5.77, all ps < .001], except for T16-

16 and T16-1318 [t(1080) = 1.24 , p = 1], as well as T16-712 and T16-1318 [t(1080) = -1.13, p = 1]. These 

outcomes indicate that, despite the model being explicitly not updated to account for learning induced 

changes, predictions of CSE as MEP amplitude got (on average) better and closer to observed values. 

 

 

 

 

 

 

 

 

 

Figure 27 

Cross-Validated Model Comparison of Average Error Rates Across Learning Stages 

Note. The figure compares average error rates 

between a model updated at each learning 

stage to account for the learning induced 

changes in neural activity and resulting 

changes in variance (‘within’ model, triangles) 

and a static model trained only on the first six 

trials (‘across’ model, circles). In the across 

model, predictions for later trials were based 

on initial training without updates. The 

absence of separate markers for T1-T6 and 

T13-T18 indicates identical average 

performance between models in these stages. 
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4.4 Discussion 

4.4.1 Behavioral findings 

Results were once again in line with our expectations, and showed participants consistently improved 

at tapping out a specific sequence (i.e., learning over trials within a block) and became better at 

executing sequences in general (i.e., learning over blocks). Though this time (compared to the 

performance measures in the behavioral experiment) it seemed that the overall skill improvement 

affected the learning rate of the individual sequences. While participants became significantly better 

at tapping out sequences, there was no difference in the average maximum score obtained by the end 

of learning a sequence in the second half of the experiment compared to the first. This implies 

participants may have a ceiling effect of their maximum performance in the task (i.e., “the highest 

level they are able to perform to”). When they get better at performing the task overall, a new 

sequence will be performed better from the start. While they will still improve over several iterations 

of the same sequence, they will never go beyond their maximum performance score. Meaning, while 

participants still overall significantly improve over trials (learning an individual sequence) and the 

experiment in general (learning over blocks), the learning curve for an individual sequence becomes 

less steep as participants become better. If the task were another 5 or 10 blocks long, we might not 

see a further block effect either. However, we must note the effect sizes of the main effects compared 

to the interaction. While Block and Trial are small to medium effects, the interaction between them is 

so small we could argue it is negligible. Besides a ceiling effect being a new issue for the task, there 

are other reasons why we see the Block effect overshadowed by an interaction and, overall, less 

pronounced in the neuroimaging experiment than in the behavioral experiment. For example, this 

could be an unfortunate result of an accidental imbalance in the randomization of the sequence 

presentation and having more difficult sequences in later blocks. Having a bigger sample means a 

wider spread of participants, some participants are just low performers at the task. We can also not 

ignore how learning is potentially affected by the EEG+TMS set up. Maybe participants were more 

distracted or affected, or some unfortunate combinations of the points listed before resulted in some 

participants in this group performing worse. The interaction is statistically significant, yet we could 

argue and question the relevance and impact here. Taken together, the behavioral test results indicate 

we once again successfully improved participants their motor coordination using real-time feedback. 

Having a background in some form of music training goes together with a higher perception of one’s 

musical competence (even though participants still only perceive their skill as ‘average’), compared to 

participants who have no music-based background. Our results showed such difference in perception 

did not carry over to the individuals self-perceived right-hand dexterity. Implying that having a musical 

background does not carry over to self-perceived higher hand coordination. These self-report scores 
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are in line with how learning rates were not affected by whether one had a musical background or not. 

Indicating that, while our motor task has a music-based element, musicians do not have an unfair 

advantage nor does it affect the tasks’ ability to measure motor learning in the dominant right hand. 

The observation that those with musical training perceived their musical skill to be higher is not a 

surprising finding. Nor was it our objective for including these measures. The (improved from the 

behavioral experiment) musical competence and hand dexterity measures were included because our 

concern regarding musical training and performance in our task is twofold. One, an increased level of 

muscle skill due to the hand movements involved in playing the instrument and, two, if having higher 

musical competence leads to an advantage in our task because the task has a musical element (even 

though this is not our point of interest) (Pesek et al., 2020). The second part of our concern focuses on 

higher musical competence, which can exist without a person having ever received musical training. 

As such we wanted to make sure whether “participants with a musical background” is a valid 

differentiating factor. With our findings we can confidently move forward with the factor of ‘having 

musical training or not’ to further assess any confounding effects of musicality on our task 

performance and learning curves. We conclude that any differences in performance on the task 

between the groups is due to an advantage of musicality and not in muscle dexterity. Additionally, with 

no such difference in performance is found, our task is well made and suitable to allow us to conclude 

that learning effects are motor learning effects. Thus, musicians do not need to be excluded from the 

sample when using this task in a study. 

Once again, we conclude that our theoretical assumption that our chosen sequences were of 

equivalent difficulty is not valid. Consistent with our observations in Chapter 3’s behavioral 

experiment, sequence 3 is once again experienced as more difficult by participants than the other 

sequences. This time the difference is statistically much more pronounced than it was in the behavioral 

experiment. With an additional two other sequences (sequence 7 and 10) that came up as being 

experienced as more difficult. However, where sequence 7 appears to be perceived as more difficult 

to many, but not all other sequences. Sequences 3 and 10 appear to be equally difficult (no significant 

difference between them), and generally significantly more difficult than the other sequences; even 

more than sequence 7. All differences with sequence 4, on the other hand, seem to be driven by 

sequence 4 being easier than the other sequences. While this inequality in sequence difficulty is not 

ideal, it appeared to not have affected the tasks’ ability to measure learning. Any issues more difficult 

sequences could have brought is most likely canceled out because of sequence randomization. 

Potentially, with better balanced stimuli (i.e., sequences) the task effects would be clearer. It is difficult 

to identify why some sequences were perceived as more difficult than others. This is unlikely to be due 

to the melodical aspects of the sequences, and has more to do with the kinematic aspect of the 
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associated fingers. Our reasoning first set forth in the discussion of Chapter 3 (that it is easier to move 

little finger to index than index to little finger) holds up for sequence 10 (see Appendix A2) . However, 

it is interesting to note that sequence 4, which holds similar patterns and finger involvement, is 

perceived to be easier. Sequence 7, however, consists entirely of movements following the consecutive 

order of our fingers. With a big part of sequence 7 made up of the ‘easy’ finger tap order (little finger 

to index). Potentially, what makes these sequences harder is the combination of these particular finger 

sequence orders and the finger being pressed down while keeping other fingers still. When you tap 

your fingers in order of little finger to index finger, the ease also comes from lifting all your fingers 

before bringing them down consecutively. Either way, the effort in balancing out the sequence 

randomization or their perceived difficulty might be beneficial for future use of the task. However, 

once again, despite the experienced differences in sequence difficulty. The task was not hindered in 

its’ ability to allow training and observing of improvements in motor control over the course of 

practicing different sequences several times. As such, we have reason to believe that with more 

balanced stimuli the learning effects in this task may be more pronounced and cleaner. 

We had two issues regarding RTs of the 1st button presses in the behavioral experiment. First, that 

participants sped up significantly over the course of the experiment. Second, the magnitude of the 

increased speed; how much participants sped up. Our results indicated that training did not prevent 

an increase in speed from occurring, but was successful in reducing the magnitude of this increase. 

