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Abstract—The advent of Internet of Things (IoT) technology has 

revolutionized disaster management, providing real-time monitoring 
and enhanced response capabilities for critical situations like floods. 
Despite these advances, IoT systems are increasingly vulnerable to 
cyber-attacks, particularly data manipulation attacks that target 
video feeds. This paper presents a novel attack technique named 
Dynamic Frame Alternation (DFA) aimed at evading standard 
detection algorithms. Unlike traditional attacks like replay, frame 
injection, and video stream hijacking that modify frames in a linear 
or bulk approach, DFA strategically alters frames based on real-time 
changes in video attributes, such as color consistency and object 
presence. Leveraging metrics like the Structural Similarity Index 
Measure (SSIM) to detect optimal moments for frame manipulation, 
DFA enhances attack stealth by maintaining low detectability and 
resource usage. Experimental results, obtained from 
implementations on an embedded board platform, demonstrate that 
DFA consistently achieves lower detection rates when compared 
against traditional attacks while applying popular detection 
algorithms.  
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I. INTRODUCTION  
Internet of Things (IoT) technologies have fundamentally 

transformed disaster management, particularly in areas 
vulnerable to natural calamities like floods [16]. IoT-based 
monitoring systems allow for real-time data acquisition from 
video feeds, sensor arrays, and other data points to support 
timely response and informed decision-making [14]. This 
capability is especially critical for flood-prone regions, where 
immediate access to environmental conditions can mitigate the 
impact of such events on affected communities. However, with 
the increased reliance on IoT infrastructure, new vulnerabilities 
have emerged. The complexity of IoT systems and their 
exposure to networks makes them prime targets for cyber-
attacks, especially data manipulation attacks that compromise 
the integrity and reliability of video feeds and sensor data [21]. 
Consequently, the security of IoT systems in disaster 
management is a paramount concern, with a growing need for 
defenses against sophisticated attack methodologies.  

Among various cyber-attacks, data manipulation attacks 
stand out for their potential to cause harm by tampering with 
the accuracy of information conveyed through video feeds. In 
flood monitoring systems, a compromised video feed can lead 
to inaccurate assessments of flood levels, hampering response 
strategies and endangering lives [10]. Traditional attacks like 
replay, frame injection, and video stream hijacking manipulate 
video content by injecting predefined or previously captured 
frames, disrupting the continuity of real-time footage. While 
effective, these attacks lack adaptability and are often 
detectable through common anomaly detection algorithms, 

which monitor abnormalities in frame sequences and 
computational patterns [22].  

To advance attack while considering adaptability, attackers 
have developed more dynamic manipulation strategies. In this 
paper, we introduce a novel approach called dynamic frame 
alteration (DFA), designed to bypass traditional detection 
methods by adjusting the manipulation strategy based on real-
time characteristics in the video feed. DFA exploits changes in 
video attributes, such as lighting, object presence, or scene 
stability, to trigger frame alterations precisely when it is least 
likely to be noticed. By doing so, DFA reduces detectability, 
creating a more stealthy and efficient form of attack that can 
evade standard anomaly detection tools. One of the primary 
innovations of DFA lies in its ability to determine the optimal 
moment for frame manipulation. Instead of relying on a static 
attack pattern, DFA employs real-time monitoring to identify 
contextual or visual cues in the video feed that signal an ideal 
manipulation window. Metrics like the Structural Similarity 
Index (SSIM) are employed to monitor for specific conditions, 
such as sudden changes in lighting or motion, which serve as 
triggers for the attack. This approach not only reduces the 
number of manipulated frames but also enhances the stealth of 
the attack, as alterations are applied only when the video feed 
naturally shifts, making them less noticeable to detection 
algorithms. 

