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ABSTRACT

Heat waves increasingly affect cities, amplifying the urban heat island (UHI) effect,
often measured through land surface temperature (LST). In Pune, India, rapid ur-
banization between 2013 and 2022 has driven significant land use and land cover
(LULC) changes, with a staggering 89.24% increase in built-up areas and a decline
of 991.4 km? in vegetation cover. Using satellite remote sensing data processed via
Google Earth Engine, this study reveals a pronounced rise in LST, with mean tem-
peratures increasing from 27°C in 2013 to 36°C by 2022, and a notable expansion in
regions experiencing temperatures between 25°C and 32°C. Additionally, NO2 levels
slightly rose, further stressing environmental conditions. Central Pune was identi-
fied as a high-risk zone for adverse climatic impacts, emphasizing the urgent need
for ecological conservation, climate adaptation, and sustainable urban planning to
mitigate the growing UHI effect amidst accelerating urbanization in Indian cities.

KEYWORDS
Urban heat island, Land surface temperature, Land use land cover, Remote
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1. Introduction

Urbanization has profoundly transformed land use and land cover (LULC), replacing
natural vegetation with impervious surfaces like roads, buildings, and infrastructure
(Guo et al. 2024; Chauhan and Jethoo 2023). This transformation induces the urban
heat island (UHI) effect, characterized by elevated temperatures in urban areas com-
pared to rural surroundings. Key contributors include heat absorption by urban mate-
rials, waste heat emissions, and reduced vegetation cover, exacerbating environmental
and public health challenges (Elmarakby and Elkadi 2024). As urban expansion accel-
erates, assessing UHI formation is essential for climate-resilient urban planning. Rapid
urbanization in South Asia, with nearly 50% of India’s population projected to reside
in urban areas by 2050 (National-Commission-on-Population-Report), intensifies UHI
effects. Urbanization-driven changes disrupt local microclimates, increase energy de-
mands, and degrade air quality (Bagyaraj et al. 2023) (Badugu et al. 2023). Factors

Contact A. Anjali at email: anjali@iiitm.ac.in, Corresponding Author

http://mc.manuscriptcentral.com/tres Email: IJRS-Administrator@Dundee.ac.uk



oONOULThA WN =

O

International Journal of Remote Sensing and Remote Sensing Letters

Data acquisition Image processing and modelling )
A / ’ @ @ Cloud-free Atmospheric DEM data False color Histogram
Sentinel-5E S W,V i images correction integration composites equalization
T\ Y N y
N A 2 — -
- v A
L { LLe )
o LsT NDVI NDBI BUI o |
: estimation computation computation estimation | lassification® |
R S
1 C pca r
| + |
ical analysis L . S } Random !
. Change Spatial ‘ Landscape forest |
‘\ Correlation J detection J { regression metrics ‘\ . classifier |
\ P ——
Lo Identification of atmospheric
NO, concentration using UHI phenomenon identification
TROPOMI data

Figure 1.: Proposed Methodology for identification UHI Phenomenon

such as anthropogenic heat emissions, limited evapotranspiration, and socioeconomic
activities, including industrial zones and transportation hubs, further exacerbate UHI
impacts (Firozjaei et al. 2019; Wang et al. 2020; Portela et al. 2020; Mohammad and
Goswami 2022). Green infrastructure offers sustainable solutions to mitigate UHI ef-
fects by enhancing shading, evapotranspiration, and albedo (Wu et al. 2024). Properly
planned urban green spaces balance thermal regulation, ecological benefits, and air
quality improvement (Bagyaraj et al. 2023). Remote sensing and geographic informa-
tion systems (GIS) enable effective monitoring of LULC changes, extraction of indices
like Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up
Index (NDBI), and assessment of thermal and pollution dynamics (Kowe et al. 2022;
Harod and Rajasekaran 2024).

This study leverages satellite remote sensing to examine UHI dynamics in Pune,
India, from 2013-2022. It analyzes LULC changes and their impacts on land surface
temperature (LST), NDVI, NDBI, and Nitrogen Dioxide (NO3) concentrations, iden-
tifying UHI risk zones and assessing urbanization’s environmental implications. The
findings underscore the importance of evidence-based urban planning and climate re-
silience. Satellite-based tools, such as Landsat and Sentinel-5P, provide critical data
for monitoring surface characteristics, measuring LST, and linking air quality to UHI
effects (Kowe et al. 2022; Harod and Rajasekaran 2024). Unlike existing works that
often focus on individual parameters, we provide a comprehensive approach to under-
stand the synergistic effects of urbanization and vegetation decline on rising temper-
atures. While this study focuses on horizontal dimensions of urban morphology, such
as LULC changes, vertical structures like building heights are excluded due to dataset
limitations. Future research incorporating three-dimensional urban morphology is rec-
ommended to comprehensively understand UHI dynamics.

