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Abstract 
We study the effects of digital transformation in the European Union on individual 
employment outcomes, wage growth, and income inequality, during the decade 
2010–9. Our results allow us to formulate a ‘conveyor-belt’ hypothesis suggesting 
that employment confers a competitive advantage in navigating the digital transi
tion due to the accumulation of pertinent skills in the workplace. Because digital 
skills are acquired with the changing demands of the job, their initial endowment 
matters less for the employed than for the non-employed. Furthermore, the ability 
of out-of-work individuals with higher digital skills to jump back on the labour mar
ket is reduced for those with higher education, suggesting a faster depreciation of 
their digital skills. A similar effect, although of limited size, is found for earning 
growth: out-of-work individuals with higher digital skills are not only more likely to 
find a job, but experience higher earnings growth, compared to their peers with 
lower digital skills. Our results point to a vulnerability of workers ‘left behind’ from 
the digital transformation and the labour market. The overall effects on inequality 
are, however, limited.
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1. Introduction

Ever since the Industrial Revolution in the XVIII and XIX centuries, technological change 
has been at times met with suspicion and anxiety. Fear of job displacement following peri
ods of fast technological progress have troubled the public, researchers, and policy-makers 
ever since. Today, people feel unease in watching computers and robots taking over tasks 
that were previously performed by humans. At the same time, however, technological 
change has opened up new job opportunities, both within existing sectors and—more im
portantly—in sectors that did not exist before. Given enough time to adjust, labour markets 
have coped remarkably well, historically. However, the effects on individuals might be very 
different from the effects on markets. Individuals often do not have enough time to adjust 
to rapid changes in the labour market. Moreover, they might not be able to adjust at all, for 
lack of sufficient skills, lack of mobility, or other issues. The new job opportunities might 
be captured by different people than those who lost their old ones.

Against this background, an increasing body of research has attempted to estimate the 
impact of the digital transformation on the labour market. This has included research on 
the automation potential of digital technologies (e.g. Arntz, Gregory and Zierahn 2016; 
Frey and Osborne 2017; Nedelkoska and Quintini 2018) and the aggregate impact of digi
talization on the labour market, looking for instance at job polarization, labour productiv
ity, or employment (e.g. Fern�andez-Mac�ıas and Hurley 2016; Graetz and Michaels 2018; 
Georgieff and Hyee 2022). The majority of contributions in the literature have focused on 
the industry or country level, while individual-level data has been relatively underused. 
However, some recent contributions do go in this direction, looking at the USA (Fossen and 
Sorgner 2022) or individual European countries (Balsmeier and Woerter 2019; Genz, 
Janser and Lehmer 2019; Dauth et al. 2021). Most papers in this area have focused on 
OECD countries, with some exceptions that look at the impact of robots in emerging econ
omies (Carbonero, Ernst and Weber 2020) or the impact of AI on labour markets in low- 
and lower middle income countries (Carbonero et al. 2023).

This article adds to this emerging empirical literature by quantitatively estimating the 
impact of the digital transformation on employment, wages, and income inequality in the 
2010s, within the European Union (EU). Digital transformation is the process of using digi
tal technologies to transform existing traditional and non-digital business processes and 
services, or create new ones, to meet with the evolving market and customer expectations, 
thus altering the way businesses are managed and operated, how value is delivered to cus
tomers, and crucially, how workers are employed in the production process (Majchrzak, 
Markus and Wareham 2016; Agarwal 2020). This transformation is not limited to technol
ogy itself but includes the strategic use of digital tools to reshape business operations, pro
cesses, and models, often impacting employees by automating tasks, altering roles, and 
requiring new skills (Vial 2019). Our perspective on digital transformation thus underscores 
the evolving demands on workers in adapting to and utilizing these tools within trans
formed business landscapes.

We make several significant contributions to this stream of literature. First, we examine 
the impact of digital transformation on individual employment and earnings based on three 
different measures of digitalization: two indexes of digitalization in the labour market at 
the level of industries, and a novel index of digital skills at the individual level. While the in
dexes capture, by their very nature, only some aspects of the underlying phenomenon, they 
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represent, however, an advance with respect to common analytical approaches that mainly 
rely on educational attainment to test for the differentiated impact of digitalization on dif
ferent skill levels. Secondly, we look at a large number of EU countries over a 10 year period 
(2010–2019), using the largest household survey data available in the European Union (EU- 
SILC). In doing so, we offer comprehensive new evidence that contributes to the ongoing 
debate on the impact of the digital transformation on individuals. Third, from a methodo
logical perspective, we use an innovative approach to overcome the limitations of the EU- 
SILC's four year panel rotation structure.1 This approach, which we refer to as a 
‘concatenated analysis’, involves repeated steps of estimation and simulation, and ulti
mately enables us to study individual outcomes and determinants of change over a longer 
period of time than previously possible for specific sub-groups of the population. In conclu
sion, in our analysis we are able to leverage on the richness of EU-SILC data overcoming its 
two main shortcomings for the study of the impact of the digital transformation on individ
uals—without doubt one of the main secular trends transforming labour markets: the lack 
of measures of digital skills and the short longitudinal dimension of the data. Our findings 
allow us to support a ‘conveyor-belt’ hypothesis, indicating that employment provides a 
competitive edge in managing digital transformation through the learning of relevant skills 
in the workplace. In our context, the phrase ‘conveyor belt’ is employed to synthetically 
and metaphorically illustrate the dynamic trajectory of individuals in employment about 
the advancement of their digital skills in the workplace. Moreover, it highlights the compar
ative advantage of the employed over the not employed, emphasizing the potential disad
vantage experienced by the latter group. Although a formal ‘conveyor belt theory’ does not 
exist in the social sciences, the term has consistently been employed to denote continuous 
change. Its closest use, also with a similar metaphorical sense, is found in a recent paper in 
the domain of labour market studies. Moss-Pech (2021) refers to a ‘career conveyor belt’ 
for internships and delineates a systematic trajectory linking specific internships to perma
nent employment opportunities. Internships are frequently linked to prestigious educational 
establishments and leading corporations, facilitating a rapid pathway for chosen students to 
obtain employment post-graduation. On the contrary, students lacking such opportunities 
may endure extended job searches and experience less steady entry into the labour market. 
These dynamics underscore systemic inequities that influence career paths and long-term 
job stability among college graduates.

Ultimately, we find that digital skills prove to positively impact the probability of jump
ing on the conveyor belt for those who are not in employment. In other words, digital skills 
are relevant for securing employment and attaining higher-paying positions. This also 
points to the vulnerability of those left behind by the digital transformation and the labour 
market. Yet the effect of digitalization on labour market outcome depends on individual 
workers' characteristics, inter alia, the level of formal education. Our findings show that 
digital skills are more relevant for accessing the labour market and securing better jobs for 
those with a low or medium level of formal education. This points to a more rapid deprecia
tion of advanced digital skills, as highly educated individuals generally have a more special
ized, task-specific type of human capital. Finally, as far as the overall level of income 
inequality is concerned, we find little evidence of a negative impact of the digital 

1 Starting with 2021, the EU-SILC panel design was extended on a voluntary basis to a six-year rota
tional structure, something we cannot exploit in our analysis.
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transformation. The results emphasize, from a policy perspective, the need for up- and re- 
skilling initiatives, particularly for older individuals.

In this article, we adopt a deterministic view of technological change, treating it as an ex
ternal factor that drives shifts in productivity, skill requirements, and labour demand, 
impacting economic outcomes in quantifiable ways. This approach models technological 
change as a neutral force, separate from social influences or intentions. While we acknowl
edge the body of literature that views technological change as socially constructed, driven 
by specific groups' interests and values, examining this process is outside the scope of the ar
ticle—on this, see for instance  Bingham (1996), Wajcman (2002), Olsen and Engen (2007), 
or Dafoe (2015). Our goal is to assess the economic implications of technology on labour 
markets and workers, regardless of the social forces shaping it. This deterministic perspec
tive allows us to focus on broad economic trends without delving into their underlying so
ciological forces. In Section 2, we frame our proposed ‘conveyor belt’ hypothesis within the 
existing literature and review the theoretical mechanisms shaping the relationship between 
the digital transformation and individual employment, wages and inequality, as well as 
existing empirical evidence. In the rest of the article, Section 3 describes our three indexes of 
digitalization, the econometric methods, and the concatenated analysis in detail. Section 4 
presents estimates of the impact of the various measures of digitalization on employment, 
earnings, and inequality. Section 5 summarizes and discusses the findings.

