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Genome-wide association meta-analysis of 
age at onset of walking in over 70,000 infants 
of European ancestry
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Age at onset of walking is an important early childhood milestone which 
is used clinically and in public health screening. In this genome-wide 
association study meta-analysis of age at onset of walking (N = 70,560 
European-ancestry infants), we identified 11 independent genome-wide 
significant loci. SNP-based heritability was 24.13% (95% confidence 
intervals = 21.86–26.40) with ~11,900 variants accounting for about 90% of 
it, suggesting high polygenicity. One of these loci, in gene RBL2, co-localized 
with an expression quantitative trait locus (eQTL) in the brain. Age at onset 
of walking (in months) was negatively genetically correlated with ADHD 
and body-mass index, and positively genetically correlated with brain 
gyrification in both infant and adult brains. The polygenic score showed 
out-of-sample prediction of 3–5.6%, confirmed as largely due to direct 
effects in sib-pair analyses, and was separately associated with volume 
of neonatal brain structures involved in motor control. This study offers 
biological insights into a key behavioural marker of neurodevelopment.

In early childhood, the onset of walking is used as a simple yet robust 
clinical marker for brain and behavioural development. A major advan-
tage of this milestone is that it is both memorable and clearly defined 
and therefore can be reliably identified and recalled by parents1. Moreo-
ver, while there is variability in the sequence and presence of some 
motor skills (for example, some children bottom shuffle but never 
crawl), walking is an exclusive and informative milestone for both typi-
cal and atypical development.

In current clinical practice, an inability to walk independently by 
age 18 months is used in national guidelines such as those outlined by 

the UK National Institute of Health and Care Excellence (NICE; https://
www.nice.org.uk/) or by the US Centers for Disease Control and Preven-
tion2 as a screening criterion for referral to a paediatrician for further 
assessment and investigation3. This is because delayed walking could 
represent an underlying motor-specific issue such as a primary muscle 
disorder or generalized issues such as global developmental delay4. 
The causes of these issues can be genetic or environmental, including 
genetic disorders and extreme prematurity5. However, historical data 
suggest that only a minority (about a third) of late walkers may have an 
underlying neurological abnormality or developmental disorder, and 
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As such, age at onset of walking appears to be an ideal candidate for 
genetic discovery research. Identification of specific genetic loci is an 
important step towards uncovering the biological mechanisms under-
lying this developmental milestone and deriving clinically informative 
insights with respect to childhood motor disorders. There have been 
no common gene discovery studies of AOW so far19.

In sum, there are several reasons for focusing on AOW. It is a marker 
of brain and behavioural development, it is easily measurable in large 
cohorts, reliably recalled by parents1 and varies substantially between 
children.

Here we present a genome-wide association study (GWAS) 
meta-analysis of AOW in a sample of 70,560 children from 
four European-ancestry cohorts. First, we aimed to quantify 
single-nucleotide polymorphism (SNP)-based heritability of AOW and 
the degree of polygenicity of this trait. Second, we aimed to identify 
independent genetic loci associated with AOW and their functional 
roles. Third, we estimated genetic correlations with physical health 
indicators, cognitive traits, neurodevelopmental conditions, psy-
chiatric disorders and cortical phenotypes. Fourth, we evaluated the 
predictive power of the AOW polygenic score and tested whether it 
was associated with the volume of neonatal brain structures in an 
independent cohort.

Results
Genomic loci associated with age at onset of walking
We conducted a GWAS meta-analysis of AOW in 70,560 children 
including data from four European-ancestry cohorts: the Norwegian 
Mother, Father and Child Cohort Study20,21 (MoBa, N = 58,302), the 
Netherlands Twin Register22 (NTR, N = 6,251), the Lifelines multigen-
erational prospective population-based birth cohort study23 from the 
North of the Netherlands (N = 3,415) and the United Kingdom Medi-
cal Research Council National Study for Health and Development24 
(NSHD, N = 2,592). Analyses were preregistered on OSF (https://doi. 
org/10.17605/OSF.IO/M2QV3). The quantile–quantile (QQ) plot for the 
MoBa GWAS (Supplementary Fig. 2) indicated a P value deviation from 
a normal distribution (λGC = 1.227). The observed inflation is probably 
explained by trait polygenicity (linkage disequilibrium score regression 
[LDSC] intercept = 1.008 (0.008)25,26; see Supplementary Note A for 
a detailed investigation of the observed inflation). The other smaller 
cohorts’ inflation factors were below the recommended threshold of 1.10 
(NTR λGC = 0.975, Supplementary Fig. 4; Lifelines λGC = 1.001, Supplemen-
tary Fig. 6; NSHD λGC = 1.002, Supplementary Fig. 8), which is expected 
given the positive relationship between inflation and sample size27. 
Therefore, contrary to the preregistered plan, automatic correction 

that variation in age at onset of walking within the typical range might 
not be strongly associated with IQ in childhood6. As such, late-walking 
children (later than 18 months) might either reflect an extreme of 
typical variation or relate to clinically meaningful conditions with a 
later age of onset.

Although most humans begin to walk independently by early 
childhood, typical attainment of this milestone can be achieved within 
a relatively wide developmental period, for most infants between 8 
and 18 months old3. It is thought that age at onset of independent 
walking (hereafter, AOW) is a complex trait determined by multiple 
factors, including body dimensions, year of birth, gestational age 
and related neural maturation, opportunity to practice7,8, cultural 
context9 and nutrition10. Many of these factors are thought to influ-
ence the structure and function of a network of brain areas implicated 
in motor control, including the cortex, basal ganglia and cerebellum, 
with dysfunction in these brain regions resulting in movement dis-
orders11. In addition to reflecting general developmental processes, 
the ability to walk independently may itself have cascading effects on 
other developmental domains12. When children transition from crawl-
ing to standing and walking, the perspective at which they perceive 
the world changes, as do their means of interacting with the world13. 
However, it remains unclear what are the causal influences underlying 
the wide variability in age at onset of walking or whether these causal 
influences are also associated with later health, neurodevelopmental 
and cognitive outcomes.

A greater understanding of the variability and causes of late walk-
ing has clear societal implications. It would inform many countries’ 
public health policy that aim to screen children for delay14. Genetic 
information has the potential to offer greater understanding regard-
ing the aetiology of this developmental milestone. Furthermore, it can 
contribute alongside screening tools to aid the prediction and early 
identification of clinically relevant conditions associated with early 
or delayed onset of walking, and avoid missing time for potentially 
beneficial physical training when appropriate.

There is substantial evidence for a genetic contribution to motor 
development. A recent meta-analysis of infant twin studies showed that 
the broad category of psychomotor function was one of the most herit-
able behavioural domains, with pooled heritability of 59%15. For AOW 
specifically, a study of 2,274 twin pairs in England and Wales reported 
a heritability of 84%16. Polygenic scores for autism spectrum disorder 
(ASD, hereafter autism), schizophrenia and bipolar disorder have been 
found to be associated with infant neuromotor characteristics such as 
muscle tone, reflexes and senses17. Further, the attention deficit/hyper-
activity disorder (ADHD) polygenic score was associated with AOW18. 

Table 1 | Genome-wide significant loci associated with age at onset of walking

Genomic 
locus

Lead SNPs Chromosome Position A1 A2 A1 freq. 
in EUR

N Effect 
size

s.e. P COJO P Nearest genes

1 rs7956202 12 112661263 T G 0.831 64,273 0.098 0.015 2.045 × 10−11 1.856 × 10−11 HECTD4

2 rs16952251 16 53483138 A G 0.697 64,286 −0.082 0.012 2.637 × 10−11 2.470 × 10−11 RBL2

3 rs73030207 5 1902324 A C 0.014 64,266 0.230 0.040 5.454 × 10−9 5.691 × 10−11 CTD-2194D22.4

4 rs28383314 6 32587213 T C 0.339 60,831 −0.078 0.012 1.028 × 10−10 9.863 × 10−11 HLA-DQA1

5 rs10010217 4 80801911 T C 0.718 70,313 0.081 0.013 4.097 × 10−10 4.698 × 10−10 PCAT4, ANTXR2

6 rs382362 17 43691377 T C 0.758 59,830 −0.098 0.016 5.370 × 10−10 5.209 × 10−10 RPS26P8

7 rs4785475 16 50939789 A G 0.277 64,263 0.081 0.013 1.385 × 10−9 1.439 × 10−9 RP11-883G14.1

8 rs148420384 13 31826394 C G 0.668 58,121 −0.077 0.013 2.341 × 10−9 2.414 × 10−9 B3GALTL

9 rs1559625 2 60173866 A G 0.390 60,838 0.068 0.012 2.329 × 10−8 2.564 × 10−8 RP11-444A22.1

10 rs6058302 20 34290037 T C 0.140 60,884 −0.099 0.018 4.188 × 10−8 4.481 × 10−8 ROMO1, RBM39

11 rs11958405 5 22247159 A G 0.515 70,536 0.060 0.011 5.289 × 10−8 4.810 × 10−8 CDH12

The allele frequency in the 1000 Genomes85 European-ancestry sample (EUR), the effect sizes and the standard errors (s.e.) refer to Allele 1 (A1). The P values of association from the 
meta-analysis performed in METAL and the P values resulting from the conditional and joint (COJO)29 analysis are reported. The nearest genes were identified using FUMA33.
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for genomic control was not applied for all cohorts when performing 
the standard-error-weighted meta-analysis using the METAL tool28.