2. Materials and Methods

2.1. Materials

2.1.1. Landsat-8 Data and TROPOMI Data

Landsat 8 OLI and TIRS data, acquired from Google Earth Engine (Landsat-8 C2
Level-2), provided thermal data (Band 10, 100 m resolution) and surface reflectance
(15-30 m resolution). Images with <10% cloud cover were selected to ensure reliabil-
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ity, focusing on LST variations rather than absolute values (Portela et al. 2020). The
TROPOMI sensor on the Sentinel-5P satellite measures atmospheric NOo concentra-
tions with high precision. Its improved spatial resolution (3.5-5.5 km post-2019) and
high signal-to-noise ratio enable effective monitoring of sunlight reflection and NOs
levels (Talongo et al. 2020).

2.1.2. Population Distribution

Pune, a rapidly urbanizing city in Maharashtra, India, has experienced steady popu-
lation growth, peaking at 2.99% annually until 2018 and reducing to 2.63% by 2022
(Karutz et al. 2023). This growth has reshaped land use patterns, increasing surface
temperatures and driving urbanization over the past two decades.

2.2. Study Area

Pune, situated at 18.5204° N, 73.8567° E on the Deccan Plateau at 560 m, is a rapidly
urbanizing I'T and automotive hub. The city has a semi-arid climate with hot summers,
monsoons (June-September), and mild winters.

2.3. Data Preprocessing

Landsat 8 OLI data (30 m resolution) from 2013-2022 were processed via Google
Earth Engine (GEE). Cloud-free images from the same season ensured temporal con-
sistency. Atmospheric correction removed artifacts, histogram equalization enhanced
contrast, and Principal Component Analysis (PCA) reduced dimensionality, retaining
key spectral features.

2.4. Ezxperimental Design

The proposed methodology (Figure 1) processed datasets in GEE to generate false-
color composites (FCC) for the study area. Key indices, including NDVI, Built-up
Index (BUI), and LST, were calculated to identify Urban Heat Island areas. Super-
vised classification categorized land cover into urban areas, vegetation, water bodies,
and barren land, enabling detailed spatial analysis of UHI dynamics. Change detection
analysis compared classified land cover maps, NDVI, and LST distributions from 2013
to 2022, revealing urbanization trends and thermal environment impacts. Landscape
Metrics quantified patterns, connectivity, and fragmentation, complementing the eco-
logical assessment. Statistical analyses, including spatial regression and Landscape
Metrics calculations, were performed in R, while ArcGIS 10.8 generated spatial maps
for land cover, UHI intensity, and ecological evaluations.

2.5. Land Use and Cover Change (LUCC) Calculation

A hybrid approach combining Random Forest (RF) and PCA improved LUC classifi-
cation accuracy. Five scenes of Landsat-8 OLI images (2013-22) were processed. The
RF algorithm classified spectral images, while PCA reduced dimensionality, extracting
key features for input to the RF classifier. The combination provided precise LUC clas-
sification, facilitating analysis of urban dynamics. The PCA analysis and classification
algorithm are presented below, and the notations are described in a footnote.
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PCA Analysis and Classification

. Input: Composite image data X

: Output: Classified result using Random Forest

Step 1: Select spectral bands from the composite image.

Step 2: Centre the data:

Xecentred — X — % >t X; {where n is the number of data points}

Step 3: Compute the covariance matrix:

1 T
C« n—1 xcentredxcentred

8: Step 4: Perform eigen analysis to obtain eigenvalues and eigenvectors:
9: CV = AV {where V represents the eigenvectors and A the eigenvalues}
10: Step 5: Sort eigenvalues in descending order and select the top k principal components.
11: Step 6: Transform the data using the selected eigenvectors:

12: Xpca + Xeentred Vi

13: Step 7: Apply Random Forest classifier:

14: Classified + RF(Xpca)

15: Step 8: Validate classification performance using the kappa coefficient:
16: Py + ST (Piy - Pyj)

17: Pe+ S0 (P - Pyj)

18: Ky « fo=fe —o

N gukwore

Notation: X engreq: Centred data matrix obtained by subtracting the mean. X: Original data matrix. n: Number of data
points. C: Covariance matrix computed from centred data. V: Eigenvectors representing principal components. A: Eigenvalues
corresponding to the eigenvectors. Vj: Top k selected principal components. Xpca: Transformed data after applying PCA.
RF: Random Forest classifier. Py: Proportion of observed agreement. P.: Proportion of chance agreement. r: Number of rows
in the error matrix. P;y, Py;: Marginal totals for rows and columns in the error matrix. Ky: Kappa coefficient, measuring

classification accuracy.

