
JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 1

APPARENT: AI-Powered Platform Anomaly
Detection in Edge Computing

Chandrajit Pal, Sangeet Saha, Xiaojun Zhai, Gareth Howells, and Klaus D. McDonald-Maier

Abstract—Embedded systems serving as IoT nodes are often vulnerable to malicious and unknown runtime software that could
compromise the system, steal sensitive data, and cause undesirable system behaviour. Commercially available embedded systems
used in automation, medical equipment, and automotive industries, are especially exposed to this vulnerability since they lack the
resources to incorporate conventional safety features and are challenging to mitigate through conventional approaches. We propose a
novel system design coined as APPARENT which can identify program characteristics by monitoring and counting the maximum
possible low-level hardware events from Hardware Performance Counters (HPCs) that occur during the program’s execution and
analyse the correlation among the counts of various monitored events. To further utilise these captured events as features we propose
a self-supervised machine learning algorithm that combines a Graph Attention Network GAT and a Generative Topographic Mapping
GTM to detect unusual program behaviour as anomalies to enhance the system security. Our proposed methodology takes advantage
of attributes like program counter, cycles per instruction, and physical and virtual timers at various exception levels of the embedded
processor to identify abnormal activity. APPARENT identifies unknown program behaviours not present in the training phase with an
accuracy of over 98.46% on Autobench EEMBC benchmarks.

Index Terms—Generative Topographic Mapping (GTM), Graph Attention Network (GAT), Cycles Per Instruction (CPI), Control Flow
Graph (CFG), Gated Recurrent Unit (GRU), Machine Learning (ML), Anomaly Detection.

✦

1 INTRODUCTION

CUrrently, Internet of Things (IoT) technology deploy-
ment is expanding across all application domains.

However, there are concerns over security issues related
to the quick and widespread adoption of such connected
devices. IoT devices have limited processing power and
storage capacity, which makes it difficult to apply secu-
rity patches. Hence, securing resource-constrained IoT de-
vices and the systems they communicate with is now of
paramount importance [1]. Current research mainly focuses
on attacks undermining the security of data exchange and
communication between IoT devices and other systems.
Nevertheless, the existing threat patterns indicate that in
addition to attacks on IoT networks, embedded systems
IoT devices are now becoming vulnerable to attack points
within an IoT botnet [2], following commands from the
adversary since these nodes make decisions as front-end
devices (Fig. 1). This necessitates the attack detection and
monitoring system to be installed as close as possible to the
traffic data source, mainly at the embedded IoT platforms,
thereby improving service latency and conserving limited
bandwidth by eliminating costly server communication.

As we move down the hierarchy from cloud servers to
embedded IoT platforms (Fig. 1), computing units gradually
get more constrained in terms of power and computing
resources, with minimal resources in IoT devices. Hence,
anomaly detection, using intelligent techniques in a resource-
constrained embedded system in real-time while maintaining the

• All the authors are with the School of Computer Science and Electronics
Engineering, University of Essex, Colchester, UK, CO43SQ.

Corresponding author: Xiaojun Zhai

Manuscript received xxxx; revised xxxx.

performance is a challenging problem in edge computing. The
techniques of developing anomaly detection models that
work with the diverse embedded architectures found in IoT
platforms are thus undoubtedly challenging. Generic secu-
rity measures through the use of cryptographic algorithms
and security protocols are often incompatible with specific
embedded architectures which are typically specialised to
perform a particular function repetitively [3]. They are also
constrained by limited resources use custom firmware and
often even run without an operating system, making it chal-
lenging to implement security mechanisms with traditional
antivirus programs which look for deviations in regular
program execution.

There exist state-of-the-art software and hardware-based
embedded device security solutions [4], [5]. This includes
Hardware intrinsic security [6] or Physical Unclonable Func-
tion (PUF) [4]. Additionally, some work [7], and [8] con-
centrate on identifying software failure, tampering, and
malicious codes in embedded architectures. The primary
drawback of these methodologies is that they necessitate
keeping private and sensitive details in the platform as
“valid” templates like the control-flow-graph CFG, main-
taining it consumes more storage requires a considerable
amount of processing power and is often exposed to at-
tack. Hence, these software-based solutions are unsuited
for resource-constrained IoT devices, which typically have
limited processing power, memory, and storage capacity.
Another primary drawback of software-based security so-
lutions is their intrusive nature and dependency on the
existing software stack of a system, which is problematic in
many cases. Malicious codes dynamically and continuously
change their internal structure and attack patterns using ob-
fuscation techniques [9]. Thus, static software-based security

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 2

solutions become less effective in such cases due to their
dependence on internal software modelling. This limitation
calls for exploring alternative approaches to ensure the
security of IoT devices.
Hardware Performance Counters (HPCs) offer a promis-
ing avenue for anomaly detection in resource-constrained
environments. HPCs are specialised hardware units that
monitor and record low-level hardware events during pro-
gram execution at runtime aiding in anomaly detection.
These features of hardware events from an embedded de-
vice are difficult to compromise and bypass by obfuscation
techniques. These events can provide valuable insights into
program behaviour and can be used to detect deviations
from the expected execution patterns, even in the absence
of complex software-based analysis. Recently, the authors
in [10], [11] proposed HPC-based anomaly detection.

Fig. 1. Illustrating an embedded system as an IoT device exposed to an
attack

A time series of HPC measurements (special register val-
ues) provides a temporal profile of the code under execution
which acts as an important indicator of system behaviour.
The HPC time series on a known-good embedded device de-
scribes the predicted temporal features of programs running
on the embedded processor. These special-purpose counters
are used to precisely and accurately record hardware events
in real time. When a system functions normally, i.e., when
no errors are found in the system—it displays a profile; any
variations from this profile point to a potential anomaly in
the system. Moreover, these low-level features are robust
and hard to compromise. However, the exploitation of HPCs
for anomaly detection is still in its infancy, as it is not
straightforward to collect and analyse HPCs for anomaly
detection without operating system support, as it is primar-
ily used for performance tuning.

A few studies [10], [12], [13], [14], [15] have developed
strategies to detect anomalies using machine learning classi-
fication of HPC measurements. Some studies demonstrated
their approach with supervised learning approaches and
often considered single HPC event series to reduce profiling
overhead during classification. Authors in [16] employed

five supervised machine learning algorithms trained of-
fline only on HPC events which may be a good choice
for high-performance systems. Wang et al. [17] detected
side-channel attacks using low-level HPC events leveraging
supervised multimodal machine learning algorithms like
regression, neural networks, decision trees, and rule-based
algorithms capable of handling both linear and nonlinear
prediction problems. Nevertheless, deciding how to best
integrate information from multiple modalities is crucial.
There are various fusion techniques, but the process of
choosing the right one can significantly impact performance.
Again, supervised learning techniques computed from a
large number of HPC events [18] may significantly increase
the system overhead for resource-constrained devices. A
wider range of data points often leads to confusion, while
detailing and missing the bigger performance bottlenecks.
Focusing on the most relevant counters is crucial. More-
over, offline trained supervised classifiers [19] deployed
in security systems make it difficult to learn from new
data and adapt to emerging threats continuously. There
are also some inherent problems regarding the availability
of labelled datasets for supervised learning models. They
are difficult and time-consuming to acquire, especially for
diverse embedded systems with varying behaviours and
potential anomalies. Even if training data is available, the
model should be trained on sufficient and representative
samples from various operating environments. However,
gathering such extensive datasets takes time, especially for
systems with changing environmental conditions. This chal-
lenge motivates the exploration of alternative approaches
that can effectively detect anomalies without relying on
extensive labelled training data, making it more suitable
for dynamic embedded environments where software and
hardware configurations may change.

Some papers like [20] and [21] leveraged unsupervised
learning on microarchitectural features from HPCs and net-
work traffic data to detect anomalies arising out of threats.
The commonality in their studies lies in finding a common
structure between the datasets meant for one class classifi-
cation to perform either clustering or dimensionality reduc-
tion. For faster adaptation to unknown datasets, authors in
[22] leveraged unsupervised transfer learning where they
transferred knowledge from the pre-trained model and
thereby learned faster with less data than purely unsuper-
vised learning. However, in scenarios where labelled data is
scarce and performance is a top priority, ensemble learning
might be a better option. Sayadi [23] utilised diverse models
and potentially achieved higher accuracy by leveraging en-
semble learning techniques to consider the effect of lowering
the number of HPC features on malware detector perfor-
mance, thereby improving the performance of hardware-
assisted malware detectors. These solutions work well on
platforms that have sufficient computational resources but
might not be a good design choice for resource-constrained
edge platforms. Therefore, to partially reduce the depen-
dency upon annotated/labelled data it is important to learn
continually the underlying characteristics of unlabelled data
and dependency among the data events. Hence, for more
accurate classification, it is necessary to collect multiple HPC
events and find a correlation among them by continually learning
the newly encountered program data with self-supervision while

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 3

maintaining reasonable overhead.
In this paper, we propose APPARENT, which is indepen-

dent of high-level software environments such as operating
systems (OS) and source programs. Thus, it can be applied
to a broader range of embedded systems to extract, using
an on-chip debugger, and analyse low-level hardware infor-
mation from the HPCs. Upon gathering the information, we
applied self-supervised GTM [24] and GAT [25] classifiers
to generate models that identify a program’s expected exe-
cution trajectory using HPCs. If the predicted model output
and the model’s estimated output diverge from a realistic
model of the program’s expected trajectory, this indicates an
abnormality in the system. Figure 1 denotes the overview
of the APPARENT. The two important components consist
of an on-chip debugger employed at the device level for
collecting trace data. Once collected, the data are sent to
the edger server (acting as an analyser) for analysis. Thanks
to low-latency communication strategies [26], these data
transmissions can be achieved with low timing overheads.
The following summarises our primary contributions to this
manuscript:

• APPARENT leverages low-level hardware events
like program counter values, cycles per instruction,
capability registers and timer values and uses them
as distinct features for accurate program recognition.

• APPARENT employs self-supervised Generative To-
pographic Mapping (GTM) in combination with a
Graph Attention Network (GAT) for classifying the
underlying extracted hardware features in a stan-
dalone bare-metal environment to detect anoma-
lies through similarity measurements of program
counter values in conjunction with a multivariate
time series analysis of multiple HPCs on various
benchmarks. The self-supervised nature of GTM and
GAT allows the system to continuously learn and
adapt to new data, making it effective for unknown
programs.