We identified 2,525 genome-wide significant SNPs (P < 5 × 10−8), 
of which 11 were independent loci with one lead variant per locus in 
GCTA conditional and joint analysis (COJO)29 (Table 1 and Fig. 1, see also 
Supplementary Fig. 9 for the QQ plot and Supplementary Fig. 10 for the 
regional plots). All 11 lead SNPs remained significant after conditioning 
on the other significant SNPs on the same chromosome (Table 1, col-
umn ‘COJO P’). The most strongly associated SNP was located on chro-
mosome 12 (rs7956202 near HECTD4, P = 2.045 × 10−11). The second most 
significant lead SNP was located on chromosome 16 (rs16952251, near 
RBL2, P = 2.637 × 10−11) (fine mapping of this locus is discussed later; 
see Results section ‘Co-localization with gene expression in the brain’). 
See Table 1 for a full list of significant loci, Supplementary Table 4 for 
previous associations with complex traits, and Supplementary Table 5 
for which cohorts contributed to each locus.

Common genetic architecture of age at onset of walking
SNP-based heritability of AOW estimated with LDSC25 was h2

SNP = 24.13% 
(95% CI = 21.856, 26.404). Heritability for the phenotype in males 
(N = 35,642) and females (N = 34,918) was estimated to be 23.06% 
(95% CI = 19.512, 26.608) and 23.06% (95% CI = 19.356, 26.764), respec-
tively. The genetic correlation (rg) of the phenotype between males 
and females estimated with LDSC30 was 0.99 (95% CI = 0.872, 1.108).

The SNP-based heritability (h2
SNP) estimated using LDSC25 for 

the MoBa sample was h2
SNP = 25.11% (95% CI = 22.484, 27.736) and for 

the NTR sample, h2
SNP = 19.09% (95% CI = 4.547, 33.633). Lower h2

SNP 

estimates and larger standard errors were obtained for the smaller 
samples, namely: Lifelines (h2

SNP = 9.52%, 95% CI = −15.921, 34.961) 
and NSHD (h2

SNP = −3.02%, 95% CI = −36.673, 30.633), as LDSC cannot 
produce reliable estimates with samples <5,000 (ref. 25). Genetic 
correlation between MoBa and NTR was rg = 0.893 (95% CI = 0.558, 
1.228, P = 1.803 × 10−7) and between NTR and Lifelines, rg = 0.463 (95% 
CI = −0.623, 1.549, P = 0.404). As expected, other genetic correlations 
were out of bound (MoBa–Lifelines rg = 1.168, 95% CI = −0.233, 2.569, 
P = 0.103) or non-estimable due to low reliability of the LDSC estimates, 
indicated by the large SNP-based heritability standard errors obtained 
for the smaller cohorts. Of note, the interval between AOW and parent 
report was not significantly correlated with the mean AOW difference 
between cohorts (r = 0.16, P = 0.76, two-tailed).

There was no genome-wide statistically significant heterogene-
ity (using the conventional P < 5 × 10−8 threshold) between cohorts as 
tested with the heterogeneity metric per SNP, I2; the maximum I2 was 
95.3 for SNPs rs7864115 (χ2

(1) = 21.453, P = 3.627 × 10−6) and rs148684045 
(χ2

(1) = 21.441, P = 3.648 × 10−6). This indicates that variation of individual 
SNP effects between individual GWASs was not due to heterogeneity 
between the cohorts31 (Supplementary Fig. 11). Overall, the M multiSNP 
heterogeneity metric across the independent lead SNPs32 associated 
with AOW indicated no systematically more or less influential study (see 
Supplementary Table 3, all Bonferroni-corrected Ps < 0.401).

Biological annotation of associated loci and genes
Analyses on prioritized genes annotated to significant SNPs. The 
genome-wide significant SNPs were mapped to 233 genes on the 
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Fig. 1 | Manhattan plot of the GWAS meta-analysis of age at onset of walking. 
The x axis shows genomic position (chromosomes 1–22) and the y axis shows 
statistical significance as −log10(P value). P values are two-sided and based on an 
inverse-variance standard-error-weighted fixed-effects meta-analysis. N = 70,560. 
The horizontal red line indicates the P-value threshold for genome-wide statistical 
significance (P = 5 × 10−8). P values were not adjusted for multiple comparisons. 

The lead SNP for each genome-wide significant locus is labelled and indicated 
with a yellow diamond. The inflation factor λGC for this GWAS was 1.27 and LDSC 
intercept was 1.00 (s.e. = 0.01), suggesting that inflation was due to polygenicity 
of AOW (see Supplementary Note A for a discussion). The meta-GWAS QQ plot by 
allele frequency is presented in Supplementary Fig. 9. SNPs with P-values < 0.001 
(corresponding to −log10(P) > 3) are presented as data points.
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basis of genomic position, expression quantitative trait loci (eQTLs) 
and chromatin interaction information in FUMA33 (Supplementary 
Table 6). We tested whether these prioritized genes were differen-
tially expressed in the brain across BrainSpan34 developmental stages 
and GTEx (v.8)35 tissues. We observed a significant downregula-
tion of the differentially expressed genes (DEGs) in multiple tissues 
including the brain (amygdala and hippocampus, both-sided DEG 
Bonferroni-adjusted P = 5.979 × 10−8, P = 5.165 × 10−7) and the heart 
left ventricle (Padj. = 3.124 × 10−7), and DEGs upregulation in fibroblasts 
(Padj. = 0.003) (Supplementary Fig. 12). The enrichment of upregulated 
or downregulated DEGs across BrainSpan developmental stages was 
not significant (all Bonferroni-adjusted P = 1, see Supplementary Table 7 
for full results). Gene sets associated with AOW were enriched in the 
Gene Ontology36 neurogenesis and generation of neurons pathways 
(see Supplementary Table 8 for all significantly enriched gene sets and 
gene set–trait associations from previous studies).

Genes associated with age at onset of walking. The MAGMA37 
gene-based test performed in FUMA on the meta-GWAS sum-
mary statistics indicated 50 genes that were associated with AOW 
at a Bonferroni-corrected genome-wide significance threshold of 
2.664 × 10−6 (P = 0.05 divided by 18,766 genes; Supplementary Table 9). 
A full list of previously reported genome-wide associations with com-
plex traits for the 50 AOW-associated genes is provided in Supplemen-
tary Table 10.

Using the Genomics England PanelApp38, we found that 13 (27.7%) 
of the 47 of the 50 MAGMA genes that had Ensembl IDs in PanelApp were 
associated with intellectual disability (ID, v.5.557); this is over double 
the proportion (2.10 times) of ID-associated genes in the panels as a 
whole (2,624 out of 19,950, 13.2%; χ2

(1) = 7.45; P = 0.006, two-tailed). 
These genes include ATXN2, AUTS2, CUX2, FOXP1, KANSL1 and RBL2 
(Supplementary Table 9). Furthermore, we found that 7 of the 47 genes 
were associated with autism (14.9%), which is over 4 times the propor-
tion of autism-associated genes in the panel (v.0.36, largely based on 
SFARI gene39) as a whole (734 out of 19,950, 3.68%; χ2

(1) = 13.7; P = 0.0002, 
two-tailed).

To identify tissue specificity of AOW, MAGMA gene-property analy-
ses performed in FUMA using gene-based association P values for all 
the 18,766 genes revealed that gene expression was primarily enriched 
in the brain cerebellar hemispheres (β = 0.017, 95% CI = −0.050, 0.084, 
P = 0.006) and cerebellum (β = 0.018, 95% CI = −0.052, 0.088, P = 0.007), 
although these results were not significant at a Bonferroni-corrected 
α level of 0.05 for 54 tissues (9.000 × 10−4; see Supplementary Fig. 13). 
Overall, expression of the genes associated with AOW was signifi-
cantly enriched between 19 and 24 post-conceptional weeks (late 
mid-prenatal period, β = 0.041, 95% CI = 0.011, 0.070, P = 0.004; Supple-
mentary Fig. 14). The MAGMA gene-set analysis yielded no significant 
results (Supplementary Table 11).

Analyses on the meta-GWAS summary statistics. Enrichment of AOW 
meta-GWAS signal by functional genomic annotation was tested using 
stratified LDSC40 analyses. These revealed that heritability of AOW 
was significantly enriched in genomic regions conserved in primates 
(16.142-fold enrichment, 95% CI = 10.421, 21.863, P = 0.309 × 10−6), mam-
mals (13.053-fold enrichment, 95% CI = 8.239, 17.867, P = 0.287 × 10−5,) 
and vertebrates (8.747-fold enrichment, 95% CI = 5.450, 12.044, 
P = 0.817 × 10−5; see Extended Data Fig. 1). Full results of partitioned 
heritability by functional genomic annotation can be found in Sup-
plementary Table 12.

We then tested whether heritability was enriched in specific 
cell types using stratified LDSC41 and found significant enrich-
ment in the brain, particularly in the basal ganglia (caudate: enrich-
ment = 1.400 × 10−8, Bonferroni-adjusted P = 0.014, 95% CI = 6.062 × 10−9, 
2.194 × 10−8, nucleus accumbens: enrichment = 1.760 × 10−8, Padj. = 0.001, 
95% CI = 9.740 × 10−9, 2.546 × 10−8, putamen: enrichment = 1.470 × 10−8, 

Padj. = 0.006, 95% CI = 6.840 × 10−9, 2.256 × 10−8), cortex (enrich-
ment = 1.370 × 10−8, Padj. = 0.003, 95% CI = 6.781 × 10−9, 2.062 × 10−8), 
amygdala (enrichment = 1.360 × 10−8, Padj. = 0.020, 95% CI = 5.682 × 10−9, 
2.152 × 10−8) and cerebellum (enrichment = 1.320 × 10−8, Padj. = 0.014, 95% 
CI = 5.772 × 10−9, 2.023 × 10−8; Extended Data Fig. 2). Complete stratified 
LDSCs by cell-type estimate are reported in Supplementary Table 13.