2. Theory and key findings from the literature

2.1. How does digitalization affect employment and wages?
There are various pathways through which the digital transformation may affect individual 
workers’ employment and wage outcomes. While advancements in digital technology could 
lead to displacement of workers and reductions in employment and wages, it is also possible 
that the digital transformation is accompanied by job creation and employment and wage 
gains. This section describes these theoretical mechanisms in detail and summarizes existing 
empirical evidence.

On the one hand, displacement effects of the digital transformation may dominate, with 
negative effects on employment and wages. Digitalization is advancing at an increasingly 
fast pace and new technologies are becoming capable of performing a range of tasks previ
ously undertaken by human workers (Genz, Janser and Lehmer 2019), a process that is 
sometimes referred to as technological task encroachment Susskind and Susskind (2018). A 
significant strand of the literature on the labour market impact of digitalization has focused 
on estimating the automation potential of digital technologies, that is to say, the extent to 
which certain jobs could be replaced by technology. In a seminal contribution, Frey and 
Osborne (2017) estimated that in the USA, 47 per cent of jobs are at high risk of automa
tion (i.e. an automation risk higher than 70 per cent). However, subsequent work stipulated 
that these numbers likely constitute an overestimation of the potential for automation. For 
instance, Arntz, Gregory and Zierahn (2016) take a task-based approach to automation po
tential, arguing that it is certain tasks within occupations that face a risk of replacement, 
rather than entire occupations as such. They estimate a much lower risk of automation in 
OECD countries, ranging from 6 per cent in South Korea to 14 per cent in Austria. 
Nedelkoska and Quintini (2018) carry out a similar exercise, although they expand the 
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geographical scope of their analysis to include thirty-two countries. They estimate the over
all share of workers at a high risk of substitution from automation to be at 14 per cent.

Hence, the overall extent to which jobs are at high risk of automation is uncertain, as 
well as likely evolving over time and dependent on a country’s institutional set-up (Merola 
2022). However, if tasks that were previously performed by labour are automatable and it 
becomes cheaper for technology (i.e. capital) to take over these tasks, they are expected to 
be automated and displaced (Acemoglu and Restrepo 2019). Where this displacement effect 
dominates, individual workers who are affected by labour displacing technologies should 
experience reduced employment stability and wage growth (Fossen and Sorgner 2022).

The potential displacement effect, which is the focus of studies on automation potential, 
only showcases one side of the equation, however. This effect may be mitigated by a num
ber of countervailing factors, as set out by Acemoglu and Restrepo (2018a, 2018b, 2019) in 
a series of contributions. First, digitalization may be associated with positive productivity 
effects, leading to increases in the demand for labour in non-automated tasks, both in sec
tors undergoing automation and in sectors that are not affected. Productivity effects could 
occur through both a price-productivity and a scale-productivity effect. The former refers 
to technology leading to a compression in prices, which allows the industry to expand sales 
and take on more workers, while the latter states that lower aggregate prices may lead to an 
expansion in the local economy and associated spill-over effects whereby adjacent industries 
increase their demand for labour. In addition, increased automation may trigger capital 
accumulation, which in turn, is associated with an increased demand for labour. Finally, 
automation may increase the productivity of tasks that have already been automated 
(the so-called ‘deepening of automation’), which may be linked with increased productivity 
but not displacement.

Beyond these productivity effects, a significant mechanism to countervail the effects of 
automation is the creation of new tasks through digitalization, which may lead to employ
ment and wage gains for individual workers (Acemoglu and Restrepo 2019; Fossen and 
Sorgner 2022). New tasks could be more complex versions of existing tasks or completely 
new activities, potentially complementing technology (Fossen and Sorgner 2022). Workers 
may have a comparative advantage relative to machines in these new tasks, directly leading 
to a reinstatement effect that counterbalances potential displacement (Acemoglu and 
Restrepo 2018a). As such, it would be expected that digitalization is associated with in
creased employment and wages for workers.

Whether the displacement effect or compensating mechanisms dominate at the aggregate 
level is ultimately an empirical question. An increasingly large body of research looks at this 
question, most commonly investigating the employment impact of technological change on 
the labour market. The findings of this literature are complex and depend on the level and 
scope of the analysis (Filippi, Bann�o and Trento 2023). Nevertheless, research has increas
ingly challenged the idea of widespread automation of jobs due to technological change. 
H€otte, Somers and Theodorakopoulos (2023) conduct a meta-analysis of 127 studies inves
tigating the employment effect of technological change between 1988 and 2021. Across 
these studies, they find substantially larger support for a labour-creating impact of techno
logical change than a labour-displacing impact, and conclude that, on aggregate, substitu
tion effects of technology appear to be offset by compensating mechanisms. For the 
European context, a number of recent studies have cast doubt on the notion of a wide
spread negative employment impact of digitalization (Biagi and Falk 2017; Pantea, 
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Sabadash and Biagi 2017; McGuinness, Pouliakas and Redmond 2023; Bachmann 
et al. 2024).

As described, the impact of digitalization on workers’ employment and wage outcomes 
is not theoretically clear-cut and depends on the relative importance of displacement effects 
and countervailing mechanisms. Moreover, these effects are not mutually exclusive 
and may cancel each other out at aggregate level (Fossen and Sorgner 2022). Based on the 
findings of the majority of recent empirical studies, we do not expect to find negative 
effects of digitalization on employment and wages for workers at the aggregate level 
(Hypothesis 1).

2.2. Skill-based heterogeneity in the effects of digitalization on workers
The previous section has set out how the impact of digitalization on individual labour mar
ket outcomes depends on whether labour-displacing or labour-reinstating effects of technol
ogy dominate. Yet, the effect of digitalization on the labour market outcomes of individual 
workers is likely not uniform but rather depends on their individual characteristics. 
Specifically, the effects of technological change on workers’ employment and wage pros
pects are likely to differ by skill level, due to variance in the exposure to automation risk 
but also in the ability to adapt to new skill requirements.

The literature on technological change has highlighted that the potential displacement 
effect of technology differs by the skill level of workers, as certain types of tasks are more 
likely to be affected by automation. The skill-biased technological change theory (SBTC) 
argues that new technologies are complementary to high-skilled workers while substituting 
for or being neutral with respect to lower-skilled labour. This should raise the relative de
mand for higher-skilled workers, leading to improved wage and employment prospects for 
these workers (M€uller 2024). At the same time, higher-skilled individuals may be better 
positioned to benefit from productivity effects linked to the digital transformation. 
Employment and wage gains from technological advancement will only be realized for 
individuals who can adapt to new or transformed tasks resulting from the adoption of new 
technologies (Fossen and Sorgner 2022). In contrast, where a mismatch between the 
requirements of new technologies and the skills of the workforce arises, positive effects of 
digital transformation through increases in productivity and the introduction of new tasks 
will likely be slowed down (Acemoglu and Restrepo 2019). Higher-skilled individuals are 
more likely to have skills that are complementary to technology and may also be better 
prepared to deal with and adapt to new skill requirements (Fossen and Sorgner 2022; 
M€uller 2024). Combined, this should lead to positive employment and wage effects of digi
talization for higher-skilled individuals, at the expense of lower-skilled workers. On the 
other hand, to the extent that new digital technologies such as artificial intelligence allow 
unskilled workers to benefit from codified competences, their productivity level might 
rise, an effect that might be particularly important for allowing developing countries to 
catch up with the global technological frontier (Ernst, Merola and Samaan 2019; 
Bj€orkegren 2023).