• APPARENT analyses multiple HPCs as a multi-
variable time series, capturing the complex rela-
tionships among different events. Any deviation of
pattern from these learned relationships flags the
presence of probable threats.

• APPARENT can accurately identify unknown pro-
gram behaviours not present in the training phase
with 98.46% accuracy on Autobench EEMBC bench-
marks.

2 RELATED WORK

A summary of earlier studies on embedded systems security
as IoT nodes is provided in this section. The need for digital
privacy in protecting personal data has increased due to the
digitisation of information for quick access, as mentioned
in Section I [27], [28]. The authors in [29] systems show to
leverage of on-chip debug information to detect abnormal-
ities in embedded system program execution, while other
research has examined the behaviour and frequency of code
modifications meant to harm a system or its user. Secure
program execution has been addressed by Batina et al. [30]
by focusing on the particular problem of how to make
sure a program follows its intended behaviour. To establish

the basis for regulating acceptable program behaviour, they
retrieved attributes from an embedded program. Software
watermarks incorporated into protected software, serve as
a distinctive identifier and prevent IP privacy. Haoyu and
Iwendi [31], [32] studied the software watermarks after
realizing the significant economic impact of software piracy.

To supplement traditional antivirus software, Mahdavi-
far et al. [33] created a malware detection method that
automatically contrasts behaviour models with unidenti-
fied programs’ runtime behaviour. Hao et al. [34] used a
Control Flow Graph (CFG), much like in [30], to discover
behavioural differences between malware and legitimate
systems to identify breaches in protected embedded sys-
tems. Their system recognised sequences of system calls
produced by the appropriate software and linked each
performing process to a finite state machine (FSM). To
improve system-wide efficiency without altering the ar-
chitecture of the instruction set, Haq et al. [35] suggested
various techniques for concealing information in compiled
program binaries in their survey. Boufounos and Rane [36]
developed an embedding system for secure search for the
closest neighbour, including procedures for grouping and
verifying applications. They also proved secure determina-
tion of signal similarity using machine learning and signal
processing methodologies. As previously stated, software
watermarks are unique features built into a program and
act as identifiers [29]. It has been highlighted in [29], [37]
that there are disadvantages to leveraging system calls
for program identification, especially in embedded systems
without a conventional operating system. These limitations
include programs with few or no system calls, including
those only arithmetic-based, and programs that lack distinc-
tive behaviours during system calls that might not display
a watermark.

Kadiyala et al. [38] investigated anomaly detection in
a multicore environment and computed a boundary to
distinguish between known benign and unknown malware
code, however with programs of very short execution times.
In another paper [16] they focused specifically on malware
detection in systems with an operating system, by extracting
HPCs at the system call level and applying supervised
machine learning for classification. Authors in [39] utilise
HPC values in a bare-metal environment but focus on using
Principal Component Analysis to select micro-architectural
events and then evaluate different supervised machine
learning models. Authors in [40] and [41] proposed an un-
supervised approach by leveraging a combination of GTM
and Graph Theory (GT) strategy where GTM highlights
system features, reducing variable dimensionality followed
by computing similarity among samples. Subsequently, GT
clusters them using networks, discriminating normal and
anomalous entries. Similar graph theory concepts have
been utilised where authors [42] proposed a multimodal
spatial-temporal graph attention network (MST-GAT) which
employs a multimodal graph attention network (M-GAT)
and a temporal convolution network to capture the spatial-
temporal correlation in multimodal time series in locating
the most anomalous univariate time series variable. Authors
in [43] focus on identifying and analyzing the challenges
and vulnerabilities of using HPCs for security, including
non-determinism, overcounting, and adversarial manipu-

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 4

lation. They seem to provide a broader overview of the
challenges and pitfalls of using HPCs for various security
applications, without restricting to only malware detection.

Fig. 2. Illustrating the flowchart of APPARENT

Fig. 3. Block A illustrates the procedure using GTM and Block B uses
GAT. Block C computes the majority decision of an anomalous event
after individually receiving decisions from both modules A and B.

APPARENT over state-of-the-art: Since most of the
embedded hardware used as IoT nodes run without so-
phisticated OS [44], we plan to trace the low-level hard-
ware events from multiple HPCs like program counters,
clock cycle counters, physical and virtual timers at various
exception levels unlike [11], [13]. Besides HPC events we
have separately extracted the PC register values for com-
puting the average cycles per instruction and apply some
preprocessing algorithms to find the conditional branches
and functional jumps to aid in anomaly detection. APPAR-
ENT can identify program characteristics by monitoring and
counting the maximum possible low-level hardware events
that occur during the program’s execution and analyse the
correlation among the counts of various monitored events
by continually learning the newly encountered program
data with self-supervision while continuing to maintain rea-
sonable overhead, unlike the supervised and unsupervised
approaches which mostly suffer from labelled dataset and
misclassifications on encountering new data [10], [11], [12],
[14], [16]. We have considered multivariable time series
data and found a correlation among them through graph
attention networks, which have proven to be very useful in
concluding the presence of an anomaly unlike a few recent

studies on univariate time series analysis with supervised
learning techniques [11], [13], [45].

The self-supervised learning approach of APPARENT
continuously learns and adapts to new data. The model does
not solely rely on labelled training data but also leverages
the inherent structure and patterns within unlabeled data.
This enables APPARENT to identify not only newly encoun-
tered programs but also probable threats in new programs
by recognising deviations from the learned representations
of normal behaviour. The combination of GTM and GAT in
APPARENT’s architecture contributes to its generalization
capabilities. While APPARENT has been evaluated on the
EEMBC autobench benchmarks, its underlying principles
and techniques can be extended to other application scopes
with similar characteristics. The autobench benchmarks sim-
ulate real time processing tasks commonly found in auto-
motive systems, such as engine control, signal processing,
and actuator control, some of which have been illustrated
in this work. These tasks often involve tight timing con-
straints, limited resources, and the need for high reliability,
similar to many other embedded applications. Some related
application scopes where APPARENT’s usage can be jus-
tified are real-time anomaly detection in CAN controllers
of modern vehicles, monitoring the health and behaviour
of real-time control systems in robots and autonomous
vehicles, enhancing the security of connected vehicles by
detecting anomalies in communication networks and in-
vehicle entertainment systems [46].

3 APPARENT
A complete flowchart abstracting the entire process flow of
APPARENT is as shown in Figure 2 and described below in
the following steps:

• Program Execution and Data Collection: A program
is executed on the embedded device, and an on-chip
debugger collects trace data during the execution,
including HPCs and PC values.

• The collected trace data is transmitted to an edge
server for analysis.

• Block A: CPI and Pattern Analysis: Compute Av-
erage CPI: The process begins by computing the av-
erage Cycles Per Instruction (CPI) for the executing
program.

• The CPI profile is then analysed to identify phases ph
(function calls) and peaks pk (conditional branches).

• Analyse Similarity using GTM: The identified phases
and peaks, along with their corresponding PC val-
ues, are fed into a Generative Topographic Mapping
(GTM) model. This model maps the PC values onto a
latent space, clustering similar patterns together. By
comparing the observed patterns with the expected
patterns learned during training, the GTM model can
identify deviations that may indicate threats.

• Verification Module: The results from the GTM anal-
ysis are further verified to reduce false positives and
improve the accuracy of anomaly detection.

• Block B: Time Series Analysis using GAT: Multi-
Variable Time Series Analysis: In parallel to Block A,
the HPC data, which includes various timer values,
is treated as a multi-variable time series.

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 5

• Graph Attention Network (GAT): The GAT is em-
ployed to analyse the relationships and dependen-
cies among different HPC events and their temporal
patterns.

• Forecasting and Reconstruction Model: The GAT
model is used to forecast future HPC values and
reconstruct the observed time series. Deviations be-
tween the forecasted and actual values, as well as
discrepancies in the reconstructed time series, are
indicative of anomalous behaviour.

• Block C: Maximum Voting Decision: The anomaly
detection decisions from both Block A (GTM) and
Block B (GAT) are combined using a maximum vot-
ing algorithm.

• Anomaly Detected? The final decision on whether
an anomaly has been detected is made based on the
combined results from the previous blocks.

3.1 Threat Model
Embedded systems are more vulnerable to risks because of
the ease with which they can be updated and connected
to the network—in particular, to malicious code injection.
APPARENT detects abnormal program behaviour caused
by code injection attacks in embedded systems. It focuses
on detecting deviations in program execution resulting from
injected code, regardless of the specific attack vector (e.g.,
buffer overflows, format string attacks). The threat model
assumes that injected code will cause observable deviations
in program behaviour, which can be captured and analysed
by monitoring low-level hardware events.

In a buffer overflow attack on an embedded platform, an
attacker exploits a software vulnerability by sending input
data that exceeds the allocated buffer size. This allows them
to inject malicious code into the program’s memory, po-
tentially overwriting function pointers or return addresses.
The injected code then gets executed, causing deviations
in the program’s expected behaviour. APPARENT monitors
low-level hardware events and detects these deviations,
indicating the execution as potentially harmful. By focusing
on the low-level hardware events and their deviations, AP-
PARENT can detect a wide range of code injection attacks,
including but not limited to buffer overflows. The system’s
ability to continuously learn and adapt to new data further
enhances its effectiveness in identifying and mitigating po-
tential threats for embedded systems in general.

3.2 Detection strategy
Three structural levels are typically identified in a program
from the perspective of software architecture: (a) function
call stage, which displays the relationship between function
calls; (b) a fundamental-block Control flow graph CFG rep-
resenting the internal CFG for each program function, and
(c) the stream of instructions for each CFG [47]. Based on
a hardware perspective, the architecture and performance
of a processor can have an impact on how instructions
are executed. For example, a processor’s performance may
be degraded by condition branches or multi-cycle function
calls. Alternatively, the PC register being an indicator of a
program’s position in a code sequence, can also convey the
instruction order in a CFG. This also assists in analysing

the PC values contained in every CFG after the initial
detection of the CFG and function/routine call based on the
variation in the performance of the processor. Ultimately, a
comprehensive assessment may reveal whether or not the
system is compromised. The average CPI is measured in the
proposed work as a processor performance parameter.

Figure 3 displays a diagram of our proposed abnormal
program behaviour identification model. First, the mean
Cycles per Instruction CPI value is computed using block
A in Figure 3, which continuously reads data out of the
PC register and timer counter as well as clock cycle infor-
mation. The data displays the locations of routine calls and
conditional branches that occur on a running program and is
acquired sequentially from the mean CPI values in the peak
(pk) and phase (ph) point detector modules, respectively.