II. RELATED WORK 

The study in [8] introduces mimic cloud ruling method 
aimed at defending against time-delayed covert channel attacks. 
The study first defines the attack model from the perspective of 
information theory, where attackers utilize response delay 
sample mean and variance as feature statistics to deduce the 
detection rate formula. To counter these attacks, the authors 
propose basic countermeasures and first-come-first-serve 
strategies designed to minimize the attackers' ability to exploit 
response time-delay differences for transmitting information. 
The authors in [9] designed an approach to detect and mitigate 
Cross-Site Scripting (XSS) attacks in IoT networks utilizing the 
Online Sequential Extreme Learning Machine (OS-ELM) 
algorithm, which suits the highly dynamic nature of IoT 
environments. This approach effectively handles real-time data 
and device heterogeneity by transforming attack vectors into a 
non-executable form, thus neutralizing the harmful effects of 
XSS attacks. This work provides a comprehensive 
classification of existing hardware attacks, with a focus on 
covert attacks. The authors propose a schema for quantifying 
these attacks and introduce various countermeasures to prevent 
them, highlighting the need for enhanced hardware security 
measures.  



   In [11] they investigate the impact of false data injection on 
IoT automotive engine sensors using several deep learning 
algorithms. The study finds that while SPNN excels in detecting 
continuous attacks, GAN is more effective for temporary 
attacks. This comprehensive evaluation under realistic 
scenarios underscores the importance of selecting appropriate 
algorithms for different types of IoT sensor attacks. The authors 
in [10], introduces a language for modelling false data injection 
attacks (FDIA) in IoT devices. The proposed approach supports 
processing data from all types of IoT devices using JSON 
format flattening techniques. It facilitates both simple and 
complex data alterations, enhancing the resilience of systems 
and improving the training of machine learning tools for attack 
detection. In [16] the authors present a survey on attacks 
targeting the interaction between cyber and physical worlds in 
cyber-physical systems (CPS). The paper categorizes and 
discusses signal injection and information leakage attacks, 
highlighting the need for a better understanding of these 
evolving threats and proposing new defense strategies.  

The author in [1] proposes a conjugate gradient-based 
improved GAN (CG-IGAN) for anomaly detection in IoT 
networks. This approach leverages Independent Component 
Analysis (ICA) to extract features from a botnet dataset, which 
are then used to train a classifier. The CG-IGAN design 
improves the accuracy of detecting malicious IoT data, 
outperforming other state-of-the-art IoT-based anomaly 
detection methods. in [6] a machine learning algorithm to detect 
and mitigate false data injection attacks (FDIA) in wastewater 
treatment plants is presented. The study uses Linear Regression, 
K-Means clustering, and Auto Encoder neural networks to 
differentiate between clean and corrupted data, providing a 
robust anomaly detection and data cleaning solution for 
industrial IoT applications. In [7] authors focus on detecting 
False Data Injection (FDI) and Man-in-the-Middle (MitM) 
attacks in IoT and Industrial IoT (IIoT) environments. The 
proposed method achieves a 95% success rate in detecting these 
attacks by leveraging machine learning tools to analyse 
vulnerabilities in wireless communication protocols, 
emphasizing the critical need for security in smart systems. 
Authors in [4] develop a novel method using autoencoders 
(AEs) to detect false data injection (FDI) attacks in industrial 
IoT. By exploiting the correlation in sensor data across time and 
space, the proposed technique identifies and cleans falsified 
data, outperforming traditional support vector machine (SVM)-
based approaches in both detection accuracy and data recovery. 
Authors in [5] propose an efficient prediction-based FDIA 
detection and location scheme (PDL) for smart grids. Utilizing 
vector autoregressive processes (VAR) to predict state vectors, 
the scheme detects and locates abnormal data by comparing 
predicted and observed measurements. The PDL approach 
simplifies the calibration process and demonstrates improved 
performance in extensive simulation results. 

III. PRELIMINARY AND PROBLEM 

This section provides background of some terminologies and 
metrics used along with the problem in the paper for better 
understanding of our proposed approach. 

A. Structural Similarity Index Measure (SSIM) 

This metric  assessed the perceptual similarity between 

manipulated and original frames. The metric quantifies how 

closely a processed or altred image resemble an origninal 

reference image while accounting for perpertual charateristics.  