A modified version of SBTC, the routine-biased technological change framework 
(RBTC), emphasizes that repetitive, routine tasks, which are mainly performed in medium 
skilled occupations, are most likely to be replaced by technology, while more complex, non- 
routine tasks are complementary to technology (Autor, Levy and Murnane 2003). This 
implies that employment at the bottom and top of the skill distribution is likely to grow 
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more than employment in medium-skilled occupations, where workers are most likely to be 
disadvantaged in terms of employment and wages, ultimately resulting in employment and 
wage polarization (Goos and Manning 2007; Genz, Janser and Lehmer 2019). Goos, 
Manning and Salomons (2009, 2014) pool data for sixteen European countries over the pe
riod 1993–2010 and demonstrate that the RBTC phenomenon is pervasive over the period, 
encompassing both within- and between-industry shifts towards a reduced input of routine- 
intensive tasks and increased usage of non-routine analytical skills.

However, in the European context, recent scholarship provides evidence against a wide
spread pattern of job polarization. Fern�andez-Mac�ıas and Hurley (2016) develop an indica
tor of routine intensity, aiming to stick as accurately as possible with the theoretical 
definition, and then run an analysis for twenty-three European countries over the period 
1995–2007. Discordant with Goos, Manning and Salomons (2014), they do not find the 
phenomenon of polarization to be pervasive. On the contrary, they observe that, while po
larization seems to be occurring for some countries, ‘the most frequent development was in 
fact one of occupational upgrading’, which is more closely aligned with the traditional 
SBTC hypothesis (Fern�andez-Mac�ıas and Hurley 2016). Similarly, Oesch and Piccitto 
(2019), looking at four European countries, find no evidence of polarization but rather—in 
line with SBTC—clear evidence of occupational upgrading in three countries (Germany, 
Spain, and Sweden), while in the UK, there is mixed evidence for job polarization and occu
pational upgrading depending on the measure of job quality used. In this sense, in the 
European context, there is only limited support for the polarization hypothesis. One expla
nation for this is that empirically, the expectation that occupations dominated by routine 
tasks are mid-skilled is not borne out in Europe. Rather; occupations involving more rou
tine tasks tend to be lower-skilled and less complex (Fern�andez-Mac�ıas and Hurley 2016; 
Oesch and Piccitto 2019). Overall, we therefore expect higher-skilled workers to be more 
likely to benefit from digitalization in terms of employment and wage outcomes (hypothe
sis H2).

Moreover, the above mechanisms, while focused on the implications of technological 
change for employment and wages at individual level, also have implications for aggre
gate inequalities in the labour market. If technology leads to increases in relative demand 
for skilled labour as described above, this should be associated with wage gains for 
skilled workers in particular. Under this scenario, the resulting increase in the wage dif
ferential between high- and low-skilled workers should result in an increase in overall 
wage inequality (Kristal and Cohen 2016). Hence, we expect negative effects of digitali
zation on overall wage inequality (hypothesis H3a). However, the potential inequality- 
increasing effect may be countervailed by other forces, such as wage-setting institutions, 
which may be more important than technological change in driving down or increasing 
inequality (Kristal and Cohen 2016). In this scenario, digitalization is not expected to 
have effects on inequality at an aggregate level (hypothesis H3b). Unfortunately, directly 
testing the role of wage-setting institutions is beyond the scope of this article for two 
main reasons. First, as institutions typically change very slowly over longer periods of 
time, there would not be enough variation in the data to exploit over the time period un
der study. Second, we employ a micro-analysis to make good use of the panel data struc
ture of the EU-SILC in order to understand individual level outcomes and conduct a 
counterfactual analysis to explore how these outcomes may play a role in altering in
equality at an aggregate level. Consequently, we would need to change the methodology 
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and our approach to include institutions. Moving forward, this would be an interesting 
avenue for future research.

2.3. Differentiating between different types of technology
In practice, the effect of technology on employment and wage outcomes, and skill-based 
heterogeneity therein, likely depends on the type of technology examined. Much of the em
pirical literature has focused on the labour market effects of robots, which are likely to re
place low- to medium-skilled labour, but to create fewer, higher-skilled tasks (Balsmeier 
and Woerter 2019). Empirical findings tend to bear out this expectation. Graetz and 
Michaels (2018), looking at 17 developed economies between 1993 and 2007, find no sig
nificant effect of robots on aggregate employment, but a displacement effect for low-skilled 
and medium-skilled workers. Dauth et al. (2021) equally find no negative effects of robot 
exposure on total employment in Germany but find job losses in the manufacturing sector 
which were offset by gains in services. Similarly, average earnings of individual workers are 
hardly affected by robots, but this masks positive earnings effects for retained workers tran
sitioning to new tasks and negative effects for those switching jobs. In this sense, skill 
upgrading is a significant part of the adjustment process to automation (Dauth et al. 2021).

However, findings on robotics may not generalize to other types of technology. Other re
cent contributions to the empirical literature make use of linked employer-employee data 
that allows for investigating firm-level take up of technologies. Genz, Janser and Lehmer 
(2019) look at the use of digital tools by workers and firms’ technological upgrading in 
Germany. They find that establishment-level investment in technology has positive effects 
for workers’ wage development, with the most pronounced positive effects found for low- 
and medium-skilled workers.

Overall, these divergent results highlight the need for an integrative examination of 
effects of different types of technologies. Recently, several empirical contributions have 
made strides towards examining the joint effects of several technologies in order to provide 
a fuller picture of the digital transformation. Balsmeier and Woerter (2019), using Swiss 
data, find that increased investment in digitalization increases employment of high-skilled 
workers, but decreases that of low-skilled workers. However, these effects are driven by 
machine-based technologies (e.g. robots), while non-machine-based technologies do not 
have effects. For the USA, Fossen and Sorgner (2022) compare four measures of digital 
technology. Measures of labour-displacing technologies are associated with slower wage 
growth and a higher likelihood of switching employment and non-employment for individ
uals, while labour-reinstating technologies have positive effects on labour market outcomes, 
with highly educated workers the most affected by technological change. These studies illus
trate the need for a nuanced understanding of the impact of technology on the labour mar
ket, which may depend not only on the characteristics of workers but also on the type of 
technology introduced, which may be associated with varying automation potential and im
pact on skill demand.

3. Data, Variables, and methods

As discussed above, the relationship between digital transformation on the one hand and la
bour market outcomes on the other is theoretically and empirically ambiguous and depends 
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on the time horizon considered. In this article, we set out to quantify the overall effect of 
the digital transformation that took place over the decade 2010–9 in the European Union.

Our analysis requires a dataset containing detailed, longitudinal information on per
sonal characteristics and labour market status. The main longitudinal survey for the EU, 
and a natural candidate for our analysis, is the EU Statistics on Income and Living 
Conditions (EU-SILC), which is available for all the current EU Member States. The longi
tudinal version of EU-SILC provides employment and earnings information with detailed 
disaggregation by income sources, although this information refers to the previous calendar 
year rather than the time of the interview. By contrast, EU-LFS has a more limited longitudi
nal component than EU-SILC, and income information is limited to deciles. We restrict our 
analysis to the working age population (17–64 years of age, where 17 is the age an individ
ual is first observed in the sample—that is, the age in the initial period—and 64 is the age 
the individual is last observed in the sample—that is, the age in the final period). We use 
three different waves of the longitudinal SILC data: 2013 (covering years 2010–2013), 
2016 (2013–2016) and 2019 (2016–2019), for all EU countries with the exception of 
Germany where SILC data is only available for Germany from 2018 onwards, which is a 
period too limited for our analysis.

3.1. Measures of the digital transformation
We statistically match the longitudinal EU-SILC data with various measures of digital trans
formation, drawing on several data sources with time-variant data on digitalization. In par
ticular, we construct three indexes of digital intensity in the labour market. The first two 
indexes measure the process of digitalization at the sectoral (macro) level and relate to the 
demand for labour. The third index measures digital skill at individual (micro) level and 
relates to the supply of labour.