In block A, a GTM-based intelligent self-supervised sim-
ilarity analyser is proposed to detect abnormal program
behaviour by learning the locations that were obtained and
the PC sequence that corresponded to them. The intrusion-
detected result is asserted by the GTM-based classifier if
the PC patterns and phase data are different from a known
program. In the ultimate step, the GTM results are verified
by contrasting them with the expected property table (which
includes the number of peaks in each phase and the related
network node).

Our proposed block B in Figure 3 tries to detect anoma-
lies through time series analysis generated from multiple
timers (HPC values) at various exception levels of our
hardware platform while a program executes by finding
a correlation among various HPCs generated time series.
Following this, we perform a majority voting (block C) after
incorporating anomaly detection decisions from both blocks
A and B respectively to finally decide upon the occurrence
of an anomaly.

3.3 Module for Computing Average CPI
In this subsection, we are going to describe the computation
of the mean CPI module in block A of Figure 3. A popular
metric for evaluating the processor’s efficiency is CPI, which
displays the intricacy of executed instructions in a given
period. Thus one can compute a processor’s average CPI
given in equation 1.

CPI = C/I (1)

where C is the no. of cycles needed to complete I instruc-
tions and I is the entire set of instructions being executed.
Modern debug facilities can easily access the CPI since the
no. of cycles is determined by combining the time spent
and the processor’s highest clock frequency. An ARMv8-A
processor running a program generates an average CPI pro-
file as shown in Figure 4, with I and the highest frequency
initialised to 212.

The program in Figure 4 has six distinct routines, all
of which are called sequentially. The CPI value increases
dramatically when a new routine is called, which results in
a corresponding decrease in processor performance. This is
primarily because, to execute the recently called routine, the
PC register jumps to a different memory location as shown
in Figure 10 (can see anyone sample among a to f), typically
consisting of multiple multi-clock cycle instructions. The

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 6

mean CPI value is thus considerably altered. The mean
CPI profile is determined by the complete set of executed
instructions (I), which ranges between 1 to n, with n
denoting the program length.

In a similar manner, values of CPI also vary within every
routine. With an increasing number of instructions, it is less
likely to extract more details of CPI, which implies that
some potentially aberrant behaviour of the program under
observation might go undetected. Fewer I may enhance the
sensitivity at the cost of increased computational expense.

For example, if I is 1, all of the program’s instructions
will be scrutinised and it won’t include any continuous
patterns that would allow us to identify the features of the
program under observation. Hence, in this manuscript, I is
set to 212, which has been shown to provide a better trade-
off between the proposed system’s computational complex-
ity and accuracy [3], [15].

The choice of I involves a trade-off between sensitivity
and computational overhead. A smaller I increases sensi-
tivity to individual instruction variations but also increases
the computational burden. A larger I provides a more
smoothed average, potentially missing subtle anomalies but
requiring less computation.

The subsequent subsections present an automated tech-
nique for acquiring the peaks (i.e. branch conditions) and
phase (i.e. function calls) of an executing program under
consideration.

3.4 Module for Detecting Phases(ph) and Peaks(pk)

Finding the ph and pk locations within the mean CPI outline
is the primary objective of this module. There are two sub-
blocks: the peak and phase positions are localised using the
local and global critical point localisers.

3.4.1 Computing local critical points
The local primary variation points of the mean CPI are
localised using the local critical point localiser. Using the
suggested approach, the pk value is located within a 1×3
window rectangle range after the absolute variations be-
tween adjacent items within the mean CPI profile are first
computed.

Let’s say CPImean array contains the averaged CPI pro-
file in equation 1. The next step is to compute the absolute
differences between the adjacent elements of CPImean and
is extracted as:

Dab(i) = |CPImean(d+ 1)− CPImean(d)| (2)

where 1 ≤ d < N , N denotes the complete set of elements
present in the array CPImean, where now Dab contains
the absolute variations between the array’s neighbouring
elements CPImean. This Dab is used to compute the peaks
and valleys. After obtaining Dab, a 1×3 rectangular window
is scanned over all the elements of Dab and the following
computation is performed as shown in the pseudocode in
Algorithm 1 to find out the local peaks. The primary ad-
vantage of the above methodology is that it can adaptively
determine the pk’s without any fixed thresholding making
it a valuable candidate for a wide variety of scenarios. It
is even capable of detecting peaks having minor variances.

Algorithm 1: Peak identification module
Input:
i. An input array Dab containing absolute differences
between adjacent elements of CPImean obtained from
equation 2.
Output:
D′

ab(j) = l1, l2, l3, ..., li where l1 denotes the set of
locations for peak i

1 for i = 1; i ≤ Nsamples(Dab); i++ do
2 if Dab(i− 1) < Dab(i) and Dab(i) > Dab(i+ 1)

then
3 D′

ab(j) = Dab(i); /* the amplitude is noted in
array D′

ab(j)*/

4 mi = mean(D′
ab(j)); /* the mean of all elements of

D′
ab(j) is mi*/

5 for i = 1; i ≤ Nsamples(D
′
ab); i++ do

6 if D′
ab(j) > mi then

7 li = j; /* The jth element is marked as peak*/

8 Return D′
ab(j)

Figure 5 is the resultant detection after applying the Al-
gorithm 1 on Figure 4. So Figure 4 represents the average
CPI profile containing six different routines/functions called
in a sequence, leading to different PC profiles, which is
evident from the graph morphology. Figure 5 identifies the
location of the peak positions, i.e. the conditional branches
in a program as indicated by red triangles. These markings
localise the significant local variance points derived from
the average CPI profile.

3.4.2 Computing global critical points

The global notable variation points, which show the posi-
tions of each phase, are localised from the average CPI pro-
file using the global critical point localiser and are illustrated
in Algorithm 2.

In step 1 we localised the points which are greater than
the threshold equivalent to th = (max(Dab)+min(Dab))/2
as described. They denote the boundary points of every
adjacent phase. Following this, step 2 finds the absolute
differences of every adjacent boundary point and stores the
one greater than a threshold tn whose values depend on
the training program phase length. We have set it to 64
as a tradeoff between the efficiency and complexity of our
proposed approach. The results from lines 13 and 14 of the
algorithm 2 are used to find out the absolute difference of
the adjacent phase elements as shown and store those points
above 2 or 0. The objective is to ensure that the overlapping
boundaries are not presented in the following phases.

The result of this global critical point computation is
shown in Figure 6 which is obtained after applying it to
the data from Figure 4. The resultant peaks and phases that
are obtained from algorithm 1 and 2 respectively are being
processed to convert them to their corresponding PC profile
as an outcome of algorithms 1 and 2 shown in the following
equation 3.

D′
abb = I ×D′

ab(j) + 1

D′
abe = I ×D′

ab(j) + I

Dhb = I ×Dh(ph
′) + 1

Dhe = I ×Dh(ph
′ + 1) (3)

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 7

Fig. 4. Average CPI outline Fig. 5. CPI outline after processing through local
critical point processing module

Fig. 6. CPI outline after processing through
global critical point processing module

Algorithm 2: Phase identification module
Input:
i. An input array Dab containing absolute differences
between adjacent elements of CPImean obtained from
equation 2

1 . Output:
Dh(i) = l1, l2, l3, ..., li where l1 denotes the set of
locations for phase i

2 Initalise th = (max(Dab) +min(Dab))/2.
3 /* Step1 */
4 for i = 1; i ≤ Nsamples(Dab); i++ do
5 if Dab(i) > th then
6 P ′

ab(ph) = Dab(i); /* D′
ab(j) represents

boundary points of every adjacent phase*/
7 ph++;

8 /* Step2 */
9 for ph = 1; ph ≤ Nsamples(P

′
ab); ph++ do

10 P ′′
ab(ph) = |P ′

ab(ph)− P ′
ab(ph+ 1)|;

11 /* tn depends on training program phase length */
12 if P ′′

ab(ph) > tn then
13 Dh(ph) = P ′

ab(ph);
14 Dh(ph+ 1) = P ′

ab(ph+ 1);

15 /* Step3 */
16 for ph′ = 1; ph′ ≤ Nsamples(Dh); ph′ ++ do
17 D′

h(ph
′) = |Dh(2ph

′)−Dh(2ph
′ + 1)|;

18 if D′
h(ph

′) > 2 or D′
h(ph

′) = 0 then
19 Dh(2ph

′ + 1) = Dh(2ph
′) + 1;

20 Return Dh(ph
′)

where I denotes the complete set of instructions to compute
the mean CPI. D′

abb and D′
abe are the beginning and end of

the PC outline meant for jth pk and Dhb and Dhe denotes
phase beginning and end positions for the phth. Figure 6
highlighting the red lines denotes the global critical points
as the phase positions indicating the functions calls within
a subroutine. Generally, function calls are not frequent in
a program and hence are localised with the significant
global variance as highlighted and are computed from the
average CPI profile. These obtained locations are utilised to
choose appropriate PC patterns to train and validate for the
similarity analyser.

3.5 Module for Analysing Similarity using Generative
Topographic Mapping (GTM)

After receiving the PC values, the peaks and the phases, we
propose a Generative Topographical Mapping (GTM)–based
similarity analyser (model size 73 KB approx) to recognise

between known/trained and unknown/unlabelled running
programs. The process of classification and recognition is
divided into two main levels: the PC register pattern and
the function/routine call level. At each level, the uniqueness
of the program being executed is determined by measur-
ing each phase and peak. Any appreciable variation indi-
cates that there are fewer function calls, different function
call characteristics, and a PC signature from the original
program, that may indicate a probability of an abnormal
behaviour. The primary benefit of the suggested similarity
checker is that it controls the two levels of recognition and
classification: the pk and ph and the PC sequence level. After
statistical analysis of the ph and pk levels, the associated
PC sequences are categorised in GTM. As a result, it is
extremely unlikely for malicious codes to have a similar PC
sequence as the original program, even if they share similar
phase and peak information.

The pk and ph are effective markers since they act
as indicators of program behaviour representing signifi-
cant shifts in the CPI profile, corresponding to conditional
branches and function calls. These are fundamental building
blocks of program execution flow. Changes in their patterns
can indicate deviations from the expected behaviour, even
for unknown software. While the exact CPI values might
vary somewhat due to hardware variations, the relative
positions and patterns of peaks and phases remain relatively
stable for a given program. This makes them robust indica-
tors of program behaviour, even across different execution
environments.