When comparing the difference between both experiments their lowest and fastest points, 

participants in the neuroimaging experiment (who had the extra RT training during familiarization 

(stage 3)) sped up only half as much as participants of the behavioral experiment (who had no extra 

training). Some other interesting points in the context of RT training effects, but not enough to be 

meaningful on their own. First, looking at the fastest and slowest RTs among participant averages over 

the entire experiment. For the behavioral experiment we see -0.019s to 0.690s (a range of 709 ms) 

compared to the 0.079s to 0.781s (range of 702 ms) of the neuroimaging experiment. While the overall 

range across participants (meaning the difference between the slowest responder and fastest 

responder over the entire experiment) did not change. We do note a successful improvement in the 

response times for the neuroimaging experiment. Specifically, at no point did a participant 

(consistently) press their first button before (shows as a negative value for RTs) the first cue changed 

(i.e., go signal/start trial) or within the first 0.050s after the cue. A second point is that Table 8 has 

more consistent and smaller spread (IQR) of the RT among participants (between 90 and 110 ms) than 

in the behavioral experiment (see Table 4), where the IQR was between 120 and 195 ms. Though this 

may very well be due to difference in sample size between Chapter 3 and 4. We conclude that, while 

the 3rd familiarization stage did not prevent decrease in RT over experiment, it did seem to have aided 
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in making participant’s response patterns more consistent and preventing too many early responses. 

An important caveat when talking about differences in RT between the two experiments (i.e., Chapter 

3 and 4) is that it is tempting to attribute all observed differences to the addition of the 3rd 

familiarization stage (i.e., training of RT for 1st button press of the trial) as it is the only change made 

to the experimental paradigm. However, data was collected under very different circumstances. With 

the inclusion of EEG and TMS we changed the bodily experience of participants during the experiment. 

Participants in the behavior experiment did not have the sensory aspects of electrodes attached to 

their head or skin or the requirement to sit straight and still or a TMS device against their head. TMS 

is further known to affect RT in RT tasks (Ibáñez et al., 2020). While with training and the fixation cross 

count down we tried to emulate a predictive timing task (which was reported to be much more robust 

to this issue of TMS affecting RT; (Ibáñez et al., 2020) as much as possible (i.e., participants learn to 

internalize timing of the start of the trial). Ultimately, participants are still waiting for an external cue 

to indicate their first button press and thus could be affected by the TMS stimulation time points, 

especially those towards the end of the fixation cross or those during the 200ms delay at the start of 

the trial. Thus, any differences we observed, could be due to the extra training or the entire set up, or 

a combination of both. 

4.4.2 Neuroimaging findings 

While the specific mechanisms of neuroplasticity continue to be debated, it is well-established that 

learning is accompanied by the reorganization of synaptic connections. This study aimed to investigate 

how motor learning affects our three neural markers of motor control—ERD, MRCP, and CSE—

specifically as motor function improves. A primary objective was to assess whether the relationships 

between these markers remain stable over time or require continuous recalibration, particularly in the 

context of predicting CSE for BCI applications. 

4.4.2.1 Individual Neural Markers 

 

Our results indicated that CSE continued to follow a cubic trajectory, remaining consistent and 

unaffected by learning. Overall were no substantial learning-related effects observed for CSE, except 

during the early stages of skill acquisition—specifically, in the first few trials when participants were 

initially learning to tap out a sequence. After this initial phase, CSE amplitude decreased significantly 

but then remained stable throughout the experiment. 

The literature presents conflicting findings regarding how CSE is expected to change with learning. Our 

results do not align with the general assumption that CSE increases because of skill acquisition—at 

least not during the active learning phase. It is possible that an increase in MEP amplitude would have 

been observed had we analyzed block-by-block changes instead of collapsing across blocks. However, 
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the trend in Figure 26 suggests that if any change occurred over the course of the experiment, MEP 

amplitudes may have actually declined rather than increased. 

Our findings do support the idea that increased CSE activity represents an optimal state for neural 

plasticity, particularly in facilitating the integration of feedback and feedforward commands. The 

observed increase in CSE was limited to the initial learning stage, where behavioral learning was 

steepest. Further research is needed to investigate this by comparing preparatory CSE activity during 

learning to a true resting baseline, where participants are not yet cognitively engaged in movement 

preparation. 

Theoretical interpretations of our findings align with the broader view that reductions in neural activity 

over time reflect stronger synaptic connections and more efficient resource utilization. This suggests 

that rather than a sustained increase, CSE activity may be more dynamically linked to the demands of 

early motor learning before stabilizing as performance becomes more automatic. 

Different from Chapter 2, MRCP did significantly decreased over time leading up to movement onset. 

However, its relationship with learning was ambiguous, showing both expected and unexpected 

patterns. At the block level, Figure 25 clearly demonstrates a nearly identical trend across blocks, which 

aligns with previous findings in sequential tapping tasks—where MRCP amplitude initially increases 

but later decreases once no further improvement occurs (Wright et al., 2011). At the trial level, 

although no significant learning effect was observed, the effect size was notably higher than that of 

alpha-band power, suggesting the possibility of high variance obscuring a true effect. Another notable 

observation is that while MRCP amplitude was slightly higher than in Chapter 2 (-5 µV compared to -2 

µV), it remained relatively low. Previously, we suspected that the central reference used in Chapter 2 

may have weakened the RP, but in the current study, we explicitly used mastoid references. One 

possible explanation is that our ICA procedure, which computed components from 1 Hz-filtered data 

but subtracted components from 0.1 Hz-filtered data, may not have been as effective in retaining low-

frequency activity—potentially filtering out the slow amplitude decrease characteristic of the RP. 

Additionally, the classical MRCP shape was not observed, which could be attributed to the partially 

cued, partially self-initiated nature of the task. This aligns with our expectations, as such task structures 

often result in an MRCP that more closely resembles a contingent negative variation (CNV). However, 

despite this, we would still have expected a stronger decrease in amplitude. This raises the possibility 

that the absence of a significant learning effect in MRCP may not be due to the learning process itself 

but rather a limitation in our ability to reliably measure MRCP—potentially filtering out key 

components of the signal. Ultimately, the weak MRCP signal limits our ability to draw strong 

conclusions about its role in learning. Future studies aiming to examine MRCP alongside other neural 

markers—especially when combined with TMS—may require alternative preprocessing strategies to 
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ensure that necessary artifact removal for one measure does not compromise the integrity of another. 

Specifically, MRCP analysis may benefit from manual epoch rejection rather than full reliance on 

automated ICA-based cleaning procedures, as most MRCP studies do not even remove blinks. 

ERD magnitude changed in accordance with motor learning, as participants significantly improved in 

sequential tapping—both within a single sequence and across sequences—though this effect was only 

significant for alpha-band ERD. The absence of a significant effect for beta-band ERD is likely due to 

high variance, as block-level effect sizes (η²) were not substantially different between the two 

frequency bands. Overall, our findings align with the literature suggesting that ERD strength increases 

(i.e., relative power decreases) as movement execution improves. However, we once again observed 

an inverse pattern of ERD magnitude between alpha and beta, with beta showing greater magnitude 

than alpha—contrary to expectations. Despite this, both frequency bands exhibited lower ERD 

magnitudes than those observed in Chapter 2 and the broader literature (if we set aside the usual 

trend of higher magnitude in alpha). This discrepancy is likely due to the nature of our task, as we are 

comparing ERDs from a complex learning task to those elicited by simple or highly trained movements. 

