

DFA: Dynamic Frame Alteration For Video Manipulation Attack in IoT Environments

Buduka Cherish Nchelem

School of Computer science and Eletronic

Engineering

University of Essex

Colchester, UK

bn23347@essex.ac.uk

Amit Kumar Singh

School of Computer science and Eletronic

Engineering

University of Essex

Colchester, UK

a.k.singh@essex.ac.uk

Haralambos Mouratidis

School of Computer science and Eletronic

Engineering

University of Essex

Colchester, UK

h.mouratidis@essex.ac.uk

Abstract—The advent of Internet of Things (IoT) technology has

revolutionized disaster management, providing real-time monitoring
and enhanced response capabilities for critical situations like floods.
Despite these advances, IoT systems are increasingly vulnerable to
cyber-attacks, particularly data manipulation attacks that target
video feeds. This paper presents a novel attack technique named
Dynamic Frame Alternation (DFA) aimed at evading standard
detection algorithms. Unlike traditional attacks like replay, frame
injection, and video stream hijacking that modify frames in a linear
or bulk approach, DFA strategically alters frames based on real-time
changes in video attributes, such as color consistency and object
presence. Leveraging metrics like the Structural Similarity Index
Measure (SSIM) to detect optimal moments for frame manipulation,
DFA enhances attack stealth by maintaining low detectability and
resource usage. Experimental results, obtained from
implementations on an embedded board platform, demonstrate that
DFA consistently achieves lower detection rates when compared
against traditional attacks while applying popular detection
algorithms.

 Keywords— IoT Security, Real-Time Monitoring, Video
Manipulation, DFA, Detection Algorithm

I. INTRODUCTION
Internet of Things (IoT) technologies have fundamentally

transformed disaster management, particularly in areas
vulnerable to natural calamities like floods [16]. IoT-based
monitoring systems allow for real-time data acquisition from
video feeds, sensor arrays, and other data points to support
timely response and informed decision-making [14]. This
capability is especially critical for flood-prone regions, where
immediate access to environmental conditions can mitigate the
impact of such events on affected communities. However, with
the increased reliance on IoT infrastructure, new vulnerabilities
have emerged. The complexity of IoT systems and their
exposure to networks makes them prime targets for cyber-
attacks, especially data manipulation attacks that compromise
the integrity and reliability of video feeds and sensor data [21].
Consequently, the security of IoT systems in disaster
management is a paramount concern, with a growing need for
defenses against sophisticated attack methodologies.

Among various cyber-attacks, data manipulation attacks
stand out for their potential to cause harm by tampering with
the accuracy of information conveyed through video feeds. In
flood monitoring systems, a compromised video feed can lead
to inaccurate assessments of flood levels, hampering response
strategies and endangering lives [10]. Traditional attacks like
replay, frame injection, and video stream hijacking manipulate
video content by injecting predefined or previously captured
frames, disrupting the continuity of real-time footage. While
effective, these attacks lack adaptability and are often
detectable through common anomaly detection algorithms,

which monitor abnormalities in frame sequences and
computational patterns [22].

To advance attack while considering adaptability, attackers
have developed more dynamic manipulation strategies. In this
paper, we introduce a novel approach called dynamic frame
alteration (DFA), designed to bypass traditional detection
methods by adjusting the manipulation strategy based on real-
time characteristics in the video feed. DFA exploits changes in
video attributes, such as lighting, object presence, or scene
stability, to trigger frame alterations precisely when it is least
likely to be noticed. By doing so, DFA reduces detectability,
creating a more stealthy and efficient form of attack that can
evade standard anomaly detection tools. One of the primary
innovations of DFA lies in its ability to determine the optimal
moment for frame manipulation. Instead of relying on a static
attack pattern, DFA employs real-time monitoring to identify
contextual or visual cues in the video feed that signal an ideal
manipulation window. Metrics like the Structural Similarity
Index (SSIM) are employed to monitor for specific conditions,
such as sudden changes in lighting or motion, which serve as
triggers for the attack. This approach not only reduces the
number of manipulated frames but also enhances the stealth of
the attack, as alterations are applied only when the video feed
naturally shifts, making them less noticeable to detection
algorithms.