For normal programs, the pk and ph patterns should
align with the expected behaviour learned during training.
However, malicious software, even if designed to mimic
legitimate behaviour, is likely to introduce anomalies in
these patterns, due to the nature of its injected code. These
anomalies can be detected by comparing the observed pk
and ph patterns with the expected ones. It is to be noted
that the pk and ph analysis is not meant to be a standalone
anomaly detection technique. It is used in conjunction with
other methodologies, such as PC sequence analysis and
HPC time-series analysis, to provide a more comprehen-
sive view of program behaviour and improve the overall
accuracy of anomaly detection. The use of CPI profiles and
the analysis of peaks and phases for program analysis and
anomaly detection is not entirely new. Similar techniques
have been explored in other works, primarily in the context
of performance analysis and optimisation [48], [49]. We have

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 8

extended the concept of pk and ph analysis by incorporating
it into a self-supervised machine learning framework that
combines GTM and GAT. This allows for a more sophis-
ticated and adaptable anomaly detection system that can
handle unknown programs and distinguish between nor-
mal and malicious behaviour as described in the following
subsections.

3.5.1 Data mapping to GTM

Our classifier has been designed on the basis of GTM [50].
We leverage the unique feature of GTM to distinguish the
PC values and map them to a user-defined number of
clusters. This is efficient enough to analyse and find the
similarity between known and executing programs using
PC patterns. It is to be noted that the total number of clusters
should be equivalent to the total number of benchmark
routines we are dealing with.

We have carefully chosen the number of clusters and set
it to 16 as we have 7 different routine calls in the testing
database. To be more precise, we take an embedded pro-
gram’s static properties and use them to enforce acceptable
program behaviour during runtime.

The PC sequences are a collection of N -dimensional
vectors, in which I denotes the set of instructions that have
been executed per vector N . Fixing the correct value of N
is very important and it should correspond to the minimum
number of program counter values for accurate analysis. A
large value of N may affect the application performance by
adding more performance overhead and very little value
may affect the distinguishing capability among the applica-
tions. The magnitude of N reflects appropriate behaviour
for a program with carefully chosen properties indicating
unaltered execution and is not likely to be breached when
a program is hacked. The value of N used in this study
has been determined to be 212 after a series of empirical
experiments and an analysis of the test data. We take the
extracted values of the PC obtained from the peaks and
phases as expressed in equation 3 and use it as input to
the GTM model for initial training followed by verification.

Following the training procedure, we map every GTM
node to the corresponding benchmark routine and subrou-
tines. In our study, each GTM node has been labelled with a
vector quantisation procedure [51] in the following manner:
a) Every training data is assigned a label which acts as an
identifier of the routine containing the training dataset, b)
The winner GTM node in the latent space is found out
having the least distance with the labelled input data, c)
We maintain for every data input vector, the corresponding
application label, the GTM node and the calculated distance.
For applications which utilise similar address space, the
distance is kept constant as a tiebreaker.

3.5.2 Finding statistical parameters

The initial training program involved counting a set of input
vectors linked to each GTM node say n, followed by the
computation of the group’s mean value, standard deviation,
and minimum and maximum distances expressed as:

µ =
1

n

n∑
i=1

ci (4)

cmin = µ− (1 + ϵ)

√√√√ 1

n− 1

n∑
i=1

(ci − µ)2 (5)

cmax = µ+ (1 + ϵ)

√√√√ 1

n− 1

n∑
i=1

(ci − µ)2 (6)

where c represents the list of distances and ϵ (empirically
set to 3%) indicates the errors in the standard deviation for
including quantisation errors during computation.

Following this, we propose to construct a statistical
table Tbph for the ph phase containing the information of
the attributes like (the minimum cmin, maximum distances
cmax, the nodes associated with the input data vectors
and the standard deviation). Every phase has an associated
statistical table based on the same principle. During the
inference, every input vector in the test set is assigned to
a GTM node having the minimum distance. Assuming ξi

represents the input data vector mapped to a GTM node
ζi having distance ci, our proposed methodology measures
the maximum (Cmax) and minimum (Cmin) distances of the
ζith GTM node with the distance c for every lookup table,
before deciding upon the phase to which the input vector
belongs. A successfully assigned phase input vector should
possess the two prerequisites namely a) cmin < ci < cmax

where cmax and cmin are the maximum and minimum
distances of the GTM node ζi at ph phase, b) As a dominant
GTM node in the ph phase, the ζith node in the initial
lookup table indicates that its occupancy is higher than 5%
of the total number of input vectors.

The phase numbers are reflected in the labels of
the successful candidate GTM nodes. Otherwise, for an
untrained/unknown input data vector, the candidate is
marked 0. As a result, the known/trained program’s ph
ought to comprise an assortment of trained ph numbers,
with the dominating phase no. serving as a signal for the
phase’s outcome. Another lookup table Tb′ph, which has
the same kind of data as Tbph, is created after the results
of each phase are known. The next step involves similarity
verification of these generated tables.

3.6 Verification module
The purpose of the verification module as shown in block A
of Figure 3 is to verify the findings of the GTM analyser.
With this analyser, the majority of the input vectors can
typically be categorised. To enhance the overall performance
of the categorisation, a global verification stage is required,
because the program’s trace might not always match the
initial training program precisely due to varying circum-
stances. Generally speaking, there are two categories that
the GTM analyser’s results could fall into known/trained
and untrained/unknown samples. The GTM analyser pro-
vides the possible phase number ph for known samples and
marks the unknown/unidentified samples with ‘0’, thereby
handling the two cases independently. The flowchart is
displayed in Figure 7. The primary task of the flowchart
is to verify the computed similarity (in Algo. 3) between the
testing/verifying and the original statistical lookup tables
with their phases ph′ and ph respectively. The flowchart
initiates with its phase check, which if it happens to be

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 9

Algorithm 3: Similarity computation for the lookup
tables

Input:
i. Tbph, Tb′ph′ are the two look up tables of initial phase
ph and validation ph′ correspondingly.
Output:
i. Csim similarity measure within the two phases ph
and ph′

1 Initialise Csim = 0.
2 The look-up table Tb is sorted in the decreasing order

of the GTM node occupancy.
3 /* Initiate searching in the look-up table Tbph */
4 forall GTM nodes listed in table Tbph do
5 if jth node coverage > 5% then
6 A(p) = j; /* the no. of GTM nodes is noted in

array A*/
7 p = p+ 1;

8 /* Initiate searching in the look-up table Tb′ph′ */
9 forall GTM nodes listed in table Tb′ph′ do

10 if jth node coverage > 5% then
11 A′(p) = j; /* the no. of GTM nodes is noted in

array A′*/
12 p = p+ 1;

13 I ∈ A
⋂

A′; /* the intersection between A and A′ is I */
14 if len(I)/len(A) > 80% then
15 phase ph ∼ ph′

16 Csim=1;/* non anomalous */

17 else
18 phase ph ! ∼ ph′

19 Csim=0;/* anomalous */

20 Return Csim

nonzero, goes for further checking with the original and
testing table phase data. If they are similar then the original
phase number ph is assigned and flow terminates as shown
in the left-hand side box. Else verifying phase is initialised
with 1 and the flow moves to the second dotted box on
the right-hand side. It then compares with the maximum
phase of the original table. If it satisfies, then it goes for
further checking with the original and testing table phase
data, and if it matches, it is assigned the phase ph′ and is
incremented and iterates with the next level of checking
with the maximum phase of the original table. Else the
phase number is marked unknown.

Fig. 7. Flowchart of the verification module (last module of block A in
Fig. 3)

To verify the similarity measure between the verifying
and original lookup tables namely Tb′ and Tb respectively,
the two tables’ corresponding GTM nodal histograms are
used. Algorithm 3 illustrates the pseudocode for computing
the similarity between the lookup tables. The variation
between the peaks pk in the verifying phase ph′ w.r.t the
original phase ph has been computed following a compari-
son of the lookup tables. Phase number ph is confirmed once
the variation drops below 10% of the entire set of peaks
present within the original phase. Generally speaking, the
GTM analyser could determine the similarity between two
input sets of vectors (as peaks) locally. It cannot, however,
indicate a collection of peaks globally (as phases). This issue
is resolved in the verification phase.

3.7 Using multiple variable time series analysis to de-
tect anomalies
Besides block A we also designed block B as shown in
Figure 3 to detect anomalies through multivariable time
series analysis. Each benchmark program when executed
generates various physical and virtual timer values at vari-
ous exception levels on the embedded processor. Each timer
variables (HPC) are taken as an individual feature variable
and the correlations among the multiple feature variables
(i.e multiple timers) and the time series dependencies are
modelled simultaneously using Graph Attention Networks
(GAT) so that any discrepancies identified while encounter-
ing any unknown/untrained routine, can be identified.

The problem is defined as follows: The input of multiple
variable time series values generated while executing a pro-
gram is tdϵRTm×f , where Tm, f and R denote the highest
timestamp length, the number of input features and real
number respectively. Generally, to deal with longer time se-
ries, we take a fixed input length sliding window Tw. As an
output vector of the multiple variable times series, qϵRTw is
generated with qiϵ(0, 1) denotes the presence of an anomaly
in the ith timestamp. To tackle this issue, we first model the
temporal dependencies and inter-feature correlations using
two graph attention networks operating in parallel. After
that, we use a Gated Recurrent Unit (GRU) network to
identify long-term dependencies in the data sequence. We
additionally utilise the potential of models based on recon-
struction and forecasting by working together to optimise
an integrated objective function.

Again referring to block B of Figure 3, we initiate the
process by taking input from the various time series data
being generated while a single benchmark program is being
executed (shown in Figure 15)(a) and subject it to normal-
isation followed by single dimension convolution module
(kernel size 5) to preprocess the first layer for extracting
high-level features from every time series variable input
[52]. We normalise it using the maximum and minimum
values present in the training labelled dataset respectively
on the input data say td given by:

t̃d =
td−min(tdlabel)

max(tdlabel)−min(tdlabel)
(7)

This is followed by two parallel graph attention (GAT)
[53] layers which process the outputs of the single-
dimensional convolution layer, highlighting the connections
between various features and timestamps. We proposed to

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 10

design a graph as illustrated in Figure 8 and represent
our solution in a way where every node or vertices vi is
represented as the HPC parameter, i.e the various timers tdi
in our example. We map each timer data td as a single feature
variable and map it to the vertices or nodes of the graph where
vi = (v1, v2, ...vn) are the n nodes. The edges eij connecting
the vertices determine the connections in terms of bonding
among them. While computing the response for every node
(say q of node v7) in the graph, all of its neighbourhood
node contribution is taken into account.