While ERD in our task changed as a function of learning, performance improvement plateaued in later 

trials, both within a single sequence and towards the end of the experiment (Figures 12 and 20). When 

comparing ERD during skill acquisition to highly trained movements, it is important to consider the 

different learning timescales. What we observed here reflects fast learning within a single session, 

whereas the stronger ERD typically reported in the literature is often associated with slow learning 

over multiple sessions (including consolidation effects, such as those observed with sleep) (Dayan & 

Cohen, 2011; Hashemirad et al., 2016). Therefore, while ERD increased steadily with learning, it likely 

had not yet reached its full magnitude, as participants had only one session of practice. As discussed 

in 1.2 Motor Learning, when interpreting learning-related changes, we must avoid reasoning in 

absolutes—such as defining a fixed neural activity level for a "highly learned skill" versus a "just-

started" movement. Most neural correlate studies covered in 1.1 Neural Activity of Motor Control likely 

reflect the average neural activity of well-practiced, highly automated movements, particularly simple 

tasks performed with the dominant right hand. These movements, repeated in various contexts over 

a lifetime, represent a kind of “final level” of learning. Our findings emphasize that motor learning is a 

continuum, where ERD strength may continue to increase with further training beyond a single session. 

4.4.2.2 Inter-Dynamics of the Neural Markers 

 

When we first discussed the importance of accounting for learning when using EEG measures to 

estimate CSE (1.4.2 Accounting for the Changing Neural Landscape during BCI), we posed several key 

questions: How does CSE evolve over time relative to ERD? Do ERD and CSE develop in parallel, or does 
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one adapt more rapidly than the other? If ERD shifts at a different pace than CSE, does this create a 

moving target for feedback timing, requiring continuous adaptation in BCI protocols? These questions 

remain central to understanding whether static assumptions about neural markers are sufficient or if 

learning-induced changes necessitate ongoing recalibration. The following discussion evaluates our 

findings in light of these questions, considering their implications for modeling CSE dynamics and 

optimizing BCI-driven rehabilitation strategies. 

Statistical results indicated that learning primarily affected the magnitude of neural markers, while 

their overall temporal patterns remained consistent across learning stages. Given this, we expected no 

significant difference in error rates when the model was both trained and tested on data from the 

same learning stage—i.e., the updated ‘within’ model, which simulates a BCI system continuously 

adapting to neural marker changes during learning. If the relationship between ERD and CSE changed 

over time, updating the model should have accounted for these changes, maintaining prediction 

accuracy. Conversely, we expected a higher, and progressively increasing error rate when predicting 

CSE in a later learning stage using a model trained on early-stage data—the ‘across’ model—since it 

was not adjusted for learning-induced amplitude changes. However, this was not what we found. 

Instead, error rates progressively and significantly increased when the model was updated, while they 

decreased when the model remained static. Notably, the first and third learning stages (T1-6 and T13-

18) showed no difference between models, while the changes in T7-12 and T19-24 drove the observed 

trend.  

This outcome suggests that keeping the model fixed after early learning stages yields predictions that 

remain closer to the actual CSE point of interest. The underlying reason for this remains unclear, but 

one possibility lies in the relationship between behavioral learning patterns and CSE dynamics. As our 

results showed, CSE changes were mostly confined to the early trials, which corresponds to the 

steepest behavioral learning curve, and thus where performance variance is highest. Could early-stage 

variance in CSE be the best predictor of late-stage CSE changes? Or do patterns in early data better 

describe late-stage data than continuously updated models? Additionally, ERD exhibited more 

pronounced changes at later learning stages, whereas CSE remained more stable in amplitude. It is 

possible that these ERD shifts introduced greater variance that the updated model failed to account 

for, leading to higher error rates. 

We are careful and reluctant to speculate on the true reason, meaning or factors driving the observed 

changes in predictive accuracy—both in relation to whether the model was updated or not and to the 

specific learning stages where changes occurred. While our validation methodology was theoretically 

sound, the high variance in our data, as indicated by elevated Mean Absolute Error (MAE) values, poses 

a challenge in interpreting these results with certainty. we note a clear improvement over Chapter 2, 
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likely driven by the absence of the delayed prediction effect, which substantially reduced MAE values 

(from ~10,000 to ~1,000). However, because our analysis was conducted across participants, inter-

individual variability likely contributed significantly to the high overall error rates. A more effective 

approach would have been to train and test models on individual participant data, aligning better with 

how such models would be implemented in practice. Even if the overall error trends remained the 

same, participant-specific training would have likely yielded more stable error rates, making any 

interpretations more meaningful. 

In hindsight, our estimation that within-participant cross-validation was infeasible due to insufficient 

data may have been overly conservative. Even for the smallest number of retained trials in a single 

learning stage (e.g., trials 1–6), each participant had at least 21 trials (see 4.3.2.2 Predictive Modeling). 

Using a leave-two-out cross-validation approach (training on 19, testing on 2) would have yielded a 

minimum of 210 iterations per training level per participant, which may have provided a more robust 

assessment. 

Our findings challenge the initial proposal by Daly et al. (2018), which suggested using a fixed ERD 

percentage (e.g., 30%) to determine the timing of stimulation or feedback relative to MOn and the 

corresponding CSE level at that timepoint. Our results clearly show that learning affects the magnitude 

of neural markers, with ERD% changing as motor skill improves. This means that using a fixed ERD 

threshold to infer CSE timing would not ensure consistent responses, particularly as a person 

progresses in skill acquisition. Our predictive modelling further highlights this inconsistency issue. Even 

when models were updated with learning-induced changes in neural data (e.g., training on T7-12 data 

and predicting T7-12 data), fixed ERD thresholds did not reliably indicate CSE states. Interestingly, 

prediction accuracy improved when we ignored neural marker changes entirely (i.e., using T1-6 trained 

data to predict T7-12 or T13-18 data). However, this does not indicate a stable or reliable relationship 

but rather demonstrates that learning itself affects predictive modelling accuracy—making it difficult 

to ensure that the intended theoretical timing for stimulation or feedback is actually achieved. Another 

key consideration is the significance of CSE amplitude changes. It remains an open question what 

“optimal excitability” truly means in practical terms. Since the S-like trajectory of CSE over time was 

preserved despite learning effects, one could argue that absolute CSE amplitude may not be the most 

critical factor. If Daly et al.'s suggestion is based on targeting "peak CSE," the challenge shifts from 

relying on fixed ERD values to developing a method for reliably estimating the timing of this peak CSE 

state. This is particularly relevant in post-stroke motor rehabilitation, where the goal would be to 

predict and align with intended movement initiation during motor imagery-based training. 

Ultimately, a cubic model does not do a good job to describe the relation between CSE and ERD, as 

indicated by our high error rates. While our methodology was conceptually valid, it may not have been 
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the most effective for deeper analysis. Our model struggled with the high variance in training data, 

most likely due to inter-individual differences. Although CSE values were standardized, ERD was not, 

meaning that while trends remained consistent, the actual percentage values varied considerably 

across participants. Future research should aim to retain enough trials to enable a participant-specific 

analysis, minimizing variance-related challenges. 

Regarding the question of whether ERD and CSE are truly linked, our findings suggest that while there 

is some relationship, their dynamics appear to be largely independent, particularly in how they are 

influenced by learning. We observed that CSE shifts began roughly at the same time as ERD (~1.25s–

1s before MOn), which is earlier than the previously assumed final 100 ms window. This temporal 

overlap suggests a shared preparatory process, but beyond this, their responses to learning diverged. 

Specifically, ERD was primarily affected by overall motor improvement, showing significant differences 

between early and late learning stages—both within a single sequence (first 12 vs. last 12 trials) and 

across the experiment (first half vs. second half). In contrast, CSE changes were largely confined to the 

earliest learning stage, with no significant difference between the start and end of the experiment. If 

more data were available, it would have been valuable to compare the average CSE response from the 

very first sequence to the last sequence, as averaging across the entire first half of the experiment may 

have obscured any progressive learning effects. These findings raise further questions about whether 

CSE adjustments are limited to early learning efforts, while ERD continues to evolve over extended 

practice. 