II. RELATED WORK

The study in [8] introduces mimic cloud ruling method
aimed at defending against time-delayed covert channel attacks.
The study first defines the attack model from the perspective of
information theory, where attackers utilize response delay
sample mean and variance as feature statistics to deduce the
detection rate formula. To counter these attacks, the authors
propose basic countermeasures and first-come-first-serve
strategies designed to minimize the attackers' ability to exploit
response time-delay differences for transmitting information.
The authors in [9] designed an approach to detect and mitigate
Cross-Site Scripting (XSS) attacks in IoT networks utilizing the
Online Sequential Extreme Learning Machine (OS-ELM)
algorithm, which suits the highly dynamic nature of IoT
environments. This approach effectively handles real-time data
and device heterogeneity by transforming attack vectors into a
non-executable form, thus neutralizing the harmful effects of
XSS attacks. This work provides a comprehensive
classification of existing hardware attacks, with a focus on
covert attacks. The authors propose a schema for quantifying
these attacks and introduce various countermeasures to prevent
them, highlighting the need for enhanced hardware security
measures.

 In [11] they investigate the impact of false data injection on
IoT automotive engine sensors using several deep learning
algorithms. The study finds that while SPNN excels in detecting
continuous attacks, GAN is more effective for temporary
attacks. This comprehensive evaluation under realistic
scenarios underscores the importance of selecting appropriate
algorithms for different types of IoT sensor attacks. The authors
in [10], introduces a language for modelling false data injection
attacks (FDIA) in IoT devices. The proposed approach supports
processing data from all types of IoT devices using JSON
format flattening techniques. It facilitates both simple and
complex data alterations, enhancing the resilience of systems
and improving the training of machine learning tools for attack
detection. In [16] the authors present a survey on attacks
targeting the interaction between cyber and physical worlds in
cyber-physical systems (CPS). The paper categorizes and
discusses signal injection and information leakage attacks,
highlighting the need for a better understanding of these
evolving threats and proposing new defense strategies.

The author in [1] proposes a conjugate gradient-based
improved GAN (CG-IGAN) for anomaly detection in IoT
networks. This approach leverages Independent Component
Analysis (ICA) to extract features from a botnet dataset, which
are then used to train a classifier. The CG-IGAN design
improves the accuracy of detecting malicious IoT data,
outperforming other state-of-the-art IoT-based anomaly
detection methods. in [6] a machine learning algorithm to detect
and mitigate false data injection attacks (FDIA) in wastewater
treatment plants is presented. The study uses Linear Regression,
K-Means clustering, and Auto Encoder neural networks to
differentiate between clean and corrupted data, providing a
robust anomaly detection and data cleaning solution for
industrial IoT applications. In [7] authors focus on detecting
False Data Injection (FDI) and Man-in-the-Middle (MitM)
attacks in IoT and Industrial IoT (IIoT) environments. The
proposed method achieves a 95% success rate in detecting these
attacks by leveraging machine learning tools to analyse
vulnerabilities in wireless communication protocols,
emphasizing the critical need for security in smart systems.
Authors in [4] develop a novel method using autoencoders
(AEs) to detect false data injection (FDI) attacks in industrial
IoT. By exploiting the correlation in sensor data across time and
space, the proposed technique identifies and cleans falsified
data, outperforming traditional support vector machine (SVM)-
based approaches in both detection accuracy and data recovery.
Authors in [5] propose an efficient prediction-based FDIA
detection and location scheme (PDL) for smart grids. Utilizing
vector autoregressive processes (VAR) to predict state vectors,
the scheme detects and locates abnormal data by comparing
predicted and observed measurements. The PDL approach
simplifies the calibration process and demonstrates improved
performance in extensive simulation results.

III. PRELIMINARY AND PROBLEM

This section provides background of some terminologies and
metrics used along with the problem in the paper for better
understanding of our proposed approach.