Fig. 8. Graph attention layer, vi → tdi and eij → rij denotes the
vertices (used timers as HPC in our study) and edges (relationship
among timing events), dashed node q is the resultant

The resultant output for every node is expressed as:

qi = σ(

N∑
j=1

rijtdj) (8)

where σ denotes the sigmoid activation function, rij
mapped to edges eij is the measure of the attention score
which denotes the contribution of adjacent nodes(timers tdj
in our study) from i to j and N is the total number of
neighbourhood timers of j. Therefore, the attention score
rij is given as:

rij =
exp(Actij)∑N
l=1 exp(Actjl)

(9)

Actij = LeakyReLU(TPT .(tdi
⊕

tdj)) (10)

where TPϵR2d a column vector consisting of trainable
parameters and d denotes the feature vector dimension of
every timer node. LeakyReLU represents a nonlinear acti-
vation unit. We exploit this property of the graph attention
mechanism to compute the feature and time-oriented graph
attention network.

3.7.1 Proposed feature and time-oriented GAT model
In the feature-based GAT module (model size 152 KB) we
consider the multiple variable time series as an entire graph,
and each graph node indicates a single feature (a particular
timer data). Every edge connecting the nodes denotes the
relationship between the adjacent feature nodes. Graph
attention operations can thus be used to carefully capture
the relationships between neighbouring nodes.

In the time oriented GAT module (model size 94 KB)
we record time-series temporal dependencies. We view a
sliding window’s timestamps as a single, complete graph.
In practical terms, the feature vector at timestamp t is

represented by a node tdt, and all other timestamps in the
current sliding window are represented by the nodes that
surround it. Following this we merge the output represen-
tations obtained from the two GAT layers and the single-
dimensional convolution layer (computed with equation 7
and 8), then feed it into a 32 unit (GRU model size 552 KB)
layer expressed as:

qi(feature) + qi(time) + t̃d → GRU

GRU → tg (11)

Time-series sequential patterns are captured using this
GRU layer and generate the output tg. The resultant of
the GRU layer is fed in parallel to both the forecasting and
reconstruction model (Fig. 3) by computing an integrated
optimisation target, as described in the next subsection.

3.7.2 Proposed forecasting and reconstruction model
The reconstruction model (model size 1.4 MB) is designed
to learn the marginal data distribution by gaining knowl-
edge of a latent representation of the complete time se-
ries, whereas the forecasting model concentrates on single-
timestamp prediction. While training both the model pa-
rameters are simultaneously updated. During training the
entire loss Lc is computed as the loss of individual models
and expressed as:

Lc = Lrec + Lforc (12)

where Lrec and Lforc represents the reconstruction and
forecasting module losses respectively.

The forecasting module is designed using 2 fully con-
nected layers (model size 3 MB approx) and is responsible
for computing the next predicted time stamp and its cor-
responding loss is computed as Root Mean Square Error
(RMSE):

Lfore =

√√√√ f∑
i=1

(tgn,i − t̂gn,i)
2 (13)

where the subsequent timestamp is represented by tgn
for the present input tg = (tg0, tg1, ..., tgn−1), where tgn,i
denotes the ith feature at tgn and t̂gn,i the predicted value
of the forecasting module, f set of input features.

Learning a minimal distribution of information over a
latent representation is the goal of the reconstruction model.
To describe an observation in the latent space in a probabilis-
tic way, we use a tiny Variational Auto-Encoder (VAE) [54].
The model captures the data distribution of the complete
time series by treating the time-series values as variables.
With input data tg, it is intended to be reconstructed using a
conditional probability distribution p(tg|l) with l denoting
the latent space vector representation and a recognition
expression r(l|tg) the reconstruction loss Lrec is computed
as:

Lrec = −Er(l|tg)[logp(tg|l)] +KLd(r(l|tg)||p(l)) (14)

where the first expression computes the anticipated
negative log-likelihood of the input and the second one
computes the KL divergence between the two distributions.
Finally, the model inference is computed after considering
the integrated optimisation target computing the predicted
values of forecasting and reconstruction models.

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 11

For every feature, we compute an inference value Ii,
and the final inference value Pvalue is the sum of all the
features expressed in equation 15. If a timestamp’s matching
inference score is higher than a predetermined threshold,
we classify it as an anomaly. To determine the threshold
automatically, we employ [55] which is expressed as:

Pvalue(Lrec, Lfore, λ) =

f∑
i=1

Ii =

f∑
i=1

(tgi − t̂gi)
2 + λ× (1− pi)

1 + λ

(15)
where (t̂gi − tgi)

2 represents the forecasting error as the
absolute deviation between the predicted and present actual
value, and (1 − pi) denotes the likelihood of coming across
an anomalous value by the reconstruction model and λ a
hyper-parameter which combines the reconstruction proba-
bility and the forecasting error, is chosen by a grid search on
the testing dataset.

For the reconstruction loss, the performance indicators
are Negative log likelihood (NLL) and KL divergence. NLL
measures how well the reconstructed data matches the
original input. A lower NLL indicates a better match. KL
Divergence measures the difference between the learned
distribution of the latent representation and a prior distri-
bution (often a standard Gaussian). A lower KL divergence
means the learned representation is closer to the expected
distribution, promoting generalization. The overall Lrec is a
weighted combination of NLL and KL divergence that can
be tuned to prioritize either accurate reconstruction (NLL)
or generalization (KL divergence).

The performance indicators of forecasting loss are RMSE
and Mean Absolute Error (MAE). RMSE measures the av-
erage difference between predicted and actual values. A
lower RMSE indicates better prediction accuracy. MAE on
the other hand measures the average prediction error but
is less sensitive to outliers than RMSE. The choice between
RMSE and MAE depends on the specific application and the
impact of outliers. Having used RMSE we have analyzed
prediction errors over different time horizons that revealed
how well the model captures long-term dependencies. The
integrated objective function typically combines both losses
as a weighted sum. Based on application an optimal balance
is necessary. If accurately capturing the global data structure
is crucial, a higher weight might be given to Lrec else if
predicting future trends is more important, a higher weight
might be given to Lfore.

3.8 Proposed maximum voting decision algorithm
Once we compute the decision of both blocks A and B
respectively, we compute the majority voting to finally
conclude the occurrence of an anomaly using another block
C as shown in Figure 3. and the pseudocode is described
in Algorithm 4. It illustrates the maximum voting decision
algorithm. It receives the input of the resultant decision of
two blocks A and B (described in Figure 3), namely the
Csim and Pvalue respectively regarding the occurrence of
an anomaly. The occurrence of an anomaly is assumed to be
a negative class and a healthy state is considered a positive
class as an output of the algorithm. The algorithm iterates
through all the routine calls for a program under execution
initiating in step 2. The resultant blocks A and B are assigned
to variables c1 and c2 respectively (steps 3 and 4). If both

c1 and c2 are proven to be anomalous, then the particular
routine is designated as unknown (steps 5 and 6) and the
true negative variable is incremented (step 9), else the false
negative count is incremented (step 12). In the end, these
counts are returned for further accuracy, precision and recall
computation in Table 3 (step 13). Following this in the next
subsection, it is necessary to discuss the training and testing
dataset generation from the EEMBC dataset.

Algorithm 4: Maximum Voting Decision Algorithm
Input:
i. Decision from block A (Csim).
ii. Decision from block B (Pvalue).
Output:
i. Return tncount, fncount

1 Initialise c1,c2; The sample program Pg consists of N
routine calls.

2 for i = 1; i < N ; i++ do
3 c1 = Csim;
4 c2 = Pvalue;
5 if (c1&c2) == anomalous then
6 N(i) = unknown program;

7 if N(i) == unknown program then
8 /* increment true negative */
9 tncount ++;

10 else
11 /* increment false negative */
12 fncount++;

13 Return tncount, fncount for computing Acc,Prec,
Rec in Table 3.

3.9 Training and testing dataset creation using random
generation of benchmarks
The five benchmark routines from the well-known EEMBC
benchmark suite’s automotive package shown in Table 1 are
combined to create a new program such that each benchmark
can be identified as a distinct routine call, within the newly
created program to train using all five of them. To produce
sufficient training samples, the new program is executed
four times. A random number module is utilised to call
the benchmarks (as routines) randomly from the validation
samples during testing to confirm the proposed system’s
performance in scenarios with dynamic fluctuations (i.e.,
interruption inputs, different program flow, etc.). The pro-
posed system is tested for complex test samples in a range
of scenarios by randomly selecting the benchmarks and
creating a new program by randomly combining the bench-
marks using a random function call generator. As a result,
each time the new program runs, a different function call
sequence is used. Furthermore, through the random mixing
of the testing program with various function calls during the
embedded system’s run-time, the testing methodology can
also be used to confirm the proposed system’s performance
in scenarios with dynamic variance. The testing case pattern
is generated using three categories described in subsections
3.9.1 and 4.1.

For example, a program consisting of fn distinct routine
calls, random no. r is produced initially such that 1 < r <
fn. This generated random no. activates the corresponding
routine call (for example, bitmnp will be called if r = 2).

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 12

3.9.1 Utilising the benchmark routines as test suite
This study used seven benchmark algorithms from the well-
known EEMBC benchmark suite’s automotive package [56].
Referring to Table 1, the five benchmarks are used for
training the AI models namely GTM and GAT and the
remaining two are used for testing purposes. The seven
benchmarks each have different parameters and serve dif-
ferent purposes. Taking the example of pulse width mod-
ulation (PWM), (puwmod), the fifth benchmark in Table 1.
This EEMBC benchmark mimics a situation where a PWM
signal proportionate to an input drives an actuator. The
phase signals regulate the motor direction and the PWM
signals offer proportional velocity control. Overall, they are
appropriate to test subjects for the suggested experiments
because they have comparable sub-routines in addition to
differing complexities and characteristics.

3.9.2 Applicability to embedded devices
APPARENT is designed to be adaptable to various embed-
ded devices. It analyses low-level hardware changes, like
program counter values and cycles per instruction, which
are common across embedded architectures. While specific
model parameters may be fine-tuned, the underlying princi-
ples and methodology are generalisable. The self-supervised
learning approach allows continuous adaptation to new
data, including data from different devices.

