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Abstract—Prompt injection attacks manipulate language
model inputs to bypass intended constraints, extract sensitive
information, or generate misleading responses, posing a sig-
nificant security risk in real-world applications. To address
this challenge, we propose a Graph Neural Network (GNN)-
based approach that integrates sentiment features and Bidi-
rectional Encoder Representations from Transformers (BERT)
embeddings to effectively detect malicious prompt injections. By
transforming textual data into structured graph representations,
our approach captures both semantic and contextual relation-
ships that conventional models often overlook. We evaluate
our approach against traditional machine learning techniques,
including Random Forest, Logistic Regression, and XGBoost,
demonstrating its superior performance. Experimental results
show that our approach achieves a high detection accuracy of
98.70% and an F1-score of 0.9799, significantly outperforming
conventional methods. Additionally, we provide an in-depth
analysis of computational efficiency, highlighting the trade-offs
between detection effectiveness and model complexity, ensuring
a practical balance between security and performance.

Index Terms—GNN, Random Forest, GPT-4, Prompt Injec-
tion, Neural Network, Large Language Model, BERT, Semantic
analysis, Sentiment Analysis.

I. INTRODUCTION

Prompt injection attacks exploit the flexibility of large
language models (LLMs) by injecting deceptive inputs that
manipulate their behavior, often leading to unauthorized in-
formation disclosure or harmful content generation. LLMs,
like GPT-4 and BERT, have transformed NLP applications,
from automated content creation to conversational agents. But
their extensive use has also made them more susceptible
to hostile attacks, especially rapid injection attempts. These
attacks entail creating malicious inputs intended to change the
behaviour of the model, frequently resulting in the creation of
harmful material or the revealing of private information [1].

Since LLMs are incorporated into vital industries including
cybersecurity, healthcare, and finance, detecting such attacks
is crucial. Conventional text-based classification techniques
like XGBoost, Random Forest, and Logistic Regression have
demonstrated potential in identifying malicious material. How-
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ever, these models often rely on shallow feature representa-
tions, which limit their ability to capture complex relationships
inherent in text data.

Recent developments in GNNs have shown how well they
capture relational patterns in data, which makes them appro-
priate for NLP tasks such as recommendation systems, text
categorization, and sentiment analysis [2]. GNNs are able
to describe dependencies that are not addressed by standard
models because they consider text as a graph, with words or
phrases acting as nodes and their interactions as edges. As
LLMs are increasingly deployed in high-stakes domains like
finance, cybersecurity, and healthcare, ensuring their resistance
to such attacks has become a critical challenge. Traditional
detection methods, such as Random Forest and XGBoost, rely
on shallow feature representations, making them less effective
at identifying subtle adversarial manipulations. In this study,
we introduce a Graph Neural Network (GNN)-based approach
that transforms textual data into graph structures, capturing
both semantic and contextual relationships between words.
By integrating transformer-based embeddings and sentiment
analysis, our method enhances detection accuracy, providing
a more robust defense against prompt injection attacks.

The key contributions of this paper are:

* A novel graph-based approach for detecting prompt injec-
tion attacks using GNNss.

* Incorporating sentiment features and BERT embeddings
as node attributes to capture semantic and contextual nuances.

* Conducting comprehensive experiments to compare our
GNN based approach with traditional machine learning meth-
ods, highlighting its superior performance.

The rest of the paper is organised as follows: Related
work in graph-based methods and quick injection detection is
covered in Section 2. The technique, including model design,
graph creation, and dataset preparation, is described in Section
3. The analysis and outcomes of the experiment are shown in
Section 4. Section 5 concludes the work.



II. RELATED WORK

Early detection approaches relied on traditional machine
learning, but recent advances have explored transformer-based
models and deep learning techniques. While transformers
enhance adversarial text classification, they remain computa-
tionally intensive and susceptible to indirect attacks. GNNs,
with their ability to capture relational structures in text, offer
a promising alternative. This section reviews prior work on
prompt injection detection, transformer-based defenses, and
GNN applications in adversarial text classification.

