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Chapter 1 
Introduction to Quantitative Risk 
Management and Risk in Agricultural 
Business: Cutting Edge Quantitative 
Concepts and Methodologies 

Hirbod Assa, Simon Wang, and Peng Liu 

The collection of chapters presented here highlights the latest advancements in 
insurance, focusing on the integration of cutting-edge AI and statistical techniques 
with innovative concepts such as parametric and price insurances. These studies 
address a wide range of topics, from theoretical developments to practical applica-
tions and empirical results, pushing the boundaries of traditional insurance models. 
This introduction summarizes the key contributions of each paper, emphasizing their 
innovative approaches and their relevance to contemporary insurance practices. 

“Index-based Insurance Design for Climate and Weather Risk Management: A 
Review” provides a comprehensive overview of the design principles and practical 
applications of index-based insurance. The chapter discusses various types of index 
insurance, including weather index and area yield index insurance, and their poten-
tial to offer cost-effective and scalable risk management solutions. By reviewing 
the successes and challenges of existing index insurance schemes, the study offers 
valuable recommendations for improving the design and implementation of these 
products to enhance their accessibility and effectiveness. This review emphasizes 
the innovative use of indices in insurance, presenting a framework for future 
developments in the field. 

“Weather and yield index-based insurance schemes in the EU agriculture: A 
focus on the Agri-CAT fund” discusses various strategies and tools available 
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2 H. Assa et al.

to European farmers for managing weather-related risks. The chapter highlights 
the role of public and private insurance schemes, mutual funds, and innovative 
financial instruments in enhancing the resilience of the agricultural sector to climate 
variability. By providing a detailed analysis of policy frameworks and practical 
applications, the study discusses the importance of comprehensive risk management 
approaches in ensuring the sustainability of agriculture in the face of climate change. 
This research emphasizes the need for integrated risk management strategies that 
combine traditional insurance with innovative financial instruments. 

“Avocado production index insurance: an application of credibility theory on 
heterogeneous data” introduces an innovative approach to designing index insurance 
for avocado production by applying a modified version of Bühlmann’s credibility 
theory to handle the challenges posed by heterogeneous data from various countries. 
By modeling the intensity and frequency of production losses, the research offers a 
robust framework for calculating insurance premiums that account for variability 
in data quality and quantity. The study also proposes a two-layer insurance policy 
to mitigate over-hedging, ensuring that farmers are adequately protected against 
significant production shortfalls. This methodology, while focused on avocados, 
provides a scalable model that could be adapted to other agricultural commodities 
facing similar risks. 

In “How do economic variables affect the pricing of commodity derivatives 
and insurance?” the authors investigate the relationship between macroeconomic 
variables, namely demand elasticity, and the pricing of commodity derivatives. 
This study utilizes econometric models such as GMM methods to identify the 
key drivers of commodity prices and their implications for derivative pricing. The 
insights gained from this research are crucial for developing more accurate and 
responsive pricing models for commodity derivatives and particularly insurance on 
prices in agriculture and other sectors. This chapter exemplifies the intersection of 
economics and advanced statistical techniques in enhancing financial instruments 
used in agriculture. 

“Empirical Results for Cross Hedging in the Incomplete Market” explores 
the effectiveness of cross-hedging strategies in markets where perfect hedging 
instruments are not available. The study evaluates different hedging techniques, 
including the use of futures and options, to mitigate risks associated with agri-
cultural commodities. The findings show the importance of selecting appropriate 
hedging instruments and strategies to manage price volatility and protect against 
adverse market movements. This chapter contributes to the understanding of risk 
management in incomplete markets, presenting innovative solutions for mitigating 
financial risks in agriculture. 

The chapter “Crop Yield Insurance Analysis for Turkey: Spatiotemporal Depen-
dence” examines the dependencies between crop yields and various risk factors 
across different regions in Turkey. By employing INLA as an approach developed in 
the last decade, via using spatial and temporal statistical models, the study identifies 
patterns that can improve the pricing and structuring of crop yield insurance 
products. This research is relevant for developing tailored insurance solutions that 
address specific regional risks, thereby enhancing the effectiveness and uptake
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of agricultural insurance. The integration of spatiotemporal dependence in risk 
assessment represents a cutting-edge approach, ensuring that insurance products are 
both precise and equitable. 

The chapter titled “Model and Forecast Combination for Predictive Yield 
Distributions in Crop Insurance” explores the use of combined forecasting models 
to improve the accuracy of yield predictions. By integrating model and forecast 
methods, the authors demonstrate how the new approach can enhance the reliability 
of yield estimates, which are critical for setting insurance premiums and coverage 
levels. This approach leverages the strengths of different models to produce more 
robust and precise yield forecasts. The use of model and forecast combination 
represents a significant advancement in predictive analytics for agriculture. 

“A Recursive Method on Estimating ARFIMA in agricultural time series” 
introduces a recursive methodology for estimating Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) models. ARFIMA models are crucial in 
time series analysis, especially for data exhibiting long memory properties. The 
recursive approach presented in this chapter enhances computational efficiency and 
accuracy, making it a significant contribution to the statistical techniques used in 
financial and insurance risk modelling in agricultural data set. Specially the use of 
Hurst exponent has been spelled out and properly used to model the memory in 
the agricultural data. This work improves the precision and speed of modeling long-
term dependencies in time series data, essential for accurate forecasting in insurance 
and finance. 

The impact of weather factors compared with other important factors on 
agricultural risk is meticulously analyzed in “Examining the impact of weather 
factors on agricultural market price risk: an XAI approach”. This chapter employs 
machine learning models to quantify the effects of various weather conditions on 
risk of agricultural prices and see how the many drives of realized volatility can 
be compared with ENSO as the major weather risk drivers. The chapter has used 
Shapley values for ranking the most important features impacting price volatility. 
The results provide valuable insights for designing weather index-based insurance 
products that can offer financial protection to farmers against weather-related risks. 
The study enhances the predictive accuracy and reliability of agricultural insurance 
schemes. This research demonstrates the potential of AI and big data analytics in 
improving the resilience of agriculture to climatic variability. 

In “Textual analysis in agriculture commodities market,” the authors apply 
natural language processing (NLP) techniques to analyze textual data related to 
agricultural markets price risk. This innovative approach allows for the extraction of 
sentiment and thematic trends from large volumes of unstructured data, such as news 
articles and social media posts in modelling price volatility. The insights derived 
from textual analysis can inform better decision-making in commodity trading and 
risk management, highlighting the potential of AI-driven tools in the insurance 
industry. This chapter emphasizes the role of big data and AI in transforming 
traditional approaches to market analysis and insurance. 

“Applications of Singular Spectrum Analysis in Agricultural Financial Time 
Series” showcases the use of Singular Spectrum Analysis (SSA) for decomposing
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and reconstructing time series data. SSA is particularly effective in identifying and 
isolating the underlying patterns in complex time series, making it a powerful tool 
for forecasting agricultural prices or yields and other economic indicators. This 
chapter demonstrates the application of SSA in improving the accuracy of time 
series forecasts, which is crucial for developing reliable insurance models. The 
innovative use of SSA in time series analysis represents a cutting-edge approach 
to enhancing predictive capabilities in insurance. 

The collective insights from these chapters highlight the advancement and 
complexity of contemporary agricultural risk management and insurance prac-
tices. Representing the cutting edge of insurance research, these studies integrate 
advanced statistical methods, including deep neural networks and unstructured data 
analysis such as NLP and text data, along with modern insurance concepts like 
parametric and index insurance along with price volatility risk management tools. 

These chapters contribute to both theoretical and practical realms, presenting 
solutions that tackle real-world challenges in the insurance industry. The innovative 
methodologies and applications they discuss highlight the transformative potential 
of modern technologies and statistical techniques in agricultural risk management. 
With climate change increasingly affecting global agriculture and other systematic 
risks due to globalization, the development of sophisticated insurance products and 
risk management strategies is becoming ever more crucial. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 
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Chapter 2 
Index-based Insurance Design for 
Climate and Weather Risk Management: 
A Review 

Wenjun Zhu, Jinggong Zhang, Lysa Porth, and Ken Seng Tan 

Abstract Index insurance has become a notable risk management tool in response 
to increasing climate variability and extreme weather events. This chapter offers a 
thorough review of innovative index-based financial solutions, focusing on index 
insurance. It explores the essential principles of index insurance, including its 
actuarial framework, empirical research findings, and practical considerations. 
Additionally, the chapter explores future advancements in the field, emphasizing 
the integration of cutting-edge technologies such as artificial intelligence and 
blockchain. These innovations have the potential to risk modeling, underwriting 
and claims processing of index insurance. Aimed at researchers, practitioners, 
and policymakers, this chapter serves as a comprehensive guide for designing 
effective index insurance programs that enhance resilience in the face of climate 
uncertainties. 

2.1 Introduction 

Climate change and its associated weather risks have significantly impacted global 
production systems and livelihoods [83, 119]. Research by Nordhaus [119] and 
Hong et al. [83], highlights the severity and widespread nature of weather-related 
risks, which at times lead to extensive damage across various sectors, particularly 
in agriculture [2, 10, 13, 111, 127, 169]. Agriculture relies heavily on weather 
conditions, making it highly susceptible to weather-related risks [56, 133]. Adverse 
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weather is estimated to cause 70–90% of agricultural production loss [149], creating 
a strong impetus to hedge against weather risk. However, weather risk is systemic 
and relevant derivatives are very limited. 

Insurance is widely used to hedge weather risk. While traditional insurance 
models have their complexities, including administrative costs, time-consuming 
settlement processes, and challenges related to adverse selection and moral hazard, 
they remain a vital component of risk management. To complement these models 
and offer a tailored solution for weather-related risks, index insurance has been 
developed [8, 25, 89, 115]. This alternative approach provides farmers with a means 
to protect against extreme and systemic weather conditions, enhancing the suite 
of tools available for effective risk mitigation in agriculture and beyond. Index 
insurance is a special type of financial contract whose payout is based exclusively 
on some pre-specified indices. For example, weather index insurance determines 
the claim payments based on future realizations of weather events determined 
from certain weather indices. The primary distinction between index insurance 
and traditional indemnity-based insurance lies in their payout mechanisms. In 
traditional insurance, payouts are directly tied to the actual losses experienced 
by policyholders. In contrast, index insurance bases its payouts on predefined 
indices, which should be built upon data that is both transparent and representative. 
This structure theoretically reduces information asymmetry issues, such as adverse 
selection and moral hazard, because the payout is not influenced by the specific 
losses of an individual policyholder but by the performance of the index. This 
attribute makes index insurance particularly appealing, as it addresses many of 
the limitations associated with conventional insurance models. Consequently, index 
insurance is experiencing rapid growth and increasing interest, especially in sectors 
like agriculture that are highly susceptible to weather-related risks [141]. 

Furthermore, the adoption of advanced technologies, including satellite mea-
surements and digitalization, has significantly reduced the costs associated with 
index insurance. The incorporation of artificial intelligence (AI) and blockchain 
technology has further improved its efficiency. AI enhances risk modeling through 
the analysis of vast datasets, including historical weather patterns, satellite imagery, 
and agricultural data, leading to more accurate risk assessments [130, 131]. This not 
only refines risk modeling but also simplifies the claims process, enabling quicker 
and more transparent settlements. 

Blockchain technology, known for its decentralized and transparent characteris-
tics, offers innovative possibilities for index insurance by utilizing smart contracts 
to automate processes, minimizing administrative burdens and fostering trust and 
transparency [33, 43, 132]. Additionally, index insurance supports farmers in 
managing risks associated with unpredictable weather, contributing to more stable 
agricultural practices and economic resilience [113]. 

Although index insurance holds considerable promise, its uptake has been 
modest, presenting obstacles to achieving profitability and long-term sustainability. 
For example, in Canada, enrollment in index insurance programs, like forage index 
insurance, is notably low, estimated to be as low as 10% in some provinces. 

The primary factor contributing to this low demand is basis risk, the risk that the 
underlying indices and actual losses are mismatched [34, 45, 89]. While challenging
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to completely eliminate, basis risk can be mitigated through careful contract design. 
As emphasized by [22], contract design critically determines the demand for index 
insurance. As a result, minimizing basis risk is a pivotal strategy to enhance 
customer demand for index insurance. Besides basis risk, ambiguity aversion [15], 
farmers’ past insurance payout experiences [41], and insurance literacy [18, 69], 
among others, are also influencing factors for index insurance demand. 

This chapter provides a comprehensive exploration of the latest advancements in 
index-based financial mechanisms, with a focus on index insurance. It situates this 
innovative insurance model within the wider landscape of managing agricultural and 
climate-related risks, offering insights into the key considerations for developing 
and implementing index insurance initiatives. The chapter starts by establishing 
the actuarial foundation of index-based insurance, discussing the utility-based 
theoretical framework and the evolution of data-driven methodologies as outlined 
in Sect. 2.2. Section 2.3 examines the index insurance market, highlighting factors 
contributing to its limited uptake. Further exploration of various index-based 
insurance schemes is provided in Sect. 2.4, offering a comprehensive overview of 
this evolving field. 

Additionally, this chapter not only examines current trends but also looks ahead 
to future developments in index insurance, particularly in Sect. 2.5, which explores 
the lastest technological advancements. Central to this discussion is how state-of-
the-art technologies like AI and blockchain are poised to transform the way index 
insurance is designed and implemented. These technological breakthroughs are 
evaluated for their immediate benefits and their long-term potential to reshape the 
methodologies used in risk assessment and claims management within the context 
of index insurance. The overarching goal of this chapter is to offer a comprehensive 
understanding of the evolving field of index insurance, equipping researchers, 
practitioners, and policymakers with a guide to navigating the complexities of index 
insurance innovations and their role in enhancing resilience against climate-related 
challenges. 

2.2 The Actuarial Foundation of Index-based Insurance 

2.2.1 The Theoretical Framework 

The conceptual underpinnings of index insurance design can be traced back to 
the seminal contributions of [3, 129]. Let us consider an insurance buyer who 
would like to hedge a potential loss, which is modeled by a nonnegative random 
variable Y , defined on a probability space (Ω,F ,P).. The objective is to design an 
index insurance payoff based on a p-dimensional index X = (X1, X2, . . . , Xp).. 
More specifically, the goal is to determine I (X)., where I : R

p |' R
+

. is 
the nonnegative payoff function, and this indicates that the insurance payout is 
completely determined by the realization of the underlying index X .. In the context
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of managing weather-related risks, X . is a vector of weather or climate indices 
which are typically obtainable, transparent, and trustworthy. Denote the premium 
of the index insurance contract by π(I)., a functional of the indemnity function 
I . Then the insurer aims to design an optimal payout function I so that the 
policyholder’s expected utility, E (U)., is optimized under various constraints such 
as the budget constraint. Mathematically, the optimization problem is expressed as 
follows [29, 171]: 

.

⌠
sup
I∈I

J (I) := E
(
U [w0 − Y + I (X) − (1 − θ)Π(I)])

s.t. Π(I) = π0,
(2.1) 

where U is a utility function such that U '(·) ≥ 0. and U ''(·) < 0. representing 
the policyholder’s risk aversion; w0 . is the initial wealth of the policyholder; 0 ≤
θ ≤ 1. is the proportion of insurance premium subsidized by the government; I :=
{I : Rp |' R

+|I is measurable}. defines the feasible set of indemnity function I ; 
π(·). denotes the premium principle adopted for insurance ratemaking; and π0 . is an 
exogenously given premium, indicating the price level that the insurance buyer is 
willing to accept. In the context of agricultural insurance, the exogenous premium 
level also prevents abusive and speculative use of insurances, due to the popular 
existence of government subsidies (i.e., θ > 0.). 

In both current practice and academic literature, the most commonly adopted 
premium principle for agricultural insurance is the expectation premium principle, 

.Π(I) = λE [I (X)] , (2.2) 

where λ. is the risk loading parameter and λ ≥ 1.. 
When λ = 1., Π(I). is called the actuarially fair premium. Typically, λ. is strictly 

larger than 1, which affects the insurance premium, the insurer’s profitability, and 
the demand for insurance among agricultural producers. In practice, it’s challenging 
to measure and select λ.. Chen et al. [29] endogenously estimate the equilibrium 
λ. from the supply and demand curves of insurance contracts. Such endogenous 
insurance premium considers the strategic interaction between insureds and insur-
ers, offering valuable market insights. More general approaches to insurance pricing 
are discussed in Sect. 2.2.4.1 

The loss random variable Y in the framework represents either production 
loss or revenue loss. When Y is production loss, index insurance offers yield 
protection, ensuring compensation for diminished agricultural outputs. Conversely, 
if Y represents revenue loss, the insurance extends to cover risks associated with 
price fluctuations, providing financial compensation for variations in market prices. 
Currently, most available index-based insurance products in the market focus on

1 A very useful measure for quantifying and evaluating the selection of risk loading is the relative 
risk loading. This relates to the notion of Marginal Indemnity Functions (MIF), which measures 
the increase in ceded loss per unit of increase in the global loss [4, 178]. 
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production risk, and products such as price insurance have only more recently 
been introduced in the agricultural insurance market. For example, [5] investigates 
the viability of price index insurances in the market, demonstrating through both 
theoretical and practical framework that such products can achieve higher Sharpe 
ratios than traditional financial market indices. 

Recent advances in technology and data analytics have greatly enhanced the 
functionality and appeal of price index insurance. For example, companies use 
AI techniques to empower stakeholders to make informed decisions and manage 
financial exposure effectively, providing precise and responsive coverage tailored to 
the specific needs and risks of policyholders. 

It is worthwhile to note that the feasible set I . for index insurance design 
generally differs from that for convention indemnity-based insurance. In indemnity-
based insurance, the payout function is subject to certain conditions, such as the 
Lipschitz condition, to prevent moral hazard issues associated with the structure 
of the insurance contract [30, 31]. However, these restrictions are unnecessary for 
index insurance, as the underlying index X . is transparent and cannot be manipulated 
by either the insurer or the insured. Typically the maximum payout of index 
insurance can sometimes exceed the largest possible loss (i.e., supY . if it is finite), 
as policyholders in incomplete markets may seek to over-insure their underlying 
assets to hedge against large losses [50]. 

Assuming the existence of joint probability density f (x, y)., a bounded fea-
sible set I = {I |I : Rp ' [0,M] is measurable }. under some certain technical 
conditions (see H1 and H2 in [171] for details). [171] establish the existence and 
uniqueness of an optimal solution to (2.1) and categorizes solution into three dif-
ferent regions. An ordinary differential equation-based method and a corresponding 
Runge-Kutta-based numerical scheme are proposed in [171] to efficiently solve the 
problem in the 2-dimensional case, as stated by Theorem 2.1 below where f (y|x). 

denotes the conditional density function given X = x .. 

Theorem 2.1 Suppose that the derivative ∂
∂x

f (y|x). exists and is continuous on R2
., 

and a function ^  I : R |' R. solves the following ODE problem: 

. 

⌠ dI
dx = F(x, I ),

π0 = γE [(I (X) ∨ 0) ∧ M] ,

where the function F : R2 |' R. is defined by 

. F(x, I ) := −
⌠
R

U ' (w + I − y − (1 − θ)π0)
∂
∂x

f (y|x) dy⌠
R

U '' (w + I − y − (1 − θ)π0) f (y|x) dy
.

Then, I ∗ := (^  I (x) ∨ 0
) ∧ M . is the optimal solution to problem (2.1). 

Using an empirical case study in where temperature is selected as the underlying 
index for an insurance contract protecting rice yield in Jiangsu, China, [171]  shows  
that the optimal payout function generally highly non-linear and may even be non-
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Fig. 2.1 Examples of optimal index payout based on different utility functions (i.e., quadratic, 
exponential, and logarithmic). (Source: Figure 7 of [171]) 

monotonic with respect to the index variable. This ensures that the payout aligns 
closely with actual loss variables, ultimately minimizing basis risk (Fig. 2.1). 

2.2.2 Data-based Approaches 

Due to the challenges associated with jointly modeling Y and X ., especially when 
X is highly dimensional, problem (2.1) may also be formulated in a non-parametric 
framework, where moment quantities are replaced by their empirical counterparts 
[29, 54, 142]: 

.

⎧⎨
⎩
sup
I∈I

J (I) := 1
N

∑  N
j=1

(
U [w0 − yj + I (xj ) − (1 − θ)π(I)])

s.t. λ
N

∑  N
j=1 I (xj ) = π0,

(2.3) 

where {yj , xj }j=1,2,...,N . is an observed random sample and N is the sample size. 
In this case, further restrictions on the feasible set I0 ⊂ I . should be imposed to 
guarantee that the solution to (2.3) is practically meaningful. I . should be properly 
specified so that it strikes a good balance between model flexibility and stability (see 
Fig. 2.2). For example, [29] formulates and solves problem (2.3) through a neural 
network-based framework, and the optimal solution sacrifices some stability but
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Fig. 2.2 Feasible sets and optimal contracts under a non-parametric framework. This figure 
compares three different feasible sets and their corresponding optimal contracts. The dashed-green 
circle area represents the indemnity loss, which is the actual loss experienced by the policyholder. 
The general feasible set, I ., is represented by the solid-blue circle area and the blue star denotes 
the global optimal contract. The dotted-grey circle area, Ĩ0 ., is a feasible set of all piecewise linear 
contracts. The black dot at the edge of Ĩ0 . is the optimal piecewise linear contract, i.e., the contract 
with the smallest basis risk within Ĩ0 .. The dotted-blue area, I0 ., represents the specific feasible set 
explored in this study, and its optimal contract is denoted by the blue diamond. The red triangle 
illustrates an overfitted contract. (Source: Figure B.1 of [29]) 

achieves significantly enhanced flexibility and hence significant basis risk reduction 
as evidenced by Fig. 2.3. 

2.2.3 Other Optimization Objectives 

Motivated by the asymmetric and heavy-tailed nature of financial and insurance 
risks, [54] extends this design framework (2.1) by replacing the objective function 
with tail risk measures such as Value-at-Risk (VaR), Conditional Value-at-Risk 
(CVaR), and Entropic Value-at-Risk (EVaR). The optimization problem is then 
reformulated as follows: 

. min
θ∈Rp

ρ

⎛
⎝

⎧⎨
⎩yi −

⎡
⎣

⎛
⎝θ0 +

p⎲    
j=1

θj xi,j

⎞
⎠ ∨ 0

⎤
⎦ ∧ M + Π(θ)

⎫⎬
⎭

i=1,2,...,N

⎞
⎠ , (2.4)
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Fig. 2.3 Insurance payoffs against actual losses to illustrate the basis risk for: Panel (a)  a  
piecewise-linear insurance contract based on a single temperature index; Panel (b)  an  neural  
network-based index insurance contract proposed by [29]. (Source: Figure 1 of [29]) 

where θ . is a parametric representation of the insurance payout function. For any 
α ∈ (0, 1)., the empirical measures of VaR, CVaR, and EVaR are given, respectively, 
by 

. VaRα

({Yi}i=1,2,...,N
) = YkN :N,

. CVaRα

({Yi}i=1,2,...,N
) = (kN − αN) YkN :N

N(1 − α)
+ 1

N(1 − α)

N⎲    
i=kN+1

Yi:N,

and, 

. EVaRα

({Yi}i=1,2,...,N
) = inf

t>0

⌠
t−1 ln

 ⎾ ∑  N
i=1 etYi

N(1 − α)

⎤⎞
,

where kN = ⎾   αN ⏋.denotes the smallest integer greater than or equal to αN ., and Yi:N . 

represents the i-th order statistic from a random sample of size N from population Y . 
The main challenge to numerically solv e (2.4) is that the objective function may not 
be convex or differentiable. Fan et al. [54] show that the objective function, when 
formulated with VaR, CVaR, and EVaR, is at least continuous with respect to θ .. 
To address the numerical difficulties, they propose using a model-based annealing 
random search method. This extended framework is of great practical relevance 
for corporate farming operations and the internal risk management strategies of 
insurance companies [29].
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2.2.4 Pricing Framework with Premium Principles 

A crucial element in any successful agricultural insurance program, including 
index insurance, is the establishment of actuarially fair and sustainable premium 
rates [6, 157]. Setting appropriate premiums is essential yet challenging. Failure 
to set sound premiums can lead to various issues, such as stunted growth in 
agricultural insurance programs and insufficient reinsurance capacity. Even minor 
improvements in the precision of premium rates can lead to significant benefits, 
particularly in reducing government spending and ensuring the long-term viability 
of these programs [36, 121]. A pivotal step in establishing a robust framework for 
insurance pricing involves selecting an appropriate premium principle. Premium 
principles serve as a quantitative approach to pricing risk. This subsection introduces 
key premium principles used in agricultural insurance. 

Consider an insurable risk, Y , which is often defined as a non-negative random 
variable, with its cumulative distribution function FY (y)., survival function SY (y)., 
and probability density function fY (y).. In agricultural insurance, the insurable risk 
can be crop production losses, revenue losses, or other financial risks. We denote the 
collection of all nonnegative random variables as a set Y . on the probability space 
(Ω,F ,P).. Mathematically, a premium principle is a functional Π . assigned to an 
insurable risk Y . 

In order for a premium principle to reflect the underlying riskiness of an insur-
ance exposure, it should possess some desirable properties for it to be actuarially 
sound [168]. The key properties of a premium principle can be summarized as 
follows: 

1. Positive risk loading: Π(Y) ≥ E(Y ). for all Y ∈ Y .. This property requires that 
the premium charged for insuring the risk is no less than the expected payout. 

2. No unjustified risk-loading: For a degenerate risk Y , i.e. there exists a constant 
c such that P(Y = c) ≡ 1., then Π(Y) = c.. This property implies that if a 
risk results in a constant loss of c for certain, then the corresponding insurance 
premium should assign no risk loading.

3. No ripoff: Π(Y) ≤ ess sup(Y ). for all Y ∈ Y .. This property ensures that the 
insurer should not charge higher than the maximum loss of the risk. 

4. Translation invariance: Π(Y + a) = Π(Y) + a . for all Y ∈ Y . and a ≥ 0..  If  a  
risk Y is increased by a constant amount a, then the premium for t he combined
risk Y + a . should just be the premium of the original risk plus a. 

5. Scale invariance: Π(aY ) = aΠ(Y ). for all Y ∈ Y . and a ≥ 0.. This property 
is also known as homogeneity of degree one in economic literature, and its 
significance is to avoid arbitrage opportunities. For example, the premium for 
2Y should correspond to the premium for two insurance policies for the risk Y , 
otherwise, there is a possibility of arbitrage. 

Combining Property 4 and Property 5 implies linearity. 
6. Subadditivity: Π(Y1 + Y2) ≤ Π(Y1) + Π(Y2). for all Y1 ∈ Y . and Y2 ∈ Y .. 

Subadditivity requires that insuring a portfolio of homogeneous risk should 
be less expensive than insuring individual risks separately because of the risk
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pooling and diversification benefit. This property implies that the insurer cannot 
benefit from dividing risk into pieces. 

7. First stochastic dominance (FSD) preserving: If SY1(y) ≤ SY2(y). for all y ≥ 0., 
then Π(Y1) ≤ Π(Y2).. 

8. Stop-loss (SL) order preserving: If E
 ⎾  
(Y1 − d)+

⎤ ≤ E
 ⎾  
(Y2 − d)+

⎤
. for all d > 0., 

then Π(Y1) ≤ Π(Y2)..  Here (x)+ = max(x, 0).. 

While there are a large number of premium principles, some commonly used 
ones include the following: 

(a) Expectation Premium Principle: Πe(Y ) = (1 + θ)E(Y )., where θ > 0..  This  is  
the most widely used premium principle in agricultural insurance ratemaking, 
including index insurance pricing, due to its simplicity.

(b) Standard Deviation Premium Principle: Πsd(Y ) = E(Y ) + θ
√
V(Y )., where 

θ > 0. and V(Y ). is the variance of the random variable Y . This premium 
principle incorporates a risk loading that is proportional to the standard 
deviation of the insured risk. While widely used in general P&C insurance, this 
premium principle has received little attention in agricultural insurance, with 
the exception of the work by [124], which empirically analyzed the optimal 
reinsurance contract structure for Manitoba Agricultural Services Corporation 
(MASC) in Manitoba, Canada. 

(c) Esscher Premium Principle: Πess = E(Y eθY )

E(eθY )
., where θ > 0.. This premium 

principle, which is based on Esscher Transform, is widely used in option pricing 
in the context of incomplete markets [17, 70, 86]. Therefore, this premium 
principle is applicable for weather derivative pricing. In addition, it is a special 
case of the Equilibrium Premium Principle proposed by [16]. Additionally, 
a more general form of the Esscher premium principle is referred to as the 
Exponential Tilting Premium Principle [80, 91]. 

(d) Distortion Premium Principle: For any increasing concave function g :
[0, 1] |' [0, 1]. with g(0) = 0, g(1) = 1., the premium is calculated as 
Πd(Y ) = ⌠ ∞

0 g
(
SY (u)

)
du. [153, 156]. The function g is called the distortion 

function and g
(
SY (u)

)
. is called the distorted probability. A special case of this 

premium class is called Proportional Hazards Premium Principle [152]. 
(e) Multivariate Weighted Premium Principle (MWPP): The  MWP  P [177]  is  

defined based on the weighted density transform: Tw : (Y,X) ' Yw
., 

associated with the random vector X . and the weighting function w : [0,∞] |'
[0,∞]., with C

(
Y,w(X)

) ≥ 0.. More formally, Πw(Y,X) = E (Tw) =
E

(
w(X)Y

)
E

(
w(X)

) .. The MWPP is a general premium principle that depends not only 

on the underlying risk Y , but also the auxiliary factors X . and the weighting 
function w. MWPP adds flexibility to the premium principle, including other 
existing premium principles as special cases, depending on the choices of X . and 
w, including the univariate weighted premium in [62], the Esscher premium and 
the Equilibrium Premium Principle. Empirically, one can choose random vector
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X . to reflect systemic and often geographically correlated climate risks and 
adverse weather conditions. In addition, from an asset allocation point of view, 
the resulting economic weighted pricing functional Π . incorporates a number of 
risk capital allocation rules, such as those based on modified tail covariance and 
exponential tilting [60, 61, 63, 64, 154]. 

2.2.5 Data Scarcity 

Data availability is a significant challenge in agricultural insurance, primarily 
because loss experience data is often scarce and concerns frequently arise regarding 
its credibility [37, 38, 125, 126]. There are many contributing factors to data scarcity. 
First, in most regions, there is only one crop growing season per year, therefore, 
there is only one yield (or loss) observation per year. This means that approximately 
30–40 years of annual historical loss observations can be used for rating products. 
Further, due to crop rotation and other market forces farmers do not grow the same 
crop each year, and this leaves fewer observations or an inconsistent time series at 
the farm-level. 

In addition to limited data, there can also be concerns over the credibility of 
data. For example, older loss experience may not be as relevant today due to pro-
gram modifications, technological advancements, deviations in farming practices, 
changes in climate, etc. [120, 155, 159]. The result is a need to balance using as 
much of the time series as possible so that those infrequent, but, extreme weather 
events are considered, versus the concern that older data is not representative 
and, therefore, should be discarded. There are two possible ways to blance this 
incongruity. First, we can “restate” historical yield or loss experience to bring it 
on level with the current environment so that as many of the older observations can 
be used as possible [12, 37, 126, 157, 158, 176, 177]. Alternatively, we can borrow 
information from regions with better data quality. For example, [128] develops a 
relational model to predict farm-level crop yield distributions in the absence of farm-
level yield data. 

From a data availability and data quality point of view, index insurance offers 
several advantages over traditional indemnity-based agricultural insurance. Weather 
index insurance policies rely on readily available weather variables, such as rainfall, 
temperature, and satellite images. This information is often more accessible and 
less susceptible to manipulation or fraud compared to individual farm-level data 
required for traditional agricultural insurance [160]. Moreover, from a statistical 
inference viewpoint, the modelling and pricing of index-based policies may face less 
challenges, since large volumes of reliable and extensive weather data records are 
typically available in daily frequency, facilitating more sound statistical modeling.
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2.3 The Demand and Supply of Index Insurance Market 

Despite its potential benefits, the adoption of index insurance programs in practice 
has been lower than anticipated. Therefore, most index insurance programs around 
the world remain at the pilot stage and struggle to scale up. This persistent lack of 
demand is a recognized concern in existing literature, and in particular, an important 
empirical puzzle is that the most risk-averse farmers display particularly low interest 
in index insurance [40, 72–74]. This paradox has driven researchers to investigate 
various factors contributing to the low demand for index insurance, exploring both 
behavioral and structural barriers that limit its widespread adoption. 

2.3.1 Basis Risk 

Cited as the most important factor that contributes to the low demand of index 
insurance programs in the literature [25, 34, 45, 47, 74, 89], basis risk refers to the 
risk of contractual nonperformance, i.e., the underlying indices and actual losses are 
mismatched, and hence could lead to situations in which farmers are not indemnified 
for actual losses, or are paid indemnities despite having no actual losses. There 
are three primary sources of basis risk in agricultural index insurance [173]. The 
first is Variable Basis Risk. When weather variables used for hedging and the 
loss exposures originate from the same geographic region, yet their correlation 
remains imperfect. The mismatch occurs due to the nonlinear relationship between 
weather conditions and actual losses. A high-dimensional weather index system 
and improved modeling of nonlinear relationships can help mitigate this type of 
basis risk [25, 102, 176]. The second type is Spatial Basis Risk occurs when 
the geographic location of the underwriting risk exposure differs from where 
the weather indices are recorded. Mobarak and Rosenzweig [113] highlight the 
significance of spatial basis risk, showing that placing rainfall gauges in specific 
villages can significantly increase rainfall insurance demand. Enhancing spatial and 
temporal modeling of weather variables is critical for reducing spatial basis risk and 
improving the effectiveness of weather insurance programs [175]. The last type is 
Temporal Basis Risk. It arises when there is a mismatch between the timing of the 
occurrence of agricultural losses and the timing of the index-insurance coverage, 
leading to potential gaps or inadequacies in coverage. 

Minimizing basis risk is crucial because even if premium rates are actuarially 
sound, farmers may still lack full coverage if basis risk is present [112]. In a 
theoretical framework, [34] analyzes the impact of basis risk to index insurance 
demand, where basis risk is defined as the joint probability that the producer 
incurs a loss but receives no payment from the index insurance contract. Insurance 
demand is found to decrease with increasing basis risk but exhibits a non-monotonic 
relationship with risk aversion. In particular, for an infinitely risk averse producer, 
index insurance demand is zero, because of the high disutility associated with
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contract nonperformance—that is, the scenario where basis risk is high and the 
insurance fails to provide indemnity despite actual losses. These results imply that 
an increase in risk aversion does not necessarily lead to an increase in demand for 
index insurance [51]. 

A few studies have empirically assessed the impact of basis risk on index 
insurance demand. Collaborating with a private insurance company in India— 
HDFC ERGO General Insurance, [82] finds that demand falls with basis risk. Jensen 
et al. [89] examine the distribution of basis risk associated with the Index Based 
Livestock Insurance(IBLI) product in Kenya [25]. 

2.3.2 Prospect Theory 

Prospect theory [90, 148] presents an alternative approach to conventional expected 
utility theory. It sheds light on the negative relationship observed in the literature 
between risk aversion and index insurance demand. Prospect theory assumes that the 
utility function is convex for losses and concave for gains, and that low probability 
events are overweighted. These assumptions imply that index insurance policies 
become very valuable for covering extreme losses under prospect theory. However, 
when index insurance fails to provide coverage for certain extreme events, the 
insurance is perceived as significantly less valuable, since these worst-case scenarios 
are overweighted the most. This results in a disproportionate amount of disutility 
when coverage fails, contributing to low demand for index insurance. 

Research by [151] conducts willingness-to-pay surveys in the U.S., revealing 
that insurance demand decreases by more than 20% when a policy has just a 1% 
chance of contractual nonperformance. This suggests that insurance is highly valued 
when it gives the impression of completely eliminating a risk, rather than just 
reducing it. Moreover, [35] conducted experiments with index insurance in rural 
Ethiopia and found that demand surpassed predictions made by expected utility 
theory. Their results align more with an S-shaped probability weighting function, 
where extreme events are underweighted, contrary to prospect theory’s assumption 
of overweighting such events. 

In a recent study by[134], the authors analyzed index insurance demand within 
a prospect theory framework considering basis risk. They confirmed a negative 
relationship between loss aversion and insurance demand, particularly emphasizing 
the pronounced impact of loss aversion on farmers exposed to high basis risk. Their 
findings from a lab-in-the-field experiment in Kenya showed that a one standard 
deviation increase in loss aversion reduced desired insurance coverage by 20% 
relative to the mean condition for high basis risk index insurance, while the effect 
was marginal for low basis risk index insurance.
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2.3.3 Ambiguity Aversion 

Ambiguity aversion, as introduced by [53], presents an alternative perspective on 
index insurance demand. This theory assumes that an ambiguity-averse individual 
dislikes being uncertain about the distribution of outcomes rather than simply 
disliking that outcomes are uncertain. This aversion to ambiguity can significantly 
impact the demand of index insurance, especially in scenarios involving uncertainty 
about outcome distributions, technological adoption, basis risk, and government 
intervention in premium subsidies. 

The study by [15] highlights how ambiguity aversion intersects with the adoption 
of new technologies, creating uncertainty that may hinder the demand of index 
insurance. For an ambiguity-averse individual, assessing insurance involves con-
sidering the worst-case scenarios, leading to a perception of lower value in the 
insurance contract. Analyzing data from randomized controlled trials conducted in 
Malawi and Kenya [72], [15] show that the negative impact of risk aversion on 
insurance demand primarily stems from ambiguity-averse individuals. Interestingly, 
individuals not averse to ambiguity show an increasing demand for insurance as 
predicted by standard theories. Chi et al. [32] provides a theoretical framework to 
explain the low index insurance demand from an ambiguity aversion perspective. 
This model predicts that an ambiguous individual, who knows the marginal 
distributions of the crop yield but lacks information about dependence structures, 
would choose not to purchase index insurance even if the premium is lower than the 
actuarially fair level, implying that government subsidies are essential to encourage 
participation. With government subsidies, the participation rate becomes positive 
but decreases as the insurance premium, risk aversion coefficient, and volatility 
of index payouts increase. In the case that farmer has more information about 
the correlation between the index and crop yield, they may purchase some index 
insurance even without subsidies, and additional information further increases 
demand. 

2.3.4 Complexity Aversion 

In practice, contract complexity often acts as a deterrent, reducing participation 
in insurance markets, i.e., complexity aversion [9, 26, 87, 88, 95, 138, 139]. This 
issue is especially pronounced in health insurance markets [21, 143]. For index 
insurance, there exists a delicate balance between basis risk and the complexity 
of the insurance contract. While a more flexible contract offers better protection, 
it tends to be significantly more intricate for farmers compared to a simpler con-
tract. The complexity of a contract that exceeds farmers’ understanding heightens 
their perceived uncertainty about the insurance payout [96]. Farmers’ aversion to 
complexity is often reflected in their struggle to comprehend insurance contracts, 
where greater complexity translates to a larger variance in index insurance payouts, 
creating difficulties in contract understanding [96].
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To alleviate farmers’ concerns over contract complexity, enhancing the inter-
pretability of index insurance becomes crucial, fostering better comprehension and 
trust among farmers [29]. In addition, literature suggests that education significantly 
bolsters insurance demand [18, 69, 75, 82]. For example, [82] find empirical 
evidence that incentivizing learning or learning by doing is more effective in 
improving both understanding and demand for insurance. Moreover, government 
subsidies can play a pivotal role in enhancing communication and trust between 
insurance companies and farmers through public-private partnerships (PPPs). By 
subsidizing aspects like education, outreach, and contract simplification efforts, 
these partnerships can alleviate the complexity burden and foster greater understand-
ing and acceptance of insurance products among farmers. 

2.3.5 Other Factors 

The low uptake of index insurance contracts is influenced by various other factors. 
For example, liquidity constraints and differing intertemporal preferences impact 
farmers’ ability and willingness to invest in insurance [11, 74]. The lasting effects 
of premium subsidies shape the dynamics of insurance demand over time [82]. 
Moreover, farmers’ past experiences with insurance payouts significantly influence 
their future decisions regarding insurance adoption [18, 41, 82]. Asymmetric 
information between insurers and farmers impacts participation in index insurance 
programs [79]. The level of insurance literacy, education, and awareness among 
farmers also plays a pivotal role in their understanding and acceptance of index 
insurance products [18, 69, 75, 82]. Additionally, farmer heterogeneity contributes to 
varying preferences and behaviors regarding index insurance demand [24]. Finally, 
the effectiveness and accessibility of marketing and distribution channels used to 
promote and deliver index insurance products are crucial factors influencing their 
adoption [39, 110, 172]. See [123] for a comprehensive literature review of the 
demand for microinsurance, including index insurance. 

2.4 Index Insurance Programs 

2.4.1 Weather Index Insurance 

Thus far, most index insurance products available in the market have taken 
the form of weather-based, meaning that payouts are based on weather sta-
tion measurements.2 For example, rainfall and temperature-based index insur-

2 Weather derivatives are a concept closely related to weather index insurance in weather risk 
management. While they differ in regulatory, accounting, tax, and legal aspects, both serve
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ance have been the primary focus of most practical implementations. However, 
in many cases there are limitations in terms of the density of weather sta-
tions, and possibly the weather data availability and credibility from each station, 
especially in developing countries. Therefore, alternative weather variables, such 
as wind and sunshine, can be considered to develop weather index insurance 
programs. 3 

Consider rainfall index insurance as an example, where the index insurance 
payout, I , can be represented as follows, 

. I (X) =

⎧⎪⎪⎨
⎪⎪⎩

Im 0 ≤ X ≤ τ1−X − τ2

τ2 − τ1
τ1 < X ≤ τ2

0 X > τ2.

Here X is the rainfall variable, τ1 . and τ2 . are two triggers, and Im . is the maximum 
insurance payout. The resulting indemnity payment from the index insurance 
contract has the step-wise form. The step-wise loss cost shape of such index-based 
insurance can be justified by the typical positive relationship between agricultural 
yield and developed indices such as rainfall. 

A critical consideration in designing a viable contract based on a single index is a 
careful selection of the weather variable and a precise determination of triggers, τ1 . 
and τ2 ., to mitigate basis risk. To assess the effectiveness of the proposed index, 
a straightforward approach is to compare the index with actual loss data. The 
degree of their alignment can provide evidence of efficacy of the proposed index. 
Figures 2.4 and 2.5 illustrate examples of correlation analyses between rainfall index 
and temperature index, respectively, and their relationship with agricultural losses. 

While piece-wise linear contracts, e.g., Eq. (2.5), widely used in both the 
literature and practical applications [73, 105, 150, 160], their functional form is 
inherently limited in accommodating nonlinearity and high-dimensionality. Chen 
et al. [29] compare a single-index piece-wise linear contract with a highly nonlinear 
counterpart constructed using a high-dimensional weather index system, and find 
that the former exhibits significantly larger basis risk and inferior efficiency in 
downside risk reduction and welfare improvement. 

Indeed, most of the pilot weather index insurance programs have faced limited 
adoption and concerns about commercial sustainability. Barnett and Mahul [8] 

as instruments for transferring weather risks and share a similar mathematical foundation. 
Transactions involving producers in developing countries often take the form of insurance, whereas 
derivatives are typically designed for large-scale buyers and can play a role in reinsurance 
markets to offset weather risks. This includes their application in the international reinsurance 
market for traditional agricultural insurance, where weather risk remains a significant exposure 
[5, 144, 145, 147, 160].
3 Many studies have examined various interpolation techniques, such as the Inverse Distance 
Weighting (IDW) approach and the kriging method, to address the limitations of weather station 
data [20, 28, 49, 101, 140].
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Fig. 2.4 Correlation analyses of rainfall index versus maize yields in Alaba Wereda. (Source: 
Figure 5.3 of [160]) 

Fig. 2.5 Correlation analyses of temperature index versus corn yields in the US. (Source: Authors) 

present an early overview of weather index insurance in developing countries. World 
Bank [160] provides a comprehensive introduction to weather index insurance and 
its research development efforts, shedding light on the technological and practical 
barriers faced by developing countries in creating effective weather index insurance 
products. Smith and Watts [137] broaden the scope by studying index insurance 
feasibility, scalability, and sustainability. Carter et al. [22] conduct an empirical 
review of weather index insurance in developing countries, highlighting the low 
take-up issue and corresponding actions to increase it. 

Rainfall Insurance in India In 2003–2004, one of India’s largest private general 
insurance companies, in collaboration with the World Bank, pioneered the country’s 
first weather index insurance product. This policy’s payout structure was based 
on rainfall deficits and was linked to crop loans provided to farmers through the
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Microfinance Institution (MFI) BASIX. Inspired by this initiative, the state-owned 
Agricultural Insurance Company of India (AICI) introduced rainfall insurance and 
the Weather-Based Crop Insurance Scheme (WBCIS), making India the world’s 
largest weather index insurance market. Despite challenges in the actuarial per-
formance, subsequent modifications and the growth of WBCIS demonstrate the 
evolving landscape of index insurance in India. Recommendations from the World 
Bank [106] continue to guide improvements aimed at enhancing the program’s 
efficiency and resilience. 

Caribbean Catastrophe Risk Insurance Facility The Caribbean Catastrophe Risk 
Insurance Facility (CCRIF) is a risk-pooling mechanism operated by the Caribbean 
governments. Linking to natural disasters, particularly hurricanes and earthquakes, 
CCRIF is established to mitigate the negative impact of catastrophes by providing 
quick and reliable financial assistance to Caribbean countries. The facility operates 
on a parametric insurance (i.e., index insurance) model, where payouts are triggered 
based on pre-defined parameters, such as the magnitude of an earthquake or the 
intensity of a hurricane. This parametric approach allows for swift and transparent 
payouts, enabling member countries to access funds within a short time frame after 
a covered event. 

El Ni ñ.o—Southern Oscillation (ENSO)-induced Rainfall Index Insurance In 
Northern Peru, the occurrence of El Ni ñ.o events contributes to excessive rainfall and 
catastrophic flooding, resulting in significant damages to crop and infrastructure. 
These adverse conditions, in turn, impair borrowers’ ability to meet loan obligations. 
To address these challenges, an innovative index insurance product has been 
developed, using Pacific Ocean surface temperatures as a key indicator. Elevated 
temperatures signal the onset of El Ni ñ.o conditions triggering insurance payouts. By 
offering a financial safeguard against losses incurred during these weather events, 
microfinance institutions (MFIs) are motivated to expand agricultural lending and 
provide improved rural financial services. Programs like this not only mitigate the 
financial impact of El Niño-induced losses but also enhance community resilience 
by fostering climate-adaptive financial solutions [42]. 

Malaysian Solar Energy Shortfall Insurance The Solar Energy Shortfall Insurance 
(SESI) program offers parametric insurance coverage for solar energy operators in 
Malaysia, offering index-triggered protection against financial losses resulting from 
lack of sunlight. Launched by a Malaysian insurer and backed by a global reinsurer, 
SESI aims to enhance investor confidence and support financial institutions, thereby 
encouraging greater investment in solar energy infrastructure. The involvement of 
reinsurers in SESI’s development highlights the collaboration between insurers and 
reinsurers to develop innovative risk transfer solutions for the renewable energy 
sector. The index utilized in SESI can be seamlessly integrated as a time-saving 
automated tool for various solar parametric insurance needs, including pricing, 
reinsurance acceptance, and provisional claims compensation assessments. SESI 
aligns with Malaysia’s national goal of increasing its renewable energy mix and 
contributes to the broader effort in mitigating climate risk through sustainable 
energy solution.
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2.4.2 Satellite-based Index Insurance 

As previously noted, the limitation of weather station data arises from the sparse 
distribution of weather stations. Despite the various interpolation techniques that can 
be used to help address the situation of limited or missing data, a remaining problem 
is that the low density of stations has been proven to systemically underestimate 
extreme values, which are precisely those extreme events that the insurance program 
is intended to cover. Consequently, the effectiveness of weather station-based index 
insurance programs may be compromised. 

Recent advancements in satellite-based remote sensing offer a transformative 
solution for index-based insurance, leveraging publicly available and transparent 
“big data.” This technology presents a potential avenue for reducing basis risk, 
thereby enhancing the relevance and effectiveness of index insurance policies. 
Satellite-based crop yield estimation has been improving over time, and will con-
tinue to improve rapidly with advances in satellite technology. Satellites continue 
to improve with more bands, better sensors, and better resolution. Also, software 
and image processing capability continues to improve, along with more computing 
power (e.g. cloud computing), and more data storage is available to deal with big 
data at lower cost. As well, advances in deep learning models can improve the 
computing and processing capabilities, enabling more precise yield estimations. 

Studies show that indemnities from insurance contracts based on satellite 
data exhibit higher correlations with actual yield losses resulting from droughts, 
compared to conventional weather indexis such as rainfall [107]. As a result, 
remote sensing-based index insurance has gained popularity for monitoring pasture 
productivity and providing coverage for livestock losses [25, 89, 107, 161, 162]. 

In general, there are two main types of remote sensing index approaches to 
estimate crop yield, including vegetation indices and biophysical variable indices. 
The most commonly used vegetation index is Normalized Difference Vegetation 
Index (NDVI) [114, 122, 146], which is widely used for index-based insurance 
design. Several operational commercial grassland insurance programs have adopted 
this approach, including in Spain, Mexico, Canada and the U.S. NDVI is computed 
from visible (VIS) light and near-infrared (NIR) light, reflected by vegetation. It is 
calculated as the normalized difference between NIR and VIS, expressed as: 

.NDV I = (NIR − V IS)

(NIR + V IS)
. (2.5) 

NDVI ranges from − 1. to 1, with higher NDVI indicating greener vegetation 
(higher yield), and lower NDVI indicating less green vegetation (lower yield). It is 
commonly well above zero for moderate vegetation, and nearer to 1 for very dense 
vegetation. NDVI will be typically slightly above zero for no vegetation (bare soil), 
and may be negative for clouds, snow, or water, which have high reflectance. 

Despite its widespread use, NDVI poses challenges, such as those associated 
with soil reflectance. Consequently, researchers have developed numerous enhanced
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methods building upon NDVI for more accurate yield estimation [114]. These 
improved versions include the Green Normalized Difference Vegetation Index 
(GNDVI), Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation 
Index (MSAVI2), and Optimized Soil Adjusted Vegetation Index (OSAVI). These 
refined indices aim to address limitations and enhance the accuracy of vegetation-
related assessments in diverse environmental conditions. 

An alternative to a vegetation index is an approach that uses biophysical variables 
(parameters). Two widely used biophysical variables are Leaf Area Index (LAI) 
and the Fraction of Photosynthetically Active Radiation (FPAR), which can be 
leveraged for yield estimation. LAI measures the ability of the plant to absorb 
sunlight that reflects photosynthesis and can be used to indicate crop yields. 
Related to LAI is FPAR, which refers to the fraction of absorbed PAR (APAR), to 
incoming photosynthetically active radiation (PAR), i.e., FPAR = APAR/PAR, and 
is between 0 and 1. The biophysical parameter values are usually obtained by fitting 
a semi-empirical model to spectral data. Studies suggest that approaches based on 
biophysical variables outperform vegetation indices, such as NDVI, particularly in 
the context of quantifying biomass [7, 19]. Brock Porth et al. [14] compared various 
production indices, including those derived from satellite-derived vegetation and 
biophysical parameters, evaluating their performance in constructing index-based 
insurance and their efficacy in reducing basis risk. 

2.4.3 Area-yield Index Insurance 

Area-yield insurance represents another type of index insurance program. Initially 
designed for soybean farmers in specific U.S. counties, the program has evolved 
over time, extending its coverage to encompass major commodities such as corn, 
wheat, and cotton. A distinctive feature of area-yield insurance policies is that 
indemnity payments are determined by the average yield within a county rather than 
the losses incurred by individual farms. This approach effectively mitigates issues 
related to information asymmetry, as the actions of any single producer are unlikely 
to have a substantial impact on the overall yields at the county level. 

Area-yield insurance organizes a group of producers into K distinct risk pools. 
Consider producer i operating within the kth risk pool. Under the protection of area-
yield insurance, this producer is eligible to receive an indemnity payment if the area 
yield of the kth risk pool, denoted as yk ., falls below a pre-established threshold, 
ȳc .. The indemnity function, applicable universally within this pool, is formulated as 
follows: 

.Ik = max (ȳc − yk, 0) × scale, (2.6) 

where ȳc . is the critical yield, calculated as 

.ȳc = μk × coverage, (2.7)
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and μk . represents the expected area yield level, that is, μk = E[yk].. coverage and 
scale offer producers additional flexibility. Typically farm-level volatility is higher 
than the county-level. Increasing their scale and coverage ensure that producers 
can have sufficient coverage in years when production significantly drops.