Despite these limitations, our findings clearly demonstrate that learning affects the relationship 

between CSE and ERD, as evidenced by the differences in how the two models performed. However, 

this relationship appears inconsistent and unstable, and due to the high error rates, any further 

interpretation remains unreliable. While our results confirm that learning introduces changes, the 

precise nature of these changes cannot be meaningfully assessed given the variability in our data. 

Future research is needed to further investigate the instability in the CSE-ERD relationship, addressing 

the factors contributing to these inconsistencies with refined methodologies that allow for a more 

stable and individualized analysis. 

4.4.2.3 Bridging Research and Application in BCI: General Reflection on Findings and Methods 

One of the most striking inconsistencies in our results was the absence of pre-movement inhibition 

despite an otherwise cubic-like trend in CSE (Figure 26). While our data followed the expected S-like 

pattern—with an initial increase in excitability followed by a plateau—the anticipated decrease in 

amplitude before MOn did not occur. Instead, CSE continued to increase. 
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A possible explanation is that the temporal dynamics of CSE were affected by movement complexity. 

Unlike most studies that focus on simple single-button presses, our experiment involved multi-element 

sequences. While Hund-Georgiadis & Von Cramon (1999) suggested that movement complexity might 

engage different brain regions based on fMRI findings, it remains unclear whether this would translate 

to CSE differences, particularly in EEG-based studies where signal spread complicates localization. 

Furthermore, while Leung et al. reported that learning affects CSE amplitude, to our knowledge, no 

study has investigated whether movement complexity influences the pre-movement inhibition dip. If 

complexity does affect inhibition, this would imply that higher-order movement preparation can 

modulate excitability dynamics even at the level of basic movement initiation. Another possibility is 

that inhibition becomes more apparent only for highly trained actions, which would align with theories 

suggesting that pre-movement inhibition facilitates efficient motor execution for well-learned skills 

(Duque et al., 2017). However, this interpretation is inconsistent with theories proposing that CSE 

suppression plays a fundamental role in movement initiation, regardless of expertise level. It is also 

possible that methodological choices affected the detection of inhibition. Our data processing followed 

standard log transformation and within-subject z-scoring of MEP amplitudes, as recommended in 

Ibáñez et al. (2020) and Klein-Flügge & Bestmann (2012). However, pre-movement inhibition is often 

analyzed by comparing MEP amplitude changes relative to a baseline hand-at-rest condition (Duque 

et al., 2017). Since we did not use a resting baseline, this could have influenced the detectability of the 

suppression phase. Most studies using baselines rely on inter-trial intervals, which require strict 

guarantees that the participant’s hand is truly at rest. Our data indicated that even during the fixation 

cross period, small pre-trial movements were common, making it difficult to ensure a true resting-

state comparison. 

Beyond methodological choices, inconsistencies in electrode placement for EMG recordings may have 

contributed to variability in MEP amplitude. We used the IFCN-recommended belly–tendon bipolar 

montage, but Garcia et al. (2017) argue that these standard electrode placements may not be optimal 

for assessing corticospinal excitability. However, since this montage remains the most widely used, we 

followed this standard to maintain comparability with previous research. Future work should consider 

testing alternative EMG electrode positions to assess whether findings remain consistent. 

Additionally, gender differences may have introduced variability in MEP amplitudes, as over 50% of 

our sample consisted of female participants. Rivas-Grajales et al. (2023) reported that CSE and MEP 

amplitudes can be influenced by hormonal fluctuations, suggesting that future studies should control 

for menstrual cycle phase or, at minimum, ensure participants are in comparable hormonal states. 

Alternatively, limiting the sample to male participants could reduce this source of variability. 
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Another limitation concerns the accuracy of our movement onset estimation. To ensure consistency, 

we defined MOn as button press –90 ms, approximating the moment of muscle contraction. While this 

approach aligns with previous automated methods (Demandt et al., 2012; Klein-Flügge & Bestmann, 

2012), it is less precise than manual visual detection (Ibáñez et al., 2020; Jankelowitz & Colebatch, 

2002), which remains the gold standard. Although manual detection is time-consuming, it allows for 

trial-by-trial exclusion of early movements, which we were unable to do in this study. Future research 

should consider adopting a hybrid approach, such as using EMG power profiles to refine movement 

burst detection relative to resting-state power levels. 

4.4.3 Future Considerations for BCI and Learning Research 

To improve CSE and ERD estimation for BCI applications, future studies should: 

1. Develop a more precise approach to predicting self-paced movement onset, ensuring 

consistent timing for TMS stimulation while maintaining an experimental design that balances 

predictive (PT) and reaction-based (RT) tasks. 

2. Investigate CSE suppression with more robust baseline measures, comparing movement-

related CSE changes to inter-trial resting states. 

3. Improve EMG electrode placement and standardization to minimize variability in recorded 

MEP amplitudes. 

4. Account for potential gender-based differences in CSE and MEP responses, either through 

hormonal cycle tracking or a more homogeneous participant sample. 

5. Refine movement onset detection methods using EMG power profiling to better estimate the 

true moment of movement initiation. 

By addressing these issues, future work can improve the stability, reliability, and interpretability of CSE 

and ERD measures, ultimately enhancing their applicability in motor learning research and BCI-driven 

rehabilitation strategies. 

For our purposes of practical application—understanding how neural markers behave in a BCI 

rehabilitation setting—prioritizing within-session learning was the most relevant approach. However, 

it remains an open question how these effects evolve across multiple sessions. In a rehabilitation 

setting, learning within a single session is likely to be much slower than what we observed in healthy 

individuals, even with our best efforts to implement a challenging task. Moreover, rehabilitation 

typically extends over multiple sessions, meaning that both within- and across-session learning effects 

must be considered. Once these effects are well established in healthy participants, the next step 
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would be to examine how they translate to patient populations with slower learning rates. This is 

particularly relevant for understanding the relationship between CSE and ERD. Our results showed that 

ERD exhibited learning effects only after substantial practice, with improvements emerging after 12 

trials for a single sequence and when comparing the first and second halves of the experiment. In 

contrast, CSE followed the opposite pattern, showing no general learning-related changes and, when 

considering sequence-specific learning, any observed effects were largely confined to the first six 

trials—where we also saw the steepest behavioral improvements (as noted in Chapter 3 before 

collapsing trials). These findings raise important questions about whether CSE remains stable across 

multiple sessions or if long-term changes emerge over extended learning periods. Christiansen et al. 

(2018) have previously discussed CSE adaptations both within and across sessions, but it remains 

unclear whether these dynamics would hold in the context of rehabilitation training. Relatedly, if 

patients learn at a slower rate and CSE is primarily involved in the initial stages of skill acquisition, 

would a patient population exhibit greater within-session fluctuations in CSE magnitude than we 

observed in healthy individuals? If so, what would this mean for the stability and reliability of the CSE-

ERD relationship in a rehabilitation setting? These questions highlight the need for future research to 

investigate long-term changes in CSE and ERD and their implications for adaptive BCI protocols. 
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Chapter 5: Discussion 

In this thesis, we investigated the neural activity associated with movement preparation and assessed 

how three of its neural correlates changed with motor skill improvement. We aimed to further our 

understanding of these neural markers to optimize rehabilitation aided by BCI. We built on the claim 

that CSE is a promising neural marker for determining optimal feedback timing and maximizing 

neuroplasticity (Daly et al., 2018). First, we aimed to improve understanding of the temporal evolution 

of CSE. Second, we further investigated the proposed link between CSE and ERD, offering deeper 

insight into their functional connectivity. This not only provides a foundation for future studies to 

expand on, but also highlights potential avenues to explore for practical applications of the CSE-ERD 

link in a BCI context. Lastly, we explored the changes of these neural markers’ characteristics due to 

learning. In this chapter, we will place our findings into the context of the literature, discuss the 

limitations of our experiments, and propose future research based on our findings. 