3.1.1 Measures of digital transformation at the sectoral level
As highlighted in the previous section, the impact of digitalization on individual labour 
market outcomes likely varies across different types of technologies. To account for this di
versity, we construct two different sectoral-level indexes of the level of digital transforma
tion in the labour market. The first index, which we label digital capital intensity, refers to 
intangible investments in digital technologies (software and databases). The second index 
(robot density) refers to tangible investments, in the form of industrial and service robots. 
The former also covers the increasing role of machine learning algorithms, insofar as they 
are embedded in software or software services (e.g. online subscriptions). The introduction 
of AI is posterior to our period of investigation, but it would have been captured by our in
dicator—subject to the same caveats.

We construct our measure of digital capital intensity as the ratio between the stock of 
capital that firms have in software and databases and the overall stock of capital, excluding 
non-residential buildings, at the country/industry level. For this, we use data from the new 
integrated EUKLEMS & INTANProd database, developed by the Luiss Lab of European 
Economics at Luiss University in Rome, Italy (Bontadini et al. 2023). EUKLEMS & 
INTANProd updates the widely-used EUKLEMS productivity database and extends it with 
new estimates of intangible investment coherent with the INTAN-Invest framework.

This database incorporates ‘Software and Databases’ (labelled as ‘Soft_DB’) under its in
tangible assets category. This category is designed to capture expenditures associated with 
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software development and acquisition, as well as database-related investments, including 
both purchased and internally developed components. Accordingly, it can capture a number 
of digital innovations that gained widespread adoption in the period 2010–9. Software sol
utions that would feature therein, and thus in our digital capital intensity index, include, in
ter alia, cybersecuirty services, Robotic Process Automation (RPA), and Customer 
Relationship Management (CRM) systems. The index also captures software services pow
ered by Artificial Intelligence (AI) and machine learning algorithms, which in the 2010– 
2019 period began to influence customer service, predictive analytics, and personalized 
marketing, though their adoption was less extensive than it is today. Importantly, the scope 
of Soft_DB aligns with the evolving nature of software delivery models, which increasingly 
include cloud computing and Software-as-a-Service (SaaS). Specifically, costs associated 
with SaaS subscriptions, cloud-hosted software platforms, and related services would fall 
within the category of purchased software. Similarly, expenses for developing proprietary 
software solutions that leverage cloud infrastructure would be included under the internally 
developed software component of Soft_DB. By integrating expenditures for both traditional 
and cloud-driven software solutions, the category ensures comprehensive representation of 
critical intangible digital investments. Conversely, the index may fail to capture, or capture 
only to a smaller extent, other transformative processes that took place in this period, such 
as the precipitous rise of social media platforms, themselves aided by the advent of 4G net
works and improvements in mobile technology.

The EUKLEMS & INTANProd dataset covers all EU countries for the period 1995– 
2019, and provides both measures of investment (flows) and stock of capital. We opt for 
looking at the capital stock, as this is less volatile and provides a better description of the 
extent of the ongoing digitalization process. The index is missing for Cyprus, Hungary, 
Ireland, and Romania, and it is also missing—irrespective of the countries—for industries T 
(Activities of Households as Employers; Undifferentiated Goods and Services Producing 
Activities of Households for Own Use) and U (Activities of Extraterritorial Organizations 
and Bodies) in the NACE2 industry classification. Supplementary Appendix Fig. A1 shows 
the evolution of the digital capital intensity index by country over time. Second, we com
pute an index of robot density at the country/industry level based on the International 
Federation of Robotics (IFR) Industrial and Service Robots dataset (IFR 2023).The IFR ef
fectively collects data on installations of robotic equipment from robot manufacturers and 
cross-checks the result with statistics from national institutes of robotics to ensure high lev
els of reliability and comparability. A robot is defined by the IFR according to the standard 
classification ISO 8373:2021, as ‘[an] automatically controlled, reprogrammable, multipur
pose manipulator programmable in three or more axes, which can be either fixed in place 
or mobile for use in industrial automation applications’. As such, our index can shed con
siderable light on the extent of automation—that is, a salient aspect of digitalization—in 
the manufacturing industry. Figures for EU Member States are generally available, 
although some smaller countries (Bulgaria, Cyprus, Croatia, Estonia, Latvia, Lithuania, 
Luxembourg, and Malta) recorded too few installations to guarantee an insightful break
down by industry. We compute our index of robot density as the operational stock of 
robots per thousand employees. To derive this measure at the sectoral level, we merged the 
information concerning the operational stock of robots from the IFR dataset with informa
tion on the number of employees reported in the EUKLEMS & INTANProd data. The 
IFR’s industry classification is derived and loosely organized according to the NACE Rev. 2 
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standard taxonomy, which is the same categorization adopted by the EUKLEMS & 
INTANProd. However, no exact correspondence can be found, and codes may differ, as 
classes that feature only minor installation counts were aggregated whereas major customer 
industries, such as the automotive sector, report various sub-categories. Therefore, we had 
to perform the appropriate aggregations to ensure that a match between the two sources 
could be found. Supplementary Appendix Fig A2 and A3 show descriptive information on 
the evolution of the robot density index by country and industry over time.

We match the two indicators of the digital transformation to the longitudinal EU-SILC 
data based on the sectoral information. However, a significant methodological limitation 
exists, as industry information is not available in the longitudinal SILC data. We solve this 
challenge by statistically matching longitudinal SILC data (recipient dataset) with their 
cross-sectional counterpart (donor dataset), where that information is available.

The probabilistic matching is performed by comparing the donor and recipient datasets 
based on a sub-set of common variables, thus identifying a ‘best-match’ for each observa
tion in the recipient dataset. In order to reduce the number of possible matches, we use be
tween five and eight so-called ‘blocking variables’ which require an exact match between a 
recipient observation and a possible donor (i.e. the values must be identical). Three varia
bles are consistently blocked for all countries: year of observation, year of birth, and sex. 
Dependent on data availability, other blocking variables may be used on top of these: re
gion, urbanization, education, marital status, basic activity status, 1-digit ISCO-08 occupa
tion, employee net cash income, and employee gross cash income. When a variable is not 
used as a blocking variable, but is available for the country being processed, it is added into 
the probabilistic matching process as a ‘non-blocking variable’ and is allowed to not match 
exactly. Non-blocking variables include living in consensual union, hours usually worked, 
years spent in paid work, and self-defined economic status. A score is then constructed 
based on the non-blocking variables to measure the similarity between each pair of longitu
dinal and cross-sectional observations. For each longitudinal (recipient) observation, we se
lect the cross-sectional observation with the highest score as the donor. Industry 
information from the donor—together with other variables relevant for the analysis if they 
are missing from the longitudinal observation (as is sometimes the case for region) – are 
then donated to the recipient. Results of the matching are very good for all countries with 
the exception of Malta, with over 90 per cent of the longitudinal observations matched to a 
cross-sectional donor on average, usually with a very high score. Matching rates for all 
countries are shown in Supplementary Appendix Table A4. Imputation of the two demand- 
side indicators of digital intensity is then straightforward and involves imputing the value of 
the indicator for the industry in which the worker is employed (if any).

3.1.2 Skill-based heterogeneity
The theoretical framework highlighted that the effect of the digital transformation on indi
vidual labour market outcomes may vary by individuals’ level of skills. We account for po
tential skill-based heterogeneity in two ways, in our analysis. First, we estimate the effects 
of the different measures of digitalization separately for individuals with low, high and me
dium levels of education (Low education: ISCED levels 1–2; medium education: ISCED 
level 3; High education: ISCED levels 4–5), so that heterogeneity in the effects of the meas
ures of the digital transformation can be assessed. However, while education is commonly 
used as a measure of skill levels in the literature (e.g. Graetz and Michaels 2018; Dauth 
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et al. 2021), it is only a proxy measure predominantly capturing formally acquired skills, 
and may also mask heterogeneity in skills within educational levels (Quintini 2011). 
Therefore, we incorporate a measure of individuals’ actual level of digital skills in our 
analysis. This allows us to directly assess whether, in line with theoretical expectations, hav
ing skills that are complementary to the use of technology has positive impacts on individ
ual labour market outcomes.