Co-localization with gene expression in the brain
We investigated whether genes near the 11 genome-wide significant 
loci, as well as 50 genes significantly associated with AOW (Supple-
mentary Table 9), were enriched for eQTLs in an independent dataset 
of post-mortem bulk RNA-seq from 261 samples of the human adult 
cerebellum42. We identified significant eQTLs for the gene RBL2 (which 
encodes a transcriptional regulator by the same name) in genomic locus 
2 on chromosome 16 (Table 1). Comparing the statistical evidence of 
association with AOW (GWAS) against the statistical evidence of associa-
tion with RBL2 expression, we noticed a distinct pattern: both the GWAS 
and eQTL P values had two groups of significantly associated SNPs 
distinguished by their linkage disequilibrium correlation with a lead 
GWAS SNP (rs17800727, Fig. 2a). Group 1 had the strongest evidence for 
GWAS association (min P = 2.95 × 10−11) but slightly weaker evidence of 
eQTL association (min P = 2.72 × 10−13 cerebellum eQTL), while Group 
2 had weaker evidence for GWAS association (min P = 9.51 × 10−8) but 
stronger evidence of eQTL association (min P = 6.41 × 10−24 cerebellum 
eQTL, Fig. 2a). We investigated the probability that the same SNPs in 
this locus influence both AOW and RBL2 expression (co-localization, 
Fig. 2). Our co-localization analysis at this locus suggested an inde-
pendent causal variant in the GWAS (rs17800727; chr16:53481010:A:G 
GRCh37; chr16:53447098:A:G GRCh38) and the eQTL data (rs7203132; 
chr16:53429775:G:A GRCh37; chr16:53395863:G:A GRCh38) with a pos-
terior probability (PP) of 0.96 (ref. 43) that the causal SNP is distinct 
in each dataset. A similar co-localization pattern was observed using 
1,433 samples of the human adult cortex (ref. 42) (Supplementary Note 
B and Fig. 15; PP = 0.97–0.99).

To understand these two groups, we assessed their distribution 
across the 2-Mb genomic locus (±1 MB around the gene) and observed 
that they overlapped throughout a 125-kb peak with well-defined mar-
gins for both the GWAS and RBL2 eQTL analysis (Fig. 2b). We next 
considered how these SNPs were distributed on the basis of minor 
allele frequency (MAF, Fig. 2c). The Group 1 SNPs (strongest GWAS 
evidence) had a MAF of 30%, while the Group 2 SNPs (strongest eQTL 
evidence) had a MAF of 50%. Using whole-genome sequencing data 
from 176 individuals with paired post-mortem RNA-seq data from 
prefrontal cortex44, we used the MAF distribution to identify five hap-
lotypes (Fig. 2d) and each individual’s genotype. Group 2 SNPs (strong-
est eQTL evidence, MAF 50%) are found in three haplotypes (dark 
blue and red, dark blue and yellow, dark blue alone, Fig. 2d) resulting 
in the high MAF of 50%. Homozygous status for the Group 2 SNPs is 
associated with decreased expression of RBL2 (Wilcoxon rank test, 
two-sided; W(56) = 249, P = 0.007, Hodges–Lehmann estimator = −2.105, 
95% CI = −3.813, −0.610). We infer that one of the SNPs shown in dark 
blue (Fig. 2c) impacts RBL2 expression, although no clear candidate 
SNP was evident when considering epigenetic data.

Group 1 SNPs are only found on one haplotype (dark blue and red, 
Fig. 2d) resulting in a lower MAF of 30% than the Group 2 SNPs. We infer 
that one of the Group 1 SNPs has a functional impact above and beyond 
the decrease in RBL2 expression mediated by the Group 2 SNPs, to 
yield the stronger evidence of association with AOW. Annotation of 
the 125-kb locus with VEP45 identified rs17800727 as a likely candidate 
for this effect, since it results in a missense variant (MANE isoform: 
ENST00000262133.11, p.Tyr210Cys) (Fig. 2e) that is predicted to impact 
function by some severity metrics (for example, ‘Damaging’ based on 
PolyPhen2 (ref. 46), CADD47 score of 25) but not all (for example, ‘Tol-
erated’ based on SIFT). If the missense variant had a loss-of-function 
effect, it would be on a haplotype that magnifies the functional impact 
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through decreased expression of RBL2; future functional studies would 
be required to validate this impact.

We also identified co-localization of SNPs associated with expres-
sion of several genes in both the cerebellum and cortex with SNPs 
associated with AOW in genomic locus 6 on chromosome 17 (Table 1). 
This region has a complex haplotype structure, including alternative 
contigs, which may explain this result. In cerebellum, we identified 
co-localization in KANSL1 (PP = 0.79), PLEKHM1 (PP = 0.78), SPPL2C 
(PP = 0.77) and STH (PP = 0.63). In the cortex, we also identified 
co-localization in STH (PP = 0.78) and SPPL2C (PP = 0.72), as well as in 
CRHR1 (PP = 0.74).

Polygenic score analysis
In a leave-one-out design, we calculated a polygenic score (PGS) on the 
basis of meta-analyses of all samples, leaving out either Lifelines, NTR 
or NSHD. In the Lifelines cohort, the PGS from the meta-GWAS of the 

other cohorts (MoBa, NTR and NSHD) was significantly associated with 
AOW (β = 0.185, 95% CI = 0.152, 0.217, P < 2 × 10−16, R2 = 0.034). Using the 
same method, the PGS was significantly associated with AOW in the NTR 
cohort (β = 0.185, 95% CI = 0.147, 0.223, P < 2 × 10−16, R2 = 0.031) and in the 
NSHD cohort (β = 0.175, 95% CI = 0.137, 0.213, P < 2 × 10−16, R2 = 0.030). 
The MoBa sample comprised a high proportion of the data such that it 
would be inappropriate as a ‘left out’ sample in a leave-one-out design. 
Therefore, we applied 5-fold cross-validation to this cohort, yielding 
5 within-sample PGSs with a mean variance explained of R2 = 0.056 
(s.e. = 0.001).

Genetic effects identified by GWAS can be confounded by indirect 
genetic effects, for example, through population structure, assor-
tative mating and passive gene–environment correlation (prGE)48. 
To identify possible confounding from indirect genetic effects, we 
used a within- and between-sib-pair PGS analysis. We generated a PGS 
from a meta-analysis of the MoBa, Lifelines and NSHD GWAS summary 
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Fig. 2 | Co-localization of variants in genomic locus 2. Genomic locus 2 overlaps 
with a region in which SNPs are predicted to alter RBL2 expression in the human 
brain (eQTLs). a, The GWAS evidence for association with age at onset of walking 
[−log10(P value), y axis] is plotted against the statistical evidence of being an 
eQTL for RBL2 in human adult cerebellum42 [−log10(P value), x axis] for each 
SNP (points) within a 2-Mb window around the GWAS peak. Points are coloured 
by linkage disequilibrium (LD) correlation with the lead SNP (rs17800727) and 
these values were used to define two groups. b, The SNPs from a are shown in 
the 2-Mbp genomic region (x axis, GRCh37) with protein-coding genes (top), 
GWAS evidence for association with age at onset [−log10(P value), middle] and 
statistical evidence for RBL2 expression in human cerebellum [−log10(P value), y 
axis, bottom]. Point colour matches a. c, A zoomed-in view of the peak indicated 
by dashed vertical lines in b shows the GWAS evidence for association with age 
at onset of walking [−log10(P value), y axis] by genomic position (x axis, GRCh37). 
Colour indicates the MAF of each SNP. The locations of protein-coding genes in 

the region are indicated at the top. An SNP (rs17800727) that results in a missense 
variant (p.Tyr210Cys) in RBL2 is marked. d, Swarm, violin and boxplots showing 
the distribution of RBL2 expression in the prefrontal cortex (transcripts per 
million (TPM), y axis). Each point represents the expression of RBL2 in 1 of 87 
prenatal human cortices (BrainVar44) split by genotype into 3 groups on the basis 
of zygosity for the Group 2 50% MAF SNPs. The P value represents the difference 
between the homozygous alternate (N = 28) and homozygous reference (N = 30) 
groups. The centre is the median expression value. The lower and upper 
bounds of the box correspond to the first and third quartiles (the 25th and 75th 
percentiles). The upper/lower whiskers extend from the upper/lower bound 
to the largest/smallest value no further than 1.5× the interquartile range. Data 
beyond the end of the whiskers are outlying points and are plotted individually. 
Bars at the bottom indicate pairs of haplotypes (derived from the data shown 
in c making up each genotype). e, Structure of the RBL2 protein predicted by 
AlphaFold95 with the location of rs17800727, p.Tyr210Cys in red96.
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statistics and used it to conduct within-family associations in the NTR 
dataset. Among 1,254 dizygotic twin pairs (N = 2,508 individuals), 
within- and between-family standardized regression coefficients in a 
linear mixed-effects model were not significantly different from each 
other (χ2

(1) = 1.479, P = 0.224, two-tailed), indicating that the genetic sig-
nal is not biased by prGE, or effects such as stratification and assortative 
mating. Figure 3 shows the beta estimates of the AOW PGS prediction 
in all the cohorts, with the NTR within- and between- sib-pair estimates 
presented separately.

Genetic correlations with other traits
Next, we tested for genetic correlations between AOW and a prereg-
istered selection of physical health, neurodevelopmental, psychi-
atric, cognitive and cortical phenotypes. For physical health, AOW 
was negatively genetically correlated with childhood body-mass 
index (cBMI)49 (rg = −0.143, 95% CI = −0.217, −0.069, P = 1.553 × 10−4, 
Bonferroni-adjusted P = 0.004) and adult BMI50 (rg = −0.103, 95% 
CI = −0.142, −0.063, P = 2.858 × 10−7, Padj. = 8.00 × 10−6) but not with birth 
weight (rg = 0.068, 95% CI = −0.067, 0.202, P = 0.325). Of the six included 
psychiatric disorders, ADHD51 showed a significant genetic correla-
tion with AOW (rg = −0.180, 95%CI = −0.242, −0.118, P = 1.299 × 10−8, 
Padj. = 3.64 × 10−7). In addition, AOW was positively genetically correlated 
with the cognitive phenotypes, educational attainment52 (rg = 0.119, 
95% CI = 0.081, 0.157, P = 7.457 × 10−10, Padj. = 2.088 × 10−8) and cogni-
tive performance53 (rg = 0.092, 95% CI = 0.041, 0.142, P = 3.967 × 10−4, 
Padj. = 0.011).