5.1 Developing a task to measure motor learning 

For our studies, we chose a sequential tapping task, where participants learned several tapping 

sequences with each a differently ordered series of finger movements. Each finger movement would 

result in auditory feedback (i.e., a note), with a correct tapped sequence playing out a melody. As such 

our task mimicked the process of learning to play the piano. This task draws inspiration from previous 

research (Furuya et al., 2011; Hund-Georgiadis & Von Cramon, 1999), reworking the classical 

sequential tapping task by implementing auditory feedback to emulate explicit learning. The task was 

proven successful, as per our results reported in Chapter 3 and 4, we observed significant 

improvements in the task performance of the participants. Additionally, we presented a case for 

practice trials to reduce the number of times participants rushing their button presses (see 

methodological change of the inclusion of a third familiarization phase from Chapter 3 to 4). We found 

no significant difference between people with and without musical background. While those with 

musical background started with non-significantly higher accuracy scores, this did not prevent the 

learning effect from taking place. In conclusion, the experimental design presented in this thesis was 

adequate for the task based on the behavioral results. Participants learned a new set of movements, 

thus allowing us to investigate the neural correlates not only in relation to each other, but also in 

relation to learning new movements. 

5.2 Decoding the CSE Timeline: Evidence for a Nonlinear Trajectory 

As discussed in Chapter 1, CSE is a widely investigated neural correlate of motor control that represents 

the activity of the corticospinal pathway. CSE before MOn is suggested to represent preparatory neural 

activity involved in both the processing of sensory feedback and forwarding motor commands, thus 
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presenting itself as the optimal indicator to time sensory feedback to improve motor rehabilitation. 

Consequently, it is important to understand the full scope of the temporal dynamics of CSE, spanning 

a timeline broader than has been previously studied (van Wijk et al., 2012). 

Our results indicate the temporal evolution of CSE, as measured by MEP amplitude in the 2 seconds 

leading up to MOn, is shaped as an S-like wave (3rd degree polynomial). Where an initial increase in 

amplitude is followed by a decline after which it once again changes direction to strongly move 

upward. This shape was identified in both Chapter 2 and 4. In the latter, we also showed that the 3rd 

degree polynomial shape is not affected by learning, implying that the s-like trajectory is a stable 

presentation of CSE activity. As per the findings of Chapter 4, CSE amplitudes decreased significantly 

following the early stages of learning and then remained consistent, keeping the S-like wave shape. 

Notably, while an exponential model was similarly able to explain a significant proportion of the data, 

albeit statistically significantly less than the 3rd degree polynomial model, conclusions from these 

results should be drawn within the analysis context. The tail-end (closest to MOn) of our 3rd degree 

polynomial model resembles an exponential function. This, together with the fact that in Chapter 2 

over 80% of our retained data points fell into the last 500 ms leading to MOn, can unbalance the 

comparison in favor of the exponential function. In Chapter 4 we found further support that the CSE 

dynamics follow a cubic trajectory, showing that it is essential to consider the complete temporal 

evolution of CSE from early onset until MOn. 

At this point, it is important to reiterate why we propose to investigate CSE tendencies from 2s before 

MOn, instead of just during the last 500 ms leading up to movement, as most CSE research focusing 

on the pre-movement inhibition (Chen et al., 1998; Ibáñez et al., 2020; Leocani et al., 2000, 2001; van 

Wijk et al., 2012). Early studies (Chen et al., 1998; Leocani et al., 2000, 2001) suggested that early onset 

ERD (~2 seconds pre-MOn) and MRCP were unlikely to be associated with CSE. However, they are all 

involved in the same motor system, with CSE’s fellow neural markers (i.e. ERD and MRCP) of pre-

movement activity starting as early as 2 seconds prior to MOn. As such we questioned why would we 

not observe meaningful fluctuations in early onset CSE? Those studies that say ‘unlikely’ are more than 

20 years old, and later publications such as van Wijk et al. (2012) who make the same claim, also refer 

to those early studies. Even following our findings in Chapter 2 and 4 in support of the cubic trajectory, 

the exact shape of CSE is a debatable concept as in our study reported in Chapter 4, we did not find 

the period of inhibition, which has been widely reported as the most robust characteristics of CSE. 

Consequently, we also failed to find the supposed preparatory peak for CSE in Chapter 4, which was 

indicated by Daly et al. (2018). Our experimental design is unlikely to have caused the lack of finding, 

because it was recently shown that this CSE inhibition is preserved over RT, SP and PT. Our experiment 
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is a cross between RT and PT. Thus, we should reconsider calling this CSE inhibition a robust 

characteristic, or we should keep open the possibility that it is influenced by yet unknown factors. 

In summary, we suggest that CSE should be investigated as a long neural marker, starting from ~2s 

before MOn, instead of just focusing on the last 500 ms leading up to movement. The shape of CSE is 

non-linear, it resembles an S-like wave that should be described by a 3rd degree polynomial function. 

While our tests leave room for the idea that an exponential model is also sufficient, it is important to 

consider that it is only the tail-end of CSE that shows an exponential trend. When we investigate a 

wider time window, the non-linear trajectory of CSE becomes evident. 

5.3 Learning effect on individual neural markers 

Throughout this thesis, we have been arguing for a better understanding of the temporal evolution of 

pre-movement neural markers as well as for the investigation on how these neural correlates change 

during motor learning. As we know, learning on the neural level includes the reorganization of synaptic 

connections and neural circuits. Understanding both trends, the temporal tendencies of neural 

correlates and how these tendencies are affected by learning, are vital for improving the current motor 

rehabilitation methods. In Chapter 4, we investigated the effects of learning on three neural markers 

of motor control (ERD, MRCP, and CSE). 

In the previous section, we discussed the non-linear trajectory of CSE and we touched upon how 

learning affected CSE amplitudes. There was no overall effect of learning on the CSE’s temporal 

evolution. The CSE amplitudes on the other hand were affected by learning. Specifically, during the 

first few trials when participants learned to tap a new sequence. After this early stage, CSE amplitude 

significantly decreased. This finding seemingly contradicts the belief that CSE increases due to skill 

acquisition (Kleim, 2009; Leung et al., 2017; McGregor et al., 2017). Rather, we assume that this early 

stage learning effect of CSE means that CSE activity may be more dynamically linked to early-stage 

learning. Suggesting that increased CSE activity represents an optimal state for neural plasticity (Daly 

et al., 2018; Gandolla et al., 2021; Ibáñez et al., 2020), a readiness to integrate feedback and feed 

forward signals. However, involvement may be limited to the most active and early stages of learning 

process. 

We also investigated if learning affected alpha and beta ERDs. As discussed in Chapter 1, ERDs, in the 

frequency domain of 8-20 Hz (alpha and low beta band powers) are motor event induced potential 

shifts representing movement and movement preparation and intention (Daly et al., 2018; Fairhall et 

al., 2006). 
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One interesting finding of Chapter 4 was that learning significantly affected alpha ERD, but not beta. 