[109] establishes a connection between individual yield yi ., and area yield yk .. 
By projecting the producer’s individual yield yi . onto the area yield yk ., yi . can be 
modeled as follows: 

.yi = μi + βi · (yk − μk) + ∈ i . (2.8) 

Here, Eq. (2.8) decomposes individual yield variation into a systemic component 
βi ·(yk − μk). that is perfectly correlated with the area yield and a non-systemic com-
ponent ∈ i . that is uncorrelated with area yield. The coefficient βi = C(yi, yk)/σ

2
yk

. 

quantifies the sensitivity of producer’s individual yield to the systemic factors that 
affect the area yield.4 

Typically area-yield index-based insurance programs, such as the Area Risk 
Protection Insurance (ARPI) in the US, defines risk pools based on county bound-
aries. While this method provides a structured approach to risk assessment, it has 
limitations. As [136] point out, relying on county yields for an area-index may 
not be ideal. They argue that county boundaries often fail to accurately group 
together producers with similar year-to-year percentage deviations from forecasted 
yields. This mismatch can lead to a misalignment between the actual risk profiles 
of individual producers and the broader risk pool defined by these administrative 
boundaries. 

To minimize basis risk, payouts should be based on average yields of smaller 
areas. This might however introduce moral hazard. On the other hand, when payouts 
are based on average yields of a bigger area, moral hazard is limited but basis 
risk is higher. Therefore, in area-yield index insurance design, it is essential to 
determining the risk pools by selecting the optimal number of risk pools to achieve 
a trade-off between reducing basis risk and mitigating moral hazard, and grouping 
together the producers with similar risks. Xu et al. [166] introduced a framework 
to optimize sustainable risk pooling in area-yield insurance using behavior-based 
machine learning. This method not only significantly reduces contract basis risk and 
mitigates producers’ tail risk, but also offers geographical and economic insights. 
Figure 2.6 illustrates the risk pooling outcomes for the state of Illinois. Elabed et al. 
[52] propose a multi-scale index insurance approach to enhance risk diversification 
and improve insurance efficiency. Under such a contract, payouts are based on 
average yields at multiple levels, for instance at both the village and the regional 
level. Farmers who collude to reduce yields in the absence of any shock, will not 
receive a payout. In this way, the village trigger ensures low levels of basis risk 
while the regional one addresses moral hazard. While not fully eliminating either of

4 Given that the area-yield insurance contract aims to hedge the systemic risk faced by producers, 
βi . needs to be positive to ensure the contract’s effectiveness. 
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(a) (b) (c) 

Fig. 2.6 Illinois risk pooling visualization. Illinois can be divided into three distinct geographical 
regions from north to south: Northern Illinois, including the Chicago Municipal Area and 
surrounding Charles Mountain; Central Illinois, known for its prairie landscapes and the Illinois 
River; Southern Illinois, distinguished by its warmer climate and location between the Mississippi 
and Ohio Rivers. The risk pooling in the proposed approach (Fig. 2.6b captures this geographical 
insights). (a) Geography map. (b) Risk pooling result. (c) Agricultural district. (Source: Figure 4 
of [166]) 

the two problems, this demonstrates how careful contract design can be utilized to 
enhance the quality of index insurance. 

2.4.4 Blended Index Insurance 

Motivated by the distinct advantages of both conventional indemnity-based insur-
ance and index insurance under different real-world scenarios, [170] proposes 
the concept of “blended insurance”, which seeks to combine the benefits of 
both approaches to achieve greater cost efficiency and enhanced risk mitigation. 
Theoretical results demonstrate is that blended insurance can provide more effective 
risk mitigation than either conventional insurance or index insurance alone. The 
payout function for blended insurance, π(Ib(Y,X))., is defined as a combination of 
the payout structures from both conventional indemnity-based insurance and index 
insurance, offering a more balanced and comprehensive risk management solution: 

.Ib(Y,X; t) := Ic(Y ) · 1[T (X)>t] + Ii(X) · 1[T (X)≤t], (2.9) 

where Ic(Y ). and Ii(X). represent the conventional and index components of the 
blended payout function, respectively; 1[·] . is the indicator function that determines
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Fig. 2.7 Schematic of a multi-output NN with two hidden layers. (Source: Figure 1 of [170]) 

which component to be triggered under certain circumstances; and T (·). is a 
“triggering score” such that T (X) ≤ t . defines the contingent events when the 
insurance payouts are calculated from index X.. Since index insurance generally have 
a lower risk loading compared to conventional indemnity-based insurance, blended 
insurance (2.9) attains improved cost efficiency as well as reduced moral hazard 
and adverse selection. In [170], a machine learning-based algorithm is established 
to solve for the optimal blended payout function. Figure 2.7 illustrates the multi-
output neural network for this blended index insurance, with output Ii . describing 
the index payout level, and outputs Tu . and Tl . determine whether the conventional or 
index component should be triggered. Based on soybean production data in Iowa, 
USA, [170] show that the blended payout function can be viewed as a combination 
of conventional and index insurance and thus attains enhanced basis risk reduction, 
as illustrated in Fig. 2.8. 

2.5 Advancements in Index-based Financial Facilities 

While current index insurance programs have demonstrated effectiveness in miti-
gating risks associated with weather-related events, several challenges threaten their 
long-term profitability and sustainability. In particular, data availability and basis 
risk remain key concerns in index insurance design. Recent advances in technology 
and index-based financial markets in provide promising solutions to enhance the 
development and scalability of index-based insurance programs for weather and 
climate-related risks. 

Blockchain Technology for Smart Contract The integration of blockchain tech-
nology offers a promising avenue for the development of transparent, automated,
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Fig. 2.8 Basis risk for blended index insurance. (Source: Figure 6 of [170]) 

and tamper-proof smart contracts in index insurance. By leveraging decentralized 
consensus mechanisms, blockchain has the potential to expand the contracting 
space through the utilization of smart contracts, which can address issues related 
to informational asymmetry, enhance market entry and competition, and ultimately 
improve welfare and consumer surplus [43]. A key advantage of blockchain 
technology is its ability to expedite settlement, eliminating fragmented post-trade 
infrastructures and facilitating a more flexible and efficient settlement cycle. Chiu 
and Koeppl [33] construct theoretical model for a hypothetical blockchain-based 
securities settlement system and estimate that the U.S. corporate debt market 
could yield net gains ranging from 1 to 4 basis points (bps) with blockchain 
implementation. In the context of weather-based index insurance, Salem et al. 
[132] propose a blockchain-based smart contract framework for weather-based 
index insurance, selecting Docker Container and the Neo blockchain platform for 
experimentation. 

The index insurance market has been evolving, with blockchain technology 
playing an increasing role in expanding coverage and enhancing efficiency. For 
example, in Africa, a collaborative effort has utilized blockchain technology to 
implement weather index insurance to support smallholder farmers and address
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the low penetration of agricultural insurance. So far, the project has reached over 
12,567 farmers in Kenya with at least 511 farmers receiving mid-season payouts 
during the Long Rains 2021 season. 5 Similarly, in Vietnam, a regional insurtech 
company, in collaboration with an insurance provider, the Vietnam Meteorological 
and Hydrological Administration, and a reinsurer, has launched the country’s first 
blockchain-based Weather Index Insurance product. This parametric insurance 
solution automates insurance claims processing for rice farmers, mitigating the 
financial risks posed by severe climate conditions. The insurance product offers an 
affordable premium starting from $8/hectare, providing coverage against irregular 
rainfall, while ensuring faster, simpler, and more objective claims settlement. 
The initiative aims to cover 50,000 hectares in collaboration with public-private 
enterprises, reinforcing the role of blockchain technology in scaling sustainable 
agricultural insurance solutions.6 

AI and ML Methods to Improve Loss Modeling Basis risk is the major factor 
that hinders the success of index-based insurance programs. Therefore, improving 
loss prediction is critical. These technologies offer sophisticated data analysis 
capabilities, enabling insurers to enhance risk assessment, improve underwriting 
processes, and predict potential losses more accurately. In recent years, there has 
been a substantial and growing body of literature exploring the utilization of 
various machine/deep learning algorithms across various fields of actuarial science, 
including the life sector and nonlife sector. Examples from the nonlife side include, 
for example, risk modeling and prediction [48, 57, 65, 67, 68, 81, 84, 93, 94, 98– 
100, 108, 118, 163, 165, 174], insurance reserving [1, 66, 97, 104, 164], climate 
and weather risk management [14, 29, 71, 167], lapse risk management [103], fraud 
detection [46, 77], cyber insurance [55], and regulation [23]. For an in-depth review 
of the recent advancements of ML in actuarial science, refer to [130] and [131], 
as well as the references therein. Recent advances in AI and ML methods provide 
the technical foundation to achieve the objective of improving loss prediction and 
reducing basis risk in designing index insurance programs. 

Insurance-linked Security (ILS) Market An alternative efficient risk sharing and 
risk management strategy is to seek capital market solutions via the insurance-
linked security (ILS) market. With value linked to insurance-related risks, such as 
natural disasters, health and life insurance risks, etc., ILS provides a distinctive 
facet of the financial landscape, offering innovative solutions for climate risk and 
weather risk transfer. Within this market, innovative instruments include contingent 
capital, catastrophe (CAT) futures and options, CAT swaps, as well as CAT bonds 
[27, 44, 45, 58, 76, 78, 85, 92, 116]. In particular, CAT bonds are by far the 
most popular and successful hedging instrument in the market. For example, as

5 More information is available here: https://acreafrica.com/reimagining-agriculture-insurance-
using-blockchain-technology/. 
6 More information is vailabile here: https://iglooinsure.com/press/igloo-launches-weather-index-
insurance-for-rice-farmers/. 
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of 2020, catastrophe bonds and ILS issued and outstanding were $14.17 billion 
and $46.36 billion, respectively.7 In a CAT bond agreement, investors forgive some 
principal and/or coupon payments if a predefined catastrophic event, such as a 
hurricane, earthquake, or flood, occurs triggering significant losses for the issuer. 
In this case, the coupon/principal payout retained may help to stabilize the bond 
issuer’s cash flows during natural disasters. If no catastrophe occurs, investors 
receive their principal plus coupons that are much higher than LIBOR [59, 117]. 
Thus, a CAT bond arrangement offers potential benefits for both the bond issuer 
and investors. This financial mechanism has gained significant traction as it allows 
issuers to enhance their risk resilience, while providing investors with a unique 
opportunity to diversify their portfolios. CAT bonds are particularly attractive due 
to their high yields and low correlation with traditional financial market returns, 
making them an appealing option for institutional investors seeking alternative risk 
exposure. 

The Role of Reinsurance in Index Insurance Market Development Reinsurance 
plays an important role in the development of the index insurance market, especially 
in its sustainability and expansion. According to a survey conducted by Access 
to Insurance Initiative (A2ii) in 2020 that included 27 jurisdictions, most current 
index insurance products are reinsured [135]. The market is also experiencing 
growing demand for aggregate loss coverage, revenue protection, and catastrophe 
protection—key areas where reinsurers play a crucial role in providing substantial 
support. Reinsurers enhance the capacity of insurers to offer broader coverage by 
absorbing a portion of the risk. This risk distribution is essential, especially for 
systemic weather risk protection, where events like droughts or floods can trigger 
simultaneous payouts across many policies. With global exposure, reinsurers have 
the capacity to redistribute climate and weather-related risks across diversified 
portfolios, providing crucial capital relief. Moreover, reinsurers play a leading role 
innovative risk modeling developing advanced climate risk models and designing 
new index-based insurance products that help minimize basis risk. These advance-
ments enhance the accuracy and reliability of underlying insurance policies, making 
them more effective in managing climate-related risks. 

2.6 Conclusion 

This chapter has provided a comprehensive examination of index insurance as a 
pivotal instrument in managing weather risks, particularly in the context of increas-
ing climate variability and extreme weather events. Through a detailed discussion 
of its actuarial framework, empirical foundations, and practical considerations, 
we have highlighted the multifaceted dimensions that influence the effectiveness

7 Source: Artemis Catastrophe Bond & Insurance-Linked Securities Deal Directory (https://www. 
artemis.bm). 

https://www.artemis.bm
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and viability of index insurance in mitigating climate risks. The incorporation 
of innovative index-based financial facilities and the infusion of cutting-edge 
technologies, such as AI and blockchain, underscore the dynamic evolution of 
this risk management tool. These advancements not only enhance precision in 
risk modeling but also streamline processes, marking a transformative shift in the 
landscape of index insurance. 

While existing index insurance programs exhibit efficacy in mitigating weather-
related risks, challenges to their long-term profitability and sustainability persist. 
Beyond concerns related to basis risk and data availability, factors such as afford-
ability, regulatory support, and limited awareness among policyholders contribute to 
the intricacies of the landscape. Active engagement and support from governments, 
NGOs, international agencies, and the private sector are crucial in navigating these 
challenges. 

Looking ahead, this chapter has emphasized the importance of adopting a 
forward-thinking approach that considers not only the unique needs of smallholder 
farmers and vulnerable communities but also the challenges associated with insuring 
difficult and systemic risks. As we explore the future directions for index insurance 
design, the focus must be on fostering inclusivity and developing innovative 
financial instruments that effectively address the diverse and complex risks posed 
by climate change and extreme weather events. By advancing scalable, data-driven, 
and adaptive solutions, we can work toward building a more resilient and sustainable 
financial ecosystem—one that not only mitigates the impact of weather-related risks 
across different scales but also supports long-term economic stability and aligns 
with global development goals in an increasingly uncertain climate. 
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Chapter 3 
Weather and Yield Index-Based 
Insurance Schemes in the EU 
Agriculture: A Focus on the Agri-CAT 
Fund 

F. G. Santeramo, T. Balezentis, and M. Tappi 

3.1 Introduction 

Agriculture is the most vulnerable sector to climate change, e.g., temperatures or 
rainfall may significantly affect the crop yields, also leading the proliferation of 
pathogens and hence pests and diseases [1]. The total economic losses fromweather-
and climate-related have caused damages reaching nearly 487 billion of euros in 
EEA member countries since 1980, and just 3% of all events are responsible for 
60% of economic losses [2]. Extreme weather events such as heavy precipitation, 
flood, drought, frost, heat, and strong wind are more and more frequent, intense, 
long-lasting, and they are the major drivers of agricultural losses [3, 4]. Heavy 
precipitation may reduce photosynthetically active radiation up to irreversible tissue 
damages, setting the conditions for diseases due to the proliferation of pathogens, 
nutrient leaching, soil erosion, and oxygen deficit [5, 6], also inducing flash flood 
events, in combination with other factors as the antecedent soil moisture [7, 8]. 
Drought and water shortage may affect the metabolism of plants with changes in 
root growth and architecture, and other tissue-specific responses that modify the 
flux of cellular signals [9]. The stress due to drought events is the main factor 
limiting the development of crop and its productivity [10]. Cold may damage the 
leaf and seedling survival, also leading to the sterility and the abortion of formed 
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grains, especially for the cereal crops [11]. Heat directly affects the crop physiology, 
reducing photosynthesis rates, leading the acceleration of leaf senescence processes, 
oxidative damages, and pollen sterility [12]. Strong wind may also be very impactful 
(i.e., abrasions on the leaves and fruits, defoliations, water loss, desiccation, 
loss of flowers and poor fruit set), although the plants can change the structure 
and properties of cells and tissues, re-configuring their canopies as a defensive 
response [13]. On-farm and risk-sharing strategies are available to improve the 
resilience of farming systems to weather risks. The former includes risk control 
(i.e., risk prevention such as irrigation, shading, pest control, improved planning and 
monitoring activities), reserves (i.e., stocking, financial savings, additional labour 
input), and diversification (i.e., agricultural and structural diversification as nature 
conservation or agrotourism, off-farm allocation of resources); the latter includes 
risk pooling (i.e., mutual funds, agricultural insurance, membership in cooperatives, 
credit unions, producer organizations), and risk transfer (i.e., forwards, futures 
contracts) [14]. Member States may grant support for risk management tools (e.g., 
financial contribution to insurance premiums and to mutual funds) which can help 
farmers to manage production and income risks related to their agricultural activity 
and over which they have no control [15]. The new Common Agricultural Policy 
(CAP) reform is putting increasing emphasis on instrument supporting proactive 
management of the effects of extreme weather events due to climate change [15]. 
We provide an overview of the spread of risk management tools subsidised by 
new CAP 2023–2027, focusing on two promising tools: the weather index-based 
insurance and the Agri-CAT fund. We also discuss on their feasibility at farm-level, 
highlighting pros and cons, also animating the debate on how policymakers may 
improve the attractiveness of risk management tools. 

3.2 Agricultural Risk Management Tools Provided by CAP 
2023–2027: An Overview 

Farmers are exposed to different types of risks that may affect the agricultural 
activity, and have diverse attitudes and preferences [16]: (1) price risks, due to price 
volatility and uncertainty about future prices as result of competition, geopolitical, 
climate change, and phytosanitary risks, etc.; (2) production risks, when the outputs 
are lower than expected mainly due to extreme weather events, pest, and disease; 
(3) income risks, characterised by an imbalance between revenue and costs, e.g., 
the prices of inputs as fertiliser, or seed, increase while the prices of outputs remain 
stable [17]. The new CAP 2023–2027 of the European Commission devotes around 
4.6 billion of euros of total public expenditure supported by European Agricultural 
Fund for Rural Development (EAFRD) for the risk management in agriculture, of 
which 2.7 billion of euros as EU contribution and 1.9 billion of euros as national 
contribution. The priority given to support for risk management in agriculture is 
presented in the Fig. 3.1.
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Fig. 3.1 Share of total public CAP expenditure for risk management tools. Source: adaptation 
from Approved 28 CAP Strategic Plans (2023–2027) 

The aim of new CAP is to cover around 15% of EU farms. Currently, 14 
Member States include support for risk management tools in their CAP Strategic 
Plans (CSPs) and propose 25 interventions under the possibility given by Article 
76 of the CSP Regulation for support through insurance schemes and mutual funds, 
covering insurance premium, and other (Fig. 3.2). In addition, sectorial interventions 
are provided for fruit and vegetables, wine, olive oil, and other sectors. Moreover, 
producer organisations recognised by Member States (exception made for Bulgaria 
and Latvia) have several tools (e.g., withdrawals, harvest and production insurance, 
mutual funds, green and non-harvesting, collective storage) to cope with risks that 
may affect the agricultural production. 

In addition, Bulgaria, Italy, and Romania apply a withholding from the direct 
payments (i.e., 1.5%, 3.0%, and 3.0%, respectively) as contribution to manage 
the agricultural risks. This basic coverage is complementary to the other risk 
management tools under EAFRD. Italy stands out at the European level for the 
provision of subsidised risk management tools (see Fig. 3.1), and it establishes four 
risk management interventions worth almost 3 billion of euros. These interventions 
aim to help farmers to better face growing climatic adversities through subsidised 
insurances, income stabilisation tools, and a new national mutual fund for catas-
trophic events (covering frost, floods, and drought damage). The latter has seen for 
the first time ever the participation of all Italian beneficiaries of direct payments 
(around 800,000 farmers) with support from the EAFRD and a contribution for 
3% from the European Agricultural Guarantee Fund (EAGF) to the mutual fund 
scheme. The largest multiple-peril crop insurance schemes are in France, Spain, and 
Italy, single-peril hail insurances are widespread in Germany, while crop insurances
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Fig. 3.2 Type of support for risk management under EAFRD (Article 76). Source: approved 28 
CAP Strategic Plans 2023–2027 

complementary to the weather risk covering phytosanitary risks are not widely 
available in EU, except in Denmark, Germany, Hungary, Italy, Netherlands, and 
Spain [18]. The increasing amount of available data on weather conditions, and the 
higher frequency of extreme weather events and natural disaster allow have led to 
the development of new tools (e.g., weather index-based insurance and mutual fund 
for catastrophic weather events) meant both to complement traditional insurance 
schemes and to avoid the default of many farms [19]. 

3.3 The Insurances Based on Weather-Index Among 
European Countries 

Coping risks though crop insurance schemes is not straightforward, due to informa-
tion asymmetries and partial knowledge from both sides [20, 21]. Weather index-
based insurance is a type of insurance scheme designed to protect farmers against 
weather-related risks. Unlike traditional indemnity crop insurances which rely on 
yield losses and physical damage observations, weather index-based insurances 
indemnify the farmers based on predefined weather parameters (or indexes) as 
triggers, e.g., excess rainfall or extremely hot temperatures, easily measurable and
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directly related with production yields [14, 22, 23].1 Therefore, the indemnification 
is triggered whenever the value of the index exceeds or falls short the threshold 
[24–26]. The index, recorded by weather stations or provided by other data sources, 
is independent, objective, transparent, and free from manipulations [23, 27, 28]. 
These characteristics represent the strengths of weather index-based insurances 
when compared with the traditional indemnity insurances. Sure enough, the latter 
show some issues as the asymmetric information, high transaction costs, moral 
hazard, and adverse selection [29, 30]. However, the weather index-based insurances 
present the limit of basis risk, i.e., the discrepancy between insurance payouts and 
agricultural output ([31]). More specifically, the insured farmers may experience 
yield losses, while the weather index does not trigger a payment, or may obtain 
a compensation without having any yield losses because the index trigger the 
reimbursement, in other words, the index is not perfectly correlated with the actual 
losses which affected insurance policyholders [32, 33]. Furthermore, following the 
previous reasoning, the insured farmers may not be adequately compensated as 
result of production losses [31]. Basis risk can be separated into three categories 
depending on the causes: (1) spatial (or geographical) basis risk due to the distance 
of weather station from the location covered by insurance contract; (2) design basis 
risk due to the imperfect correlation between weather index and crop yields; (3) 
temporal basis risk due to imperfect time period selection for deriving the index, 
e.g., the weather index does not capture the phenological stage more susceptible 
to a specific weather event [29, 31, 34]. Morsink et al. [35], offered two different 
definition of basis risk: (1) insured peril basis risk that compares claim payments 
with losses from perils explicitly named in the insurance contract; (2) production 
smoothing basis risk that compares claim payments with losses from agricultural 
production. In other words, the challenge is to decide whether the claim payments 
should be compared to the value of losses (e.g., in dollar) or just the amount 
of losses (e.g., tons of crop or number or animals). For both types of basis risk 
two indicator are proposed: the probability of catastrophic basis risk and the 
catastrophic performance ratio. The former establishes the probability that a farmer 
experiences more that 70% loss of agricultural production without reaching the 
payment threshold; the latter reflects what, on average, a farmer gets back per $1 
of commercial premium paid in the case that she experiences catastrophic crop 
loss [35]. Despite this main limitation, weather index insurance allows farmers 
to diversify their risk portfolio, also playing a crucial role in enhancing farmers’ 
access to credit and investment [36]. Among the EU largest agricultural producers 
in terms of production values, Germany offers the largest number of insurance 
schemes, while Spain has the largest number of insurance providers, as shown in the 
Fig. 3.3: 

The indemnity insurances remain the most offered products; the weather index-
based insurances are widespread in Germany with 10 insurance products, while

1 In Appendix we dive into methods to compute yield risks and present an empirical application to 
EU member States. 
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Fig. 3.3 Number of insurance schemes and insurance providers among main EU producers. 
Source: Bucheli et al. [3] 

other countries (i.e., Austria, France, Italy, Spain, and Switzerland) offer less than 5 
[3]. The weather index-based insurance covers only drought, heavy precipitation, 
heat, and frost events. The cumulative precipitation is the most used index to 
assess the damages due to drought and heavy precipitation in Germany, Italy, and 
Switzerland [3]. The heat days index (as daily temperature above 30 ◦C) is used in 
Austria for drought and heat insurance. The soil moisture index is used in Germany 
to cover drought risk, while the temperature index is used in Italy and Germany for 
heat and frost (Fig. 3.4). 

Several challenges need to be addressed to maximize the potential of these tools: 
(1) investments in weather monitoring systems, remote sensing technologies, and 
data collection networks to ensure accurate index calculations and timely payouts, 
e.g., using satellite-derived datasets based on Normalized Difference Vegetation 
Index, also supported by low-cost in situ sensors [37]; (2) design appropriate indices 
that accurately reflect the risk exposure of farmers and calibrated them to capture 
variations in crop performance due to changes in weather, also considering the phe-
nological stages more susceptible [25, 26, 38]; (3) affordability and accessibility of 
weather index insurance remain significant barriers for small-scale and marginalized 
farmers, e.g., premium costs should be affordable, and insurance products need to be 
tailored to the specific needs and limitation of different farming systems and regions; 
(4) knowledge and awareness, e.g., dissemination through seminars and workshops, 
partnerships between stakeholders, public institutions, and insurance companies, in 
order to improve the participation in crop insurance schemes which il still low [39].
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Fig. 3.4 Weather indexes used for weather index insurances. Source: Bucheli et al. [3] 

3.4 The Agri-CAT Fund: A Basic Coverage to Cope 
with Catastrophic Weather Risks 

The National Strategic Plan (NSP) 2023–2027 of the Italian Ministry of Agricul-
tural, Sovereignty Food and Forestry provides some agricultural risk management 
tools subsidized by public contribution and available for the farmers: (1) insurance 
schemes and (2) mutual funds to cover damages on plants and animal production, 
farm structures and livestock farms due to adverse weather conditions, epizootic 
diseases, plant diseases, parasitic infestations, environmental emergencies; (3) 
mutual funds to cover income losses due to price volatility and market fluctuations 
(i.e., Income Stabilization Tool), limited to the poultry, sugar beet, durum wheat, 
cow and sheep milk, olive, fruit and vegetable, rice and pig farming sectors; (4) 
national mutual funds for catastrophic events to cope with damages due to extreme 
weather such as flood, frost, and drought. The latter represents an absolutely 
novelty, namely Agri-CAT National Mutual Fund for catastrophic weather events, 
established pursuant to Article 1, paragraph 515, of Law no. 234, December 30, 
2021, which provides for all farms receiving direct payments of a basic mutual 
coverage to cope with weather catastrophic events (i.e., flood, frost, and drought), 
formally recognized by national public bodies. More specifically, flood is defined 
as a natural calamity that occurs as a result of heavy rainfall or overflow, caused 
by exceptional atmospheric events, affecting natural and artificial waterways and 
inundating surrounding areas, accompanied by the transport and deposition of 
usual and incoherent materials; frost occurs when the temperature drops below
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0 ◦C; drought is an extraordinary lack of precipitation compared to the period’s 
normal conditions, resulting in a decrease in soil moisture content below the critical 
moisture limit and depletion of water sources to the extent that even emergency 
irrigation measures are impossible (Agricultural Risk Management Plan, 2023). 
The aim is to improve the resilience of farming systems to climate change, also 
increasing the number of farms participating in risk management schemes and 
promoting a territorial and sectorial rebalancing of public support. In fact, the 
Agri-CAT fund will act in complementarity with the other risk management tools, 
especially with the insurance policies which will operate on the weather risks not 
covered by the Fund. Therefore, the exposure level of insurance companies will be 
lower and more sustainable in financial terms. Farmers who experience yield losses 
due to catastrophic weather events must present a claim report on the National 
Agricultural Information System (SIAN) platform to be compensated. The fund 
identifies the affected areas based both on maps developed using agrometeorological 
indicators provided by ISMEA and insurance adjuster activity, and it covers 
exclusively the production losses resulting from catastrophic weather events (i.e., 
flood, drought, and frost) specified in the annual plan that exceed the minimum 
threshold of 20% of the farmer’s average annual production. The average annual 
production, identified in monetary values to provide a summary of the yields of 
different types of crops cultivated in the farms, is determined using “value indexes” 
provided by the Agricultural Risk Management Plan (PGRA) as the baseline for 
calculating compensations in the case of damages (Fig. 3.5). 

The compensation amounts to the product of the index value and the areal 
damage percentage determined by insurance adjuster activity. The Agency for Agri-

Fig. 3.5 Value indexes of the main crops for the Agri-CAT compensation. Source: PGRA, 2023
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cultural Payments (AGEA), as the entity responsible to the financial compensation, 
verifies any overcompensation resulting from the accumulation of interventions 
from the Agri-CAT fund with other public or private risk management schemes, 
also ensuring that the compensation value does not exceed the maximum value of 
the production losses. More specifically, the Agri-CAT compensation is explained 
by the following formula: 

. C = f
(
w, tp

) + (lc ∗ vc) − d

where the compensation C is function of the catastrophic weather events w when 
the threshold t exceeds the 20% of the annual farmer’s production p, added by the 
production losses l per value index v provided by PGRA for the crop c, subtracted 
from the deductible d which may amount from 20% for permanent crops (except 
citrus and olive), and horticulture, to 30% for arable crops and other crops (including 
citrus and olive). The Agri-CAT fund is financed through a withholding tax of 3% of 
direct payments (in accordance with the Article 19 of Regulation (EU) 2021/2115, 
a State Member can decide to allocate up to 3% of the direct payments to be paid 
to a farmer valid as a private share for the activation of a risk management tool). 
Currently, out of 150,000 agricultural insurance contracts in Italy, approximately 
only 18,000 cover catastrophic risks. The Agri-CAT fund allows a coverage of 
around 700,000 farms receiving CAP direct payments from catastrophic weather 
events which may severely affect the crop yields. The financial allocation of the fund 
for 2023–2027 years is approximately 350 million euros per year of which around 
105 million euros from the EAGF (derived from 3% withholding), and around 245 
million euros from the EAFRD. In 2022, an experimental activity was conducted 
in Italy to validate the entire functioning of fund (e.g., risk coverage, monitoring of 
catastrophic events, claims management, area-based damage estimation). For this 
purpose, 12 crops representing the Made in Italy brand were selected, approximately 
one-third of Italy’s agricultural production, covering around 4 million hectares with 
a value of over 10 billion euros: actinidia, almond, apple, apricot, durum wheat, 
industrial tomato, maize, olive for oil, orange, peach, pear, wine grape. Moreover, 13 
test areas2 were identified across the following provinces: Bari, Bolzano, Caserta, 
Catania, Chieti, Ferrara, Foggia, Latina, Mantova, Ravenna, Sondrio, Trento, and 
Verona (see the Table 3.1). 

Clearly, some provinces are leaders for certain crop production, e.g., Bolzano 
and Trento produce together around the 60% of the national production of apples, 
while Latina and Foggia produced around 42% and 25% of the national production 
of Actinidia and industrial tomato for 2023 year, respectively. The experimental 
activity of Agri-CAT fund involved 85,000 farmers for a total of 435,000 cultivated 
hectares. All test areas were affected by catastrophic weather events as drought, 
flood, and frost. More specifically, the provinces more affected by drought were

2 At the end of 2022, Ancona and Pesaro-Urbino provinces were added as test area due to flood 
events which affected Marche region in September 2022. 
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Fig. 3.6 Share of Agri-CAT compensation (a) and production losses due to CAT event (b). Source: 
ISMEA [40] 

those in which crops lacked in emergency irrigation systems (e.g., Foggia for 
durum wheat with losses of 35%) or characterized by water scarcity (e.g., Chieti 
and Mantova for wine grapes and maize with losses of approximately of 50%). 
Regarding flooding, the provinces of Ancona and Pesaro-Urbino were the most 
affected, with hourly precipitation reaching peaks of 90 mm and losses of up to 
100%. Moreover, the provinces of Ravenna, Caserta, and Bari experienced damages 
to apricots (around of 50%), peaches (around of 30%), and almonds (over 70%), 
respectively. Focusing on the technical balance sheet of the Agri-CAT fund a 
regional level, Liguria and Friuli-Venezia Giulia regions were the most indemni-
fied regions with 25% and 17% of their gross saleable production, respectively 
(Fig. 3.6). Based on the detected damages across Italian regions, Puglia and Sicilia 
regions were the worst in terms of production losses due to catastrophic weather 
events, amounting to 655.3 and 601.4 million of euros, respectively, while the Italian 
agricultural losses amounted to 5.6 billion of euros (Fig. 3.6). Cereals and vegetables 
are the agricultural sector with greater production losses, i.e., around 1.2 and 1.6 
billion of euros, respectively. The share of Agri-CAT compensation is higher for 
cereals and oil with 126.8 and 67.1 million of euros, respectively (Fig. 3.7). 

A substantial equalization of indemnifications between geographic macro-
divisions and production sectors emerged, in relation to the damages detected, 
unlike what has been observed in the insurance market, historically unbalanced 
(even more clearly on risks from catastrophic events) on territories in the north and 
on specific compartments, particularly on wine and fruit production. This would 
allow the activation of potential processes of local mutuality between crops in the 
same provinces or at least at the regional level. The experimentation highlighted 
the importance of defining the timeliness of the insurance appraisals with respect to 
the time of occurrence of weather event and, subsequently, with respect to the time 
of time of harvest. A monitoring system based on phenological and meteorological 
data (independent of damage claims), on “sentinel” farms randomly selected in 
homogeneous areas, would be efficient. As shown in Tappi et al. [25, 26], earliness 
and phenological phases are crucial information to reduce yield losses due to 
temperature shocks.
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Fig. 3.7 Production losses and amount of Agri-CAT compensation across main agricultural 
sectors. Source: ISMEA [40] 

3.5 Assessment of Yield Risks: The EU Case 

We assess the yield risk for the cereal crops in the EU-27, using yield data form 
Eurostat (cereals to produce grain, including seed), from 2013 to 2022 (Table 3.2). 
The yield risk is measured as the expected (downside) deviation from the expected 
value. The expected value can be measured statistically. Following Zhang and Wang 
[41], the use the relative deviation from the trend. 

.gt =
(
yt − ŷt

)

ŷt

, (3.1) 

where gt is the relative measure of the deviation from trend, yt is the observed yield 
(t/ha), and ŷt . is the trend of the yield (t/ha). The trend can be calculated in several 
ways. We follow (and modify) two rules envisaged in EU Regulation 2021/2115: we 
use a three-year moving average is used as a trend, and a five-year moving average 
without the lowest and highest values (i.e., a trimmed mean). As we are looking at 
the historical data, the average values are calculated by including the current period 
(which would have been impossible for risk management under the regulation). The 
two candidate options for the 3-year average and 5-year trimmed mean are formally 
defined as: 

.ŷt =

2∑

τ=0
yt−τ

3
and (3.2)
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Table 3.2 Average cereal 
yields for the EU countries, 
2013–2022 

Country Average, t/ha SD, t/ha RSD 

Belgium 8.44 0.78 0.09 
Netherlands 8.24 0.44 0.05 
Ireland 8.01 0.66 0.08 
Germany 7.17 0.47 0.07 
France 6.94 0.60 0.09 
Austria 6.71 0.54 0.08 
Denmark 6.51 0.66 0.10 
Croatia 6.44 0.65 0.10 
Slovenia 6.21 0.79 0.13 
Czechia 5.82 0.38 0.07 
Luxembourg 5.77 0.36 0.06 
Hungary 5.75 0.83 0.14 
Sweden 5.53 0.82 0.15 
Slovakia 5.46 0.67 0.12 
Italy 5.43 0.29 0.05 
EU-27 5.41 0.17 0.03 
Bulgaria 5.17 0.53 0.10 
Portugal 4.81 0.35 0.07 
Romania 4.43 0.94 0.21 
Greece 4.08 0.31 0.08 
Poland 4.08 0.50 0.12 
Lithuania 4.03 0.44 0.11 
Latvia 3.95 0.53 0.13 
Spain 3.72 0.54 0.15 
Estonia 3.70 0.71 0.19 
Finland 3.62 0.43 0.12 
Cyprus 1.72 0.86 0.50 

.ŷt =

4∑

τ=0
yt−τ − min {yt−τ }τ=4

τ=0 − max {yt−τ }τ=4
τ=0

3
. (3.3) 

The probability of a hazard is defined by calculating the occurrence of time periods 
(years) with the relative deviation from the trend exceeding a certain value, λŷt ., 
where coverage level λ ∈ (0, 1] indicates which proportion of the expected yield 
is covered by the risk analysis. The most pessimistic measure is obtained by 
setting λ = 1 when any downward deviation from the trend is considered. The 
EU regulation mentioned above is related to a 20% deviation below the trend. The 
intermediate values can also be considered. The yield risk is calculated as a product 
of the expected hazard and a probability of obtaining a neg ative hazard:

.R = E
(
ht |yt < λŷt

)
Pr

(
yt < λŷt

)
. (3.5)



54 F. G. Santeramo et al.

4.9 

5 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Y
ie

ld
, 
t/

h
a 

Observed 3-year average 5-year trimmed mean 

Fig. 3.8 The observed cereal yields and fitted trends for the EU-27 average value, 2013–2022 

where the hazard is computed as follows: ht = min {0, gt} .
The trends were calculated as described above, i.e., the 3-year average and 5-

yuear trimmed mean were used. An illustrative example of the trends fitted for the 
EU-27 average is provided in Fig. 3.8. As the period needed for the calculation 
extends, more observations are lost at the initial periods. As one can note, the two 
trend lines intersected in between 2018 and 2019. This marked a generally upward 
swing in the observed data series. Thus, the 3-year average is more sensitive to such 
developments. 

The expected hazard (given a loss in yield is observed) can be calculated for any 
level of coverage. The levels of 1, 0.95, 0.9, and 0.8 are chosen for the analysis (note 
that 0.8 corresponds to a 20% downside deviation from the trend). The resulting 
(conditional) expected hazards are summarised in Table 3.3. 

The probability to observe a downward deviation is measured simply as the ratio 
of the time periods satisfying the condition compared to the total number of time 
periods covered. Alternatively, one could estimate an underlying density function 
and embark on integration. This is particularly relevant if the deviations from trend 
are assumed to follow a non-normal distribution. 

The descriptive statistics are informative. Belgium, the Netherlands, and Ireland 
perform the best with the average cereal yields exceeding 8 t/ha over 2013–2022. 
These countries also show relatively low standard deviation. The measure of the 
relative standard deviation (RSD) is used to compare the countries in the sense of 
yield variability with respect to the average values. This measure considers both 
positive and negative deviation from the mean, and the trend is not considered. 

The lowest expected yield loss (given a loss occurs) is observed for Portugal. 
Specifically, it is expected that cereal yield would fall below the trend value by 
some 1.4% assuming the 3-year moving average is used as a trend. In case the 5-year 
trimmed mean is applied, there is no hazard obtained as the observed values of the
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Table 3.3 The expected hazard (proportion of the expected yield lost) obtained by using either 
a 3-year moving average or a 5-year trimmed mean as the expected yield for different coverage 
rates 

3-year average 5-year trimmed mean 
Country λ = 1 λ = 0.95 λ = 0.9 λ = 0.8 λ = 1 λ = 0.95 λ = 0.9 λ = 0.8
EU-27 −0.023 −0.027 
Belgium −0.091 −0.134 −0.205 −0.205 −0.051 −0.063 
Bulgaria −0.058 −0.165 −0.165 −0.124 −0.124 −0.186 
Czechia −0.056 −0.076 −0.060 −0.088 −0.114 
Denmark −0.099 −0.099 −0.181 −0.154 −0.154 −0.254 −0.254 
Germany −0.036 −0.077 −0.101 −0.049 −0.155 −0.155 
Estonia −0.185 −0.185 −0.185 −0.255 −0.175 −0.175 −0.175 −0.235 
Ireland −0.067 −0.106 −0.106 −0.117 −0.117 −0.154 
Greece −0.038 −0.087 −0.122 −0.065 −0.115 −0.115 
Spain −0.102 −0.131 −0.168 −0.133 −0.178 −0.178 
France −0.089 −0.128 −0.182 −0.037 −0.057 
Croatia −0.039 −0.086 −0.120 −0.066 −0.171 −0.171 
Italy −0.034 −0.107 −0.107 −0.049 −0.124 −0.124 
Cyprus −0.264 −0.264 −0.369 −0.615 −0.035 −0.056 #DIV/0! 
Latvia −0.079 −0.137 −0.182 −0.138 −0.138 −0.215 −0.215 
Lithuania −0.074 −0.093 −0.153 −0.086 −0.209 −0.209 −0.209 
Luxembourg −0.049 −0.116 −0.116 −0.047 −0.065 
Hungary −0.088 −0.167 −0.272 −0.272 −0.197 −0.349 −0.349 −0.349 
Netherlands −0.032 −0.082 −0.028 
Austria −0.035 −0.061 −0.035 −0.054 
Poland −0.065 −0.085 −0.118 −0.088 −0.140 −0.140 
Portugal −0.014 
Romania −0.128 −0.165 −0.211 −0.314 −0.187 −0.270 −0.270 −0.270 
Slovenia −0.068 −0.129 −0.129 −0.090 −0.117 −0.142 
Slovakia −0.079 −0.133 −0.133 −0.084 −0.119 −0.150 
Finland −0.080 −0.179 −0.179 −0.216 −0.142 −0.193 −0.193 −0.218 
Sweden −0.154 −0.208 −0.208 −0.292 −0.245 −0.245 −0.245 −0.380 

cereal yields in Portugal are above the 5-year trimmed means. This finding suggests 
that the use of the 3-year moving average may be more operational in empirical 
analysis and decision making. Indeed, the trimmed mean excludes some data from 
the calculations thus making the expected values less responsive to the underlying 
trends in the yields. A similar situation is observed for Cyprus, which showed a 26% 
expected hazard for a 3-year average and just 6.5% for a 5-year trimmed mean. 

The highest expected hazard (ignoring Cyprus) is observed for Estonia (19% and 
18%) and Sweden (15% and 25%) depending on the trend applied. The expected 
mean for deviations exceeding 5% compared to the expected yield were not obtained 
for some of the countries due to a relatively short period covered in this study. Note
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Table 3.4 The probabilities of experiencing loss indicated by the level of coverage obtained by 
using either a 3-year moving average or a 5-year trimmed mean as the expected yield 

3-year average 5-year trimmed mean 
Country λ = 1 λ = 0.95 λ = 0.9 λ = 0.8 λ = 1 λ = 0.95 λ = 0.9 λ = 0.8
EU-27 0.50 0.00 0.00 0.00 0.25 0.00 0.00 0.00 
Belgium 0.38 0.25 0.13 0.13 0.38 0.25 0.00 0.00 
Bulgaria 0.38 0.13 0.13 0.00 0.25 0.25 0.13 0.00 
Czechia 0.38 0.25 0.00 0.00 0.38 0.25 0.13 0.00 
Denmark 0.38 0.38 0.13 0.00 0.25 0.25 0.13 0.13 
Germany 0.63 0.25 0.13 0.00 0.50 0.13 0.13 0.00 
Estonia 0.38 0.38 0.38 0.13 0.25 0.25 0.25 0.13 
Ireland 0.38 0.13 0.13 0.00 0.25 0.25 0.13 0.00 
Greece 0.63 0.25 0.13 0.00 0.25 0.13 0.13 0.00 
Spain 0.50 0.38 0.25 0.00 0.38 0.25 0.25 0.00 
France 0.38 0.25 0.13 0.00 0.50 0.25 0.00 0.00 
Croatia 0.63 0.25 0.13 0.00 0.38 0.13 0.13 0.00 
Italy 0.63 0.13 0.13 0.00 0.50 0.13 0.13 0.00 
Cyprus 0.38 0.38 0.25 0.13 0.25 0.13 0.00 0.00 
Latvia 0.50 0.25 0.13 0.00 0.25 0.25 0.13 0.13 
Lithuania 0.50 0.38 0.13 0.00 0.38 0.13 0.13 0.13 
Luxembourg 0.50 0.13 0.13 0.00 0.25 0.13 0.00 0.00 
Hungary 0.50 0.25 0.13 0.13 0.25 0.13 0.13 0.13 
Netherlands 0.63 0.13 0.00 0.00 0.38 0.00 0.00 0.00 
Austria 0.63 0.13 0.00 0.00 0.38 0.13 0.00 0.00 
Poland 0.38 0.25 0.13 0.00 0.25 0.13 0.13 0.00 
Portugal 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Romania 0.50 0.38 0.25 0.13 0.38 0.25 0.25 0.25 
Slovenia 0.50 0.25 0.25 0.00 0.38 0.25 0.13 0.00 
Slovakia 0.50 0.25 0.25 0.00 0.38 0.25 0.13 0.00 
Finland 0.63 0.25 0.25 0.13 0.38 0.25 0.25 0.13 
Sweden 0.38 0.25 0.25 0.13 0.25 0.25 0.25 0.13 

that the average value for the EU-27 shows low expected hazard suggesting that 
pooling is a promising strategy for risk management in the EU crop sector. 

The probabilities of experiencing a loss that falls beyond a chosen level of 
coverage are presented in Table 3.4. Looking at the EU average, one can note a 50% 
probability of observing a loss in yields which implies a symmetric distribution of 
the relative deviations from the trend in case a 3-year moving average is used. As 
for the 5-year trimmed mean, the probability of observing a loss is just 25%. Thus, 
the latter option for setting a trend seems less reasonable for risk management. 

Even though Estonia and Sweden showed high expected hazards at λ = 1, the 
probability of such event is just 0.38. The countries with non-zero probabilities of 
catastrophic yield loss falling below the coverage level of 80% include Belgium, 
Estonia, Cyprus, Hungary, Romania, Finland, and Sweden in case a 3-year moving
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Fig. 3.9 Return to risks 

average is applied. As for the 5-year trimmed mean trend, such countries include 
Denmark, Estonia, Latvia, Lithuania, Hungary, Romania, Finland, and Sweden. 
Thus, there exists an overlap across the two sets of countries, yet it is not a perfect 
one. 

The countries can be ranked according to the returns to the risk. The yield 
can be normalized with respect to the risk following a well-known mean-variance 
approach, and operationalised via the data envelopment analysis [42, 43]. We 
outline the possibilities for assuming either variable or constant returns to risk 
when constructing the best practice frontiers. Figure 3.9 presents the case of the 
EU countries, assuming the cereal yield based on a 3-year moving average and the 
coverage level of 100%. 

The solidline in Fig. 3.9 indicates the best practice frontier based on the highest 
returns to the risk observed in the sample. It is obtained as a line passing from the 
point of origin through the corresponding observation. The variable returns to risk 
assumption are imposed by assuming that benchmarks are set by considering the 
dominating observations only. Inefficient countries are located below the frontier 
and can approach it by adjusting risk and/or yield. 

The constant returns to risk frontier is straightforward to be applied in the case of 
the constant returns to risk. Indeed, it is enough to find the maximum yield-to-risk
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Table 3.5 Yield-risk efficiency for the EU countries (λ = 1)
Country Average Yield Risk (0) Yield/Risk Rank (Yield/Risk) Rank (Yield) Efficiency 

EU-27 5.41 0.01 465.64 2 16 0.34 
Belgium 8.44 0.03 247.44 10 1 0.18 
Bulgaria 5.17 0.02 239.86 11 17 0.18 
Czechia 5.82 0.02 277.99 7 10 0.20 
Denmark 6.51 0.04 175.19 15 7 0.13 
Germany 7.17 0.02 317.21 5 4 0.23 
Estonia 3.70 0.07 53.39 26 25 0.04 
Ireland 8.01 0.03 319.44 4 3 0.24 
Greece 4.08 0.02 170.34 16 20 0.13 
Spain 3.72 0.05 72.90 23 24 0.05 
France 6.94 0.03 207.00 13 5 0.15 
Croatia 6.44 0.02 265.03 8 8 0.20 
Italy 5.43 0.02 257.82 9 15 0.19 
Cyprus 1.72 0.10 17.36 27 27 0.01 
Latvia 3.95 0.04 99.61 21 23 0.07 
Lithuania 4.03 0.04 108.32 20 22 0.08 
Luxembourg 5.77 0.02 234.52 12 11 0.17 
Hungary 5.75 0.04 130.08 19 12 0.10 
Netherlands 8.24 0.02 407.33 3 2 0.30 
Austria 6.71 0.02 307.93 6 6 0.23 
Poland 4.08 0.02 166.79 17 21 0.12 
Portugal 4.81 0.00 1357.46 1 18 1.00 
Romania 4.43 0.06 69.05 25 19 0.05 
Slovenia 6.21 0.03 182.83 14 9 0.13 
Slovakia 5.46 0.04 138.22 18 14 0.10 
Finland 3.62 0.05 72.52 24 26 0.05 
Sweden 5.53 0.06 95.53 22 13 0.07 

ratio and use it as a numeraire when comparing each country against this ratio. The 
results are presented in Table 3.5. 

Portugal shows full efficiency which is caused by extremely low risk value (one 
may expect an increase in case a longer time series were covered). Cyprus, Romania, 
and Estonia show the lowest efficiency levels. Note that the rankings of the EU 
countries based on the average yield and yield-to-risk ratio are different, e.g., in the 
case of Belgium. Therefore, the yield risk is an important measure when devising 
risk management policies in the EU crop farming. 

3.6 Prospects of the Index-Based Insurance Schemes in the 
EU 

The AGRI-CAT scheme offers an interesting case study to scale the index-based 
insurance schemes at the EU level, as for other successful risk management schemes
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such as the IST [44]. Scaling up this initiative comes with several questions 
and concerns that need to be addressed in the next Common Agricultural Policy, 
following a long trend of reforms that have been able to improve the effectiveness 
of the EU scheme [45]. We list here some of the many issues that will have to be 
faced by the theorists of the EU CAT scheme, by the analysists of the crop insurance 
markets and by the policymakers that will design the national rules to operationalize 
the interventions. 

The EU schemed must be scalable and adaptable to the national specificities, 
in terms of climate conditions, farming, market and trade structures, farmers 
representation, and culture. The scheme has to be peculiar and specific, but also 
inclusive as it should promote diversification and inclusivity within the agricultural 
sector, discouraging disparities or exclusionary practices that would undermine 
the effectiveness of the scheme. The EU CAT should also be economically, 
environmentally, and socially sustainable. Failure to do so would result in a short-
lived instrument that will not survive the pressure of the most affected categories. 
Moreover, the EU CAT must be politically feasible and sustainable. 

These challenges cannot be taken and solved in a single stage. Differently, it 
would be advisable to plan a stepwise implementation of the large-scale EU CAT, 
that may build on long-lasting experience in insurance schemes in major economies, 
particularly in the US [39]. 

3.7 Conclusion 

Understanding climate change and future projections is useful to support the 
development of risk management tools tailored to the needs of farmers. Premium 
subsidies encourage farms to increase both crop acreage and insurance coverage 
[46]. Enlarging the insured area leads to higher insurance premium, while securiti-
zation through CAT bonds turned out to be an effective tool for reducing systems 
risk at reasonable costs [47]. 

The new CAP provides several risk management tools that may play a crucial 
role in enhancing the resilience of farming systems to climate change. These tools, 
such as crop insurance, may help the farmers to protect the crops and their incomes 
from damages due to extreme weather events that are more and more frequent, and 
impactful. Clearly, farmers need to be informed about the availability of these tools 
and encouraged to adopt them, and only through a combination of complementary 
risk management strategies (e.g., agricultural diversification together to crop insur-
ances or mutual funds) may build more resilient farms. Likewise, it is important 
that stakeholders consider that the indicators are based on data that are imperfectly 
measured and that efforts are required to standardise data quality [35]. Furthermore, 
it is essential to involve the stakeholders, policymakers, researchers, professional 
association, and agronomist to develop effective risk management solutions and 
protect agricultural and environmental heritage for generations to come. It needs 
to tailor contractual schemes also taking into account the need to limit the Fund’s
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financial exposure, to encourage maximum integration with the insurance system, 
to encourage the spread of policies subsidized against weather and climate risks, 
to overcome territorial and sectoral asymmetries and to reverse the upward trend 
in insurance rates. Clearly, insurance does not compensate for the entire loss but 
represented an aid to the farmer to stay in the market. 
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Chapter 4 
Avocado Production Index Insurance: 
An Application of Credibility Theory 
on Heterogeneous Data 

Hirbod Assa 

Abstract This chapter focuses on assessing avocado production index insurances 
and investigates insurance pricing utilizing credibility theory on a heterogeneous 
data set. The paper presents a methodology for analyzing and designing insurances, 
specifically addressing the challenges that arise when dealing with a data sets with 
varying characteristics. To enhance the reliability of the results, the analysis mod-
ifies Bühlmann’s credibility theory to refine parameter distributions. Considering 
data sets from different countries on avocado production, this chapter provides 
global and local premium rates for each country, revealing rates based on historical 
trends. The study also proposes a two-layer policy for insurances that covers 
production return risks, incorporating both a standard deduction and a preventive 
measure to mitigate moral hazard risks. 

4.1 Introduction 

Agricultural insurances is one of the oldest and most active areas of research in 
actuarial science, see [1, 2]. There are two major risks in the agricultural industry: 
the production risk, and the risk of the prices. To manage these risks, there are 
different categories of agricultural insurances as listed below 

• crop insurances [3, 4]; 
• revenue insurances; [5, 6], [7], [8]; 
• index insurances [9]; 
• price index insurances [10]. 