Among 13 adolescent and adult cortical phenotypes54, we 
observed a significant genetic correlation between AOW and folding 
index (rg = 0.136, 95%CI = 0.062, 0.209, P = 3.000 × 10−4, Padj. = 0.008). 
There were no significant genetic correlations with the other complex 
traits tested after correction for multiple testing (see Supplemen-
tary Table 14 and Fig. 4a). For motor phenotypes, non-preregistered 
exploratory analyses showed that AOW was genetically correlated with 
self-reported walking pace in adults55 (rg = 0.058, 95% CI = 0.006, 0.110, 
P = 0.029, Padj. = 0.820), although this result did not survive P-value cor-
rection for multiple testing (Supplementary Table 14).

In light of our findings of a Bonferroni-significant genetic corre-
lation between AOW and global folding index, we conducted further 
non-preregistered analyses, as requested by a reviewer, to gain more 
specific information about the brain regions implicated. We included 

regions involved in motor and/or somatosensory function and cor-
rected for multiple testing using false discovery rate (FDR) correction. 
We found that later AOW was significantly genetically correlated with 
increased folding in the primary somatosensory cortex (regions of 
interest (ROIs) in Glasser parcellation56 1: rg = 0.160, 95% CI = 0.078, 
0.242, FDR-adjusted P = 0.003 and 5 m: rg = 0.182, 95% CI = 0.081, 
0.283, Padj. = 0.005), premotor cortex (ROI 6r: rg = 0.152, 95% CI = 0.042, 
0.262, Padj. = 0.045) and cingulate motor area (ROI 24dd: rg = 0.148, 95% 
CI = 0.053, 0.243, Padj. = 0.021). See Supplementary Table 16 for the full 
set of results.

The largest-magnitude genetic correlation was between AOW and 
ADHD. In light of the potential implications of this finding, we tested, 
in an exploratory non-preregistered analysis, whether the AOW–ADHD 
genetic correlation remained after controlling the genetic influences 
of educational attainment, since the latter are also known to be associ-
ated with ADHD57. In a genetic multivariable regression performed with 
GenomicSEM58, we observed that the relationship between the genetic 
components of ADHD and AOW remained significant after conditioning 
for educational attainment (standardized β = −0.160, 95% CI = −0.248, 
−0.072, P = 3.8 × 10−4), while the conditional standardized associa-
tion between educational attainment and AOW was non-significant 
(β = 0.038, 95% CI = −0.027, 0.103, P = 0.246; Supplementary Fig. 16).

We applied MiXeR univariate and bivariate Gaussian mixture 
modelling59, which calculates the polygenicity of AOW defined as the 
number of SNPs that explain 90% of the h2

SNP, and the genetic overlap 
between AOW and other phenotypes, including SNPs of both concord-
ant and discordant effect directions. We applied bivariate mixture 
modelling to AOW with all other phenotypes with which there was a 
significant genetic correlation as calculated by LDSC after correction 
for multiple testing (based on Fig. 4a). In terms of Akaike information 
criterion (AIC) fit, we found support for the bivariate MiXeR models that 
estimated the optimal polygenic overlap between AOW and childhood 
and adult BMI, educational attainment, cognitive performance, ADHD 
and folding index (see Fig. 4b, AIC and Bayesian information criterion 
(BIC) values for all correlated phenotypes are provided in Supplemen-
tary Table 15). These models were supported over the ‘minimal model’ 
which explains the observed LDSC models using the minimal amount 
of polygenic overlap possible.

The polygenicity of AOW was 11,857 SNPs, confirming the hypoth-
esis that the inflation observed in the QQ plot could be explained by 
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Fig. 3 | Beta estimates of the prediction of age at onset of walking for the five 
MoBa subsamples, Lifelines, NSHD, NTR between- and NTR within-sib-pair 
polygenic score analyses. Data are presented as beta estimates ±s.e. of the beta 
estimate of a linear regression model testing the association between age at 

onset of walking and the polygenic score (two-tailed P values). N = 11,660 (MoBa-
1, MoBa-2, Moba-3), N = 11,661 (MoBa-4, MoBa-5), N = 3,415 (Lifelines), N = 2,592 
(NSHD); N = 2,508, N pairs = 1,254 (NTR between- and NTR within-sib-pair).
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trait polygenicity (Supplementary Note A). MiXeR presents the genetic 
overlap between two traits as Venn diagrams (Fig. 4b). In terms of the 
proportion of the SNPs contributing to the polygenicity of AOW that 
overlap with other phenotypes investigated, the traits investigated that 
showed the most overlap were cognitive performance (91.07%), edu-
cational attainment (82.44%), adult BMI (77.38%) and ADHD (64.87%). 
Of these overlapping SNPs, the fractions of SNPs that had concordant 
directions of effect were 55.10% and 53.71% for educational attainment 
and cognitive performance, respectively. On the contrary, little SNP 
overlap, despite significant genetic correlation, was found with child-
hood BMI (11.80%, of which 36.44% was concordant) and folding index 
(15.84%, of which 58.72% was concordant). A summary of all bivariate 
MiXeR analysis results can be found in Supplementary Table 15.

Polygenic score association with brain measures at birth
In an exploratory analysis, we tested whether the PGS for AOW was 
associated with measurable differences in infant brain volume and 
gyrification at birth. We used neonatal T2 imaging data from a European 
subsample of 264 term-born infants (137 male, 127 female), acquired as 
part of the Developing Human Connectome Project (dHCP)60.

The effect of the AOW PGS on brain volume was investigated 
across the whole brain at the voxel level using log-Jacobian determi-
nants, calculated using nonlinear deformation fields between par-
ticipants and the dHCP neonatal standardized atlas. In the resultant 
maps, higher values represent brain regions that contracted during 
image registration (that is, had larger brain volumes), while smaller 
values represent volume reductions61. We performed a tensor-based 
morphometry analysis, applying a general linear model (GLM) and 
permutation testing for statistical inference. We found a significant 
positive correlation between the AOW PGS and regional brain volume 
in the right basal ganglia, right posterior thalamus, bilateral anterior 
thalami, bilateral cerebellum and cerebellar peduncles, pons, medulla, 
primary visual cortex and superior temporal sulcus after correcting for 
multiple comparisons and thresholding at a corrected P < 0.05 (Fig. 5). 
Increased brain volume in these regions was associated with a higher 
PGS (predisposing to later AOW).

To explore whether the correlation between gyrification and 
common genetic variation linked to AOW was present in newborns, 
we fit a GLM testing for a significant effect of AOW PGS on the mean 
gyrification index in the left and right hemisphere of the dHCP infants.  
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Fig. 4 | Genetic overlap between age at onset of walking and other complex 
traits. a, Genetic correlation between AOW and physical health (purple), 
cognitive traits (blue), neurodevelopmental conditions and psychiatric disorders 
(orange), cortical phenotypes (grey) and non-preregistered motor phenotypes 
(green). Data are presented as correlation coefficients ± 95% CIs. Filled circles 
indicate significant correlations based on CIs. Filled squares indicate the traits 
that remain significantly genetically correlated with age at onset of walking after 
adjusting the two-sided P values obtained from LDSC for multiple testing using 
Bonferroni correction. The maximum GWAS sample sizes for each of the traits 
included in the LDSC analysis are as follows: age at onset of walking N = 70,560; 
childhood BMI N = 61,111; birth weight N = 42,212; adult BMI N = 795,640; 
educational attainment N = 765,283; cognitive performance N = 269,867; 
autism Ncases = 18,382, Ncontrols = 27,969; ADHD Ncases = 38,691, Ncontrols = 186,843; 
schizophrenia Ncases = 67,390, Ncontrols = 94,015; cross-disorders Ncases = 232,964, 
Ncontrols = 494,162,; major depression Ncases = 170,756, Ncontrols = 329,443; bipolar 
disorder Ncases = 41,917, Ncontrols = 371,549; cortical phenotypes (fractional 

anisotropy, mean diffusivity, intracellular volume fraction, orientation 
dispersion index, isotropic volume fraction, cortical thickness, folding index, 
Gaussian curvature, intrinsic curvature index, local gyrification index, mean 
curvature, cortical surface area, grey matter volume) N = 36,663; muscle 
weakness in the pincer grip Ncases = 48,596, Ncontrols = 207,927; self-reported walking 
pace N = 450,967; early motor coordination N = 31,797; Parkinson’s disease 
Ncases = 26,421, Ncontrols = 442,271. b, Venn diagrams representing MiXeR bivariate 
analyses between AOW and the 6 other phenotypes with which it has Bonferroni-
significant genetic correlations. The size of the circles and the numbers within 
them represent the relative polygenicity of each trait (that is, how many genetic 
variants contribute to 90% of the SNP heritability). The overlap between each pair 
of circles represents the degree of genetic overlap between the two phenotypes, 
that is, the number of shared variants in thousands, along with the standard 
error. Numbers and standard errors in sections of the circles that do not overlap 
represent the number of variants unique to that phenotype. The corresponding 
rg, estimated using LDSC, is shown below each Venn diagram.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02145-1

We found a significant positive association between AOW PGS and gyri-
fication index in both hemispheres in newborn brains (left hemisphere 
β = 83,517.30, CI = 14869.22–152165.39, P = 0.017; right hemisphere 
β = 83,839.82, CI = 18,552.48–149127.15, P = 0.007).

Finally, for those infants that had also been assessed using the 
Bayley-III Scales of Infant and Toddler Development62 at 18-month-age 
follow-up (N = 217), we explored the relationship between scaled gross 
motor score and the AOW PGS using a multiple linear regression model. 
Data distribution was assumed to be normal, but this was not formally 
tested. We found that higher AOW PGS was significantly associated with 
lower Bayley’s gross motor score, indicating worse/possibly delayed 
gross motor skills (t(201) = −2.305, β = −0.161, s.e. = 0.070, P = 0.022).