SSIM is calculated as follows. 

𝑆𝑆𝐼𝑀(𝐹𝑎,𝐹𝑏) =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝑎𝑏+𝐶2)

(𝜇𝑎
2+𝜇𝑏

2+𝐶1)(𝜎𝑎
2+𝜎𝑏

2+𝐶2)
    (1) 

Where 𝐹𝑎,𝐹𝑏 𝑎𝑟𝑒 two consecutive video frames being 

compared. 𝜇𝑎𝜇𝑏 , 𝑡ℎ𝑒 mean intensity values of frames 

𝐹𝑎 and 𝐹𝑏 representing the average pixel brightness in each 

frame. 𝜎𝑎
2, 𝜎𝑏

2 , the variance of frames 𝐹𝑎 and 𝐹𝑏quantifying the 

intensity variations within each frame. 𝜎𝑎𝑏 ,  the covariance 

between frames 𝐹𝑎 and 𝐹𝑏 , measuring the degree of correlation 

in pixel intensity variations between the two frames.  𝐶1 is the 

small constant to stabilize the equation when 𝜇𝑎
2 + 𝜇𝑏

2 is close 

to zero. 𝐶2  is the small constant to prevent instability 

when 𝜎𝑎
2 + 𝜎𝑏

2 is close to zero. 

B. Detection Rate 

Detection rate, often termed as recall in classification tasks, is 

a metric that evaluates the percentage of true positive instances 

identified by a detection algorithm. In the context of video 

manipulation attacks, it quantifies how effectively an algorithm 

can identify manipulated frames within a video sequence. A 

higher detection rate signifies that the system is recognizing 

altered frames, even when the manipulations are subtle or 

dynamically applied. Detection rate is defined as: 

𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋100 (2) 

Where TP: true Positives, the number of manipulated frames 
correctly identified as manipulated. FN: False Negatives, the 
number of manipulated frames incorrectly classified as normal. 

C. Detection Accuracy  

Detection accuracy is a measure of the overall correctness of a 

detection system, evaluating its ability to classify both 

manipulated and unmanipulated frames accurately. Unlike 

detection rate, which focuses solely on true positives, accuracy 

considers true negatives, making it a holistic performance 

indicator. Detection accuracy is computed as: 

𝐷𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 𝑋 100 (3) 

Where: TP: True Positive, TN: True Negatives, the number of 

normal frames correctly classified as normal, FP: False 

Positives, the number of normal frames incorrectly classified as 

manipulated, FN: False Negatives. 

D. Problem Definition 

The problem definition in this Paper is to achieve low detection 

rate and low detection accuracy with existing detection 

approaches when our proposed attack is applied that identifies 

attack instance based on SSIM in real Time 

 



IV. DFA TECHNIQUE 

  The DFA attack dynamically alters video frames based on 
real-time contextual cues, designed to evade detection by 
maintaining perceptual continuity. Fig 1 shows a high-level 
overview of the proposed DFA method and its steps. Following 
are the details of each step. 

 

 

A. Trigger Identification            

Real-time monitoring identifies changes in lighting, motion, or 

scene stability using metrics like Structural Similarity Index 

Measure (SSIM). One of the most critical metrics in evaluating 

video manipulation attacks is the Structural Similarity Index 

Measure (SSIM), which quantifies the perceptual similarity 

between manipulated and original frames. A higher SSIM value 

indicates that the manipulation is less perceptible to the human 

eye, while a lower value suggests significant perceptual 

deviation.  

The attack does not operate on a fixed schedule but instead 
analyses the variations in video streams to establish a dynamic 
manipulation threshold. This ensures that DFA remains stealthy 
by avoiding detection through abrupt scene changes. The 
dynamic threshold is calculated based on statistical variations 
in frame differences and structural consistency over time.  To 
calculate the threshold for triggering DFA, the system first 
establishes a baseline of normal video behaviour. This is 
achieved by collecting an initial set of 50 consecutive frames 
and computing the frame difference and SSIM. Using this data, 
DFA calculates the threshold to maintain stealth and maximize 
the impact of the attack, DFA initiates frame manipulation only 
when low Frame difference and high SSIM conditions are met. 
When pixel variations between consecutive frames are at 15% 
of the average pixel intensity, it indicates scene stability. This 
provides the ideal condition for inserting manipulated frames 
without detection. If SSIM remains above 0.75, it suggests that 
the frames are perceptually similar. This allows DFA to 
introduce subtle alterations without raising suspicion.  

