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Abstract—Human emotions are linked to mental well-being
and physical health, making emotion recognition via physiological
signals increasingly important. Although recent studies show
promise, the combined use of electrocardiogram (ECG) and pho-
toplethysmography (PPG) data for emotion assessment remains
underexplored. This study examines the feasibility of using joint
ECG and PPG signals for emotion evaluation within the Affective
Dimensional Model (ADM) framework. Morphological features
extracted from these signals are used to classify felt arousal and
valence with Support Vector Machines (SVM) and Neural Net-
works (NN). On a per-participant basis, SVM achieved average
valence and arousal accuracies of 72.69% (p < 0.05) and 72.30%
(p < 0.05), while NN reached 72.48% (p < 0.05) and 73.01% (p
< 0.05). The findings suggest that the morphological features of
ECG and PPG encode emotion-dependent information, enabling
accurate prediction of emotional states.

Index Terms—affective computing, physiological sensors, signal
processing, machine learning

I. INTRODUCTION

Recent advances in AI and semiconductor technology have
enabled the development of powerful computing devices for
eHealth and IoT-enabled wearables. Affective computing—a
field combining psychology, biomedical engineering, and com-
puter science—aims to enhance decision-making through emo-
tional intelligence, as first introduced by Rosalind W. Picard
[1]. Physiological sensors are vital in these systems, us-
ing signals like electrocardiogram (ECG), photoplethysmogra-
phy (PPG), electroencephalography (EEG), electromyography
(EMG), galvanic skin response (GSR) or electrodermal activ-
ity (EDA), skin temperature (SKT), and respiration patterns
(RSP) [2]. Emotion assessment mainly follows two models:
Discrete Emotional Models (DEM), based on Darwin’s work
[3], which classifies emotions like joy, sadness, and anger [4];
and Affective Dimensional Models (ADM), rooted in Wundt’s
research [5] and expanded by Russell [6], which uses arousal
and valence to map emotional states.

This study analyzes short-duration ECG and PPG signals to
extract morphological features, applying classifiers on a per-
participant due to signal variability. To our knowledge, no prior
work has combined ECG and PPG morphology within the
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ADM framework. Our contributions are: (1) combining ECG-
PPG features with ADM; (2) using a continuously annotated
emotion dataset; (3) ensuring computational efficiency by
focusing on signal shape; and (4) evaluating classification
performance per participant using SVM and NN with opti-
mization techniques.

II. RELATED WORK

Various techniques exist for emotion recognition via speech,
facial expressions, text, and physiological signals. This review
focuses specifically on physiological signal-based classifica-
tion using ADM and DEM approaches.

Interbeat Interval (IBI) and Heart Rate Variability (HRV)
are key features derived from heartbeats. HRV has been used
to classify emotions like happiness, disgust, fear, sadness, and
neutral emotions using DEM, achieving up to 69.75% accuracy
with KNN and 67.81% with LDA [7]. Another study used
EEG, ECG, PPG, GSR, and RSP signals with 15 features,
reaching an accuracy of up to 86% for joy, 91% for happiness,
79% for fear, 87% for anger, 76% for despair, and 94% for
sadness with a NN classifier and DEM approach [8].

Comparative studies show ECG and PPG perform differ-
ently in emotion classification. One found ECG achieved
58.81% (valence) and 68.75% (arousal), while PPG scored
64.94% and 64.61%, respectively, using an SVM and ADM
approach [10]. A deep learning approach reported slightly
lower ECG and PPG accuracies, with PPG dropping to 34.63%
for arousal [11]. Another study compared HRV (from ECG)
and PRV (from PPG), reporting up to 62% valence and 65%
arousal accuracy using an SVM and ADM approach [12],
suggesting PPG is a viable alternative for emotion assessment.

III. METHODS

A. ECG/PPG Signals

ECG signals are measured as the voltage difference between
two electrodes—one active and one reference—placed on the
heart or body, reflecting the time-varying amplitude of the
electrical activity from the heart. In contrast, the PPG signal
is obtained by an infrared LED sensor that emits light to
penetrate the skin and blood vessels, with the reflected light
capturing blood flow and oxygenation changes during each
heartbeat. Both signals are typically noisy and require filtering
to extract meaningful information.978-1-6654-7811-3/25/$31.00 © 2025 IEEE



B. Dataset

The CASE dataset comprises data from 30 participants
(15 males and 15 females) [13]. Unlike other public datasets
that focus mostly on EEG signals [9], CASE is unique in
including both ECG and PPG data with real-time valence-
arousal annotations. In CASE, four emotional states (amusing,
boring, relaxing, and scary) were elicited using eight videos
(two per state), each shown once to all participants. Responses
were collected via a Joystick-based Emotion Reporting Inter-
face (JERI) that provided simultaneous arousal and valence
annotations. Additionally, the dataset records six physiological
signals (ECG, PPG, GSR, RSP, EMG, and SKT) at a sampling
rate of 1000 Hz, while annotations were captured at 20 Hz.