A. Structural Similarity Index Measure (SSIM)

This metric assessed the perceptual similarity between

manipulated and original frames. The metric quantifies how

closely a processed or altred image resemble an origninal

reference image while accounting for perpertual charateristics.

SSIM is calculated as follows.

𝑆𝑆𝐼𝑀(𝐹𝑎,𝐹𝑏) =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝑎𝑏+𝐶2)

(𝜇𝑎
2+𝜇𝑏

2+𝐶1)(𝜎𝑎
2+𝜎𝑏

2+𝐶2)
 (1)

Where 𝐹𝑎,𝐹𝑏 𝑎𝑟𝑒 two consecutive video frames being

compared. 𝜇𝑎𝜇𝑏 , 𝑡ℎ𝑒 mean intensity values of frames

𝐹𝑎 and 𝐹𝑏 representing the average pixel brightness in each

frame. 𝜎𝑎
2, 𝜎𝑏

2 , the variance of frames 𝐹𝑎 and 𝐹𝑏quantifying the

intensity variations within each frame. 𝜎𝑎𝑏 , the covariance

between frames 𝐹𝑎 and 𝐹𝑏 , measuring the degree of correlation

in pixel intensity variations between the two frames. 𝐶1 is the

small constant to stabilize the equation when 𝜇𝑎
2 + 𝜇𝑏

2 is close

to zero. 𝐶2 is the small constant to prevent instability

when 𝜎𝑎
2 + 𝜎𝑏

2 is close to zero.

B. Detection Rate

Detection rate, often termed as recall in classification tasks, is

a metric that evaluates the percentage of true positive instances

identified by a detection algorithm. In the context of video

manipulation attacks, it quantifies how effectively an algorithm

can identify manipulated frames within a video sequence. A

higher detection rate signifies that the system is recognizing

altered frames, even when the manipulations are subtle or

dynamically applied. Detection rate is defined as:

𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋100 (2)

Where TP: true Positives, the number of manipulated frames
correctly identified as manipulated. FN: False Negatives, the
number of manipulated frames incorrectly classified as normal.

C. Detection Accuracy

Detection accuracy is a measure of the overall correctness of a

detection system, evaluating its ability to classify both

manipulated and unmanipulated frames accurately. Unlike

detection rate, which focuses solely on true positives, accuracy

considers true negatives, making it a holistic performance

indicator. Detection accuracy is computed as:

𝐷𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 𝑋 100 (3)

Where: TP: True Positive, TN: True Negatives, the number of

normal frames correctly classified as normal, FP: False

Positives, the number of normal frames incorrectly classified as

manipulated, FN: False Negatives.

D. Problem Definition

The problem definition in this Paper is to achieve low detection

rate and low detection accuracy with existing detection

approaches when our proposed attack is applied that identifies

attack instance based on SSIM in real Time

IV. DFA TECHNIQUE

 The DFA attack dynamically alters video frames based on
real-time contextual cues, designed to evade detection by
maintaining perceptual continuity. Fig 1 shows a high-level
overview of the proposed DFA method and its steps. Following
are the details of each step.

A. Trigger Identification

Real-time monitoring identifies changes in lighting, motion, or

scene stability using metrics like Structural Similarity Index

Measure (SSIM). One of the most critical metrics in evaluating

video manipulation attacks is the Structural Similarity Index

Measure (SSIM), which quantifies the perceptual similarity

between manipulated and original frames. A higher SSIM value

indicates that the manipulation is less perceptible to the human

eye, while a lower value suggests significant perceptual

deviation.

The attack does not operate on a fixed schedule but instead
analyses the variations in video streams to establish a dynamic
manipulation threshold. This ensures that DFA remains stealthy
by avoiding detection through abrupt scene changes. The
dynamic threshold is calculated based on statistical variations
in frame differences and structural consistency over time. To
calculate the threshold for triggering DFA, the system first
establishes a baseline of normal video behaviour. This is
achieved by collecting an initial set of 50 consecutive frames
and computing the frame difference and SSIM. Using this data,
DFA calculates the threshold to maintain stealth and maximize
the impact of the attack, DFA initiates frame manipulation only
when low Frame difference and high SSIM conditions are met.
When pixel variations between consecutive frames are at 15%
of the average pixel intensity, it indicates scene stability. This
provides the ideal condition for inserting manipulated frames
without detection. If SSIM remains above 0.75, it suggests that
the frames are perceptually similar. This allows DFA to
introduce subtle alterations without raising suspicion.