B. Frame Alteration 

Alterations are applied incrementally to avoid perceptual 
disruption. The alterations are applied over a sequence of 
frames to smooth transitions and maintain perceptual 
consistency. First the difference between consecutive video 
frames is calculated. This helps identify the amount of change 
that has occurred between frames. Let 𝐹𝑡 represent the frame at 
time t. The frame difference 𝐷𝑡  is calculated as: 

𝐷𝑡 = |𝐹𝑡 − 𝐹𝑡−1|    (4) 

𝐷𝑡  represents the frame difference at time t, 𝐹𝑡 is the current 
video frame at time t, and 𝐹𝑡−1 is the previous frame at time t, 
the absolute difference between corresponding pixel values is 
calculated to determine the extent of variation. 

The blending coefficient is adjusted dynamically, adjusted 
based on scene complexity, if the scene remains static with 
minor pixel variations, a higher blending ratio is applied. If 
there is motion or object displacement, a lower blending ratio 
is used to maintain consistency.  Changes include pixel-level 
adjustments and blending with pre-recorded video which is 
performed in a systematic manner to ensure seamless 
integration of manipulated content with real-time video frames. 
This step is executed using a combination of pixel interpolation, 
weighted averaging, and spatial-temporal consistency to avoid 
abrupt transitions that could trigger detection mechanisms. A 
pre-recorded frame is retrieved based on scene context to 
maintain continuity. The pre-recorded frame is blended with the 
real-time frame using a weighted combination function:  

𝐹𝑡
′ = (1 − 𝛼)𝐹𝑡  +𝛼𝑃𝑡   (5) 

Where 𝑃𝑡  is the pre-recorded frame and 𝛼 controls the blending 
ratio, dynamically adjusted to maintain perceptual continuity.   

C. Real Time manipulation 

Manipulation is performed in real time, each incoming frame Ft
 is analyzed for key visual properties such as brightness, 
contrast, and edge sharpness. A mapping function is applied to 
modify the pixel intensities based on a transformation mode. 
Instead of abruptly replacing frames, DFA performs weighted 
averaging between real-time frames and pre-recorded 
sequences maintaining operational integrity and stealth. The 



real-time execution of DFA is triggered based on the frame 
difference calculation and structural similarity index (SSIM) 
thresholds. The manipulation begins when the frame 
difference 𝐷𝑡   and SSIM drop below dynamic thresholds: 

𝑇𝑟𝑖𝑔𝑔𝑒𝑟 = {
1,
0,

𝑖𝑓𝐷𝑡𝑎𝑛𝑑 𝑆𝑆𝐼𝑀 < 𝛾      (6) 

Where 𝜎and 𝛾 are empirically determined thresholds. 

DFA actively monitors incoming frames to determine the 
optimal moment for initiating alterations. This ensures that the 
attack is not only more stealthy but also adaptive to real world 
conditions such as smart home systems, intelligent vehicle 
systems and disaster management settings. DFA’s execution 
pipeline which involves capturing and analyzing video frames, 
subtle frame modifications using pixel-level adjustment and 
data blending, is designed to perform these  in-frame 
modifications using OpenCV’s efficient image processing 
functions cv2.absdiff() to compute absolute frame differences 
to detect subtle scene changes, cv2.GaussianBlur() to smoothen 
manipulated frames for seamless blending, cv2.addweighted() 
to merge real-time and pre-recorded frames to maintain visual 
consistency, ensuring that each frame is processed within a 
minimal time window. This prevents noticeable lag or latency 
spikes that could expose the attack. 