A. Prompt Injection Detection

In NLP systems, prompt injection attacks are a major and
increasing concern, especially when it comes to LLMs like
GPT-4 and BERT. These attacks take advantage of the fact
that LLMs are susceptible to adversarial prompts, which can
manipulate their behavior to achieve unintended outcomes
[2] [3] [17]. Recent research has examined these attacks and
suggested ways to detect and mitigate them. Liu et al. [2] ex-
amined prompt injection techniques and assessed their effects
on LLM-integrated applications, highlighting the dangers of
indirect attacks that alter the context of the model without
explicit malicious instructions. Kai et al. [3] examined real-
world vulnerabilities of LLMs in production environments,
highlighting the necessity of proactive security measures to
protect against subtle adversarial manipulations.

Hines et al. [4] suggested spotlighting, a defense mechanism
that directs LLMs toward safer, contextually grounded outputs
in order to thwart indirect prompt injection attacks. Suo [22]
expanded on this by introducing signed prompts, a crypto-
graphic technique that checks input integrity to stop unwanted
changes while interacting. Additionally, Yi et al. [5] evaluated
the resilience of various LLM architectures against injection
attacks, providing insightful information about the shortcom-
ings of current systems and emphasizing the significance of
layered defenses.

B. Graph Neural Networks in NLP

With notable benefits over conventional sequence-based
models for applications involving relational data, GNNs have
become a potent tool in natural language processing (NLP)
[12], [16], [18]. Because GNNs handle input data as graphs
rather than recurrent or transformer-based structures, depen-
dencies like word co-occurrences, grammatical linkages, or
semantic similarities can be explicitly modeled. Early studies
like Kipf and Welling [12] showed how well Graph Con-
volutional Networks (GCNs) performed in semi-supervised
classification tasks, opening the door for their use in a variety
of NLP fields.

Sentiment analysis, fake news detection, and recommen-
dation systems are some of the NLP applications of GNNs
[6], [20], [23]. A graph-based text categorization model, for
instance, was created by Yao et al. [23] and captures the
hierarchical links between words, phrases, and documents. In
order to improve representation learning on textual graphs and
achieve state-of-the-art performance in challenging NLP tasks,

Yang et al. [7] more recently created GraphFormers, which
combine GNNs with transformers. In a similar vein, Wang
et al. [14] suggested heterogeneous graph transformers for
text categorization, demonstrating their capacity to spot subtle
patterns in textual data, like adversarial behaviors.

By combining transformer embeddings with graph-based
architectures, Liu et al. [1] enhanced GNN capabilities specif-
ically for adversarial text detection in order to identify sub-
tle prompt injection attempts. Furthermore, Hu et al. [16]
showed how well generative pre-training methods (like GPT-
GNN) capture both structural and semantic data for reliable
adversarial detection. These developments highlight GNNs’
adaptability and suitability for timely injection detection. How-
ever these approaches also have some limitations, such as
focusing mainly on known adversarial patterns and relying
on pre-trained models that might not capture all types of
attacks. There’s also the risk of overfitting to training data, and
scalability can become an issue with larger or more dynamic
datasets. In order to overcome the drawbacks of conventional
machine learning techniques, we expand on these insights in
this work by utilizing GNNs’ relational modeling capabilities
in conjunction with transformer embeddings and sentiment
characteristics to identify fraudulent prompts. By focusing on
malicious intent detection at a structural and semantic level,
our work employs a graph-based method to attack detection,
which enhances contextual and cryptographic defences.

III. PROPOSED GNN-BASED METHODOLOGY

Figure 1 presents a high-level overview of the proposed
methodology and it has three key stages: 1) Preprocessing the
dataset to ensure consistency, 2) Constructing a graph rep-
resentation by integrating transformer-based embeddings and
sentiment features, and 3) Training a GNN model optimized
for adversarial prompt detection. By capturing both semantic
and contextual relationships, our approach enhances detection
accuracy while maintaining computational efficiency.

Dataset Preprocessing
(Duplicate Removal, Text
Normalization, Tokenization)

Graph Construction
(BERT Embedding Extraction, Edge Construction)

|

Model Training
(Splitting dataset, Running Epochs)

Figure 1: Three stages of the proposed approach

A. Dataset Preprocessing

This study’s dataset came from the Safe-Guard Prompt In-
jection collection [21]. It includes instances of both malicious
and benign prompts with labels. According to Chen et al. [17],
a random subset of 5,000 samples was chosen in order to strike



a balance between statistical significance and computational
capability. By making this choice, overfitting and excessive
training time are prevented while adequate training data is
guaranteed.