To construct our index of digital skill, we employ microdata from the Community 
Survey on ICT usage in households and by individuals (hereafter: ICT Survey), an annual 
survey conducted by Eurostat since 2002, aiming at collecting and disseminating harmo
nized and comparable information on the use of ICT in households and by individuals. The 
ICT survey contains detailed information on individual’s use of technologies in a range of 
areas. To construct our measure of digital skills, we use twenty-two variables measuring dif
ferent aspects of digital skills in four categories: information skills; communication skills; 
problem solving skills; and software skills. The variables included are: information skills— 
copied or moved files or folders; saved files on Internet storage space; obtained information 
from public authorities/services’ websites; finding information about goods or services; 
seeking health-related information; Communication skills—sending/receiving emails; 
participating in social networks; telephoning/video calls over the internet; uploading 
self-created content to any website to be shared; Problem solving skills—transferring files 
between computers or other devices; installing software and applications; changing settings 
of any software; online purchases; selling online; using online resources; Internet banking. 
Software skills—used work processing software; used spreadsheet software; used software 
to edit photos, videos or audio files; created presentation or documents integrating text, pic
tures, tables or charts; used advanced functions of spreadsheet to organize and analyse 
data; have written code in a programming language (see Eurostat 2023). All these variables 
are binary, with a value of 1 if the individual has carried out a particular task taken to be in
dicative of (some level of) digital skill. We use data for the years 2015–2016, 2017, and 
2019, for which the full set of variables is available. This allows us to construct a time- 
varying index of digital skills.

We aggregate the available categorical indicators by weighting them using an item re
sponse theory (IRT) model. IRT is a methodology for aggregating a number of items in or
der to capture an underlying trait, in this case true digital skills, and is widely established as 
a method for constructing measures of skill and ability (OECD 2016). Based on individuals’ 
responses for each binary variable (or item) capturing digital skill, the model estimates the 
item’s difficulty (the level of digital skills at which 50 per cent of individuals would be 
expected to have performed the skill) and discrimination (a slope parameter indicating how 
steeply the likelihood of an individual performing this skill changes as true digital skills in
crease) (Demars 2010).The implication is that the IRT model allows for estimating differen
tiated levels of difficulty for each aspect of digital skill, rather than simply averaging across 
variables. The results of the IRT model are shown in Supplementary Appendix Table A1. In 
a second step, we use the results of the IRT model to predict a level of digital skills for each 
individual in the microdata, yielding a continuous measure of digital skill. The measure is 
standardized to mean 2 and standard deviation 1, following OECD (2016). Supplementary 
Appendix Table A2 shows descriptive statistics on the estimated level of digital skills across 
various population groups. As a final step, we estimate a simple OLS regression model 
(Supplementary Appendix Table A3) predicting individual levels of digital skill based on 
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individual characteristics (gender, age, employment status, occupation, and education) sep

arately for each year and country. Given that the indicators in the ICT Survey only cover 

the years 2015, 2016, 2017, and 2019, we impute the indicator to the years non covered by 

estimating a linear time trend—hence assuming that the trend in digital skills between 2010 

and 2014 is the same as between 2015 and 2019. The resulting estimates of levels of digital 

skills by population characteristics can subsequently be matched to the longitudinal micro

data based on the set of common variables.

3.2. Econometric specification
We focus on estimating the impact of our measures of digital transformation on two out

comes, employment and earnings. We distinguish between gross and net earnings to investi

gate a potential role of welfare state policies in mitigating against the effects of the digital 

transformation. We use total gross household income (variable HY010) for gross earnings, 

and total disposable household income (variable HY020) for net earnings. Total gross 

household income (HY010) is computed as the sum for all household members of gross per

sonal income components plus gross income components at household level. Disposable 

household income (HY020) is gross income minus taxes plus benefits. Values are yearly. 

Models are estimated for each country in isolation and for the EU as a whole, with the ex

ception of Germany, as explained above.
The employment model is estimated separately for the whole population and for the 

sub-sample of individuals who start as employed, and follows a simple logit specification of 

the type: 

eend
i ¼ Logitðestart

i ; xstart
i ; dstart

i ; ΔDj ɛiÞ (1) 

where eend
i and estart

i are respectively the employment state in the final and initial period of 

the analysis (employed/not employed; dropped when the model is estimated on the sub- 

sample of individuals starting in employment), xstart
i are the individual characteristics in the 

initial period, dstart
i is the composite index of digital skills for individual i in the initial 

period, ΔDj is the change between the initial and final period in the indexes of demand of 

digital skills (only included when estimating the model on the sub-sample of individuals 

employed in the base year, for which industry information is available), and ɛi is a random 

disturbance. The start and end period vary depending on the sample being used—see 

Section 3.3).
Note the two different indexes of digital skills involved: di is the individual-level measure 

of digital skills described above. Dj on the other hand is a sectoral-level measure of digitali

zation (digital capital intensity and robot density), computed on data aggregated at the in

dustry level. It is an attribute of the industry, not of the individual: as such, two individuals 

employed in the same industry—but with different occupations—will have the same value 

of ΔDj. Moreover, the indicator is not defined for individuals who are not employed, which 

prevents us from using it when including this sub-group of the population in the estima

tion sample.
Note also that controlling for a heterogenous level of digital skills di is crucial in the 

analysis, as we can expect the supply of digital skills to correlate with other individual char

acteristics such as age and education.
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As for what concerns time variation of the indexes of digital skills, two things have to 
be noted:

� di only enters in the initial period of the analysis. This is because we cannot rule out that 
the evolution of individual skills depends on individual employment outcomes. This re
verse causation introduces endogeneity and strongly suggests removing measures of indi
vidual digital skills at later periods from the specification. 

� Dj enters both in the initial and in the final period, to capture changes in labour demand. 

In addition to the employment state (estart
i Þ, the individual characteristics (xstart

i Þ that we 
control for in the analysis of employment transitions, all measured in the base year, are: age 
(second polynomial), sex, education (three levels), region (NUTS-2), degree of urbanization 
(for most countries: urban, rural, and mixed), occupation (ISCO-08 1-digit classification, 
only for those starting in employment), and gross earnings quintiles. The degree of urbani
zation is dropped from the specification for the Netherlands and Slovenia, as the variable is 
missing for those countries. As mentioned above, to account for heterogeneity in the effects 
of the digital transformation, we also introduce interaction terms between our three indica
tors of digital transformation and education.

Gross and net earnings are then (separately) modelled following a linear specification 
where the outcome variable is the percentage change in earnings, Δyi. More precisely, we 
approximate the percentage change in earnings with the logarithmic difference, then ap
proximate logarithms with the inverse hyperbolic sine transformation to avoid the problem 
that logarithms are not defined at 0 (the inverse hyperbolic sine of 0 is 0). Hence, our out
come variable is also defined when earnings in the initial period are 0—in this case its value 
is simply the inverse hyperbolic since of earnings in the final period. We use the same covari
ates of the employment models, but also control for the employment state in the final 
year, eend: 

Δyi ¼ b0þ b1estartþ b2eendþ b3 xstart
i þ b4 dstart

i þ b5 ΔDjþ b6Ii; ɛiÞ (2) 

where I stands for the interaction terms (same as above). Accordingly, in the analysis we 
first simulate employment outcomes, and then earnings conditional on employ
ment outcomes.

The earning model is estimated separately for those observed as employed in the initial 
year, and for those observed as not employed. For the not employed, just as for the employ
ment model described above, we exclude the indicators of demand of digital skills, as indus
try information is not available for this group.

3.3. Concatenated analysis
The rotational panel structure of EU-SILC is limited to 4 years. To address the limited longi
tudinal dimension of EU-SILC, we perform a concatenated analysis where labour market 
outcomes are simulated over a 10-year horizon based on the econometric results for shorter 
periods. More specifically, we exploit the overlapping nature of EU-SILC data, where in 
each wave there are individuals that are also included in previous waves. Figure 1 describes 
the iterative estimation-simulation procedure.