V. EXPERIMENTAL RESULTS 

We discuss the comprehensive experimental framework 
employed to implement and evaluate the proposed Dynamic 
Frame Alteration (DFA) attack. The experimental framework is 
designed to replicate a realistic IoT video surveillance 
environment and assess the impact of DFA and other traditional 
attacks under controlled conditions. Python and OpenCV were 
instrumental in executing and analyzing the experiments, 
providing robust tools for real-time video manipulation and 
processing.  

A. Hardware Configuration 

 The core processing unit was a Raspberry Pi 3 Model B board 
with 4GB RAM and a quad-core ARM Cortex-A72 CPU. This 
device served as the computational hub for processing video 
feeds, implementing attacks, and running detection 
algorithms.  A Camera Module V2 with an 8-megapixel sensor 
provided real-time video feeds. The camera was mounted in a 
stable environment to capture consistent frames for 
experimentation. An HDMI monitor connected to the 
embedded board displayed the manipulated video feed and 
detection results. A 32GB microSD card stored experimental 
logs, video frames, and algorithm outputs.  

B. Operating System 

Raspbian OS (based on Debian Linux), used for video capture, 
frame manipulation, and structural similarity index calculation. 
Scikit-learn for implemented machine learning models for 
attack detection. NumPy supported numerical operations. A 
real-time video feed was captured using 
OpenCV’s cv2.VideoCapture function, which initialized the 
camera module and provided continuous frame streams. The 
frames were resized to 640x480 pixels for consistent 
processing.  

C. Comparative Attacks 

Three relevant and popular attacks are considered and 
implemented for comparison.  

Replay Attack: Pre-recorded video sequences replace the live 
feed, maintaining high SSIM values but introducing temporal 
inconsistencies. Earlier frames are re-sent at a later time, 
replacing the live feed at the chosen moment. [22] 

Frame Injection: New or manipulated frames overwrite or 
insert themselves at specific intervals, while the rest of the feed 
remains genuine. Extraneous frames were injected periodically 
using OpenCV’s cv2.imshow function. [4] 

Video Stream Hijacking: From a certain point 
onward, all frames are replaced entirely with an attacker-
controlled feed. [23] 

D. Detection Algorithms Considered 

The effectiveness of DFA and traditional attacks was evaluated 
using three popular detection algorithms.  

Support Vector Machine (SVM): SVM models classify frames 
based on features like SSIM and temporal continuity.[14]  

k-Nearest Neighbours (kNN): Anomalies are identified by 
comparing frames to a reference set using Euclidean 
distance.[5]  

Local Outlier Factor (LOF): LOF detects outliers based on local 
density deviation. [18] 

A. SSIM Comparison 

   Table 1 below outlines SSIM results of various attacks while 
varying detection approaches are applied. 

 

 TABLE 1. SSIM ANALYSIS ACROSS ATTACK AND DETECTION 
METHODS 

Detection 
Approach 

Attack Type 

Replay Frame 
Injection 

Video 
Stream 
Hijack 

DFA 

LOF 0.735 0.404 0.735 0.890 

SVM 0.758 0.411 0.758 0.898 

kNN 0.745 0.379 0.395 0.908 

Average 0.746 0.398 0.400 0.898 

    

The DFA attack showed the least perceptual deviation among 
all attack types. The SSIM values for DFA remained relatively 
high averaging around 0.85. This result is attributed to the 
dynamic nature of the attack, where alterations were applied 
incrementally and contextually, blending them seamlessly with 
the original frames to maintain perceptual continuity. The 
algorithm’s real-time analysis of changes in lighting, motion, 
and scene stability allowed it to adjust the alterations to be 
subtle and unnoticeable to the human eye. The SSIM values 
never dropped below 0.80, indicating that the attack remained 
stealthy and difficult to detect visually. 
The SSIM values for replay attacks were consistently high 



(around 0.95), as the pre-recorded video sequences were 
identical to the original video, meaning no perceptual 
disruption occurred. However, the high SSIM values masked 
the temporal inconsistencies introduced by the attack. Replay 
attacks were easy to detect when temporal analysis, such as 
motion patterns, was employed. Frame injection attacks had 
lower SSIM values compared to DFA and replay attacks. The 
abrupt inclusion of extraneous frames into the video feed 
disrupted its continuity, leading to perceptible anomalies. The 
SSIM values dropped significantly, with averages around 0.50–
0.30, depending on the number of frames injected. This lower 
SSIM reflected the noticeable disruption caused by the 
injection, making it more detectable in comparison to DFA.  