B. Frame Alteration

Alterations are applied incrementally to avoid perceptual
disruption. The alterations are applied over a sequence of
frames to smooth transitions and maintain perceptual
consistency. First the difference between consecutive video
frames is calculated. This helps identify the amount of change
that has occurred between frames. Let 𝐹𝑡 represent the frame at
time t. The frame difference 𝐷𝑡 is calculated as:

𝐷𝑡 = |𝐹𝑡 − 𝐹𝑡−1| (4)

𝐷𝑡 represents the frame difference at time t, 𝐹𝑡 is the current
video frame at time t, and 𝐹𝑡−1 is the previous frame at time t,
the absolute difference between corresponding pixel values is
calculated to determine the extent of variation.

The blending coefficient is adjusted dynamically, adjusted
based on scene complexity, if the scene remains static with
minor pixel variations, a higher blending ratio is applied. If
there is motion or object displacement, a lower blending ratio
is used to maintain consistency. Changes include pixel-level
adjustments and blending with pre-recorded video which is
performed in a systematic manner to ensure seamless
integration of manipulated content with real-time video frames.
This step is executed using a combination of pixel interpolation,
weighted averaging, and spatial-temporal consistency to avoid
abrupt transitions that could trigger detection mechanisms. A
pre-recorded frame is retrieved based on scene context to
maintain continuity. The pre-recorded frame is blended with the
real-time frame using a weighted combination function:

𝐹𝑡
′ = (1 − 𝛼)𝐹𝑡 +𝛼𝑃𝑡 (5)

Where 𝑃𝑡 is the pre-recorded frame and 𝛼 controls the blending
ratio, dynamically adjusted to maintain perceptual continuity.

C. Real Time manipulation

Manipulation is performed in real time, each incoming frame Ft
 is analyzed for key visual properties such as brightness,
contrast, and edge sharpness. A mapping function is applied to
modify the pixel intensities based on a transformation mode.
Instead of abruptly replacing frames, DFA performs weighted
averaging between real-time frames and pre-recorded
sequences maintaining operational integrity and stealth. The

real-time execution of DFA is triggered based on the frame
difference calculation and structural similarity index (SSIM)
thresholds. The manipulation begins when the frame
difference 𝐷𝑡 and SSIM drop below dynamic thresholds:

𝑇𝑟𝑖𝑔𝑔𝑒𝑟 = {
1,
0,

𝑖𝑓𝐷𝑡𝑎𝑛𝑑 𝑆𝑆𝐼𝑀 < 𝛾 (6)

Where 𝜎and 𝛾 are empirically determined thresholds.

DFA actively monitors incoming frames to determine the
optimal moment for initiating alterations. This ensures that the
attack is not only more stealthy but also adaptive to real world
conditions such as smart home systems, intelligent vehicle
systems and disaster management settings. DFA’s execution
pipeline which involves capturing and analyzing video frames,
subtle frame modifications using pixel-level adjustment and
data blending, is designed to perform these in-frame
modifications using OpenCV’s efficient image processing
functions cv2.absdiff() to compute absolute frame differences
to detect subtle scene changes, cv2.GaussianBlur() to smoothen
manipulated frames for seamless blending, cv2.addweighted()
to merge real-time and pre-recorded frames to maintain visual
consistency, ensuring that each frame is processed within a
minimal time window. This prevents noticeable lag or latency
spikes that could expose the attack.

V. EXPERIMENTAL RESULTS

We discuss the comprehensive experimental framework
employed to implement and evaluate the proposed Dynamic
Frame Alteration (DFA) attack. The experimental framework is
designed to replicate a realistic IoT video surveillance
environment and assess the impact of DFA and other traditional
attacks under controlled conditions. Python and OpenCV were
instrumental in executing and analyzing the experiments,
providing robust tools for real-time video manipulation and
processing.