To handle hardware heterogeneity, APPARENT focuses
on relative patterns and relationships among HPCs rather
than absolute values. The model analyses changes in CPI
over time and patterns of peaks and phases, which are
more consistent across devices. The self-supervised learning
approach also enables adaptation to specific device char-
acteristics. APPARENT can be deployed in several ways
and would allow the effective detection of anomalies across
diverse embedded systems.

• Centralised Model: A single model can be trained
on data collected from multiple devices of the same
type or even across different types. This centralised
model can then be used to analyse data from new de-
vices, leveraging its broad understanding of normal
behaviour to detect anomalies.

• Device-Specific Fine-Tuning: The centralised model
can be further fine-tuned for specific device types
or use cases by incorporating device-specific data
during training. This can improve the model’s per-
formance and accuracy for those particular devices.

• Ensemble of Models: An ensemble of models, each
trained on data from a specific device type, can be
used to analyse data from new devices.

4 EXPERIMENTAL SETUP

We have considered an embedded system built upon an
ARMV8.2 Morello prototype board equipped with ARM
MORELLO SoC, with a prototype architecture built with
a new, experimental, out-of-order CPU based on the
Neoverse-N1 processors. Morello architecture is becoming
a popular choice for autonomous vehicles and other IoT
devices [57]. Our target platform consists of multiple pe-
ripheral interfaces like Ethernet ports, USB interfaces, and

TABLE 1
Autobench Benchmarks used for training and validation [56]

sl no Benchmarks Description Parameters

1.
Angle to Time

conversion
(a2time)

Measuring engine speed
NUM TESTS: 1000

TENTH DEGREES:3600

2. Bit Manupulation
(bitmnp)

Decision making
based on bit values

NUM TESTS: 256
INPUT CHARACTERS: 50

CHARACHTER COLUMNS:10

3. Inverse Discrete Cosine Transform
(idctrn)

Transform on input data
matrix set using

64-bit integer arithmetic

NUM TESTS: 4096
COS SCALE FACTOR: 512

COS SCALE EXP: 24

4. Road Speed Calculation
(rspeed)

Road speed based on
differences between
timer counter values

NUM TESTS: 1000
SPEED SCALE FACTOR: 36000

5. Pulse Width Modulation
(puwmod)

The PWM signal drives
an actuator

NUM TESTS: 4840
maximum phase: 40

6. Table Lookup and Interpolation
(tblook)

selective data points are
stored interpolation is

performed between them

NUM TESTS: 256
NO of X ENTRIES : 100
NO of Y ENTRIES : 100

7. Tooth to spark
(ttsprk)

performs real-time
processing of air/fuel

mixture
and ignition timing.

NUM TESTS = 500
cylinders: 16

debug trace ports and comes with a DSTREAM-PT debug
probe capable of high-performance debugging and tracing,
suitable for fast downloads and can also adapt to JTAG clock
rates. Up to 300 MHz DDR (600 Mbit/s per pin) has been
used for 32-bit wide trace capture [58].

Referring to Figure 9, the experimental setup consists of
a host PC which is connected to the Morello prototype board
under test, employing a DSTREAM-PT trace device, which
probes the runtime data from the executing program by the
ARM processor residing in the Morello hardware prototype
platform. This runtime data from various functions and
variables of the programs is traced by the trace device
through the trace port and is sent to the Host PC.

Fig. 9. APPARENT Experimental setup

The trace data once obtained by the host PC is subjected
to preprocessing and normalization for further feature ex-
traction and classification between known and unknown
(anomalous) programs using AI models in real time. Since in
practicality, most IoT platforms run without OS, we execute
bare-metal-standalone benchmark routines on the Morello
prototype board, capture the trace information and perform
further analysis in the host PC, thereby making our system a
viable solution to be deployed in edge servers tier which lies
very close to the IoT device and can save the costly cloud
server communication (Fig. 1).

4.1 Validation inputs

Using the random generation of benchmarks as routine calls
we generate around 300 test programs and have divided
them into 3 groups as itemised below:

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 13

• Category 1: programs using the original routine-
calling order: Under this group, programs follow the
identical order as used during the training phase and
are firm in the call sequence (vi. Fig. 10 (a) and (b)).

• Category 2: programs using randomly generated
routine-calling order: Under this group, programs
follow the random pattern of routine calls, however,
all the randomly called benchmarks are called from
the 5 known training examples (Fig. 10 (c, d)).

• Category 3: programs using randomly generated
routine-calling order: Under this group, programs
follow the random pattern of routine calls, however,
all the randomly called benchmarks as routines are
called from the known training examples and the 2
unknown benchmarks (Fig. 10 (e) and (f)).

The program numbers used from these 3 groups are 90,
90 and 120 respectively. The first group in the experiment is
meant to mimic situations in which the embedded system
is left unmodified, like programs that run straight out of
the factory. The second category, which includes programs
having valid credentials for execution on the experimental
embedded platform, is used to mimic the conditions of
an embedded system operating normally. The final cate-
gory is utilised for modelling compromised platforms that
have untrained/unknown programs installed; for instance,
a use-after-free attack might trigger the system to run some
unidentified programs. Therefore, we have tested the pro-
posed threat model with all 3 groups of datasets. Figure 10
illustrates the PC profiles of the trained examples (labelled
as 1,2,3,4,5) and unknown/testing benchmark (labelled as
u1, u2 within a square box) examples respectively.

The PC addresses and every benchmark profile vary
marginally, despite having identical benchmark codes and
sequences, as shown in Figs. 10(a) and (b). Particularly,
when the benchmark sequence is mixed at random (as in
Fig. 10(c), (d)), the generated profiles for the PC are com-
pletely different from each other. This may be useful when
examining the false negative rate of the trained GTM+GAT
analyser. Figures 10(e), (f) show how the profiles of the
unknown routines marked as u1 and u2 resemble those
of the known routines ”1” and ”5” correspondingly. These
unknown routines (potential injected code) have PC profiles
that resemble known routines. These profiles are meant to
imitate possible attacks that try to replicate the phase infor-
mation and peaks of the actual programs. Various programs
with comparable profiles can be further explored utilising
the false/true positive as well as negative rates from the
already learned GTM+GAT analyser.

4.2 APPARENT Building blocks
HPCs and CPI modules: Our chosen HPC module set con-
sists of various physical and virtual timer count values at
different exception levels while a particular benchmark is
executing. This indicates various information like the exe-
cution time of multiple CFGs within a benchmark routine,
the starting and ending times and their interrelationships.
Any deviations of these timings from the known trajectory
of the multiple HPCs will denote an anomalous situation.

The CPI module computes the average CPI for each
run after first extracting pertinent data from the program’s

Fig. 10. (a and b) Samples of PC profiles from categories 1 and 2, (c and
d) belong to category 2 and (e and f) belong to category 3. N.B u1 and
u2 are the unknown benchmarks namely tblook and ttsprk respectively
that haven’t been used for the training and are used as routine calls.

tracing file. Every executed instruction’s time tag and PC
address are recorded in the program’s tracing file. The only
file containing the PC addresses is the one used by the
GTM-based similarity analyser module. On the other hand,
the CPI profile for the programs that are being executed
is computed using the matching time tags. The number of
instructions in this work is 4096. The average CPI for each
of the 4096 instructions is computed using equation 1. The
phases and peaks from the mean CPI are then localised by
the ph and pk point detector. Finally, using 3, the acquired ph
and pk locations are translated into the appropriate locations
in the PC outline. GTM+GAT based classifier: The GTM-
based similarity analyser block A (Fig. 3) receives an input
vector with 1×4096 elements that are formed by choosing
a serial of PC addresses based on the beginning and end
locations of every peak. The GTM’s maximum node count
and iteration count are 50 and 2000, respectively. Following
the training process, an estimated output for each peak and
a statistical table for each phase are produced. During test-
ing, the same procedure is carried out again. The verification
module then makes use of the produced results.
The corresponding HPC data of each benchmark is fed into
the GAT module in block B (Fig. 3). Some of the HPC
data are like Program counter (PC) and PC with capabilities
(PCC), cycles per instruction, and physical and virtual timer
values. The corresponding events considered are primarily
the instructions, branches, branch-misses, cache-references,
cpu-cycles, bus-cycles, cpu-clock, cycles-ct, cpu-migrations,
dTLB-loads, dTLB-store, branch-instructions, mem-loads,
and mem-stores. The sizes of hidden dimensions of GRU,

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 14

TABLE 2
Effect of variation in λ on autobench benchmark with Accuracy(Acc),

Precision(Prec) and Recall(Rec)

λ Acc Prec Rec
1 0.9120 0.786 0.9257

0.8 0.9478 0.7934 0.9502
0.6 0.9263 0.7842 0.9359
0.4 0.9221 0.7825 0.9311

variational autoencoder and fully connected layers are set
to 32, 100 and 100 respectively. Our model is trained for
a total of 100 epochs at an initial learning rate of 0.001
using the Adam optimiser. Verification and evaluation: This
module implements the proposed APPARENT methodol-
ogy described in Section 3. For the GTM algorithm in block
A (Fig. 3), the final classification of each input program’s
peaks and phases is based on the verification results. There
are two levels to the outcome of the final assessment: phase
and peak levels. The top-level, ultimate report contains the
database’s contents in addition to the outcomes for each
program. Similarly, the GAT algorithm in block B (Fig. 3),
finds the correlation among various HPC events and models
the temporal dependencies and inter-feature correlations
using GAT. Any deviation from the program’s expected
execution trajectory signifies the probability of occurrence of
an anomalous behaviour. Once we compute the decision of
both blocks A and B respectively, we compute the majority
voting to finally conclude the occurrence of an anomaly
using another block C as shown in Figure 3, and the pseu-
docode is outlined in Algorithm 4.

TABLE 3
Performance of the autobench benchmarks

Case 1
with only block A

(Values in %)

(Case 2)
with block B using
attention network

(Values in %)Benchmarks
Acc Prec Rec Acc Prec Rec

a2time 42 93 42 96.6 98 98.2
bitmnp 37 91 39.2 97 99 98.1
idctrn 53.1 99.6 58 96 98.3 97.6
puwmod 92.5 95 95 97.3 99 97.5
rspeed 87 98.5 91.6 98 99.03 98.4
tblook 96.2 0 0 98.4 0 0
ttsprk 97.2 0 0 98.5 0 0
General
Performance 72.5 97 67 98.46 99 98

Fig. 11. Graphical representation of the performance of the autobench
benchmarks, with x axis representing the seven benchmarks.