Fig. 1. Signal Morphology Features

C. Approach

In this study, we examine the impact of emotions on the
cardiac cycle by extracting four features—peak amplitude, val-
ley amplitude, peak-to-peak amplitude, and IBI—from short
signal segments. These features were selected for their sim-
plicity in identifying local maxima and minima, from which
the features can be derived. A 3-second window was chosen
because 1- or 2-second windows often contain only a single
peak, insufficient for IBI calculation. The 3-second window
consistently provides at least two peaks in both ECG and PPG
signals, enabling accurate extraction of the required features.
As shown in Figure 1, peaks and valleys were identified as
local maxima and minima to derive peak-to-peak amplitude
(y-axis difference) and IBI (x-axis difference).

For per-participant training, data from eight videos are
divided in 3-second length. Therefore, a total of 418 trials are
obtained for each participants. For each 3-second segment,
ECG and PPG signals are extracted and matched with the
corresponding annotations. Since annotations are collected
every 50 milliseconds (20 Hz), each 3-second window cor-
responds to 60 annotations. The mean of these 60 annotations
is calculated and matched with the 3-second signal.

The dataset used in this study employs four emotions from
each quadrant of the circumplex model of affect. This model
maps emotions in a 2D space using valence (pleasantness) and
arousal (intensity) [6]. It forms four quadrants: high arousal
and positive valence (e.g., amusing), high arousal and negative
valence (e.g., scary), low arousal and negative valence (e.g.,
boring), and low arousal and positive valence (e.g., relaxed).

This model helps represent emotions as continuous states
rather than fixed categories.

D. Signal Processing

Both ECG and PPG signals can drift over time due to vari-
ous factors. To address this, baseline correction was performed
by subtracting the mean value from a 120-second baseline
period (recorded during a blue-screen video shown before the
stimulus) from the subsequent signal. A band-pass filter was
then applied to remove unwanted noise: for ECG, the low-pass
cut-off was 40 Hz (for PPG, 4 Hz) and both used a high-pass
cut-off of 0.5 Hz.

For the ECG signal, the Pan-Tompkins algorithm [14]
was implemented to detect the peaks. For the PPG signal,
peaks were identified by finding local maxima within a 500-
sample window, which was determined empirically. Some PPG
signals were found to contain outliers, and it was necessary to
remove these before further processing. A linear interpolation
method was applied, where outliers were replaced with values
obtained by averaging the neighboring non-outlier samples.
This approach prevents the loss of samples in the PPG signal.

E. Classifiers

For per-participant classification, a total of 418 trials were
obtained by extracting features from 3-second windows. These
were subsequently used to train SVM and NN classifiers.
Two separate models were trained for arousal and valence,
using MATLAB-R2020b. Arousal and valence annotations in
the dataset range from 0.5 to 9.5. For binary classification, a
threshold value of 5 was applied to create two distinct classes:
any annotation value less than or equal to 5 was classified as
Low Arousal (LA)/Negative Valence (NV), while value greater
than 5 was classified as High Arousal (HA)/Positive Valence
(PV). The dataset is balanced, ensuring an equal number of
trials for each class. For SVM classification, 80% of the
trials were used for training and 20% for testing. For NN
classification, 70% of the trials were used for training, 15%
for validation, and 15% for testing. A 5-fold cross validation
is employed in this study.

The optimization techniques explore various hyperparame-
ter combinations using an optimization strategy designed to
minimize the model’s classification error. For SVM classifica-
tion, Bayesian optimization [15] is used for hyperparameter
optimization. This process returns a model with optimized
hyperparameters, including box constraint, kernel scale, kernel
function, and polynomial order. For NN classification, the
ADAM (adaptive moment estimation) optimizer [16] is used
for hyperparameter optimization. This process returns a model
with optimized hyperparameters, including learning rate, gra-
dient decay factor, squared gradient decay factor, and epsilon
(a small constant to ensure numerical stability).