Discussion
The reasons for the high variability in AOW in young children are poorly 
understood, yet this milestone is used widely as a clinical marker to 
index overall development, with absence of walking at age 18 months 
prompting clinical referral to a paediatrician for further assessment and 
investigation. The present study reveals that AOW is a heritable poly-
genic trait with significant aetiological links to later health outcomes. 
Moreover, we identified 11 independent genome-wide significant loci 
associated with AOW, one of which co-localized with eQTLs and was 
located in a gene associated with rare disorders that include delayed or 
absent walking. We discuss four main conclusions from these results.

Past models of gross motor skills, as well as neurodevelopment 
more generally, have put a primary emphasis on environmental factors 
such as nutrition10 and cultural factors9,63. Our first conclusion is that 
our results show that AOW is also associated with common genetic 
variants operating in the brain. Significantly enriched cell-type tis-
sues were exclusively brain-based tissues; moreover, strongest signals 
included tissues in the basal ganglia, cortex and cerebellum. In line 
with these findings, the polygenic score for AOW was associated with 
neonatal brain volume of the basal ganglia, thalami, medulla, pons and 
cerebellum. This is consistent with the known role of these brain areas 

in motor function11,64. Also supporting this first conclusion, we found 
that gene sets involved in AOW are also involved in the generation of 
neurons. Further, we observed that genes associated with AOW are 
enriched in the brain between 19 and 24 weeks post conception (Sup-
plementary Fig. 14).

Our second conclusion is that the novel loci that were discovered 
here involve genes of highly plausible biological relevance to the onset 
of walking. We identify common variant associations with AOW at a 
locus overlying RB transcriptional corepressor like protein 2 (RBL2, 
ENSG00000103479, genomic locus 2 in Table 1). RBL2 is also associated 
with an autosomal recessive neurodevelopmental disorder (eponym 
Brunet–Wagner)65,66. Homozygous loss of RBL2 has been observed in 
five individuals across three families, each with a different allele65,66. 
Affected individuals had infantile hypotonia, severe developmental 
delay, delayed/absent walking, and were minimally verbal. Seizures 
were reported in three cases. Three cases had microcephaly (−2.4 s.d. 
to −4.7 s.d.), while two had normal head circumference (65th and 50th 
centiles) but cerebral atrophy on magnetic resonance imaging (MRI). 
Height was normal for two cases, unreported for one and low for two 
(3rd centile, −3.4 s.d.). In Balb/c mice, homozygous loss of Rbl2 is embry-
onic lethal with a disorganized neural tube and neuronal loss64 (see also 
Supplementary Note B).

The third conclusion from our results is that AOW is partly influ-
enced by the same genetic variants that influence individual variability 
of other complex traits measured at later ages. We found that common 
genetic variation associated with AOW is partly overlapping with com-
mon genetic variation associated with cognitive performance and 
years in education, likelihood of ADHD and cortical folding index. We 
note that the direction of these associations was consistent in the three 
largest individual cohorts (MoBa, NTR and Lifelines) (the fourth cohort, 
NSHD was not well-powered for genetic correlation estimates) as well 
as the meta-analysed results, indicating robust findings. Interestingly, 
MiXeR analyses showed that a large proportion of variants explaining 
the heritability in AOW were shared with educational attainment and 
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Fig. 5 | Brain regions with statistically significant positive correlation between 
tissue volume and age at onset of walking polygenic score in the Developing 
Human Connectome Project cohort. Thresholding t-statistic image at t > 0.95 

(two-sided statistical test). Significant voxels were overlaid on the 40-week 
neonatal brain template in sagittal, coronal and axial planes. White arrows 
indicate significant brain structures involved in motor control. N = 264.
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cognitive performance, with more than half of these variants having 
concordant effects on the two phenotypes (which explains the overall 
positive genetic correlations obtained with the LDSC method shown 
in Fig. 4a). Thus, results indicated that genetic predispositions to later 
onset of walking also contribute to high cognitive performance and 
more educational attainment. It is interesting to note that nearly half 
of the overlapping SNPs between AOW and cognitive performance and 
academic achievement have discordant effects.

The negative genetic correlation between AOW and ADHD might 
be surprising when considering that, at the phenotypic level, delayed 
walking, rather than earlier walking, is associated with increased likeli-
hood of developmental disorders4. However, the ability to walk requires 
practice and movement63, and infants with higher activity levels or 
shorter attention spans may, on average, move about more, thus gain-
ing more practice in movement, muscle strengthening and training, 
ultimately resulting in earlier walking onset. Thus, attention and activ-
ity levels may influence motor system training in young children, and 
this may relate to what we are observing at the level of common genetic 
variation. In support of the hypothesis that shorter attention span and 
higher activity levels would be associated with earlier walking, a recent 
study of over 25,000 children from MoBa found that the ADHD poly-
genic score was associated with earlier walking18. Further, the ADHD 
polygenic score was associated with better gross motor skills, such as 
walking, climbing stairs and jumping, in 7,498 18-month-old children 
from the Avon Longitudinal Study of Parents and Children (ALSPAC)67. 
At the same time, it should be noted that in our study, the negative 
genetic correlation between AOW and ADHD, while significant, is still 
relatively modest in magnitude (rg = −0.180).

Research on the timing of milestones in prenatal brain develop-
ment across humans, primates and other mammals shows that longer 
duration (more prolonged development) is associated with larger 
brain volumes, and in particular, enlargement of later developing 
brain structures68. In line with this, within humans we found that the 
polygenic score predisposing to later onset of walking is associated 
with larger volumes of neonatal brain areas involved in the motor 
domain (Fig. 5). In addition, we found that gene sets associated with 
AOW are involved in neurogenesis, and that expression of genes associ-
ated with AOW is enriched in the brain between 19 and 24 weeks post 
conception (Supplementary Fig. 14). Last, we found that later AOW is 
genetically correlated with increased cortical folding in adolescence 
and adulthood in areas involved in the somatosensory processing of 
movement (ROIs 1 and 5 m in Glasser parcellation56, located in the pri-
mary somatosensory cortex), including higher-order somatosensory 
integration of the lower limb representation (ROI 24dd in the cingulate 
motor area) and motor planning concerning the whole body (ROI 6r 
in the premotor cortex). Taken together, these findings may suggest 
that for children with genetically influenced protracted subcortical 
neurogenesis in the prenatal period, cortical regions involved in more 
complex motor behaviours may take longer to specialize69. This results 
in a later onset of walking. Since advantages and costs to early walking 
might vary on the basis of the individual’s environmental conditions, 
wide individual differences in the duration of the sensitive period to 
learn to walk might be the result of the ability of human beings to adapt 
to their local environment70.

Current public health policy employs late walking (>18 months) 
as a red flag for developmental delay which typically triggers referral 
for clinical assessment aimed to identify the reason for a departure 
from the normal range of achievement of this milestone3. A better 
understanding of the entire variation of AOW and of its shared biology 
with later medically relevant phenotypes could help in more precise 
intervention planning. Future research should test whether adding 
AOW PGS to clinical variables and/or rare variant information could 
improve prediction models that could be applied clinically. Historical 
data suggest that the majority of late walkers do not have a medically 
recognized developmental disorder6. In light of our findings, future 

research should explore whether early walking may also be a useful 
red flag that may offer early information about likelihood of ADHD or 
learning difficulties.

Our final conclusion is that the genetic signal identified through 
our AOW GWAS captures genetic effects that directly influence the phe-
notype48. This was tested by the within-family polygenic score analyses 
on fraternal twin siblings in the NTR cohort. We found that the variance 
explained by the between-pair PGS was not significantly greater than 
that explained by within-pair association. If the variance explained by 
between-pair PGS had been much larger than the within-pair PGS, it 
would have indicated that some of the AOW signal was coming from 
genetic effects that play a role on the phenotype in an indirect way, 
via mechanisms such as gene–environment correlation, assortative 
mating and stochastic effects48. Our results offer evidence that the 
polygenic score is picking up on direct genetic effects.

In our study design, we took a comprehensive approach to the 
phenotype and samples. Relevant samples were searched for using mul-
tiple database resources, research council websites and bibliographies. 
Samples were only included if they had a highly similar phenotype 
(AOW in months) and a sample size greater than 1,000 to ensure reliable 
effect sizes in individual samples. Nevertheless, the potential attrition 
and participation biases present in population cohorts should be con-
sidered in relation to our findings71,72. Although there is evidence that 
AOW can be reliably recalled by parents retrospectively by the child’s 
second1 and third18 birthday, we acknowledge that it was not possible 
to measure the reliability of this phenotype as recorded in the Lifelines 
cohort, where it was collected between the children’s 3 and 18 years 
of age. It is possible that the Lifelines measure included the largest 
measurement error of the four cohorts, in light of the later age at which 
parents recalled the AOW in their children (although AOW difference 
between cohorts was not correlated with the interval between AOW and 
parent report). Systematic regional/national differences in body size 
and cultural factors might explain these differences. However, by con-
ducting the GWAS in each individual cohort and then meta-analysing 
the effects, our approach ensures capturing SNP effects on the trait 
variance that are not confounded by differences between cohorts. 
An important limitation of this study is that our meta-analysis only 
included Western European cohorts, as at the time of conducting the 
study, information on AOW was not available in other sufficiently large 
genotyped cohorts to have the statistical power for a GWAS. Extend-
ing this investigation to a more diverse population is a vital next step. 
Future work could also test the degree to which genetic correlations 
with AOW vary locally across the genome, and furthermore, how they 
vary when conditioned on third variables to delineate genetic associa-
tions with AOW within specific genomic locations73.