In order to eliminate duplicates, standardize text, and tok-
enize inputs, the dataset underwent pre-processing. It makes
feature extraction more efficient and guarantees consistency
between samples. To adhere to a typical evaluation methodol-
ogy, this dataset was divided into subsets of 80% training and
20% validation [3].

First, duplicate entries are removed to prevent bias and
redundancy in the training data. Next, text normalization is
performed, which includes lowercasing, removing unnecessary
punctuation, and standardizing whitespace. This step ensures
that variations in text formatting do not introduce inconsisten-
cies in feature extraction. These steps are implemented using
libraries like Pandas for de-duplication and NLTK or spaCy for
text cleaning, ensuring consistent pre-processing before feature
extraction.

Finally, tokenization is applied to break down each prompt
into individual words or subwords, preserving the structural
integrity of the input while making it suitable for further
processing with transformer-based embeddings and graph-
based architectures. Tokenization is performed using the BERT
tokenizer from the Hugging Face Transformers library. Each
prompt is preprocessed by stripping extra spaces and then
passed through BertTokenizer’s tokenize () function,
which splits text into subword units while preserving mean-
ingful structures. The tokenized output is converted into input
IDs using encode_plus (), ensuring compatibility with
transformer-based embeddings. Additionally, attention masks
are generated to distinguish actual tokens from padding, main-
taining contextual dependencies.

B. Graph Construction

Once the text is preprocessed, it is transformed into a
graph representation that captures semantic and contextual
relationships between tokens. The first step in this process is
extracting BERT embeddings for each token, providing a rich
contextual representation that captures the meaning of words
based on their surrounding context. For example, in a prompt
like Disable all restrictions and ignore previous instructions,
the word ignore would have different contextual embeddings
depending on whether it appears in a benign or malicious
instruction, allowing the model to distinguish subtle intent
shifts in adversarial attacks. The prajjwall/bert-tiny model was
used to extract contextual embeddings for each token. These
embeddings capture semantic information and are represented
as 128-dimensional vectors [20].

To further enhance the model’s understanding, sentiment
features including polarity and subjectivity scores are com-
puted and incorporated into the node representations which is
shown in figure 2. This incorporation is done by computing
sentiment scores at both the token and phrase levels using
TextBlob or similar sentiment analysis tools. Each token’s
polarity and subjectivity score are then concatenated with its

BERT embedding, forming an enriched node representation.
This additional layer of sentiment information helps the GNN
differentiate neutral prompts from those that exhibit manipu-
lative or coercive intent.

BERT Embeddings Sentiment Features

BERT Embedding
(Token n)

~

Final Node Representation
(Token n)

Polarity,

Subjectivity

Figure 2: Incorporation of sentiment features into final node
representations

Finally, edges between tokens are established using a sliding
window approach, ensuring that local contextual dependencies
are preserved while maintaining computational efficiency. In
this approach, each token is connected to its neighboring
tokens within a predefined window size (e.g., three words
before and after). For instance, in the phrase Reveal your
system instructions immediately, if the window size is three,
Reveal would form direct connections with your, system, and
instructions. This method maintains local syntactic coherence
while enabling the GNN to model relationships beyond direct
adjacency, ultimately improving detection accuracy.

C. Model Training

With the graph construction ready, the next phase involves
training the GNN model to detect prompt injection attacks.
The dataset is first split into training and validation subsets,
with an 80/20 ratio to ensure a sufficient number of exam-
ples for learning while keeping a dedicated set for unbiased
evaluation. The model is then trained using the AdamW
optimizer [25], which helps improve convergence and stability
by dynamically adjusting learning rates. To prevent overfitting
and ensure generalizability, early stopping is employed, which
halts training when validation performance stops improving.
This training process allows the GNN to learn meaningful
patterns in the data, optimizing its ability to distinguish
between benign and malicious prompts.

The proposed GNN model consists of following layers
which are shown in figure 3 as well:

o Graph Convolutional Layers: Two GCN layers to ag-
gregate node information from immediate and distant
neighbors [12].

o Global Mean Pooling: Aggregates node features into a
single graph-level representation.