A. Hardware Configuration

 The core processing unit was a Raspberry Pi 3 Model B board
with 4GB RAM and a quad-core ARM Cortex-A72 CPU. This
device served as the computational hub for processing video
feeds, implementing attacks, and running detection
algorithms. A Camera Module V2 with an 8-megapixel sensor
provided real-time video feeds. The camera was mounted in a
stable environment to capture consistent frames for
experimentation. An HDMI monitor connected to the
embedded board displayed the manipulated video feed and
detection results. A 32GB microSD card stored experimental
logs, video frames, and algorithm outputs.

B. Operating System

Raspbian OS (based on Debian Linux), used for video capture,
frame manipulation, and structural similarity index calculation.
Scikit-learn for implemented machine learning models for
attack detection. NumPy supported numerical operations. A
real-time video feed was captured using
OpenCV’s cv2.VideoCapture function, which initialized the
camera module and provided continuous frame streams. The
frames were resized to 640x480 pixels for consistent
processing.

C. Comparative Attacks

Three relevant and popular attacks are considered and
implemented for comparison.

Replay Attack: Pre-recorded video sequences replace the live
feed, maintaining high SSIM values but introducing temporal
inconsistencies. Earlier frames are re-sent at a later time,
replacing the live feed at the chosen moment. [22]

Frame Injection: New or manipulated frames overwrite or
insert themselves at specific intervals, while the rest of the feed
remains genuine. Extraneous frames were injected periodically
using OpenCV’s cv2.imshow function. [4]

Video Stream Hijacking: From a certain point
onward, all frames are replaced entirely with an attacker-
controlled feed. [23]

D. Detection Algorithms Considered

The effectiveness of DFA and traditional attacks was evaluated
using three popular detection algorithms.

Support Vector Machine (SVM): SVM models classify frames
based on features like SSIM and temporal continuity.[14]

k-Nearest Neighbours (kNN): Anomalies are identified by
comparing frames to a reference set using Euclidean
distance.[5]

Local Outlier Factor (LOF): LOF detects outliers based on local
density deviation. [18]

A. SSIM Comparison

 Table 1 below outlines SSIM results of various attacks while
varying detection approaches are applied.

 TABLE 1. SSIM ANALYSIS ACROSS ATTACK AND DETECTION
METHODS

Detection
Approach

Attack Type

Replay Frame
Injection

Video
Stream
Hijack

DFA

LOF 0.735 0.404 0.735 0.890

SVM 0.758 0.411 0.758 0.898

kNN 0.745 0.379 0.395 0.908

Average 0.746 0.398 0.400 0.898

The DFA attack showed the least perceptual deviation among
all attack types. The SSIM values for DFA remained relatively
high averaging around 0.85. This result is attributed to the
dynamic nature of the attack, where alterations were applied
incrementally and contextually, blending them seamlessly with
the original frames to maintain perceptual continuity. The
algorithm’s real-time analysis of changes in lighting, motion,
and scene stability allowed it to adjust the alterations to be
subtle and unnoticeable to the human eye. The SSIM values
never dropped below 0.80, indicating that the attack remained
stealthy and difficult to detect visually.
The SSIM values for replay attacks were consistently high

(around 0.95), as the pre-recorded video sequences were
identical to the original video, meaning no perceptual
disruption occurred. However, the high SSIM values masked
the temporal inconsistencies introduced by the attack. Replay
attacks were easy to detect when temporal analysis, such as
motion patterns, was employed. Frame injection attacks had
lower SSIM values compared to DFA and replay attacks. The
abrupt inclusion of extraneous frames into the video feed
disrupted its continuity, leading to perceptible anomalies. The
SSIM values dropped significantly, with averages around 0.50–
0.30, depending on the number of frames injected. This lower
SSIM reflected the noticeable disruption caused by the
injection, making it more detectable in comparison to DFA.