In summary, we demonstrate that the high variability in age at 
onset of walking is partly due to common genetic variation, with 
approximately a quarter of the variability explained by common 
genetic variants. The genetic variants identified were plausible con-
tributors to individual variability in motor behaviour, as they were 
previously associated with disorders that disrupt the development of 
walking. AOW was shown to be an important milestone that links geneti-
cally to a range of later health, educational and behavioural outcomes.

Methods
Inclusion and ethics statement
This study complies with all relevant ethics regulations. The research 
and the related secondary data analysis were approved by the Depart-
mental Ethics Committee of the Psychological Science Department 
of Birkbeck, University of London, on 27 October 2020 (reference 
number 2021007). Each cohort received ethics approval by the local 
ethics review committee. The current research was not conducted in 
resource-poor settings. Researchers responsible for the cohort data 
management in each of the three European countries (Norway, the 
Netherlands, United Kingdom) were involved in the research process 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02145-1

and consulted regarding authorship and relevant citations. No biologi-
cal materials were shared for the purpose of this study. This study did 
not involve animal data.

MoBa and the related data collection was authorized by a licence 
from the Norwegian Data Protection Agency and an approval from the 
Regional Committees for Medical and Health Research Ethics (REK). 
MoBa is regulated by the Norwegian Health Registry Act. Informed 
consent was provided by all participating parents at recruitment. The 
current study was approved by REK (2016/1702). An external collabora-
tor form was signed for accessing this dataset, and MoBa genotype and 
phenotype data were shared within a secure server in Norway, in accord-
ance with Collaboration and Data Processor Agreement 20220801 
between the Norwegian Institute of Public Health and Birkbeck College, 
University of London.

Informed consent for NTR was obtained from parents or guard-
ians. The study was approved by the Central Ethics Committee on 
Research Involving Human Subjects of the VU University Medical 
Centre, Amsterdam, an Institutional Review Board certified by the 
US Office of Human Research Protections (IRB number IRB00002991 
under Federal-wide Assurance FWA00017598; IRB/institute codes, 
NTR 03-180). No application for accessing this dataset was needed 
because for this study, only summary statistics and no personal data 
were shared between collaborating authors.

Participants in Lifelines gave written consent before physical 
examination. The study was conducted according to the principles 
of the Declaration of Helsinki and in accordance with the University 
Medical Center Groningen (UMCG) research code, and was approved 
by the Medical Ethics Committee of UMCG (document number METC 
UMCG METc 2007/152). Data were accessed in accordance with Material 
Transfer and/or Data Access Agreement OV19_0511 between Medische 
Biobank Noord Nederland B.V. for Lifelines and Birkbeck College, 
University of London.

For NSHD, the collection of blood samples and DNA information 
from the participants was approved by ethics approval reference MREC 
no. 98/2/121. No application for accessing this dataset was needed 
because for this study, only summary statistics and no personal data 
were shared between collaborating authors.

The Developing Human Connectome Project was approved by the 
UK Health Research Authority (Research Ethics Committee reference 
number: 14/LO/1169), and written parental consent was obtained in 
every case for imaging and open data release of the anonymized data. 
No application for accessing this dataset was needed because no per-
sonal data were shared between collaborating authors.

Samples
The meta-analysis was conducted using data from four birth cohort 
samples of European ancestry. Full details of the samples are provided 
in Supplementary Note A.

Analyses were preregistered on the Open Science Framework on 
24 February 2023 (https://doi.org/10.17605/OSF.IO/M2QV3).

The Norwegian Mother, Father and Child Cohort Study. MoBa is a 
population-based pregnancy cohort study conducted by the Norwegian 
Institute of Public Health20,21. Participants were recruited from all over 
Norway from 1999–2008. The women consented to participation in 41% 
of the pregnancies. Blood samples were obtained from both parents dur-
ing pregnancy and from mothers and children (umbilical cord) at birth74. 
The cohort includes ~114,500 children, 95,200 mothers and 75,200 
fathers. The current study is based on version 12 of the quality-assured 
data files released for research in January 2019. Phenotype information 
used in this study (year of birth and sex of the participants) was obtained 
from the Medical Birth Registry (MBRN), a national health registry 
containing information about all births in Norway.

After post-imputation quality control, the MoBa dataset included 
207,569 individuals, of whom 76,577 were children75. The final 

sample size of children from MoBa with European genetic ancestry 
and good-quality genotype and phenotype information included in 
the GWAS was 58,302 (28,456 females, 29,846 males).

Netherlands Twin Register. The NTR consists of twins, multiples and 
their family members. NTR twins and multiples were recruited into the 
register as newborns up to a few months after birth starting in 1987  
(ref. 76). There were no exclusion criteria. Genotyping was performed 
on 7,392 individuals for whom there was parent-report data in infancy77. 
For NTR, 6,251 children (3,399 females, 2,852 males) with good-quality 
genotype and available phenotype data were included in the GWAS.

Lifelines. Lifelines is a multigenerational prospective population-based 
birth cohort study examining the health and health-related behaviours 
of 167,729 persons living in the North of the Netherlands. lt employs a 
broad range of investigative procedures in assessing the biomedical, 
socio-demographic, behavioural, physical and psychological factors 
that contribute to the health and disease of the general population, with 
a special focus on multimorbidity and complex genetics23. Individuals 
aged 25 to 50 were recruited from the Northern region of the Nether-
lands between 2006 and 2013 and, during their first study visit, were 
asked for consent for the study team to approach family members with 
an invitation to participate. This included any children (≥6 months) of 
cohort members. Questionnaires about children were answered by 
parents on the basis of retrospective recollection. The final sample size 
of Lifelines children with good-quality phenotype and genotype data 
included in the GWAS was 3,415 (1,768 females, 1,647 males).

MRC National Study for Health and Development. NSHD is a 
population-based prospective birth cohort study whose participants 
were infants from single births born in England, Scotland and Wales 
during 1 week in March 1946 (N = 5,362) to women with husbands24. 
The dataset included 2,939 genotyped individuals whose DNA was 
collected at age 53 (ref. 78). The sample was roughly representative 
of the national population of the same age at the time according to 
a comparison with census data. The final NSHD GWAS sample size 
including children with available genotype and phenotype was 2,592 
(1,295 females, 1,297 males).

Phenotype coding
In all samples, individuals whose AOW was less than 6 months or greater 
than 36 months were excluded as outside the normative range3. MoBa, 
NSHD and NTR all recorded AOW in months as an integer variable. In 
the Lifelines sample, age at onset of walking was measured as an ordi-
nal scale, using bins of months of age at onset of walking. These were 
recorded using the midpoint for each age bin. The upper and lower bins 
(‘10 months or younger’ and ‘24 months or older’, respectively), were 
winsorized, recoding them to 10 and 24 months, respectively. The phe-
notype descriptives for each cohort are reported in the Supplementary 
Table 1. Normality and spread of the phenotype data distribution was 
formally tested. All four cohorts met the assumptions of normality 
in terms of symmetry of the distribution (skewness = 0.43–0.91, see 
Supplementary Table 1). NSHD (kurtosis = 3.88), MoBa (kurtosis = 3.26) 
and, to a lesser degree, Lifelines (kurtosis = 1.33) showed a peaked 
distribution, different from NTR (kurtosis = −0.12). Histograms for 
the phenotype data distributions are reported in the Supplementary 
Notes (Supplementary Figs. 1, 3, 5 and 7).

Genotyping, imputation and quality control
Pre- and post-imputation quality control (QC) and imputation pro-
cedures were conducted for each cohort following individual study 
protocols and according to a common standard operating proce-
dure (https://osf.io/jyk6d/), which was based on the Rapid Imputation 
for COnsortias PipeLIne (RICOPILI) pipeline79. In all the individual 
cohorts, samples were excluded from the GWAS if they presented 
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excess autosomal heterozygosity, mismatch between self-reported and 
genetic sex, XXY genotype and other aneuploidies, and individual geno-
typing rate <90% in line with established GWAS analysis pipelines79,80. 
Duplicate samples and samples whose genetically determined ancestry 
did not overlay with the European-ancestry cluster based on a reference 
panel were also excluded to minimize confounding due to population 
stratification. Autosomal SNPs were excluded from the GWAS if they 
had MAFs < 0.5%, Hardy–Weinberg equilibrium exact test at P < 1 × 10−6 
and call-rate <98%. Full details of the pre- and post-imputation QC are 
provided in Supplementary Note A and Table 2.

Genome-wide association analyses
GCTA81 fastGWA82 was used for association analyses in MoBa, Lifelines 
and NTR. PLINK83 1.9 was used for association analyses in NSHD, where 
all related individuals (PI-HAT > 0.2) were excluded from the analysis 
and the sample size was too small to use fastGWA.

Association analyses of the AOW, as a continuous variable, were 
carried out using a mixed linear model. Each primary GWAS included 
the first 10 ancestry principal components as continuous covariates, 
and sex and genotyping batch as discrete covariates. MoBa included 
year of birth, and NTR and Lifelines included age at data collection as 
continuous covariates. NTR included two dummy variables for the 
genotyping platform as covariates. In MoBa, Lifelines and NTR, where 
fastGWA was used, a sparse (0.05 cut-off) genetic relatedness matrix 
was included in the model to account for relatedness in the sample.

GWAS analyses were performed for each of the samples using the 
whole dataset and also with the samples stratified by sex.

GWAS meta-analysis
Summary statistics QC was performed using the GWASinspector84 R 
package on each of the cohorts’ summary statistics separately. Vari-
ants were excluded if they (1) presented invalid or missing values in 
the chromosome, position, effect and other allele, beta, standard 
error columns, and duplicated alleles; (2) were monomorphic (with 
allele frequency of 0 or 1 and variants with identical alleles), allosomal 
or mitochondrial; or (3) had imputation quality score <0.8. Results 
of the summary statistics QC are provided in Supplementary Note A 
and Table 3.