4.3 Results and observations
The experimental results obtained from GTM block A (Fig.
3) divide the program peaks and phases into distinct groups;

known peaks (pk) and phases (ph) are given names that cor-
respond to them, while unknown pk’s and ph’s are marked
with the symbol ”0” As a whole, block A has successful
identification rates of 97.9% and 95.7% for 1140 phases and
175536 peaks, correspondingly. Furthermore, our proposed
system achieves over 96.6% accuracy in identifying peaks
of unknown/untrained programs not a part of the training
dataset. The evaluated results are grouped by type of pro-
gram as highlighted in the following subsections.

• Category 1: programs using the original routine-
calling order with 90 (known and same training order)
programs having 48238 peak values and achieving
95.9% accuracy.

• Category 2: programs using randomly generated
routine-calling orders with 90 (known) programs hav-
ing 66942 peak values and achieving 95.2% accuracy.

• Category 3: programs using randomly generated
routine-calling orders with 120 (both known and un-
known) programs having 60356 peaks and achieving
95.6% accuracy.

Similarly, the final results obtained from only block B are
computed with the score value as illustrated in equation 15.
The results have been evaluated with different values of λ
and are shown in Table 2, with the highest score obtained
with λ = 0.8. Finally, after we combine the results of both
blocks A and B and perform a majority voting in block
C (Fig. 3), we obtain the final results as displayed in the
three use cases shown in Figure 12, 13 and 14 respectively.
When the three categories of programs are employed for
testing as described above, the overall accuracy increases
after combining block B as observed in Table 3, due to a
decrease in false negative rates.

The first category generally has higher accuracy (Acc),
precision (Prec), and recall (Rec) rates due to the variety
in test category complexity w.r.t the other two categories.
The second and third categories, on the other hand, have
comparatively lower Acc, Prec and Rec rates, unlike the first.
Additionally, each verified program in categories 2 and 3 has
a different type and duration, which results in a relatively
higher variance in each program’s resultant rates compared
to the first. Table 1 shows that the database used is primarily
made up of seven unique benchmarks, among which five
fall into the training set, while the test set contains the
remaining two. The Acc, Prec and Rec rates obtained for each
benchmark are summarised in Table 3, with the graphical
representation in Figure 11.

When block B is not used (Case 1 in Table 3), the Acc
and Rec rates for the initial benchmark, named a2time, are
significantly smaller. The rationale is that a2time and tblook
are grouped in the same cluster because their distances from
the sample GTM grid node are extremely similar. Since the
test samples differ slightly from the training dataset sam-
ples, the Acc and Rec rates for the established benchmarks
are also lower than the outcomes obtained after combining
block B. Given that none of the groups contain any positive
examples, the Prec and Rec ranks for the unknown bench-
marks are zero both with and without block B computation.

As illustrated in Figure 15(a) the highlighted section
after the 20th sample displays that there is a sudden drift
in the values of the multiple HPC timers which indicates

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 15

Fig. 12. Percentages of Accuracy (Acc.), preci-
sion (Prec.) and Recall (Rec.) for category 1

Fig. 13. Percentages of Accuracy (Acc.), preci-
sion (Prec.) and Recall (Rec.) for category 2

Fig. 14. Percentages of Accuracy (Acc.), preci-
sion (Prec.) and Recall (Rec.) for category 3

(a)

(b)

Fig. 15. (a) HPC timer value drift as highlighted when it encounters
unknown/untrained program (x-axis timer values, Y-axis the user-defined
codepoints time series (b) change in the loss curve with time for fore-
casting and reconstruction module respectively distinguishing between
unknown benign and malicious programs.

that an unknown program, has arrived and this pattern is
not known to the GAT module and its subsequent forecast-
ing and reconstruction models. Our proposed methodol-
ogy monitors physical and virtual HPC timers to identify
these anomalies. This sudden drift in HPC timer values
as highlighted, indicates data tampering and the presence
of unknown code execution, resulting in a sudden change
in the correlated timer values influencing the program’s
control flow. The self-supervised learning approach em-
ployed by APPARENT allows the model to continuously
learn and adapt to new data. The model does not solely
rely on labelled training data but also leverages the inher-
ent structure and patterns within unlabeled data, thereby
enabling APPARENT to identify anomalies in new pro-
grams by recognizing deviations from the learned repre-
sentations of normal behaviour. Its reliance on low-level
hardware variations, such as program counter values, cycles
per instruction, and timer values, provides a fundamental
understanding of program behaviour. By analysing these
hardware events, it can detect deviations from the expected
patterns, even for programs it has not encountered during
training i.e. unknown programs. The plots in Figure 15(b)
illustrate the progression of the loss over time for each
learning model. For the unknown benign program, Recon-
struction Loss maintains a relatively constant loss value
throughout the period and Forecast Loss shows a decreasing
trend in loss value over time. However, for an unknown
malicious program, both the reconstruction loss and forecast
loss exhibit a sharp increase in loss value, since the GAT
couldn’t find a stable learned correlation among the various
HPC events.

5 CONCLUSION

In this manuscript, we propose a novel system design
APPARENT, which identifies program characteristics by
monitoring and counting the maximum possible low-level
hardware events from HPCs that occur during the pro-
gram’s execution and analyse the correlation among the
counts of various monitored events. To further utilise these
captured events as features we propose a self-supervised
machine learning algorithm that combines a GAT and a
GTM to detect unusual program behaviour as anomalies
to enhance the system security. Our proposed methodology
takes advantage of attributes like program counter, cycles

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 16

per instruction, and physical and virtual timers at various
exception levels of the embedded processor to identify
abnormal activity. We have shown the efficacy of the pro-
posed approach in various experimental scenarios. While
experimenting with analysing the trace of debug data on
the Host PC we faced transmission overheads in terms
of large data volumes between the target board and the
analyser running on the host PC, transmission delays due
to heavy bus utilisation and also had to be selective in terms
of leveraging appropriate communication protocol. We are
investigating the use of lossless compression techniques to
reduce the data volume transmitted and explore the use of
different communication protocols that are optimised for
low-latency and high-bandwidth data transfer. Finally, to
reduce the data communication challenges further, we plan
to develop this technology on the device itself.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Physical
Sciences Research Council through grants, EP/X015955/1,
EP/X019160/1 and EP/V000462/1, EP/V034111/1,
EP/Z533749/1. For the purpose of open access, the
author has applied a Creative Commons Attribution (CC
BY) licence to any Author Accepted Manuscript version
arising.

REFERENCES

[1] J. Zhou et al., “Swarm intelligence based task scheduling for
enhancing security for iot devices,” IEEE TCAD of Int.CAS., 2022.

[2] V. A. Memos, K. E. Psannis, and Z. Lv, “A secure network model
against bot attacks in edge-enabled industrial internet of things,”
IEEE Trans. on Indust. Inform., vol. 18, no. 11, pp. 7998–8006, 2022.

[3] X. Zhai et al., “A method for detecting abnormal program behav-
ior on embedded devices,” IEEE Trans. on Inform. Forens. and Secur.,
vol. 10, no. 8, pp. 1692–1704, 2015.

[4] Q. Zhang et al., “Efficient anonymous authentication based on
physically unclonable function in industrial internet of things,”
IEEE Trans. on Inform. Foren. and Sec., vol. 18, pp. 233–247, 2022.

[5] Z. Pan, J. Sheldon, and P. Mishra, “Hardware-assisted malware
detection and localization using explainable machine learning,”
IEEE Trans. on Comput., vol. 71, no. 12, pp. 3308–3321, 2022.

[6] S. D. Paul et al., “Rihann: Remote iot hardware authentication with
intrinsic identifiers,” IEEE IoT Journal, vol. 9, no. 24, pp. 24 615–
24 627, 2022.

[7] Z. Pan et al., “Hardware-assisted malware detection using ma-
chine learning,” in 2021 Des., Autom. & Test Europe.(DATE). IEEE,
2021, pp. 1775–1780.

[8] Y. Singh, A. P. Kuruvila, and K. Basu, “Hardware-assisted detec-
tion of malware in automotive-based systems,” in 2021 DATE.
IEEE, 2021, pp. 1763–1768.

[9] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic
malware analysis in the modern era—a state of the art survey,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–48, 2019.

[10] M. Bourdon et al., “Hardware-performance-counters-based
anomaly detection in massively deployed smart industrial de-
vices,” in 2020 IEEE 19th Intern. Symp. on Netw. Comput. and Appli.
(NCA). IEEE, 2020, pp. 1–8.

[11] L. L. Woo et al., “Early detection of system-level anomalous
behaviour using hardware performance counters,” in 2018 Des.,
Autom. & Test Europe.(DATE). IEEE, 2018, pp. 485–490.

[12] M. F. B. Abbas et al., “Hardware performance counters based
runtime anomaly detection using svm,” in 2017 TRON Symp.
(TRONSHOW). IEEE, 2017, pp. 1–9.

[13] A. P. Kuruvila et al., “Time series-based malware detection using
hardware performance counters,” in 2021 IEEE Intern. Symp. on
Hard. Oriented Secur. and Trust (HOST). IEEE, 2021, pp. 102–112.

[14] Y. Hu et al., “Care: Enabling hardware performance counter based
malware detection resilient to system resource competition,” in
2022 IEEE (HPCC/DependSys). IEEE, 2022, pp. 586–594.

[15] X. Zhai, K. Appiah, S. Ehsan, G. Howells, H. Hu, D. Gu, and
K. McDonald-Maier, “Exploring icmetrics to detect abnormal pro-
gram behaviour on embedded devices,” Journal of Systems Archi-
tecture, vol. 61, no. 10, pp. 567–575, 2015.

[16] S. P. Kadiyala et al., “Hardware performance counter-based fine-
grained malware detection,” ACM Trans. on Emb. Computing Sys.
(TECS), vol. 19, no. 5, pp. 1–17, 2020.

[17] H. Wang et al., “Scarf: Detecting side-channel attacks at real-time
using low-level hardware features,” in 2020 IEEE 26th Int. Sym. on
On-Line Test. and Robust Sys. Des. (IOLTS). IEEE, 2020, pp. 1–6.

[18] A. P. Kuruvila et al., “Hardware-assisted detection of firmware
attacks in inverter-based cyberphysical microgrids,” Int. Journal of
Electrical Power & Energy Systems, vol. 132, p. 107150, 2021.

[19] C. Li et al., “Detecting spectre attacks using hardware performance
counters,” IEEE Tran. on Comp., vol. 71, no. 6, pp. 1320–1331, 2021.