 Video stream hijacking produced the most significant visual
discrepancies, leading to very low SSIM values (around 0.40–
0.30). This attack replaces the entire video stream, resulting in
drastic differences between the original and manipulated
frames. The lower SSIM values indicate that this attack was
easily detectable through visual inspection, making it less
stealthy than DFA. SSIM evaluates the perceptual similarity
between manipulated and original frames. High SSIM values
suggest less perceptible alterations, making the manipulation
more effective.

 DFA maintains the highest SSIM values (average:
0.898381) across detection algorithms, indicating that its
manipulations are subtle and blend seamlessly into the video
feed. The incremental alteration ensures the manipulation is
imperceptible while maintaining temporal and spatial
consistency. The SSIM values for Frame Injection
(average:0.398148) are significantly lower, reflecting abrupt
and perceptually jarring anomalies caused by inserting
extraneous frames. Replay attack s achieve moderately high
SSIM values (average: 0.746005). The lack of real-time
contextual relevance results in detectable temporal
inconsistencies despite high similarity. Video Stream Hijacking
shows SSIM values (average: 0.399985), as the complete
replacement of the video feed introduces significant perceptual
deviations.

B. Detection Rate Comparison

Table 2 summarizes detection rates across attacks and detection
algorithm

TABLE 2. DETECTION RATE ANALYSIS ACROSS ATTACK AND
DETECTION METHODS

Detection
Approach

Attack Type

Replay Frame
Injection

Video
Stream
Hijack

DFA

LOF 87.20% 64.59% 75.60% 10.33%

SVM 87.01% 61.05% 72.75% 9.14%

kNN 86.96% 59.97% 71.99% 10.89%

Average 87.05% 61.87% 73.45% 10.12%

 Replay attacks had the highest detection rate,
averaging 87.05%. This is because replayed frames often lack
temporal coherence with live video, making them easier for

algorithms to detect. Both kNN and SVM performed
exceptionally well, leveraging temporal patterns and feature
space continuity to identify repeated sequences. These high
detection rates were a result of the algorithms’ ability to identify
the mismatch between the original and replayed video frames,
especially when the video feed exhibited unnatural temporal
patterns or motion. Frame injection attacks yielded a detection
rate of 61.87% on average. The inconsistency introduced by
injecting extraneous frames disrupts the temporal flow,
providing detectable anomalies. However, the detection rate
varied significantly between algorithms due to differing
sensitivity to temporal disruptions.

 kNN and LOF performed exceptionally well in identifying
the injected frames, as these algorithms excel in detecting
temporal and spatial inconsistencies. Video stream hijacking
had the highest detection rate among all attacks, this attack
recorded a moderate detection rate of 73.44%, as it replaces the
entire video stream, introducing noticeable deviations in both
spatial and temporal features. All three detection algorithms
were highly effective in detecting hijacking, with SVM
achieving the highest detection rate (99%). Algorithms like
LOF and kNN demonstrated difficulty in detecting DFA due to
its dynamic nature. LOF's reliance on local density deviations
fails when manipulations remain within acceptable variance
ranges. Similarly, kNN's distance-based comparison struggles
with gradual alterations that remain close to the reference set.
Detection rates varied with threshold adjustments in each
algorithm. For instance, lowering the SSIM threshold in SVM
improved recall but also increased false positives.

C. Detection Accuracy

Table 3 below summarizes detection accuracy across attacks
and detection algorithms.