There can be multiple possible reasons behind this finding, such as the more variability for beta which 

comes from its wider spread over the scalp, and from the general interindividual differences (Toro et 

al., 1994). Pre-movement alpha is more focused spatially (Toro et al., 1994). Alpha ERD is commonly 

associated with inhibition release and top-down control (Klimesch, 2012), indicating activation of 

motor-related areas during movement execution and planning. Additionally, as there are alpha 

activities after movement, implying more involvement in refinement of movement could offer an 

explanation (Crone et al., 1998; Fogassi et al., 2005; Neuper & Pfurtscheller, 2001). Alpha has been 

observed in several regions related to attention and sensorimotor processing (Crone et al., 1998; 

Fogassi et al., 2005) implies alpha is most likely involved in “post-execution refinement of movement”, 

a process involved in learning. Lastly, Van Der Cruijsen et al. (2021) recently suggested that the most 

important activities involved in motor learning are theta and alpha. Our findings support these 

arguments, further supporting the idea that alpha activity is heavily involved in movement preparation 

and post execution refinement. 

MRCP has been said to reflect planning and preparation, with each of its two components (RP and NP 

respectively (Shibasaki & Hallett, 2006; Wright, Holmes, & Smith, 2011). We found an effect of time on 

MRCP in Chapter 4, where we identified a significant increase of MRCP amplitude leading up to MOn. 

There was no significant effect of learning on MRCP on the trial level, this was most likely due to high 

variability of the data. We theorize that this lack of solid finding could be due to side effects of filtering 

the neural data, running ICA decomposition, or differences between references (FCz used in Chapter 

2, while mastoid used in Chapter 4). Moreover, we did not observe the classical shape or MRCP, most 

likely due to the nature of our learning task. The take home message of these findings is that both the 

preparation of neural data for identifying MRCP and the task used to study motor learning must be 

chosen carefully. Here, we suggest future studies to explore manual trial rejection instead of ICA 

component rejection. 

5.4 Practical contributions 

We presented results expanding our understanding of the interactive relationship between three 

neural markers, namely ERD, MRCP and CSE. In practical terms relevant for BCI, we provide further 

description of the temporal evolution of these three neural correlates, as well as we explored links 

between them. One of the main issues for BCI motor rehabilitation, that while CSE seems to be the 

best point for sensory feedback thus enhancing motor learning, we can only calculate CSE post hoc. 

By establishing the expected shape of CSE, the previously discussed 3rd degree polynomial shape, and 

the relationship between CSE and ERDs, we offer a potential avenue for real time CSE identification. 

While such improvements are far away from our current understanding, this thesis offers another step 
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towards unraveling the inner workings of pre-movement neural markers. If timing strategies are based 

on an inferred relationship between ERD and CSE, we must determine whether this relationship 

remains stable over time, or if changes in one marker leads to a misalignment in feedback delivery as 

learning progresses. 

The rationale of our first hypothesis stems from our proposal to a different approach to define the 

relationship between CSE and ERD, considering both markers individually while analyzing their 

temporal alignment relative to MOn. Not only does this method offer a better overview of all the 

neural markers and dynamics in the same framework from the start, but there is also the practical 

aspect of inter/individual differences in ERD strength progressions. Although the average ERD strength 

reaches 50% following MOn, this value varies across individuals. For BCI applications, we propose 

identifying an optimal CSE time point relative to MOn (e.g., 500 ms before MOn) and then determining 

the corresponding ERD percentage for each individual at that specific time point. This value will most 

likely be different from person to person. This approach should be followed by the investigation on 

how ERD % changes during motor learning. Thus, we can develop a dynamic model assisting BCI 

rehabilitation techniques which are capable of accounting for individual differences (for example in 

ERD%) while working on universal tendencies (such as the shape of CSE). Therefore, the idea of a 

universal ERD % is unfeasible, as there is no assurance that by timing feedback to a static ERD % limit 

will affect the same part of the CSE activity. Furthermore, as BCI rehabilitation involves motor learning, 

we must take the changes in CSE and ERD into account during learning. In Chapter 4, we presented 

how the amplitude of CSE and ERD are affected by motor learning, and how this effect is unique for 

each neural marker. In conclusion, we should move our aim away from trying to identify constants and 

rather focus our efforts into developing dynamic models for neural activity leading up to MOn, where 

learning and individual differences are considered. 

This dynamic understanding will enable research and rehabilitation efforts to develop more precise 

strategies for delivering sensory stimulation at optimal time points. Research that focuses on this route 

could start by comparing time points around preparatory peak, inhibition, or the steep increase closer 

to MOn. However significantly more research is required to explore the temporal evolution of multiple 

neural correlates and how the behave in relation to different types of feedback as well as movement 

(e.g., speed and complexity, different limbs, etc.). 

To the best of our knowledge, if BCI studies are currently adjusting for the changes in the brain due to 

learning, they do it without specifically accounting for how these changes happen. These current 

studies simply update their model to the new variance in activity, much like how we simply retrained 

our “within model” in Chapter 4. Although our models are not perfect, initial findings suggest that 
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variance in early learning stages predicts later success. Consequently, updating models without 

accounting for this may reduce rather than enhance their effectiveness. However, our models should 

not be followed uncritically. The results of our studies should be taken as cautionary advice on how to 

take change into account in a concise manner. Further research is needed to either rule out the 

assumption that changes in neural signals do affect the efficacy of existing and new feedback strategies 

or find a way to adjust for these changes dynamically. Such research may involve real-time 

recalibration, feedback adjustments based on behavioral milestones, or staged interventions that 

adapt at key points in neural recovery. We propose developing a more refined, dynamic descriptive 

model of CSE and its relationship with ERD, even if purely observational. Additionally, a predictive 

model should be established to capture the precise changes in both neural markers during learning, 

particularly in its early stages. 

5.5 Theoretical contributions 

While the general aim of this thesis was to aid the practical application of BCI rehabilitation methods, 

our findings also offer theoretical contributions to the literature. Investigating the functional 

connectivity between pre-movement neural markers is crucial for mapping movement preparation at 

the neural level, yet the literature on this topic remains sparse. 

Exploring functional connectivity of neural correlates not only has practical implications but also 

enhances our understanding of neural plasticity. Identifying connections between relevant neural 

markers can improve existing or create new BCI-based therapeutic approaches. Our goal should be to 

create a large-scale model of correlation and functional connectivity in pre-movement neural activity 

over the motor cortex. By mapping neural markers of upper limb movement and motor learning, this 

research contributes to a more dynamic way of viewing movement preparation and execution. Such a 

theoretical model would account for individual differences and learning, providing a more 

comprehensive representation of brain activity. 

In this thesis, we aimed to create a predictive model for CSE based on ERD, further examining their 

correlative nature and the temporal evolution of CSE leading up to movement initiation, including 

MRCP as proposed by Daly et al. (2018). By focusing on functional connectivity and temporal dynamics, 

we advanced knowledge of the motor control neural circuit revisiting and testing previously held 

assumptions and proposing new ideas. 

The functional connectivity of neural markers and the effects of learning on these connections remain 

mostly unexplored. Investigating functional connectivity provides insight into the mechanisms 

underlying motor system plasticity, helping to elucidate how the brain reorganizes to optimize motor 

performance. Understanding the neural circuit related to motor performance is the first step, followed 
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by analyzing changes in activity patterns and their relationships as motor skills improve. This thesis lays 

the groundwork for such investigations. Using EEG, we examined the motor network and its role in 

motor control, further exploring how these circuits are influenced by motor learning. 

Our findings support the use of time-based EEG analyses to reveal the temporal dynamics of motor 

control. Tracking brain activity leading up to and during movement execution provides crucial insights 

into the timing of neural events involved in motor planning, execution, and feedback processing. 

Understanding neural synchronization over the motor cortex can enhance rehabilitation methods. 

Mapping the relationships between neural signatures of upper limb movement improves our 

understanding of motor activity and provides an indirect measure of CSE. When integrated with 

traditional BCI setups, this approach could increase efficacy. 