Due to lack of futures market, and also low cross correlation of the avocado prices 
with other commodities, the risk management of avocado is always a concern for the 
farmers. Likewise, in the literature the risk of avocado businesses is poorly studied, 
which warrants a separate study to propose a kind of insurance that can be used 
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worldwide. In this chapter, we propose an index insurance that uses production 
data on avocado as a trigger, reported by Food and Agriculture Organization (FAO) 
. Our goal is to develop a pricing strategy that effectively accounts for the risks 
and uncertainties associated with avocado production across different countries 
with a high data heterogeneity. Avocado production is influenced by numerous 
factors, including climate variability, pest outbreaks, and agricultural practices, 
which significantly impact annual yields. These dynamics necessitate a robust risk 
management model that accurately accounts for the probability and intensity of 
potential production shortfalls. We adopt an intensity-frequency framework, under 
model uncertainty and utilize credibility theory to better understand the risk of low 
yield. 

Index insurance literature is an active research area in the literature. Here we 
briefly review most recent works in the field of agricultural index insurances in 
actuarial science. First, [10] explores the development of price index insurances. 
Their study stresses the need for tailored insurance solutions that address the specific 
volatility and risk profiles inherent in agricultural markets, thereby enhancing the 
financial resilience of farmers. Brock Porth et al. [11] demonstrate the potential of 
integrating advanced data analytics and satellite imagery to improve the accuracy 
and reliability of index-based insurance products. The forthcoming study by [12] 
presents a neural network-based approach to managing weather index insurance by 
providing more sophisticated tools for insurers to reduce the basis risk. Finally, [13] 
propose an improved index insurance design and yield estimation method using 
a dynamic factor forecasting approach. Their paper highlights the importance of 
dynamic modeling techniques in enhancing the precision of yield predictions, which 
is crucial for setting fair and effective insurance premiums. 

Credibility theory also has a developed literature for agricultural application 
[14]. By combining historical loss experience with industry-wide data, credibility 
theory helps insurers strike a balance between the reliability of individual claims 
experience and the broader risk profile of the agricultural sector. This allows 
insurance companies to develop fair and financially sustainable pricing structures. 
Particularly, credibility theory has been considered in agricultural insurances as 
a powerful tool that can ultimately benefit both farmers and insurers in better 
estimating the insurance prices. Porth et al. [15] used a modified credibility 
approach incorporating the Erlang mixture distribution and liability weighted LCR 
improves reinsurance pricing by accurately modeling data tails and providing a more 
conservative and scientific approach; [16] enhanced our understanding of livestock 
insurance for mortality risk and improved modeling and computation methods 
through credibility analysis, providing improved estimates for livestock mortality 
insurance premiums and [17] improved reinsurance pricing framework integrating 
crop yield forecasting with credibility estimation. 

The assumption in all papers is that the data have been validated for its quality, 
however, we have realized that in most of the cases particularly in agricultural 
insurances this cannot be the case. This needs to be addressed and for that reason 
agricultural insurance is a fruitful area of research to propose new methods of 
credibility.
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In study we deal with a heterogeneous data set of a worldwide avocado 
production data. The data has covered production data of avocado for different 
countries and some different areas, covering different years. However, the range 
of the years coverage are very different; some can span over 60 years and some 
just for 10 years. This needed to be addressed by developing a modification of 
the Bühlmann’s credibility theory that allows for such a heterogeneity. This is 
essentially done for the purpose of obtaining the average frequency and intensity 
of losses. 

4.2 Overview of the Methodology and Data 

In this chapter we follow a methodology that can be used for any other index 
insurance that is defined on the production level of a commodity. 

4.2.1 Methodology 

Here we outline the methodology and then throughout the chapter we will use 

• Actuarial Methodology: We consider an intensity/frequency (a.k.a. sever-
ity/frequency) approach. Both the intensity (magnitude of production loss) 
and frequency (occurrence rate of such events) are modeled using exponential 
distributions. This choice is driven by the distribution’s simplicity and empirical 
relevance, which facilitates parameter estimation and subsequent risk analyses. 
Notably for exponential distribution we need only to obtain the mean of the 
distribution. 

• Empirical Analysis: Initial steps involve calculating the mean of the intensity 
and frequency of avocado production losses across all reporting countries. Given 
the diversity in agricultural conditions, we have a variety of means for both 
intensity and frequency that needs modeling. Modeling the means ensures a more 
accurate reflection of the data. The models are optimized by selecting the highest 
R2

. values for a model fitted to the survival functions of the means. 
• Extension of Bühlmann’s Credibility Theory: To better handle data hetero-

geneity, we extend Bühlmann’s credibility theory to heterogeneous data. This 
method adjusts the means based on the variability and volume of data available 
for each country, refining our risk estimates. 

• Model Fitting to Adjusted Means: After adjust the intensity and frequency 
means, we fit a suitable statistical models to these new data sets. These models 
help define the distribution of the modified expected losses, which is crucial for 
calculating accurate insurance premiums. 

• Credibility Price Method: We calculate the adjusted rates for each country and 
compare it with their initial rate.
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• Uncertainty Premium Calculation: Given the distribution of adjusted means 
for intensity and frequency, we adopt a conservative approach for premium 
calculation due to model uncertainty. We use higher quantile values from the 
distributions of intensity and frequency means. The premium is derived by 
multiplying these quantile values, reflecting a higher risk scenario and ensuring 
adequate coverage for intense and frequent loss events. 

4.2.2 The Countries 

In the following, we analyze the data of the annual avocado production reported 
to FAO for 65 countries all across the globe from 1960 to 2022, in Table 4.1.  The  
number of the years that the data is available for each country is also indicated in 
brackets next to the name of the countries. As you can see the challenge of this data 
set is that, it does not form a tabular table and the length of the data for each country 
is different. The reason is that the consumption of avocado has just in the recent 
decade increased in countries that usually would not use them as an ingredient of 
their traditional food.

4.3 Insurance Designing and Pricing 

The insurance design can be in different forms, e.g., on the crop losses (peril 
insurance), on the revenue losses (revenue insurance) or on prices (e.g., derivatives). 
In this chapter due to the existing data we have decided to design an index insurance 
based on the production. 

4.3.1 Insurance Coverage and Retention Level 

Suppose we take a retention level ρ . in the range (0, 1).. A farmer aims to ensure 
that their production is at least ρ×.100% of the previous year’s production. Due to 
inherent risks, achieving this target is technically unattainable. Therefore, the farmer 
must procure insurance that guarantees revenue to meet this threshold. Motivated by 
this an index insurance is structured to cover losses up to ρ×.100% of the shortfall 
in the next year’s market production compared to the current year’s production. In 
essence, the insurance is designed as follows: 

.Z
ρ
t+1 = Pt+1

×
⎛ 
0, P roductiont+1 > ρ ×Productiont

ρ × Productiont − Productint+1, P roductiont+1 ≤ ρ ×Productiont

,
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or, 

. Z
ρ
t+1 = Pt+1 max {ρ × Productiont − Productint+1, 0} ,

where Pt+1 . is the next period prices. Production here acts as in index. In summary 
the insurance pays if the production of this year is less than ρ × 100. percent of the 
last year production. 

As a result, the revenue pay-off is 

. pay − off t+1 = Pt+1 × Productiont+1 + Z
ρ
t+1

= Pt+1 max {ρ × Productiont , P roductint+1} .

In this case, the farmers pay-off is not less than ρ × 100. production. 
As such the premium of the policy is 

. Premium = Et

(
Z

ρ
t+1

)
,

where Et . is the conditional expectation on time t . Note that for simplicity without 
confusion we may drop t later. In terms of pricing what we need to know about this 
insurance is the discounted expected va lue:

. Et

(
Z

ρ
t+1

) = Et (Pt+1 max {ρ × Productiont − Productint+1, 0}) .

To deal with this value as the premium, we must consider a price process Pt , t =
0, 1, 2, .... While we could have fitted a time series to the price process, we opt for a 
simpler model that enables us to price the insurance more effectively. Let us assume 
that the discounted process follows a martingale process, i.e., 

. E (Pt+1) = erPt ,

where r is the interest rate. This is in line with the well-known martingale process 
(such as risk-free geometric Brownian motion) prices model (which is nothing but 
the Black-Scholes model). Using this in our pricing formula we get

.Et(Z
ρ
t+1) = Et (Pt+1 max {ρ × Productiont − Productiont+1, 0})

= erPt × Et (max {ρ × Productiont − Productiont+1, 0})

= erPt × Productiont × Et

⎛ 
max

⎛ 
ρ − Productiont+1

Productiont

, 0

⎞⎞

= erPt × Productiont × Et (max {ρ − (1 + Returnt ), 0}) .
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Here Returnt = Productiont+1−Productint

P roductiont
.. As a result, we get: 

. 
Et(Z

ρ
t+1)

erPt × Productiont

= Et (max {ρ − (1 + Returnt ), 0}) .

Therefore, the production can be written in terms of the revenue: 

. 
Et(Z

ρ
t+1)

erRevenuet

= Et (max {ρ − (1 + Returnt ), 0}) .

As one can see if ρ < 1+Returnt . there would be no compensation. For instance, if 
the coverage is for 70% then if the return loss is not less than 30% the product would 
not cover anything. Let us denote It+1 = max{ρ−(1+Returnt ), 0}., it = Et (It+1)., 
then the premium is given by 

. Premium = erRevenuet × it .

Of course, we always can apply some safety loading factor LR: 

. Premium modified by loss ratio = erRevenuet × it

LR
.

For simplicity we always assume LR = 1. in the sequel. 

4.3.2 Stop and Two Layer Policy 

To mitigate the over-hedging, it is essential to incorporate a stop level. The insurance 
product should be structured in a way that the farmer’s payoff is not unconditionally 
guaranteed by the insurance for every loss; rather, the insurance coverage ceases 
at a certain level. Let 0 < σ < ρ . , and consider the following product: if today’s 
production falls below ρ . times 100% of the last year’s production, the insurance 
covers all losses below ρ . times 100% minus σ . times 100%. This two layer insurance 
contract, that we will denote by Z

ρ,σ
t+1 ., is given by: 

.Z
ρ,σ
t+1 = Pt+1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ρ×Productiont < P roductiont+1

ρ×Productiont − Productiont+1, σ ×Productiont ≤Productiont+1

≤ρ×Productiont

ρ×Productiont − σ ×Production, σ ×Production < Productiont+1

.
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It is clearly the case that Z
ρ,σ
t+1 = Z

ρ
t+1 − Zσ

t+1 .. The pay-ff of the farmers income 
is that any production loss between σ × 100. and ρ × 100. percent of the last year 
product is guaranteed but below σ × 100. the risk is shared by farmer. 

In terms of the premium then it is very easy as one needs to note that 

. Premium = E
(
Z

ρ,σ
t+1

) = E
(
Z

ρ
t+1

)− E
(
Zσ

t+1

) = Premiumρ − Premiumσ .

4.3.3 Actuarial Analysis on Production Data 

In this chapter, we explore a standard actuarial analysis including two key aspects: 

1. Intensity: Assessing the intensity of the damages. 
2. Frequency: Examining the frequency at which damages occur. 

To enhance the robustness of our analysis, we employ credibility theory to refine the 
outcomes related to average intensity and frequency. However, the enhancement of 
premiums through credibility theory necessitates a tabular format of losses, which 
is currently absent in our data-set. Consequently, constrained by the available data, 
we opt to model and design the insurance based on avocado production return. 
Moreover, confronted with a heterogeneous and limited data-set, we choose to 
anchor our analysis on model uncertainty within credibility theory, presenting a 
heterogeneous adaptation of the theory in this chapter. 

Hence, the main points of this paper are the production return and model uncer-
tainty. The data utilized comprises total production figures for various countries, as 
reported by the FAO in tons. Given the heterogeneous nature of the data, traditional 
statistical analyses are not feasible, and there exists significant model uncertainty. 
Nevertheless, we must still consider models that can assist us in risk analysis in the 
face of this uncertainty. An often-utilized model for intensity and frequency is the 
exponential distribution: 

. I ∼ exp

⎛ 
1

θI

⎞
,

. F ∼ exp

⎛ 
1

θF

⎞
.

This implies that, for modeling purposes, there is only one parameter of interest - the 
mean of the data. Consequently, the data mean is the essential parameter considered 
in this analysis. However, alternative models can be considered, where the mean 
suffices for fitting the model. Specifically, the risk analysis will be centered on the 
means obtained from various countries/regions.
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Let’s denote two independent random variables, I and F , representing the 
intensity and frequency of losses, respectively. Since we are focusing on the return 
of the production, we can easily consider the follo wing:

. It = −Return
ρ
t

||Return
ρ
t ≤ 0,

. Ft = 1{Return
ρ
t ≤0},

where Return
ρ
t = (1 + Returnt ) − ρ .. As such we expect every year to see the 

expected losses be given by, 

. E (Lt ) = E (It ) × E (Ft ) = θI × θF .

The values for the premiums which is the production of the expected intensity 
and expected frequency for all countries are calculated and reported in Table 4.2. 

As it is not very clear how the exact value for the θI , θF .would be calibrated, we 
treat θI , θF . as random variables (similar to Bayesian approach) and then will use a 
model uncertainty approach on this model. More precisely, we can consider all the 
values of the form F−1

θI
(β) F−1

θF
(γ )., where q is the quantile and (1 − β) (1 − γ ) =

(1 − α).,  (or α = β +γ −βγ .) where α . is the level of risk tolerance (e.g., α = 0.90.). 
This is closely related to the concept of multivariate quantiles (see [18]) 

4.3.4 Modeling the Expected Intensity and Frequency 

The estimation based on what is formulated above is done for all countries. 
However, we are interested in knowing the distribution of E (I) = θI . and E (F) =
θF . for the modeling purpose. Here we depict the expected intensity and the survival 
functions of the estimated means of the countries in Fig. 4.1. 

The same has been plotted for the frequency presented in Fig. 4.2. 
Our model selection criteria are as follows: 

1. Consider three models, being prioritized as Linear, Exponential, and Power 
distribution. 

2. We fit these models to the survival functions and calculate their fitted R2
.. 

3. If the best model (with largest R2
.) is at least 10% greater than the second best 

model (with second largest R2
.), we pick the best model. 

4. Otherwise, among the top 10% of R2
. use the priority list provided in 1.
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Fig. 4.1 The expected frequencies and the associated survival fit for case ρ = 1..  (a) The empirical 
expected frequencies for the case ρ = 1..  (b) The empirical survival function of the expected 
intensity for ρ = 1.
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Fig. 4.2 The expected frequencies and the associated survival fit for case ρ = 1..  (a)  The  
empirical expected frequencies for the case ρ = 1..  (b) The empirical survival function of expected 
frequencies for the case ρ = 1.
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Based on the criteria we explained above, we fitted four models to the EI survival 
function, and we report the following R2

.: 

• Intensity Models: 

– Linear: R2 = 0.9643, f (x) = −3.92x + 0.96. 
– Exponential: R2 = 0.8254, f (x) = exp(−12.10x + 0.44). 
– Power: R2 = −1.0273, f (x) = x−0.90 + −3.13. 

• Frequency Models: 

– Linear: R2 = 0.9499, f (x) = −1.96x + 0.97. 
– Exponential: R2 = 0.8229, f (x) = exp(−6.15x + 0.52). 
– Power: R2 = −0.8510, f (x) = x−1.03 + −2.66. 

As one can see, based on the R2
., the linear models have the best fit i.e., θI ∼

U (0, 2 × EI). and θF ∼ U (0, 2 × EF). for some EI and EF .

4.3.5 Modified Expected Intensity and Frequency and Their 
Modified Models 

Let us consider having two expected intensity values: one for the entire data-
set including the data of all the countries, and another for single countries with 
significantly less data. The question arises: which value carries more credibility? 
On one hand, the region’s expected loss appears more authentic as it relies solely 
on regional data. On the other hand, the limited number of data points for that 
region might lead to a less accurate estimation. Bühlmann suggests finding a 
compromise that better represents the expected loss, striking a balance between 
regional authenticity and the potential for estimation errors due to the smaller data-
set. 

However, Bühlmann’s theory requires that the data-set for each mean estimation 
be equal, a condition not met in our case. Consequently, we need to adopt a theory 
to ensure that this data-set heterogeneous doesn’t pose any issues. This adoption is 
detailed in the Appendix. If we denote the region by i and its expected intensity 
by EIi . and expected frequency by EFi ., we propose the following modifications 
to the region’s expected intensity and frequency where the fitted models for θI ∼
U (0, 2 × EI). and θF ∼ U (0, 2 × EF). hold (see Appendix for more details): 

. MEIi = ni

ni + 4
EIi + 4

ni + 4
EIT ,

.MEFi = ni

ni + 4
EFi + 4

ni + 4
EFT .
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Here, ni . is the number of the sample from region i and EIT . , EFT . are the expected 
intensity and frequency, respectively, of the whole data. The values for the modified 
premiums which is the production of the modified expected intensity and modified 
expected frequency for all countries are calculated and reported in Table 4.2. 

As it is evident, the outcomes exhibit a considerable degree of smoothness; the 
smaller values are slightly elevated, while the larger ones are marginally reduced. 
This adjustment is influenced by both the volume of data and the aggregate 
means.To achieve this, we apply the same methodology used for fitting the original 
distributions. In Figs. 4.3, and 4.4 we plotted the modified expected intensity and 
frequency and their survival functions. 

4.3.6 Model Uncertainty Premium 

There is an issue when we want to look at the premium from the uncertainty 
perspective, that we really do not know which premium is the correct one. For that 
we look at the quantiles of the of the intensity and frequency. So let us consider the 
inverse CDF of the modified expected intensity and modified expected frequency 
modified F−1

MEI (β)., F−1
MEF (γ ).,  for β, γ ∈ (0, 1).. So if we believe that the correct 

values of the expected intensity and frequency are given by β, γ . then the premium 
is nothing but the multiplication of the two given by: 

. F−1
MEI (β) × F−1

MEF (γ ).

To address the uncertainty, we can consider a solution by looking at a scenario at 
which the prices is generated at a particular level of risk aversion. Let us consider we 
want to make sure that the premium that we propose with a high probability covers 
all the risk at α . percent level, for instance 90%. level. In other words, we want to 
have a premium that only can incorporate 10% possible under-pricing. Given this 
and that we are dealing with two inverse CDF the natural way to look at this is to 
consider the quantile space β . , γ ., therefore, we want to consider all the cases where 
so that 1 − (1 − β) (1 − γ ) ≤ α .. As the two functions F−1

MEI (β), F−1
MEF (γ ). are 

non-decreasing it make sense then to reduce the possibilites for β, γ . to only 1 −
(1 − β) (1 − γ ) = α .. Therefore, we introduce an uncertainty premium as follows: 

. Premiumuncertaity (α) = max
1−(1−β)(1−γ )=α

F−1
MEI (β) × F−1

MEF (γ ).

Now we fit a model to the modified expected intensity and frequency as it will be 
used in model uncertainty premium calculation.
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Fig. 4.3 The modified expected intensities and the associated survival fit for case ρ = 1..  (a)  The  
modified empirical expected intensities for the case ρ = 1..  (b) The empirical survival function of 
the modified expected intensity for the case ρ = 1.
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Fig. 4.4 The modified expected frequencies and the associated survival fit for case ρ = 1..  (a)  The  
modified empirical expected frequencies for the case ρ = 1..  (b) The empirical survival function of 
the modified expected frequencies for the case ρ = 1.
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• Modified Intensity Models: 

– Linear: R2 = 0.9595, f (x) = −4.31x + 1.00. 
– Exponential: R2 = 0.8667, f (x) = exp(−13.39x + 0.60). 
– Power: R2 = 0.0886, f (x) = x−1.24 − 3.85. 

• Modified Frequency Models: 

– Linear: R2 = 0.8639, f (x) = −2.51x + 1.15. 
– Exponential: R2 = 0.9775, f (x) = exp(−8.42x + 1.22). 
– Power: R2 = 0.9184, f (x) = x−2.32 − 4.26. 

The optimal model, according to our criteria, is the exponential model. We also need 
the inverse of the CDF 

. 0 < β < 1, F−1
MEI (β) = β

4.31
,

. 0 < γ < 1, F−1
MEF (γ ) = 0.15 + γ

2.51
.

So we introduce 

. Premiumuncertaity (α) = max
1−(1−β)(1−γ )=α

β

4.31
× 0.15 + γ

2.51
.

The following Fig. 4.5 shows the premium at 100α . percent level, for α ∈
(0.95, 0.99).. 

4.3.7 Case ρ = 70%. 

While in the previous analysis we considered to cover any loss below the last year 
production (i.e., ρ = 1.), here we present the heat map of an example we have chosen 
where ρ = 70%.. Taking similar steps we find the empirical expected intensity and 
frequency and their survival functions plotted in Figs. 4.6 and 4.7 

Consequently we fit the following models to the survival with their R2
. calcu-

lated 

• Intensity Models: 

– Linear: R2 = 0.9140, f (x) = −1.53x + 0.57. 
– Exponential: R2 = 0.8867, f (x) = exp(−7.61x + −0.14). 
– Power: R2 = −1.6790, f (x) = x−0.77 + −3.03.
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Fig. 4.5 Premium based on model uncertainty for all ranges of risk aversion based on the modified 
model for the case ρ = 1. 

• Frequency Models: 

– Linear: R2 = 0.7674, f (x) = −5.94x + 0.54. 
– Exponential: R2 = 0.9157, f (x) = exp(−32.28x + −0.18). 
– Power: R2 = 0.8005, f (x) = x−1.32 + −5.99. 

As one can see unlike the case for ρ = 1., which was the original one, for the 
frequencies, the exponential model emerges as the best fit. Therefore, for modifying 
the data we need to consider a different approach. Using the exponential model for 
the frequency we will come up with the following 

. MEIi = ni

ni + 4
EIi + 4

ni + 4
EIT ,

. MEFi = ni

ni + 2
EFi + 2

ni + 2
EFT .

For more details see the Appendix. Figures 4.8 and 4.9 present the modified 
expected intensity and frequency, and their survivals.
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Fig. 4.6 The expected intensity and the associated survival fit for case ρ = 0.7..  (a) The empirical 
expected intensity for the case ρ = 0.7..  (b) The empirical survival function of the expected 
intensities for the case ρ = 0.7.
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Fig. 4.7 The expected frequencies and the associated survival fit for case ρ = 0.7..  (a)  The  
empirical expected frequencies for the case ρ = 0.7..  (b) The empirical survival function of the 
expected frequencies for the caseρ = 0.7.
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Fig. 4.8 The modified expected intensities and the associated survival fit for case ρ = 0.7..  (a) 
The modified expected intensities for the case ρ = 0.7..  (b) The empirical survival function of the 
modified expected intensities for ρ = 0.7.



4 Avocado Production Index Insurance: An Application of Credibility Theory. . . 83

Fig. 4.9 The modified expected frequencies and the associated survival fit for case ρ = 0.7..  (a) 
The modified expected frequencies for the case ρ = 0.7.. (b) The survival empirical for the modified 
expected frequencies for case ρ = 0.7. 

Finally, we will modify the data based on this new rule and present the following 
modified returns and loss model. 

• Modified Intensity Models: 

– Linear: R2 = 0.8393, f (x) = −2.25x + 0.74. 
– Exponential: R2 = 0.9261, f (x) = exp(−7.62x + −0.17). 
– Power: R2 = 0.7403, f (x) = x−0.40 + −2.32.
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• Modified Frequency Models: 

– Linear: R2 = 0.7323, f (x) = −23.84x + 1.61. 
– Exponential: R2 = 0.8792, f (x) = exp(−80.97x + 2.81). 
– Power: R2 = 0.8617, f (x) = x−4.11 + −13.64. 

• Inverse CDF of the modified expected intensity linear model: F−1
MEI (α) =

α−0.26
2.25 .. 

• Inverse CDF of the modified expected frequency linear model: F−1
MEF (α) =

2.81−ln(1−α)
80.97 .. 

Similar to what we have done above we get the following premium that is concerned 
with the model uncertainty: 

. Premiumuncertainty (α) = max
1−(1−β)(1−γ )=α

β − 0.26

2.25
× 2.81 − ln(1 − γ )

80.97
,

In Fig. 4.10 we have plotted Premiumuncertainty (α).. 

Fig. 4.10 Premium based on model uncertainty for all ranges of risk aversion based on the 
modified model for the case ρ = 0.7.
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4.4 Conclusion 

This study has undertaken a risk analysis of avocado production across 65 countries, 
in the world. By introducing a modified credibility theory for insurance pricing on a 
heterogeneous data-set, our methodology addresses challenges arising from varying 
data-set characteristics, modifying Bühmann’s credibility theory for increased 
reliability. The derived premium rate for coverage aligns with industry expectations 
and global trends, showing rather moderate rates based on historical trends. In 
addition to evaluating premium rates, our research proposes a two-layer insurance 
policy covering production return risks, incorporating both a standard deductible 
and a preventive measure. Our framework also discusses the uncertainty pricing of 
insurances as an option for the risk averse insurance companies. 

Appendix 

Mathematical Theorems 

Proposition 4.1 If we have m samples {xi1}i=1,...,n1 , . . . , {xim}i=1,...,nm
.of m risks, 

and assume that the samples are identically distributed and independent given 
a parameter ϑ . is known. Then, the best sample estimation of the conditional 
expectation 

. Π i = E
(
E
⎡
xij | Θi = ϑ

⎤ | xi1, xi2 . . . xini

) = E
(
m(ϑ) | xi1, xi2, . . . xi ni

)
,

is 

. zi x̄i + (1 − zi) μ,

where 

. xi = xi1+xi2+...+xini

ni
, zi = 1

1+ σ2

v2
ni

,

and 

.μ = E (mi(ϑ)) ,m(ϑ) = E
⎡
xij |θi = ϑ

⎤
, s2 (ϑ)

= V ar
⎡
xij |θi = ϑ

⎤
, σ 2 = E

⎡
s2(ϑ)

⎤
, v2 = V ar [m(ϑ)] .
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Proof Let us compute the quadratic error as follows: 

E

⎡
⎢⎣
⎛
⎝ai0 +

ni⎲
j=1

ai,Xij − m(ϑ)

⎞
⎠

2
⎤
⎥⎦

= E

⎡⎛
ai0 +

ni⎲
i=1

aijXi, − Π i

⎞⎤
+ E

⎡
(m(ϑ) − Π i)

2
⎤

+ 2E

⎡
⎣
⎛
⎝ai0 +

ni⎲
j=1

aijXij − Π i

⎞
⎠ (m(ϑ) − Π i)

⎤
⎦

= E

⎡
⎣
⎛

ai0 +
ni⎲

i=1

aij xij − Π i

⎞2
⎤
⎦+ E

⎡
(m, (ϑ) − Π i)

2
⎤

.. 

The last equation follows from the fact that: 

. 

E

⎡
⎣
⎛
⎝ai0 +

ni⎲
j=1

aij xij − Π i

⎞
⎠ (m(ϑ) − Π i)

⎤
⎦

= E

⎡
⎣E

⎡
⎣
⎛
⎝ai0 +

ni⎲
j=1

aij xij − Π i

⎞
⎠ (m(ϑ) − Π i) | xi1, . . . , xiπi

⎤
⎦
⎤
⎦

= E

⎡
⎣
⎛
⎝ai0 +

ni⎲
j=1

aij xij − Π i

⎞
⎠E

⎡
(m(ϑ) − Π i) | xi1, . . . , xini

⎤⎤⎦ = 0.

Let us find critical points of the function: 

. 

1
2

∂f
∂ai0

= E
⎡
ai0 +∑ni

j=1 aij xij − m(ϑ)
⎤

= ai0 +∑ni

j=1 aijE
(
xij

)− E(m(ϑ))

= ai0 −
⎛∑ni

j=1 aij − 1
⎞

μ.

As a result, we get that ai0 =
⎛∑ni

j=1 aij − 1
⎞

μ..  Fork /= 0.we have: 

.

1

2

∂f

∂aik

= E

⎡
⎣xik

⎛
⎝ai0 +

ni⎲
j=1

aij xij − m(ϑ)

⎞
⎠
⎤
⎦

= E [xik] ai0 +
n1⎲

i=1,k

(
aijE

⎡
xikxij

⎤)+ aikE
⎡
x2
ik

⎤
− E [xikmi(ϑ)] = 0.
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We can simplify derivative, noting that: 

. 

E
⎡
xij xik

⎤ = E
⎡
E
⎡
xij xik | ϑ

⎤⎤ = E
⎡
cov

(
xij xik | ϑ

)+ E
(
xij | ϑ

)
E (xik | ϑ)

⎤
= E

⎡
(m(ϑ))2

⎤ = v2 + μ2,

E
⎡
x2
ik

⎤ = E
⎡
E
⎡
x2
ik | ϑ

⎤⎤ = E
⎡
s2(ϑ) + (m(ϑ))2

⎤ = σ 2 + v2 + μ2,

E [xikm(ϑ)] = E [E [xikm(ϑ) | ϑ]] = E [m(ϑ)E [xik | ϑ]]
= E

⎡
(m(ϑ))2

⎤ = v2 + μ2.

Taking above equations and inserting into derivative, we have: 

. 

1
2

∂f
∂aik

=
⎛
1 −∑ni

j=1 aij

⎞
μ2 +∑ni

j=1,kk aij

(
v2 + μ2

)
+aik

(
σ 2 + v2 + μ2

)− (
v2 + μ2

)
= aikσ

2 −
⎛
1 −∑ni

j=1 aij

⎞
v2 = 0,

⇒ σ 2aik = v2
(
1 −∑ni

i=1 aij

)
.

Right side doesn’t depend on k. Therefore, all aik . are constant: 

. ai1 = . . . = aini
= v2

σ 2 + niv2
.

From the solution for ai0 .we have: 

. ai0 = (1 − niaik) μ =
⎛ 
1 − niv

2

σ 2 + niv2

⎞
μ.

Finally, the best estimator is 

. ai0 +
ni⎲

j=1

aij xij = niv
2

σ 2 + niv2
x̄i +

⎛ 
1 − niv

2

σ 2 + niv2

⎞
μ = zi x̄i + (1 − zi) μ.

⨆⨅
Proposition 4.2 If θ ∼ exp (λ).and xij ∼ exp

⎛
1
θ

⎞
. then we have zi = ni

ni+2 .. 

Proof First, we have the following quantities: 

.

m(θ) = E
⎡
xij | θ

⎤ = θ.

μ = E(m(θ)) = E(θ) = 1
λ

s2(θ) = V ar
⎡
xij | θ

⎤ = θ2.

σ 2 = E
(
s2(θ)

) = E
(
θ2
) = 2

⎛
1
λ

⎞2
.

v2 = V ar(m(θ)) = V ar(θ) =
⎛
1
λ

⎞2
.
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From these we get:zi = 1

1+ σ2

ni v
2

= 1

1+ 2
⎛
1
λ

⎞2
ni

⎛
1
λ

⎞2
= ni

ni+2 .. ⨆⨅

Proposition 4.3 If θ ∼ U (0, b). and xij ∼ exp
⎛
1
θ

⎞
.then we have zi = ni

ni+4 .. 

Proof First, we have the following quantities: 

. 

m(θ) = E
⎡
xij | θ

⎤ = θ.

μ = E(m(θ)) = E(θ) = b
2

s2(θ) = V ar
⎡
xij | θ

⎤ = θ2.

σ 2 = E
(
s2(θ)

) = E
(
θ2
) = b2

3 .

v2 = V ar(m(θ)) = V ar(θ) = b2

12 .

From these we get:zi = ni

ni+4 .. ⨆⨅

Premiums, and Adjusted Premiums
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Chapter 5 
How Do Economic Variables Affect 
the Pricing of Commodity Derivatives 
and Insurance? 

Hirbod Assa, Philippe Grégoire, Gabriel J. Power, 
and Djerry Charli Tandja-M. 

Abstract This paper focuses on designing and pricing commodity derivatives and 
insurance within a novel financial engineering framework that can be subsequently 
tested empirically using commodity price data. Optimal contract solutions are 
obtained and interpreted. We quantify explicitly how derivative prices and insurance 
premiums are affected by economic variables linked to commodity supply and 
demand. Our results generalize some existing commodity derivative pricing models 
and further show under which conditions there will be no trading of derivative 
instruments and insurance. We report GMM estimates of the model parameters 
for a large dataset of commodity futures. These results also contribute to a better 
understanding of the “financialization” of commodities. 

5.1 Introduction 

The pricing of insurance contracts and financial derivatives on commodities such 
as crude oil or wheat are methodologically linked by their use of risk-neutral 
valuation methods such as the seminal Black-Scholes formula. Unlike financial 
security prices, which are driven by priced equity risk factors, commodity prices 
are mainly influenced by commodity-specific economic variables, which depend 
on fundamental weather, production, and storage variables [1, 2]. Commodity 
prices thus result from demand, supply, inventory, and economic risk factors. 
Although a large literature exists that takes a reduced-form approach to model 
the prices of commodity derivatives and insurance, a deeper understanding of their 
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pricing requires a richer model of these economic fundamentals. Indeed, financial 
engineering methods are often silent when it comes to quantifying the exact role 
of economic variables on these contingent claim prices. This paper aims to make 
a contribution to the literatures on commodity derivative and insurance contract 
pricing by proposing an economically motivated model, which allows us to generate 
new insights on pricing and risk management. 

Generally speaking, there are two approaches to modelling commodity prices 
prior to modelling their contingent claims. The first approach belongs to the liter-
ature on finance and financial engineering, which uses models based on diffusion 
processes, and begins with [3]. The multifactor models of [4, 5], the CEV model 
of [6], and the mean reverting models of [7] are just a few examples. The second 
approach belongs to the economics literature and is based on rational commodity 
storage. In particular, this paper aims to adapt to derivative and insurance pricing the 
framework found in the Deaton and Laroque models [8–10]. By making explicit the 
price elasticity parameter, this paper also relates to the CEV option pricing model 
in [11]. 

This paper therefore aims to combine the two approaches mentioned above 
by taking an established methodology from the rational expectations theory of 
storage, and then modifying and applying it to a financial engineering framework. 
As a result, it develops a new methodology that directly quantifies the impact of 
economic variables on commodity insurance and derivative prices. To achieve this 
goal requires tackling several mathematical and technical problems, which we solve 
in this paper. The findings described in this paper are also of interest for researchers 
working on the “financialization” of commodities [12–14]. Indeed there is great 
interest in understanding the closer link between commodity and financial markets 
facilitated by exchange-traded derivatives. The methods and results in this paper 
should be useful to academics, traders, and practitioners in finance and financial 
engineering, as well as those in insurance, reinsurance, and risk management. 

The remainder of the paper is as follows. In Sect. 5.2, we develop a representative 
agent model. Section 5.3 presents the dynamics for demand and price, defines the 
loss function and solves for the premium. In Sect. 5.4, optimal contracts are solved 
in the general case, and an application is provided for the special case where Value-
at-risk is used as the risk measure. Section 5.5 presents empirical estimates of the 
parameters of the model, using a large dataset of commodity futures contract prices 
and GMM estimation. We conclude in Sect. 5.6. 

5.2 Representative Agent Model 

Let us consider a representative agent with an isoelastic or power utility function 
given by: 

.u(x) = x1−φ − 1

1 − φ
, if φ /= 1 and u(x) = log(x) otherwise,with φ > 0.
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In this model the parameter φ represents the coefficient of relative risk aversion 
(RRA) for the representative consumer/investor.1 In this paper, we focus our 
attention on a single good, and treat spending on the other good as a residual that 
can be added to the agent’s utility by using a quasi-linear utility function. Therefore, 
we consider the agent will be solving the following problem: 

. max
x,m

[ku(x) + m] , s.t. px + m = B.

where m is residual income for all other goods, k is a constant, p is the price of good 
x and B is the budget constraint. Since the budget constraint is given by B = px + m, 
we can solve for m in terms of p using that equation. This yields m = B − px, which 
we substitute into our objective function to solve the f ollowing problem:

. max
x

[ku(x) + B − px] .

Since the first difference in terms of x is 

. ku' (x∗)− p = k
(
x∗)−φ − p = 0 ⇒ x∗ =

⎛
k

p

⎞1/φ

.

If m = 0, then 

. x∗ = B

p

Therefore, 

. x∗ = min

⎛
B

p
,

⎛
k

p

⎞1/φ
⎞

.

The inverse demand function is then p(x) = kx−φ . To simplify the notation, denote 
γ = −  φ, then we can consider the following inverse demand function:

. p(x) = kxγ

The form of the demand function for different values of k and γ are depicted in 
Fig. 5.1:

1 Other functional forms are considered in the appendix. 
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Fig. 5.1 Demand functions for different values of k and γ 

5.3 Economic Model, Loss Distribution, and Premium 

5.3.1 The Demand and Price Process 

Let us consider a stochastic demand process following geometric Brownian motion 
(gBm) dynamics as follows: 

. 
dxt

xt

= μdt + σdwt ,

where in this case (wt)0 ≤ t ≤ T is a standard Brownian motion, μ is the drift term 
representing the rate of growth in consumption, and σ represents the magnitude of 
the demand volatility. As a result, the dynamics of the demand process given above 
can be written a s follows: 

. xt = x0e

⎛
μ− 1

2σ 2
⎞
t+σwt

, t ≥ 0

As the demand functions are allowed to vary, we can study different markets 
according to their elasticity of demand (e.g., different agricultural commodities). 
Therefore, we can study the effect of economic and financial market variables 
on the market demand, and on the resulting derivatives and insurance contracts. 
Considering the isoelastic demand function, combining the inverse demand function 
p(x) with the demand process dynamics yields the following price dynamics for an 
inverse demand function p: 

.pt = p (xt ) = kx
γ
t = p0 exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

t + γ σwt

⎞
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If we consider a new Brownian motion Bt =  −  wt, one can rewrite the price 
dynamics as follows: 

. pt = p0 exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

t − γ σBt

⎞

This change is necessary because γ = −  φ < 0, and as a result −γ  σ  >  0.  Using  th  e  

Ito formula for the function f (x, t) = ke
γ
⎛
μ− 1

2σ 2
⎞
t−γ σx

. gives: 

. 
∂f

∂t
= γ

⎛
μ − 1

2
σ 2
⎞

f,
∂f

∂x
= (−γ σ) f,

∂2f

∂x2 = γ 2σ 2f,

resulting in: 

. dpt = γ

⎛
μ + 1

2
(γ − 1) σ 2

⎞
ptdt − γ σptdBt .

For simplicity, we can write the stochastic differential equation (SDE) of the price 
process as follows: 

. 
dpt

pt

= νdt + ηdBt , p0 > 0

where ν = γ
⎛
μ + 1

2 (γ − 1) σ 2
⎞
. and η = −  γ  σ  . 

It is worth considering some conditions under which the model makes greater 
economic sense. The first condition is that the drift term of the price, i.e., ν,  must  be  
non-negative. Since γ ≤ 0 then this is equivalent to checking that: 

. μ + 1

2
(γ − 1) σ 2 ≤ 0.

However, on the other hand, the market price of risk needs to be non-negative to 
make sure that market participants will be involved. For that reason, it is necessary 
to check whether ν − r > 0. This condition will certainly yield the previous one. 
The two conditions are economically sensible, but in general they are not necessary 
to obtain solutions.



98 H. Assa et al.

5.3.2 Loss Distribution 

Let us consider a time horizon T at which we want to introduce a loss variable 
and write an insurance contract to hedge against the risk of loss. We consider the 
following non-negative random variable as the loss 

. L =
⎛
p0 − e−rT pT

⎞

+.

To motivate this definition, note that if p0 − e−rTpT < 0 then the excess return i.e., 

log
⎛

pT

p0

⎞
− rT ., is also negative. Next, we wish to find out the distribution of the 

loss variable L. First, it is not difficult to see that: 

for x <  0,  we  have  , FL(x) = 0, 

for x = 0  we  have FL(0) = P
(
p0 ≤ e−rT pT

) = N

⎛
γ
⎛
μ− 1

2 σ 2
⎞
T −rT

−γ σ
√

T

⎞

. 

and for x > p0,  we  have  FL(x) = 1 

Now let us consider p0 ≥ x > 0. In this case, we have : 

.

FL(x) = 1 − P (L > x) = 1 − P

⎛⎛
p0 − e−rT pT

⎞

+ > x

⎞

= 1 − P
⎛
p0 − e−rT pT > x

⎞

= 1 − P

⎛
p0

⎛
1 − e−rT e

γ
⎛
μ− 1

2σ 2
⎞
T −γ σBT

⎞
> x

⎞

= 1 − P

⎛
erT

⎛
1 − x

p0

⎞
> e

γ
⎛
μ− 1

2σ 2
⎞
T −γ σBT

⎞

= 1 − P

⎛

⎝
log erT

⎛
1 − x

p0

⎞
− γ

⎛
μ − 1

2σ
2
⎞

T

−γ σ
√

T
> B1

⎞

⎠

= 1 − N

⎛

⎝
rT + log

⎛
1 − x

p0

⎞
− γ

⎛
μ − 1

2σ
2
⎞

T

−γ σ
√

T

⎞

⎠

= N

⎛

⎝
γ
⎛
μ − 1

2σ
2
⎞

T − rT − log
⎛
1 − x

p0

⎞

−γ σ
√

T

⎞

⎠ .
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Fig. 5.2 Optimal solution in terms of FL(x) for different values of γ 

In sum, we get: 

. FL(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < 0

N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT −log

⎛
1− x

p0

⎞

−γ σ
√

T

⎞

, 0 ≤ x < p0.

1, x ≥ p0

The graph of FL(x) is depicted in Fig. 5.2. 

5.3.3 Premium 

Moreover, we can use risk-neutral valuation principles to price any contract 
H = h(pT ) by using the risk-free probability measure Q as follo ws: 

.Price = e−rT EQ (h (pT )) = e−rT E

⎛
dQ

dP
h (pT )

⎞
,
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where 

. 
dQ

dP
= e

⎛
m2

2η2
− m

2

⎞
T
⎛

e−rT pT

p0

⎞− m

η2

,

and m = ν − r. From this, we can show that: 

.π(L) = E

⎛
dQ

dP
h (PT )

⎞
=
⎛ 1

0
VaRt (h (pT )) d⎾(t), (5.1) 

where ⎾(t) = N
⎛
N−1(t) − |m|√T

η

⎞
.. 

This representation (5.1) will subsequently help us, along with the risk measures 
that we use, to find the optimal solutions in a useful way. The above formula 
can also be used to price options. To do so, first, we define the contract H based 
on its payoff profile. Then, we compute the Radon-Nikodym derivative using the 
estimated underlying price parameters. This is equivalently a risk-neutralization of 
the process. Finally, we use either analytical formulae or Monte Carlo simulation to 
compute the price.2 

5.4 Designing Optimal Insurance and Pricing Derivatives 

5.4.1 Ill-Posed Hedging Issue 

In this section, we consider how to use the above model for purposes of pricing 
optimal insurance contracts as well as options. In this paper, we consider the 
contracts in the form of X = k(L), where k is called the indemnity function and 
i(x) = x − k(x) is called the retained loss function. Inspired by [15] and Cong et 
al. [16], to avoid ill-posed hedging, we impose some conditions on the insurance 
contracts. First, we assume zero loss needs no indemnity and no retained loss, i.e., 
k(0) = i(0) = 0. Second, we assume that the indemnity is compatible with the loss 
increase; meaning that, larger losses need larger indemnity. This assumption implies 
that k is a non-decreasing function. Third, we assume that the insurance company 
will not over-hedge the losses by assuming that i is non-decreasing which can be 
justified since larger risk cannot imply smaller retained losses.

2 This approach is however not directly applicable to path-dependent options such as American 
options. For these we would have to consider alternative methods, such as Least-Squares Monte 
Carlo, which is beyond the scope of this paper. 
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Summarizing all the assumptions, we can list them as follows: 

1. Zero risk assumption: k(0) = i(0) = 0; 
2. Risk compatibility: x1 ≤ x2 ⇒ k(x1) ≤ k(x 2 );
3. No over-hedging: x1 ≤ x2 ⇒ i(x1) ≤ i( x2). 

The conditions above can be summarized in the following assumption: We consider 
contracts X = k(L), where k belongs to the following set: 

. C =
⎛
k : R+ → R+| k(x) and x − k(x)

are nonnegative, non − decreasing

⎞
.

The following lemma can be found in [75]. 

Lemma 1 For any k ∈ C, the derivative of k and i exists a.s., and we have 0 ≤ k'
, 

i
' ≤ 1 a.s. 

5.4.2 Optimal Solution 

Next, we set up an optimal insurance problem and try to find an optimal solution. 
For that, we assume that the insuree is a risk-averse agent whose risk is measured 
according to a distortion risk measure ρ on the set of non-negative random variables 
defined as follo ws: 

. ρ(X) =
⎛ 1

0
VaRt (X)dΠ (t).

Here Π : [0, 1] → [0, 1] is a non-decreasing function so that Π (0) = 0 and Π (1) = 1. 
This family of risk measures includes very important examples, e.g., Va lue-at-Risk 
with: 

. Π (t) = 1[α,1]

or Conditional Value at Risk with: 

. Π (t) = t − α

1 − α
1[α,1].

A distortion risk measure is a way to better capture the risk by distorting the loss 
distribution. For instance, some risk measures (e.g., CVaR), distort the distribution 
by taking a pessimistic point of view towards the risk. Thus, note that the pricing 
method we propose earlier for the contracts in (5.1) is also a distortion risk measure, 
where the prices are distorted according to the pricing kernel distribution and the 
level of distortion depends on market price of risk. The insuree’s global loss is the
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part of the loss that is not covered by insurer, added up to the amount that is paid for 
the premium, i.e., 

. Global loss = L − X + π(X).

Since distortion risk measures are cash-invariant, the risk of the global loss is 
ρ(L − X) + π (X). In order to study insurance premiums, we consider an optimal 
insurance design problem as proposed in [17, 18] (or similarly with a budget 
constraint in [19]): 

. min
k∈C

ρ (L − k(L)) + δπ (k(L)) ,

for a risk loading factor δ ≥ 1 that is used by the insurance company. Using the 
marginal indemnification function method (MIF) introduced by [17] and developed 
in [18–20], this problem can be rewritten as follows: 

. min
0≤k'≤1

⎛ 1

0
(δ (1 − ⎾ (FL(t))) − (1 − Π (FL(t)))) k'(t)dt,

where k
'
is the derivative of k. The optimal solution is then given by X = k(L), 

where: 

.k'(t) =
⎛
1, 1 − Π (FL(t)) > δ (1 − ⎾ (FL(t)))

0, 1 − Π (FL(t)) ≤ δ (1 − ⎾ (FL(t)))
. (5.2) 

5.4.3 Solving for the Contracts 

In this section, we consider a technical assumption, namely that there are values a, 
b ∈ (0, 1) such that: 

. 1 − Π (x) > δ (1 − ⎾(x)) on (a, b.)

and everywhere else than the interval (a, b): 

. 1 − Π (x) < δ (1 − ⎾(x)) on (0, a) ∪ (b, 1) .

This assumption holds for many interesting cases including ρ = VaR and CVaR (see 
Fig. 5.3).
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Fig. 5.3 Representing the optimal solution: cases of VaR and CVaR 

The existence of the optimal solution (and its form) depends on FL(0). However, 
we know that: 

. FL(0) = N

⎛

⎝
γ
⎛
μ − 1

2σ
2
⎞

T − rT

−γ σ
√

T

⎞

⎠ = N

⎛

⎝

⎛
μ − 1

2σ
2
⎞√

T

−σ
− r

√
T

|γ | σ

⎞

⎠ .

Therefore, increasing the absolute value of γ will decrease the value of FL(0). The 
optimal solution in this case either: (i) does not exist, (ii) is a stop loss policy, or 
(iii) is a two-layer policy. This result can be shown as in F ig. 5.3 by depicting FL for 
different values of γ . 

Figure 5.3 Optimal solution in terms of FL(x) for different values of γ 
We have three cases: 

1. If FL(0) > b,  or r
√

T

σ

⎛

N−1(b)−
⎛
μ− 1

2 σ2
⎞√

T

−σ

⎞ < γ ., then k
' = 0 and there is no contract. 

2. If a < FL(0) < b,  or r
√

T

σ

⎛

N−1(b)−
⎛
μ− 1

2 σ2
⎞√

T

−σ

⎞ < γ < r
√

T

σ

⎛

N−1(a)−
⎛
μ− 1

2 σ2
⎞√

T

−σ

⎞ ., then 

there is a stop loss policy with retention level that solves 

. N

⎛

⎝
γ
⎛
μ − 1

2σ
2
⎞

T − rT − log
⎛
1 − b∗

p0

⎞

−γ σ
√

T

⎞

⎠ = b.

This results in 

.b∗ = p0

⎛
1 − exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

T − rT + γ σ
√

T N−1(b)

⎞⎞
.
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Fig. 5.4 Cases 1 through 3, in terms of values of a and b 

3. Finally, if, FL(0) < a or γ < r
√

T

σ

⎛

N−1(a)−
⎛
μ− 1

2 σ2
⎞√

T

−σ

⎞ ., then the contract is a two-

layer policy with upper retention level b∗ given above and lower retention level 
a∗ given as 

. a∗ = p0

⎛
1 − exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

T − rT + γ σ
√

T N−1(a)

⎞⎞
.

These three cases are represented in Fig. 5.4. 

Remark 1 Some explanation is warranted here. In case 1, one can see that the 
probability of no loss, i.e., FL(0), happens to be large enough (FL(0) > b), and 
for that reason the insuree does not look at the insurance as a necessary risk 
management tool, whereas in case 2 there is a demand for insurance from the insuree 
side. In the most extreme case 3, since the probability of no loss is small (FL(0) < a), 
then the insurance company needs to include a stop-loss policy to contract to limit 
its exposure to large losses. 

Taking the integral from the marginal indemnity function if (5.2), we get the 
indemnity as follows: 

.k(t) =
⎧
⎨

⎩

0, t ≤ a∗
t − a∗, a∗ ≤ t ≤ b∗
b − a∗, t ≥ b∗

. (5.3)
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from which we can get the following contract: 

.X =
⎧
⎨

⎩

0, L ≤ a∗
L − a∗, a∗ ≤ L ≤ b∗
b − a∗, L ≥ b∗

. (5.4) 

Now using the particular loss variable we have introduced in this paper (Sect. 5.3.2), 
we find that: 

. X =

⎧
⎪⎪⎨

⎪⎪⎩

0, p0 − e−rT pT < 0 or(
p0 − e−rT pT ≥ 0 and p0 − e−rT pT ≤ a∗)

p0 − e−rT pT − a∗, a∗ ≤ p0 − e−rT pT ≤ b∗
b∗ − a∗, p0 − e−rT pT ≥ b∗

.

(5.5) 

Furthermore, one can easily see that this results in: 

.X = e−rT
⎛
erT

(
p0 − a∗)− pT

⎞

+ − e−rT
⎛
erT

(
p0 − b∗)− pT

⎞

+ (5.6) 

Finally, using the pricing kernel of the Black-Scholes model (Eq. 5.1) we get: 

. Price = P
⎛
p0, e

rT
(
p0 − a∗) , r, T ,−γ σ

⎞
− P

⎛
p0, e

rT
(
p0 − b∗) , r, T ,−γ σ

⎞

(5.7) 

where P(p0,K, r, T, σ ) is the price of a put option with risk-free r, volatility σ , 
expiration T and strike price K. 

Remark 2 As one can see, the price of the optimal product is a function of multiple 
parameters, including γ , the demand elasticity parameter, and σ , the demand 
volatility. It is clear that the prices of both put options in (5.7) increase if the absolute 
value of γ and σ increases. However, the retention levels, a∗ , b∗ are also functions 
of these two parameters, which makes it ultimately unclear how the increase in γ 
and σ will affect the optimal price. We will discuss it within an example when we 
use Value-at-Risk a s the risk measure. 

5.4.4 Value at Risk (VaR) 

In the following two sections we focus our attention to a particular risk measure 
VaR. However, everything that we explore here is true for CVaR as well, since based 
on Fig. 5.2, the only difference between VaR and CVaR contracts is that the second 
layer for CVaR is greater than the second layer for VaR i.e., bCVaR > bVaR.  This  
means considering CVaR does not essentially provide new information about the



106 H. Assa et al.

behavior of the contracts except for VaR we also can find all explicit solutions for 
the the layers and prices. 

Based on general case that we discussed above, let a be the solution to 

δ(1 − ⎾(a)) = 1  or a = ⎾−1
⎛
1 − 1

δ

⎞
.. This means: 

. δ

⎛

1 − N

⎛

N−1(a) − |m| √T

η

⎞⎞

= 1

or 

. a = N

⎛
|m| √T

η
+ N−1

⎛
1 − 1

δ

⎞⎞

.

It is also clear that in this case b = α . 
There are three cases: 

1. If N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

≥ α .. 

This is equivalent to γ
⎛⎛

μ − 1
2σ

2
⎞

T + σ
√

T N−1 (α)
⎞

≥ rT .. Since γ ≤ 0, 

therefore,
⎛
μ − 1

2σ
2
⎞

T + σ
√

T N−1 (α) ≤ 0., and as a result we have to check 

if 

. γ ≤ rT
⎛
μ − 1

2σ
2
⎞

T + σ
√

T N−1 (α)
.

In this case, k
' = 0 and there is no insurance contract. 