The concatenated analysis therefore involves the following steps:

14                                                                                                                                  M. Richiardi et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/ser/advance-article/doi/10.1093/ser/m
w

af011/8051295 by guest on 25 April 2025



(1) Estimation of 2019 outcomes (employment and earnings) on 2016–2019 wave. 
(2) Prediction of 2019 outcomes on 2013–6 wave, based on the results of Step 1. 
(3) Estimation of 2019 (predicted) outcomes on 2013–6 wave. 
(4) Prediction of 2019 outcomes on 2010–3 wave, based on the results of Step 3. 
(5) Estimation of 2019 (predicted) outcomes on 2010–3 wave. 

Only the observations present in all 4 years of each wave are kept for the analysis; the 
number of observations retained varies from country-to-country but is around one-quarter 
of the total number of observations. In order to increase sample size, we could include 
observations with only two or three years of presence in the data, but this would require in
creasing the number of steps in the concatenated analysis, with dubious effects on the qual
ity of the results. Supplementary Appendix B reports the sample for each country and 
provides descriptive statistics for our estimation sample.

Prediction of employment outcomes from the logit models produces individual probabil
ities of being employed. These are then turned into predictions about employment outcomes 
by means of a Montecarlo simulation. This involves drawing a random number from a 

Figure 1. Concatenated analysis. 

Notes: Labour market outcomes are estimated using the 2016–9 longitudinal wave, based on individ

ual characteristics measured in 2016. The relationship between 2016 inputs and 2019 outputs is then 

exploited to simulate 2019 outputs for the 2013–6 wave. Predicted labour market outcomes in 2019 

are then related to observed inputs in 2013, using the 2013–6 wave of data. The relationship between 

2013 inputs and 2019 (predicted) outputs is then exploited to simulate 2019 outputs for the 2010–3 

wave. This allows us to finally relate 2010 inputs to 2019 (predicted) outcomes. We also run analyses 

on each sub-period (2010–3, 2013–6, and 2016–9) separately. The analyses on the sub-periods do not 

require simulation, and are therefore safe from a possible source of error/noise. Results on the sub- 

periods (available on request) broadly confirm the general pattern emerging from the 

concatenated analysis.
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uniform distribution between 0 and 1, and comparing it with the estimated probability. A 

positive outcome (in our case, employment) is then assigned if the random number is below 

the predicted probability—this happens exactly with the predicted probability. As this pro

cedure involves stochastic events (the random draws of the Montecarlo simulation), we re

peat it 100 times when estimating the models on the pooled EU-wide dataset, and twenty- 

five times for each country in the country-specific models. We then compute point estimates 

as averages of the point estimates obtained in each run, while bootstrapped confidence 

intervals are computed based on the variability of the point estimates in each run.
As an illustration of the process, Supplementary Appendix C discusses each step in detail 

with reference to the pooled EU sample, providing estimation results and validation statis

tics for one random Montecarlo draw. Results based on 100 Montecarlo replications are 

presented in the next Section.

4. Results

4.1 Effects on employment
Our first set of results concerns the effects of the digital transformation on employment, by 

levels of education. We first discuss the results of the effects of two measures of digitaliza

tion at the sectoral level, digital capital intensity and robot density, on employment. As de

scribed previously, the effects of (changes in) these indicators can be measured, at an 

individual level, only for those who start as employed and for whom industry affiliation is 

therefore defined. The sample is therefore restricted to individuals who are employed in the 

base year. Table 1 shows the estimated mean, standard deviation, minimum and maximum 

for the coefficients for the two sectoral-level measures of digitalization, as computed on the 

100 Montecarlo repetitions of the concatenated analysis on the pooled EU sample. For ease 

of interpretation, the coefficients are expressed in odds ratio: they therefore measure the in

crease in the odds of being employed in 2019 corresponding to a one standard deviation in

crease in the value of the index in 2010. Values above 1 indicate a positive effect of digital 

skills, while values below 1 indicate a negative effect.

Table 1. Estimated odds ratio for the effects of changes in digital capital intensity and robot 
density in the industry of employment in 2010 on 2019 employment status.

Digital capital intensity Robot density

Sample Employed Employed

Education Low Medium High Low Medium High

Mean effect 1.031 1.069 1.075 1.004 1.000 0.998
Std.dev. 0.127 0.084 0.126 0.008 0.003 0.006

Min 0.853 0.880 0.861 0.984 0.994 0.990
Max 1.405 1.286 1.549 1.022 1.005 1.024

Notes: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of 
the concatenated analysis. The coefficients measure the increase in the odds of being employed in 2019 corre
sponding to a one standard deviation increase in the value of the index between 2010 and 2019 (an odds ratio 
of 1 indicating no effects). Sample: EU27 (excluding Germany).
Source: Our computation on longitudinal EU-SILC data 2010–2019.
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None of the effects are statistically significant, meaning that we find no evidence of ei
ther negative or positive effects of the digital transformation on individual employment out
comes. In other words, individuals who have a job seem to be, on average, insulated from 
the effects of digitalization, in terms of the probability of remaining in employment. In line 
with our first hypothesis, we do not find evidence of a significant negative employment im
pact of digitalization. In addition, contrary to hypothesis H2, there is no indication of skill- 
based heterogeneity in the effects of the digital transformation on employment, when mea
suring skills in terms of the level of formal education. When running the models separately 
for each country, in accordance with the EU-level analysis, results are rarely significant. 
Industry-level changes in the level of digitalization do not appear to affect insiders (i.e. those 
already in work) much, in terms of their likelihood to remain in employment. Although it is 
possible that these individuals change job/industry, this is something we cannot check in the 
data. Details of the country-specific analysis are available on request.

We next present the results for our individual-level measure of digital skills. Table 2 
reports the mean, standard deviation, minimum and maximum for the coefficients for the 
digital skills index, as computed on the 100 Montecarlo repetitions, separately for the 
whole EU sample and for those who started as employed in 2010. Again, coefficients are 
expressed in odds ratio, measuring the increase in the odds of being employed in 2019 cor
responding to a one standard deviation increase in the value of the index in 2010. Values 
above 1 indicate a positive effect of digital skills, while values below 1 indicate a nega
tive effect.

The coefficients for the overall population are strongly positive, especially for individu
als with a low and medium level of education. In contrast, they are on average not signifi
cant in the sample of individuals initially observed as employed. This suggests that the 
effect of digital skills is particularly strong for those who start not in work. The overall ef
fect (estimated) being a weighted average of the effect for the employed (estimated), and the 
effect for the not employed (not estimated). The reason for not estimating the model sepa
rately on the sub-sample of non-employed individuals in 2010 is the smaller sample size of 
this group, which is problematic in the context of our non-linear specification for employ
ment outcomes. Results for the not employed are therefore inferred by comparing results 
for the whole population and results for the employed. The country-specific analysis 

Table 2. Estimated coefficients for the effects of the 2010 endowment of digital skills on 2019 
employment status.

Sample All Employed

Education Low Medium High Low Medium High

Mean effect 1.443 1.447 1.221 1.003 1.190 0.984

Std.dev. 0.091 0.088 0.128 0.219 0.247 0.209
Min 1.300 1.264 0.931 0.469 0.593 0.524
Max 1.743 1.666 1.531 1.959 2.033 1.463

Notes: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of 
the concatenated analysis. The coefficients measure the increase in the odds of being employed in 2019 corre
sponding to a one standard deviation increase in the value of the index between 2010 and 2019 (an odds ratio 
of 1 indicating no effects). Sample: EU27 (excluding Germany).
Source: Our computation on longitudinal EU-SILC data 2010–9.
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confirms that this pattern is of general validity throughout the EU. We find that, for most 
countries and in the samples including all working age individuals, digital skills endowment 
in 2010 increases the probability of being employed in 2019 (Fig. 2). In addition, there is 
some heterogeneity across EU countries in terms of the magnitude of this effect, but the ef
fect is consistently positive. As in the EU-wide analysis, the effect is strong especially for 
individuals with low or medium education. However, when we reduce the sample to those 

Figure 2. Effects of digital skills endowment in 2010 on the probability of being employed in 2019 

(odds ratio) by education attainment level, all individuals aged seventeen to fifty-five in 2010. 

Notes: EU27 is excluding DE. The figures report boxplots for the estimated coefficients from Step 5 

over 25 repetitions of the concatenated analysis (100 repetitions for the EU27). The coefficients mea

sure the increase in the odds of being employed in 2019 corresponding to a one standard deviation in

crease in the value of the index. The sample is restricted to 55 years old in 2010 as these individuals 

would be 64 years old in 2019. 