Although previous studies found no correlation between ERD magnitude (in either frequency band) 

and MRCP amplitude (NS or peak MRCP 100ms after movement onset; Toro et al., 1994), Toro et al. 

noted that in the final 500ms before movement onset, ERD spread across the scalp coincides with 

MRCP NS lateralization. This suggests ERD and MRCP are related to similar motor cortex activation 

events. Furthermore, while ERD and MRCP likely originate from similar cortical areas, ERD responses 

vary by frequency band. Beta ERD is typically stronger than alpha ERD, but the largest alpha response 

overlaps with the region of peak MRCP amplitude, whereas beta ERD is more diffusely distributed. 

While MRCP and ERD overlap in areas of greatest response, there is no general correlation between 

larger MRCP amplitudes and greater ERD in either alpha or beta bands. The functional significance of 

these variations remains speculative (Toro et al., 1994). A key question is whether learning-induced 

changes in ERD and MRCP occur independently or coincide. Would reductions in alpha and beta power 

follow similar patterns, or would one remain more stable? Investigating these neural correlates and 

their functional connectivity during learning could provide more comprehensive insights into 

movement-related brain functions and movement intention detection—especially in motor 

rehabilitation contexts where the goal is to induce neural change. 

We suggested in the introduction that ERD and CSE are likely linked, with ERD changes predicting CSE 

shifts. Our findings support this hypothesis, showing that CSE follows an S-like wave starting earlier 

than previously believed (1.25–1s before movement onset, rather than the assumed final 100ms). 

However, CSE and ERD respond differently to learning, evolving at distinct rates, suggesting they 

represent more than a single process. CSE appears to change initially and then stabilize in amplitude, 

whereas ERD continues to evolve as learning solidifies. This aligns with prior findings on ERD 

localization and function (Crone et al., 1998; Fogassi et al., 2005; Neuper & Pfurtscheller, 2001). High 

initial CSE may reflect increased neural excitability during early learning stages, when the brain is 
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actively reorganizing. In contrast, further reductions in ERD power likely reflect finer integration and 

motor representation updates as learning progresses. 

ERD primarily differentiates general improvement levels, as shown by significant changes between the 

first 12 and last 12 trials (i.e., early vs. later learning stages) and across the experiment (first half vs. 

second half). In contrast, CSE is mainly influenced by initial learning efforts, showing differences 

between the first learning stage and later stages but no significant change from the beginning to the 

end of the experiment. This may suggest that CSE changes are less robust than ERD changes and 

require more data to detect learning effects reliably. Alternatively, inter-individual variability may be 

substantial, warranting longitudinal studies on motor learning’s effects on CSE. 

In summary, our study achieved its primary objectives, though certain aspects could be further 

optimized. We contributed to the scientific understanding of CSE by proposing that it takes an S-like 

shape; showed how CSE is mainly affected by early-stage learning, while ERDs are more generally 

affected; thus provided a deeper understanding of pre-movement neural activities. The following 

sections will discuss the limitations of our research and suggest directions for future studies. 

5.6 Limitations 

While we mention the concept of “optimal excitability” and its relation to CSE's temporal 

characteristics frequently, the aim of the studies in this thesis was to explore the unknown parameters 

pertaining this time point-the temporal evolution of CSE-and the related functional connectivity 

between neural markers. Thus, we cannot make a definitive statement on the actual point of CSE 

activity best for timing feedback to, beyond stressing the importance for future research to further 

explore CSE dynamics and mediators. Our hypotheses pertaining to CSE dynamics and relation to ERD 

were heavily based on the little amount of relevant research available and thus heavily limited by their 

experimental design. For example, the CSE measures of Daly et al. (2018) were dependent on ERD 

progressions, for which the analysis in Chapter 2 (Figure 7) showed the categorized ERD% did not fall 

in the expected ordered progression over time relative to MOn. The analysis in Chapter 4 addressed 

this specific design limitation by measuring CSE independent of ERD relative to MOn. However, 

interestingly we did not observe the robust CSE pre-movement inhibition (Ibáñez et al., 2020). A 

possible reason for the absence of inhibition in our results is the analysis presented in Chapter 4 might 

require a stricter thresholding of data, such as rejection of trials due to early movements and other 

artifacts, rather than only focusing on button press timings.  

Accurately defining movement onset is also a challenge and limitation in our research. In Chapter 2, 

we presented data where MOn was defined by EMG data, while in Chapter 4 it was defined as the time 

when the participant pressed the buttons. Both methods have advantages and disadvantages. EMG 
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data can define MOn very specifically and account for early contractions prior to MOn; however, is 

very time labor intensive and subjected to research experience or algorithm flaws. Meanwhile, the 

button press provides a solid measurement of timing, however there is an unaddressed variability in 

time between MOn and the press of the button, as well as it is difficult to account for early movement 

or random twitches of the muscle. Meanwhile, the button press provides a solid measurement of 

timing, allows the exclusion of trials with early movement, however there is an unaddressed variability 

in time between MOn and the press of the button. 

There are also general challenges around TMS+EEG methods, and even just TMS used in movement-

based tasks. We tend to define baseline as “prior to MOn”, however, for movement tasks, during that 

period the participant is already focused on the execution of movement. This muddies the waters 

when we aim to study the effects of learning. The issue surrounding the definition of a baseline is also 

complicated by the fact that during learning, the participant is most likely preparing for the movement 

continuously. 

As with many EEG studies, ours also showed significant inter-individual variability. Thus, the previously 

suggested idea of using hard thresholds (i.e. 30% ERD means CSE peak) might not be a useful method. 

While our number of participants is not low, we acknowledge that our results would be stronger with 

a much higher number of participants, maybe even a longitudinal experimental design where the inter-

individual differences could be better assessed. 

5.7 Future research 

It is essential that the functional connectivity of neural markers be further explored. Understanding 

their associations with different processes, part of processes or their regions of origin is crucial for the 

understanding of movement-related brain activity, and to support the development of better 

rehabilitation practices. This line of research should aim to uncover if the relations and dynamics stay 

constant across different contexts or if we can identify variables that only alter one (e.g., different 

types of movements, intent behind movement (RT, SP, PT..)). Such a theoretical interest for looking into 

functional connectivity should also exceed the practical application of it and aim for the general goal 

of mapping every brain function thus understanding our neural processes. 

Despite being part of the same neural network, sharing a region of origin (Bai et al., 2006; Schultze-

Kraft et al., 2016; Toro et al., 1994), start roughly 2 seconds prior to movement onset and are both 

discussed in relation, ERD and MRCP are rarely studied at the same time on either temporal 

characteristics or function. These neural markers are closely related to the same cognitive mechanism 

of motor control, but literature argues that physiologically they are independent from one another. As 

such, the exploration of MRCP at same time as ERD can hold the same practical role of estimating and 
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indicating CSE times points or changes, and advice on timing of stimulation (be it TMS pulses or sensory 

feedback by BCI set up). Furthermore, investigation of neural markers using the same time scale can 

expand our understanding of the neural functional connectivity of motor control (e.g. how do they 

behave relative to each other and CSE when learning, re-investigating if they are as independent 

processes as the literature claims, etc.). By mapping out the functional connectivity and correlations 

of the brain, we can further practical applications and understandings of neural processes on a greater 

network level. Since MRCPs and ERD might have different topographical patterns and time course 

evolution over the movement stages (Shibasaki & Hallett, 2006) combining these EEG measurements 

might provide more comprehensive features for understanding movement-related brain functions and 

detecting movement intentions. 