2.5.1. Mapping UHI, Non-UHI, and UHS

The conventional method quantifies UHIs by assessing the temperature difference be-
tween urban and rural areas. UHIs were identified as regions where the LST exceeded
the mean rural LST:

UHL = LSTyphan — LSTryral- ©)

This method provides a straightforward assessment of heat intensity influenced by
land cover. Additionally, Urban Heat Stress (UHS) areas, indicative of extreme temper-
ature conditions, were identified using a higher threshold based on statistical deviation
(Wang et al. 2020):

LST > pu+2 X 6. (2)

where 1 and § denote the mean and standard deviation of LST, respectively.

2.5.2.  Urban Thermal Field Variance Index (UTFVI)

UTFVI quantifies UHI intensity using multi-temporal LST data. Key meteorologi-
cal factors, such as temperature, wind speed, and precipitation, were considered for
consistency across dates. The UTFVI (Portela et al. 2020; Mohammad and Goswami
2022) is calculated as:

UTFVI — TS - Tmean , (3)

Tinean

where Ty is the LST at a specific location, and Tiyean 18 the regional mean LST. This
index informs urban planning and environmental management by quantifying thermal
variations.

2.5.3.  Calculation of NOg Concentration
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Figure 4.: (a) NDBI changes over the study period. (b) NDVI changes over the study

period.

(b)

Table 1.: LUCC Evaluation Table 2.: Average NDVI andTyble 3. Min and Max LST

Metrics NDBI values values (°C)
Year | Accuracy Kappa‘ Year Average Average [I Year | Min LST | Max LST ”
Coefficient NDBI NDVI
2013 | 0.993 0.991 2013 | -0.0005 0.133 2013 18.2 54
2016 | 0.977 0.971 2016 0.0028 0.135 2016 18.1 54
2019 | 0.993 0.991 2019 | -0.0008 0.135 2019 27.4 53.3
2022 | 0.989 0.986 2022 20.004 0.152 2022 17.1 53.1

as shown in Figure 3. The overall classification accuracies and corresponding Kappa
coefficients for each year are summarized in Table 1.

3.2. Normalized Difference Vegetation Index and Built-Up Index

The NDVI values in Figure 4b and Table 2 showed an upward trend from 0.133 in
2013 to 0.152 in 2022, indicating increased vegetation density. NDVT is essential for
assessing UHI effects, as vegetation aids microclimate regulation through shading and
evapotranspiration. Its rise may result from afforestation, urban greening, or land use
changes, influencing thermal dynamics. Analyzed alongside LST and NDBI, it helps
evaluate urban temperature variations. Meanwhile, NDBI remained stable, reflecting
minimal land cover changes (Figure 4a, Table 2).

3.3. Land Surface Temperature Calculation

The LST analysis for Pune from 2013 to 2022 reveals a significant warming trend, with
the mean LST increasing from 27.7 °C to 36.8 °C (Figure 5a). Over time, areas with
lower temperatures (17-25°C) shrank, while regions with higher temperature ranges
(32-40°C and 40-48°C) expanded significantly, indicating increased heat intensity. The
minimum LST ranged from 17.1 °C to 27.4 °C, while the maximum LST remained
stable in a range of 53.1 - 54.0 °C (Table 3 and Figure 5b).

In addition, a trend analysis for 2013 to 2022 is presented in Figure 6a, indicating a
decrease in the coverage of the non-UHI area, accompanied by an increase in the extent
of the UHI and LST values, emphasizing the ecological impact of urban expansion on
temperature and vegetation patterns. Furthermore, a heat map presented in Figure
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Figure 5.: (a) Spatiotemporal Variation in LST (2013-2022). (b) Temperature distri-
bution across categories.
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Figure 6.: (a) Temporal Trends in LST, UHI, non- UHI and Area Extents (b) Correla-
tion Heatmap of Key Variables (c¢) Box plot Comparison of LST in UHI vs. Non-UHI
Areas

6b of the correlation coefficients demonstrates a strong negative relationship between
the extent of the NDVI and the UHI area, linking the loss of vegetation with rising
temperatures. Finally, a box plot comparison of UHI and non-UHI areas shows consis-
tently higher LST values in UHI regions, highlighting urbanization’s role in localized
warming in Figure 6c¢.