Source: Our computation on longitudinal EU-SILC data 2010–9.
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who were in employment in 2010, the effect disappears. Consistent with the EU-level analy
sis, the effect is therefore stronger for those not in employment.

The Montecarlo analysis hence shows that digital skills are important to find a job, yet 
less so to retain it. The results provide some evidence in support of hypothesis H2 and the 
broader theoretical expectations associated with SBTC: individuals with higher levels of 
digital skills—that is, a type of skill that is by design complementary to technology—appear 
to be advantaged in terms of employment outcomes. It should also be stressed that the effect 
of digital skills is observed even while holding constant individuals’ level of education. This 
highlights the fact, as discussed previously, that the level of education does not capture het
erogeneity in (digital) skills to a sufficient extent. The fact that the positive effect of digital 
skills is reduced for individuals with high education may reflect the high average level of 
digital skills of this group (see Supplementary Appendix Tables B2–B4), which could imply 
that having digital skills is less significant as a differentiating factor between individuals. 
Furthermore, their more advanced skills might experience a faster depreciation, given that 
highly-educated individuals tend to have more specialized, task-specific human capital 
(Fossen and Sorgner 2022).

Our analysis of the effects of digital transformation on EU economies over the period 
2010–2019 finds that digital skills positively impacted employability (probability to find a 
job for those not in employment), especially for individuals with low and medium educa
tion. This result is consistent with a ‘conveyor belt hypothesis’. Work is the conveyor belt 
that accompanies individuals through change, the digital transformation in our case. Those 
in work adapt and evolve, together with the labour market. Those out of work can hope to 
jump on the conveyor belt and their chances of doing so are related to their level of digital 
skills, among other things. This is a hypothesis that we advance based on our empirical 
results, but that would require more testing, ideally exploiting linked employer-employee 
administrative datasets.

If confirmed, our results point both to an overall strength of the EU labour markets, 
given the increase in digital skills observed during the period, and to individual vulnerabil
ities. The other side of the coin, in fact, is that individuals who have missed the digital trans
formation and have therefore accumulated lower digital skills have been put at a 
disadvantage.

4.2 Effects on earnings
Our second set of results concerns the effects of the digital transformation on gross and 
net earnings.

As for employment outcomes, the effects of digital capital intensity and robot density on 
earnings can be measured only for those in employment, as they refer to changes happening 
at the level of the industry each worker was initially observed in. Table 3 shows the esti
mated coefficients of digital capital intensity and robot density for the model estimated on 
the EU-wide sample. The effects are generally small. Some slightly larger and positive effects 
can be detected only for the effects of digital capital intensity in the low education sample. 
They however point to a 2% ceteris paribus increase in gross earnings over a 10 year period, 
still a small effect corresponding to a rather large (one standard deviation) variation of the 
index. The country-level effects are generally small, and consistent with the limited effects 
identified at the EU-wide level (details of the country-specific analysis are available on re
quest). Hence, as in the case of employment, we do not find evidence of either a negative or 
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positive effect of various types of digitalization at sectoral level on individual earnings out

comes, for both net and gross earnings.
Table 4 shows the estimated coefficients for the effects of digital skills on gross earnings. 

We find a positive impact on gross earnings growth for those not in employment in the base 
year, but a negative effect for those in employment, although these effects are again rather 

small. The positive effect (for those not in employment) fades away with high education, 
while the negative effect (for those in employment) is stronger for low education. For the 
low educated, a (rather large) increase in digital skills by one standard deviation brings an 

increase in gross earnings over a 10-year period of only 2% if starting as not employed and 
a similar decrease if starting as employed (Table 4).

Table 4. Estimated coefficients for the effects of the 2010 endowment of digital skills on gross 
earnings growth between 2010 and 2019.

Sample Not employed Employed

Education Low medium high Low medium high

Mean effect 0.019 0.024 0.003 −0.017 −0.007 −0.009
Std.dev. 0.001 0.001 0.001 0.001 0.001 0.001

Min 0.016 0.022 0.001 −0.020 −0.010 −0.012
Max 0.022 0.028 0.007 −0.012 −0.004 −0.007

Notes: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of 
the concatenated analysis. The coefficients measure the approximate percentage change in gross yearly earnings 
(difference in inverse hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard 
deviation increase in the value of the index. Sample: EU27 (excluding Germany).
Source: Our computation on longitudinal EU-SILC data 2010–9.

Table 3. Estimated coefficients for the effects of changes in digital capital intensity and robot 
density in the industry of employment in 2010 on (approximate) gross earnings growth 
between 2010 and 2019.

Digital capital intensity Robot density

Sample Employed Employed

Education Low medium high low medium high

Mean effect 0.019 −0.001 −0.006 −0.0016 −0.0002 0.0002
Std.dev. 0.001 0.000 0.000 0.0000 0.0000 0.0000

Min 0.018 −0.002 −0.006 −0.0017 −0.0003 0.0001
Max 0.021 0.000 −0.005 −0.0015 −0.0002 0.0002

Notes: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of 
the concatenated analysis. The coefficients measure the approximate percentage change in gross yearly earnings 
(difference in inverse hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard 
deviation increase in the value of the index over the same period. Sample: EU27 (excluding Germany).
Source: Our computation on longitudinal EU-SILC data 2010–9.
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Hence, on the one hand, in alignment with the results for employment outcomes and hy
pothesis H2, individuals who are not in employment appear to benefit from having a higher 
level of skills. This is consistent with SBTC: having skills that are complementary to the dig
ital transformation is associated with superior labour market outcomes. Note that the posi
tive effect of digital skills for those not in employment is a ceteris paribus effect that 
controls for the end-of-period (i.e. 2019) employment state, so it is not the case that those 
not in employment with higher digital skills experience higher earnings growth because 
they are more likely to find a job: rather, it is that these people, in addition to having a 
higher probability to find a job, end up in better paying jobs (with respect to similar individ
uals who also started out of job, found a job, but have less digital skills). Similarly to what 
we found with the probability of being in employment at the end of the period, the fact that 
the effect fades away for the not employed with high education points to a higher deprecia
tion of more advanced digital skills. On the other hand, for individuals who are already in 
employment, (small) negative effects of digital skills on gross earnings growth are observed, 
especially for individuals with low education. One potential interpretation is that low- 
educated individuals with higher digital skills tend to work in jobs that are more structur
ally vulnerable to automation, or less protected (e.g. less unionized). Among those 
employed, the stronger negative effect of digital skills for the low-educated suggests that 
this group suffers more from digital transformation. However, given the overall low magni
tude of the effects, these results should be interpreted cautiously.

The effects for gross and net earnings not only go in the same direction, but are of com
parable size (see Supplementary Appendix D for the results on net earnings). This points to 
a limited role of policies, likely to be attributed to the small effects of digital transformation 
on earnings documented above.

The country-level analysis shows a mixed picture, with no consistent pattern emerging. 
This is in line with the small size of the effects also documented in the pooled EU sample: 
country-specific estimates are rarely beyond plus or minus 10 per cent for a large increase in 
digital skills (one standard deviation) over a relatively long period (10 years). Given the 
small size of the effect, we caution against over-interpreting country differences. However, 
our country-specific results point to a larger number of countries where the estimated effects 
of digital skills on changes in gross earnings are positive rather than negative, for the sample 
of individuals not employed in 2010. Conversely, we find the opposite for the sample of 
those who are employed in 2010. This pattern is consistent with the results using the pooled 
sample and details of the country-specific analysis are available on request.

4.3 Effects on inequality
To evaluate the effects on inequality, we employ a counterfactual exercise where the 
sectoral-level indexes of digital transformation are kept constant at their 2010 level, and 
digital skills on the supply side are de-trended to mimick the loss of one decade of skills 
growth. We then compare the value associated with the baseline (observed values of the in
dexes of digital transformation) and the counterfactual (modified values). The baseline is 
therefore ‘with digital transformation active’, while the counterfactual is ‘with digital trans
formation paused’. Differences between the baseline and the counterfactual hence identify 
the estimated effect of a decade of digital transformation.