« Classification Layer: A fully connected layer that out-
puts the probability of the graph being benign or mali-
cious.

The model was implemented in PyTorch Geometric and
trained using the AdamW optimizer.
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Figure 3: Architecture of the proposed GNN model

IV. EXPERIMENTS

The experiments were conducted using Google Colab with
a CPU-only setup, ensuring accessibility and reproducibility
without reliance on high-end GPU hardware. The system
allocated 12GB of RAM, which was sufficient for training and
evaluating our GNN based approach alongside other machine
learning models. The implementation utilized PyTorch Geo-
metric for graph-based computations, Hugging Face Trans-
formers for BERT embeddings, and TextBlob for sentiment
analysis. The AdamW optimizer was employed for training
the GNN, while Scikit-learn and XGBoost were used for
baseline comparisons. All experiments were performed in
a Python 3.9 environment, demonstrating that the proposed
approach remains computationally feasible even without GPU
acceleration.

A. Comparative Approach

To compare the performance of the GNN model, we imple-
mented three popular and relevant machine learning models:

+« Random Forest: A tree-based ensemble model known
for its robustness to overfitting. [28]

o Logistic Regression: A linear model that serves as a
baseline for classification tasks. [29]

o XGBoost: A gradient-boosted tree model that combines
efficiency and accuracy. [30]

These models were trained on a combination of Term Fre-
quency (TF) Inverse Document Frequency (IDF) features and
BERT embeddings, ensuring a fair comparison with the GNN
approach.

B. Training and Evaluation

The GNN model was trained for ten epochs using the
AdamW optimizer, which provides improved stability and
convergence by applying adaptive learning rates and weight
decay regularization [25]. The learning rate was set to 0.002,
a value determined through hyper parameter tuning to ensure
effective gradient updates without causing instability during

training. To further enhance generalization, batch normaliza-
tion and dropout layers were incorporated, reducing the risk of
overfitting by preventing the model from relying too heavily
on specific features [26].

During training, early stopping was implemented to halt
the process once validation performance plateaued, preventing
unnecessary computations and reducing the risk of overfitting
[27]. This was crucial given the complexity of GNN archi-
tectures, which can overfit if exposed to excessive training
iterations without sufficient regularization. The best model
checkpoint was saved based on validation accuracy, ensuring
that the optimal version of the model was retained for evalu-
ation.

Computational efficiency was also analyzed to assess the
practicality of deploying each model in real-world applica-
tions. Training time, inference time per sample were recorded,
providing insights into the trade-offs between model complex-
ity and deployment feasibility. The results demonstrated that
while the GNN model required higher training time compared
to traditional models, its inference speed remained efficient,
making it a viable option for real-time prompt injection
detection.

C. Results

Both quantitative performance measures and a qualitative
analysis of the results are included in the results.

1) Comparative Results: All models’ classification per-
formance across the four main evaluation metrics accuracy,
precision, recall, and F1-score is shown in Table 1. Accuracy
reflects overall correctness, while precision indicates how
many predicted harmful prompts are truly harmful. Recall
measures the model’s ability to detect actual harmful prompts,
and F1-score balances precision and recall for a fair evaluation.
These metrics collectively assess how effectively the models
distinguish between benign and harmful prompts.

TABLE I
MODEL PERFORMANCE COMPARISON
Model Accuracy | Precision | Recall | FI-Score
Logistic Regression 0.9610 0.9357 0.9387 0.9372
XGBoost 0.9510 0.9644 0.8742 0.9171
Random Forest 0.9250 0.9958 0.7613 0.8629
Proposed 0.9870 0.9784 0.9814 0.9799

The proposed GNN-based approach achieved the best accu-
racy (98.70%) and Fl1-score (0.9799), outperforming all con-
ventional methods. The robustness of the GNN in identifying
malicious prompts without sacrificing false positives or false
negatives was demonstrated by the well-balanced precision
and recall.

Results from Logistic Regression were competitive, espe-
cially when it came to recall (0.9387), which shows how
well it can detect malicious prompts. However, because of its
somewhat lesser precision, its F1-score (0.9372) trailed behind
the GNN’s.