[20] A. Biswas et al., “Multi-granularity control flow anomaly detection
with hardware counters,” in 2021 IEEE 7th World Forum on Int. of
Things (WF-IoT). IEEE, 2021, pp. 449–454.

[21] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised
anomaly-based malware detection using hardware features,” in
Research in Attacks, Intrusions and Defenses: 17th International Sym-
posium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014.
Proceedings 17. Springer, 2014, pp. 109–129.

[22] G. Michau and O. Fink, “Unsupervised transfer learning for
anomaly detection: Application to complementary operating con-
dition transfer,” Knowledge-Based Systems, vol. 216, p. 106816, 2021.

[23] H. Sayadi et al., “Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis
and classification,” in Proceedings of the 55th Annual Design Au-
tomation Conference, 2018, pp. 1–6.

[24] J. A. dos Santos et al., “Hierarchical density-based clustering using
mapreduce,” IEEE Tr. on Big Dat., vol. 7, no. 1, pp. 102–114, 2019.

[25] J. Zhan et al., “Stgat-mad: Spatial-temporal graph attention net-
work for multivariate time series anomaly detection,” in ICASSP
2022-2022 IEEE (ICASSP). IEEE, 2022, pp. 3568–3572.

[26] A. et al., “Dynamic task offloading and scheduling for low-latency
iot services in multi-access edge computing,” IEEE Journal on
Selected Areas in Communications, vol. 37, 2019.

[27] W. Jin et al., “Ulpt: A user-centric location privacy trading frame-
work for mobile crowd sensing,” IEEE Trans. on Mob. Comput.,
vol. 21, no. 10, pp. 3789–3806, 2021.

[28] A. et al., “Robust malware detection for internet of (battlefield)
things devices using deep eigenspace learning,” IEEE Tran. on sust.
computing, vol. 4, no. 1, pp. 88–95, 2018.

[29] K. D. Maier, “On-chip debug support for embedded systems-on-
chip,” in Proc. of the 2003 Intern. Symp. on Circ. and Syst., 2003.
ISCAS’03., vol. 5. IEEE, 2003, pp. V–V.

[30] L. Batina et al., “In hardware we trust: Gains and pains of
hardware-assisted security,” in Proc. of the 56th Annu. Design
Autom. Conf. 2019, 2019, pp. 1–4.

[31] H. Ma et al., “Xmark: dynamic software watermarking using
collatz conjecture,” IEEE Transac. on Inform. Forens. and Secur.,
vol. 14, no. 11, pp. 2859–2874, 2019.

[32] C. Iwendi et al., “Keysplitwatermark: Zero watermarking algo-
rithm for software protection against cyber-attacks,” IEEE Access,
vol. 8, pp. 72 650–72 660, 2020.

[33] S. Mahdavifar et al., “Effective and efficient hybrid android
malware classification using pseudo-label stacked auto-encoder,”
Journ. of network and sys. manage., vol. 30, pp. 1–34, 2022.

[34] Q. Hao et al., “A hardware security-monitoring architecture based
on data integrity and control flow integrity for embedded sys-
tems,” Applied Sciences, vol. 12, no. 15, p. 7750, 2022.

[35] I. U. Haq and J. Caballero, “A survey of binary code similarity,”
ACM Comput. Surv. (CSUR), vol. 54, no. 3, pp. 1–38, 2021.

[36] P. Boufounos and S. Rane, “Secure binary embeddings for privacy
preserving nearest neighbors,” in 2011 IEEE Intern. Works. on
Inform. Forens. and Secur., 2011, pp. 1–6.

[37] M. Borowski et al., “Anomaly behaviour tracing of cheri-risc v
using hardware-software co-design,” in 2023 21st IEEE Interreg.
NEWCAS Conf. (NEWCAS). IEEE, 2023, pp. 1–5.

[38] S. P. Kadiyala et al., “Lambda: Lightweight assessment of mal-
ware for embedded architectures,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 19, no. 4, pp. 1–31, 2020.

[39] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hard-
ware performance counters can detect malware: Myth or fact?” in
Proceedings of the 2018 on Asia conference on computer and communi-
cations security, 2018, pp. 457–468.

JOURNAL VOL. XX, NO. XX, FEBRUARY XXXX 17

[40] M. S. Escobar et al., “Combined generative topographic mapping
and graph theory unsupervised approach for nonlinear fault iden-
tification,” AIChE Journal, vol. 61, no. 5, pp. 1559–1571, 2015.

[41] M. S. Escobar, H. Kaneko, and K. Funatsu, “On generative topo-
graphic mapping and graph theory combined approach for un-
supervised non-linear data visualization and fault identification,”
Computers & Chemical Engineering, vol. 98, pp. 113–127, 2017.

[42] C. Ding, S. Sun, and J. Zhao, “Mst-gat: A multimodal spatial–
temporal graph attention network for time series anomaly detec-
tion,” Information Fusion, vol. 89, pp. 527–536, 2023.

[43] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Mon-
rose, “Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 20–38.

[44] F. Javed, M. K. Afzal, M. Sharif, and B.-S. Kim, “Internet of things
(iot) operating systems support, networking technologies, appli-
cations, and challenges: A comparative review,” IEEE Communi.
Surv. & Tutorials, vol. 20, no. 3, pp. 2062–2100, 2018.

[45] H. Wang et al., “Enabling micro ai for securing edge devices at
hardware level,” IEEE Journ. on Emerg. and Selected Topics in Circ.
and Sys., vol. 11, no. 4, pp. 803–815, 2021.

[46] X. Iturbe, B. Venu, J. Jagst, E. Ozer, P. Harrod, C. Turner, and
J. Penton, “Addressing functional safety challenges in autonomous
vehicles with the arm tcl s architecture,” IEEE Design & Test,
vol. 35, no. 3, pp. 7–14, 2018.

[47] Y. Gao et al., “Malware detection by control-flow graph level
representation learning with graph isomorphism network,” IEEE
Access, vol. 10, pp. 111 830–111 841, 2022.

[48] G. et al., “Optiwise: Combining sampling and instrumentation for
granular cpi analysis,” in 2024 IEEE/ACM International Symp. on
Code Generation and Optimization (CGO). IEEE, 2024, pp. 373–385.

[49] P. Krishnamurthy et al., “Anomaly detection in real-time multi-
threaded processes using hardware performance counters,” IEEE
Trans. on Inform. Forensics and Security, vol. 15, pp. 666–680, 2019.

[50] C. M. Bishop et al., “Gtm: The generative topographic mapping,”
Neural comput., vol. 10, no. 1, pp. 215–234, 1998.

[51] T. Kohonen and T. Kohonen, “Learning vector quantization,” Self-
organizing maps, pp. 175–189, 1995.

[52] S. Yang et al., “Robust and efficient star identification algorithm
based on 1-d convolutional neural network,” IEEE Transac. on
Aeros. and Electronic. Sys., vol. 58, no. 5, pp. 4156–4167, 2022.

[53] P. Veličković et al., “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[54] H. Gao et al., “Tsmae: a novel anomaly detection approach for
internet of things time series data using memory-augmented
autoencoder,” IEEE Transac. on network scien. and eng., 2022.

[55] A. Siffer et al., “Anomaly detection in streams with extreme value
theory,” in Proc. of the 23rd ACM SIGKDD intern. conf. on knowledge
disco. and data min., 2017, pp. 1067–1075.

[56] E. M. B. Consortium et al., “The embedded microprocessor bench-
mark consortum,” 2008.

[57] B. et al., “Verified security for the morello capability-enhanced pro-
totype arm architecture,” in European Symposium on Programming.
Springer International Publishing Cham, 2022.

[58] R. Grisenthwaite et al., “The arm morello evaluation plat-
form—validating cheri-based security in a high-performance sys-
tem,” IEEE Micro, vol. 43, no. 3, pp. 50–57, 2023.

Chandrajit Pal is currently associated with the
Embedded and Intelligent Systems (EIS) Re-
search Group, University of Essex, UK as a Se-
nior Research Officer. Prior to that, he worked as
a National post-doctoral fellow at IIT Hyderabad,
India and as an AI Research Engineer at Cer-
emorphic Inc. His research interests mainly in-
clude computer vision and signal processing al-
gorithms, custom computing using FPGAs, em-
bedded systems and HW/SW co-design.

Sangeet Saha is currently associated with the
Embedded and Intelligent Systems (EIS) Re-
search Group, University of Essex, UK as a
Lecturer. Prior to that, he worked as a lecturer
at the University of Huddersfield, UK, and Se-
nior research officer (Postdoctoral scholar) at the
University of Essex, UK. His current research in-
terests include real-time scheduling, scheduling
for reconfigurable computers, real-time and fault-
tolerant embedded systems, and cloud comput-
ing. He published several of his research contri-

butions in conferences like CODES+ISSS, ISCAS, Euromicro DSD, and
in journals like ACM TECS, IEEE TCAD, IEEE TSMC.

Xiaojun Zhai (SM’21) is currently a Reader in
the Embedded Intelligent Systems Laboratory
at the University of Essex. He has authored/co-
authored over 140 scientific papers in inter-
national journals and conference proceedings.
His research interests mainly include the de-
sign and implementation of digital image and
signal processing algorithms, custom comput-
ing using FPGAs, embedded systems and hard-
ware/software co-design.

Gareth Howells (Senior Member, IEEE) is cur-
rently a Professor at the School of Computer
Science and Electronic Engineering, University
of Essex, U.K., and the Founder, Director, and
Chief Technology Officer of Metrarc Ltd., a uni-
versity spin-out company. He has been involved
in research relating to pattern recognition and
image processing for over 30 years and has
published over 200 articles in the technical lit-
erature, co-editing two books, and contributing
to several other edited publications. His core re-

search interests include applying soft computing and pattern recognition
techniques to the domains of device authentication, biometrics, secure
communications, and identity management.

Klaus D. McDonald-Maier is currently the head
of the Embedded and Intelligent Systems Lab-
oratory and director of research at the Univer-
sity of Essex, Colchester, U.K. He is also the
founder of UltraSoC Technologies Ltd., the CEO
of Metrarc Ltd., and a visiting professor at the
University of Kent. His current research interests
include embedded systems and SoC design,
security, development support and technology,
parallel and energy-efficient architectures, com-
puter vision, data analytics, and the application

of soft computing and image processing techniques for real-world prob-
lems. He is a member of VDE and a fellow of the BCS and IET.