2. If a ≤ N

⎛
γ
⎛
μ− 1

2 σ 2
⎞
T−rT

−γ σ
√
T

⎞

< α .. 

This is equivalent to N
⎛ |m|√T

η
+ N−1

⎛
1 − 1

δ

⎞⎞
≤ N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T−rT

−γ σ
√
T

⎞

< α .. 

First, let us look to the right inequality. 

(a) If N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

< α . and
⎛
μ − 1

2σ
2
⎞

T + σ
√

T N−1 (α) ≤ 0. 

we get γ > rT⎛
μ− 1

2σ 2
⎞
T +σ

√
T N−1(α)

..
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(b) If N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

< α . and
⎛
μ − 1

2σ
2
⎞

T + σ
√

T N−1 (α) > 0. 

we get γ < rT⎛
μ− 1

2σ 2
⎞
T +σ

√
T N−1(α)

.. 

Second, the left inequality results in: 

. 

⎛
γ
⎛
μ + 1

2 (γ − 1) σ 2
⎞⎞√

T

−γ σ
− r

√
T

−γ σ
+ N−1

⎛
1 − 1

δ

⎞

≤
γ
⎛
μ − 1

2σ
2
⎞

T − rT

−γ σ
√

T
=

γ
⎛
μ − 1

2σ
2
⎞√

T

−γ σ
+ −r

√
T

−γ σ
,

which implies: 

. 

2N−1
⎛
1 − 1

δ

⎞

σ
√

T
≤ γ.

In this case, the contract is a stop-loss policy with retention level b∗ that solv es 

N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT −log

⎛
1− b∗

p0

⎞

−γ σ
√

T

⎞

= α .. 

If we solve for b∗ we find 

.b∗ = p0

⎛
1 − exp

⎛⎛⎛
μ − 1

2
σ 2
⎞

T + σ
√

T N−1 (α)

⎞
γ − rT

⎞⎞
(5.8) 

3. If N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

< a . or
2N−1

⎛
1− 1

δ

⎞

σ
√

T
> γ .. 

In this case, the contract is a two-layer contract with lower and 
upper retention levels a∗ , b∗ , where b∗ is as in case 2 and a∗ solv es 

N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT −log

⎛
1− a∗

p0

⎞

−γ σ
√

T

⎞

= a ., which similarly gives: 

.a∗ = p0

⎛
1 − exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

T − rT + γ σ
√

T N−1(a)

⎞⎞
.
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Note however that, N−1(a) = N−1
⎛
N
⎛ |m|√T

η
+ N−1

⎛
1 − 1

δ

⎞⎞⎞
= |m|√T

η
+

N−1
⎛
1 − 1

δ

⎞
.. Therefore, 

. 

a∗ = p0

⎛
1 − exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

T − rT

+γ σ
√

T

⎛

⎝

⎛
γ
⎛
μ + 1

2 (γ − 1) σ 2
⎞

− r
⎞√

T

−γ σ
+ N−1

⎛
1 − 1

δ

⎞⎞

⎠

⎞

⎠

⎞

⎠

. 

= p0

⎛
1 − exp

⎛
γ

⎛
μ − 1

2
σ 2
⎞

T − rT ± γ

⎛
μ − 1

2
σ 2 + 1

2
γ σ 2

⎞
T

+rT + γ σ
√

T N−1
⎛
1 − 1

δ

⎞⎞⎞

So finally, we get: 

. a∗ = p0

⎛
1 − exp

⎛
−1

2
γ 2σ 2T + γ σ

√
T N−1

⎛
1 − 1

δ

⎞⎞⎞
.

5.4.5 Calibration and Simulation for VaR 

Let us use the following calibration for the parameters: =p0 = 1, μ = 0.01, r = 0.05, 
α = 0.95, δ = 1.1, and let us consider γ ∈ [ −0.9,0.1] and σ ∈ [0.2, 0.9].

First, if we check
⎛
μ − 1

2σ
2
⎞

T +σ
√

T N−1 (α) ≥ 0. then case 1 and case 2.a do 

not happen. From our observation in the parameter area that we study, this inequality 
holds; see the following Fig. 5.5. As a result, the lower retention level is always zero, 
i.e., a∗ = 0. 

Second, we find the upper retention level b∗ using Eq. (5.8) and the result is 
graphed in the following Fig. 5.6. As one can see, increases in σ or |γ | increase the 
retention level b∗ . 

Third, as shown in Fig. 5.7, the contract prices will also increase with an increase 
in either σ or |γ |. This may appear counter-intuitive since for a constant σ ,  if  |γ | 
increases then φ gets closer to zero suggesting that a risk neutral producer is willing 
to pay more for a risk management tool designed in this framework. This effect 
warrants some explanation. In designing the contracts, the risk aversion parameter 
φ (or γ ) does not only affect the price volatility (i.e., −γ  σ ), but also it will have 
an impact on the lower and the upper retention levels. This means that, even though 
a larger |γ | will result in greater volatility, it also changes the optimal contract. 
Ultimately, the impact from changing a contract will dominate the volatility effect
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Fig. 5.5 Verifying cases 1 and 2.a in the parameter space σ-γ 

Fig. 5.6 Upper retention level b* in terms of parameters σ-γ 

for a more risk-averse producer with larger φ and this results in a cheaper optimal 
contract. 

Further, for the premium we need to discuss what parameters can be admissible. 
That means determining which parameters can generate a nonnegative market price 
of risk. For that, we need to check for different parameters the nonnegativity of 
(ν − r ), namely: 

. γ

⎛
μ + 1

2
(γ − 1) σ 2

⎞
− r = 1

2
γ 2σ 2 + γ

⎛
μ − 1

2
σ 2
⎞

− r ≥ 0

Verifying this condition, we report in the following Fig. 5.8 a graph which represents 
the area for which the market price of risk is nonnegative.
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Fig. 5.7 Premium of the optimal contract in σ-γ space 

Fig. 5.8 Admissible area to ensure a nonnegative market price of risk, σ-γ space 

5.4.6 Case for CVaR 

As it has been mentioned earlier in Sect. 5.4.4, considering CVaR instead on VaR 
would not provide more insight into the problem as the only difference between 
the cases is that the second layer for CVaR is larger than VaR. However, one 
thing that is worth paying attention is that in both cases there is no contract if 

N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

≥ α .. This will be very useful since then one can assess 

this condition as a universal condition for the worthiness of considering a risk 
management tool. We will be using this condition in the empirical assessment to
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see if there is a need to introduce risk management contracts, like insurances and 
derivatives, for the commodities we study. This can to some extent validate our 
theory, as all commodities we know have tradable derivatives. 

To empirically assess the condition we have presented above (to determine 
whether a contract is justified for risk management), we compute for each com-
modity the value of N(.) using the estimated commodity-specific parameters for γ , 
μ and σ , as well as the risk-free rates r over the sample period. The details of the 
estimation procedure to obtain these parameters from the data are presented in the 
following section. The rate r is annualized and represents the 3-month US Treasury 
bill rate. For robustness, we compute N(.) using the mean, minimum, and maximum 
risk-free rate values over the sample period for each commodity. Since the sample 
period varies by commodity, the values of r also differ by commodity . 

The results show that for all commodities, N(.) < α so the theoretical condition 
is empirically validated. N(.) is always close to 0.5, and decreasing in the risk-free 
rate r. The result holds whether the commodities are more or less price-inelastic 
(based on the estimated parameter γ ). Therefore, the result means that it is useful 
to introduce a contract, as the risk management tools are justified by the model 
developed in this paper. This conclusion holds whether we use α values of 0.9, 
0.95, 0.99 or another plausible value for α. The results are also robust to whether 
we use mean, minimum or maximum values of r for each commodity. Overall, the 
conclusion is unambiguous that for all commodities, the risk management tools are 
relevant and should be introduced if they do not already e xist. 

5.5 Empirical Estimation of the Model Using Commodity 
Futures Price Data 

5.5.1 Discretization of the Process and Estimation Procedure 

This section reports empirical estimates of the model parameters, obtained using a 
large dataset of commodity futures prices and a GMM estimation approach. Recall 
that we have shown that the price process has the following SDF: 

. 
dpt

pt

= νdt + ηdBt , p0 > 0

where ν = γ
⎛
μ + 1

2 (γ − 1) σ 2
⎞
. and η = −  γ  σ . Following standard procedures in 

the literature (e.g., [21]), we estimate the parameters of this continuous-time model 
using a discrete-time econometric specification. We first need to derive the discrete-
time version of the model, which is 

.
Δpt

pt

= νΔt + η∈t+1
√

Δt
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Moreover, since Δt = 1, 

. 
pt+1 − pt

pt

= ν + η∈t+1 =⇒ pt+1 − pt = νpt + η∈t+1pt

Then, considering a change of variable ∈t + 1 ← η∈t + 1pt, w e can write 

. pt+1 − pt = νpt + ∈t+1

.E [∈t+1] = 0, E
⎡
∈2t+1

⎤
= η2p2

t (5.9) 

using E
⎡
∈2t+1

⎤ = 1.. Now, define θ = (θ1, θ2) to be the vector of parameters with 

elements θ1 = (ν, η2), θ2 = (γ , μ, σ )' . Then, we let the vector ft(θ1 ) be:

. ft (θ1) =

⎡

⎢⎢
⎣

∈t+1

∈t+1pt

∈2t+1 − η2p2
t(

∈2t+1 − η2p2
t

)
pt

⎤

⎥⎥
⎦

Then, if substituting from (5.9), i.e., pt + 1 − pt = νpt + ∈t + 1, we get:

. ft (θ1) =

⎡

⎢⎢
⎣

pt+1 − (1 + ν) pt

(pt+1 − (1 + ν) pt ) pt

(pt+1 − (1 + ν) pt )
2 − η2p2

t(
(pt+1 − (1 + ν) pt )

2 − η2p2
t

)
pt

⎤

⎥⎥
⎦

Under the null hypothesis implied by restrictions from equation above, 
E[ft(θ1)] = 0. Then, the GMM procedure consists in replacing E[ft(θ1)] with 
gT (θ1), and using the T sample observations where 

. gT (θ1) = T −1
⎲T

t=1
ft (θ1)

and then choosing the parameters in θ that minimize 

.JT (θ1) = g'
T (θ1) WT (θ1) gT (θ1) (5.10) 

where WT (θ1) is a positive-definite symmetric weighting matrix. To test the 
suitability of the model (i.e., the null hypothesis of correct model specification 
and the orthogonality conditions required for using GMM estimation), we compute 
Hansen’s J-test (Sargan test of overidentification). A higher p-value for the J-test 
means that the instruments satisfy the orthogonality conditions and that the model 
specification is correct.
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The GMM estimation method we use has two stages. First, we estimate the 
parameter values θ1 that minimize Eq. (5.10). Second, we replace the parameters 
θ1 = (ν, η2)  in  E  q.  (5.9) with the first-stage parameter estimates and rewrite it as 
follows: 

. pt+1 − pt =
⎛

γμ + η̂2

2
− η̂

2γ

⎞
pt + ∈t+1

The resulting equation is then estimated by GMM to obtain θ2. 

5.5.2 Description of the Data and Empirical Results 

The dataset consists of daily settlement prices for 19 commodity futures contracts 
obtained from Thomson Datastream, generally ending in late May 2018. At date t 
for a given commodity, there are a number Mt of contracts traded, where the first 
nearby is the nearest to maturity (expiry). Thus, the dataset is an unbalanced panel. 
For our purposes, only the nearby futures contract is needed. Rather than use the 
continuous series provided by Datastream for a given commodity futures contract 
(which introduces a splicing bias), we construct each time series of observations 
by rolling over from the first to second nearby contract on the 15th day of the 
month preceding maturity. This rollover method is standard and avoids including 
observations for dates near contract maturity, as the latter may not be reliable prices. 
All series use at least 10 years of daily observations. The specific length of the time 
series depends on data availability in Datastream. 

Tables 5.1 and 5.2 present descriptive statistics for commodity futures prices and 
returns, respectively, for all contracts used in the analysis. Table 5.1 shows that 
most commodity price series are right-skewed and display negative excess kurtosis. 
Table 5.2 shows that for a majority of commodities, price log returns are right-
skewed, while all display positive excess kurtosis. 

Results for the estimated model, using GMM and applied to each of the 19 
commodity series, are presented in Table 5.3. First, for all 19 series, we fail to reject 
the null hypothesis of the Sargan J-test. Thus, the overidentifying restrictions are 
valid. Second, the results show that the main parameter of interest, γ, is around −1 
for all series, implying roughly unit elasticity. For more than half of the commodities 
in our sample, the estimated γ is greater than 1 in absolute value. This result 
implies that quantity responds strongly to price changes. These commodities are 
Chicago ethanol, Oman crude oil, cocoa, coffee, corn, soybean oil, oats, lean hogs, 
live cattle, feeder cattle, and gold. On the other hand, the following commodities 
have an estimated γ less than 1 in absolute value: WTI crude oil, Dubai crude, 
wheat, sugar, rough rice, soybean meal, orange juice, and lumber. These results are 
consistent with prior empirical evidence on the price-elasticity or price-inelasticity 
of these commodities. For example crude oil is well known to be price-inelastic. 
The parameter estimates suggest that prices of gold, ethanol, and soybean oil are the
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most sensitive to changing supply conditions, while wheat and soybean meal are the 
least sensitive. 

Our theory can properly specify if one needs to introduce a contract on a com-
modity index price (e.g., insurance, futures or option). As discussed earlier, for both 

cases of VaR and CVaR we need to introduce a contract if N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

<

α .. This can be regarded as a universal condition for both risk measures, VaR and 
CVaR. We can also look at this condition from a different perspective, namely 
that there would be no need to introduce a contract if the risk aversion confidence 

parameter is smaller than N

⎛
γ
⎛
μ− 1

2σ 2
⎞
T −rT

−γ σ
√

T

⎞

.. However, before measuring this 

quantity, it is important to understand how it will change for different time intervals. 
To see this, let us consider the annual based volatility and drift σ and μ. Thinking 
of contracts with a one-year expiration date, i.e., T = 1, this quantity is equal to 

N

⎛
γ
⎛
μ− 1

2σ 2
⎞
−r

−γ σ

⎞

.. Given the Black-Scholes model that we already considered for 

the index prices, for any interval Δt we have that 

. σΔt = √
Δtσ and μΔt = Δt μ,

where, σΔt and μΔt, are the volatility and drift for the time interval Δt. Replacing 
them above we get 

. N

⎛

⎝
γ
⎛
μ − 1

2σ
2
⎞

− r

−γ σ

⎞

⎠ = N

⎛

⎜⎜
⎝

γ

⎛
μΔt

Δt
− 1

2σΔt
2

Δt

⎞
− r

− γ σΔt√
Δt

⎞

⎟⎟
⎠

. = N

⎛
r

σΔt

√
Δt

γ
− 1√

Δt

⎛
μΔt

σΔt

− 1

2
σΔt

⎞⎞

. (5.11) 

To empirically assess the condition we have presented above (determining whether 
a contract should be introduced), we compute for each commodity the value in the 
Eq. (5.11) using the estimated commodity-specific parameters for γ , μ and σ ,  as  
well as the risk-free rates over the sample period. Note that since the sample period 
varies by commodity, we also use matched risk-free rates. Specifically, we compute 
the value in (5.11) for each of the three time intervals 0.25, 0.5 and 1, using the 
mean, minimum, and maximum risk-free rate values during the sample period for 
each commodity. The results presented in Tables 5.4, 5.5 and 5.6 show that for all 
commodities, the condition is empirically validated: Thus, it is useful to introduce a 
contract, as these risk management tools are justified by the model developed in the 
paper. This finding is robust to whether we use mean, minimum or maximum risk-
free rates. Indeed, if one looks more carefully, the value of the argument in (5.11)  is
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Table 5.4 Estimates of the quantity N for 19 commodity futures, T = 0.25 

r N(.) 
Futures γ μ σ min avg max min avg max 

Energy 

Chicago ethanol −1.368 0.0007 0.0141 0.01 0.76 5.03 0.5 0.5 0.497 
Crude oil −0.94 0.0005 0.0173 0.01 0.31 1.90 0.5 0.5 0.498 
Dubai crude oil −0.977 0.0002 0.0141 0.01 0.38 2.75 0.5 0.5 0.498 
Oman crude oil −1.152 0.0002 0.0173 0.01 0.57 4.82 0.5 0.5 0.496 
Storable agricultural 

Wheat −0.846 0.0029 0.0548 0.01 2.40 6.17 0.5 0.492 0.480 
Sugar −0.955 0.001 0.0265 0.01 4.21 16.30 0.5 0.494 0.477 
Cocoa −1.202 0.0224 0.0265 0.01 0.67 4.94 0.5 0.499 0.495 
Coffee −1.007 0.00003 0.02 0.01 1.21 5.03 0.5 0.499 0.495 
Corn −1.013 0.0002 0.0173 0.01 0.51 4.20 0.5 0.5 0.496 
Rough rice −0.89 0.0003 0.0173 0.01 2.27 6.17 0.5 0.498 0.494 
Soybean oil −0.521 0.002 0.0632 0.01 0.76 5.03 0.5 0.463 0.271 
Soybean meal −1.665 0.0005 0.00836 0.01 0.76 5.03 0.5 0.5 0.499 
Orange juice −0.875 0.0003 0.0264 0.01 0.51 4.20 0.5 0.5 0.494 
Oats −1.06 0.0002 0.0173 0.01 0.60 4.82 0.5 0.5 0.496 
Non-storable agricultural 

Lean hogs −1.13 0.0003 0.0141 0.01 0.37 2.12 0.5 0.5 0.498 
Live cattle −1.064 −0.00001 0.01 0.01 0.48 3.90 0.5 0.5 0.498 
Feeder cattle −1.044 −0.00001 0.01 0.01 0.35 1.90 0.5 0.5 0.5 
Other 

RL lumber −0.989 0.0002 0.0141 0.01 0.28 1.90 0.5 0.5 0.499 
Gold −1.35 −0.0001 0.01 0.01 1.22 5.03 0.5 0.498 0.494 

almost zero for all cases and that is why the value of the Eq. (5.11) is a very close 
neighbor of 0.5. This result shows the condition under which we need to introduce 
a contract holds whether we use 0.9, 0.95, 0.99 or another plausible value for α. 

These new results can be used to improve risk management practice and 
derivative pricing, but such applications are beyond the scope of this paper. 

5.6 Conclusion 

The financialization of commodities has brought renewed interest in finance and risk 
management research to this asset class. Black’s model [1] remains the standard for 
pricing commodity derivatives, and most models are said to be reduced-form in the 
style of [2]. To gain a deeper understanding of these markets, both for exchange-
traded derivatives as well as insurance instruments, it is important to explicitly 
model the economic variables that determine the stochastic price process. To obtain 
explicit solutions to this problem, this paper. The contingent claim methodology that
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Table 5.5 Estimates of the quantity N for 19 commodity futures, T = 0.5 

r N(.) 
Futures γ μ σ min avg max min avg max 

Energy 

Chicago ethanol −1.368 0.0007 0.0141 0.01 0.76 5.03 0.5 0.499 0.493 
Crude oil −0.94 0.0005 0.0173 0.01 0.31 1.90 0.5 0.5 0.495 
Dubai crude oil −0.977 0.0002 0.0141 0.01 0.38 2.75 0.5 0.5 0.494 
Oman crude oil −1.152 0.0002 0.0173 0.01 0.57 4.82 0.5 0.499 0.490 
Storable agricultural 

Wheat −0.846 0.0029 0.0548 0.01 2.40 6.17 0.5 0.478 0.444 
Sugar −0.955 0.001 0.0265 0.01 4.21 16.30 0.5 0.483 0.436 
Cocoa −1.202 0.0224 0.0265 0.01 0.67 4.94 0.5 0.498 0.485 
Coffee −1.007 0.00003 0.02 0.01 1.21 5.03 0.5 0.497 0.486 
Corn −1.013 0.0002 0.0173 0.01 0.51 4.20 0.5 0.499 0.490 
Rough rice −0.89 0.0003 0.0173 0.01 2.27 6.17 0.5 0.494 0.483 
Soybean oil −0.521 0.002 0.0632 0.01 0.76 5.03 0.5 0.495 0.470 
Soybean meal −1.665 0.0005 0.00836 0.01 0.76 5.03 0.5 0.5 0.496 
Orange juice −0.875 0.0003 0.0264 0.01 0.51 4.20 0.5 0.498 0.482 
Oats −1.06 0.0002 0.0173 0.01 0.60 4.82 0.5 0.499 0.489 
Non-storable agricultural 

Lean hogs −1.13 0.0003 0.0141 0.01 0.37 2.12 0.5 0.5 0.496 
Live cattle −1.064 −0.00001 0.01 0.01 0.48 3.90 0.5 0.5 0.495 
Feeder cattle −1.044 −0.00001 0.01 0.01 0.35 1.90 0.5 0.5 0.497 
Other 

RL lumber −0.989 0.0002 0.0141 0.01 0.28 1.90 0.5 0.5 0.496 
Gold −1.35 −0.0001 0.01 0.01 1.22 5.03 0.5 0.499 0.495 

is proposed here is inspired by the rational storage models of Deaton and Larocque 
[8–10] and based on standard risk-neutral valuation arguments. Therefore, this 
paper develops a framework to price commodity derivatives and optimal insurance 
contracts that has more structural features than typically found in the literature. The 
framework can be applied to exchange-traded or OTC derivatives, or to insurance 
instruments. 

In this paper, we show how to obtain commodity-specific pricing solutions in 
terms of deeper economic parameters such as the price elasticity of demand for 
a given commodity, as well as the loss function that best describes the trader or 
hedger (e.g. Value-at-risk, or conditional Value-at-risk). We also consider the role 
played by the risk specification among a class of distortion risk measures. Results 
are presented for some risk management applications, where optimal contract types 
are obtained in terms of the parameter space. In some cases, no contract is optimal. 
These findings should be useful for academics and practitioners in commodity 
finance, derivatives, risk management and insurance. 

The analysis described in the paper also suggests some potentially useful avenues 
for further research. One is to take the model to data on commodity futures
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Table 5.6 Estimates of the quantity N for 19 commodity futures, T = 1 

r N(.) 
Futures γ μ σ min avg max min avg max 

Energy 

Chicago ethanol −1.368 0.0007 0.0141 0.01 0.76 5.03 0.5 0.497 0.479 
Crude oil −0.94 0.0005 0.0173 0.01 0.31 1.90 0.5 0.498 0.486 
Dubai crude oil −0.977 0.0002 0.0141 0.01 0.38 2.75 0.5 0.498 0.484 
Oman crude oil −1.152 0.0002 0.0173 0.01 0.57 4.82 0.5 0.497 0.471 
Storable agricultural 

Wheat −0.846 0.0029 0.0548 0.01 2.40 6.17 0.5 0.438 0.345 
Sugar −0.955 0.001 0.0265 0.01 4.21 16.30 0.5 0.453 0.325 
Cocoa −1.202 0.0224 0.0265 0.01 0.67 4.94 0.5 0.494 0.456 
Coffee −1.007 0.00003 0.02 0.01 1.21 5.03 0.5 0.490 0.460 
Corn −1.013 0.0002 0.0173 0.01 0.51 4.20 0.5 0.497 0.471 
Rough rice −0.89 0.0003 0.0173 0.01 2.27 6.17 0.5 0.482 0.452 
Soybean oil −0.521 0.002 0.0632 0.01 0.76 5.03 0.5 0.463 0.271 
Soybean meal −1.665 0.0005 0.00836 0.01 0.76 5.03 0.5 0.498 0.490 
Orange juice −.0875 0.0003 0.0264 0.01 0.51 4.20 0.5 0.494 0.450 
Oats −1.06 0.0002 0.0173 0.01 0.60 4.82 0.5 0.496 0.469 
Non-storable agricultural 

Lean hogs −1.13 0.0003 0.0141 0.01 0.37 2.12 0.5 0.498 0.489 
Live cattle −1.064 −0.00001 0.01 0.01 0.48 3.90 0.5 0.498 0.485 
Feeder cattle −1.044 −0.00001 0.01 0.01 0.35 1.90 0.5 0.499 0.493 
Other 

RL lumber −0.989 0.0002 0.0141 0.01 0.28 1.90 0.5 0.498 0.489 
Gold −1.35 −0.0001 0.01 0.01 1.22 5.03 0.5 0.496 0.485 

and options contracts to recover estimates of the parameters and compare pricing 
accuracy relative to commonly used methods. A second would be to investigate 
empirically the no-optimal-contract case by relating the model’s prediction to data 
on contract trading volume and interest. We saw that all the commodities need 
some type of risk management tool. Furthermore, the numbers that we have found 
for the values of N(.) in Eq. (5.11) show this is almost always true, as the risk 
aversion parameters are way above the point that would necessitate the introduction 
of derivatives. 
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Chapter 6 
Empirical Results for Cross-Hedging in 
the Incomplete Market 

Jess Carr and Simon Wang 

Abstract This paper examines different hedging techniques for options written on 
non-exchange-traded agricultural commodities using the futures markets to hedge, 
and evaluates the performance using statistical measures. The paper applies the 
hedging methods to real agricultural commodity data from the USDA. In these 
markets there are a number of commercial risks, such as weather and supply-chain 
disruption, which need to be managed by both producers and consumers. Typically, 
there is no perfectly correlated hedging instrument available for the product being 
traded, and as such there is basis risk present when trying to find a hedging 
solution. This highlights the need for empirical studies which address the problem 
of how to hedge in this environment. We evaluate static and dynamic hedging 
strategies for European options written on livestock indices using live cattle futures 
to hedge. Hedging methods based on delta, minimum variance, value-at-risk (VaR), 
and conditional VaR (C-VaR) are tested. Hedging performance is examined by 
hedging effectiveness (i.e calculating risk reduction versus an unhedged portfolio) 
and distribution statistics. Overall, we found that the static minimum-variance 
technique provided the best hedging performance in terms of risk reduction versus 
the unhedged portfolio. 

6.1 Introduction 

Commodity markets have undergone a number of significant changes in the past 
few decades. In particular, the proportion of commodities traded over-the-counter 
has grown substantially compared to exchange-traded volumes, and the market has 
expanded to include more sophisticated financial instruments [1], including indexes 
and derivatives. This has enabled the development of more complex hedging and 
risk management strategies. Furthermore, the increased volatility of the underlying 
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commodity prices has made the commercial requirement for risk management 
solutions clear. 

In this paper we focus on agricultural commodity markets. In these markets there 
are a number of risks which highlight the need for empirical studies demonstrating 
how these can be effectively managed even when no direct hedging strategy is 
feasible. In particular, both producers and consumers face risks of: 

• Weather—crop yields and production are heavily dependent on rainfall, tem-
perature and other factors, with climate change making these conditions less 
dependable year-on-year 

• Disease and pests 
• Energy price volatility—the energy required for production, transportation and 

the increased use of bio-diesel 
• Government policy and regulation changes 
• Geopolitical risk and exchange rate exposure 

Typically, in this industry the primary risk management tools, aside from futures-
based hedging, are physical hedging, swaps and insurance. Physical hedging is 
closely related to futures-based hedging, except involves storing or being willing 
to store the physical good, which can be effective when the infrastructure for 
storage is already available within the context of the business. However, this 
can be a challenging strategy to execute effectively, given that in agricultural 
commodity markets certain goods have a short storage life, or the cost of storage and 
transportation can be high, limiting the usefulness of the hedge. Additionally, given 
these physical constraints and the niche nature of these markets, it can be difficult 
to adjust positions quickly or find counterparties with favourable pricing. Also, this 
strategy may not protect against all types of price risk. Swaps are derivative contracts 
where two parties exchange cash flows based on the value of the underlying asset. 
These can be individually tailored since they are over-the-counter, so the contract 
specifications can be closely aligned to the risk faced. They also do not require an 
upfront premium payment. However, there is significant counterparty risk, liquidity 
risk and credit risk. Both physical hedging and swaps require comprehensive market 
knowledge and significant investment into employee time and expertise in order to 
execute the strategies that provide cost-effective and comprehensive coverage. 

The agricultural insurance industry is a large market, with a broad range of 
available of products, from crop and livestock insurances to revenue insurance, 
multi-peril and in more recent years, CAT (catastrophic) risk products. Crop 
insurance is typically linked to yield or whole-farm revenue protection, and similarly 
livestock insurances provide coverage for death or disease of the livestock. In the 
cases of the beef markets that we discuss in this paper, these insurances can be useful 
for specific risks but may lack coverage in the general case of price movement. 
Multi-peril or CAT insurance has broader utility but since it includes many high-
risk events it can come with higher premiums and these events may not necessarily 
result in equivalent price movement. Commodity price insurance can aid with this, 
and we explore some examples of this in the literature review, but for the companies 
providing the insurance, the problem of hedging the risk remains.
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For all participants, whether it be companies selling risk management strategies 
who need to offset the risk they onboard or direct producers/consumers, derivatives 
can be used to facilitate their hedging strategies. Derivatives enable this by offsetting 
potential losses from the underlying asset by allowing counterbalancing positions in 
related securities to be taken. For many commodities which have these exposures, 
the desired derivative for hedging is illiquid or non-existent, and in such incomplete 
markets, actors must rely on cross-hedging, which introduces basis risk as the 
cross-hedge fails to fully offset losses from the underlying asset due to imperfect 
correlation. 

There are a number of constraints which make the hedging of non-exchange-
traded commodities particularly challenging. There is a lack of liquidity as many 
agricultural commodities do not have active trading and derivatives markets, making 
price discovery difficult, with larger bid-ask spreads and limited hedging opportu-
nities. Estimating the implied volatility for such markets can be challenging given 
this lack of actively traded options. Furthermore, historical price and volatility data 
can be sparse for these commodities, making it difficult to model, price derivatives, 
backtest and evaluate potential hedging strategies. Given these constraints, it can be 
hard to determine the best set of hedging instruments for a given commodity, and 
after these are determined we then need to estimate the optimal hedging ratio for the 
frequency of hedging we wish to (and feasibly can) execute. 

Historically, we have seen many instances where despite these difficulties hedg-
ing on the futures would have potentially provided significant commercial value, 
and we provide an example here that is specific to the beef market, which was the 
main commodity we focused on in this study. In 2003, Mad Cow Disease severely 
disrupted the US beef market as other countries imposed bans on importing US beef, 
with exports from the US dropping by approximately 80% [2] after 2003. Through 
beef producers obtaining short positions in futures contracts, there would have been 
some revenue protection despite the sharp drop in prices [3]. Conversely, in 2020 
due to the Covid-19 pandemic, beef prices increased significantly [4], resulting in 
insurance companies having to provide large payouts which could have been hedged 
through the futures market. The supply chain disruption affected every participant 
in the supply chain, with many meat processing plants closing and supply chain 
bottlenecks, which led to higher prices for food, with retail beef prices increasing 
25% in June 2020 year-on-year [5]. This highlighted the need for protection across 
the entire supply chain. In our paper we examine beef, cattle and beef trim indexes, 
which all play a key role in the US beef markets. Whilst the findings in this paper 
are intended to be applicable to broader agricultural commodity markets, the beef 
industry alone plays a vital role in the US agricultural economy, with the total value 
of the US beef cattle industry estimated to be worth $101.6bn billion dollars in 
2024 [6]. Despite the historical evidence that beef and other agricultural commodity 
markets are very susceptible to both global and regional disruption of all kinds from 
weather to geopolitics, there have still been very few empirical studies done to test 
and develop hedging strategies where the futures can provide some protection with 
some remaining basis risk. This is particularly relevant to companies in the middle 
of the supply chain who have risk in both directions and handle many different
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closely related products, such as different cuts of beef, and insurers who many 
be exposed on multiple fronts. This study empirically highlights the challenge of 
hedging options using correlated futures and includes commercial considerations 
such as transaction cost, making it a key contribution to a broadly unsolved problem 
that could impact a large swathe of the US agricultural and insurance economies. 
This is particularly the case as commodity price insurance becomes more widely 
adopted and insurance companies need to offset their risk. 

The focus of this paper is—given a non-tradable commodity, on which we will 
write a given portfolio of options, and a single commodity futures—to determine the 
optimal hedge ratio and frequency of hedging given certain commercial constraints, 
such as transaction cost. We will price the options using the Black-Scholes model, 
and then calculating the hedge ratio using methods based on: delta, min-variance, 
VaR and C-VaR. We will evaluate the performance using hedging effectiveness, 
ECDF and KDE profiles and the distribution statistics. 

We will draw conclusions about which strategies might be the most appropriate 
under certain market conditions, and note what needs to be further investigated and 
the next steps. 

6.2 Literature Review 

Academic research into hedging methods and strategies in markets has seen substan-
tial attention over the past decades. Earlier studies predominantly concentrated on 
the motivation for hedging and hedging techniques in complete markets, utilizing 
exchange-traded instruments. In contrast, recent research, particularly in more 
specialised markets such as agricultural commodities, delves into cross-hedging 
techniques, insurance, and other risk management tools. As the demand for cross-
hedging non-exchange-traded commodities grows, this becomes a key research area, 
particularly given the practical challenges associated with the lack of available direct 
hedging instruments. As discussed in the introduction, this problem is relevant to 
a number of commercial players, including insurance companies, producers and 
consumers (both retail and food service businesses). In this literature review, we 
hope to give a broad overview of the risk management strategies employed in 
agricultural commodity markets, as well as, the historical development of hedging 
strategies in broader markets. We examine how researchers have handled basis risk, 
the development of the minimum variance and related techniques, the value-at-risk 
approach and we introduce hedging effectiveness. We also introduce the use of the 
Black-Scholes model as a pricing and hedging benchmark. 

In the introduction, we highlighted agricultural insurance as one form of risk 
management for producers and consumers, with the caveat that these insurance 
companies must then manage the risk that they onboard. Assa and Wang outline 
in their 2020 paper [7] three main categories of agricultural insurance: crop 
insurances, revenue insurances and derivatives. These insurances form the basis of 
risk management for participants with physical risk in this industry. Whilst these
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insurances have utility for certain types of risk that participants may be facing, 
such as crop insurance providing financial support when the harvest is damaged 
or revenue insurance guaranteeing a minimum income, they also have a number 
of disadvantages. These are discussed extensively by Goodwin, in ‘Problems with 
market insurance in agriculture’ [8], where he outlines issues such as moral hazard, 
adverse selection and high cost due to the degree of systemic risk inherent in the crop 
insurance market. In this paper, we examine options written on beef commodities, 
however, this can easily be generalised to other commodities, and the discussion 
of crop insurance is an important aspect of risk management in the agriculture 
industry. Goodwin and Mishra, in their 2003 paper [9], outline the difficulties of 
revenue insurance and basis risk, suggesting that the basis risk causes the payouts 
to not match the buyers’ actual exposure resulting in less future participation, and 
even with government subsidisation of these insurance programs, participants may 
struggle to find a plan that covers their risks adequately at an affordable price. 

Assa and Wang [7] suggest that one solution to this could be price index 
insurances on agricultural goods; these insurances would be sold in the form of 
options written on these price indexes. In their paper they outline the exact optimal 
structure of these option policies. Whilst purchasing these policies may be a good 
solution for participants with physical risk, particularly if the price index is a non-
exchanged traded commodity, since in that case the participant can themselves 
choose a contract which is directly related to the price risk they are facing, it still 
leaves the option provider with a significant risk exposure. Cross-hedging these 
options with futures can provide a solution. The options together with the hedging 
strategies that we test could enable the majority of the physical risk to be offloaded. 

Other techniques, such as self-insurance and marketing flexibility are outlined by 
the Kansas State University Department of Agricultural Economics [10]. Typically 
self-insurance works by income diversification and marketing arrangements with 
breeders, processors etc., and can also help with risk management, but these 
techniques have limited benefit, particularly in more extreme scenarios. Schoeder 
and Yang [11] in their 2001 paper show that live cattle futures do not offer much 
opportunity for effective hedging of wholesale beef cuts, particularly because the 
correlation is not strong enough, and suggest that a Choice-to-Select spread futures 
contract with a boxed beef futures contract would increase the opportunity for 
hedging. Similarly in a 2010 paper, Bieroth [12] suggests that changes in the way 
that beef is marketed has led to poor performance in cross-hedging. They also 
highlight the difficulty of basis risk and test the impact of bundling, but find that 
it does not reduce basis risk. A more recent paper looking at cross-hedging in the 
beef industry was published by Alcoforado et al. [13] in Brazil where they were able 
to use cattle spot prices to estimate futures prices using a GARMA model, which 
suggests that the basis in that case could be modelled. Nonetheless, the majority of 
the available research suggests that cross-hedging effectively in these markets is still 
a challenge. 

Another large market is pork, and lean hog futures have been studied as a possible 
hedging vehicle. For instance, Ditsch and Leuthold [14] evaluate the usage of lean 
hog futures and others to hedge cash live hogs and cash meats using a number of



128 J. Carr and S. Wang

different hedging techniques including the minimum-variance one that we study 
here. Overall, they found that neither contract that they tested showed significant 
hedging opportunities for pork trimmings or hams implying that there is more 
research to be done here as well. 

We now outline the historical background and basis for the option pricing and 
hedging strategies which we use to model and evaluate. The Black-Scholes model, 
developed by Fischer Black and Myron Scholes in 1973, provides a mathematical 
framework that is often used for option pricing and hedging. This model was the 
first widely adopted option pricing model and remains a cornerstone of the industry 
for many reasons, despite a number of significant assumptions and limitations 
underlying the model. Firstly, it highlights the core variables, such as stock price, 
volatility, time-to-maturity and interest rates, with many more advanced models, 
with more realistic assumptions, still building off the Black-Scholes framework. 
It also provides a lower bound on prices, with the assumption of perfectly liquid 
markets, no arbitrage opportunities and negligible transaction costs reflecting a 
lower premium than would typically be required. The assumptions of the model 
also enable closed-form solutions for hedge ratios and option prices. In the Black-
Scholes model section, we explain how the model works and include the relevant 
equations. Since the focus of our paper is not the option pricing, but testing the 
different hedging techniques, we simply use the Black-Scholes model for the option 
pricing. 

In agricultural commodities a number of more advanced approaches have been 
proposed, particularly when using derivatives in place of insurance, for instance, 
Assa in his 2015 [15] and 2016 [16] papers determines the dynamics of the 
derivative prices and proposes a financial engineering framework. This framework 
enables modelling of commodity prices and explains the relationship between key 
variables such as demand, volatility and the leverage effect of commodities, so 
that derivative prices can be more accurately determined. Furthermore, Ye et al. 
[17] developed an improved Black-Scholes model for the calculation of crop price 
insurance premiums. 

Prior to the publication of Black-Scholes and other models, Johnson [18] in 1960 
developed the foundational minimum-variance approach to hedging. In his paper 
he considers a cash position coupled with a short hedge using futures contracts, 
and the basis risk is between the cash and futures prices. He showed that this is 
optimal for any investor seeking to minimise risk, regardless of expected returns. 
This minimum-variance approach can be combined with the Black-Scholes model, 
and in particular, using the Black-Scholes delta to model the change in option value 
with respect to the change in the underlying asset’s price, to generate a minimum-
variance cross-hedging ratio which accounts for the fact that we are holding a 
position in the option, rather than just the underlying asset. In 1984 Frechette [19] 
outlined the commercial problem that in the agricultural insurance basis risk can 
be a significant barrier to the implementation of hedging techniques commercially, 
particularly spatial basis risk. He highlights previous studies [20–23] which also 
discuss the fact that including hedging costs can change optimal hedge ratios and
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influence whether participants choose to hedge. Whilst we included a transaction 
cost in our study, further sensitivity analysis could be done. 

In the 1990s many of these ideas were combined to form blended hedging 
models. A number of approaches were introduced including lower partial moments, 
mean-Gini, and stochastic dominance, to name a few, alongside more theoretical 
models, such as, time-varying hedge ratios estimated using GARCH and stochastic 
volatility models. These approaches were all reviewed in the 2002 paper by Lien and 
Tse [24], who provided a comprehensive overview of the state of research on this 
topic. In their paper they conclude that minimum variance is a useful benchmark, 
but models such as VaR, mean-Gini and LPM can better address tail-risk. They 
also concluded that stochastic models have mixed empirical performance despite 
the theoretical appeal. In our study we focus on testing tail-risk based models with 
historical realised volatility (see implied and realised volatility section for more 
detail). 

In 2003 Harris and Shen introduce a value-at-risk-based hedging approach which 
estimates VaR from historical simulation and GARCH and we consider a similar 
approach in our empirical study. They demonstrate that minimising variance can 
reduce the standard deviation of portfolio returns, but may increase skewness and 
kurtosis, whereas minimising VaR or C-VaR instead can reduce extremes. 

Contrastingly, Hung et al. [25] developed a parametric approach to estimate the 
minimum VaR hedging ratios. This method relies on the assumption that if the 
returns of the index and the futures are normally distributed, the VaR of the hedged 
portfolio can be expressed as the difference between the potential loss due to market 
volatility and the expected return over a specific time horizon. While this method 
has the advantage of simplicity and easy interpretability, it heavily depends on the 
normality assumption of the returns, which may not hold true, particularly during 
extreme market conditions, and in the case of agricultural commodities where we 
see factors such as weather, supply-chain shocks and geopolitical events, changing 
the distribution. To compare the effectiveness of the non-parametric method and 
parametric approach, Cao et al. [26] developed a semi-parametric approach based 
on the Cornish and Fisher expansion. This method adjusts the appropriate quantile 
of the standard normal distribution using the higher moments such as skewness 
and kurtosis, thereby approximating the quantile of the probability distribution. By 
doing so, they express the VaR of the hedged portfolio in terms of the multiplication 
of the volatility of the hedged portfolio and the Cornish and Fisher expansion. This 
approach has shown significant improvements in VaR reduction when comparing 
to Harris and Shen’s Kernel method. However, this method requires the portfolio 
return to be drawn from location-scale family distribution and have a mean of zero, 
which is a restrictive assumption and may limit its applicability in certain scenarios. 
Considering the limitations and assumptions associated with both parametric and 
semi-parametric methods, this study adopts the non-parametric approach to deter-
mine the optimal minimum VaR hedging ratio. While the non-parametric method 
may avoid the constraints imposed by distributional assumptions, it is essential to 
acknowledge its susceptibility to extreme quantiles, which could impact the hedging 
effectiveness under certain market conditions. In our study, we also use the non-
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parametric historical simulation approach to determine an optimal minimum C-VaR 
hedging ratio, to compare to the VaR-based ratio. 

Cong, Tan and Weng examine an optimal partial hedging strategy for both VaR 
[27] and C-VaR [28]. They find that the optimal strategy is either a knock-out call 
or call spread when VaR is the risk measure. When C-VaR is the risk measure they 
find the optimal strategy is the bull call spread hedging. In our paper we study a 
portfolio of vanilla call and put options, but it would be an interesting extension to 
test these methods on a portfolio of options with the structure outlined by Cong, Tan 
and Weng. 

In order to evaluate and compare these strategies, we also introduce literature 
on the hedging effectiveness, in particular we use the measure introduced by 
Heifner and Ederington [29] and discuss further variations of this in the hedging 
effectiveness section. 

6.3 Problem Definition and Method 

6.3.1 Basis Risk 

Basis risk is a key consideration when developing hedging strategies in the context 
of agricultural commodity markets. We define the basis as the price difference 
between the non-exchange-traded commodity and the corresponding futures price 
contract on the exchange for the given futures. 

.Bt = St − Ft (6.1) 

where, at a given time t : 

• Bt . is the basis 
• St . is the spot price of the non-exchange-traded commodity 
• Ft . is the future price on the exchange 

The difference between these two prices can be significant and can vary greatly 
over time, making the problem of managing the basis risk crucial for those trading 
in the commodity space and looking to hedge price risk via futures. It is important to 
ensure that the futures positions are offsetting the spot price movements. In our study 
we are trying to offset the change in value of the option that we write on the non-
exchange-traded commodity with the futures. Several factors drive this difference 
between the spot price and futures price, in particular, the movement and storage of 
physical goods can have a significant impact on the price difference. When there are 
supply-demand mismatches, or supply-chain disruption, the magnitude of volatility 
can be different in each of these markets, and this contributes to the unpredictability 
of the basis over time. Timing mismatches between needing to transact physical 
positions vs future expirations can further exacerbate the basis. Quality variation
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between the non-exchanged-traded commodity and futures contract specification 
can also cause differences in price. 

6.3.2 Black-Scholes Model 

As introduced previously, the Black-Scholes model [30], developed by Fischer 
Black and Myron Scholes in 1973, provides the mathematical framework that we 
will use for option pricing and as a benchmark for comparison when determining 
the hedge ratio. 

The Black-Scholes model considers a “risky” asset (such as a stock, or in our 
case a commodity price index), a “riskless asset” (e.g. cash), and an option written 
on the risky asset, whose value is to be determined. It is assumed that the risky asset 
follows Brownian motion, the volatility is constant, the future asset price at any point 
in time is lognormally distributed and that it pays no dividends. The riskless asset 
is considered an investment alternative to the risky asset or a source of financing; 
for instance, in the case of cash, you can receive it when selling the option or stock 
and deposit it to earn interest or you can borrow it to buy the option or stock and 
pay interest. The interest is the risk-free interest rate, and it is assumed in the Black-
Scholes model that this is constant and known in advance. The option is assumed to 
be European, which is defined such that it can only be exercised at expiration. The 
model also assumes the following regarding the market: there are zero transaction 
costs, perfect liquidity, no arbitrage, no restrictions on trading (e.g. no restrictions 
on short selling), and securities are infinitely divisible. 

Commodity prices tend to have skewed, fat-tailed distributions [31], due to: 
weather sensitivity, extreme events such as droughts, floods, heat waves etc. can 
cause supply shocks which result in price spikes; low storage time; seasonality; 
new-crop old-crop jumps; and government policies/subsidies. This causes our prices 
to violate the lognormality assumption and typically these challenges also tend to 
result in changing volatility. Additionally, whilst commodity markets have evolved 
towards having more liquidity they tend to be much less liquid than the stock 
market environment that Black-Scholes was developed for. Furthermore, the costs 
of transporting, storing and trading agricultural commodities can be very large, 
particularly when there are significant supply/demand imbalances. 

Despite these shortcomings, the Black-Scholes model still holds utility as a first 
approximation to our option price and the delta as a simple guideline to an initial 
hedging strategy. 

Black-Scholes Option Price The value of a call option, Vc ., and a put option, Vp .,  are  
given by the following formulae;

.Vc = S0Ф(d1) − Ke−rT Ф(d2) (6.2) 

.Vp = Ke−rT Ф(−d2) − S0Ф(−d1), (6.3)
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where 

. d1 = log(S0/K) + (r + σ 2/2)T

σ
√

T
, d2 = log(S0/K) + (r − σ 2/2)T

σ
√

T
= d1 − σ

√
T .

(6.4) 

Where 

• S0 . is the initial price 
• K is the strike p rice
• r is the risk-free interest r ate
• T is the time-to-maturity
• σ . is the realised historical volatility 
• Ф. is the CDF of the normal distribution 

Here we also note that the payoff for a European Call option is given as: PC =
max(St − K, 0). and a European Put option is given as: Pp = max(K − St , 0).. 

The quantity that we need for hedging is the Delta which is defined as below. 
Delta, Δ ., is a measure of the rate of change of the options calculated value, V , 

with respect to the change of the underlying assets price, S. 

.Δ = ∂V

∂S
(6.5) 

In the Black-Scholes model, for a European Call or Put option it is calculated as 
shown: 

.Δ call = e−rT Ф(d1) (6.6) 

.Δ put = e−rT (Ф(d1) − 1) (6.7) 

The traditional hedging strategy using the delta is known as ‘Delta-neutral 
hedging’, where the option is hedged with the underlying assets and is based on 
the replication of the option, where the logic is the same as option pricing using the 
binomial tree model. 

6.3.3 Implied and Realised Volatility 

Implied volatility plays an important role in the Black-Scholes option pricing model, 
which assumes constant volatility over the life of the option. However, calculating 
implied volatility in agricultural commodity markets presents challenges, especially 
when derivative markets are absent for certain commodities.
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Estimating implied volatility (IV) using the Black-Scholes model is an iterative 
process that involves adjusting the volatility parameter until the calculated option 
price matches the market price, with the underlying assumption that there is 
constant volatility over the life of the option. This process, often executed through 
numerical methods like the Newton-Raphson method, yields an implied volatility 
surface or curve, providing insights into market expectations regarding future price 
fluctuations. However, the Black-Scholes model has inherent limitations, especially 
when faced with the complex dynamics of agricultural markets, such as weather-
related shocks or geopolitical developments. In scenarios where no derivative 
markets exist, determining implied volatility is difficult because the Black-Scholes 
model relies on option prices, and without an options market, there is a lack of 
observable data to infer market expectations about future price movements. This 
absence hinders the accurate calculation of implied volatility, a crucial input for the 
model. 

The limitations of the Black-Scholes model have spurred the development of 
more advanced volatility models. The SABR model [32], for instance, introduces 
stochastic volatility, allowing for greater flexibility in capturing the dynamics of the 
implied volatility surface. Similarly, the Heston model [33] incorporates stochastic 
volatility and the correlation between asset prices and volatility, making it relevant 
for situations where volatility exhibits mean-reverting behaviour. The Chen model 
[34] and the GARCH model [35, 36], while not directly option pricing models, 
also contribute to the discussion by addressing the limitations of the Black-Scholes 
model through the introduction of features such as jump diffusion processes and 
time-varying volatility. In some cases, these models may be used to estimate the 
volatility input for option pricing models, bridging the gap between historical data 
and market expectations. 

Even in cases where derivative markets for agricultural commodities do exist, 
calculating implied volatility can be challenging. Issues such as liquidity constraints 
may result in sparse trading of options, limiting the number of data points available 
to gauge market sentiment. Additionally, the inherent complexities of agricultural 
commodities, influenced by factors like weather conditions, supply chain shocks 
and geopolitical events, make isolating the impact of these variables on implied 
volatility challenging. Therefore, realised volatility becomes a relevant method to 
also include, serving as an alternative when calculating implied volatility is chal-
lenging. While implied volatility captures market expectations embedded in option 
prices, realised volatility is derived from historical price movements. In situations 
where derivative markets are absent or illiquid, as is often the case with certain 
agricultural commodities, relying on realised volatility is the pragmatic choice. 
Realised volatility provides a tangible measure of historical market dynamics, 
offering valuable insights into how prices have behaved in the past. This historical 
context becomes particularly relevant when dealing with agricultural commodities, 
where the impact of external factors can be significant and difficult to quantify using 
traditional models.
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The choice between implied volatility and realised volatility is context-
dependent. Given that our focus of our research in this paper is not the volatility 
calculation, we use the historical realised volatility given below. 

Let Rt = St

St−1
., then 

.σ = log

⎾   
|
|
|

1

N − 1

N
⎲

t=1

(Rt − R)2 (6.8) 

This is typically annualised by multiplying the square root of the number of time 
periods in a year. 

6.3.4 Static and Dynamic Hedging 

Hedging can be implemented once at the time that the option position is opened, 
and once at the time that the option position is closed to simultaneously close 
the hedging position. This is typically referred to as static hedging. This has the 
advantage of being straightforward to implement and only a single calculation of 
the hedging ratio is required. In many cases, however, particularly when there is 
uncertainty about the liquidity of the market at future times or the option maturity 
is a long time period compared with the frequency of the asset used for hedging, it 
may be useful to more frequently update the hedging position and this is typically 
referred to as dynamic hedging. Typically for dynamic hedging we would have a 
greater transaction cost overall, and it is important to compare the advantage of 
the increased flexibility in updating our futures position and the disadvantage of an 
increased transaction cost. In particular, our hedging effectiveness may only increase 
by a small amount with dynamic hedging, and in this case, it may be more profitable 
to take the static approach. It may also be difficult, particularly in a market, such as 
agricultural commodities, to obtain data that is a sufficiently high frequency with 
reliability, to model and perform dynamic hedging. In our empirical study, we test 
static and dynamic cross-hedging for the Black-Scholes approach, min-variance and 
value-at-risk. 

6.3.5 Variance-based Hedging Strategies 

Minimum-Variance Cross-Hedging Ratio In this section, we show a derivation 
of the optimal cross-hedge ratio formulae mathematically. This was originally 
derived in Ederington’s 1979 paper [37]. The following notation is used: 

• Δ X .: the change of index spot price in the hedging period 
• Δ Y .: the change of future contract price in the hedging period
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• h: the optimal hedging ratio 
• σX .: the standard deviation of Δ X . 

• σY .: the standard deviation of Δ Y . 

• ρ .: the correlation coefficient 
• Δ π .: the change in value of the hedger’s portfolio 

.Δ π = Δ X − hΔ Y (6.9) 

.V ar(Δ π) = σ 2
X + h2σ 2

Y − 2hρσXσY (6.10) 

Then we want to minimise the variance with respect to h, so we calculate the 
derivative with respect to h, equate it to zero and solve for h. 