Summary statistics for the four samples were meta-analysed with 
a standard-error-weighted meta-analysis in METAL28 on SNPs with 
MAF > 1%. SNPs were matched between cohorts using rsIDs, which had 
been assigned according to their chromosome, base-pair positions 
and alleles on the basis of the 1000 Genomes85 reference panel in GWA-
Sinspector. Meta-analyses were performed separately for the whole 
sample and for sex-stratified samples. Finally, only SNPs for which the 
minimum sample size was 10,000 (which was obtained if the SNP was 
available for the MoBa sample, all three other cohorts or if it overlapped 
in all four cohorts) were retained for further analyses (6,902,401 vari-
ants). The I2 heterogeneity metric per SNP was calculated in METAL. M 
multiSNP heterogeneity statistics, indicating whether individual stud-
ies were systematically more influential or weaker than average based 
on their effects, was calculated using the getmstatistic R package for the 
independent lead SNPs (pairwise LD r2 < 0.1, P < 5 × 10−8, N SNPs = 16)31.

Fine mapping and functional annotation
To identify significant independent SNPs associated with AOW at each 
locus at a P-value threshold of P < 5 × 10−8 (ref. 86), we conducted con-
ditional and joint association analyses (COJO)29 in GCTA81. This analysis 
conditions on the lead SNP at a locus and tests for further independent 
significant SNPs within the same chromosome using a stepwise selec-
tion procedure. The MoBa genotype data were used to estimate linkage 
disequilibrium (LD), in line with the COJO guidelines.

Fine mapping, functional annotation and gene-based analyses 
were carried out in FUMA33 (v.1.5.2) and MAGMA37 (v.1.08), indicating 
the list of independent lead SNPs from the COJO analysis. We defined 

significant SNPs to be independent if they had pairwise LD r2 < 0.6. 
Lead SNPs were defined as having pairwise LD r2 < 0.1 (ref. 87). Loci 
were merged if LD blocks distance was <250 kb.

For gene-mapping in FUMA, SNPs were mapped to genes at a maxi-
mum distance of 1 Mb33 on the basis of position, eQTL for selected 
relevant tissues such as the brain, lung, muscles, heart and adipose 
tissue, and chromatin interaction in the brain (see Supplementary 
Table 6). Annotation of genes was performed using ANNOVAR within 
FUMA (date of download 17 July 2017).

A subset of genes prioritized on the basis of mapping using only 
significant SNP–gene pairs at an FDR corrected P < 0.05 were tested for 
differential expression in 54 Genotype-Tissue Expression (GTEx) (v.8)35 
and 11 BrainSpan34 tissues, and gene-set enrichment using GENE2FUNC 
in FUMA. The gene-set analysis in FUMA used one-sided hypergeomet-
ric tests to test whether the prioritized genes were over-represented 
in predefined gene sets obtained from the Molecular Signatures 
Database88,89 (MSigDB) v.7.0, WikiPathways90 (v.20191010) and GWAS 
Catalog91 (v.e0_r2022-11-29) databases, after excluding the MHC region 
and applying Bonferroni correction for multiple testing.

For MAGMA analyses, the MHC region was excluded and SNPs 
within 1 kb from a gene were assigned to each gene87. The MAGMA 
gene-based test identified genes associated with AOW from all 18,766 
mapped genes using a Bonferroni correction to define statistical signifi-
cance (Supplementary Table 9). The MAGMA gene-property analysis 
used 53 GTEx (v.8)35 and 11 BrainSpan34 RNA-seq datasets to test tis-
sue specificity of genes associated with AOW, based on association 
one-tailed P values of all 18,766 genes mapped in FUMA.

Co-localization
We used coloc SuSiE43 to identify co-localization of GWAS and eQTL 
signals, using an LD reference panel of 1,444,196 HapMap3 SNPs with LD 
calculated in European-ancestry individuals from the UK Biobank92,93. 
Pairs of variants further than 3 cM apart were assumed to have 0 cor-
relation. We used coloc SuSiE’s default priors (for more information 
on how these priors were estimated, see ref. 94). The eQTL data used in 
the co-localization analyses were from 261 post-mortem bulk RNA-seq 
samples of human cerebellum42. We replicated the co-localization 
signal observed in RBL2 (Fig. 2b) in the human cortex using eQTL data 
from 1,433 post-mortem bulk RNA-seq samples42 (Supplementary 
Fig. 15). To validate in an independent dataset whether genotype was 
indeed associated with RBL2 expression, we used bulk RNA-seq data 
of prefrontal cortex and individual-level genotypes from BrainVar44 
(periods 4–6; Fig. 2d) (as no publicly available cerebellum RNA-seq with 
genotype on the same individual exists, to our knowledge). We used a 
two-sided Wilcoxon rank test to test for differences in RBL2 expression 
in the human cortex by genotype for GWAS and eQTL significant SNPs 
at MAF ≈ 50%. Missense variants in the chromosome 16 locus were anno-
tated using the Variant Effect Predictor (VEP)45. The protein structure 
for RBL2 was predicted using AlphaFold95. Annotation of p.Tyr210Cys 
on RBL2 was done using the Genomics 2 Proteins Portal96.

LD score regression
LD score regression (LDSC25) was used to calculate h2

SNP and bivari-
ate genetic correlations30, using the 1000 Genomes Phase 3 (ref. 85)  
European-ancestry LD scores reference panel. Bivariate genetic 
correlations were calculated between AOW and multiple infant, 
psychiatric, neurodevelopmental and global cortical phenotypes, 
specifically: birth weight97, childhood body-mass index (cBMI)49, 
adult BMI50, autism98, ADHD51, educational attainment (EA)52, cogni-
tive performance53, schizophrenia99, general loading for psychiatric 
disorders (cross-disorders)100, major depression101, bipolar disorder57 
and 13 cortical phenotypes54 (see Fig. 4a). Genetic correlation was also 
calculated between the AOW in each of the cohorts.

In addition, LDSC was used to calculate h2
SNP for the female and 

male meta-GWAS and genetic correlation between the sex-stratified 
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analyses. Statistical significance was evaluated on the basis of 95% 
confidence intervals as preregistered. As post-hoc analyses, which were 
not preregistered, we also used LDSC to test the genetic correlation 
between AOW and four other motor phenotypes: self-reported walk-
ing pace55, clinically ascertained muscle weakness in the pincer grip in 
elderly people102, motor coordination in childhood103 and Parkinson’s 
Disease104. Bonferroni-adjusted P values correcting for 28 multiple 
testings are reported in Supplementary Table 14.

To further investigate the significant genetic correlation between 
AOW and cortical folding index (FI), we ran non-preregistered genetic 
correlation analyses using 26 regional FI summary statistics from 
ref. 54. The 26 ROIs were defined following the Glasser parcellation 
and identified on the basis of their functional specialization as early 
somatosensory/motor areas according to ref. 56. Given that regional 
FI could not be assumed to be completely unrelated, we applied FDR 
correction for 26 simultaneous tests.

Stratified LDSC40 was conducted to obtain estimates of heritability 
partitioned by functional annotation and cell-type. HapMap3 (ref. 105) 
SNPs (excluding the HLA region) from the meta-GWAS summary statis-
tics weighted by LD score obtained from a European 1000 Genomes85 
reference panel were used in the regression, as recommended by  
ref. 40. To estimate the proportion of genome-wide h2

SNP attribut-
able to functional categories, we ran the stratified LDSC ‘full baseline 
model’ (described in ref. 40) that evaluates whether heritability in a 
functional category is greater than heritability outside the category. 
This was tested for 96 functional categories provided by the stratified 
LDSC developers, including coding, untranslated regions, promoter 
and intron annotations from UCSC106, genomic annotations for all 
cell types and fetal cell types only from ENCODE107 and the Roadmap 
Epigenomics Consortium108, region conserved in mammals from  
ref. 109 and FANTOM5 enhancers from ref. 110. The P value for enrich-
ment was adjusted for multiple testing using the Bonferroni method, 
as in similar previous research111.

To calculate whether heritability was enriched in specific cell 
types, we applied stratified LDSC to 53 sets of specifically expressed 
genes41 using multitissue gene expression data from the GTEx35 project. 
Bonferroni correction was applied to correct for multiple testing.

Genomic Structural Equation Modelling (SEM)
A non-preregistered Genomic SEM58 analysis was conducted to test 
whether the association of the genetic components of AOW with ADHD 
remained significant after conditioning for educational attainment. To 
this aim, we performed a genetic multivariable regression using the 
same ADHD51 and EA52 summary statistics that were entered in the LDSC 
analysis. For ADHD, the sample size was defined as effective sample Neff 
= 4 v × (1−v) × (Ncases + Ncontrols) where ν was the sample prevalence set as 
50%, as indicated by the Genomic SEM developers (https://github.com/ 
GenomicSEM/GenomicSEM/wiki/2.-Important-resources-and-key- 
information). The summary statistics were munged using HapMap3 
SNPs. Both standardized and unstandardized results are reported in 
Supplementary Fig. 16.

MiXeR
Univariate causal mixture models were applied using MiXeR59 to obtain 
estimates of polygenicity, defined as the proportion of variants that 
contribute to 90% of the h2

SNP
112. We fitted bivariate models in MiXeR 

to estimate the genetic overlap that was due to both concordant and 
discordant SNP effects between AOW and six other phenotypes that 
had a Bonferroni-significant genetic correlation with AOW (calculated 
using LDSC). For each pair of traits, the models were evaluated using 
differential BIC and AIC values between the ‘best’ bivariate model 
estimating the optimal amount of polygenic overlap between the 
two traits (grey areas in Fig. 4b) and two simpler models, namely, the 
‘minimum’ and the ‘maximum’ overlap models. The ‘minimum’ over-
lap models used only the minimum number of SNPs to explain the 

genetic overlap from the LDSC genetic correlation estimate, while 
the ‘maximum’ overlap models assumed that all the variants associ-
ated with the least polygenic of the two traits overlapped with the 
other trait. Positive differential BIC and AIC values indicated the ‘best’ 
MiXeR bivariate model outperforming the two simpler models. When 
the summary statistics for the second phenotype in these bivariate 
analyses came from the case-control GWAS, the Neff was calculated as 4/
(1/Ncases + 1/Ncontrols). The MHC region (6:26,000,000–34,000,000) was 
excluded from MiXeR analyses due to its complex LD structure, in line 
with the programme recommendations. MiXeR v.1.3 was used for these 
analyses, and the data were prepared using scripts developed by the 
programme’s authors (https://github.com/precimed/python_convert).