3.4. Spatial Distribution of UHI and Non-UHI

Figure 7a depicts the consistent expansion of UHI-affected areas in Pune from 2013
to 2022, initially spanning from the southwest to the northeast. By 2022, these re-
gions encompassed the city’s southwest, east, and central core. Non-UHI tempera-
ture thresholds were recorded as 19.10°C (2013), 18.95°C (2016), 28.60°C (2019), and
31.47°C (2022). UHI intensity varied due to land use changes, urbanization, and cli-
mate shifts, affecting impermeable surfaces, green spaces, and localized microclimates.
Furthermore, the transect in Figure 7a represents the progressive changes in tempera-
ture thresholds throughout Pune, which are plotted in the inset graph, and shows the
spatial spread of UHI-affected areas over time. Additionally, Figure 7b shows the high-
est UHI intensity was observed in 2022 (0.72°C), while the lowest was in 2016 (0.11°C).
Moreover, the transects in Figure 7b have been plotted to depict variations in UHI
intensity, emphasizing temperature differences between UHI and non-UHI zones.
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Figure 7.: (a) UHI Intensity Map of Pune (2022). (b) UHI Profile along Transect
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Figure 8.: Urban Hotspot Map of UHI (2013-2022)

8.4.1. Identification of Urban Hotspots

UHS were concentrated in Pune’s western and central areas, characterized by limited
vegetation and high-albedo surfaces. The highest UHI intensity was observed in 2022
(0.72°C), while the lowest was in 2016 (0.11°C). The spatial distribution of UHI and
UHS, as depicted in Figure 8. Major UHS included parking lots, highways, industrial
zones, and rooftops with minimal greenery or water bodies. Figure 8 shows the spatial
distribution of UHS for 2013, 2016, 2019, and 2022, with a color gradient (blue to red)
highlighting the progressive increase in hotspot intensity and spatial coverage, espe-
cially in central and southeastern regions, driven by urbanization and anthropogenic
activities.

3.5. Ecological Evaluation through UTFVI

The UTFVI evaluates UHI ecological impacts index, categorizing thermal conditions
into six indices (Figure 9a). From 2013 to 2016, areas in the “excellent” category
(UTFVI < 0) remained stable in the southwest and northeast, while “poor” areas
(UTFVI > 0.020) expanded, particularly along urbanized strips. Smaller patches ex-
hibited “good” and “normal” conditions (0 < UTFVI < 0.02), whereas “bad” and
“worse” conditions were prevalent in built-up zones, indicating higher UHI intensity.
Figure 9b further identifies UHI-prone areas based on UTFVI ranges, reflecting the
ecological stress induced by urbanization.

3.6. NOs Concentration
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Figure 9.: (a) Classification of UTFVI with Corresponding UHI Intensity and Ecolog-

ical Evaluation Index (EEI). (b) UTFVI-based ecological evaluation over the Study
Years. (¢) Gradient map highlighting NOs concentration over Pune.
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Figure 10.: (a) Comparison of NOg Concentration for baseline 2019 and 2022. (b)
Monthly Mean NOy Concentration. (c) Scatter Plot of NOg vs Population Density.

The relationship between UHIs and atmospheric NOs concentrations, based on
Sentinel-5P satellite data, reveals a statistically significant rise in NOg levels from
the baseline year 2019 to 2022. The mean concentration increased from 0.000031
molecules/cm? in 2019 to 0.000036 molecules/cm? in 2022, with a maximum value of
0.000193 molecules/cm? recorded in 2022. While the visual differences in NO, trends
may appear subtle in Figure 10a, the rise is supported by additional statistical anal-
ysis (p-value < 0.05) and verified by supplementary visualizations. To further explore
this, Figure 10a illustrates the daily NOg concentrations (Day of Year) for March to
August in 2019 and 2022, highlighting day-to-day variability and subtle differences in
trends. Figure 10b presents the monthly mean NOg concentrations over multiple years
(2020-2023), capturing seasonal and temporal variations that show higher concen-
trations in specific periods. Additionally, Figure 10c explores the correlation between
NO; concentrations and population density. The scatter plot reveals the clustering of
higher NOg levels in areas with greater population density, emphasizing the role of
anthropogenic activities in driving these trends. This supports the observation that
clevated NOs concentrations are often associated with urbanization and industrial
activity, particularly in the central region of the area, as shown in Figure 9c.