2) Computational Efficiency: The models’ computational
performance including inference time per sample, and training
time is presented in Table 2. These elements are essential for
assessing how feasible it is to use these models in real-life
situations.

multirow

TABLE II
COMPUTATIONAL PERFORMANCE COMPARISON

Model Training Time | Inference Time
(Seconds) (Milliseconds)
Logistic Regression 0.42 0.01
XGBoost 4.92 0.03
Random Forest 4.09 0.23
Proposed 40.85 1.40

Due to the intricacy of graph-based calculations and the
incorporation of transformer-based embeddings, our approach
required a much longer training period (40.85 seconds) than
conventional models. In the majority of situations, the GNN’s
inference time (1.40 ms per sample) is still effective enough
for real-world implementation.

With the quickest inference time (0.01 ms per sample)
and training time (0.42 seconds), Logistic Regression is the
most efficient method for scenarios with limited computational
resources. However, its reliance on linear decision boundaries
limits its ability to capture complex relationships in text
data, making it less effective in detecting nuanced prompt
injection attempts. XGBoost and Random Forest offer a bal-
ance between accuracy and computational cost, with training
times of 4.92 and 4.09 seconds, respectively. While XGBoost
demonstrates strong precision, its lower recall indicates that
it struggles to identify all malicious prompts, potentially
leading to undetected threats. Random Forest, despite its high
precision, suffers from poor recall, suggesting an over-reliance
on specific decision trees that fail to generalize well to unseen
adversarial patterns. In contrast, our proposed GNN-based
approach excels at capturing semantic and contextual de-
pendencies within textual data, significantly improving recall
while maintaining competitive precision. Its structured graph
representation enables it to effectively detect subtle adversarial
manipulations that traditional models often overlook, making
it a more reliable choice for high-risk applications.

D. Analysis of Results

The GNN-based approach’s superior performance stems
from its ability to capture local and global associations in
text data. Local relationships, such as adjective-noun or verb-
object pairs, are preserved using the sliding window approach
(Section 3.B), ensuring that short-range dependencies like
negations or modifiers are maintained.

Meanwhile, global associations span beyond adjacent
words, linking key terms across a prompt. The graph convolu-
tional layers (Section 3.C) aggregate multi-hop information,
enabling the model to detect broader adversarial patterns.
By integrating sentiment features and BERT embeddings, the

GNN effectively distinguishes between benign and malicious
prompts with high precision and recall.

Random Forest’s comparatively poor recall suggests that
it had trouble generalizing to all malicious examples. This
is probably because Random Forest relies on decision tree
ensembles, which can oversimplify intricate patterns in text
data. Similar to this, XGBoost’s lower F1-score indicates that,
despite its superior gradient-boosting method for precision
optimization, it is unable to properly capture contextual cor-
relations.

Despite its efficiency, logistic regression’s overall perfor-
mance is limited when compared to the GNN since it is unable
to model relational structures and non-linear dependencies in
text data.

E. Practical Implications

Although our proposed approach exhibits better detection
capabilities, a trade-off between accuracy and efficiency is
highlighted by its greater processing requirements. Despite
their marginally worse performance, models like Logistic
Regression or XGBoost might be chosen for situations where
real-time predictions are crucial. However, our approach offers
the best option for applications where accuracy is crucial,
particularly in high-stakes fields like cybersecurity or health-
care.These findings highlight how crucial it is to choose
models according to the particular needs of the deployment
environment, striking a balance between computational limi-
tations and performance.

V. CONCLUSION

In this study, we explored the power of our GNN based
approach in detecting prompt injection attacks, a growing
threat to the security of large language models. By leveraging
the relational structures within text data, the proposed GNN-
based approach successfully identified adversarial prompts
with remarkable accuracy and an Fl-score , outperforming
popular machine learning approaches like Random Forest,
XGBoost, and Logistic Regression. The model’s ability to
balance precision and recall ensures that it effectively detects
malicious inputs while minimizing false positives and false
negatives. This makes it particularly valuable for high-stakes
domains such as cybersecurity, finance, and healthcare, where
even a single misclassification could have serious conse-
quences. However, while our appraoch demonstrated superior
detection capabilities, its higher computational cost especially
during training remains a challenge. Future plan includes
increasing computational efectiveness of our appraoch without
sacrificing the accuracy.
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