TABLE 3. DETECTION ACCURACY ANALYSIS ACROSS ATTACK
AND DETECTION METHODS

Detection
Approach

Attack Type

Replay Frame
Injection

Video
Stream
Hijack

DFA

LOF 69.68% 69.08% 69.30% 20.76%

SVM 90.90% 73.39% 69.97% 20.46%

kNN 90.50% 70.64% 69.46% 20.37%

Average 83.69% 70.70% 69.59% 20.53%

DFA's detection accuracy averaged 20.52%, reflecting the
algorithm's inability to differentiate manipulated frames from
normal ones. This low accuracy underscores DFA's capability
to evade detection through dynamic and context-aware
manipulations. Both kNN and LOF exhibited poor
performance, highlighting the need for enhanced feature
extraction techniques. Replay attacks achieved an average
accuracy of 83.69%, with SVM outperforming other models.
The high temporal similarity of replay attacks simplifies the
classification task, enhancing true positive identification while
reducing false negatives. Frame injection attacks recorded a
moderate accuracy of 70.70%. Despite the abrupt anomalies
introduced by extraneous frames, false positives were more

common, as algorithms occasionally misclassified normal
frames with similar patterns. Video stream hijacking achieved
a detection accuracy of 69.57%, largely due to the significant
visual deviations introduced.
 However, the complete replacement of the video stream
occasionally led to false positives in dense anomaly detection
algorithms like LOF. DFA manipulation often remained
undetected due to its subtlety, leading to higher false negatives
and lower accuracy. Replay attacks, on the other hand,
maintained high accuracy but suffered from occasional false
positives in algorithms relying on temporal consistency. SVM
outperformed LOF and kNN across most attack scenarios due
to its robust feature extraction and decision boundary
optimization.
D. False Positives and False Negatives
Due to its stealthy nature, the DFA attack resulted in a moderate
number of false negatives (approximately 20–30%). However,
false positives were relatively low, with values around 10%.
This indicates that while DFA was challenging to detect, the
algorithms performed reasonably well in avoiding incorrect
classifications. False positives for replay attacks were minimal,
as the detection algorithms could easily distinguish replayed
frames from the live feed. However, false negatives were rare,
occurring in less than 5% of the cases. This high detection
reliability was expected due to the simplicity of the replay
attack and the ability of the algorithms to detect temporal
inconsistencies. False positives for frame injection attacks were
slightly higher than for replay attacks, as the injection of
multiple frames could occasionally be mistaken for normal
video fluctuations, especially when the injected frames were
similar to the original feed. False negatives were rare but not
non-existent, with rates around 5–10%. This reflects the
effectiveness of detection algorithms in identifying abrupt
changes in the video sequence. False positives and false
negatives for video stream hijacking were minimal due to the
significant visual discrepancies between the hijacked and
original video feeds. The algorithms were highly reliable in
detecting this attack, with false positives and negatives both
close to 0%. The computational overhead and time taken per
frame are important factors when considering the feasibility of
real-time detection in video surveillance systems.

V. CONCLUSION

 The findings in this research underline the critical
vulnerabilities present in IoT-based video surveillance systems
when subjected to the novel Dynamic Frame Alteration (DFA)
attack. Unlike conventional attacks such as replay attacks,
frame injection, and video stream hijacking, DFA introduces a
unique and sophisticated approach to video manipulation that
significantly challenges existing detection mechanisms. These
scenarios highlight the urgent need for system designers to
incorporate multi-layered security mechanisms, such as
redundancy in sensor inputs, blockchain for data integrity, and
real-time cross-validation of video and sensor data. Future work
will focus designing detection and defense mechanisms to
counter DFA attack.

VI. REFERENCES

[1]. R. Manivannan, "Improving IoT Security with AI-Powered
Anomaly Detection and Intrusion Prevention," 2023 (ICSES)

[2]. A. Font, J. Jarauta, R. Gesteira, R. Palacios and G. López, "Threat
models for vulnerability analysis of IoT devices for Manipulation
of Demand attacks," 2023 (JNIC).

[3]. H. Jahangir, S. Lakshminarayana, C. Maple and G. Epiphaniou,
"A Deep-Learning-Based Solution for Securing the Power Grid
Against Load Altering Threats by IoT-Enabled Devices,"
2023, in IEEE Internet of Things Journal

[4]. M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah
and M. Gidlund, "A Machine-Learning-Based Technique for False
Data Injection Attacks Detection in Industrial IoT,"2020 in IEEE
Internet of Things Journal.