4. Conclusion

The study on Pune’s rising LST underscores growing concerns regarding urban health
and environmental sustainability amid rapid urbanization and climate change. Us-
ing remote sensing data and the Urban Temperature-Adjusted Vegetation Index, the
analysis highlights a significant rise in LST, with central urban areas experiencing
heat while peripheral zones remain relatively cooler. These findings emphasize Pune’s
vulnerability to the Urban Heat Island effect, stressing the need for strategic urban
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planning to maintain ecological balance and preserve green spaces. The study fur-
ther highlights the importance of incorporating high-resolution data and ground-based
monitoring for precise ecological assessments, aiding sustainable urban development.

Data Availability Statement

Data sharing is not applicable — no new data is generated.

References

Badugu, A., K. S. Arunab, A. Mathew, and P. Sarwesh (2023). Spatial and temporal analysis
of urban heat island effect over tiruchirappalli city using geospatial techniques. Geodesy and
Geodynamics 14(3), 275-291.

Bagyaraj, M., V. Senapathi, S. Karthikeyan, S. Chung, R. Khatibi, A. Nadiri, and B. Lajayer
(2023). A study of urban heat island effects using remote sensing and gis techniques in
kancheepuram, tamilnadu, india. Urban Climate 51, 101597.

Chauhan, S. and A. S. Jethoo (2023). Statistical analysis of diurnal variations in land sur-
face temperature and the uhi effect using aqua and terra modis data. Remote Sensing
Letters 14(5), 503-511.

Elmarakby, E. and H. Elkadi (2024). Impact of urban morphology on urban heat island in
manchester’s transit-oriented development. Journal of Cleaner Production 434, 140009.
Firozjaei, M. K., A. Sedighi, S. Kiavarz, S. Qureshi, D. Haase, and S. K. Alavipanah (2019).
Automated built-up extraction index: A new technique for mapping surface built-up areas

using landsat 8 oli imagery. Remote Sensing 11(17), 1966.

Guo, F., D. Hertel, U. Schlink, D. Hu, J. Qian, and W. Wu (2024). Remote sensing-based
attribution of urban heat islands to the drivers of heat. IEEE Transactions on Geoscience
and Remote Sensing 62, 1-12.

Harod, R. and E. Rajasckaran (2024). All-weather land surface temperature estimation by
combining thermal infrared and passive microwave radiometry: A study over india. Inter-
national Journal of Remote Sensing 45(18), 6691-6718.

Talongo, I., H. Virta, H. Eskes, J. Hovila, and J. Douros (2020). Comparison of
tropomi/sentinel-5 precursor no2 observations with ground-based measurements in helsinki.
Atmospheric Measurement Techniques 13(1), 205-218.

Karutz, R., C. J. Klassert, and S. Kabisch (2023). On farmland and floodplains—modeling
urban growth impacts based on global population scenarios in pune, india. Land 12(5),
1051.

Kowe, P. et al. (2022). Impacts of the spatial configuration of built-up areas and urban
vegetation on land surface temperature using spectral and local spatial autocorrelation
indices. Remote Sensing Letters 15(12), 1222-1235.

Mohammad, P. and A. Goswami (2022). Predicting the impacts of urban development on
seasonal urban thermal environment in guwahati city, northeast india. Building and Envi-
ronment 226, 109724.

Portela, C. I., K. G. Massi, T. Rodrigues, and E. Alcantara (2020). Impact of urban and
industrial features on land surface temperature: Evidence from satellite thermal indices.
Sustainable Cities and Society 56, 102100.

Wang, R., H. Hou, Y. Murayama, and A. Derdouri (2020). Spatiotemporal analysis of land
use/cover patterns and their relationship with land surface temperature in nanjing, china.
Remote Sensing 12(3), 440.

Wu, Q., Y. Huang, P. Irga, P. Kumar, W. Li, W. Wei, H. K. Shon, C. Lei, and J. L. Zhou
(2024). Synergistic control of urban heat island and urban pollution island effects using
green infrastructure. Journal of Environmental Management 370, 122985.

10

http://mc.manuscriptcentral.com/tres Email: IJRS-Administrator@Dundee.ac.uk

Page 10 of 10