.dV ar(Δ π) = 2hσ 2
Y − 2ρσXσY = 0 (6.11) 

.h = ρ
σX

σY

(6.12) 

We can see that this is indeed a minima by examining the second derivative and 
seeing that it is greater than zero. 

.d2V ar(Δ π) = 2σ 2
Y > 0 (6.13) 

We can improve this formula, with the additional assumption that X and Y 
follow geometric Brownian motions with drifts μX ., μY . and volatilities σX ., σY .. 
The increments dW1 . and dW2 . have correlation ρ .. This assumption gives us the 
following set of equations: 

.dX = μXXdt + σXXdW1 (6.14) 

.dY = μY Ydt + σY YdW2 (6.15) 

.E[dW1dW2] = ρdt (6.16) 

Now, we consider a portfolio long in Y and short an option on X, where h is the 
hedge ratio we are trying to find, i.e. the amount of Y that should be in this portfolio 
to minimise the variance:

.Π = hY − V (X, t) (6.17) 

where the change dΠ . is partly due to dV and dY . Using Ito’s l emma:

.dΠ = hdY − dV (6.18)
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.dV = ∂V

∂t
dt + ∂V

∂X
dX + 1

2
σ 2

XX2 ∂2V

∂X2
dt (6.19) 

Taking the variance: 

.var(dΠ ) = var(hdY − dVt ) (6.20) 

We can use the identity, the variance of sum formula: 

.var(X1 − X2) = var(X1) − var(X2) − 2cov(X1, X2) (6.21) 

This gives: 

.var(hdY − dVt ) = h2var(dYt ) − var(dVt ) − 2hcov(dYt , dVt ) (6.22) 

Taking the first derivative with respect to h (so, d
dh
var(dVt ) = 0.) and minimising 

through using the first order condition, we obtain: 

.hOpt = cov(dVt , dYt )

var(dYt )
(6.23) 

To solve this we substitute in the expressions for dY and dV so:

. cov(dVt , dYt ) = cov(
∂V

∂t
dt + ∂V

∂X
XμXdt + ∂V

∂X
σXXdW1

+ 1

2
σ 2

XX2 ∂2V

∂X2 dt, μY Ydt + σY YdW2) (6.24) 

The only terms which contribute here are ∂V
∂X

XσXdW1 . and σY YdW2 .,  as  the  
covariance of dt with the other terms gives 0, and since E[dW1, dW2] = ρdt ., 
cov( ∂V

∂X
XσXdW1, σY YdW2). = ( ∂V

∂X
XσXσY Y )ρdt .. Combining this with var(dYt ) =

Y 2σ 2
Y dt ., we obtain: 

.hOpt = ρ
XσX

YσY

Δ BS (6.25) 

where Δ BS = ∂V
∂X

. and is the Black-Scholes delta as referenced previously. 

6.3.6 Value-at-Risk-based Hedging Strategies 

In this section, we consider Value-at-Risk based hedging strategies. Value-at-Risk 
(VaR) is a statistical measure which is used to quantify the level of financial risk
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of a portfolio over a specific timeframe. It estimates the maximum loss within the 
time horizon at the given probability and conceptually represents the quantile of the 
loss distribution. This is typically calculated using past market data to model the 
distribution of returns, commonly this is done using either: parametric, historical 
simulation or Monte Carlo methods. 

Let F be the CDF of X where X is the profit and loss distribution over the time
period. Let α ∈ (0, 1). be the given confidence level, then, 

.V aRα(X) = −inf {x ∈ R|FX(x) > α} (6.26) 

The choice of distribution for calculating VaR (Gaussian, Student’s t etc.) can 
have a large impact on the VaR calculation. Since for our methods the VaR is 
calculated non-parametrically we do not need to be concerned about the choice of 
the distribution, but it may be worthwhile considering using a parametric method in 
future research, as in the non-parametric case there are very few data points. 

To implement this strategy, we estimate the minimum-VaR hedge ratio by 
choosing an arbitrary hedge ratio, calculating hedge portfolio returns over a rolling 
window of historical data (this is a historical simulation approach) and estimating 
the VaR of this resulting hedged portfolio. Then a numerical optimization procedure 
is used in order to estimate the value of the hedge ratio that minimizes the hedge-
portfolio VaR. 

Instead of simply minimising the potential loss of the portfolio over a specified 
time, we may want to focus more closely on the downside tail risk, beyond the VaR 
threshold, and for this we consider the C-VaR (Conditional Value-at-Risk), which is 
given by the following formula: 

.CV aRα(X) = E[X|X > V aRα] (6.27) 

where V aRα . is as above. 
The C-VaR gives the average loss in the tail beyond the specified percentile of 

the loss distribution given by the VaR, and gives information about the magnitude of 
losses in the event of extreme market moves beyond the VaR. The implementation 
of C-VaR is the same as VaR, except minimising the C-VaR risk measure instead of 
the VaR. 

6.3.7 Defining Hedging Performance 

6.3.7.1 Hedging Efficiency 

To measure the hedging strategy’s performance we follow the guidance of Heifner 
and Ederington [29] in their 1983 paper, which outlined hedging effectiveness as 

.1 − RiskMeasure(hedgedPnL)

RiskMeasure(unhedgedPnL)
(6.28)
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where the choice of risk measure is fundamental in capturing what we want to 
quantify in terms of the risk of PnL. This metric measures the proportion of 
variations in the unhedged position’s PnL that is hedged off by the introduction 
of hedging positions. If the effectiveness of the hedging strategy is 1 then the 
hedging position eliminates the risk exposures completely. Otherwise, the smaller 
the hedging effectiveness the worse the strategy is. 

There are a number of risk measures available, for example: standard deviation, 
downside deviation, value-at-risk and expected shortfall. The standard deviation 
examines how spread out the values are, ignoring profit and loss, but simply 
determining whether the variation of the PnL is decreased by hedging. The downside 
deviation examines the standard deviation of negative PnLs. Value-at-risk measures 
the tail loss and is the loss level that will not be exceeded with a certain confidence 
level during a certain period of time. Alternatively, if the extreme loss is large but 
has a low probability, VaR may underestimate tail risk, so instead we can look at 
expected shortfall, which gives the expected loss in the worst cases. 

In our case we use value-at-risk (95%) and standard deviation as our risk 
measures, as we feel that these give a clear indication of some of the key ways that 
the distribution may change as a result of hedging, however, an individual business 
may choose different measures depending on their key performance metrics. 

Using a metric such as hedging efficiency, which only considers a single 
distribution statistic, can be one-dimensional, particularly when we want to compare 
the performance across the entire distribution. For this we use ECDFs (Empirical 
Cumulative Density Function) and KDEs (Kernel Density Estimation). These plots 
provide a visual tool for examining the shape and characteristics of the PnL 
distributions. 

6.3.7.2 Empirical Cumulative Density Function and Kernel Density 
Estimation 

Kernel Density Estimation (KDE) is a non-parametric method used to estimate the 
probability density function (PDF) of a continuous random variable based on a set 
of observed data points. It provides a smoothed representation of the underlying 
distribution, giving insights into the shape and characteristics of the data. At each 
data point we place a kernel and sum these kernels to create a continuous estimate 
of the PDF. 

The KDE at a specific point x is calculated using the following formula:

.f̂ (x) = 1

nh

n
⎲

i=1

K(
x − xi

h
) (6.29) 

where: 

• f̂  (  x). is the estimated PDF at point x 
• n is the number of data points
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• h is the bandwidth, controlling the width of the kernel 
• xi . represents each observed data point 
• K(·). is the kernel function 

The kernel used is the Gaussian kernel: K(u) = 1√
2π

e
−1
2 u2

. The Empirical 
Cumulative Distribution Function (ECDF) is a step function that represents the 
cumulative probability distribution of a set of observed data points and it is also 
a non-parametric method. 

Let’s consider a dataset of n observations x1, x2, . . . , xn .. The ECDF at a specific 
value x is calculated as the proportion of data points less than or equal to x. 
Mathematically, the ECDF is defined as follo ws:

.F(x) = 1

n

n
⎲

i=1

I (xi ≤ x) (6.30) 

where: 

• F(x). is the value of the ECDF at x 
• n is the number of data points 
• I (xi ≤ x). is an indicator function that equals 1 if xi ≤ x . and 0 otherwise. 

The ECDF is constructed by sorting the data in ascending order and assigning 
cumulative probabilities based on the number of data points less than or equal to 
each value. It starts at 0 for the smallest observation and ends at 1 for the largest 
observation. 

For a given x, the ECDF value represents the proportion of data points less than 
or equal to x. This step function provides a visual depiction of how the data is spread 
across its range and is useful for assessing percentiles of the data. 

Mathematically, the ECDF and KDE encode the same information—the 
distribution—however, we choose to include both as it is easier to see different 
aspects of the distribution from the two plots. In particular we look to the ECDF for 
a clear comparison of the percentiles and the KDE for the mean, variance and skew. 

These visual representations enable us to easily see how the distributions of the 
different techniques compare with one another. However, the downside of visually 
examining the ECDFs and KDEs is that this is does not provide us with a concrete 
quantitative way of comparing the distributions. For this we use the statistics of the 
distributions such as mean, variance, skew and kurtosis. 

6.3.7.3 Distribution Characteristics 

The mean, variance, skewness and kurtosis of the distribution are statistical 
measures that quantify important characteristics of the distribution. 

.E[X] =
⎛ ∞

−∞
xp(x, t)dx (6.31)
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where p(x, t). is the probability density of the random variable. 

.μ = E[X] (6.32) 

.σ 2 = E[X2] − E[X] (6.33) 

.skew = E[
⎛

X − μ

σ

⎞3

] (6.34) 

.kurtosis = E[
⎛

X − μ

σ

⎞4

] (6.35) 

Here, X is a random variable, E[·]. denotes the expected value. 
• Mean: Represents the average or expected value. 
• Variance: This measures the spread or dispersion of the distribution, we can also 

examine the square root, i.e. the standard deviation. 
• Skewness: The skewness indicates the asymmetry in the distribution, a skewness 

of zero suggests a symmetric distribution. 
• Kurtosis: This helps to measure the shape of the tails of the distribution. 

For comparing the hedging strategy performances the characteristics can help to 
discriminate different properties of interest. For example, differences in skewness 
or kurtosis might indicate variations in the risk profiles of different strategies. 
By calculating and comparing these characteristics, we can gain a more nuanced 
understanding of the shape and characteristics of PnL distributions, offering insights 
into the comparative performance of various hedging strategies. 

6.4 Data and Portfolio 

6.4.1 Indices and Futures 

6.4.1.1 Description 

In this study, we aim to hedge: Beef Index (all beef type, steers and heifers, daily 
direct slaughter cattle); Cattle Index (all steers and heifers, total all grades, domestic, 
weighted average price); Beef Trim Index (chemical lean, fresh, national 50%) using 
the live cattle futures (Fig. 6.1). 

The index prices are obtained from USDA, and are available on a daily basis 
for Beef Index and Cattle Index and a weekly basis for Beef Trim Index. The 
methodology for how these prices are collected can be found on the USDA website 
[38]. The future prices are obtained from Bloomberg, and are available on a daily 
basis (Tables 6.1 and 6.2).
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Fig. 6.1 Beef index, cattle index, beef trim index, futures 

Table 6.1 Basic data information and symbols 

Asset name Description Data availability range 

Futures Live cattle futures 2000-01-03 ∼. 2023-07-18 

Beef index All beef type steers and 
heifers daily direct slaughter 
cattle negotiated purchases, 
live FOB 

2002-11-22 ∼. 2022-06-24 

Cattle index All steers and heifers, total all 
grades domestic, weighted avg 
price 

2004-04-16 ∼. 2022-07-01 

Beef trim index Chemical lean, fresh 50%, 
National 

2003-01-03 ∼. 2023-06-30 

Table 6.2 Summary statistics for the returns of indices and future returns 

Security Mean Standard deviation Skewness Kurtosis Correlation with futures 

Futures 0.0042 0.0415 −.0.6307 1.3059 – 

Beef index 0.0009 0.0224 0.0155 5.5722 0.785 

Cattle index 0.0008 0.0245 2.25 34.7158 0.545 

Beef trim index 0.0077 0.1204 2.0338 13.543 0.258 

6.4.1.2 Data Processing 

We cut all of the index and futures data to the range 2004-06-30 to 2022-06-30. We 
converted these datasets to weekly, using the average weekly price for both the index 
and futures. For the futures, we use the continuous curve provided by Bloomberg, 
as opposed to working directly with the individual contracts. This continuous curve 
captures the price trends of the live cattle future contracts over time, and we treat the 
continuous curve as a synthetic price series for the futures. This provides a useful 
tool for the analysis, mitigating the need to select a tenor at each time step.
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6.4.2 Portfolio Selection 

6.4.2.1 Portfolio Structure 

We consider the portfolio structures outlined below (Tables 6.3 and 6.4). 
We assume that we are always selling and settling at the end of a month. The 

notation T+3 means that, if the settlement price is the latest price (i.e current month 
end price), the strike is calculated based on the price 3months ago. Similarly for 
T+6 and T+9. All of the options are at-the-money, so the strike ratio is 1. 

As an example, we have printed a sample of Beef Index data (showing only 
month end prices for simplicity) below and shown the calculation. 

The option is sold on 2004-04-30. The strike is 86.07. The settlement price is 
84.65 for T+3. 

The payoff for European call and put options is given as respectively: 

.Pcall = max(St − K, 0) (6.36) 

.Pput = max(K − St , 0) (6.37) 

So, for the call option the payoff will be max(84.65− 86.07, 0) = 0.. For the put 
option it will be max(86.07 − 84.65, 0) = 1.42.. 

In the plots below we show the option PnLs (premium and payoff) for the 
portfolios as defined above for both the synthetic and real data (Figs. 6.2, 6.3, and 
6.4). 

In the following table we calculate the total lifetime PnL for each option 
structure, which helps to explain our results. Even when we use the hedging 
effectiveness ratio to control for the PnL of the unhedged underlying option, we 
still find that the structure of the underlying option payoffs influences the hedging 
results (Table 6.5). 

We note that in general, puts tends to perform better than calls, across all indices. 
We also note that the Beef Trim has the best performance in both directions. Other 
than this, it is hard to discern any other trends. 

Table 6.3 Portfolio of option 
types 

Option type Maturity Moneyness 

Call T+1, T+3, T+6, T+9 At the money 

Put T+1, T+3, T+6, T+9 At the money 

Table 6.4 Sample of beef 
index data 

Dates Beef index 

2004-04-30 86.07 

2004-05-31 85.05 

2004-06-30 87.96 

2004-07-31 84.65 

2004-08-31 84.21
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Fig. 6.2 Option PnLs beef index T +.1,3,6,9 

6.4.2.2 Portfolio Assumptions 

We make the following assumptions regarding the practical setting for the study. 
We tested based on continuous selling of the portfolio of options every month, at 
the same volume. Additionally, we assume a transaction cost, T  C, for the futures, 
which is calculated at a time t that is giv en by:

.T C = 0.00015 ∗ Ft ∗ volumet (6.38) 

where Ft . is the future price at time t, and the volume at time t is typically given by 
the hedging ratio.
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Fig. 6.3 Option PnLs cattle index T +.1,3,6,9 

6.5 Real Data: Results 

6.5.1 Static Hedging 

6.5.1.1 Hedging Effectiveness 

We begin by presenting the hedging effectiveness results (Tables 6.6, 6.7, 6.8, 6.9, 
6.10 and 6.11). 

From these tables, we can note a number of trends for both standard deviation 
and value-at-risk. There is a clear trend in the performance of each of the methods 
across all of the indices: the delta method performs best, then min variance, then the 
VaR and C-VaR methods have similar performance, where which method is better 
depends on the particular option structure. Overall, these results are exactly as we
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Fig. 6.4 Option PnLs beef trim index T +.1,3,6,9 

Table 6.5 Total PnL per option type 

Index and option type T+1 T+3 T+6 T+9 

Beef index call −.20.9646 −.125.450519 −.166.665194 −.96.890002 

Beef index put 32.4546 32.297815 151.738139 354.323331 

Cattle index call −.87.823801 −.343.583559 −.452.67942 −.371.693973 

Cattle index put 1.266199 −.92.153559 50.69058 324.766027 

Beef trim index call −.57.337704 223.368987 351.913833 867.158395 

Beef trim index put 3.762296 403.348987 702.233833 1320.768395 

would expect. The delta method hedges the option with the underlying asset and is 
provided as a benchmark of the performance with no basis risk, therefore we would 
expect this to have the best performance. The min variance uses the same delta but 
includes extra terms to adjust for correlation, volatility and price level differences 
between the index and the futures, so we would expect similar performance to the
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Table 6.6 Hedging effectiveness for beef index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.3526 0.1745 0.0848 −.0.1567 

Call 3 0.4572 0.2406 0.1643 0.1888 

Call 6 0.5464 0.3171 0.2395 0.3048 

Call 9 0.6023 0.3504 0.0956 −.0.0464 

Put 1 0.5730 0.2868 0.3068 0.2363 

Put 3 0.5004 0.2435 0.2363 0.2647 

Put 6 0.5110 0.2641 −.0.0792 0.2732 

Put 9 0.5400 0.3785 0.1328 0.2236 

Table 6.7 Hedging effectiveness for cattle index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.3938 −.0.0173 −.0.0156 −.0.4344 

Call 3 0.5707 0.1730 0.2038 0.1388 

Call 6 0.4707 0.2615 0.1762 0.1913 

Call 9 0.5522 0.1810 0.2230 0.0358 

Put 1 0.5302 0.1285 0.1115 −.0.0189 

Put 3 0.5528 0.1530 0.2088 0.2411 

Put 6 0.5660 0.2164 0.2627 0.2844 

Put 9 0.5426 0.2150 0.2759 0.1639 

Table 6.8 Hedging effectiveness for beef trim index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.5791 0.0552 −.0.2276 −.0.1735 

Call 3 0.5144 0.1252 −.0.1874 −.0.3696 

Call 6 0.5624 −.0.0369 −.0.2376 −.0.2319 

Call 9 0.6883 0.0369 −.0.0338 −.0.1303 

Put 1 0.3934 −.0.0888 −.0.3572 −.0.2598 

Put 3 0.5202 0.0506 −.0.0324 0.1792 

Put 6 0.4892 0.0668 −.0.0621 −.0.3948 

Put 9 0.6160 −.0.0056 −.0.3850 −.0.3818 

delta in terms of the trends that we observe, but a slightly worse overall performance, 
due to the basis risk which is introduced by using the futures as opposed to the index 
itself. In general, the VaR and C-VaR methods did not perform as well as the min 
variance method. Generally, (excluding the delta method for comparison since this is 
not cross-hedging) across SICs, Beef Index performs best, followed by Cattle Index, 
then Beef Trim Index, inline with what we would expect from the correlation. 

The VaR and C-VaR methods rely on empirically determining the VaR and C-
VaR, at a chosen confidence level, over a lookback window, the length of which is 
a hyperparameter. Using monthly data, there may be insufficient data points for 
an accurate empirical estimation of the distribution, so it is possible that using
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Table 6.9 Hedging effectiveness for beef index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.3825 0.0889 0.0276 −.0.2955 

Call 3 0.5215 0.2626 0.0892 −.0.0073 

Call 6 0.5023 0.3358 −.0.1796 0.1798 

Call 9 0.5373 0.3125 −.0.2221 −.0.2183 

Put 1 0.4950 0.1746 0.0401 0.0442 

Put 3 0.5423 0.2841 0.1950 0.2525 

Put 6 0.5165 0.3030 −.0.2628 0.1371 

Put 9 0.4976 0.3167 −.0.3406 0.0316 

Table 6.10 Hedging effectiveness for cattle index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.4528 0.0375 −.0.0485 −.0.3974 

Call 3 0.5068 0.1535 0.0579 −.0.1441 

Call 6 0.4767 0.2054 −.0.1131 −.0.0702 

Call 9 0.5190 0.2155 −.0.1403 −.0.1382 

Put 1 0.5063 0.0893 −.0.0555 −.0.2360 

Put 3 0.5154 0.1740 0.1056 0.0827 

Put 6 0.5118 0.1807 −.0.0299 0.0055 

Put 9 0.5116 0.1978 −.0.1387 0.0650 

Table 6.11 Hedging effectiveness for beef trim index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.5296 −.0.0370 −.0.1556 −.0.2614 

Call 3 0.4837 −.0.0050 −.0.1440 −.0.3906 

Call 6 0.5458 −.0.0002 −.0.3482 −.0.1815 

Call 9 0.5790 −.0.0001 −.0.2258 −.0.3533 

Put 1 0.4048 0.0254 −.0.1771 −.0.2597 

Put 3 0.4028 0.0702 −.0.1507 −.0.1651 

Put 6 0.3676 0.0462 −.0.1812 −.0.6069 

Put 9 0.3965 0.0562 −.0.3010 −.0.4470 

weekly frequency data, over the same period of time could yield better results, but 
an exploration of the impact of hedging frequency and hyperparameter choice was 
outside the scope of this study. 

At the 54.5% log return correlation level, i.e. for the Cattle Index, we see that 
the min-variance, VaR and C-VaR methods have a positive impact in terms of risk 
reduction for most structures, but once the correlation is as low as 25.8% for the 
Beef Trim Index, we see that the min-variance method only has a small positive 
impact in terms of risk reduction and VaR and C-VaR increase the risk versus the 
unhedged portfolio.
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It is also worth noting that across all of the hedging methods, there is no clear 
trend in hedging effectiveness performance vs maturity, which comes from the fact 
that hedging does not change the performance greatly across maturity relative to 
the unhedged portfolio. Hedging effectiveness whilst useful for measuring to see if 
certain objectives are met, is one-dimensional and for a full analysis a business may 
want to consider using hedging effectiveness under multiple risk measures as well 
as implementing other metrics such as risk-adjusted returns. 

6.5.1.2 ECDF and KDE Plots 

To further analyse our results and show that hedging effectiveness does not tell the 
whole story we present below the KDE and ECDF plots. This allows us to compare 
the distributions between the methods (Figs. 6.5, 6.6, 6.7, and 6.8). 

These plots highlight that whilst there are clear differences in hedging effective-
ness between the methods, the distributions have many similarities, and in particular, 
when we examine the CDFs, we see that no method is arguably significantly better 
than the unhedged portfolio. So, in contrast to our conclusion from the hedging 
effectiveness, these graphs suggest that more work may need to be done to determine 
an effective hedging strategy based on a range of measures (Figs. 6.9 and 6.10). 

Fig. 6.5 Call option PnL KDE beef index
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Fig. 6.6 Put option PnL KDE beef index 

Fig. 6.7 Call option PnL empirical CDF beef index
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Fig. 6.8 Put option PnL empirical CDF beef index 

Fig. 6.9 Beef index call PnL by maturity
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Fig. 6.10 Beef index PnL by direction for T+3 

6.5.1.3 Option Parameters 

In the graphs above we compare the distribution of the hedged option versus the 
distribution of the unhedged option for different maturities and option types for 
each of the different methods, to see how much hedging changes the distribution. 
We see that the hedged distribution is very close to the unhedged distribution in 
most cases, and we observe that the choice of option structure (i.e. maturity and 
direction) determines the PnL distribution to a much greater extent than the hedging 
method. This implies that as a business, even with the use of hedging, it is important 
to carefully consider which options to sell. In particular, we observe that longer 
maturity options have larger standard deviations. 

6.5.1.4 Distribution Statistics 

The distribution statistics for Beef Index are presented below, for the other indices 
please see the appendix (Tables 6.12, 6.13, 6.14, and 6.15). 

For Beef Index, we see that for some structures, hedging can improve the mean 
PnL, however, it is important to remember that this is not the purpose of hedging 
and not something that we would theoretically expect (theoretically, hedging should 
decrease the variance for the delta and min-variance methods, and the downside 
risk for the VaR and C-VaR methods). We also notice that it is not consistently one 
hedging method or one portfolio structure where the mean PnL increases. We notice 
that on the call side, the mean PnL tends to be negative, so generally these options
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Table 6.12 Mean for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.2109 −.0.1422 −.0.1653 −.0.1771 −.0.1573 

Call 3 −.0.8467 −.0.5860 −.0.7068 −.0.8417 −.0.8101 

Call 6 −.0.9432 −.0.4593 −.0.6634 −.1.0762 −.1.1008 

Call 9 −.0.3777 0.2556 −.0.0072 0.3926 0.2608 

Put 1 −.0.0409 −.0.1416 −.0.1031 −.0.1641 −.0.3338 

Put 3 −.0.3064 −.0.5850 −.0.4555 −.0.5855 −.0.6389 

Put 6 0.0188 −.0.4578 −.0.2550 −.0.7931 −.0.7602 

Put 9 0.8606 0.2574 0.5100 0.1601 0.1676 

Table 6.13 Variance for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 9.9243 3.7838 8.2382 9.3837 16.6556 

Call 3 29.2269 6.6907 15.8911 24.2474 29.6565 

Call 6 56.9035 14.0960 25.1000 79.1817 38.2790 

Call 9 71.8468 15.3826 33.9543 107.3063 106.6336 

Put 1 14.8385 3.7838 10.1095 13.6720 13.5544 

Put 3 31.9415 6.6907 16.3692 20.6991 17.8467 

Put 6 60.3011 14.0959 29.2963 96.1624 44.8980 

Put 9 60.9454 15.3823 28.4532 109.5258 57.1545 

Table 6.14 Skewness for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.2.0687 −.1.6811 −.1.4224 −.0.9722 −.0.7528 

Call 3 −.1.0696 −.0.7055 −.0.9330 −.0.1397 −.1.1975 

Call 6 −.1.2129 −.0.7592 −.1.2110 −.2.8252 −.1.8626 

Call 9 −.0.9973 −.0.5950 −.0.8639 −.0.6734 −.0.3091 

Put 1 −.2.5875 −.1.6811 −.1.8912 −.1.1733 −.0.5877 

Put 3 −.1.7605 −.0.7055 −.1.3851 −.0.4626 −.0.2622 

Put 6 −.1.9495 −.0.7592 −.1.5268 −.1.8864 −.1.7593 

Put 9 −.2.0975 −.0.5949 −.1.6664 −.1.7611 0.0959 

(with or without hedging) are losing money. On the put side, there is a more clear 
trend that hedging, across all methods decreases the mean PnL. In general it seems 
that the VaR and C-VaR methods are performing worse, the same as we found for 
hedging effectiveness. For the Cattle Index, we see a similar result, although we 
note that on the put side, for hedging, the results are all negative showing that 
for this option direction on this index, hedging will always decrease the mean. 
Contrastingly, for the Beef Trim Index, we note that the values are positive across 
most of the portfolio and the mean value is higher with hedging when using the delta 
and min-variance methods on the call side but not on the put side. We note that for 
one or two structures the C-VaR method is performing very well, but for this index,
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Table 6.15 Kurtosis for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 5.5737 3.5868 4.0113 1.9812 3.8910 

Call 3 0.1126 0.5378 1.1850 0.4239 3.8831 

Call 6 0.7112 0.1645 1.3641 15.0943 8.8220 

Call 9 −.0.0502 0.0811 0.3992 3.5329 1.7729 

Put 1 6.3872 3.5868 5.4906 4.5041 0.8310 

Put 3 1.9591 0.5379 2.4702 0.5640 0.3689 

Put 6 2.1501 0.1645 2.3774 13.2697 6.8277 

Put 9 2.8343 0.0810 4.1259 11.2378 2.7797 

we should not consider high hedging mean values as indicative of success of the 
method as there is low correlation between the underlying asset and the futures, so 
it is most likely coincidence. 

For variance, we have a very similar result to hedging effectiveness with standard 
deviation as this is testing the same aspect of the distribution. The delta and min-
variance methods reliably decrease the variance—the delta method notably more 
than the min-variance as expected. Furthermore, we notice that as the maturity 
increases the variance typically increases, across all of the indexes and methods. We 
note that the VaR and C-VaR methods can decrease the variance, although this is 
not always the case and in some cases they can increase it significantly. Given that 
these methods also do not reliably increase the mean, we suggest that they are not 
as strong as the minimum variance method. Typically, the Beef Index has the lowest 
variance, and it is also important to note that the lower the correlation between the 
index and the futures, the less effective the min-variance method is at decreasing 
the variance. 

For the skew, we note that hedging typically makes the skew significantly less 
negative, for the delta and min-variance methods for most of the structures. For the 
VaR and C-VaR methods in some cases they can improve the skew but generally do 
not. The Cattle Index has similar improvements to the Beef Index, for the min-
variance method, and for Beef Trim, there is much smaller improvement as we 
would expect since it is less correlated to the futures. Similarly, for the kurtosis, 
the delta and min-variance methods are able to decrease the kurtosis for all of the 
indexes in most portfolio cases, with the Beef Index seeing the most improvement 
and the Beef Trim seeing the least. We also note that the VaR and C-VaR methods 
are sometimes able to decrease the kurtosis significantly but in other cases, will 
increase it significantly, so is not a consistently applicable result. 

6.5.1.5 Static Hedging Summary 

Overall, we conclude that cross-hedging can be useful to reduce the VaR-95% and 
standard deviation when the hedging instrument is sufficiently highly correlated 
with the asset the option is written on. In particular, we conclude that the min
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variance method consistently performs the best compared to delta, across the entire 
testing portfolio; although the other methods could potentially be improved by 
hyperparameter optimisation. Across the indices, the log return correlation can be 
as low as 50% whilst still maintaining good hedging performance according to this 
hedging effectiveness metric. 

We also conclude, however, that using simply VaR-95% as the hedging effec-
tiveness measure is insufficient to fully capture the performance of the hedging 
technique. In particular, we highlight that from the CDFs and KDEs we see that no 
method is consistently better in terms of PnL distribution. From the characteristics 
of the distribution, we note that there is no significant consistent improvement in 
mean across the portfolio or methods, however, we see that for the delta and min-
variance methods they can make the skew less negative and decrease the kurtosis. 

Finally, we note that the PnL distribution is mostly determined by the underlying 
option type, i.e. maturity and direction, so from a business perspective it is important 
to consider carefully which structures to sell, even with the tool of hedging at hand. 

6.5.2 Dynamic Hedging 

As in the previous section, on static statistical hedging, in this section, we begin 
by presenting the results in terms of hedging effectiveness (Tables 6.16, 6.17, 6.18, 
6.19, 6.20, and 6.21). 

6.5.2.1 Hedging Effectiveness 

We begin by noting that for the Beef Index, the min-variance method performs the 
best, and in some cases has a very high hedging effectiveness for both the VaR-95% 
and standard deviation risk measures, such as 72.42% for the Put T+9 structure 
(Table 6.24). The VaR and C-VaR methods generally tend to have negative hedging 
effectiveness on the put side (for both risk measures), for this index, but on the call 
side can somewhat improve the risk versus the unhedged option, but not consistently 

Table 6.16 Hedging effectiveness for beef index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 −.0.4034 −.0.0922 −.0.0362 −.0.0072 

Call 3 0.3218 0.4448 0.0307 −.0.0420 

Call 6 0.5943 0.5134 0.2449 0.1085 

Call 9 0.5880 0.5265 0.0717 0.0717 

Put 1 0.1077 0.0812 −.0.1013 −.0.1013 

Put 3 0.3477 0.4565 −.0.4102 −.0.3580 

Put 6 0.5575 0.6390 −.0.1873 −.0.1873 

Put 9 0.6355 0.7242 0.0000 −.0.0251
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Table 6.17 Hedging effectiveness for cattle index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 −.0.4045 0.0175 −.0.0016 −.0.0299 

Call 3 0.2966 0.1516 0.1287 0.1287 

Call 6 0.4179 0.0511 0.0647 0.0647 

Call 9 0.5976 0.0043 0.1195 0.1195 

Put 1 −.0.1908 −.0.0066 −.0.1361 −.0.1361 

Put 3 0.0928 0.0431 −.0.0848 −.0.0421 

Put 6 0.2570 0.0317 −.0.1068 −.0.1068 

Put 9 0.1329 −.0.0295 0.0000 0.0284 

Table 6.18 Hedging effectiveness for beef trim index risk measure: VaR-95% 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.0641 −.0.0101 0.0371 0.0371 

Call 3 0.4661 0.1591 −.0.1209 −.0.0822 

Call 6 0.5201 0.0310 −.0.0763 −.0.0739 

Call 9 0.4095 −.0.0574 0.0000 0.0000 

Put 1 −.0.3491 −.0.0416 −.0.4785 −.0.4786 

Put 3 0.4723 0.0466 −.0.0520 −.0.0520 

Put 6 0.4397 0.0723 −.0.1705 −.0.1705 

Put 9 0.2721 0.0115 −.0.0590 −.0.0979 

Table 6.19 Hedging effectiveness for beef index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 −.0.0764 0.0199 −.0.3346 −.0.3274 

Call 3 0.3909 0.3676 −.0.0695 −.0.0869 

Call 6 0.4997 0.4373 0.0663 0.0487 

Call 9 0.5651 0.4439 0.0648 0.0590 

Put 1 0.1164 0.0520 −.0.1246 −.0.1235 

Put 3 0.4025 0.3180 −.0.3456 −.0.3451 

Put 6 0.5608 0.4912 −.0.1806 −.0.1820 

Put 9 0.5801 0.4950 −.0.0884 −.0.0173 

or as significantly as the delta or min-variance methods. For the min-variance the 
dynamic results are significantly better than in the static case for only the Beef 
Index. For the Cattle Index, the performance overall of the min-variance method 
is quite close to zero for both risk measures in most cases. It is worse than in the 
static case and has similar results to the Beef Trim Index. We note that also for the 
Cattle and Beef Trim Indices the delta method performs worse than the static delta 
method, particularly for the Cattle Index, which may partly explain why the min-
variance method may be performing worse. For the VaR and C-VaR methods the 
results suggest that these methods do not apply very well, again, this may be due to 
the choice of hyperparameter, or due to limitations of the underlying method. We
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Table 6.20 Hedging effectiveness for cattle index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 −.0.0228 0.0366 −.0.2177 −.0.2277 

Call 3 0.3611 0.0801 −.0.0417 −.0.0441 

Call 6 0.5058 0.0543 0.0311 0.0257 

Call 9 0.5938 0.0559 0.0824 0.0828 

Put 1 0.0195 0.0093 −.0.1824 −.0.1803 

Put 3 0.2489 0.0384 −.0.3011 −.0.2914 

Put 6 0.3320 0.0477 −.0.2182 −.0.2169 

Put 9 0.2850 0.0413 −.0.0429 −.0.0584 

Table 6.21 Hedging effectiveness for beef trim index risk measure: std 

Hedging technique Delta Min variance VaR C-VaR 

Call 1 0.0832 −.0.0368 −.0.0823 −.0.0823 

Call 3 0.4664 0.0421 −.0.0498 −.0.0478 

Call 6 0.5525 0.0234 −.0.0953 −.0.0937 

Call 9 0.5266 0.0023 −.0.0668 −.0.0670 

Put 1 −.0.1631 0.0033 −.0.2295 −.0.2299 

Put 3 0.3797 0.0482 −.0.2036 −.0.2046 

Put 6 0.3764 0.0406 −.0.1905 −.0.1913 

Put 9 0.3170 0.0475 −.0.1609 −.0.2004 

do find this somewhat surprising however, as we would expect a better estimate of 
the distribution and therefore the VaR and C-VaR using weekly data rather than 
monthly data. We note that for Beef Index the hedging effectiveness values are 
slightly higher for the risk measure VaR-95% compared with standard deviation, 
however, in order to draw conclusions about the distribution we should examine 
the plots and moments of the distribution. In some cases above we note that the 
T+1 option can perform badly, and suggest that this is due to there being very few 
payouts of the underlying option, making hedging unnecessary, as empirically there 
is very little risk that needs to be mitigated (Figs. 6.11, 6.12, 6.13, and 6.14). 

6.5.2.2 ECDF and KDE Plots 

From the distributions, we observe similarly to the static case that there is no one 
method that significantly outperforms the other methods. From the ECDFs, this is 
particularly true for the Call T+1,3,6 options. For the Call T+9 and Put T+6,9 we 
notice that the delta S-curve is much tighter than the unhedged and VaR/C-VaR 
methods, so at the lower end of the distribution they may be less likely to lose as 
much money, but at the upper end, they are less likely to make as much money. We 
also note that the unhedged, VaR and C-VaR are very closely related in terms of 
their ECDF shape. The best shape for a particular business depends heavily on the 
business’s risk profile and key performance indicators (Figs. 6.15 and 6.16).
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Fig. 6.11 Call option PnL KDE beef index 

Fig. 6.12 Put option PnL KDE beef index
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Fig. 6.13 Call option PnL empirical CDF beef index 

Fig. 6.14 Put option PnL empirical CDF beef index 

6.5.2.3 Option Parameters 

We observe that dynamically hedging can have a bigger impact on the unhedged 
PnL distribution, than in the static case, however, because dynamically hedging as
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Fig. 6.15 Beef index call PnL by maturity 

Fig. 6.16 Beef index PnL by direction for T+3
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Table 6.22 Mean for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.2109 −.1.5944 −.0.6160 0.0125 0.0229 

Call 3 −.0.8467 −.1.0568 −.0.1904 −.0.2726 −.0.3164 

Call 6 −.0.9432 −.0.7550 0.1369 −.0.8668 −.0.8905 

Call 9 −.0.3777 −.0.2997 0.3118 −.0.4998 −.0.6229 

Put 1 −.0.0409 −.1.5176 −.0.3387 −.0.0109 −.0.0257 

Put 3 −.0.3064 −.0.9137 0.5410 −.0.2057 −.0.2167 

Put 6 0.0188 −.0.4788 1.3561 0.1408 0.1465 

Put 9 0.8606 0.1096 2.3711 0.8453 0.7124 

Table 6.23 Variance for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 9.9243 11.4982 9.5335 17.6770 17.4870 

Call 3 29.2269 10.8430 11.6877 33.4307 34.5264 

Call 6 56.9035 14.2435 18.0182 49.6093 51.4909 

Call 9 71.8468 13.5895 22.2201 62.8340 63.6220 

Put 1 14.8385 11.5846 13.3342 18.7680 18.7293 

Put 3 31.9415 11.4017 14.8573 57.8351 57.7877 

Put 6 60.3011 11.6314 15.6077 84.0449 84.2494 

Put 9 60.9454 10.7465 15.5447 72.1974 72.1399 

Table 6.24 Skewness for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.2.0206 −.2.1602 −.1.4222 0.5364 0.5635 

Call 3 −.0.9763 −.1.5543 −.0.4590 0.2107 0.1224 

Call 6 −.1.1598 −.1.3885 −.1.2136 −.0.4853 −.0.4757 

Call 9 −.0.9929 −.1.2666 −.0.7767 −.0.8344 −.0.8227 

Put 1 −.2.4211 −.2.1187 −.1.7445 −.2.1850 −.2.1826 

Put 3 −.1.5714 −.1.4157 −.0.7257 −.0.8945 −.0.8850 

Put 6 −.1.6836 −.0.9210 −.1.6324 −.1.5501 −.1.5414 

Put 9 −.1.7614 −.0.4074 −.1.4176 −.1.7430 −.1.7516 

a method is less reliable across all structures in terms of improving the key metrics, 
this may not necessarily be advantageous (Tables 6.22, 6.23, 6.24, and 6.25). 

6.5.2.4 Distribution Statistics 

In contrast to static hedging, dynamic hedging almost always decreases the mean 
PnL in the case of delta. The min-variance method can significantly increase the 
mean PnL but not consistently across all structures. Similarly, for the VaR and C-
VaR methods whilst we do see some improvement for some structures this is not
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Table 6.25 Kurtosis for beef index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 5.5737 5.7770 3.1787 3.4977 3.5928 

Call 3 0.1126 4.8820 0.6931 2.2960 2.3220 

Call 6 0.7112 3.6672 1.7716 2.5063 2.2240 

Call 9 −.0.0502 2.2275 0.5414 −.0.2136 −.0.2214 

Put 1 6.3872 5.7400 5.9066 5.6676 5.6724 

Put 3 1.9591 4.9215 3.8318 2.4453 2.4262 

Put 6 2.1501 3.3130 4.4283 2.4150 2.3836 

Put 9 2.8343 1.2924 3.6728 3.9664 3.9671 

consistent. In the case of the Cattle Index, generally delta or min-variance hedging 
will decrease mean PnL, but the VaR and C-VaR methods seem to improve it 
slightly, this is also the case for the Beef Trim Index. 

The delta and min-variance methods in the dynamic case can decrease the 
variance significantly compared to the unhedged portfolio. The most notable 
improvements for the delta and min-variance methods are for the longer maturity 
options. The VaR and C-VaR methods seem to increase the variance, which aligns 
with the ECDF results which show much longer tails (on both the profit and loss 
side) for these methods. The performance for hedging is worse for the Beef Trim 
Index as we would expect from the lower correlation. 

In some cases the min-variance method can make the skew more positive, but in 
particular we notice that the VaR and C-VaR methods always improve the skew for 
all of the indexes. The delta method, on the other hand, is less reliable. Similarly, for 
kurtosis, the VaR and C-VaR methods show significant improvement for the Cattle 
and Beef Trim Indexes, but none of the methods performs well for the Beef Index. 

In terms of the distribution, the static method for delta and min-variance seems 
to be the best, but for VaR and C-VaR the dynamic method is better. 

6.5.2.5 Dynamic Hedging Summary 

Overall, we conclude that the delta and min-variance methods can reliably produce 
an improvement when considering the risk measures VaR-95% and standard 
deviation, and the VaR and C-VaR methods generally tend to increase the portfolio 
risk according to these measures. We also conclude that in the case of very high 
correlation, such as the Beef Index, both the static and dynamic min-variance 
methods perform well. In the case of a slightly lower correlation, the static method 
may be more reliable and we also show that for low correlation, none of the methods 
are able to hedge well. 

From the distributions we note that the delta and min-variance methods have 
a tighter S-curve than the other methods, but there is no method that outperforms 
all the others, and that the underlying option PnL distribution is not significantly
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impacted by hedging, although more so than in the static case. From the distribution 
statistics, we see that the delta and min-variance methods are the best for decreasing 
variance, but VaR and C-VaR can improve the mean, skewness and kurtosis for these 
indexes in this portfolio. 

6.6 Conclusion and Next Steps 

This paper examined different hedging techniques for options written on non-
exchange-traded agricultural commodities using futures markets to hedge and 
evaluated performance based on risk reduction and distributional changes. 

As introduced at the start of the paper, agriculture faces risks such as weather 
and supply chain disruption, necessitating effective risk management solutions. We 
outlined in the literature review that there are some available risk reduction solutions 
including: insurance (e.g. crop protection, revenue insurance, multi-peril cover), 
swaps and physical hedging. However, we also discussed that due to the basis 
risk that arises when applying these strategies they may have limited effectiveness. 
Consequently, options were proposed as an alternative risk transfer mechanism, 
however, the provider of these options, such as an insurance company, would still 
be exposed. So, in this paper we explored how cross-hedging options with the 
futures could offset some of the risk, despite the presence of basis risk between the 
commodity the option is written on and the futures, which prevents perfect hedging. 
Furthermore, as highlighted in the literature review, determining effective hedging 
strategies remains a challenge, particularly in the agricultural commodity space. We 
also emphasised the challenges within the beef market specifically, discussing some 
of the historical scenarios where the market has seen large moves, and hedging could 
have helped to mitigate the negative impact for certain participants. 

Following this, we introduced basis risk and examined the Black-Scholes options 
pricing model as a basis for option pricing and hedging. We highlighted that its 
assumptions of constant volatility and lognormal asset prices do not perfectly hold 
for commodities and chose to calculate realised volatility given the difficulties of 
accurately determining implied volatility. We also introduced delta hedging, which 
offsets option exposure with positions in the underlying asset and this served as 
our benchmark hedging technique. Then we looked at minimum variance hedging 
which reduces risk by taking positions correlated with the option’s value, adjustable 
for basis risk through parameters like correlation and volatility ratios between the 
hedging instrument and commodity. Finally, we introduced value-at-risk (VaR) and 
conditional VaR (C-VaR) to estimate tail risk given historical data. To evaluate the 
hedging performance we used hedging effectiveness and distributional analysis. 

The results showed that when the correlation between the commodity and futures 
is sufficiently high, hedging can be effective at reducing risk as measured by VaR 
and standard deviation. Specifically, the minimum variance hedging method (in the 
static or dynamic case) consistently performed the best in reducing risk across the



6 Empirical Results for Cross-Hedging in the Incomplete Market 163

testing portfolio. Hedging was still beneficial at correlation levels as low as 50%, 
but performance deteriorated significantly below that. 

However, the analysis also highlighted the limitations of relying solely on risk 
reduction metrics in evaluating hedging performance. The empirical cumulative 
distribution functions and density plots revealed that no single method consistently 
outperformed the others across the entire profit and loss distribution. While delta 
and minimum variance hedging tended to produce tighter distributions, they also 
reduced upside potential. 

Furthermore, the underlying option portfolio structure, in terms of maturity and 
direction, was found to be the primary driver of PnL distribution characteristics. 
This suggests carefully selecting which option contracts to sell is critical, even with 
the ability to hedge. 

For further research, we suggest some potential avenues that were beyond 
the scope of this paper. Firstly, an inclusion of some factor-based modelling 
or an investigation of how the accuracy of weather forecasts or other similar 
factors could affect the hedging effectiveness. This could be together with an 
analysis of how businesses can integrate multiple risk management and modelling 
strategies, such as insurance, derivatives and other products. This could also involve 
exploring the optimal structure for a portfolio of options (based on maturity and 
direction) or other products, using mathematical models and empirical evidence to 
determine the best combination under the metrics we used (hedging effectiveness 
and distribution shape). Another area that we considered was the development of 
new dynamic hedging strategies based on machine learning algorithms, which could 
optimise hedging positions in real-time. An improvement that could be made on 
the ideas outlined in this paper, could be using parametric methods for volatility 
determination rather than realised volatility. Such models could include GARCH or 
even stochastic volatility models such as the ones referenced in the literature review. 

Overall, in our paper, we determined that hedging can be a useful risk man-
agement tool in agricultural commodity markets, but effectiveness depends on the 
correlation between the commodity and hedging instrument. Performance should 
be evaluated across multiple distributional metrics beyond just risk reduction. And 
the specifics of the option portfolio must be optimized in conjunction with the 
hedging strategy. Overall though, static or dynamic minimum variance methods can 
consistently and reliably improve the performance from a risk reduction perspective. 
So, whether businesses are facing climate change, disease, geopolitical or other 
threats and uncertainties, we hope in this paper that we have outlined a compelling 
empirical case as to how hedging can aid with these difficulties and how it can go 
hand-in-hand with insurance and derivative products to create a more stable world.
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Appendix 

Distribution Characteristics Tables 

In this section we include the distribution characteristics tables for static and 
dynamic hedging. The Beef Index tables are included in the main body under the 
Distribution Statistics for static and dynamic hedging (Tables 6.26, 6.27, 6.28, 6.29, 
6.30, 6.31, 6.32, 6.33, 6.34, 6.35, 6.36, 6.37, 6.38, 6.39, 6.40, and 6.41). 