We considered the bivariate MiXeR model to be supported when 
the differential AIC value comparing the ‘best’ vs ‘minimal’ model was 
positive. This criterion ensures that there is support for the model 
of the polygenic overlap that includes the added free parameters of  
this model.

Polygenic score analysis
Polygenic scores were calculated using PRS-cs113,114; a leave-one-out 
design was employed whereby additional GWAS meta-analyses were 
conducted, leaving out one of each of the smaller samples (NSHD, NTR 
and Lifelines) in turn to be used as a target dataset and meta-analysing 
the remaining samples as a training dataset for estimation of SNP 
weights. The MoBa sample comprises most of the overall sample 
size and thus could not be used as a target dataset, so a within-MoBa 
cross-validation was employed. The MoBa dataset was split randomly 
into five samples of roughly equal size by removing one-fifth of the data 
in turn (with no overlap in these fifths) from the whole dataset to create 
five new samples, each comprising four-fifths of the data. GWASs were 
then conducted on each of these five new samples and the summary 
statistics of the meta-analysis of four samples used for estimation 
of PGS SNP weights applied to the left-out fifth of the data. This was 
performed five times, using each of the fifths as target data in turn.

For all leave-one-out PGS analyses, including the within-MoBa 
design, we derived weights for each chromosome using the 1000 
Genomes phase 3 European panel85 as a reference for LD, and the fol-
lowing PRS-cs parameters: parameter a and b in the gamma-gamma 
prior = 1 and 0.5, respectively, global shrinkage parameter phi = 0.01, 
1,000 MCMC iterations, 500 burn-ins and 5 as a thinning factor of the 
Markov chain. PLINK (2.0)115 was used to compute the PGS in the target 
sample. The proportion of variance explained by the PGS, scaled so that 
mean = 0 and s.d. = 1, was quantified in the NTR cohort by the squared 
beta-coefficient from a linear regression model between the scaled 
phenotype and the PGS, including 10 ancestry principal components 
(PCs), age, sex and genotyping platform in the model, and quantified 
in all other cohorts with adjusted R2 of the linear regression between 
the scaled phenotype regressed on 10 PCs and the genotype batch 
and the PGS.

Within- and between-family polygenic score analysis
Within- and between-family analyses were performed using the 
NTR cohort dataset. The method is described in ref. 48 and scripts 
from ref. 116 were used (https://github.com/PerlineDemange/ 
GeneticNurtureNonCog/).

A PGS was generated from a meta-analysis of the MoBa, Lifelines 
and NSHD GWAS (calculated as above), and the predictive power of this 
PGS was quantified in the whole NTR sample using the above method. 
We used a random intercept mixed-effects linear model in R using the 
dizygotic twins-only subsample of NTR (N = 2,508 individuals in 1,254 
twin pairs), after ensuring that a mixed-effects model was justified by 
calculating a bootstrapped intraclass correlation (ICC = 0.656) as indi-
cated in ref. 48. PGS entered into the model were first scaled to mean = 0 
and s.d. = 1. Within-family PGS effects were calculated by subtracting 
the family mean PGS from each individual PGS. Between-family effects 
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were modelled using the mean PGS for each family. The linear model 
included age, sex, the first 10 PCs and a genotyping platform dummy 
variable as covariates. The within- and between-family standardized 
regression coefficients were compared using a χ2 test.

Polygenic score in the Developing Human Connectome Project
Genetic data. Infant saliva DNA was genotyped for SNPs genome-wide 
on the Illumina Infinium Omni5-4 array and standard quality control 
was performed. The dataset was imputed to the Haplotype Reference 
Consortium reference panel117 on the Michigan Imputation Server. 
The imputed data were used to compute an AOW PGS for each of the 
264 unrelated European infants using summary statistics from the 
AOW meta-GWAS and the PRS-cs software113, as previously described.

Acquisition, processing and surface generation of imaging data. 
T2-weighted MRI data were acquired at term-equivalent age (median 
postmenstrual age = 41.9 weeks) as part of the dHCP60 in 264 term-born 
infants (137 male, 127 female) with available genotype data. The vol-
umes were run through the neonatal-specific processing pipeline 
developed for the dHCP study, including bias field correction, brain 
extraction and image segmentation118–120. Segmentations were used 
to generate cortical, white matter and pial surfaces, and each subject 
was visually inspected to ensure accuracy before the local gyrification 
index was calculated at each vertex on the basis of the ratio of the pial 
and white matter surface areas121,122.

Image registration. T2 images were registered to the 40-week dHCP 
neonatal atlas (https://brain-development.org/brain-atlases/atlases- 
from-the-dhcp-project/)123 via an age-matched intermediate using 
Symmetric Diffeomorphic Image Registration, implemented using 
Advanced Neuroimaging Tools (ANTs)124,125, as a measure of individ-
ual variation in brain volume; the log-Jacobian determinant images 
were calculated by applying ANTs algorithms to the nonlinear trans-
formation deformation tensor fields. Log-Jacobian maps were then 
smoothed using a 3-mm full-width half-maximum Gaussian filter and 
downsampled to 1 mm isotropic resolution (to increase computational 
efficiency). A 4D volume was created by merging the 1-mm log-Jacobian 
maps across all participants (N = 264), then subsequently used as the 
input to the randomize algorithm (described below).

Tensor-based morphometry of imaging data. Permutation testing 
using the randomize function, part of the FMRIB Software Library 
(FSL)126,127, was used with a general linear model, including gestational 
age, postmenstrual age at scan, sex, weight z-score and 10 ancestral 
PCs as covariates. Threshold-free cluster enhancement and family-wise 
error (FWE) rate were applied to correct for multiple comparisons 
between voxels. Significant areas were identified with permutation test-
ing using 5,000 random permutations (two-sided test). In Fig. 5, we show 
results at a significance level of P < 0.05 in the FWE-corrected contrast.

Bayley’s gross motor analysis. For the European term-born infants in 
the dHCP cohort who were assessed using the Bayley-III Scales of Infant 
and Toddler Development at an 18-month follow-up (N = 217), we inves-
tigated the association between the scaled gross motor score and the 
PGS for AOW using a multiple linear regression model, implemented 
using the lm function in R (https://www.r-project.org/). The model 
included sex, gestational age at birth, birth weight z-score, home envi-
ronment score (as a proxy for socioeconomic status) and 10 ancestral 
PCs as covariates to account for potential confounding. All continuous 
variables were standardized before analysis. Data distribution was 
assumed to be normal, but this assumption was not formally tested.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics of the genome-wide association study of age 
at onset of walking are available on figshare (https://doi.org/10.6084/ 
m9.figshare.28071566)128. Data from the Norwegian Mother, Father and 
Child Cohort (MoBa) Study and the Medical Birth Registry of Norway 
used in this study are managed by the National Health Register Hold-
ers in Norway (Norwegian Institute of Public Health) and can be made 
available to researchers, with approval from the Regional Committees 
for Medical and Health Research Ethics (REC), compliance with the EU 
General Data Protection Regulation (GDPR) and approval from the data 
owners. The consent given by the participants is not open to storage of 
data on an individual level in repositories or journals. Researchers who 
want access to datasets for replication should apply through https:// 
helsedata.no/. Access to datasets requires approval from The Regional 
Committee for Medical and Health Research Ethics in Norway and 
an agreement with MoBa. Data from the Netherlands Twin Register 
(NTR) are available upon request by researchers. Information is avail-
able at https://tweelingenregister.vu.nl/information_for_researchers/ 
working-with-ntr-data. Lifelines data may be obtained from a third 
party and are not publicly available. Researchers can apply to use the 
Lifelines data used in this study. More information about how to request 
Lifelines data and the conditions of use can be found on their website 
at https://www.lifelines-biobank.com/researchers/working-with-us. 
National Study for Health and Development (NSHD) data used in this 
publication are available to bona fide researchers upon request to 
the NSHD Data Sharing Committee via a standard application proce-
dure. Further details can be found at http://www.nshd.mrc.ac.uk/data. 
https://doi.org/10.5522/NSHD/Q101. eQTL results for the ROSMAP, 
Mayo TCX, Mayo CER and cortical meta-analysis from ref. 42 are avail-
able through the AMP-AD Knowledge Portal: https://www.synapse. 
org/Synapse:syn2580853/wiki/409840. The accession number for 
the raw RNA-seq and WGS data from BrainVar, along with processed 
files, is PsychENCODE Knowledge Portal: syn21557948 on Synapse.
org (https://www.synapse.org/#!Synapse:syn4921369). Developing 
Human Connectome project data are open access and data are available 
for download via https://nda.nih.gov/edit_collection.html?id=3955.
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Extended Data Fig. 1 | Partitioned heritability enrichment by functional 
annotation. Enrichment of age at onset of walking GWAS signal by functional 
genomic annotation. Points represent the heritability enrichment estimate 
+/− standard errors of the enrichment estimates, obtained in LDSC40 (two-sided 

test). The dashed horizontal line represents statistical significance based on 
Bonferroni correction for multiple testing (Supplementary Table 12). Genomic 
annotations with significant enrichment for age at onset of walking are labelled. 
Dots are colored using a spectrum of colors based on alphabetical order.
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Extended Data Fig. 2 | Partitioned heritability enrichment by cell type. Tissue enrichment based on LDSC partitioned heritability analysis41. Statistically significant 
enrichments after correcting two-sided p-values for multiple comparisons using the Bonferroni method are highlighted as yellow bars.
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