   Video stream hijacking produced the most significant visual 
discrepancies, leading to very low SSIM values (around 0.40–
0.30). This attack replaces the entire video stream, resulting in 
drastic differences between the original and manipulated 
frames. The lower SSIM values indicate that this attack was 
easily detectable through visual inspection, making it less 
stealthy than DFA. SSIM evaluates the perceptual similarity 
between manipulated and original frames. High SSIM values 
suggest less perceptible alterations, making the manipulation 
more effective. 

     DFA maintains the highest SSIM values (average: 
0.898381) across detection algorithms, indicating that its 
manipulations are subtle and blend seamlessly into the video 
feed. The incremental alteration ensures the manipulation is 
imperceptible while maintaining temporal and spatial 
consistency. The SSIM values for Frame Injection 
(average:0.398148) are significantly lower, reflecting abrupt 
and perceptually jarring anomalies caused by inserting 
extraneous frames. Replay attack s achieve moderately high 
SSIM values (average: 0.746005). The lack of real-time 
contextual relevance results in detectable temporal 
inconsistencies despite high similarity. Video Stream Hijacking 
shows SSIM values (average: 0.399985), as the complete 
replacement of the video feed introduces significant perceptual 
deviations.  

B. Detection Rate Comparison 

Table 2 summarizes detection rates across attacks and detection 
algorithm 

TABLE 2. DETECTION RATE ANALYSIS ACROSS ATTACK AND 
DETECTION METHODS 

Detection 
Approach 

Attack Type 

Replay Frame 
Injection 

Video 
Stream 
Hijack 

DFA 

LOF 87.20% 64.59% 75.60% 10.33% 

SVM 87.01% 61.05% 72.75% 9.14% 

kNN 86.96% 59.97% 71.99% 10.89% 

Average 87.05% 61.87% 73.45% 10.12% 

 

  Replay attacks had the highest detection rate, 
averaging 87.05%. This is because replayed frames often lack 
temporal coherence with live video, making them easier for 

algorithms to detect. Both kNN and SVM performed 
exceptionally well, leveraging temporal patterns and feature 
space continuity to identify repeated sequences. These high 
detection rates were a result of the algorithms’ ability to identify 
the mismatch between the original and replayed video frames, 
especially when the video feed exhibited unnatural temporal 
patterns or motion. Frame injection attacks yielded a detection 
rate of 61.87% on average. The inconsistency introduced by 
injecting extraneous frames disrupts the temporal flow, 
providing detectable anomalies. However, the detection rate 
varied significantly between algorithms due to differing 
sensitivity to temporal disruptions. 

   kNN and LOF performed exceptionally well in identifying 
the injected frames, as these algorithms excel in detecting 
temporal and spatial inconsistencies. Video stream hijacking 
had the highest detection rate among all attacks, this attack 
recorded a moderate detection rate of 73.44%, as it replaces the 
entire video stream, introducing noticeable deviations in both 
spatial and temporal features. All three detection algorithms 
were highly effective in detecting hijacking, with SVM 
achieving the highest detection rate (99%). Algorithms like 
LOF and kNN demonstrated difficulty in detecting DFA due to 
its dynamic nature. LOF's reliance on local density deviations 
fails when manipulations remain within acceptable variance 
ranges. Similarly, kNN's distance-based comparison struggles 
with gradual alterations that remain close to the reference set. 
Detection rates varied with threshold adjustments in each 
algorithm. For instance, lowering the SSIM threshold in SVM 
improved recall but also increased false positives. 