Figure 3 displays the results for gross earnings inequality, in terms of the difference be
tween the Gini coefficient in the baseline and that in the counterfactual. A similar exercise 
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shows negligible effects on net earnings inequality and poverty. Hence, we find no evidence 
that digital transformation has negative impacts on inequality (hence supporting hypothesis 
H3ab against H3a). However, the quantitative exercise shown here cannot speak to 
whether labour market and social policy institutions—such as wage setting mechanisms— 
played a role in limiting the potential effects of the digital transformation on inequality.

5. Discussion

Apart from the effects on employment, which support our ‘conveyor belt hypothesis’, few 
other effects are found. Direct effects of digital skills on gross earnings (beyond the effects 
already vehiculated by education and occupation) are positive for individuals who start out 
not in employment and negative for those employed in the base year, but in both cases, 
these effects are substantially very small in size. Indicators of digital transformation on the 
demand side have also little bearing on individual outcomes. Finally, no effects of digital 
transformation on inequality can be detected, according to our estimates.

There are several possible explanations for the overall limited effects found, in light of 
the ongoing concerns related to the digital revolution. First, our study uses nationally repre
sentative samples. The fact that, for the most part, we do not observe impacts of the digital 
transformation on employment and earnings does not imply that digitalization has no 
effects on labour markets. Rather, as highlighted in the review of theory, the effects of digi
talization may go in different directions and could thus cancel each other out at an aggre
gate level. This neutralizing effect, which posits that potential displacement effects of digital 

Figure 3. Impact of digital transformation on gross income inequality (Gini coefficient), 2010–9. 

Source: Our computation on longitudinal EU-SILC data 2010–9.
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transformation, like the ability of new technologies to perform tasks previously undertaken 
by humans, may be offset by countervailing mechanisms such as productivity effects or the 
creation of new tasks, is prominently discussed in the literature (e.g. Acemoglu and 
Restrepo 2019; Fossen and Sorgner 2022) and serves as a plausible explanation of our 
results, especially when adopting a national level of inquiry.

Productivity effects refer to increases in labor demand for non-automated tasks, occur
ring both in sectors undergoing automation and in unaffected sectors. These effects operate 
through two key channels: the price-productivity effect, where automation reduces costs, 
leading to lower prices, expanded sales, and increased hiring; and the scale-productivity ef
fect, where widespread price reductions boost local economies, creating spillover demand 
for labor in adjacent industries. Additionally, digitalization drives the creation of new tasks, 
which may lead to employment and wage gains. These tasks could be more complex ver
sions of existing activities or entirely new roles, often complementing technology. In such 
cases, workers may have a comparative advantage over machines, contributing to a rein
statement effect that mitigates job displacement—though the extent of this offset depends 
on factors such as skill adaptability and retraining opportunities.

Moreover, the literature on robotics also points to a limited impact on employment and 
earnings in Europe, though these aggregate effects may hide differences across specific 
sectors or population groups (Graetz and Michaels 2018; Dauth et al. 2021). Based on our 
research design and data, we have no information, and also no statistical power, to analyse 
what happens at lower zoom levels than the national one, and the data we use do not con
tain information on individual firms/plants, making it impossible to reconstruct trajectories 
following specific technological upgrades. Relatedly, a second explanation concerns the 
time horizon of the analysis, which extends over a full decade. During a prolonged period 
of time, affected individuals have the opportunity to move to other jobs, in other firms, 
occupations, sectors, areas. Our results might therefore point to an aggregate resilience of 
EU economies, compatible with localized and temporaneous adverse effects: at the national 
level and over extended periods, the negative impacts of digital transformation may be less 
severe than expected, highlighting the adaptability of EU labor markets.

A third explanation is that the degree and nature of the digital shock experienced during 
the 2010s in the EU was perhaps less pronounced than in other contexts (e.g. specific sec
tors in the USA) or time periods (e.g. 1990–2010). The 2010s have experienced relatively 
stable advancements in existing digital technologies, as opposed to the emergence of new 
paradigms that dramatically disrupted labour markets. For instance, significant digital 
developments of the decade such as advancements in cloud computing, big data analytics 
and the mobile internet were largely evolutions from earlier technologies rather than revolu
tionary changes. Moreover, while these innovations had profound impacts on businesses— 
streamlining of operations and reduction of costs (cloud computing), shift in consumer be
haviour and business models (mobile internet), data-driven decision-making (big data ana
lytics)—they did not always carry with them direct employment effects, often times 
resulting in job evolution and the creation of new opportunities rather than large-scale la
bour disruptions. Relatedly, adopting a temporal perspective, one could posit that earlier 
periods, such as 1990–2010, witnessed significant innovations and foundational shifts in 
technology that more directly transformed labour markets. The internet revolution funda
mentally transformed how industries operated, with profound effects across economies, in
cluding indirect effects (cheaper communication and connectivity) that can be argued to 
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have further increased globalization and outsourcing. This is in contrast to the 2010s, 
where advancements were more about deepening and extending the impact of earlier 
innovations.

Furthermore, it is important to note that our study provides very limited bearings on the 
effects of AI and the impending new wave of transformation. This is largely because the 
real-world implementation of AI across various industries remained tentative and experi
mental during the 2010s, despite significant speculation about its potential impact. 
However, with the recent rapid expansion of applied AI in various sectors—including large 
language models, autonomous vehicles, and advanced intelligent robotics—the 2020s may 
present a different scenario. Nevertheless, it will remain important to not let rhetoric 
dominate over reason. The narrative around the digital revolution might have run faster 
than reality in the 2010s; while early signs may suggest the opposite, this could also 
possibly hold true for the next stage of the digital revolution.

Fourth, it is important to note that our approach has certain limitations which might 
also explain the limited results found. Measuring digital transformation over time proves 
difficult, and our indexes might miss important aspects of the phenomenon. Moreover, 
adoption of the new production processes by domestic firms might reduce the pressure from 
international competition, hence preserving jobs. Finally, and on a more technical note, 
probabilistic imputation of the indexes of digital transformation introduces noise in the esti
mates, which is further increased by our concatenated analysis (although results for the sub- 
periods, not involving simulations, broadly confirm the picture depicted here). Both steps 
are required to overcome the limitations of the data, but there are limits to what they can 
achieve. Better data—specifically in the form of a longer longitudinal component of the 
SILC and inclusion of additional variables on work characteristics and human capital— 
would be a welcomed development.

While, for the reasons discussed above, our analysis largely indicates a relatively modest 
impact of the digital transformation on the labour market during the 2010s, the results do 
suggest an important finding: digital skills are crucial to finding a job, yet less so for retain
ing one. What we denote the ‘conveyor belt hypothesis’ stipulates that those in employment 
(on the belt) will be accompanied in better navigating the digital transformation, acquiring 
necessary skills while on the job. However, for individuals out of work, and especially for 
ones with low and medium levels of education, digital skills significantly impact their em
ployability. In other words, those unemployed risk not making the jump onto the conveyor 
belt and being left behind. From a policy perspective, this underscores the importance of 
up- and re-skilling initiatives, especially for older generations. While younger cohorts tend 
to enter the labour market with higher levels of digital skills, older individuals who are or 
become unemployed often have less developed digital literacy and are at a disadvantage. 
70 per cent of 25–34 year olds have basic or above average overall digital skills, reducing to 
44 per cent of 55–64 year olds (Eurostat 2023). As such, adult learning is an important con
sideration in this context. Effective life-long learning opportunities that equip adults with 
digital skills are a key policy lever to enable them to better participate in the labour market. 
Such ambitions are reflected in the European Pillar of Social Rights Action Plan, which aim 
for at least 60 per cent of adult participation in annual training by 2030. While progress is 
being made—43.7 per cent in 2016 to 46.6 per cent in 2022 (Eurostat 2023)—more will be 
required to reach this important policy objective and thereby help mitigate further increases 
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in job displacement, poverty and income inequality that may arise from future digital 
developments.
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