The NN consists of a feature input layer, a fully connected
layer with 50 neurons, batch normalization, and a ReLU
activation layer. This is followed by another fully connected
layer matching the number of target classes, a SoftMax layer
for probability output, and a classification layer. The model



TABLE I
SVM TRAINING RESULTS

Valence Arousal
Participant No. Test Acc. (%) p-Value F1-Score (%) F1-Score (%) Test Acc. (%) p-Value F1-Score (%) F1-Score (%)

PV NV HA LA
1 75.68 p < 0.001 76.90 74.30 87.50 p < 0.001 88.20 86.70
2 77.23 p < 0.001 78.90 75.40 61.77 p < 0.05 59.40 63.90
3 80.00 p < 0.001 77.80 81.80 67.14 p < 0.01 71.60 61.01
4 73.43 p < 0.001 72.13 74.63 76.00 p < 0.001 76.92 75.00
5 79.17 p < 0.001 78.87 79.45 64.29 p < 0.01 71.91 50.98
6 71.73 p < 0.01 72.34 71.11 72.22 p < 0.001 68.75 75.00
7 62.50 p < 0.05 55.00 67.80 57.14 p > 0.05 58.62 55.56
8 66.67 p < 0.05 57.70 72.50 78.57 p < 0.001 80.00 76.92
9 67.19 p < 0.05 61.82 71.23 67.19 p < 0.01 60.38 72.00
10 63.64 p > 0.05 55.56 69.23 64.29 p < 0.05 42.30 50.00
11 82.00 p < 0.001 82.35 81.63 74.29 p < 0.001 75.00 73.53
12 69.23 p < 0.001 66.67 71.43 68.18 p < 0.01 64.41 71.23
13 77.08 p < 0.001 78.43 75.56 73.21 p < 0.001 74.58 71.70
14 76.47 p < 0.01 75.00 77.78 58.97 p < 0.05 60.00 57.90
15 63.51 p < 0.01 67.47 58.46 62.50 p < 0.05 66.67 57.14
16 61.76 p < 0.05 65.79 56.67 77.50 p < 0.001 74.29 80.00
17 71.62 p < 0.001 72.00 71.23 79.73 p < 0.001 76.92 81.93
18 71.67 p < 0.001 70.17 73.02 77.94 p < 0.001 78.26 77.61
19 70.27 p < 0.001 71.05 69.44 83.33 p < 0.001 81.48 84.84
20 83.33 p < 0.001 84.00 82.61 80.49 p < 0.001 80.00 80.95
21 68.96 p < 0.01 65.38 71.87 77.42 p < 0.001 76.67 78.12
22 70.97 p < 0.001 68.97 72.73 72.22 p < 0.001 64.29 77.27
23 71.21 p < 0.001 70.77 71.64 77.14 p < 0.001 75.00 78.95
24 76.67 p < 0.001 75.00 78.12 70.00 p < 0.01 63.41 74.58
25 77.94 p < 0.001 76.92 78.87 75.00 p < 0.001 73.68 76.19
26 72.22 p < 0.001 75.41 68.08 72.58 p < 0.001 72.13 73.02
27 68.06 p < 0.001 72.94 61.02 72.97 p < 0.001 74.36 71.43
28 62.50 p < 0.05 64.41 60.38 71.25 p < 0.001 72.29 70.13
29 98.08 p < 0.001 98.11 98.04 82.26 p < 0.001 81.97 82.54
30 69.56 p < 0.01 68.18 70.83 66.00 p < 0.01 66.67 65.31
Test Accuracy 72.69% 72.30%

is trained with a mini-batch size of 10, with data shuffled in
each epoch and validated using the validation set.

IV. RESULTS

Table I summarizes the results obtained from the SVM
classifier. The average test accuracy achieved by the SVM
classifier is 72.69% for valence and 72.30% for arousal.
Similarly, Table II provides the results of the NN classifier,
with average test accuracies of 72.48% for valence and 73.01%
for arousal. In addition to the accuracy of the classification,
the statistical significance (p-value) and the F1 score for both
classes were calculated. The F1 score measures a model’s
accuracy on a given dataset by calculating the harmonic mean
of precision and recall. A higher F1 score indicates strong
performance, while a lower score suggests lower precision and
recall. Both classifiers, optimized using relevant algorithms,
produced promising results. Most results were statistically
significant (p ≤ 0.05), except for a few participants in
both classifiers. Overall, the statistical evaluation validates the
performance of both classifiers, with only a few exceptions.

In addition to the statistical significance test and average
accuracies, the standard deviation of the performance of each
model over trials is reported. This is 7.48% for valence
and 7.32% for arousal using the SVM classifier and 7.62%
for valence and 6.06% for arousal using the NN classifier.
This level of variability suggests moderate fluctuations in

the model performance across different participants. This is
due to differences in signal morphology between trials and
participants (i.e. Non-stationarity of the signals, noise etc.),
as well as differences in participants emotional responses
(different people emotionally react differently) [17].