Static Hedging 

Table 6.26 Mean for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.5873 −.0.4696 −.0.5336 −.0.4392 −.0.2728 

Call 3 −.1.8492 −.1.4243 −.1.6922 −.1.8785 −.1.5804 

Call 6 −.2.1868 −.1.4640 −.1.8613 −.1.7015 −.1.5080 

Call 9 −.1.4603 −.0.5476 −.1.0215 −.0.0381 −.0.3270 

Put 1 −.0.2993 −.0.4688 −.0.3702 −.0.3491 −.0.3138 

Put 3 −.0.9656 −.1.4228 −.1.1329 −.1.4275 −.0.9472 

Put 6 −.0.7366 −.1.4618 −.1.0567 −.1.1410 −.1.4890 

Put 9 0.3458 −.0.5450 −.0.0729 −.0.9816 −.0.7749 

Table 6.27 Mean for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.8790 −.0.7919 −.0.8515 −.0.9550 −.0.8136 

Call 3 0.8811 1.1038 1.0991 0.5999 1.3546 

Call 6 1.7631 2.0055 2.5851 1.0351 2.4060 

Call 9 5.3902 5.4735 6.9155 5.7888 7.3604 

Put 1 −.0.6962 −.0.7900 −.0.7501 −.1.1241 −.1.2427 

Put 3 1.2840 1.1070 1.0833 0.4598 1.7703 

Put 6 2.1694 2.0101 1.5702 −.0.0099 1.8833 

Put 9 5.5181 5.4791 4.5197 1.5514 1.4915
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Table 6.28 Variance for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 22.3405 6.6895 20.6959 24.5609 43.6251 

Call 3 79.6392 19.3699 57.0603 70.6811 104.2377 

Call 6 142.0795 38.9137 89.7025 176.0261 162.7391 

Call 9 166.8090 38.5972 102.6592 216.9109 216.0969 

Put 1 27.4455 6.6895 22.7619 3 0.5784 41.9304 

Put 3 82.4682 19.3699 56.2714 65.9703 69.3905 

Put 6 163.2686 38.9133 109.5829 173.1818 161.4827 

Put 9 161.8271 38.5968 104.1511 209.8416 141.4741 

Table 6.29 Variance for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 149.0044 32.9681 160.2384 198.9867 237.0847 

Call 3 292.2755 77.9039 295.2031 382.4818 565.1916 

Call 6 557.6767 115.0349 557.9309 1013.7182 778.5046 

Call 9 500.9028 88.7914 500.9619 752.7107 917.3208 

Put 1 93.0474 32.9680 88.3725 128.9141 147.6476 

Put 3 218.4219 77.9051 188.8343 289.1910 296.4834 

Put 6 287.6363 115.0372 261.6935 401.3391 742.7581 

Put 9 243.8102 88.7944 217.1969 412.6709 510.4654 

Table 6.30 Skewness for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.1.4010 −.1.0094 −.1.2366 −.0.6578 −.0.4366 

Call 3 −.1.0205 −.0.6052 −.1.0780 −.0.4603 −.1.2504 

Call 6 −.1.2319 −.0.8779 −.1.3793 −.1.3965 −.1.0490 

Call 9 −.0.9291 −.0.8561 −.0.9467 −.0.8613 −.0.5335 

Put 1 −.1.9056 −.1.0093 −.1.5716 −.1.0663 −.0.6574 

Put 3 −.1.6436 −.0.6051 −.1.6345 −.0.7862 −.0.9962 

Put 6 −.1.8040 −.0.8778 −.1.8925 −.0.8970 −.1.2588 

Put 9 −.1.9731 −.0.8560 −.2.1552 −.1.7681 −.0.4370
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Table 6.31 Skewness for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.2.2893 −.1.5948 −.2.4663 −.1.2442 −.0.6929 

Call 3 −.2.0774 −.1.7253 −.2.0364 −.1.3142 −.0.6354 

Call 6 −.1.9449 −.1.1329 −.1.6310 −.1.7166 −.1.1669 

Call 9 −.1.8936 −.1.1393 −.1.5844 −.1.1711 −.1.3723 

Put 1 −.2.1679 −.1.5946 −.1.8636 −.0.9589 −.0.3472 

Put 3 −.2.9721 −.1.7250 −.2.4915 −.0.6194 −.0.4029 

Put 6 −.1.8089 −.1.1327 −.1.7916 −.0.8290 −.0.7220 

Put 9 −.1.4466 −.1.1390 −.1.3927 −.1.4289 −.1.2631 

Table 6.32 Kurtosis for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 1.7234 1.0167 1.7863 0.3614 1.9116 

Call 3 −.0.0241 0.2509 0.6050 0.1084 3.9259 

Call 6 1.0725 0.2564 2.0758 6.3459 3.4160 

Call 9 −.0.2935 0.8715 0.0007 3.4842 2.3878 

Put 1 3.3892 1.0166 2.7465 1.6180 2.1631 

Put 3 2.3184 0.2509 2.5941 1.1036 1.7344 

Put 6 2.4430 0.2564 3.0963 2.8164 4.2433 

Put 9 4.0944 0.8714 5.7179 8.7876 1.7705 

Table 6.33 Kurtosis for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 7.1503 3.9243 9.1571 2.4450 2.1047 

Call 3 6.1841 4.8951 6.6880 3.2934 2.0029 

Call 6 5.6227 2.0437 4.7585 5.4086 2.7921 

Call 9 6.5858 2.5634 5.9925 3.8224 4.7108 

Put 1 7.1741 3.9233 5.7334 2.6111 1.4392 

Put 3 13.0155 4.8938 9.3500 2.5506 1.8857 

Put 6 3.5724 2.0429 3.9982 0.7487 1.1668 

Put 9 1.5814 2.5623 1.8069 2.7987 2.2816
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Dynamic Hedging 

Table 6.34 Mean for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.5873 −.2.9629 −.0.6850 −.0.2663 −.0.3318 

Call 3 −.1.8492 −.2.5944 −.1.8151 −.1.7381 −.1.7661 

Call 6 −.2.1868 −.2.6152 −.2.3326 −.2.1077 −.2.0187 

Call 9 −.1.4603 −.2.0179 −.2.3067 −.1.1020 −.1.1134 

Put 1 −.0.2993 −.3.1472 −.0.4445 −.0.2417 −.0.2611 

Put 3 −.0.9656 −.3.1167 −.1.0708 −.0.6863 −.0.6631 

Put 6 −.0.7366 −.3.6875 −.0.8872 −.0.6458 −.0.5530 

Put 9 0.3458 −.3.3263 0.2078 0.3295 1.2754 

Table 6.35 Mean for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.0.8790 −.5.4956 −.0.9462 −.0.5039 −.0.5039 

Call 3 0.8811 −.1.1330 0.8400 1.1984 1.1898 

Call 6 1.7631 −.0.5406 1.6743 2.4324 2.4767 

Call 9 5.3902 −.0.4777 5.6861 5.6122 5.6175 

Put 1 −.0.6962 −.5.4470 −.0.9016 −.0.5498 −.0.5577 

Put 3 1.2840 −.0.9854 1.1724 1.5944 1.6306 

Put 6 2.1694 −.0.2394 1.6031 2.3945 2.3807 

Put 9 5.5181 −.0.0167 4.3429 5.2880 5.6543 

Table 6.36 Variance for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 22.3405 23.3693 20.7348 33.1242 33.6754 

Call 3 79.6392 32.5090 67.3926 86.4241 86.8111 

Call 6 142.0795 34.6997 127.0819 133.3684 134.8644 

Call 9 166.8090 27.5255 148.6778 140.4403 140.3273 

Put 1 27.4455 26.3852 26.9391 38.3734 38.2328 

Put 3 82.4682 46.5198 76.2583 139.6103 137.5404 

Put 6 163.2686 72.8606 148.0608 242.3029 241.7913 

Put 9 161.8271 82.7316 148.7378 176.0066 176.0281
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Table 6.37 Variance for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 149.0044 125.2446 160.1679 174.5308 174.5316 

Call 3 292.2755 83.2329 268.1574 322.1275 320.8781 

Call 6 557.6767 111.6821 531.8373 669.0072 667.1213 

Call 9 500.9028 112.2671 498.5604 570.1006 570.2705 

Put 1 93.0474 125.8705 92.4385 140.6457 140.7535 

Put 3 218.4219 84.0424 197.8860 316.4085 316.9538 

Put 6 287.6363 111.8528 264.7452 407.6689 408.2326 

Put 9 243.8102 113.7422 221.1892 328.5619 329.0632 

Table 6.38 Skewness for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.1.4010 −.1.4114 −.1.5035 −.0.2502 −.0.2388 

Call 3 −.1.0205 −.1.1451 −.1.0303 −.0.5620 −.0.5644 

Call 6 −.1.2319 −.1.3383 −.1.3162 −.1.1908 −.1.1727 

Call 9 −.0.9291 −.0.4144 −.0.8679 −.0.8036 −.0.8016 

Put 1 −.1.9056 −.1.5610 −.1.9193 −.1.8053 −.1.8091 

Put 3 −.1.6436 −.2.0571 −.1.6128 −.0.9675 −.0.9593 

Put 6 −.1.8040 −.2.1639 −.1.7948 −.1.2830 −.1.3021 

Put 9 −.1.9731 −.1.9983 −.1.9253 −.1.7191 −.1.7185 

Table 6.39 Skewness for beef trim index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 −.2.2893 −.2.5771 −.2.2548 −.2.1579 −.2.1579 

Call 3 −.2.0774 −.1.6360 −.2.0031 −.1.7067 −.1.7125 

Call 6 −.1.9449 −.1.1844 −.1.8323 −.1.0942 −.1.1060 

Call 9 −.1.8936 −.1.2436 −.1.7725 −.1.2831 −.1.2852 

Put 1 −.2.1679 −.2.5662 −.1.9671 −.1.3053 −.1.3032 

Put 3 −.2.9721 −.1.6331 −.2.6457 −.1.7105 −.1.7111 

Put 6 −.1.8089 −.1.2345 −.1.6727 −.1.1061 −.1.1023 

Put 9 −.1.4466 −.1.2949 −.1.2792 −.0.8522 −.0.8490
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Table 6.40 Kurtosis for cattle index 

Hedging technique Unhedged Delta Min-Var VaR method C-VaR method 

Call 1 1.7234 2.8485 2.2133 1.9760 1.8524 

Call 3 −.0.0241 1.5112 −.0.0345 0.2160 0.2121 

Call 6 1.0725 2.6724 1.3142 1.7013 1.6613 

Call 9 −.0.2935 0.7579 −.0.4026 −.0.2197 −.0.2211 

Put 1 3.3892 2.4324 3.4664 3.3184 3.3390 

Put 3 2.3184 5.2294 2.2252 1.5058 1.5531 

Put 6 2.4430 5.4424 2.3923 1.7545 1.8077 

Put 9 4.0944 4.7404 3.7732 3.1628 3.1602 

Table 6.41 Kurtosis for beef trim index 

Hedging method Unhedged Delta min-var VaR method C-VaR method 

Call 1 7.1503 9.6797 7.8914 9.1014 9.1013 

Call 3 6.1841 3.7115 6.5482 4.4213 4.4572 

Call 6 5.6227 2.3414 5.3321 3.6878 3.7293 

Call 9 6.5858 2.2518 6.1277 5.1738 5.1692 

Put 1 7.1741 9.6034 6.3596 2.9943 2.9829 

Put 3 13.0155 3.7151 10.7479 6.0636 6.0472 

Put 6 3.5724 2.4734 3.0350 1.8338 1.8262 

Put 9 1.5814 2.3781 1.2323 0.4645 0.4541 
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Chapter 7 
Crop Yield Insurance Analysis for 
Turkey: Spatiotemporal Dependence 

Güven Şimşek and Kasirga Yildirak 

Abstract Farming is among the most vulnerable segments of society due to 
the source of the income that is highly dependent on environmental risks. To 
maintain their production, farmers, who are critical components of agricultural 
production, need to protect themselves against production risks. For farmers to 
continue agriculture, it is crucial to provide insurance policies that at the very least 
protect their current income. Therefore, crop yield insurance has been discussed 
in this study. When a crop yield falls short of a predetermined threshold, crop 
yield insurance compensates for the resulting yield loss. This insurance product 
holds a prominent position among other agricultural insurances because yield 
insurance, which aims to keep agricultural production at a specific level, maintains 
sustainability in the ecosystem. Through the spatiotemporal modeling of crop yields 
and yield insurance, the impact of climate change, a major problem for agricultural 
insurance, has also been addressed. For the conditional crop yield distribution 
in this study, a hierarchical Bayesian technique is employed to characterize the 
spatiotemporal dependence. Wheat yield statistics from the years 2004 to 2022 were 
used for a total of 47 districts that are part of Ankara and Konya, which are at 
the top of the list in terms of wheat production volume. Premium rates have been 
obtained for the region, province, and chosen districts using the preferred model 
in accordance with model selection and performance criteria, and the results are 
presented. The R-INLA package program is used to perform all statistical analyses 
for this study. 
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7.1 Introduction 

Over the past few decades, crop insurance has played an important role in 
the agricultural market. As a result, selecting an accurate statistical model that 
affects crop yield distribution is crucial in obtaining a reasonable premium rate. 
Many statistical approaches have been considered to determine the distribution of 
agricultural yields [9, 12, 13, 37]. [17] and [36] use the beta distribution to determine 
crop yield distribution. [11] and [34] analyze the crop yield for the revenue insurance 
using the log-normal distribution. 

Crop yields can vary depending on location, time of year, and crop type. 
As a result, traditional parametric and non-parametric approaches to crop yield 
modeling are not always feasible. In such cases, models with spatial, temporal, and 
spatiotemporal characteristics are more suitable for crop yield. [18] investigate the 
spatiotemporal effects of maize yield data from Brazil. They assess premium rates 
in the state of Paraná. [29] propose a linear mixed model with a spatio-temporal 
process for rice and cassava data from Thailand. [20] investigate the distribution 
of crop yield in Iowa corn and Oklahoma wheat. To estimate the distribution’s 
parameters, a model is proposed using the Bayesian Kriging approach. [39] made 
use of a spatiotemporal model with water deficiency and water satisfaction index as 
explanatory variables to forecast the yield in state-run Turkish farms. Furthermore, 
the spatial effect across the related regions is investigated. [30]  “The  Integrated  
Nested Laplace Approximation” approach has been recently proposed by [26]. It 
has a very broad and extensible model class, including “linear mixed models” and 
spatiotemporal models [23, 28, 31]. [27] propose a model for determining crop 
yield insurance premium rates in the state of Paraná (Brazil). Under a Bayesian 
hierarchical framework, a dynamic spatiotemporal model is used. [30] calculated 
premium rates for districts using the INLA model and wheat yield data from Ankara 
and Konya districts from 2004 to 2022. 

This study introduces the structure of district-based yield and discusses the sig-
nificance of district dependency. The hierarchical Bayesian method, which models 
the conditional distribution of crop yield, reflects spatial or temporal dependencies 
among crop yields. We also discuss the approaches used in Bayesian modeling for 
analyzing model performance and selecting models. 

In this study, we conduct a case study of 47 districts in Ankara and Konya, 
the cities with the highest wheat production in Turkey, from 2004 to 2022. We 
investigate the interdependence of specific subregions by taking into account spatial 
and temporal effects. We model spatial, temporal, and spatiotemporal effects to 
estimate wheat yield in Ankara and Konya. To handle space and time effects, we 
use a hierarchical Bayesian structure for the district-based crop yield data. We use 
this model to compute the premium rates associated with various coverage levels 
after selecting the best model. 

Finally, we make our closing remarks and present our suggestions for future 
research.
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The data and information used in the research are taken from a chapter in the 
doctoral dissertation titled “Impacts of Spatiotemporal Dependency and Asymmet-
ric Information on The Analysis of Optimal Crop Yield Insurance.” [30]. 

7.2 Bayesian Hierarchical Modeling 

If the distribution of one parameter is conditional on another, we can define a model 
with a hierarchical structure. To clarify, the prior distribution is assigned to another 
prior parameter known as the hyperparameter. As a result, we can use hierarchical 
structure to investigate the spatial or temporal dependence between observations. 
The joint probability distribution can be used to express relationships between 
parameters [18]. The hierarchical Bayesian model has three levels [19]: 

1. Data (Likelihood) level 

.Y |ν1, ν2 ∼ π1(Y |ν1, ν2) (7.1) 

2. Process (Parameter) level 

.ν1|ν2 ∼ π2(ν1|ν2) (7.2) 

3. Prior (Hyperparameter) level 

.ν2 ∼ π3(ν2) (7.3) 

The likelihood function is represented at the first level π1(Y |ν1, ν2). and the data Y 
that is conditionally independent of the given ν1 . and ν2 ., where ν1 . and ν2 . represent 
parameter and hyperparameter, respectively. We could analyze spatial or temporal 
dependence among the observations in Y using the second level given in Eq. (7.2). 
The final equation represents the prior level with hyperparameter distribution π3 .. 
The posterior distribution can be defined using Bayes’ theorem using these levels: 

. 

π(ν1, ν2|y) = π(Y, ν1, ν2)

π(Y )

= π1(Y |ν1, ν2)π(ν1, ν2)⎛ 
Rν1

⎛ 
Rν2

π1(Y |ν1, ν2)π(ν1, ν2)dν1dν2
∝ π1(Y |ν1, ν2)π(ν1, ν2)

(7.4) 
where Rνi

. are the domains of νi .. Here, the term π(ν1, ν2). is the prior distribution 
for the data (likelihood) level. Also, π(ν1, ν2). can be written in two parts as follows: 

.π(ν1, ν2) = π2(ν1|ν2)π3(ν2). (7.5)
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As a result, if we rearrange Eq. (7.5), we get: 

.π(ν1, ν2|Y ) ∝ π1(Y |ν1, ν2)π2(ν1|ν2)π3(ν2). (7.6) 

As shown in Eq. (7.6), the model’s joint posterior is proportional to likelihood, 
parameter and hyperparameter. 

We apply a similar approach to our data set to see how a hierarchical Bayesian 
model can be used to analyze spatial data. We simply assume that the response 
variable Ys . is crop yield in a specific subregion, as shown below: 

.Ys = βXT
s + γs + ∈ s; s = 1, . . . , n (7.7) 

where Xs . denotes the vector of predictor variables and β . indicates the slope of Xs .. 
Here, γs . and ∈ s . are the random effect and random error of Ys ., respectively. We could 
investigate the areal effect for data observations using γc .. In this regard, we consider 
the following [1] proposed properties: 

. Ys |β, γs, σ
2
∈ ∼ N(βXT

s + γs, σ
2
∈ )

. γs |σ 2
γ ∼ N(0, σ 2

γ )

. τγ ∼ IGamma(a1, b1)

. τ∈ ∼ IGamma(a2, b2)

. β ∼ N(0, C)

where IGamma. represents the Inverse Gamma distribution with parameters a and b. 
The precision parameter (τ = 1/variance.) and the variance-covariance matrix are 
denoted by τ . and C, respectively. We define the joint posterior density using the 
properties mentioned above as follows: 

.π(β, σ 2
γ , σ 2

∈ |Ys) = π1(Ys |β, γs, σ
2
∈ )π2(γs |σ 2

γ )π3(σ
2
γ )π3(σ

2
∈ )π3(β). (7.8) 

The random effect for Ys . is used here, which is the randomness arising directly from 
the observations Y

(i)
s ., where i denotes the i-th district with i = 1, . . . , n..  We  have  

not yet considered spatial properties in this case. To achieve this goal, we employ 
a common method proposed by [3], which is an intrinsic conditional autoregressive 
structure (ICAR) to investigate the spatial random effect. According to this method, 
the parameter γ .mentioned in Eq. (7.8) is defined as follows: 

.γi |γi /=j ∼ N

⎛ 

γ̄i ,
1

τγ Ni

⎞

, (7.9)
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Fig. 7.1 Subregional 
neighborhood structure 
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where γ̄i = N−1
i

∑ 
j∈Ni

γj . and Ni . displays the areas that are adjacent to district i. 
The mean of “spatial random effects” in the set of neighbors is the expectation of 
γi . under the condition γj ., whereas the conditional precision parameter τγ . controls 
the spatial dependence between the observations. As an example of the term γ̄i ., 
consider a region with eight subregions (Fig. 7.1). 

Area 1, for example, has boundaries with 2, 3, 4., and 6. As a result, the 
conditional expectation of γ1 . is as follows: 

.γ1|γ1/=j ∼ N

⎛ 
γ2 + γ3 + γ4 + γ6

4
,

1

4τγ

⎞

. (7.10) 

Because of the complexity of the models or the high dimension of the data, the 
MCMC methods for Bayesian modeling may take a long time. Rue et al. [26] 
recently introduced the INLA approach as an alternative to MCMC. INLA is a 
well-organized analytical approach applicable to a wide range of models, including 
spatial, temporal, spatiotemporal, generalized linear mixed models, and stochastic 
volatility models. The main advantage of INLA is that it reduces computational 
time compared to MCMC methods. Furthermore, one useful feature of INLA is 
that it allows us to approximate the posterior distribution of the parameter. INLA is 
discussed in greater detail in the following subsection. 

7.3 Integrated Nested Laplace Approximation (INLA) 

The INLA method was developed primarily for the latent Gaussian model (LGM). 
LGM is a hierarchical structure described in Sect. 7.2. 

.

Y |ν, ψ ∼ π(y|ν, ψ) =
nΠ 

i=1

π(yi |νi, ψ) ,

ν|ψ ∼ [π(ν|ψ) = N(0,Q−1(ψ))] ,

ψ ∼ π(ψ).

(7.11)
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The second part of Eq. (7.11) represents the latent process. The precision matrix 
Q−1

. is equal to the inverse of the covariance matrix ∑ .. The parameter vector ν . is 
described by a Gaussian Markov Random Field (GMRF) as shown below [21]. 

.π(ν|ψ) = |Q(ψ)|1/2
(2π)n/2

e

⎛ 
− 1

2 νT Q(ψ)ν
⎞

. (7.12) 

The LGM can be found using additive regression models. These models are defined 
in the same way that generalized linear models (GLM) are. In contrast to the linear 
predictor in GLM, the additive predictor for the LGM includes nonlinear effects 
such as seasonal and spatially structured random effects. We assume in our study 
that the response or dependent variable yi; i = 1, . . . , n. belongs to the exponential 
family [15]. Let μi . represent the mean of the i-th observation of y. Then it is 
defined by the additive predictor ηi . with the function g(.)..  Here g(.). denotes the 
link function, i.e. g(μi) = ηi .. The predictor ηi . in its most common form is 

.ηi = α0 +
Nβ⎲

k=1

βkxki +
Nf⎲

j=1

fj (zji) + ∈ i . (7.13) 

The terms used in Eq. (7.13) are defined as follows: 

• The intercept is represented by the scalar α0 .. 
• The linear term is represented by β = (β1, . . . , βNβ )., which measures the effect 

of the vector of covariates x on the response v ariable.
• fj (.). is a function of the vector of covariates z that can be used to investigate 

nonlinear effects of z on the dependent variable, i.e. spatial or temporal random 
effects.

• The variables Nβ . and Nf . represent the number of corresponding covariates, 
respectively. 

Using Eq. (7.11), we can define the additive predictor ηi . as a hierarchical structure. 
The term π(y|ν, ψ) = Π n

i=1 π1(yi |νi, ψ). denotes that each observation in data y 
is linked to the i-th element of latent field νi . [24]. The random vector (latent field) 

is ν =
⎛ 
α0, β

Nβ

k=1, f
Nf

j=1(.), η
⎞
. and encompasses all parameters that are not directly 

visible in the data. Lastly, ψ = (H1, . . . , Hnp). indicates the np .-dimensional vector 
of hyperparameters Hi .. Using these definitions, the joint posterior of ν . and ψ . can 
be defined as follows: 

. π(ν,ψ) ∝ π(y|ν, ψ)π(ν|ψ)π(ψ)

∝
⎛ nΠ 

i=1

π(yi |νi, ψ)

⎞

π(ν|ψ)π(ψ) (7.14)
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where the density function π(ν|ψ). is defined in Eq. (7.12). Thus, if we replace 
Eq. (7.12) into Eq. (7.14), the following equation is obtained: 

.π(ν,ψ) ∝ π(ψ)|Q(ψ)|1/2exp
⎛ 

− 1

2
νT Q(ψ)ν +

n⎲

i=1

log(π(y|ν, ψ))

⎞

(7.15) 

The INLA method’s goal is to approximate the marginal posterior distribution of 
each parameter vector ν . and ψ .. These marginals are given separately for ν . and ψ . 

as follows: 

.π(νi |y) =
⎛ 

π(νi, ψ |y)dψ =
⎛ 

π(νi |ψ, y)π(ψ |y)dψ, and (7.16) 

.π(ψh|y) =
⎛ 

π(ψ |y)dψ−h. (7.17) 

When the h-th hyperparameter is omitted, the vector of the remaining hyperparam-
eters is denoted by ψ−h .. Both equations have the term π(ψ |y). in common, as seen 
in Eqs. (7.16) and (7.17). Thus, we can define π(ψ |y). to find an approximation for 
the marginal posterior distributions for all hyperparameters: 

.

π(ψ |y) = π(νi, ψ |y)

π(ν|ψ, y)
∝ π(y|ν, ψ)π(ν|ψ)π(ψ)

π(ν|ψ, y)

≈ π(y|ν, ψ)π(ν|ψ)π(ψ)

π̃(ν|ψ, y)

|
|
|
|
ν=ν∗(ψ)

(7.18) 

where π̃(ν|ψ, y). is the Gaussian approximation of π(ν|ψ, y). and ν∗(ψ). denotes 
the mode of ν . for a given ψ .. 

Because the parameter vector ν . has more elements than ψ . in general, the 
approximation for the posterior conditional distributions π(νi |ψ, y). given ψ . and 
y can be more complex. Three approaches can be used to approximate π(νi |ψ, y). 

[5]. These methods are detailed below: 

1. With the help of the Normal distribution, the marginals from π̃(ν|ψ, y). are 
used to approximate π(νi |ψ, y).. The Cholesky decomposition is also used to 
obtain the precision matrix. According to the other two approaches, this approach 
approximates π(νi |ψ, y). relatively quickly. However, this approach is typically 
not very good at approximation [25]. 

2. The Laplace Gaussian approximation is an alternative approach to the approx-
imation for π(νi |ψ, y).. The vector of parameters can be rewritten as ν =
(νi, ν−i )., where ν−i . denotes the vector of the remaining parameters when the 
i-th parameter is omitted. The joint posteriors for the parameter ν . can then be 
approximated using the Laplace approximation, as follows:
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.

π(νi |ψ, y) = π(νi, ν−i |y)

π(ν−i |νi, ψ, y)

≈ π(y|ν, ψ)π(ν|ψ)π(ψ)

π̃(ν−i |νi, ψ, y)

|
|
|
|
ν−i=ν∗−i (νi ,ψ)

(7.19) 

where π̃(ν−i |νi, ψ, y). represents Laplace Gaussian approximation of 
π(ν−i |νi, ψ, y). and ν∗−i (νi , ψ). is the mode of ν−i .. The Laplace Gaussian 
approximation works well, but it takes a long time to compute. 

3. The final method, known as simplified Laplace approximation, is based on 
Taylor’s series of Eq. (7.19). In comparison to the other two methods mentioned 
above, it is more rational and computationally efficient. 

In Eqs. (7.16) and (7.17), we can write the approximated marginal posteriors of 
π(νi |y). and π(ψh|y). as follows: 

.π̃(νi |y) =
⎛ 

π̃(νi |ψ, y)π̃(ψl |y)dψ, (7.20) 

.π̃(ψh|y) =
⎛ 

π̃(ψ |y)dψ−h. (7.21) 

Numerical integration can be used to obtain the solution of the given integral in 
Eq. (7.20): 

.π̃(νi |y) =
L⎲

l=1

π̃(νi |ψ(l), y)π̃(ψ(l)|y)Δ l (7.22) 

where Δ l . denotes the set of weights and ψ(l)
. represents some integration points. 

More detailed information about these approximations and INLA can be found in 
[26] and [4]. 

7.3.1 Adequacy of Models Based on Predictive Distribution 

Assessing the model’s adequacy is critical for making sound decisions following 
the modeling process. The most widely used Bayesian modeling approaches are 
based on predictive distribution. The data is divided into two categories: training 
and validation. The training data is used to fit the model, while the validation data is 
used to assess the prediction’s accuracy. For testing model adequacy, the posterior 
predictive check method and/or leave-one-out cross-validation can be used.
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• Posterior predictive analysis 
The posterior predictive distribution and p-value are two important quantities 

for the model posterior predictive checks [10]. These quantities’ mathematical 
representations are provided by 

.π(y
rep
i |y) =

⎛ 

θ

π(y
rep
i |θi)π(θi |y)dθi, (7.23) 

.P(Y
rep
i ≤ yi |y). (7.24) 

The first equation represents the posterior predictive distribution, where 
π(y

rep
i |y). represents the density of a replicated observation Y

rep
i .. The posterior 

predictive p-value is represented by P(Y
rep
i ≤ yi |y). [33]. Using these values, 

we can infer whether the model is appropriate for the data or not. If π(y
rep
i |y). 

has a large number of small values, it indicates that the related observation is an 
outlier. Thus, that model is not suitable for the data set. As a result, that model 
is unsuitable for the data set. Furthermore, if the values of P(Y

rep
i ≤ yi |y). are 

close to zero or one, the model appears to be invalid for the data. 
• Leave-one-out-cross-validation 

The conditional predictive ordinate (CPO) [22] and the probability integral 
transform (PIT) [7] are measures of goodness of fit, or prediction performance. 
The primary goal of these measures is to assign numerical scores to models based 
on their predictive distribution. The first criterion is defined as 

.CPOi = π(yi |y−i ) (7.25) 

where y−i . denotes the vector of the remaining observations in the data set 
after omitting the i-th observation. High CPO values indicate that the model’s 
predictive performance for yi . is good, whereas very low CPO values indicate 
that the i-th observation may be an outlier. Using the CPO values, we can also 
calculate the logarithmic score to select the best model. This score is determined 
as follows: 

.Lscore = −
∑ n

i log(CPOi)

n
. (7.26) 

In this case, a low log-score value indicates that the interested model is 
reasonable. In the case where each observation in the data set is independent 
of the others, the logarithmic score and the Akaike information criterion (AIC) 
are asymptotically equivalent [35].
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Fig. 7.2 Graph of the PIT values (left) and the histogram of PIT (right) 

The second metric is computed as follows: 

.PITi = P
(
Y

rep
i ≤ yi |y−i

)
(7.27) 

where PITi . is the calibration of the i-th observation to the rest of the data, 
i.e. the i-th observation is removed. If PIT values are at the extremes, i.e. 
very small or very high, the observations associated with these values may be 
outliers. Furthermore, the PIT values must have a standard uniform distribution; 
otherwise, the model fit is unsatisfactory. We can also use the PIT histogram to 
assess the model’s suitability for the data. 

The PIT values and histogram of PIT values are shown in the figure below. 
The histogram of these values based on the model, as seen in Fig. 7.2, 

represents that the distribution of PIT values is close to uniform. 

7.3.2 Model Preference 

To compare the fit of different models, the Deviance Information Criterion (DIC) 
proposed by [32] is used. The DIC model is defined by two terms: goodness of fit 
and penalty. 

.DIC = D̄ + pD (7.28) 

where D̄ . is the posterior expectation of the Bayesian deviance D(ν). and is used to 
evaluate model fit. 

.D(ν) = −2 log(π(y|ν)) + 2 log(π(y)) (7.29)
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where the likelihood function is denoted by π(y|ν)., and the term 2 log(π(y)). can be 
omitted when comparing many models for the same data. The value pD . in Eq. (7.28) 
is referred to as the number of effective parameters and is used to assess the model’s 
complexity. It is equal to the expectation of deviance minus the expectation of 
deviance. 

.pD = D̄ − D(ν̄). (7.30) 

In this case, ν̄ .denotes the expected value of ν ., which can be represented by Eν|y(ν).. 
Lastly, the model which has the smaller DIC value should be chosen over other 
models with larger DIC values. 

In Sect. 7.4, we present the results of a hierarchical Bayesian model and premium 
calculations. 

7.4 An Application of Spatiotemporal Models to the 
calculation of Crop Yield Insurance Premium 

Obtaining premium rates based on statistical models becomes more difficult for 
crop yield modeling due to factors such as moral hazard and the dependence of 
catastrophic losses in terms of spatial and temporal effects. To model crop yield, we 
take spatial, temporal, and spatiotemporal effects into account. To capture spatial 
and temporal effects, we use a hierarchical Bayesian structure for district-based crop 
yield data. 

Using the R-INLA package [4, 5] provided by R software, we obtain estimations 
for the considered models and calculate premium rates. We use ArcGIS software 
tools to display some of the graphs. 

In this study, we use TUIK (Turkish Statistical Institute) crop yield data for wheat 
in the cities of Ankara and Konya in Turkey’s Central Anatolia region from 2004 to 
2022. Both cities play a significant role in wheat production. Ankara and Konya’s 
total wheat production in 2022 is 2,135,587 tons, accounting for 13.35% of Turkey’s 
total wheat production of 16,000,000 tons. 

We simulate crop yield for each of these cities’ districts. These districts are useful 
for considering spatiotemporal dependency because they share common borders, 
implying that they are neighbors. 

We use the district IDs in this study for convenience. The corresponding district 
IDs are listed in Table 7.1. The data set in the application part of our study, as shown 
in the table, consists of 47 districts in Konya and Ankara. The following figure is 
provided to handle the geographical information for these districts. 

The neighborhood structures among districts can be seen visually in Fig. 7.3.  For  
example, District 4 Altinekin’s neighbors from north to south-east are District 10 
Cihanbeyli, District 39 Sarayonu, District 40 Selcuklu, and District 31 Karatay.
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Table 7.1 The  ID  of  the  distri  cts

District District ID District District ID District District ID 

Akoren 1 Elmadag 17 Kızılcahamam 33 

Aksehir 2 Emirgazi 18 Kulu 34 

Altındag 3 Eregli 19 Mamak 35 

Altınekin 4 Evren 20 Meram 36 

Ayas 5 Golbasi 21 Nallihan 37 

Bala 6 Gudul 22 Polatli 38 

Beypazari 7 Guneysinir 23 Sarayonu 39 

Beysehir 8 Halkapinar 24 Selcuklu 40 

Bozkir 9 Haymana 25 Seydisehir 41 

Cihanbeyli 10 Huyuk 26 Sincan 42 

Cankaya 11 Ilgin 27 Sereflikochisar 43 

Celtik 12 Kadinhani 28 Tuzlukcu 44 

Cubuk 13 Kalecik 29 Yalihuyuk 45 

Cumra 14 Karapinar 30 Yenimahalle 46 

Derbent 15 Karatay 31 Yunak 47 

Doganhisar 16 Kecioren 32 

Fig. 7.3 The map of the 
districts with ID 

Figure 7.4 is provided to show the structure of the neighborhood among districts. 
It represents nodes and lines between nodes in order to visualize the IDs of adjacent 
districts. 

The neighborhood relationships between districts are easy to find in this figure. 
For example, as shown in Fig. 7.3, District 4’s neighbors from right to left are 
District 10, District 39, District 40, and District 31, respectively. 

The adjacency matrix, shown in the figure below, is another representation of the 
neighborhood.
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Fig. 7.4 The nodes of adjacent districts with their IDs 

The adjacency matrix is a popular graphical tool in the literature. The numbers 
on the x and y axes of Fig. 7.5 represent the district IDs used in the case study. 

7.4.1 Models Used in the Application 

In this paper, we use various models to investigate the spatial, temporal, and 
spatiotemporal effects on wheat yield in crop yield insurance. The theoretical 
considerations and INLA results of these models for estimating district wheat 
yields are provided in the following subsections. Equation (7.7) gives the general 
theoretical modeling of the hierarchical Bayesian approach and Sect. 7.2 gives the 
related properties. According to [1], the conditional distribution of Ys |β, γs, σ

2
∈ . is 

assumed to be normal with the parameters βXT
s + γs . and σ 2

∈ ., respectively. Assume 
Ys,t . are the total 893 yield observations for 47 districts over a 19-year period. 

7.4.1.1 Basic Error Model (Model 1) 

To begin, we examine the fundamental model, which includes an intercept term and 
an unstructured spatial random effect. Although this model is less informative than 
the other models used in this study, we use it as a baseline model to examine the 
effect of intercept and unstructured spatial effect on spatial models.
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Fig. 7.5 The adjacency matrix for the districts with ID 

For the years t = 1, . . . , 19.,  let Y
(i)
s,t . denote the wheat yield in the district i with 

location s. The fundamental error model is given by:

.

η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ ∈ 
(i)
s,t ; i = 1, . . . , 47 and t = 1, . . . , 19

α0 ∼ N(0, σ 2
α0

)

∈ s,t ∼ N(0, σ 2
∈ s,t

)

γs1 ∼ N(0, σ 2
γs1

)

log τγs1
∼ logGamma(as1 , bs1)

log τ∈ s,t ∼ logGamma(a∈ 1 , b∈ 2)

(7.31) 

where; 

• The intercept term for the model, α0 . , represents the mean wheat yield for the 
districts. 

• The spatially unstructured effect is denoted by γ
(i)
s1 ., and we assume that it is 

independent and identically distributed (iid).



7 Crop Yield Insurance Analysis for Turkey: Spatiotemporal Dependence 187

7.4.1.2 Spatial Model (Model 2) 

We extend the basic error model (Model 1) to the spatial model (Model 2) in this 
model to investigate spatial dependence. To accomplish this, we add the spatially 
structured random effect to Eq. (7.31). The following is the second model [5]: 

.

η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ γ (i)
s2

+ ∈ 
(i)
s,t ,

γs2 ∼ N(0, σ 2
γs2

),

log τγs2
∼ logGamma(as2 , bs2)

(7.32) 

where γ i
s2

. denotes the spatial structured term. We define the properties of this term 
in Eq. (7.9). 

7.4.1.3 Spatiotemporal Models (Model 3–6) 

In order to investigate temporal effects on crop yield estimation, we revisit the spa-
tial model in Eq. (7.32). In this section, we first present the parametric representation 
for spatial-temporal modeling proposed by Bernardinelli et al. [2]. The following is 
the definition of Model 3: 

.

η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ γ (i)
s2

+
⎛ 
α + δ

(i)
s,t

⎞
t + ∈ 

(i)
s,t ,

δs,t ∼ N(0, σ 2
δst

),

log τδs,t ∼ logGamma(aδs,t , bδs,t ).

(7.33) 

Here, the term
⎛ 
α + δ

(i)
s,t

⎞
t . consists of two components where: 

• The term α . refers to a main linear trend that represents the overall trend effect. 
• δ (i) s, t . denotes the time trend associated with the district i and is used to define the 

interaction between space and time.

For the spatial-temporal modeling, we present a non-parametric formulation bor-
rowed from Knorr-Held [14]. Model 4 is provided by: 

.

η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ γ (i)
s2

+ φt1 + φt2 + ∈ 
(i)
s,t ,

φt1 ∼ N(0, σ 2
φt1

),

φt2 ∼ N

⎛ 

0,
1

τ

⎞

,

(7.34)
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where the model’s parameters have the same characteristics as the previous models 
except for the terms φt1 . and φt2 .. φt1 . denotes temporally unstructured random 
effect and it is modeled by using a Gaussian exchangeable prior, i.e. φt1 ∼
N(0, σ 2

φt1
).. Furthermore, the term φt2 . denotes the structured temporal effect, which 

is represented by the random walk model of order 1 (rw1) as follows: 

. Δ xi = xi − xi−1

For the temporally structured random effect φt2 ., we use rw1. Another goal of this 
research is to investigate the spatial-temporal interactions that explain differences 
in yield amount based on the spatial and temporal interaction trends of different 
districts. In this sense, Eq. (7.34) can be extended by adding an unstructured 
interaction term δs,t ., resulting in Model 5 as follows: 

. η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ γ (i)
s2

+ φt1 + φt2 + δ
(i)
s,t + ∈ 

(i)
s,t . (7.35) 

In this section, we define δs,t . as the interaction term between the unstructured effects 
γs1 . and φt1 .. We define Θ δ . as a structure matrix for the unstructured effects γs1 . and 
φt1 ., and can be represented by the Kronecker product i.e, Θ δ = Θ γs1

⊗ Θ φt1
=

I ⊗ I = I . [6]. Because γs1 . and φt1 . represent unstructured spatial and temporal 
effects, the interaction term δs,t . has no spatial or temporal effect. Using this result, 
we assume that the interaction term is normally distributed with a mean of 0 and a 

variance of
1

τδs,t

., and that it is iid. 

Finally, we look at how the spatial and temporal structure affects the interaction 
term. As a result, the estimation of the parameters associated with the term δs,t . is 
not obtained under the assumption that δs,t . is iid,  as  given  in  Eq  . (7.35). The goal 
of using Model 6 as shown in Eq. (7.36) is to investigate the overall trend that is 
correlated with both spatial and temporal characteristics of the data based on their 
neighbors [38]. As a result, the interaction term δs,t . is introduced into the model as a 
random effect. We use the Besag-York-Mollie (BYM) model for spatially structured 
random effects and the rw1 process for structured temporal random effects. 

The following are the fixed and random effects for the structured spatiotemporal 
interaction model (Model 6): 

.
η

(i)
s,t = log(Y (i)

s,t ) = α0 + γ (i)
s1

+ γ (i)
s2

+ φt1 + φt2 + δ
(i)
s,t + ∈ 

(i)
s,t ,

δs,t is the random effect.
(7.36) 

Following a thorough examination of each model, we compare the models under 
consideration in the following section.
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7.4.2 Model Selection 

We examine six models for the district-based distribution of wheat yield. The basic 
error model is the first model that takes into account the spatially unstructured 
random effect for districts, i.e. it is assumed to be iid. Then we phase in different 
models that include spatial, temporal, and spatiotemporal effects. In this section, 
we present the comparison criteria for the models considered in Sect. 7.4.1. These 
criteria could also be used for model selection and model diagnostics. 

In our case study, we use two criteria, DIC and Lscore, to select a reasonable 
model to estimate wheat yield. We select the best model based on the lowest DIC 
and Lscore values. The following table shows the DIC values, which are the sum of 
D̄ . in the first column and pD . in the second column, as well as the Lscore values. 
The model formulations are also shown in this table. 

As shown in Table 7.2, Model 6 has the lowest DIC and Lscore values (the 
values highlighted in bold in Table 7.2), indicating that it is the best model among 
all considered models. Model 6 is a structured spatiotemporal interaction model that 
includes spatial, temporal, and spatiotemporal effects. In this work, the precisions τ . 

for the random effects are assigned using R-INLA priors Gamma(1,0.00005). 
The following graph compares the observed and fitted values obtained by using 

the chosen model (Model 6) over the last four years (2019–2022) (Fig. 7.6). 
Here, studies were conducted using different a priori distributions to examine 

the connections between computation time efficiency and parameter estimations 
for the INLA and MCMC approaches. The NIMBLE package available in R has 
been used for MCMC algorithms [8]. Table 7.3 presents comparisons for Model 
6, which was determined to be the best model by applying the INLA technique. 

Table 7.2 D̄ ., pD . , DIC and Lscore results for model selection 

Models D̄ . pD . DIC Lscore 

Model 1 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + ∈ 

(i)
s,t . 

417.48 39.42 456.90 0.255 

Model 2 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + γ

(i)
s2 + ∈ 

(i)
s,t . 

417.64 39.50 457.14 0.257 

Model 3 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + γ

(i)
s2 +

⎛ 
α + δ

(i)
s,t

⎞
t + ∈ 

(i)
s,t . 

283.92 49.02 332.94 0.188 

Model 4 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + γ

(i)
s2 + φt1 + φt2 + ∈ 

(i)
s,t . 

−.37.20 58.93 21.73 0.014 

Model 5 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + γ

(i)
s2 + φt1 + φt2 + δ

(i)
s,t + ∈ 

(i)
s,t . 

−.40.19 62.37 22.18 0.015 

Model 6 η
(i)
s,t = log(Y (i)

s,t ) = α0 + γ
(i)
s1 + γ

(i)
s2 + φt1 + φt2 + δ

(i)
s,t + ∈ 

(i)
s,t . 

−.569.02 237.34 −.293.46 −.0.124
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Fig. 7.6 The observed and the fitted values of wheat yield according to space and time 

Table 7.3 Comparison of model running times for INLA and MCMC 

Gamma(1,0.00005) Gamma(1,0.5) Gamma(1,1) 

Mean Sd Mean Sd Mean Sd 
α0 . INLA 5.45 0.01 5.45 0.15 5.45 0.20 

MCMC 5.44 0.03 5.43 0.08 5.46 0.11 
τ∈ . INLA 32.39 2.59 34.12 2.69 35.36 2.78 

MCMC 32.65 2.53 32.68 2.49 31.81 2.33 
τφt1

. INLA 32.04 10.82 10.69 4.17 5.69 2.21 

MCMC 2063.17 8934.81 10.01 3.84 5.75 2.22 
τφt2

. INLA 11, 730.98 15, 591.13 9.80 4.06 5.14 2.11 

MCMC 5834.38 12, 545.88 8.93 3.67 5.05 2.02 
τγs1

. INLA 22, 195.76 24, 462.18 2.29 2.47 1.18 1.26 

MCMC 6783.04 17, 061.04 21.52 5.33 12.65 2.98 
τγs2

. INLA 22, 389.39 24, 713.49 2.26 2.46 1.16 1.24 

MCMC 457.25 735.51 13.01 4.15 7.69 2.32 
τδ . INLA 14.29 2.78 11.64 1.91 10.20 1.52 

MCMC 39.19 7.65 29.23 4.49 24.75 3.25 

To explore how alternative prior distributions affect the parameter estimates for the 
two approaches, here we employ not only the Gamma(1,0.00005) prior distribution 
for random effects, but also the Gamma(1,0.5) and Gamma(1,1) prior distributions. 
Regarding the INLA and MCMC approaches, the constant term α0 . and the τ∈ . 

precision parameter for Gaussian observations have very similar values within
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Table 7.4 Comparison of running times, mean absolute error (MAE) and root mean squared error 
(RMSE) for INLA and MCMC approaches with the prior distribution Gamma(1,0.00005) 

Approach User System Elapsed MAE RMSE 

INLA 0.16 0.12 5.26 0.1077 0.1462 

MCMC 25.70 0.44 64.74 0.1067 0.1459 

three prior distributions; however, the two approaches have different values for 
the other random effects under different prior distributions. In comparison to other 
spatial and temporal random effects under three distinct prior distributions, INLA 
and MCMC have more accurate values when we examine the mean value for the 
precise parameter τδ ., which displays spatial-temporal interaction. Furthermore, for 
Gamma(1,0.5) and Gamma (1,1) prior distribution options, it is noted that the 
estimate values of the precision parameters for random effects close for INLA and 
MCMC techniques as we move away from the non-informative prior distribution 
(Gamma(1,0000.5)). 

Based on information provided by R’s system.time command, Table 7.4 com-
pares the running times for INLA and MCMC. The R session’s CPU time is 
indicated in column “user,” the operating system’s CPU time is indicated in column 
“system,” and the wall clock time required to run the process is indicated in column 
“elapsed” [16]. Table 7.4 illustrates how much more computationally burdensome 
and time-consuming the MCMC approach was in determining its realizations 
compared to the INLA method. MAE and RMSE metrics were employed to assess 
the predictive performance of both the INLA and MCMC methodologies. The close 
proximity of these values suggests that the predictive capabilities of both models are 
comparable. Hence, considering the similarity in predictive power and the quicker 
generation of solutions by the INLA model, it implies that utilizing the INLA 
approach is more efficient for our specific research. 

7.4.3 Crop Yield Insurance Premium Calculation 

In this section, we will calculate the premium rates for crop yield insurance. 
Goodwin and Ker [9] propose using the equation below to calculate the premium 
rate πr .. 

.πr = P(y < cȳ) [cȳ − E(y|y < cȳ)]

cȳ
(7.37) 

In this equation, P(y < cȳ). represents the probability that the realized yield is 
less than the prespecified threshold (yield loss level) cȳ ., where c; 0 < c < 1. 
is the insurer’s coverage rate and ȳ . is the expected value of the yield, i.e. ȳ =⎛ ∞
−∞ yf (y)dy .. E(y|y < cȳ). denotes the conditional expectation of realized yield 
if it is less than the yield threshold. The insured’s premium is represented by the
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numerator in Eq. (7.37). Divide the premium by the yield threshold to get the 
premium rate. The following are the mathematical formulas for P(y < cȳ). and 
E(y|y < cȳ).. 

. P(y < cȳ) =
⎛ cȳ

0
f (y)dy

. E(y|y < cȳ) =
⎛ cȳ

0 yf (y)dy
⎛ cȳ

0 f (y)dy

We solve the above integrals using numerical methods. Assume the crop yield is 
normally distributed. The probability distribution function is then 

. f (y) = 1√
2πσ

e
− (y − μ)2

2σ 2

where μ. denotes the mean whereas σ . is the standard deviation. 
Using the selected model ((Model 6)), we compute the average premium rates 

associated with the specified coverage levels c = 0.70, 0.80, 0.90.. The premium 
rates for the top two districts in terms of wheat production volume in Ankara and 
Konya are shown in the table below. The outcomes are presented separately for each 
city’s top two districts. 

The first two districts in Table 7.5, Polatlı and Haymana, are districts of Ankara, 
and they are ordered from highest to lowest in terms of wheat production in 2022. 
Cihanbeyli and Karatay, the third and fourth districts in Konya, are ranked highest 
to lowest in terms of wheat production in 2022. We assume that the crop yield 
insurance amount is the yield in kilos per decare. As a result, the premium rate 
is expressed as a percentage of the insurance amount. The premium rate is higher 

Table 7.5 Premium rates in 
the districts chosen 

District Level of coverage (%) Premium rate ( %) 

Polatlı 70 0.16 

80 0.73 

90 2.40 

Haymana 70 0.33 

80 1.14 

90 3.07 

Cihanbeyli 70 0.77 

80 1.97 

90 4.24 

Karatay 70 5.22 

80 7.53 

90 10.39
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for higher coverage levels. It is not possible to conclude that premium rates are 
solely related to wheat production volume. Because premium rates are calculated 
using spatial, temporal, and spatiotemporal characteristics, the relationship between 
premium rates and wheat production volume is not a single indicator of wheat yield 
risk. If an extreme weather event occurs in a given year, premium rates may change 
dramatically from 1 year to the next, according to our chosen model. 

Table 7.5 shows that premium rates in Konya districts are higher than premium 
rates in Ankara districts. According to our chosen model, the wheat yield risk in 
Konya is higher than the risk in Ankara. Furthermore, among the four districts, 
Karatay has the highest premium rates based on three different coverage limits. The 
reason for this is that Karatay has consistently produced the highest wheat yield. 
Karatay’s high yield suggests that wheat yield is more likely to remain below the 
threshold value in the event of damage. 

7.5 Conclusion 

By introducing the INLA model in this study, we ensure that complex models 
for agricultural insurance are analysed quickly in terms of computation time. We 
demonstrated the usability of the INLA model in this study by not using explanatory 
variables in the models and instead examining the effect of spatial and temporal 
effects on wheat yield. Other meteorological data affecting agricultural production, 
for example, can be added as explanatory variables for districts, and models with 
higher explanatory power can be established. 

We propose using a hierarchical Bayesian method to account for not only 
spatial and temporal effects, but also the effect of spatiotemporal dependency 
among geographical subregions. According to the model results, the structured 
spatiotemporal interaction model is the best model. In addition to the modeling 
results, we provide a methodology for calculating the premium, which is a useful 
tool for assessing the risk of yield loss. The premium calculation results are obtained 
in relation to the specified coverage levels by using the selected model for the 
selected districts. 

While the average wheat yield data for 47 districts was examined in this study, 
the study proceeded on the average yield because no data was available to directly 
observe the effects of rainfed and irrigated farming practices for the districts. If 
data on rainfed and irrigated agricultural areas for the districts, as well as farmer-
based data, can be obtained in the future, models for this study can be developed by 
incorporating these effects as explanatory variables. 

We can apply the INLA model to estimate crop yield based on farmers’ data if 
we can acquire farmer-based data on crop yield and covariates like demographic, 
socioeconomic, and meteorological variables. Additionally, we can extend this 
methodology to other scenarios as well. 

Finally, we hope to estimate the farmer’s yield by improving a dependent aggre-
gate claims model in the case of claim frequency and claim severity dependency.
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Assuming that yield is a function of the farmer’s surroundings and effort, we hope 
to obtain a risk score for the farmer and, as a result, a moral hazard map in a future 
study. As a result of the farmer-based premium calculation, we can obtain yield 
insurance more efficiently. 
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Chapter 8 
Model and Forecast Combination for 
Predictive Yield Distributions in Crop 
Insurance 

Yong Liu, Austin Ford Ramsey, and Ziqin Zhou 

Abstract Multiple-peril crop insurance policies require statistical modeling of 
probability distributions of crop yields. Unfortunately, no single parametric distribu-
tion is likely to capture the true data generating process. Likewise, non-parametric 
approaches converge to the true distribution at a slow rate; yield histories are often of 
modest size. Recognizing these shortcomings, model and forecast combination are 
now being applied in crop insurance settings. Model and forecast combination avoid 
the dangers inherent in selecting a single model for the predictive yield distribution. 
The component models for the combination can be selected ad-hoc or based on the 
idea of distributional similarity. Crop yields are spatially correlated, so the model 
for one insured unit may be related to another, and can then be used in the pool of 
potential models for the combination. 

We briefly review the literature on model and forecast combination and its 
application in agricultural insurance settings. We then turn toward an empirical 
application involving crop yield insurance for major row crops in the U.S. Southeast. 
A variety of individual models and combinations are estimated at the county 
level. Insurance premiums and premium rates are calculated from the estimated 
distributions. Implications of model and forecast combination for insurance rates, 
premiums, and government subsidies are discussed. We conclude by suggesting 
future research in this area. 
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8.1 Introduction 

Multiple-peril crop insurance programs have proliferated worldwide. Such pro-
grams are often subsidized by national or local governments with the aim of 
stabilizing crop revenues and farm household incomes. In the United States, 
the federal crop insurance program is now the most expensive federal program 
providing subsidies to production agriculture [13]. The size of the U.S. program 
continues to grow; total liability has increased from $117 billion in 2012 to more 
than $173 billion in 2022 as more crops and agricultural producers are brought 
under federal crop insurance program policies. As liability and subsidies increase, 
the program has become the subject of discussions around opportunities to reduce 
program costs [10]. 

The continued expansion of subsidized crop insurance in the U.S. and the world 
has placed increased focus on the actuarial details underlying insurance policies. 
Aside from determining the indemnities that are paid out to agricultural producers, 
the actuarial models also affect government expenditures on these programs. 
Government outlays in the U.S. program are primarily for premium subsidies, 
whereby the government pays a portion of the premium, and for private insurers 
that operate the program. The U.S. program is a public-private partnership in that the 
United States Department of Agriculture determines premiums for the policies, but 
policies are sold and administered by private firms. In 2022, subsidies to agricultural 
producers (in the form of premium subsidies) amounted to just over $11 billion, 
while payments to private firms to operate the program (program delivery costs) 
were in the area of $2 billion. Clearly, the actuarial details of the programs have the 
potential to result in major differences in premium rates and expenditures on the 
part of taxpayers. 

A key criteria in the U.S. federal crop insurance program is that policies should— 
at least attempt to—be actuarially fair. The premiums paid on crop insurance 
policies should match the risk exposure faced by farmers, at least to the extent that 
this is feasible. In other words, premiums should be equivalent to expected losses. 
Premiums that are actuarially fair avoid complications stemming from moral hazard 
and adverse selection. Moral hazard involves agricultural producers increasing their 
risk exposure because they do not bear the full cost of the increased risk. Adverse 
selection implies that the demand for agricultural insurance is dependent on a 
producer’s risk. In any event, the basic problem resulting in moral hazard and 
adverse selection is information asymmetry. 

Adverse selection and moral hazard are key problems for agricultural insurers. 
Santeramo [39] argues that moral hazard and adverse selection are the main factors 
that drive low participation in some crop insurance programs. An early study of the 
U.S. crop insurance program by [23] provides evidence of adverse selection. They 
found that farmers mainly participated in the program in order to receive subsidies 
or due to the possibility of adverse selection. In the contemporary program, the 
extremely high share of planted acres under federal crop insurance policies limits 
the negative impacts and potential death spiral from adverse selection. While most
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studies focus on adverse selection, more recent work has identified advantageous 
selection in some crop insurance settings. He et al. [19] found evidence of 
advantageous selection for two types of crop insurance in the Philippines. 

Actuarially fair prices may not completely mitigate the issue of moral hazard. 
A number of studies have examined crop insurance markets and found significant 
changes in producer behavior that are indicative of moral hazard [46]. Adequate 
design of crop insurance and reinsurance policies is one approach for controlling 
morally hazardous behavior. The design of contracts where both parties’ exposure 
to risk increases with overall risk can mitigate moral hazard as shown in the 
reinsurance context in [2]. Assa et al. [3] uses a similar contract design to price 
frost insurance while effectively removing the risk of moral hazard. Controlling 
both adverse selection and moral hazard are necessary for maintaining viable crop 
insurance programs. 

Changes in the system of rating for crop insurance policies in the U.S. have 
resulted in a healthier program since the mid-1990s. While average loss ratios 
exceeded one in the late 1980s, the program-wide loss ratio averaged just under 0.88 
over the period 2011–2020. Some of the changes in loss ratios can be attributed 
to the increasing number of agricultural producers who place their crops under a 
federal crop insurance program policy. For major row crops, more than 90% of 
all planted acres are enrolled in a subsidized crop insurance policy. Most of the 
policies sold are based on losses to farm revenue or farm yields and are multiple-
peril crop insurance policies: these policies protect against multiple causes of loss 
to crop production. 

8.2 Actuarial Models for Crop Insurance Policies 

Most multiple-peril crop insurance policies are priced based on data on historical 
crop yields, prices, and farm revenue. Historical data used to rate the policies may 
be collected—and policies may be sold—at the farm level or the county level. The 
principal policies sold through the U.S. federal crop insurance program are revenue 
policies and yield policies. Yield policies pay out when crop yields are low and 
revenue policies pay out when crop revenue is low; revenue policies account for the 
additional risk of declining prices over the growing season. The most popular policy 
is termed Revenue Protection (RP) and is a revenue policy based on farm-level crop 
yields. In 2022, RP policies comprised just over 70% of all liability in the federal 
crop insurance program. 