Importantly, future research should uncover more information about CSE. For example, it remains 

unclear whether the optimal timing for intervention is the maximal CSE or its suppression phase. A 

critical consideration is the interpretation of the term “point of optimal excitability” in relation to CSE 

activity. Different research objectives may require distinct definitions of this concept. For instance, if 

the goal is to time stimulation for an intended physiological effect (similar to how PAS work), the 

optimal point refers to when stimulation arrives along the corticospinal tracks to induce plasticity-

enhancing effects. This point may be fixed in time relative to MOn. However, if the goal is to engage 

external stimulation or trigger internally generated activity (e.g., a participant performing a specific 

exercise or MI), the optimal point may vary depending on the protocol used. 

Avoiding confusion between these interpretations is crucial, as the optimal point for stimulation 

delivery is not necessarily the same as the optimal point for initiating externally or internally driven 

neural activity. Future research should distinguish between these concepts and define context-specific 

criteria for determining optimal excitability. 

Additionally, while not explored in these studies, future research should place the findings about CSE 

in the context of feedback type (visual, electrical, etc.), as it is possible that the “optimal timing” 

depends on these factors as well. 

Lastly, in the context of stroke rehabilitation, it is crucial to mention that CSE is affected by the injury 

(Veldema et al., 2021). As such, when this research is implemented in the practical phase, a new factor 

must be considered. Thus, future research will have to investigate how CSE changes due to injury, and 

how this can interact with the changes of CSE during learning. 

As such, we propose that future research should aim for analyzing multiple neural correlates and 

investigate their relationship while controlling for goal and feedback types. This way, we can take a 
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significant step from researching single components of the pre-MOn neural activity towards describing 

the whole process including how one neural correlate leads to another, thus describing the process as 

a dynamic flow instead of a static line of blocks. 

5.8 Conclusion 

We aimed to map relationships between neural signatures of upper limb movement and motor 

learning, and use the gained understanding to improve BCI, more optimal aid for motor rehab and 

advance our understanding of motor learning on a neural level. However, the neural markers’ 

functional connectivity and dynamic when we learn (i.e., perform better in motor skill-based tasks) is 

poorly understood. 

We demonstrated the importance of functional connectivity analysis to create a dynamic model for 

neural activity during learning, showed how neural markers such as ERD, MRCP and CSE changes when 

new skills are learned, and presented a potential method for predicting the timing of “optimal 

excitability”. These steps in mapping out the inner workings of our brain are vital for both theoretical 

and practical reasons. Firstly, the scientific conquest of understanding how the human brain functions; 

secondly, the practical applications of these results can improve our current motor rehabilitation 

methods using BCI. 

While our research had limitations and posed further questions to be answered in future studies, the 

findings presented in this thesis will act as another building block for mapping out our neural activity.  
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Appendix 

 

 

 
Appendix A1. Distribution Retained Trials split across Training (top) and Test (bottom) sets. At the extremes we have 
a training set of all 6 participants with the lowest number of trials (counts trials 193), which stands across a test set 
of 5 participants with the highest number of trials (counts 288) with a difference of 95 trials. On the other extreme 
we have difference of 185 trials when all 6 participants make up the training set (counts total of 333 trials) compared 
to the 5 lowest in the test set (counts 148 trials).  
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questions on motor dexterity.  
→ musicians and gamers affect learning outcomes? → because pre-existing extensive training in 

sequential hand muscle skill 
 

- Musical skill 

o Type of instrument(s): 

_____________________________________________________ 

o Total number of years practiced: 

_____________________________________________________ 

o How long ago: (e.g., from age 5-15, or started at age 6 – present) 

_____________________________________________________ 

o  Currently playing? : 

 _____________________________________________________ 

o Other (e.g., used to play in orchestra, now only play occasionally at home) : 

_____________________________________________________ 

- Game skills 

o Do you play any games (video or physical) involving high amounts of dexterity  

Yes / No 

(specify type) _____________________________________________________ 

o If digital circle type of controls 

hand held controller / mouse and keyboard 

o How often (average amount of hours / week) do you game 

_____________________________________________________ 

 

 

 

Appendix A2. First version of motor dexterity questions. As presented to participants. 
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Preliminary study questions on motor dexterity.  
Do musicians affect learning outcomes, because pre-existing extensive training in sequential hand 
muscle skill and sense of rhythm? 
 

- Motor skill 
o How would you rate your right hand dexterity / muscle control?  

Far worse 
than 
most 

 Worse 
than 
most 

 Average    
Better 
than 
most 

 
Far better 
than most 

1 2 3 4 5 6 7 8 9 
 

- Musical skill 
o What would you rate your general musical competence? 

 
o Type of musical practice: instrument(s), singing, conducting… : 

_____________________________________________________ 

o Total number of years practiced music and/or instruments: 

_____________________________________________________ 

o How long ago: (e.g., from age 5-15, or started at age 6 – present) 

_____________________________________________________ 

o  Currently playing? : 

 _____________________________________________________ 

Other (e.g., used to play in orchestra, now only play occasionally at home) : 

_____________________________________________________ 

 

Very 
poor 

   average    excellent 

1 2 3 4 5 6 7 8 9 

Appendix A3. second version of motor dexterity questions. As presented to participants. 

 
 

 



P a g e  | 169 

 

Appendix A4. Melodic passages used as baselines for the motor sequences.  
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Appendix A5 

t-values of Pairwise Post-Hoc tests for a One-Way rmANOVA on Equivalence of Sequence Difficulty 

Sequences Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10 

Seq 1  1.83 3.96* -0.7 1.81 0.37 2.06 1.02 0.36 2.2 

Seq 2   3 -2.36 0.4 -1.31 0.25 -0.37 -1.42 1.32 

Seq 3    -5.51** -3.27 -3.69 -3.14 -5.11** -4.11* -1.27 

Seq 4     3.37 1.09 2.51 2.18 1.09 3.28 

Seq 5      -1.69 -0.12 -1.22 -1.75 1.18 

Seq 6       1 0.65 -0.08 1.99 

Seq 7        -0.54 -2.04 1.34 

Seq 8         -0.7 1.5 

Seq 9          2.99 

Seq 10           

Note: pairwise t-test test statistics, complimentary to the p-values in Table 3. df = 17  
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Appendix A6 

t-values of Pairwise Post-Hoc tests for a One-Way rmANOVA on Equivalence of Sequence Difficulty 

Sequences Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10 

Seq 1  1.63 
8.44 
*** 

-2.84 2.25 1.476 
5.04 
*** 

3.07 1.61 
8.09 

*** 

Seq 2   
8.88 

*** 
-3.62* 0.63 -0.19 

4.31 

*** 
1.15 -0.15 

7.95 

*** 

Seq 3    
-10.61 

*** 

-6.95 

*** 

-7.76 

*** 
-3.62* 

-6.69 

*** 

-8.48 

*** 
-0.63 

Seq 4     4.54** 3.68* 
5.99 

*** 

4.75 

*** 
3.68* 

10.72 

*** 

Seq 5      -0.89 3.27 0.47 -0.75 
7.41 

*** 

Seq 6       3.69* 1.40 0.11 
7.45 

*** 

Seq 7        -2.69 -3.41 3.57* 

Seq 8         -1.29 
5.71 

*** 

Seq 9          
7.09 
*** 

Note: pairwise t-test test statistics, complimentary to the p-values in Table 6. df = 57  
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Appendix A7. Complimentary to Figure 12. Figures show the average performance scores over blocks and trials 
between participants with and without a musical background. Showing a general difference in ACC score, where 
those without musical background score on average a little lower than those with musical background. However, this 
difference was not considered significant and did not affect the learning trend (our main interest). 