C. Detection Accuracy 

Table 3 below summarizes detection accuracy across attacks 
and detection algorithms. 

TABLE 3.  DETECTION ACCURACY ANALYSIS ACROSS ATTACK 
AND DETECTION METHODS 

Detection 
Approach 

Attack Type 

Replay Frame 
Injection 

Video 
Stream 
Hijack 

DFA 

LOF 69.68% 69.08% 69.30% 20.76% 

SVM 90.90% 73.39% 69.97% 20.46% 

kNN 90.50% 70.64% 69.46% 20.37% 

Average 83.69% 70.70% 69.59% 20.53% 

 

DFA's detection accuracy averaged 20.52%, reflecting the 
algorithm's inability to differentiate manipulated frames from 
normal ones. This low accuracy underscores DFA's capability 
to evade detection through dynamic and context-aware 
manipulations. Both kNN and LOF exhibited poor 
performance, highlighting the need for enhanced feature 
extraction techniques. Replay attacks achieved an average 
accuracy of 83.69%, with SVM outperforming other models. 
The high temporal similarity of replay attacks simplifies the 
classification task, enhancing true positive identification while 
reducing false negatives. Frame injection attacks recorded a 
moderate accuracy of 70.70%. Despite the abrupt anomalies 
introduced by extraneous frames, false positives were more 



common, as algorithms occasionally misclassified normal 
frames with similar patterns. Video stream hijacking achieved 
a detection accuracy of 69.57%, largely due to the significant 
visual deviations introduced.  
  However, the complete replacement of the video stream 
occasionally led to false positives in dense anomaly detection 
algorithms like LOF. DFA manipulation often remained 
undetected due to its subtlety, leading to higher false negatives 
and lower accuracy. Replay attacks, on the other hand, 
maintained high accuracy but suffered from occasional false 
positives in algorithms relying on temporal consistency. SVM 
outperformed LOF and kNN across most attack scenarios due 
to its robust feature extraction and decision boundary 
optimization. 
D. False Positives and False Negatives 
Due to its stealthy nature, the DFA attack resulted in a moderate 
number of false negatives (approximately 20–30%). However, 
false positives were relatively low, with values around 10%. 
This indicates that while DFA was challenging to detect, the 
algorithms performed reasonably well in avoiding incorrect 
classifications. False positives for replay attacks were minimal, 
as the detection algorithms could easily distinguish replayed 
frames from the live feed. However, false negatives were rare, 
occurring in less than 5% of the cases. This high detection 
reliability was expected due to the simplicity of the replay 
attack and the ability of the algorithms to detect temporal 
inconsistencies. False positives for frame injection attacks were 
slightly higher than for replay attacks, as the injection of 
multiple frames could occasionally be mistaken for normal 
video fluctuations, especially when the injected frames were 
similar to the original feed. False negatives were rare but not 
non-existent, with rates around 5–10%. This reflects the 
effectiveness of detection algorithms in identifying abrupt 
changes in the video sequence. False positives and false 
negatives for video stream hijacking were minimal due to the 
significant visual discrepancies between the hijacked and 
original video feeds. The algorithms were highly reliable in 
detecting this attack, with false positives and negatives both 
close to 0%. The computational overhead and time taken per 
frame are important factors when considering the feasibility of 
real-time detection in video surveillance systems. 

V. CONCLUSION 

  The findings in this research underline the critical 
vulnerabilities present in IoT-based video surveillance systems 
when subjected to the novel Dynamic Frame Alteration (DFA) 
attack. Unlike conventional attacks such as replay attacks, 
frame injection, and video stream hijacking, DFA introduces a 
unique and sophisticated approach to video manipulation that 
significantly challenges existing detection mechanisms. These 
scenarios highlight the urgent need for system designers to 
incorporate multi-layered security mechanisms, such as 
redundancy in sensor inputs, blockchain for data integrity, and 
real-time cross-validation of video and sensor data. Future work 
will focus designing detection and defense mechanisms to 
counter DFA attack. 
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