Revenue insurance policies require a probability distribution for revenue. As rev-
enue is the product of quantity and price, this probability distribution is constructed 
as a joint probability distribution over crop yields and crop prices. Yield insurance 
policies only require a probability distribution over crop yields as the payout price 
is known at the time the policy is sold. The key difference from a rating perspective 
is that prices are stochastic for revenue insurance policies. The loss from a revenue 
policy in the U.S. crop insurance program is
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.Loss = max (0, YP PP λ − YH PH ), (8.1) 

where YP . and PP . are planting-time yield and price, respectively, which are both 
known at the time the policy is sold. YH . and PH . are harvest-time—or realized— 
yield and price. λ. is a coverage level between 0 and 1. In practice, most federal 
crop insurance policies allow for selection of a coverage level between 0.55 and 
0.85. Only two variables in Eq. (8.1) are stochastic and the policy can be rated by 
specifying their joint distribution as 

.p(YH , PH ) = f (YH , PH ). (8.2) 

In practice, the joint distribution is constructed by combining marginal distributions 
for the two variables. This can be achieved using the distribution-free approach of 
[22] or copulas following the work of [42]. 

For yield insurance policies, the loss is given by 

.Loss = max (0, YP PP λ − YH PP ), (8.3) 

with the price being deterministic. The only information necessary to price the 
policy concerns the univariate probability distribution 

.p(YH ) = f (YH ). (8.4) 

Although revenue insurance is more popular compared to yield insurance, we focus 
on yield insurance as this allows for a clear picture of modeling issues related to 
the yield distribution. A number of authors have considered the construction of 
joint distributions for revenue insurance including [14, 36], and [38]. Many of the 
concerns addressed in this chapter apply equally to revenue insurance because the 
distribution of revenue is ultimately a joint distribution of yield and price. 

An actuarially fair price for an insurance policy should result in an average loss 
ratio near one. The loss ratio is defined as 

.LR = Loss

Premium
(8.5) 

and if the prices are actuarially fair then the expected loss equals the premium. 
This implies that the expected loss ratio is one. Loss ratios that deviate, on average, 
from one typically indicate departures from the actuarially fair price. Although loss 
ratios in the U.S. crop insurance program overall have averaged near one in the past 
decade, there has been heterogeneity across crops and locations. 

Loss ratios averaging over one would indicate that the policies are likely to be 
under-priced, while loss ratios averaging under one would indicate that policies are 
over-priced. There are several important implications of mis-pricing for subsidized 
crop insurance programs. High average loss ratios would indicate large payouts 
in excess of premiums collected. In such situations, the total amount of premium
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subsidies paid by the government could be lower, but payments of indemnities or 
other government backstops of insurance could be exceptionally large. If loss ratios 
are lower on average, then participation in the program may decline leading to more 
pronounced problems of adverse selection. 

The motivating question is how to construct f (YH ). in such a way that it 
accurately represents the risks faced by the producer and comes as close as possible 
to generating premium rates that are actuarially fair. Ideally, we would use a 
model that exactly matches the data generating process. No such model is available 
from statistical or economic theory, which means that this is a question of model 
specification. Specifying the appropriate model for f (·). is not so simple because 
the data used to estimate the distribution are typically of moderate size. Individual 
farms may only have yield records going back several decades, while many county 
yield records only go back to the middle of the twentieth century. 

This general lack of yield data complicates modeling of the yield distribution. 
Many early crop insurance and agricultural production studies utilized parametric 
distributions. Nelson [30] compared the normal distribution and beta distribution 
in calculating crop insurance premium rates. Gallagher [9] utilized a gamma 
distribution. Sherrick et al. [40] found the Weibull distribution to provide a good 
fit to corn yields. Claassen and Just [6] applied the inverse lognormal distribution to 
short series of farm-level yields. Park et al. [32] fit generalized Pareto distributions: 
a type of extreme value distribution. A disadvantage of parametric distributions 
is that there is no guarantee that the chosen parametric distribution encompasses 
the true data generating process. While parametric models converge quickly to the 
data generating process, this is only true if the correct parametric model has been 
specified. 

In contrast to parametric models, non-parametric approaches make less stringent 
assumptions. Although non-parametric approaches converge to the true model at a 
slower rate, they are able to approximate any distribution to an arbitrary degree given 
a large enough sample size. Non-parametric estimation of yield distributions in the 
crop insurance context was proposed by [15] and refined in [25]. Non-parametric 
density estimation also serves as the basis for spatio-temporal model combination 
implemented in [28]. Some semi-parametric approaches were discussed by [24]. 
Parametric and non-parametric models for crop yields were compared by [31]  in  
an application to Brazilian corn, soybeans, and wheat. A challenge for most non-
parametric methods is the moderate size of yield data and the fact that yields are 
non-negative. Standard kernel density estimation approaches usually do not account 
for cases where the random variable has a bounded support.

Regardless of whether the underlying model is parametric or non-parametric, 
most methods of density estimation require data that are independent and identically 
distributed. These criteria pose a problem for crop insurance programs as yield 
distributions change over time. Arata et al. [1] indicates that worldwide, nearly 
half country-crop combinations show slowdowns in yield growth, while a quarter 
of the combinations considered show an increase in yield variability. Most studies 
first de-trend the observed yields, or make other adjustments, and then estimate 
the yield distributions on a set of normalized yields [18, 41]. Other approaches to
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structural change in yield distributions include mixtures with different trends in the 
components as in [43], time-varying distributions as in [48], and the use of quantile 
regression as in [35]. 

As shown above, modeling of the yield distribution is of primary importance 
for multiple-peril crop insurance policies. The increasing demand for revenue 
insurance in the United States has also placed importance on modeling of the 
distribution of crop revenue. Many of the same modeling concerns that arise in 
the yield distribution characterize the distribution of revenue. Typically, prices in 
the federal crop insurance program are assumed to align with assumptions of the 
Black-Scholes model, although various alternative distributions were considered by 
[16]. The implications of the Black-Scholes model are used in deriving the variance 
of expected prices. An examination of the use of Black-Scholes for constructing 
this measure in crop revenue insurance was conducted by [17]. They found that 
the Black-Scholes model was preferred to several alternatives. While [5] found 
the volatility factor used in the federal crop insurance program to be an unbiased 
estimator of realized price volatility, they suggested improvements that could be 
made to better measure price risk over the insurance period. Regardless of how the 
distribution of prices is modeled, marginal distributions for prices and yields can 
be combined with copulas to obtain the joint distribution of revenue as in [38]. 
However, because prices are observed at the same frequency as yields, models for 
revenue insurance still require strong assumptions given relatively small samples 
[21]. 

In addition to modeling distributions of yields from a single county or unit 
of interest, some authors have studied how yield distributions could be spatially 
smoothed or related through a spatial model. Park et al. [32] used Bayesian kriging 
to smooth crop yield densities across counties. This approach was expanded on 
by [33] who, instead of smoothing across physical space, smoothed densities 
across climate space. They found that smoothing in climate space proved superior 
to smoothing in physical space, particularly in locations with missing data or 
varying climate. An approach for interpolating missing yield data through the use 
of Bayesian hierarchical models was developed by [34]. A frequentist approach 
allowing a flexible spatial structure through the use of nonparametric spatially-
varying coefficients was applied by [45]. The idea of borrowing information 
from other units, or smoothing yield distributions across space, relates to spatial 
correlation in the weather conditions that cause yield losses. 

8.3 Model and Forecast Combination for Predictive Yield 
Distributions 

There is an inherent danger in choosing any single model for an analysis. Parametric 
models are likely to be mis-specified. If this is the case, they will not converge to 
the true data generating process and result in biased estimates. This danger is widely
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recognized in the time series literature in the context of forecasting. Small samples 
exacerbate the problem. An early review of forecast combination techniques was 
conducted by [7], while a modern discussion is available in [44]. A review of model 
averaging in economics can be found in [29]. Model and forecast combination are 
directly related to the actuarial modeling of crop yield distributions because the 
yield distribution used in crop insurance policies is a forecast. 

A forecast is a prediction about the future and is typically (although not always) 
derived from a statistical model. Forecast combination is distinguished from model 
averaging in that the focus of model averaging is on dealing with model uncertainty 
and avoiding model selection. Forecast combination is the combination of forecasts 
arising from different models. The concept is more general because one of the 
component forecasts in a combination could be obtained from a model average. 
Forecasts could also consist of expert opinions for which no statistical model can be 
obtained. In spite of this subtlety in their focus, both model and forecast combination 
aim to produce more reliable and accurate forecasts. 

Recently, a number of authors have turned to model or forecast combination as 
a means of obtaining more accurate yield distributions, and therefore more accurate 
insurance rates. We focus on two approaches for model or forecast combination in 
this study. The first is a form of Bayesian model averaging, specifically Bayesian 
averaging of frequentist estimates, applied in the crop insurance setting by [26]. 
The second is a linear pooling procedure implemented in the crop insurance 
context by [37]. These represent two different approaches to the issue of model 
specification and choice in an insurance rating setting. Bayesian averaging of 
frequentist estimates is formally an approach for model combination, while linear 
pooling combines forecasts from different models. 

Concepts of model and forecast combination can be used to pool information 
from different units by combining their models or forecasts. The aim is to bring 
information from other units to bear in estimating the predictive crop yield 
distribution for the unit in question. The difference with standard applications of 
model or forecast combination is that the alternative models or forecasts in the set 
of candidates are estimated on other units. Data from other units are known to be 
related to the unit in question; in this case, yield distributions in counties that are 
geographically proximate are likely to be similar due to correlation in weather, soil 
features, and other aspects of crop production. Therefore, the models estimated on 
data from other counties may serve as a reasonable set of candidate models for 
model or forecast combination. This observation motivates the analysis to follow. 
Individual models and forecasts are generated for each county in question using that 
county’s data. These models or forecasts are then considered as the set of component 
forecasts for every county and combined with the two combination approaches 
discussed below. The result is a combined model or forecast that is unique for every 
county under consideration, even though the set of component models or forecasts 
is the same.
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8.3.1 Bayesian Averaging of Frequentist Estimates 

The first combination scheme considered is an analogue to Bayesian model 
averaging. Consider the case where there are J models and we are interested in 
estimating a parameter or other functional θ .. Without loss of generality, θ . could 
also be a vector of parameters. In the context of density estimation for agricultural 
insurance, θ . encompasses the parameters of the yield distribution. For instance, in 
the case of a normal distribution, θ = (μ, σ 2).. The posterior distribution of θ . given 
data X is given b y

.p(θ |X) =
J⎲

i=1

p(θ |Mi,X)p(Mi |X), (8.6) 

where Mi .denotes model i. The posterior distribution of θ . is the sum of the posterior 
distribution of θ . under each model multiplied by the posterior probability of the 
model itself. The posterior distributions of θ . under each model are readily obtained 
by estimating the individual models. The posterior model probabilities are given by 

.p(Mi |X) = p(X|Mi)p(Mi)∑ J
i=1 p(X|Mi)p(Mi)

, (8.7) 

and the computation of this probability involves evaluation of potentially high 
dimensional integrals. The preceding discussion is nothing more than Bayesian 
model averaging and is discussed in some detail in [20]. 

A key feature of the approach detailed in [26] is that the underlying models are 
mixtures of normal distributions. This simplifies, considerably, the estimation of 
p(X|Mi). as 

.p(X|Mi) =
⌠

p(X|τi,Mi)p(τi |Mi)dτi, (8.8) 

where τi . are the parameters associated with model i. In the case where the 
underlying models are mixtures of normals, τi . would include the means and 
variances of the individual normal mixture components and the mixing weights. 
Ker et al. [26] rely on a result shown in [8] where p(X|Mi). can be approximated by 
the Bayesian Information Criterion associated with each model. In particular, 

.p(X|Mi) = exp (−1/2BICi), (8.9) 

where BICi . is the Bayesian Information Criterion for model i. Assuming all 
candidate models have equal prior model probability, the weights on the individual 
models in Eq. (8.7) are then given by
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.p(Mi |X) = exp (−1/2BICi)∑ J
i=1 exp (−1/2BICi)

. (8.10) 

The resulting model averaged distribution is given by the sum of the individual 
distributions each weighted by p(Mi |X). as shown in Eq. (8.6). This procedure 
is referred to here are Bayesian averaging of frequentist estimates because the 
underlying models are frequentist and do not incorporate prior probabilities in 
estimation of their parameters. The underlying models in [26] are based on a mixture 
of two normal distributions with trends in means as applied in [43]. 

Bayesian model averaging is based on an in-sample measure of model fit: 
Bayesian Information Criteria in this case. Another potential issue with Bayesian 
model averaging is that it assumes that the true model is a member of the set of 
models under consideration. Yao et al. [47] state that Bayesian model averaging is 
inappropriate if the data generating process is not one of the models under consider-
ation. Under such a situation, Bayesian model averaging asymptotically converges 
to whichever model in the set of component models is closest in Kullback–Leibler 
divergence. They suggest an alternative to Bayesian model averaging which they 
refer to as stacking of Bayesian predictive distributions. 

8.3.2 Linear Pooling 

Bayesian model averaging combines models and is based on a measure of in-
sample fit. As noted above, [26] essentially weight models based on their Bayesian 
Information Criterion. One can also consider out-of-sample fit as a criteria for 
combining models or forecasts. Such is the case for linear pooling. The idea behind 
linear pooling was developed in [11] and later applied in macroeconomic forecasting 
by [12]. In linear pooling, the log predictive score function is used to construct the 
combination of forecasts. The log predictive score function is, as we show later, one 
possible criteria for evaluating forecast accuracy. Again, suppose that we have J 
possible models and that the forecasts from these models can be combined into a 
single forecast. We are interested in the predictive density of crop yields; i.e. we are 
combining density forecasts, not point forecasts.

The combined predictive density can be represented by the following 

.

J⎲

i=1

wif (xt |Xt−1,Mi), (8.11) 

where
∑ n

i=1 wi = 1. and wi ≥ 0. for all i. Thus the density is a linear combination 
and finite mixture of the individual predictive distributions with weights wi ..  The  
predictive density is for the variable of interest x at time t and is based on all 
information available which is given in Xt−1 .. According to [11], the term linear 
prediction pool is coined for this mixture by [4]. They also suggest that the finite
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mixture of Eq. (8.11) can be evaluated with a log score function as 

.

T⎲

t=1

log
J⎲

i=1

wif (xt |Xt−1,Mi). (8.12) 

The log score shown in Eq. (8.12) is the sum of log scores for the individual 
models. The log predictive score function for the single model in county i is given 
by

.LS(XT ,Mi) =
T⎲

t=1

log f (xt |Xt−1,Mi), (8.13) 

and is an evaluation of the predictive accuracy of the model at T points in time. 
Taking the log predictive score function as a measure of forecast ability, the natural 
step is to choose weights wi . to maximize the log score given in Eq. (8.12). Doing 
so maximizes the forecast ability (given the log score as a measure of this ability) 
of the mixture of component forecasts. 

8.4 Combining Densities for Multiple-Peril Yield Insurance 

We illustrate the application of the model combination techniques by applying 
them to forecast yield densities for three crops: upland cotton, peanuts, and flue-
cured tobacco. Our choice of these crops is motivated by the observation that most 
published research in crop insurance is geared toward corn and soybeans. However, 
sizeable amounts of the other major row crops (cotton, peanuts, and tobacco) are 
under federal crop insurance policies. These crops have also differed from corn and 
soybeans in terms of average loss ratios. Flue-cured tobacco, in particular, had an 
average loss ratio well above one over the last decade. 

Yield data were obtained from the National Agricultural Statistics Service for 
the period from 1955–2020 where available. In the case of tobacco, the data only 
run through 2000. We selected major producing states in the Southeast with enough 
counties with complete yield information to facilitate the analysis. Based on these 
criteria, we modeled cotton yield distributions in Arkansas, Georgia, Louisiana, 
Mississippi, and Tennessee; peanuts in Alabama, Georgia, and North Carolina, and 
flue-cured tobacco in North Carolina. 

Before fitting the county-level individual model, we first detrended the observed 
yields for each county using a local linear non-parametric regression and addressed 
potential heteroscedasticity in the residuals using the method introduced by [18]. 
Denote the residuals from the local linear non-parametric regression as ∈̂ t .. Then the 
following equation can be estimated to determine the degree of heteroskedasticity
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. ln (∈̂ t ) = α + γ ln Ŷt + ηt (8.14) 

where γ . is the form of heteroskedasticity and takes a value of zero when constant 
variance and two when the variance is proportional. Yields are then adjusted one 
step ahead such that 

.Y ∗
t = YT +1 + ∈̂ T

YT +1

Yt

γ̂ /2

(8.15) 

The resulting yields Y ∗
., referred to as adjusted yields hereafter, are assumed 

to follow a normal distribution and are treated as identically and independently 
distributed, aligning with common practice in the literature. These adjusted yields 
are utilized for estimating the corresponding parameters of the yield distributions. 
The underlying normal distributions are later combined with Bayesian model 
averaging and linear pooling. 

The underlying yields are treated as independent and identically distributed 
only within each county. This assumption is used to justify the estimation of 
the component models in each county. In other words, we are assuming that 
after detrending and adjusting for heteroskedasticity, the data in each county are 
independently drawn from the same distribution. This assumption is typically 
required to obtain consistent estimated of the density using standard methods 
whether parametric or non-parametric. However, even if the yield observations are 
independent and identically distributed, we have no guarantee that the assumption 
of the normal distribution for the conditional yield distribution is correct. 

Table 8.1 shows summary statistics of the yields for each crop. Variation in 
the raw yields is large, particularly in cotton and peanut where there have been 
substantial changes to yields over the period. In contrast, there is less variation in 
tobacco yields as tobacco has not received as much attention in terms of research 
and development of yield improving technology. The tobacco program, a federal 
policy that operated until the early 2000s, was a marketing quota. Farmers wishing 
to market tobacco were required to hold quota and in many cases, quota could 
only be sold or rented out within a certain geographic area. This program reduced 
incentives for growers to undertake the implementation of technologies that would 

Table 8.1 Summary statistics of crop yields 

Raw yields Adjusted yields 

Crop Counties Mean Median S.D. Mean Median S.D. 

Cotton 49 671.4. 639.5. 236.4. 1017 1024 234.8. 

Peanut 22 2732.2. 2761.0. 968.3. 4140 4247 962.8. 

Tobacco 23 1855.7. 1822.5. 322.6. 2392 2409 354.8. 

Note: cotton and peanut data cover the period from 1955 to 2020, while tobacco data span from 
1955 to 2000. Adjusted yields are calculated by detrending the raw yields, then adjusted for the 
heteroscedasticity to the most recent year for each crop. “S.D.” is an abbreviation for “standard 
deviation”
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lead to major yield enhancements [27]. The adjusted yields in Table 8.1 refer to the 
detrended yields used to form the probability distributions for the insurance policies. 
As the yields are projected at the end of the time series, the mean and median 
adjusted yields are substantially larger than those statistics for the raw yields. There 
is still substantial variation in the adjusted yields for all three crops. 

To assess the performance of our models, we employ the most recent 30 years of 
data as a test set. Specifically, for cotton and peanut data, we initiate the individual 
model estimation using data from 1955 to 1990. Subsequently, we forecast the one-
year ahead yield density in 1991, in line with the typical requirements of crop 
insurance programs for next-year yield forecasts. This one-year ahead estimation 
and forecasting process continues through the test set, concluding with density 
estimation in 2020 using data spanning from 1955 to 2019. The tobacco data 
undergo the same procedure, with the only distinction being the data span from 
1955 to 2000. In each year of the test set, we construct Bayesian model averaging 
and linear pooling combinations using all county models within each crop category. 
Bayesian model averaging weights are calculated using Eq. (8.10), while the 
weights of linear pooling are determined by maximizing Eq. (8.12). Note that 
the maximization required for the linear pooling density is essentially a convex 
optimization problem and can be implemented using widely available statistical 
software. 

Having combined the individual county models according to Bayesian model 
averaging and linear pooling, the log scores can be evaluated in each year. Figure 8.1 
shows the mean predictive log-scores (across all counties) in each year. The average 
log scores accruing to the models based on individual yield densities and Bayesian 
model averaging are surprisingly similar. We found that Bayesian model averaging 
tends to place a large weight on individual models in the density combination. This 
may not been surprising as Bayesian model averaging converges asymptotically to 
the best-fitting model in terms of Kullback-Leibler divergence. Clearly, the best-
fitting model in-sample will be the individual model estimated on own data. In 
contrast, the model constructed by linear pooling occasionally performs better than 
either the individual or Bayesian model averaging approaches. While differences are 
minimal in most years, there are occasional large differences. The overall superiority 
of linear pooling in this case may not be surprising given that it optimizes the 
weights to achieve the maximum log score. 

Figures 8.2 and 8.3 show the weights that are assigned to different counties by 
the Bayesian model averaging and linear pooling. Figure 8.2 shows the weight for 
three selected counties in 2021 (for cotton and peanuts) and 2001 (for tobacco). 
The county of interest is highlighted in black. Both BMA and linear pooling tend 
to place a high amount of weight on the county of interest (i.e. the own county 
component model) for these counties. Figure 8.3 shows the average weight on the 
own county component model across all years. BMA tends to place larger weight on 
the own county model; not surprising given that BMA is averaging across models 
using an in-sample measure of fit. Linear pooling, on the other hand, tends to place 
less weight on the own county model. The lack of weight for the own county could
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Fig. 8.1 Yearly Mean Predictive Log-scores by Crops Note: The predictive log scores are 
computed as the annual averages of all counties within each crop category. (a) Cotton: 2001–2020. 
(b) Peanut: 2001–2020. (c) Tobacco: 1981–2000 

result from the out of sample measure of fit along with the somewhat restrictive 
Gaussian model used for the underlying yield distributions. 

The practical impact of pooling models or forecasts is best examined by 
comparing the premium rates for yield insurance that would prevail under the 
different actuarial approaches. For simplicity, we consider the rates that would be 
generated for a yield insurance policy with a coverage level of 0.85. Figure 8.4 
shows the difference in the premium rates between Bayesian model averaging, 
linear pooling, and a rate derived in a similar way to the calculation of rates in the 
federal crop insurance program. This rate, which we denote as the Risk Management 
Agency (RMA) rate, is simply calculated using the mean loss implied by the 
adjusted yields. As is evident from the maps, the differences are relatively minor for 
Bayesian model averaging. Differences tend to be larger for linear pooling. Linear 
pooling may better capture extreme losses in the left tail of the distributions, thus 
resulting in the much larger rates observed in cotton and tobacco. 

Figure 8.5 shows premium rates for 2021 and 2001 (the final predicted year in the 
samples). We find that there are only minor differences between the rates produced
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Fig. 8.2 Maps of Weights for Selected Counties Note: The maps illustrate the geographic 
distribution of weights for the forecast combination using Bayesian Model Averaging (BMA) and 
Linear Pooling (LP) across three representative counties, with the selected county outlined in black. 
(a) Cotton: 2021 BMA, Lee Cty, AR. (b) Cotton: 2021 LP, Lee Cty, AR. (c) Peanut: 2021 BMA, 
Covington Cty, AL. (d) Peanut: 2021 LP, Covington Cty, AL. (e) Tobacco: 2001 BMA, Alamance 
Cty, NC. (f) Tobacco: 2001 LP, Alamance Cty, NC 

by the individual models and the RMA approach based on the empirical distribution. 
This also seems to be the case with Bayesian model averaging. The major difference 
comes from linear pooling. In general, rates are smaller for peanuts and cotton, 
although there are some outliers for cotton. The rates tend to be much higher 
for tobacco. These observations accord with some stylized facts about production 
of these commodities. Cotton and peanuts tend to have less yield risk compared
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Fig. 8.3 Maps of Average Weight on Own County Note: The maps display the temporal average 
of weights from each county’s own model by crop, derived from the forecast combination using 
Bayesian Model Averaging (BMA) and Linear Pooling (LP). (a) Cotton: BMA. (b) Cotton: LP. (c) 
Peanut: BMA. (d) Peanut: LP. (e) Tobacco: BMA. (f) Tobacco: LP 

to other commodities, with price risk being a more major concern. On the other 
hand, tobacco has tended to have especially high loss ratios in the federal crop 
insurance program, possibly suggesting that some aspects of yield risk are not 
properly accounted for in the simple models estimated here. 

Overall, we find that model and forecast combination can result in premium rates 
that differ substantially from individual parametric distributions. These differences 
are most pronounced for forecast combination techniques that rely on out-of-
sample predictive accuracy as a metric for combining individual models. Model and
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Fig. 8.4 Maps of Predicted Premium Rate Differences Note: The maps depict the percentage 
differences in premium rates between the proposed methods and the currently employed empirical 
rates by the RMA, specifically at an 85% coverage level. The RMA’s empirical rates are calculated 
as the mean loss based on the adjusted yields. (a) BMA and RMA: Cotton 2021. (b)  LP  and  RMA:  
Cotton 2021. (c) BMA and RMA: Peanut 2021. (d) LP and RMA: Peanut 2021. (e)  BMA  and  
RMA: Tobacco 2001. (f) LP and RMA: Tobacco 2001

forecast combination provide increased flexibility for estimating yield distributions, 
thus allowing the analyst to dispense with the strong assumptions that typically 
accompany parametric models of yield distributions.
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(a) (b) 

(c) 

Fig. 8.5 Box-plots of Estimated Premium Rates by Method. Note: The estimated premium rates 
are of all counties in each crop at the coverage level of 85%. (a) Cotton Premium Rates 2021. (b) 
Peanut Premium Rates 2021. (c) Tobacco Premium Rates 2001 

8.5 Conclusion 

This chapter evaluates two methods for model or forecast combination in gener-
ating predictive crop yield distributions for crop insurance. The predictive yield 
distribution is a key statistical construct underlying the pricing of most multiple-
peril crop insurance policies. Because subsidized multiple-peril crop insurance is 
becoming more popular worldwide, estimation and modeling of yield distributions 
has taken on new importance. Small changes in the way that the distributions are 
constructed can have sizeable impacts on government outlays and indemnities paid 
to agricultural producers. 

There is little theoretical direction for models of the yield distribution. Any 
parametric model is likely to be mis-specified, although the effects of this mis-
specification are not obvious and usually require empirical investigation. Limited 
data is available which also hinders the use of non-parametric approaches. To avoid 
the dangers of selecting a single model for evaluation of the yield distribution,
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several authors have applied model or forecast combination in the crop insurance 
context. 

We apply Bayesian model averaging and linear pooling to combine yield density 
forecasts across counties. The models in the pools of component forecasts are 
models estimated on nearby counties. The exercise considers rating insurance 
policies for upland cotton, peanuts, and flue-cured tobacco. Rates differed by county 
for all three crops. Linear pooling generated rates that were much higher in the 
case of tobacco. Because of the expanded pool of models, both Bayesian model 
averaging and linear pooling have the potential to better capture non-normal aspects 
of the yield distribution. This may result in improved modeling of the left tail of the 
distribution which is typically of most interest in crop insurance applications. 

Several issues remain for further research. There has not been an evaluation of 
the forecast combination paradox in this context. This paradox has to do with the 
observation that simple forecast combination methods (such as averaging) can, and 
often do, outperform more complicated approaches. Model and forecast combina-
tion appear to have mostly been applied to the same underlying statistical model 
estimated on different geographical units. There is no reason why these methods 
could not be applied to different statistical models for the same unit, or for different 
units. The reasoning for combining models from nearby units is that the units 
are typically subject to similar weather conditions. However, as discussed in [11], 
forecasts that do not have superior fit overall, sometimes receive significant weight 
in a forecast combination. In any event, there are several avenues for improved crop 
insurance rating through model and forecast combination. Computational advances 
now allow for the routine application of such procedures, bringing with them the 
potential for better actuarial methods. 

References 

1. Arata, L., Fabrizi, E., & Sckokai, P. (2020). A worldwide analysis of trend in crop yields and 
yield variability: Evidence from fao data. Economic Modelling, 90, 190–208. 

2. Assa, H. (2015). On optimal reinsurance policy with distortion risk measures and premiums. 
Insurance: Mathematics and Economics, 61, 70–75. 

3. Assa, H., Wang, M., & Pantelous, A. A. (2018). Modeling frost losses: Application to pricing 
frost insurance. North American Actuarial Journal, 22(1), 137–159. 

4. Bacharach, J. (1974). Bayesian dialogues. Christ Church College, Oxford University. Unpub-
lished manuscript. 

5. Bulut, H., & Fortenbery, T. R. (2022). Reevaluating the use of volatility factor in crop insurance 
premium rating. Journal of the Agricultural and Applied Economics Association, 1(2), 124– 
135. 

6. Claassen, R., & Just, R. E. (2011). Heterogeneity and distributional form of farm-level yields. 
American Journal of Agricultural Economics, 93(1), 144–160. 

7. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. Interna-
tional Journal of Forecasting, 5(4), 559–583. 

8. Dasgupta, A., & Raftery, A. E. (1998). Detecting features in spatial point processes with clutter 
via model-based clustering. Journal of the American Statistical Association, 93(441), 294–302. 

9. Gallagher, P. (1987). Us soybean yields: estimation and forecasting with nonsymmetric 
disturbances. American Journal of Agricultural Economics, 69(4), 796–803.



8 Model and Forecast Combination for Predictive Yield Distributions in Crop. . . 215

10. GAO (2023). Crop insurance: Update on opportunities to reduce program costs. United States 
Government Accountability Office. https://www.gao.gov/products/gao-24-106086 

11. Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164(1), 
130–141. 

12. Geweke, J., & Amisano, G. (2012). Prediction with misspecified models. American Economic 
Review, 102(3), 482–486. 

13. Glauber, J. W. (2013). The growth of the federal crop insurance program, 1990–2011. 
American Journal of Agricultural Economics, 95(2), 482–488. 

14. Goodwin, B. K., & Hungerford, A. (2015). Copula-based models of systemic risk in us 
agriculture: Implications for crop insurance and reinsurance contracts. American Journal of 
Agricultural Economics, 97(3), 879–896. 

15. Goodwin, B. K., & Ker, A. P. (1998). Nonparametric estimation of crop yield distributions: 
implications for rating group-risk crop insurance contracts. American Journal of Agricultural 
Economics, 80(1), 139–153. 

16. Goodwin, B. K., Roberts, M. C., & Coble, K. H. (2000). Measurement of price risk in revenue 
insurance: implications of distributional assumptions. Journal of Agricultural and Resource 
Economics, 195–214. 

17. Goodwin, B. K., Harri, A., Rejesus, R. M., & Coble, K. H. (2018). Measuring price risk in 
rating revenue coverage: Bs or no bs? American Journal of Agricultural Economics, 100(2), 
456–478. 

18. Harri, A., Coble, K. H., Ker, A. P., & Goodwin, B. J. (2011). Relaxing heteroscedasticity 
assumptions in area-yield crop insurance rating. American Journal of Agricultural Economics, 
93(3), 707–717. 

19. He, J., Rejesus, R., Zheng, X., & Yorobe, Jr. J. (2018). Advantageous selection in crop 
insurance: Theory and evidence. Journal of Agricultural Economics, 69(3), 646–668. 

20. Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model 
averaging: a tutorial (with comments by m. clyde, david draper and ei george, and a rejoinder 
by the authors. Statistical Science, 14(4), 382–417. 

21. Hungerford, A., & Goodwin, B. (2014). Big assumptions for small samples in crop insurance. 
Agricultural Finance Review, 74(4), 477–491. 

22. Iman, R. L., & Conover, W.-J. (1982). A distribution-free approach to inducing rank correlation 
among input variables. Communications in Statistics-Simulation and Computation, 11(3), 311– 
334. 

23. Just, R. E., Calvin, L., & Quiggin, J. (1999). Adverse selection in crop insurance: Actuarial 
and asymmetric information incentives. American Journal of Agricultural Economics, 81(4), 
834–849. 

24. Ker, A. P., & Coble, K. (2003). Modeling conditional yield densities. American Journal of 
Agricultural Economics, 85(2), 291–304. 

25. Ker, A. P., & Goodwin, B. K. (2000). Nonparametric estimation of crop insurance rates 
revisited. American Journal of Agricultural Economics, 82(2), 463–478. 

26. Ker, A. P., Tolhurst, T. N., & Liu, Y. (2016). Bayesian estimation of possibly similar yield 
densities: implications for rating crop insurance contracts. American Journal of Agricultural 
Economics, 98(2), 360–382. 

27. Kirwan, B. E., Uchida, S., & White, T. K. (2012). Aggregate and farm-level productivity 
growth in tobacco: Before and after the quota buyout. American Journal of Agricultural 
Economics, 94(4), 838–853. 

28. Liu, Y., & Ker, A. P. (2020). Rating crop insurance contracts with nonparametric bayesian 
model averaging. Journal of Agricultural and Resource Economics, 45(2), 244–264. 

29. Moral-Benito, E. (2015). Model averaging in economics: An overview. Journal of Economic 
Surveys, 29(1), 46–75. 

30. Nelson, C. H. (1990). The influence of distributional assumptions on the calculation of crop 
insurance premia. Applied Economic Perspectives and Policy, 12(1), 71–78. 

31. Ozaki, V. A., Goodwin, B. K., & Shirota, R. (2008). Parametric and nonparametric statistical 
modelling of crop yield: Implications for pricing crop insurance contracts. Applied Economics, 
40(9), 1151–1164.

https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086
https://www.gao.gov/products/gao-24-106086


216 Y. Liu et al.

32. Park, E., Brorsen, B. W., & Harri, A. (2019). Using bayesian kriging for spatial smoothing in 
crop insurance rating. American Journal of Agricultural Economics, 101(1), 330–351. 

33. Park, E., Brorsen, B. W., & Harri, A. (2020). Spatially smoothed crop yield density estimation: 
physical distance versus climate similarity. Journal of Agricultural and Resource Economics, 
45(3), 533–548. 

34. Park, E., Harri, A., & Coble, K. H. (2022). Estimating crop yield densities for counties with 
missing data. Journal of Agricultural and Resource Economics, 47(3), 634–655. 

35. Ramsey, A. F. (2020). Probability distributions of crop yields: a bayesian spatial quantile 
regression approach. American Journal of Agricultural Economics, 102(1), 220–239. 

36. Ramsey, A. F., Ghosh, S. K., & Goodwin, B. K. (2020). Rating exotic price coverage in crop 
revenue insurance. Agricultural Finance Review, 80(5), 609–631. 

37. Ramsey, A. F., & Liu, Y. (2023). Linear pooling of potentially related density forecasts in crop 
insurance. Journal of Risk and Insurance, 90(3), 769–788. 

38. Ramsey, A. F., Goodwin, B. K., & Ghosh, S. K. (2019). How high the hedge. Journal of 
Agricultural and Resource Economics, 44(2), 227–245. 

39. Santeramo, F. G. (2018). Imperfect information and participation in insurance markets: 
evidence from Italy. Agricultural Finance Review, 78(2), 183–194. 

40. Sherrick, B. J., Zanini, F. C., Schnitkey, G. D., & Irwin, S. H. (2004). Crop insurance valuation 
under alternative yield distributions. American Journal of Agricultural Economics, 86(2), 406– 
419. 

41. Skees, J. R., Black, J. R., & Barnett, B. J. (1997). Designing and rating an area yield crop 
insurance contract. American Journal of Agricultural Economics, 79(2), 430–438. 

42. Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 
9(6), 449–460. 

43. Tolhurst, T. N., & Ker, A. P. (2015). On technological change in crop yields. American Journal 
of Agricultural Economics, 97(1), 137–158. 

44. Wang, X., Hyndman, R. J., Li, F., & Kang, Y. (2022). Forecast combinations: An over 50-year 
review. International Journal of Forecasting, 39(4), 1518–1547. 

45. Wen, K. (2023). A semiparametric spatio-temporal model of crop yield trend and its 
implication to insurance rating. Agricultural Economics, 54(5), 662–673. 

46. Wu, S., Goodwin, B. K., & Coble, K. (2020). Moral hazard and subsidized crop insurance. 
Agricultural Economics, 51(1), 131–142. 

47. Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average bayesian 
predictive distributions (with discussion). Bayesian Analysis, 13(3), 917–1007. 

48. Zhu, Y., Goodwin, B. K., & Ghosh, S. K. (2011). Modeling yield risk under technological 
change: Dynamic yield distributions and the us crop insurance program. Journal of Agricul-
tural and Resource Economics, 192–210. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 9 
A Recursive Method on Estimating 
ARFIMA in Agricultural Time Series 

Simon Wang and Nina Ni 

Abstract In this paper, we apply a recursive method to financial data to determine 
their corresponding Hurst exponent and the optimal Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) models. We begin by introducing the 
long-range dependence phenomenon and methods to address it in time series 
modeling. Then, a recursive algorithm, where the Hurst exponent is estimated 
by applying an autoregressive filter to the data repeatedly until it converges, is 
empirically tested with simulated data for stability and convergence. Finally, we 
apply this convergence approach to real commodity data sets. We identify the 
optimal ARFIMA models for each commodity studied and estimate the Hurst 
exponent as well as their corresponding ARFIMA parameters. Our results provide 
a stable method for estimating the Hurst index and fitting stationary long-memory 
processes to ARFIMA models. 

9.1 Introduction 

Modeling commodity prices and their derivatives has been problematic for 
researchers and practitioners, one major obstacle is the existence of long-range 
dependence (LRD) within the data, which limits the standard short memory model 
approach. It is well known that many macroeconomic time series data are followed 
by long memory process, this phenomenon in economics was first discovered by 
[1]. He summarized that the economic and financial historical data typically exhibit 
some distinct low-frequency non-periodic cyclical patterns. 

Mathematically speaking, a stationary process Yt . has the long memory property, 
if for its auto-correlation function ρ(k) = Cov(Yt , Yt+k)/V ar(Yt ). satisfies the 
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following: 

. lim
n→∞

n⎲

k=−∞
|ρ(k)| = ∞.

In other words, a long memory series has an auto-correlation function that decays 
hyperbolically, slower than the geometrical tail “short memory” e.g ARMA. Thus, 
it may be predictable at long horizons. The economic application of LRD has 
been extended from macroeconomics to finance. For example, in [2] the author 
provides details of estimating long memory models to price. [3] finds the long-
memory process that provides a good explanation of the behavior of inflation. 
Simultaneously, another paper [4], shows that the properties of long memory models 
and their response to shocks are quite different from high-order autoregressive 
models. 

On the other hand, [5] introduces the concept of a long memory to measure 
the persistence of stationary processes. In [5] , the Autoregressive Fractionally 
Integrated Moving Average (ARFIMA) process is referred to model a time series 
with long-range dependence. For a stationary time series, an ARFIMA refers 
to an Autoregressive moving average (ARMA) model where the innovations are 
fractional white noise, which can be rewritten in lag operator notation as: 

. Ф(B)(1 − B)d(Yt − μ) = Θ(B)εt .

where d is the fractional integration parameter that allowed to take non-integer 
values, B is the lag operator (BnYt = Yt−n,. n = 1, 2, 3....), Ф(B) = (1 −
φ1B − φ2B

2 − · · · − φpBp). specifies the AR lag polynomial, and Θ(B) =
(1 + θ1B + θ2B

2 + · · · + θqBq). specifies the MA lag polynomial. The properties 
of Yt . depend on the value of the fractional integration parameter d.  In  an  ARFI  MA
process, 0 < |d| < 0.5., thus the process Yt . can be considered as a long memory 
process. 

Regarding the estimation methods for ARFIMA process, there exists three main 
approaches: the maximum likelihood methods (see [6–8]), the semi-parametric 
methods (see [9, 10]) and the heuristic methods (see [11–13]). The maximum 
likelihood estimator provides a consistent approach to estimate all the parameters 
of interest simultaneously, but it usually generates unstable results and high com-
putational costs due to the ill-behaved likelihood function. The last two approaches 
also called two-step estimation methods, in other words, to fit an ARFIMA(p,d,q) 
model we estimate the long memory parameter d first, then the second step of the 
procedure is to fit ARMAmodel to the data. More specifically, the Geweke & Porter-
Hudak (or GPH) method [9] is based on the behavior of the spectral density of 
ARFIMA process near frequency zero, but it shows a bias in the presence of strong 
autocorrelation in the ARMA process. A modified version of the GPH estimator by 
using a smoothed periodogram is introduced to reduce the bias by [10]. However, 
many researchers such as [14] and [15] suggest the estimators using the heuristic
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methods is more robust without studying the asymptotic properties, and this is the 
reason why in this paper we focus on the heuristic approach on detecting the long-
range dependence. 

Fractal analyses became more popular in the finance community recently, one 
particular application is the use of Hurst exponent in financial or economical time 
series data. Hurst exponent or Hurst index provides a measure for long term memory 
and fractality of a time series. Due to its robustness and few assumptions, it finds a 
wide applications in time series analysis. In [16], Peters uses the Hurst process and 
R/S .Analysis in testing and researching Capital Markets. He introduced the Fractal 
Markets Hypothesis (FMH), which avoids the classical assumptions that returns are 
log-normal and uncorrelated for financial mathematical models. For a stationary 
process, the values of the Hurst exponent, denotes as H ∈ (0, 1)., divides time 
series into three categories: a completely random series with H = 0.5. and an anti-
persistent series or a persistent (trend) series with H < 0.5. and H > 0.5. separately. 
The strength of anti-persistent increases as H approaches 0 and the strength of trend 
increases as H approaches 1.

It is proved in [9], the following relation exists between the Hurst exponent H 
and the fractional parameter d for the same time series.

Theorem 9.1 Let Yt . be an ARFIMA process with parameter d (−0.5 < d < 0.5)., 
if and only if, it is also a stationary process with Hurst exponent H = d + 0.5.. 

Proof See[9]. ⨅⨆
It is known in empirical study that the estimation of ARIFMA model is not 

stable due to the ill-behaved likelihood function, see [17–23] for details. Here, 
from Theorem 9.1, we employ a convergence algorithm to fit the data. The 
algorithm estimates an initial Hurst exponent first, then several loops follow-by to 
de-factionalize the data until the most stable Hurst index is found, the finally Hurst 
index can be transferred to our fractional parameter to fit the selected ARFIMA 
model. In the rest of the paper, we will test a recursive approach on estimating the 
Hurst exponent and further the ARFIMA parameters for the corresponding time 
series. Then, we will apply the algorithm to a set of commodity data, the matching 
Hurst index and optimal AFRIMA models will be reported. 

9.2 A Recursive Approach on Estimating Hurst Exponent 

Due to the nature of our study here, when we choose the methods for estimating 
the Hurst exponent, the stability and efficiency are considered primarily. Thus, three 
methods are short-listed and used in our research, see [23–26] for details. These are: 
Rescaled Range Statistic Method (RS in short), Aggregated Variance Method (AV 
in short) and a recursive implementation of the AV method (OT in short).
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9.2.1 Existing Methods Estimate the Hurst Exponent 

Range Statistic Method (RS in short) or the rescaled range or R/S . analysis is 
one of the most well-known technique for estimating Hurst parameter. It is able to 
distinguish a random series from a fractal series, irrespective of the distribution 
of the underlying series (Gaussian or non-Gaussian). Now, given a sequence 
of n observations y1, y2, · · · , yn ., then R captures the maximum and minimum 
cumulative deviations of the observations yt . from its mean μ. , and it is a function 
of time: 

. R(n) = max
1⪅ t≤n

⎾   
t⎲

i=1

(yi − μ)

⏋
− min

1⪅ t≤n

⎾   
t⎲

i=1

(yi − μ)

⏋
.

S(n). is the standard deviation of the original time series: 

. S(n) =
 |||1

n

n⎲

i=1

(yi − μ)2.

Then the R/S . ratio of R and the standard deviation S can be calculated and it is 
called the rescaled range statistic or R/S . statistic. Meanwhile, the R/S . ratio of the 
original time series can be estimated by fitting the power law 

. E(R/S) = CnH .

where C is a positive, finite constant independent of n. And for some value of n,  the  
Hurst exponent H can be calculated by

. H = log(R/S)

log(n)
, 0 < H < 1.

Hence the estimate of H can be found by calculating the slope of the logarithm 
of R/S . against log(n). using regression, the first order liner function is adopted 
in this paper. Based on our observation from the data itself, for RS method, we 
choose a constant time span of 210 . as the observation rolling windows size. This 
method is able to obtain an robust estimator even for data followed by a heavy-tailed 
probability density function (see [27]). On the other hand, the exact distribution of 
the R/S . statistic is difficult to determine. So, it is biased and affected by the non-
stationarity in the data. One possible way in [26] to reduce the bias is to ignore 
the points on the extreme left and right of the log-log plot, and use only the points 
in the central region of the plot, the former due to the influence of the short-term 
dependence structure while the latter because only a few observations are included. 
However, based on our empirical study, we aplly another possible approach in our 
paper: instead of using the slope of common logarithm (using base 10) of R/S .
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against log(n). we are going to adjust it to the binary logarithm (using base 2), that 
is H = log2(R/S)/ log2(n)., which allows us to estimate the slope with all the 
available points. 

Generally speaking, the Aggregated Variance method (AV in short) introduced 
in [28] is the analysis of the variances of aggregated time series processes. Given 
a sequence of n observations y1, y2, · · · , yn ., one property of long-memory process 
is that the variance of the sample mean μn . converges to zero slower than the rate 
n−1

., where n is the sample size. For a large sample size n they have following 
relationship (see [29]): 

. V ar(μn) ∼ cn2H−2.

where c > 0.. This suggest the AV method for estimating H : dividing the series into 
n/m. blocks of size m and compute the sample mean in each blocks

. μm(k) = 1

m

km⎲

i=(k−1)m+1

yi , k = 1, 2, · · · , n/m.

and the sample variance 

. s2(m) = (n/m − 1)−1
n/m⎲

k=1

[μm(k) − μn]2.

Hence plotting log s2(m). against log(m). should yield points scattered with slope 
equal to 2H − 2., then the Hurst exponent H can be estimated by evaluating the 
slope through regression, again here a first order liner function is adopted. For the 
AV method, we choose a constant block size of 1000 for splitting the data.

A slight improvement from aggregated variance method is we can update the 
block size constantly inside the estimation process. We implement another method 
that will be explained later in full details (OT in short), where instead of using a fixed 
size block size for splitting the data, it is dynamically adjusted during the estimation 
process until the block size is smaller than 5. 

9.2.2 Stability for Current Methods 

In order to see which method works the best, we conduct an further experiment 
on the simulated data where we know the exact Hurst exponent in Table 9.2.  For  
generating artificial ARFIMA process, we choose the fast algorithm processes in 
[30] where the calculation speed (number of arithmetic operations) is improved from 
order T 2

. to T log(T )., T is the length of the time series.
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In the Table 9.2, we test the accuracy of all chosen methods on estimating 
the Hurst exponent for simulated stationary data at all Hurst range. Recall in an 
ARFIMA process, the process is stationary if − 0.5 < d < 0.5., and according to 
Theorem 9.1, one can have d = H − 0.5.. Thus, we simulate 10,000 data for each of 
the AFRIMA(0,d,0), AFRIMA(0.5,d,0), AFRIMA(0,d,0.3), AFRIMA(0.5,d,0.2) 
and fractional Brownian Motion processes with the fractional parameter d ranges 
from − 0.5. to 0.5. separately. Then, we apply all three different methods 5000 
times on each group of the 10,000 data from a totally of 55 groups and calculated 
the means and standard deviations from the Hurst exponent they have estimated. 
Finally, we calculate the average mean error and average standard deviation in each 
of the five models for comparison. Generally speaking, the method with the smallest 
average error and average standard deviation is the most accurate one for all range of 
Hurst exponent estimation, and we do find the AV and OT method perform better in 
terms of mean values. However, after a closer look at the real data sets we have, we 
realized that most of them may have a Hurst index around 0.5, and the RS method 
had better results in this area in terms of mean values and low variance in general. 
We decided to keep all three estimations in the following study and use the average 
of them as our initial Hurst exponent estimation. 

In Figs. 9.1 and 9.2, we visualize part of the simulated estimation results for three 
different methods in box-plots. Again for ARFIMA(0,d,0) and ARFIMA(p,d,q) 
models, one can see all method generally work well when d = 0., i.e. H = 0.5.. 
However, we also notice that the traditional heuristic approaches work better with 
ARFIMA(0,d,0) mode or the pure fractional noise. This can be explained by the 
short memory part of the time series can act like a disruptor when the measure for 
long memory is applied. From this observation, one can see if one can remove the
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Fig. 9.1 ARFIMA(0,d,0) process box-plot (Blue: RS, Magenta: AV, Green: OT)



9 A Recursive Method on Estimating ARFIMA in Agricultural Time Series 223

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Real d

-0.5

-0.4

-0.3

-0.2

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

E
st

im
at

ed
 d

 
Box plot of estimations for ARFIMA(p,d,q) processes 

Fig. 9.2 ARFIMA(0.5,d,0.2) process box-plot (Blue: RS, Magenta: AV, Green: OT) 

short memory part from a time series data, and only estimate the Hurst exponent 
for the long memory part, a more accurate fitting algorithm may be found for the 
measure for long memory. 

9.2.3 A Recursive Approach 

Adopting the idea from [23], where the authors used an algorithm on testing 
the stability of Hurst estimation, we adopt a similar convergence procedure in 
estimation the parameters for an ARFIMA model. The procedure goes as follows: 
we first estimate an initial Hurst exponent from the methods we mentioned above, 
then an infinite autoregressive filter, Yt = (1−B)dXt =∑∞

s=0 b(s)BsXt ,. is applied 
on the data Xt . with the Hurst exponent d = H − 0.5. we just estimated. With 
the newly generated data Yt ,. we hire the traditional time series methodology (i.e. 
Box-Jenkins Method) to find an adequate ARIMA model for it. After estimate the 
polynomials of the ARIMA model, a new time series is generated by the filter: 

Ŷt = Ф̂(B)

Θ̂(B)
Xt . in order to find the “pure” ARFIMA(0,d,0) process. Finally, a 

recursive method is applied to estimate Hurst exponent again from Ŷt .until the Hurst 
index converges. We provide the following list for the details of each step in our 
algorithm: 

1. De-seasonality and inflation adjust the data if needed. 
2. Check the stationarity and generate the initial time series data Xt ..
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(a) Augmented Dickey-Fuller (ADF) test. 
(b) Take the increment, log difference or return ratio if needed. 
(c) Adjust observed data and generate the initial stationary time series Xt .. 

3. Initial calculation of the Hurst parameter for Xt .. 

(a) Rescaled Range Statistic Method (R/S . procedure). 
(b) Aggregated Variance Method. 
(c) Recursive implementation of the AV method. 
(d) Use the average of (a), (b) and (c) as our initial estimation for Hurst. 

4. Use H = d + 0.5. to find the initial value of d , the fractional parameter for the 
ARFIMA process. 

(a) See details and proofs in [9]. 
(b) Note, H is from d , but one cannot use d to estimate H .

5. Calculate the underlying time series Yt . for the ARIMA model after removing the 
fractional fact d . 

(a) Using the infinite autoregressive filter: Yt = (1 − B)dXt = ∑∞
s=0 b(s)Bs

Xt =∑∞
s=0 b(s)Xt−s .. 

(b) where b(s) = Π s
k=1

k + d − 1

k
= ⎾(s − d)

⎾(−d)⎾(s + 1)
.. 

(c) Xt . is the observed data after stationary adjustments. Choose a large s to stop 
the summation. (In our case we choose s = 150.). 

6. Hire traditional time series methodology to find the most adequate ARIMA 
model for the de-fractionalized data Yt . and estimate the parameters. 

(a) One can choose the Box-Jenkins Method here. 
(b) In our practice, we provide a set of time series models from ARMA(0, 0). to 

ARMA(6, 6). and estimate all models in parallel. 
(c) The results polynomials for the ARMA (Ф(B)Yt = Θ(B)∈  t . )  are  saved  a  s

Ф̂(B). and Θ̂(B).. 

7. Using the ARMA filter, calculate Ŷt = Ф̂(B)

Θ̂(B)
Xt . to find the pure 

ARFIMA(0, d, 0). process. 
8. Re-estimate fractional parameter d from the “pure” process Ŷt ..And repeat steps 

3–8. 
9. Stop the algorithm until d conver ges.

9.2.4 Convergence and Stability 

To test the convergence and stability of our algorithm, we conduct another two 
experiments on the simulated data in Tables 9.3 and 9.1 (Table 9.2). In Table 9.3,
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we test the three different Hurst exponent methods together with their average 
on simulated data to monitor the convergence of our algorithm in controlled 
environments. We simulate 10,000 data for three types of ARFIMA models: with 
AR term, with MA term and with AR and MA terms. The “Steps” in the second 
column of the table indicate the current loop of the recurrent algorithm as we 
proposed above. One can find, for all simulated data with all methods, we observe 
the convergence in the values of d (thus the convergence of Hurst exponent), the 
convergences happen quickly and usually stable within the first 10 steps. The most 
right column provides the average error for each method at each step, which, again, 
indicated the AV and OT method work better in most of the cases. Note, if we 
take the Hurst exponent as the average of the three methods, we result some decent 
results in terms of overall error and convergence speed.