[5]. Shi, W., Wang, Y., Jin, Q., & Ma, J. (2018). PDL: An Efficient
Prediction-Based False Data Injection Attack Detection and
Location in Smart Grid. 2018 (COMPSAC)

[6]. S. Gönen, M. A. Barişkan, D. Y. Kaplan, E. N. Yilmaz and A.
Çetin, "A Novel Approach Detection for False Data Injection, and
Man in the Middle Attacks in IoT and IIoT," 2023 IEEE PES GTD.

[7]. A. Parvathy, G. Leela Kasyap, D. Venkata Abhinav, A. N. V.
Surya Sai, R. Sriranjani and N. Hemavathi, "Hybrid Machine
Learning based False Data Injection Attack Detection and
Mitigation Model for Wastewater Treatment Plant," 2022
(ICACRS)

[8]. W. Zeng, H. Hu, Q. Guo and D. Zhou, "A Mimic Cloud Ruling
Method for Defending Against Time-Delayed Covert Channel
Attacks," 2021 (ISPDS)

[9]. P. Chaudhary, B. B. Gupta, K. T. Chui and S. Yamaguchi,
"Shielding Smart Home IoT Devices against Adverse Effects of
XSS using AI model," 2021 IEEE International Conference on
Consumer Electronics (ICCE)

[10]. M. Briland and F. Bouquet, "A Language for Modelling False Data
Injection Attacks in Internet of Things,” (SERP4IoT),

[11]. J. Phukan, K. F. Li and F. Gebali, "Hardware Covert Attacks and
Countermeasures,"2016 (AINA).

[12]. Pu, C. Spam DIS attack against routing protocol in the Internet of
Things. Wireless Personal Communications, 2019 (CNC)

[13]. M. K. Verma and R. K. Dwivedi, "A Survey on Wormhole Attack
Detection and Prevention Techniques in Wireless Sensor
Networks," 2020 (ICE3)

[14]. S. K, S. V, A. Singh, A. R, H. Saxena and S. S. S, "Detection and
Mitigation of Man-in-the-Middle Attack in IoT through Alternate
Routing," 2022 (ICCMC)

[15]. I. U. Khan, M. Y. Ayub, A. Abdollahi and A. Dutta, "A Hybrid
Deep Learning Model-Based Intrusion Detection System for
Emergency Planning Using IoT-Network,” (ICT-DM)

[16]. A. Mosenia, S. Sur-Kolay, A. Raghunathan and N. K. Jha,
"DISASTER: Dedicated Intelligent Security Attacks on Sensor-
Triggered Emergency Responses," in 2017 IEEE Transactions on
Multi-Scale Computing Systems

[17]. A. Tandon and P. Srivastava, "Trust-based Enhanced Secure
Routing against Rank and Sybil Attacks in IoT," 2019 (IC3)

[18]. J. Lorandel, M. A. Khelif and O. Romain, "A Low-cost Hardware
Attack Detection Solution for IoT Devices," 2022 IEEE 31st
International Symposium on Industrial Electronics (ISIE)

[19]. A. Alaali and W. Elmedany, "Hardware Trojan and
Countermeasures for Internet of Things," 2022 International
Conference on Innovation and Intelligence for Informatics,
Computing, and Technologies (3ICT)

[20]. T. Mizuno, H. Nishikawa, X. Kong and H. Tomiyama, "Empirical
Analysis of Side-Channel Attack Resistance of HLS-designed AES
Circuits," 2023 (ICEIC)

[21]. M. E. Deowan, S. Haque, J. Islam, M. Hanjalayeamin, M. T. Islam
and R. Tabassum Meghla, "Smart Early Flood Monitoring System
Using IoT," 2022 14th

[22]. A. A. Elsaeidy, A. Jamalipour and K. S. Munasinghe, "A Hybrid
Deep Learning Approach for Replay and DDoS Attack Detection
in a Smart City," 2021 in IEEE Access, vol. 9

[23]. H. Kooshkaki, B. Akbari and A. Ghaffari Sheshjavani, "A Multi-
Level reputation-based pollution attacks detection and prevention
in P2P streaming," 2016 (IST)