Per-participant based emotion recognition offers several
advantages, particularly in improving the accuracy and re-
liability of emotion classification. By training and testing
models on data from the same individual, these systems can
better capture the unique physiological and emotional response
patterns of each person. This personalized approach reduces
inter-participant variability and leads to more consistent per-
formance. Moreover, participant-dependent models are well-
suited for integration into wearable devices, where continuous
monitoring and adaptation to an individual’s emotional state
are essential for delivering meaningful, real-time insights.

V. CONCLUSION

This study introduces a method for assessing human emo-
tions using short physiological signal segments, specifically
ECG and PPG data. The approach comprises three steps:
signal processing, feature extraction, and classification. Emo-
tional states were evaluated using 3-second segments of ECG
and PPG data, showing that the morphological features ef-
fectively capture emotion-related changes. Classifiers were
individually implemented for 30 participants, accounting for



TABLE II
NN TRAINING RESULTS

Valence Arousal
Participant No. Test Acc. (%) p-Value F1-Score (%) F1-Score (%) Test Acc. (%) p-Value F1-Score (%) F1-Score (%)

PV NV HA LA
1 72.22 p < 0.001 73.68 70.59 71.43 p < 0.05 71.42 71.42
2 75.00 p < 0.001 77.19 72.34 65.45 p < 0.01 66.67 66.67
3 76.19 p < 0.001 78.26 73.68 66.67 p < 0.01 65.22 68.00
4 80.95 p < 0.001 80.00 81.82 76.32 p < 0.001 74.29 78.05
5 68.00 p < 0.01 70.37 65.22 69.05 p < 0.01 66.67 71.11
6 70.00 p < 0.01 70.00 70.00 70.83 p < 0.01 69.56 72.00
7 61.90 p < 0.05 66.67 64.86 63.83 p < 0.05 65.22 57.89
8 64.29 p < 0.05 57.14 69.39 82.50 p < 0.001 82.05 82.93
9 67.39 p < 0.01 65.12 69.39 71.43 p < 0.01 72.73 70.00
10 62.50 p > 0.5 66.67 57.14 75.00 p < 0.001 73.68 76.19
11 85.29 p < 0.001 84.85 85.71 73.08 p < 0.001 74.04 72.00
12 72.41 p < 0.001 65.22 77.14 68.00 p < 0.01 69.23 66.67
13 75.00 p < 0.001 72.22 77.27 75.00 p < 0.01 72.73 76.93
14 73.08 p < 0.01 75.86 69.56 58.62 p < 0.05 60.00 57.14
15 70.00 p < 0.001 66.67 72.73 69.05 p < 0.01 68.29 69.77
16 63.04 p < 0.05 69.09 54.05 87.50 p < 0.001 88.89 85.71
17 73.21 p < 0.001 75.41 70.59 73.21 p < 0.001 68.08 76.92
18 68.52 p < 0.01 66.67 70.17 68.97 p < 0.01 65.38 71.87
19 74.00 p < 0.001 64.70 79.36 81.82 p < 0.001 81.82 81.82
20 73.33 p < 0.01 75.00 71.43 81.25 p < 0.001 79.07 83.02
21 72.73 p < 0.01 73.91 71.43 79.17 p < 0.001 78.26 80.00
22 76.19 p < 0.001 76.19 76.19 69.23 p < 0.01 60.00 75.00
23 73.08 p < 0.001 73.08 73.08 75.86 p < 0.001 74.07 77.42
24 75.00 p < 0.001 75.56 74.42 75.00 p < 0.01 72.73 76.92
25 70.37 p < 0.01 71.43 69.23 76.67 p < 0.01 74.07 78.79
26 79.17 p < 0.001 81.48 76.19 81.03 p < 0.001 80.70 81.36
27 73.21 p < 0.001 75.41 70.59 71.15 p < 0.001 73.68 68.08
28 58.33 p > 0.05 47.37 65.52 68.52 p < 0.01 66.67 70.17
29 100.00 p < 0.001 100.00 100.00 72.50 p < 0.01 68.57 75.56
30 70.00 p < 0.05 70.97 68.97 72.22 p < 0.01 68.75 75.00
Test Accuracy 72.48% 73.01%

variability in resting heart rates and signal patterns. The results
indicate that the four extracted features reliably determine
emotional states, with statistical measures (including p-values)
confirming the method’s significance.
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