In Table 9.1, we provide the empirical results for our algorithm on estimating 
the parameters for ARFIMA model when apply on simulated data. These are fitting 
results from six individual random run of our algorithm. Six scenarios are provided 
here to simulated ARFIMA process both with positive and negative Hurst exponent 
and different ranges of the fractional parameter. The simulated time series all have 
10,000 time steps, which is similar to the real data we have, and one can find a 
random selection of our fitting procedure can result some adequate performance 
with acceptable average errors in an overall prospective. 

9.3 Examples on Fitting Commodity Data 

9.3.1 Commodity Data Sets and Their Stationary 

In this section, we fit commodity data into ARFIMA models and select the best 
model for each product using the algorithm above. The data we choose is the daily 
trading data from Bloomberg for the past 20 or 30 years. There are commodity index 
or future prices ranging from industry oil, metal, livestock (animal) to non-livestock 
(crops). Unlike the stock prices, the price for commodities and the relevant financial 
derivatives are less liquid and may not be completely hedgeable. This may be due to 
the properties of physical goods and their storage consideration. But, such properties 
provide a good opportunity to estimate the Hurst exponent, as a Hurst exponent 
that is not 0.5. indicates the underlying time series is not a completely random 
series which is unpredictable. Table 9.4 summaries the statistical property of the 
selected data together with the p-values from the Kwiatkowski–Phillips–Schmidt– 
Shin (KPSS) tests and the augmented Dickey–Fuller test (ADF) tests for stationary. 
One can tell, most of the data are heavily skewed, with fat tail when compare to 
normal distribution whose skewness is 0 and kurtosis is 3. 

On the other hand, from the p-values, it is not hard to see in general, all of 
the prices are not stationary. This may cause troubles for us, as our alogrithm 
assumption requires the stationarity of the data. Thus, instead of studying the price
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data directly, we choose to work with the volatility of the price. The log differences 
(log return, defined as Yt = logXt − logXt−1 .) and the first difference (increments, 
defined as Yt = Xt −Xt−1 .) are typical choices for empirical study for financial time 
series as they fit the underlying assumption for most of the financial mathematics 
theories and easy to work with. Also, it is mentioned in [31] the absolute values of 
the log return is a good measure for data’s long memory. In the following section, 
we will only work absolute values of log returns and the increments data. Table 9.5 
shows the KPSS and ADF tests for the processed data (Diff: increments; Log: log 
difference), except for “CME FEEDER CATTLE INDEX” and perhaps “BRENT 
CRUDE OIL INDEX” in KPSS tests, all other commodities exhibit stationarity after 
processing. 

Note, the disadvantage of taking the log differences or calculate the increments 
is that we change the data distributions. So the interpretations of the Hurst exponent 
will be different as well when compared to the Hurst exponent calculated from the 
original data. For instance, a Hurst exponent bigger than 0.5. for the original price 
data indicates long-rang dependence for the price itself, which means the future 
price of this commodity is largely depend on its previous price for a long time. 
This could be caused by the product’s natural characteristics or trading behaviors 
from traders. However, if we find commodity increments’ or log returns’ Hurst 
exponent is bigger than 0.5., then we cannot make the previous judgment. Rather, 
this persistence mean the price movement of this commodity is consistent, i.e. large 
volatility is more likely to be followed by another huge disturbance in price data. 
Meanwhile, a Hurst exponent smaller than 0.5. for these measure could be the traders 
has mixed predictions for the commodity price thus the it changes rapidly and 
unpredictably. 

9.3.2 Practical Considerations 

It is obvious that the infinite filter in step 5 from the algorithm above converges to 
a small enough number that can be ignored eventually, as a mater of fact, in our 
practice we find s = 150. is an adequate choice if not too large (See Fig. 9.3 for a 
comparsion on b(s).’s convergence with differnce d values). However at step 6, we 
reckon it is not feasible to choose the best ARIMA model for the time series data 
manually even if we follow the Box-Jenkins method. This is essentially because 
we are dealing with a data set with 40 different types of commodities, it will be 
time consuming to compare several models for each product and never mention 
people’s perspective varies. To solve this problem, after individual studying the data 
samples, we realize usually a model smaller than ARMA(6, 6). is usually good 
enough in terms of modeling, simulation and prediction within our experience. 
Thus, this problem can be solved by adopting a range of models from ARMA(0, 0). 
to ARMA(6, 6). for the filtering procedures, more specifically, for each commodity, 
the algorithm runs separately on each of these possible combinations for a totally of 
49 times. All fitting results and statistical testing parameters are saved in local files.
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Fig. 9.3 The convergence of b(s). for d = −0.45. to d = 0.45. 

After all models are estimated, a third program compares the Akaike or Bayesian 
information criteria (AIC, BIC) from each realization of the estimation and choose 
the model according to the AIC and BIC under the condition that convergence in 
d happens. One consideration of this implementation is the calculation efficiency 
and running time. However, we think this approach does not necessarily hold when 
examining the log-difference running-time for the whole algorithm, as each model 
filter is estimated separately and does not require any information from the previous 
steps, so one can implement them running in parallel thus saving a signification 
amount of running time (Table 9.6). 

Table 9.7 is the output example for “CBOT Corn Futrue” increment data. In 
total, 49 models are estimated using the algorithm above. The “NoS” stands for 
number of steps, it indicates the recursions times for d to converge to a stable 
value. A minimum boundary of 9 is set for stability concerns. One can see, all 
models converge with relatively fast converge speed and different models do provide 
significantly different estimation of the fraction parameter. Eventually, an AFRIMA 
(5,−.0.0218,5) is chosen by sorting the “AICBIC” in an ascending order, and the 
Hurst exponent is estimated as the average of the best 3 models. We also provide 
Fig. 9.4 for some of the convergence test. In these figures, the logarithm of the 
convergence ratios calculated from both increments data and log difference are 
presented, we select some of the most representative commodities and one can see 
they all converge very fast usually within 9 steps.
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Fig. 9.4 Log plots of convergence ratios (Left: increments Right: Log difference) 

9.3.3 Hurst Exponents and ARFIMA Model Results 

Tables 9.8 and 9.9 provide the final results from us. In these tables, we list the best 
ARFIMA model for each of the 40 commodities and report their model parameters 
in the increments form and Log difference form. We see the algorithm works with
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all commodities and they usually converge very fast (a minimum step of 9 is used in 
all recursions for stability reasons). The details of the estimation of each commodity 
is saved in the local files (provide on request) with the convergence test as well as 
statistical test values for each parameters. In Fig. 9.6,  we  give  an  overview  of  the  
Hurst exponent for all commodities and the chosen optimal model for each of them. 
As one can see in the vertical bar plot, the orange bars indicate the Hurst exponent 
for the absolute values log difference data and the blue bar are for the first difference 
data. We find the log return generates larger Hurst exponent than the increments 
for all data, this results consist with the results from [31, 32], where the Hurst 
exponents for agriculture commodities are calculated in another two difference 
methods. Furthermore, there is no obvious pattern in the optimal ARFIMA models 
our algorithm picked, but we see an consideration for a total number of 49 models is 
indeed needed, as some of the commodities require pretty large model to cooperate 
their dynamics. 

For those commodities which have index, future or spot prices, we compare their 
Hurst exponent in Fig. 9.5. Despite the facts that a future contact and an index for 
the same commodity may not necessary written on the exactly same product, we 
can still observe a trend where future prices tend to have a closer value to 0.5. 
when compare to index prices, and spot prices always have a larger Hurst exponent 
than the future and index prices. Recall a Hurst exponent close to 0.5. means more 
liquidity in the contract based on the assumptions from financial mathematics. It is 
not hard to understand future prices as derivatives prices are trading more frequently 

Fig. 9.5 Hurst exponent comparison among future and index
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than indexes, thus behaves more randomly. And since the spot price of a product is 
mostly related to the product itself and all the seasonal facts affects it, the larger 
values in Hurst exponent, which indicate high persistence, for the spot data also 
seems reasonable to us. 

Another interesting discovery for commodity categorization is that agriculture 
product tends to have smaller Hurst than industry products if we sort the commodity 
with respect to their Hurst exponent calculated from increments. This pattern does 
not necessary holds when exam the log difference data or if the Hurst exponent is 
calculated by RS method without the recursion. See Table 9.6, where we summarize 
the estimation results for Hurst exponent with increments data and log difference 
data for both our method and the RS method in on run, this pattern only shows 
in “Hurst(Diff)”. In Fig. 9.6, we color-coded all commodities with respect to their 
categories. From bottom to top, red is for livestock or animal, green is for non-
livestock or crops, grey is for metal and orange is or industrial oil. Averagely 
speaking, despite feeder cattle, one can observe a general trend where Hurst 
exponent goes from small to large following the order of livestock, non-livestock, 
metal and eventually industrial oil. And for most of the cases, live and non-live stock 
commodities have Hurst exponent that is smaller than 0.5. for their first difference 
while metals and oils have Hurst exponent larger than 0.5.. We do not endeavour to 
explain the reason behind this observation, as this is not within the scope of this 
paper. But we believe this differences between commodities could be cased partly 
by their demand elasticity. As similar discoveries have been found by [33] for CEV 
model parameters on agriculture product data, we think the for industrial goods, 
the demand is harder to be substitute, for example, certain products and industrial 
processes require copper as resources, it is not feasible and economical to find a 
substitution for copper at a short time if the price of copper goes up, thus, the 
demand for copper is more elastic. The same argument goes for other metals and 
even for oils. However, on the other hand, agriculture commodities like crops and 
particular meats are easy to be substituted. 

9.4 Conclusion 

In conclusion, this paper has demonstrated the application of a recursive method to 
the agricultural prices for the determination of their Hurst exponent and optimal 
Autoregressive fractionally integrated moving average (ARFIMA) models. We 
initially discussed the concept of long-range dependence in time series modeling 
and presented a recursive algorithm for estimating the Hurst Exponent. This 
algorithm was empirically validated using simulated data to assess its stability 
and convergence before being applied to real commodity datasets. Our findings 
reveal the identification of optimal ARFIMA models for each commodity under 
study, along with estimates of their corresponding Hurst exponent and ARFIMA 
parameters. These results provide a reliable approach for estimating the Hurst index 
and fitting stationary long memory processes to ARFIMA models.
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Fig. 9.6 Fitting model results and Hurst exponent for all data 

9.5 Tables 

The following are tables mentioned in the article above.
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Table 9.1 Accuracy test 

AR FI MA Average err. 

ARFIMA Real 0.5 0.3 
0.5,0.3,0 RS 0.5535 0.2548 0.0350 

AV 0.5654 0.2431 0.0433 

OT 0.5575 0.2508 0.0378 

Average 0.5591 0.2492 0.0390 

ARFIMA Real 0.5 −.0.3 
0.5, −.0.3,0 RS 0.3545 −.0.1599 0.1010 

AV 0.5040 −.0.3122 0.0064 

OT 0.4651 −.0.2735 0.0219 

Average 0.4401 −.0.2483 0.0395 

ARFIMA Real 0.2 0.2 
0,0.2,0.2 RS 0.1802 0.2125 0.0117 

AV 0.1386 0.2484 0.0391 

OT 0.1639 0.2266 0.0224 

Average 0.1607 0.2293 0.0245 

ARFIMA Real −.0.2 0.2 
0, −.0.2,0.2 RS −.0.1276 0.1239 0.0525 

AV −.0.2344 0.2182 0.0195 

OT −.0.2262 0.2110 0.0142 

Average −.0.1964 0.1849 0.0078 

ARFIMA Real 0.5 0.1 0.2 
0.5,0.1,0.2 RS 0.4107 0.1828 0.2141 0.0409 

AV 0.4702 0.1322 0.2055 0.0148 

OT 0.4742 0.1288 0.2050 0.0130 

Average 0.4524 0.1475 0.2078 0.0226 

ARFIMA Real 0.5 −.0.1 0.2 
0.5, −.0.1,0.2 RS 0.3936 −.0.0017 0.2271 0.0491 

AV 0.5054 −.0.0982 0.2125 0.0046 

OT 0.5209 −.0.1120 0.2112 0.0089 

Average 0.4740 −.0.0706 0.2157 0.0141
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Table 9.4 Data statistical properties 

Product name Days Mean Variance Skweness Kurtosis KPSS ADF 

BRENT CRUDE OIL INDEX 4383 62.83 1213 0.2473 1.7393 0.01 0.57 

CBOT CORN FUTURE 11,356 295.51 16,622 1.8275 6.4470 0.01 0.40 

CBOT OATS FUTURE 11,452 180.07 6459 1.2847 4.2692 0.01 0.29 

CBOT SOYBN FUTURE 11,457 713.43 79,087 1.3174 4.4276 0.01 0.44 

CBOT SOYBN OIL FUTURE 10,191 26.94 110 1.5061 4.8304 0.01 0.27 

CBOT WHEAT FUTURE 10,992 403.76 23,451 1.5125 5.5088 0.01 0.35 

CL CRUDE OIL NYMEX 6624 46.11 979 0.8023 2.2901 0.01 0.41 

CME FEEDER 
CATTLE INDEX 

4805 109.85 1518 1.5069 5.1426 0.01 1.00 

CT COTTON NYBOT 10,080 68.15 368 2.6049 16.5470 0.01 0.34 

FC CATTLE FEEDER CME 6446 102.04 1283 1.7922 6.2853 0.01 0.99 

GENERIC 1ST FUTURE GOL 10,093 534.29 153,494 1.6741 4.7814 0.01 0.84 

HG COPPER NYMEX 6685 181.52 13,005 0.7429 1.9573 0.01 0.50 

HO HEATING OIL NYMEX 7296 125.22 8782 0.9644 2.5198 0.01 0.46 

LA ALUMINUM FUTURE 4486 1874.19 217,237 0.7035 2.5746 0.01 0.47 

LA CRUDE OIL SPOT 6163 41.47 1024 0.8416 2.2766 0.01 0.46 

LB LUMBER CME 6646 282.54 4487 0.2529 2.4577 0.01 0.39 

LC CATTLE LIVE CME 8347 81.99 539 1.6916 5.4931 0.01 0.88 

HOGS, LEAN FUTURE CME 7385 61.15 301 1.0170 4.1324 0.01 0.43 

LME 3M COPPER FUTURE 7411 3777.42 6,095,279 0.8835 2.1950 0.01 0.53 

LME ALUMINUM SPOT 7034 1785.20 224,536 0.9541 3.6849 0.01 0.35 

LME COPPER SPOT 7395 3805.70 6,104,507 0.8680 2.1900 0.01 0.52 

LME  PL  INDEX 5873 884.98 248,848 0.5268 1.9135 0.01 0.58 

NYBOT COCOA FUTURE 11,209 1825.89 674,508 0.7549 3.2154 0.01 0.48 

NYBOT COFFEE FUTURE 10,648 125.17 2660 0.7929 3.6491 0.01 0.21 

NYBOT OR JUICE FUTRUE 11,348 109.78 1521 0.2347 2.4749 0.01 0.36 

NYBOT SUGAR FUTURE 11,312 12.01 48 2.1007 9.2338 0.01 0.13 

NYMEX CRUDE FUTURE 8094 41.83 892 1.0768 2.8560 0.01 0.35 

PA PALLADIUM NYMEX 7269 326.72 55,634 0.9770 2.6874 0.01 0.57 

PL PLATINUM NYMEX 7941 107.68 1542 0.8977 3.2269 0.01 0.55 

GSCI COPPER INDEX SPOT 7354 807.26 227,179 0.8662 2.3940 0.01 0.50 

GSCI LEAN HOGS 
SPOT INDEX 

9730 230.98 27,862 1.2550 3.0455 0.01 0.36 

GSCI PALLADIUM 
INDEX ER 

9983 98.53 376 0.8783 5.6554 0.01 0.70 

SI SILVER NYMEX 1723 415.07 17,772 −0.9263 2.5756 0.01 0.21 

WCE CANOLA FUTRUE 10,123 9.74 61 1.9738 6.6083 0.01 0.59 

WTI CUSING CRUDE SPOT 8421 377.23 9224 0.9768 3.6844 0.01 0.35 

XAG SILVER SPOT 8020 41.96 895 1.0688 2.8372 0.01 0.15 

XAU GOLD SPOT 11,520 9.06 60 2.0231 6.9884 0.01 0.85 

XPD PALLADIUM SPOT 10,521 527.46 156,339 1.6412 4.7355 0.01 0.60 

XPT PLATINUM SPOT 5572 398.22 54,108 0.6520 2.1052 0.01 0.56 

PH GOLD&SILVER INDEX 7441 813.35 228,838 0.8320 2.3314 0.01 0.23
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Table 9.5 Stationarity test for the increments and log difference data 

Product name Diff KPSS Diff ADF Log KPSS Log ADF 

BRENT CRUDE OIL INDEX 0.0497 0.0010 0.1000 0.0010 

CBOT CORN FUTURE 0.1000 0.0010 0.1000 0.0010 

CBOT OATS FUTURE 0.1000 0.0010 0.1000 0.0010 

CBOT SOYBN FUTURE 0.1000 0.0010 0.1000 0.0010 

CBOT SOYBN OIL FUTURE 0.1000 0.0010 0.1000 0.0010 

CBOT WHEAT FUTURE 0.1000 0.0010 0.1000 0.0010 

CL CRUDE OIL NYMEX 0.1000 0.0010 0.1000 0.0010 

CME FEEDER CATTLE INDEX 0.0162 0.0010 0.0345 0.0010 

CT COTTON NYBOT 0.1000 0.0010 0.1000 0.0010 

FC CATTLE FEEDER CME 0.1000 0.0010 0.1000 0.0010 

GENERIC 1ST FUTURE GOL 0.1000 0.0010 0.1000 0.0010 

HG COPPER NYMEX 0.1000 0.0010 0.1000 0.0010 

HO HEATING OIL NYMEX 0.1000 0.0010 0.1000 0.0010 

LA ALUMINUM FUTURE 0.1000 0.0010 0.1000 0.0010 

LA CRUDE OIL SPOT 0.0825 0.0010 0.1000 0.0010 

LB LUMBER CME 0.1000 0.0010 0.1000 0.0010 

LC CATTLE LIVE CME 0.1000 0.0010 0.1000 0.0010 

HOGS, LEAN FUTURE CME 0.1000 0.0010 0.1000 0.0010 

LME 3M COPPER FUTURE 0.1000 0.0010 0.1000 0.0010 

LME ALUMINUM SPOT 0.1000 0.0010 0.1000 0.0010 

LME COPPER SPOT 0.1000 0.0010 0.1000 0.0010 

LME PL INDEX 0.1000 0.0010 0.1000 0.0010 

NYBOT COCOA FUTURE 0.1000 0.0010 0.1000 0.0010 

NYBOT COFFEE FUTURE 0.1000 0.0010 0.1000 0.0010 

NYBOT OR JUICE FUTRUE 0.1000 0.0010 0.1000 0.0010 

NYBOT SUGAR FUTURE 0.1000 0.0010 0.1000 0.0010 

NYMEX CRUDE FUTURE 0.1000 0.0010 0.1000 0.0010 

PA PALLADIUM NYMEX 0.1000 0.0010 0.1000 0.0010 

PL PLATINUM NYMEX 0.1000 0.0010 0.1000 0.0010 

GSCI COPPER INDEX SPOT 0.1000 0.0010 0.1000 0.0010 

GSCI LEAN HOGS SPOT INDEX 0.1000 0.0010 0.1000 0.0010 

GSCI PALLADIUM INDEX ER 0.1000 0.0010 0.1000 0.0010 

SI SILVER NYMEX 0.1000 0.0010 0.1000 0.0010 

WCE CANOLA FUTRUE 0.1000 0.0010 0.1000 0.0010 

WTI CUSING CRUDE SPOT 0.1000 0.0010 0.1000 0.0010 

XAG SILVER SPOT 0.1000 0.0010 0.1000 0.0010 

XAU GOLD SPOT 0.1000 0.0010 0.0100 0.0010 

XPD PALLADIUM SPOT 0.1000 0.0010 0.1000 0.0010 

XPT PLATINUM SPOT 0.1000 0.0010 0.0867 0.0010 

PH GOLD&SILVER INDEX 0.1000 0.0010 0.1000 0.0010
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Table 9.6 Hurst exponent for increments and log difference for our algorithm and the RS method 

Product Hurst (Diff) Hurst (Log) RS (Diff) RS (Log) 

GSCI LEAN HOGS SPOT INDEX 0.3571 0.8248 0.5267 0.6102 

HOGS, LEAN FUTURE CME 0.4141 0.7618 0.5170 0.6938 

LB LUMBER CME 0.4403 0.8436 0.5168 0.7831 

CBOT OATS FUTURE 0.4432 0.7433 0.5111 0.7714 

LC CATTLE LIVE CME 0.4540 0.7863 0.4911 0.7664 

PH GOLD&SILVER INDEX 0.4574 0.7307 0.5720 0.8187 

NYBOT OR JUICE FUTRUE 0.4583 0.7747 0.4956 0.7481 

CBOT SOYBN FUTURE 0.4748 0.8460 0.5237 0.8569 

CBOT WHEAT FUTURE 0.4775 0.8703 0.5265 0.8206 

CBOT CORN FUTURE 0.4815 0.7140 0.5225 0.8234 

XAG SILVER SPOT 0.4870 0.8652 0.5713 0.8575 

SI SILVER NYMEX 0.4932 0.8535 0.5409 0.7506 

LME ALUMINUM SPOT 0.4937 0.8674 0.5599 0.8439 

GSCI PALLADIUM INDEX ER 0.4972 0.6825 0.5840 0.8604 

NYBOT COFFEE FUTURE 0.4989 0.7853 0.5472 0.7741 

CT COTTON NYBOT 0.5001 0.8385 0.5607 0.7909 

WCE CANOLA FUTRUE 0.5062 0.7566 0.5477 0.8458 

NYBOT SUGAR FUTURE 0.5074 0.8636 0.5781 0.8276 

NYBOT COCOA FUTURE 0.5102 0.8558 0.5232 0.8161 

GSCI COPPER INDEX SPOT 0.5300 0.8726 0.5201 0.7907 

CBOT SOYBN OIL FUTURE 0.5325 0.8225 0.5531 0.8265 

LME 3M COPPER FUTURE 0.5377 0.8831 0.5549 0.8650 

LME COPPER SPOT 0.5406 0.8488 0.5463 0.8664 

HG COPPER NYMEX 0.5409 0.8473 0.5362 0.8190 

HO HEATING OIL NYMEX 0.5412 0.8075 0.5542 0.8184 

XPT PLATINUM SPOT 0.5487 0.8378 0.5066 0.7927 

NYMEX CRUDE FUTURE 0.5512 0.8590 0.5470 0.8426 

LA ALUMINUM FUTURE 0.5522 0.8488 0.5616 0.7610 

PL PLATINUM NYMEX 0.5542 0.8440 0.5389 0.8776 

CL CRUDE OIL NYMEX 0.5561 0.8287 0.5601 0.8280 

LME PL INDEX 0.5590 0.8324 0.5667 0.8091 

WTI CUSING CRUDE SPOT 0.5605 0.7799 0.5793 0.8755 

LA CRUDE OIL SPOT 0.5676 0.8323 0.5815 0.8053 

XPD PALLADIUM SPOT 0.5724 0.8036 0.5803 0.8157 

XAU GOLD SPOT 0.5770 0.8346 0.5962 0.8081 

PA PALLADIUM NYMEX 0.5812 0.8017 0.5967 0.7898 

BRENT CRUDE OIL INDEX 0.5948 0.8693 0.6111 0.7835 

FC CATTLE FEEDER CME 0.6031 0.7878 0.5740 0.7312 

GENERIC 1ST FUTURE GOL 0.6192 0.8914 0.5745 0.8676 

CME FEEDER CATTLE INDEX 0.6560 0.6680 0.6556 0.6883
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Chapter 10 
Examining the Impact of Weather 
Factors on Agricultural Market Price 
Risk: An XAI Approach 

Muhathaz Gaffoor and Hibob Assa 

Abstract In this chapter, we explore the application of machine learning (ML) and 
deep learning (DL) techniques to forecast commodity price volatility, emphasizing 
the integration of climatic data and financial variables. We use an XAI method, 
namely the Shapley interpretation method, to explain the impact of different 
variables on the agricultural price risk. As a preliminary consideration, agricultural 
businesses are supposed to be significantly influenced by environmental factors, 
particularly climatic anomalies such as El Niño and La Niña. Therefore, understand-
ing their impact is crucial for effective market prediction and risk management. 
We discuss various predictive models, including time series analysis, machine 
learning models, and recurrent neural networks (RNNs) , highlighting their ability to 
handle large datasets and complex patterns. This chapter provides a comprehensive 
overview of how advanced computational methods can enhance the accuracy of 
volatility forecasts, to show the substantial benefits for farmers, investors, and 
policymakers. By integrating diverse data sources, including historical price data 
and environmental indicators, while illustrating the potential of ML and DL to 
study commodity trading and financial planning, we observe that climate features 
do not persistently rank among the top predictors of agricultural price risk in the 
US market. This might look surprising at first, as the common belief is the great 
influence of climate on any aspect of agriculture. This can be interpreted as a sign of 
adequately manageable risk in commodity market prices against natural phenomena. 
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10.1 Introduction 

The financial markets are ever-evolving, influenced by many factors contributing 
to various asset price volatility, including commodities. Understanding and fore-
casting commodity price volatility is crucial for stakeholders such as farmers, 
insurance companies, financial institutions, investors, and policymakers, as it 
impacts decision-making across the agricultural and financial sectors. This chapter 
investigates the application of machine learning (ML) and deep learning (DL) 
techniques to predict the volatility of commodity prices. Historically, commodity 
price predictions were based on fundamental analysis considering factors like 
supply and demand, weather conditions, and geopolitical events. However, the 
advent of ML and DL had a substantial impact on the field, providing new 
methodologies that enhance prediction accuracy and efficiency. These advanced 
computational techniques are capable of handling large datasets and extracting 
complex patterns that are often not apparent through traditional statistical methods. 

In this chapter, we explore how ML and DL models can be specifically tuned 
to forecast commodity volatility as the major component of risk management 
by incorporating a wide array of inputs, including historical price data (lagged, 
spillover, etc), weather information, and more nuanced data like sentiment indices. 
We discuss various models including but not limited to Time Series Analysis, 
Machine Learning Models, and Long Short-Term Memory (LSTM) networks. 

As climate variability becomes more pronounced, understanding its impact on 
commodity prices and their risk management aspect i.e., volatility, has never been 
more important. We analyze the impact of weather patterns, especially those linked 
to large-scale climatic phenomena like El Niño and La Niña, on market volatility. 
Particularly, we employ the Shapley interpretation methods to understand the impact 
of the predictors in our models. An interesting finding, despite the stereotypical 
perception of the weather’s impact on agricultural prices, is that they do not emerge 
persistently as the main influencing factor on the risk of agricultural prices in the 
US market. This can be because prices are determined in an open market where 
the equilibrium is reached in the open trades, and adverse weather conditions while 
influencing the production, cannot be the main price risk drivers. 

10.2 Literature Review 

Volatility is a measure of price fluctuation over a given period, mirroring the 
uncertainties surrounding price change magnitudes [1]. The range of the volatility 
in commodity prices has serious consequences for risk managers, insurance compa-
nies, producers, consumers, traders, and policymakers [2]. With a changing global 
climate, increasingly frequent extreme weather events, and the rise of climate risk, 
it is important to understand and predict the volatility. This literature review aims to 
focus on this complicated issue by concentrating on the impact of the Niño-Southern 
Oscillation (ENSO) on agricultural commodity realized volatility [3].
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ENSO, a coupled atmosphere-ocean phenomenon in the Pacific Ocean can cause 
substantial climate variability globally. ENSO affects shifts in rainfall patterns, 
temperatures, and frequency of extreme weather events [2]. These changes have 
far-reaching impacts on agricultural production. However, it is not very clear how 
they would directly lead to considerable fluctuations in commodity price risk. 

To have a good understating of the topic, this study not only focuses on the 
ENSO phenomenon and its effect, but we also investigate methodologies involved 
in forecasting such as Long short-Term Memory networks [4], volatility models, 
and various other mathematical features used in the modeling by exploring the 
complex relationship between climatic phenomena, agricultural productivity, and 
financial volatility [5]. 

El Niño-Southern Oscillation (ENSO) is a periodic phenomenon that occurs 
every 3–7 years and involves changes in the sea surface temperature of the Central 
and Eastern Pacific Ocean [3]. ENSO consists of 3 phases namely El Niño, La Niña, 
and neutral which typically last 1 year each [6]. El Niño is the warm phase where 
there is higher than average sea surface temperature in the Central and Eastern 
Pacific Ocean while La Niña is the cold phase where there is lower than average 
sea surface temperature in the Central and Eastern Pacific Ocean. The Neutral phase 
also called La Nad̃a is the time between El Niño phase and La Niña phase [7]. 

Though ENSO is a phenomenon that occurs in the Pacific Ocean, its effects are 
not limited to Pacific Ocean areas but have global effects due to the fluctuations in 
the Sea surface temperature (SST) which in turn affects tradewinds [8]. For example, 
increased rainfall can be observed in the eastern Pacific while drier conditions can 
be seen in the western Pacific areas during the El Niño phase and the opposite can 
be observed during the La Niña phase [9]. Similarly, the Northern side of North 
America experiences warmer winters while the Southern side experiences cooler 
and wetter winters during El Niño phase [10]. On the other hand during the El Niño 
phase, South America sees increased rainfall and experiences flooding [11]. The 
best-known case study for ENSO on Weather patterns and Extreme events is the 
1997–1998 El Niño event. 1997–1998, North America has experienced one of the 
warmest and wettest winters with heavy rainfall resulting in flooding of California 
and Northern Gulf [12] while Severe drought and wildfires in Southeast Asia and 
Australia [13]. Similarly, 2010–2011 La Niña is one of the strongest ENSO events 
in recent history. It had caused heavy rainfall and flooding in Australia which was 
termed as the ’Big Wet’ by the Australian Bureau of Meteorology [14]. 

ENSO has a huge role in controlling global weather patterns, whose impacts are 
often reflected as extreme weather events. The importance of understanding these 
events has increased as ENSO can become a huge climate risk in the future. As 
a clear implication of that, ENSO has a huge impact on Climate patterns which 
will affect agricultural productivity. As agricultural productivity directly impacts 
food security, international trade, and economic stability, we need to understand the 
complex relationship between ENSO, Weather patterns, and agricultural risk. 

Temperature and rainfall are the key determinants of crop growth and yields. 
Studies show that as ENSO impacts both temperature and rainfall, it impacts 
commodity yield and prices both directly and indirectly. El Niño led drought 
conditions are associated with a decrease in Maize yield in Zimbabwe [15]
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which shows a direct impact on ENSO on agricultural yields. ENSO-led climatic 
phenomena can also create a favorable environment for crop pests and diseases 
and thus can affect agricultural yields indirectly [15]. It is also important to note 
that the effects of ENSO show a high degree of variability. For example, During 
an El Niño event countries like India, the United States of America, and Australia 
experience increased yields of maize, soybean, and rice, while regions experience a 
decrease in the yield [16]. Similarly, the tropical region experiences more intense 
effects as compared to temperate regions [17]. The timing of the ENSO events 
also has an impact on the yield. If an ENSO event is considered a critical period 
like flowering or graining, then the impact may be higher, as compared to other 
less sensitive periods [18]. In addition, extreme weather-related ENSO events can 
disrupt post-harvest activities, leading to an overall decrease in the yield. For 
instance, flooding incidents can affect the quality of the harvested crops, increase 
the probability of post-harvest diseases, and sometimes even destroy the entire 
storage [19]. In addition to that, the effects of ENSO are not confined to crops 
alone but also affect the livestock as extreme weather conditions can affect Animal 
health and productivity. Drought associated with ENSO events due to an increase 
in temperature and decrease in precipitation can lead to insufficient water and 
feed resources, thus affecting livestock productivity negatively. On the other hand, 
increased rainfall and decreased temperature can increase the risk of diseases thus 
also affecting livestock productivity negatively [19]. 

10.2.1 Volatility of Agricultural Commodity Prices Due to 
ENSO 

As we discussed earlier, ENSO affects agriculture globally indicating that it would 
in turn affect commodity price risk which is manifested as volatility in price. 
Volatility due to uncertainties can be induced directly or indirectly by the ENSO 
as discussed earlier. The reduction in the yield can cause a supply shock which 
leads to a sharp increase in the prices if the commodity holds a substantial market 
share. These supply shocks can also be compounded by other secondary effects 
such as speculative trading. Speculative trading includes activities such as hoarding 
the commodities expecting a price rise in the future, which can increase the price 
even before the supply shock occurs [20]. Farmers observing the increased price 
for a particular commodity often adjust their cultivation which causes imbalances in 
the market due to oversupply of some commodities while underproduction in some 
other commodities, leading to further volatility in the future [1]. 

10.2.2 Overview of Modeling Techniques Used to Predict 
Agricultural Commodity Prices and Volatility 

Researchers have been using various modeling methods to predict commodity prices 
and volatility, especially considering the effect of climate. However, only a few of
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them have given satisfactory results. Some methods employed by the researcher are 
discussed in the following paragraphs. 

10.2.2.1 ARIMA, VAR and GARCH Models 

Time series models such as ARIMA (Autoregressive integrated moving average) 
and VAR (Vector Auto Regression) have been extensively used in the modeling 
and predicting the commodity prices [21]. Though ARIMA has been used in 
modeling, because of its univariate nature, its application in modeling the effect 
of climate has been limited. VAR as an extension of the ARIMA model, captures 
linear interdependencies among multiple time series by modeling each variable as a 
function of the lagged values of all other variables [22]. 

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) is a pow-
erful model to forecast changing volatility over time. It is econometric modeling in 
particular used in financial time series data to address volatility clustering, which is a 
common phenomenon observed in financial markets. It assumes that larger volatility 
is to be followed by larger volatility while small volatility by smaller volatility [23]. 

In [24], the authors use ARIMA and GARCH to forecast the prices of major 
export crops of vegetables and fruits in Egypt from 2016 to 2030. They used 
the augmented dickey fuller (ADF) test and also found that the model was 
suitable for forecasting the prices for different crops. The authors have primarily 
used the ARIMA and GARCH models to forecast agricultural commodity prices. 
They employed producer daily price data for crops mostly from 1967 to 2015, 
using annual time series data. Their benchmark models were ARIMA(1,1,1), 
ARIMA(2,1,2), GARCH(1,1), etc., and the results showed that foretasted prices for 
these crops would increase from 2016 to 2030. The work is limited to traditional 
time series models and does not consider external factors like climate data. Using 
machine learning and deep learning methods to predict commodity volatility by 
incorporating price data and climate data could potentially fill this gap by capturing 
the complex non-linear relationships and external factors influencing price volatility, 
leading to more accurate forecasting. 

10.2.2.2 Event Study Approaches 

The event study methodology is anchored in pinpointing notable abnormal returns 
that are divergences from the expected returns in a normal circumstance. This 
approach combines an event window which is a predetermined period that captures 
the expected impact of the event estimation Window which is a period before 
the event window that acts as a reference point to determine the asset’s ’normal’ 
return and abnormal returns derived by contrasting the actual returns during the 
event window with the expected returns from the estimation window to make the 
prediction. This method has been significantly used In the agricultural commodities
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sector, especially to understand the impact of significant climatic events, like El 
Niño, on market behaviors. 

For instance, [25] studies the Impact of El Niño Phenomenon on the Volatility of 
the U.S. Soybean Futures Price Yield shows that the ENSO had a huge impact on 
the Soybean futures in some years between 2007–2018. The authors employed the 
GARCH-M model to estimate returns and the event study approach with parametric 
tests to examine the effect of El Niño events on the volatility of U.S. soybean 
futures prices. They utilized monthly soybean futures data from the Chicago Stock 
Exchange spanning January 2007 to June 2022, covering six El Niño occurrences. 
The benchmark models included GARCH(1,1), and the findings suggested that most 
El Niño events did not significantly influence the volatility of U.S. soybean futures 
prices. However, this study focused solely on traditional time series techniques and 
a single commodity, overlooking external factors like climate data and spillover 
effects. 

10.2.2.3 STL Decomposition and GARCH-MIDAS Frameworks 

STL Decomposition which stands for Seasonal-Trend decomposition using LOESS 
(locally estimated scatterplot smoothing) breaks down the time series into three 
primary components which are namely trend component, seasonal component, and 
remainder component. The decomposition in this method is achieved by iterative 
applying the LOESS methods to the time series in the following order. The trend 
component is extracted first and then followed by the seasonal component. Finally, 
the estimated trend and seasonal component are subtracted from the time series to 
obtain the remainder component thus allowing this method to not only capture the 
non-linear trends but also the change in the seasonal patterns over time . Due to the 
advantages of this method, it has widely been used in forecasting commodity prices 
and volatility. 

GARCH-MIDAS Model stands for Generalized Autoregressive Conditional 
Heteroskedasticity- Mixed Data Sampling is an advanced econometric model that 
combines high-frequency data (e.g., daily or weekly) with low-frequency data 
(e.g., monthly or quarterly) to capture the volatility dynamics in time series data. 
The MIDAS component also allows the incorporation of macroeconomic variables 
which are normally measured in a higher time frame. This feature of this model 
made it suitable for its application in forecasting commodity price volatility too. 

This method is used to break down the Southern Oscillation Index (SOI) used 
GARCH-MIDAS models and their extensions to forecast the volatility of major U.S. 
grain commodity futures using the ENSO data from the SOI, see [26]. They applied 
daily futures price data from January 1990 to October 2021 and monthly SOI data. 
Their benchmark model was the standard GARCH-MIDAS. They employed the 
STL decomposition method to extract trend, seasonality, and remainder components 
from the SOI and incorporated them into the GARCH-MIDAS framework. The 
results showed that models involving ENSO information, particularly the seasonal 
component, outperformed the benchmark in forecasting volatility.
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10.2.2.4 Machine Learning and Deep Learning Methods 

The recent advancement of Machine learning (ML) and deep learning (DL) have 
taken prime spots in forecasting various financial and economic phenomena. For 
instance, [27] used machine learning algorithms like Decision Trees, Random 
Forest, and Support Vector Machines to forecast corn prices using a dataset 
spanning from 1980 to 2018 having variables like production, consumption, exports, 
and ending stocks. They had not only found that the Random Forest algorithm 
outperformed other models in terms of prediction accuracy. They observe that 
variables like production and consumption were more influential in predicting corn 
prices than the others [27]. Similarly, [28] used DL algorithms like Long Short-Term 
Memory (LSTM) networks to forecast Soybean prices using a dataset spanning 
from 1990 to 2019 having variables like weather patterns, global demand, and 
geopolitical events. The study found that weather patterns, especially unexpected 
changes, played a crucial role in influencing soybean prices. In addition, the study 
also reflects LSTM models’ superior predictive capabilities compared to traditional 
time series models [28]. It is also important to note that this development is limited 
to just forecasting prices but also can be seen for the forecasting of volatility. In [29], 
the authors used Machine learning techniques like Gradient Boosting and Neural 
Networks to predict the volatility of commodity prices in India. They used a dataset 
that comprised daily price data of various commodities from 2005 to 2020 and found 
that Gradient Boosting showed better performance in predicting volatility compared 
to Neural Networks. The study also emphasized the role of external shocks, such 
as policy changes and international events, inducing volatility in the agricultural 
commodity market. 

Similarly, [5] used the Random Forest algorithm to examine the predictive value 
of El Niño and La Niña weather episodes for the subsequent realized variance of 
16 agricultural commodity prices. They used high-frequency data between 2009 
and 2020 and also estimated the realized variance, realized skewness, realized 
kurtosis, realized jumps, realized upside, and downside tail risks to capture potential 
nonlinear links between El Niño and La Niña and the subsequent realized variance. 
They found that El Niño and La Niña can help in predicting the volatility in a 
longer horizon. This work is the most similar to our paper so it warrants some 
comparison between the two to further emphasize the differences in methodology 
and also the results. It is important to note that unlike our paper they used climate 
data as a categorical feature to identify whether it was an El Niño phase or La 
Niña phase in their machine learning model thus limiting the models’ ability to 
capture non-linear relationships. In addition, unlike us using more comprehensive 
weather data, they used only Niño 3.4 index representing the sea surface temperature 
(SST) anomalies in a specific region of the central equatorial Pacific Ocean as their 
climate feature also limited the model performance. We also used different machine 
learning methods and found that linear regression can outperform random forests 
for live cattle, emphasizing the differences when using live-stock data. Finally, we 
used XAI methodology to rank the features and found out weather factors are not 
consistently ranked as the top explanatory features.
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10.3 Methodology 

In this study, we aim to examine the predictive value of a large set of predictors 
including spill-over effects, volatility lags, and particularly El Niño and La Niño 
weather episodes for the subsequently realized variance of 6 agricultural commodity 
prices. For that purpose, we use an XAI method called Shapley values to rank the 
predictors in our study. 

10.3.1 Data Collection 

The study used two main types of data namely Commodity price data and Climate 
data.Yahoo Finance API was used to fetch the price data of commodities 01/01/2000 
to 20/01/2020 to ensure a comprehensive overview of the commodity market as well 
as to factor in the cross-volatility effect. To get a holistic understanding of the ENSO 
data the following geographical coordinates (5, -120), (5, −.160), (5, −.150), (5, 
−.90), (5, 160), (0, −.160), (0, −.150), (0, −.140), (0, −.130), (0, −.120), (0, −.110), (0, 
−.100), (0, −.90), and (0, −.80) will be fetched. This data is sourced from MultiScale 
Ultra High Resolution (MUR) Sea Surface Temperature (SST) dataset which is a 
comprehensive dataset that is created by merging multiple Level 2 satellite SST data 
sets such as NASA Advanced Microwave Scanning RadiometerEOS (AMSRE), 
JAXA Advanced Microwave Scanning Radiometer 2 (AMSR2) on GCOM-W1, 
Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua 
and Terra platforms etc (Chin,2017). which is available from 01/06/2002 to 
20/01/2020. Initial data analysis was performed before the data prepossessing 
and modeling in order to grasp the fundamental characteristics of the dataset and 
statistical measures such as mean, median, and standard deviation were obtained. 
Various feature engineering techniques have been applied to both the commodity 
price dataset and climate dataset to get the final dataset to calculate the features 
used. These techniques were used to calculate both statistical and climate features. 
Statistical features used include realized rolling weekly realized volatility using the 
Garman-Klass estimator method, and rolling monthly and quarterly weekly realized 
volatility [28]. In the case of climatic data, unlike the traditional method of just using 
the Niño 3.4 Index, our study analyzes the anomalies between different regions such 
as the North Pacific, South Pacific, East Pacific, and West Pacific, and finally, two 
regions in the equatorial area to calculate the ENSO intensity. 

10.3.2 Exploratory Data Analysis 

The dataset includes weekly records of commodity prices across various sectors, 
including agricultural products, metals, and energy resources. Each entry captures
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Fig. 10.1 Time series plot of prices 

the closing prices for commodities such as corn, soybeans, gold, crude oil etc. at 
the end of each week, reflecting the dynamics of global trading activities. Spanning 
from January 1, 2000, to December 31, 2020, the dataset provides two decades of 
insights into market trends, highlighting seasonal variations, price volatility, and 
economic cycles that significantly impact commodity prices. This comprehensive 
dataset serves as a crucial resource for analyzing long-term trends, formulating 
risk management strategies, and exploring potential investment opportunities in the 
commodities market (Fig. 10.1). 

In the exploration of price data across various commodities and financial 
instruments, we observe significant fluctuations indicative of diverse market condi-
tions and economic factors. Gold, notably, exhibits an extensive price range from 
approximately $290 to over $2398, reflecting its sensitivity to global economic 
uncertainties and shifts in investor sentiment. Such broad fluctuations underscore 
gold’s status as a “safe haven” during times of economic turmoil. The standard 
deviation for Gold prices stands at $511.61, highlighting its high volatility relative 
to other commodities. Natural Gas and Brent Crude Oil also demonstrate notable 
price variability. Natural Gas has ranged from $1.495 to $14.312, with a standard 
deviation of $2.23, and Brent Crude Oil has prices ranging from $16.94 to 
$145.29, with a standard deviation of $24.05. These figures suggest high variability
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influenced by factors such as seasonal demand fluctuations, geopolitical tensions, 
and changes in global economic policies. Agricultural commodities like Corn 
and soybeans display considerable price variations influenced by environmental 
conditions, supply chain disruptions, and shifts in global demand patterns. Corn 
prices have varied from $189.75 to $824.50, with a standard deviation of $157.69, 
and Soybean prices from $451 to $1764.50, with a standard deviation of $316.28. 

Volatility analysis of prices reveals distinct patterns of risk and stability across 
different commodities. Brent Crude Oil and Natural Gas are characterized by high 
annualized volatility, at approximately 0.446 each, emphasizing their susceptibility 
to rapid price changes influenced by external market shocks and geopolitical events. 
Conversely, more stable assets like the 10YR Treasury Note exhibit lower volatility, 
with an annualized volatility of approximately 0.053. This lower volatility reflects 
its role as a safer investment haven during volatile market periods. Live Cattle also 
shows lower volatility, with an annualized value of around 0.144, indicating less 
price fluctuation and thus a lower risk profile. Seasonal patterns are particularly 
evident in commodities like Natural Gas, which shows a marked increase in price 
and volatility during the winter months due to higher heating demands. This 
seasonal trend is crucial for developing predictive models that anticipate fluctuations 
in commodity prices and volatility based on seasonal changes. Extremes and 
anomalies in volatility data, such as the maximum observed values (e.g., Natural 
Gas volatility peaking at about 0.446 and Brent Crude Oil at about 0.446), show the 
impact of extraordinary market events and are critical in training predictive models 
to recognize and react to similar future incidents (Fig. 10.2). 

The dataset comprises weekly observations of commodity prices, processed 
using the Garman-Klass method to calculate the volatility based on daily price 
data. This method provides a more accurate and robust measure of price volatility 
by utilizing the high, low, opening, and closing prices of commodities such as 
wheat, corn, soybeans, crude oil, and gold. Spanning from January 1, 2000, to 
December 31, 2020, the dataset offers 20 years of insights into market fluctuations, 
capturing economic influences, supply-demand shifts, and periodic trends that shape 
commodity prices. This extensive historical data, enhanced by the Garman-Klass 
volatility estimate, is invaluable for conducting robust trend analysis, understanding 
market cycles, and developing strategic approaches to commodity trading and risk 
management. 

The dataset reveals distinct volatility profiles for each commodity. Corn shows 
mean volatility of about 0.014 with peaks up to 0.093, influenced by factors like 
seasonal growth cycles and market demands. Coffee stands out with a high mean 
volatility of 0.018 and significant spikes up to 0.179, highly reactive to climatic 
changes and international trade shifts. Lean Hogs and Live Cattle display volatility 
shaped by agricultural practices and market demands, with means around 0.023 
and 0.014, respectively, and maximum values reaching 0.109 and 0.092. Oats and 
Rough Rice illustrate the impact of agricultural conditions on volatility, with Oats 
peaking at 0.144 and Rough Rice at 0.149. Their volatility is driven by factors like 
weather conditions and global supply chains. Gold, Brent Crude Oil, and Natural
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Fig. 10.2 Time series plot of Realised Volatility 

Gas are particularly notable for their high volatility levels, reflecting their sensitivity 
to global economic fluctuations and geopolitical events. 

Autocorrelation (ACF) and Partial Autocorrelation (PACF) analyses highlight 
the temporal dependencies in the volatility data. Agricultural commodities like 
Corn, Coffee, and Oats exhibit extended autocorrelations, suggesting that historical 
volatility significantly influences future volatility, indicating a persistent memory 
effect. In contrast, Lean Hogs and Live Cattle show shorter autocorrelation spans, 
pointing to a more immediate influence of recent events. Energy commodities such 
as Natural Gas and Brent Crude Oil also demonstrate strong autocorrelation over 
longer periods, underscoring the lasting impact of past volatility on future predic-
tions. Gold shows significant autocorrelations across multiple lags, reinforcing its 
role as a safe haven during economic uncertainties. 

The dataset contains daily measurements of sea surface temperature (SST) 
anomalies derived from various points across the Pacific Ocean, specifically 
designed to monitor changes in regions critical to understanding the El Niño-
Southern Oscillation (ENSO) dynamics. It integrates SST data from multiple 
coordinates, including key Niño regions (5 ◦ . latitude) and equatorial points (0 ◦ . 
latitude), spanning a broad longitudinal range from 160 ◦ . East to 80 ◦ . West. The data 
covers the period from June 1, 2002, to July 31, 2023, providing over 21 years
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Fig. 10.3 Time series plot of Climatic Features 

of temperature anomaly readings. Utilizing this comprehensive SST dataset, 
differences in anomalies are computed across significant ENSO monitoring regions: 
Niño 4 vs Niño 3.4, Niño 3 vs Niño 1+2, and across the equatorial Pacific from 
170W to 160E (Fig. 10.3). 

An initial examination reveals moderate positive correlations between the three 
temperature anomaly measurements: 0.632 between Niño 4 vs Niño 3.4 and Niño 3 
vs Niño 1+2, 0.325 between Niño 4 vs Niño 3.4 and Equatorial 170W vs 160E, and 
0.366 between Niño 3 vs Niño 1+2 and Equatorial 170W vs 160E. This suggests 
the anomaly patterns are related across regions, but not perfectly synchronous. The 
data also exhibits significant volatility, with standard deviations of 1.302 for Niño 4 
vs Niño 3.4, 1.385 for Niño 3 vs Niño 1+2, and 1.318 for Equatorial 170W vs 160E. 
Visually examining the time series plots reveals prolonged periods of large positive 
and negative anomaly values. For instance, Niño 4 vs Niño 3.4 reached a peak of 
3.430 on September 13, 2009, and a trough of −.3.998 on February 24, 2008. Niño 3 
vs Niño 1+2 hit 2.847 on September 26, 2004 and −.3.510 on March 25, 2012. These 
prolonged deviations could signal El Niño or La Niña events capable of disrupting 
commodity supplies. However, no obvious cyclical seasonality can be detected at 
this stage. 

Overall, this Pacific Ocean temperature anomaly data exhibits the characteristics 
relevant to predicting commodity volatility. With its long history, high volatility, cor-
relation across regions, and ability to capture potential supply disruption scenarios, 
the data shows promise as a predictive signal for commodity markets.
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10.3.3 Feature Engineering 

In this study, we employed several feature engineering techniques to reprocess 
the data and select the most relevant features for the regression models. These 
techniques helped improve model performance by reducing noise, mitigating the 
curse of dimensionality, and enhancing the interpretability of the models. 

10.3.3.1 Removing Highly Correlated Features 

We removed features that were highly correlated with each other to mitigate the 
problem of multicollinearity, which can adversely affect the model’s performance 
and interpretability [30]. Highly correlated features introduce redundancy in the 
data and can lead to unstable coefficient estimates and inflated standard errors [31]. 
The correlation between two features X and Y can be measured using the Pearson 
correlation coefficient (r), which is defined as: 

.r =
∑ [(X − μX)(Y − μY )]

✓∑ 
(X − μX)2 · ∑ 

(Y − μY )2
(10.1) 

where μX . and μY . are the means of X and Y , respectively. We removed features that 
had a correlation coefficient greater than a specified threshold (e.g., 0.7) with any 
other feature in the dataset.

10.3.3.2 Recursive Feature Elimination (RFE) 

RFE is a feature selection technique that recursively eliminates features based on 
their importance or contribution to the target variable [32]. We used RFE with an 
XGBoost model as the estimator to identify and select the most informative features 
for each commodity. The RFE algorithm works as follows: 

• Train a model on the initial set of features 
• Compute the feature importance scores 
• Remove the least important features 
• Repeat the process with the remaining features until the desired number of 

features is reached 

This approach helps reduce the dimensionality of the feature space, which can 
improve model performance, reduce overfitting, and enhance interpretability [33].
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10.3.3.3 Data Scaling 

Before fitting the models, we scaled the features using the MinMaxScaler from 
the scikit-learn library. This technique rescales the features to a common range, 
typically between 0 and 1, [34]. The MinMaxScaler transforms a feature X using 
the following formula: 

.Xscaled = X − min(X)

max(X) − min(X)
(10.2) 

Scaling the features is particularly important for algorithms that are sensitive 
to the scale of the input variables, such as neural networks and tree-based models 
[35]. It can also improve the convergence speed and stability of gradient-based 
optimization algorithms. 

By employing these feature engineering techniques, we aimed to enhance the 
quality of the input data and improve the performance of the regression models. 
Removing highly correlated features reduced multicollinearity and improved inter-
pretability, RFE helped identify the most relevant features for each commodity, and 
data scaling ensured that all features contributed equally to the model’s predictions. 

10.3.3.4 Train-Test Split 

We adopted a train-test split approach to separate the data into training and testing 
sets. This technique is widely used in machine learning to assess the performance of 
models on unseen data and mitigate overfitting. The train-test split was performed 
as follows: 

• The data was sorted chronologically based on the date index. 
• The last year of data was reserved as the test set. 
• The remaining data was used as the training set. 

In this study, we employed a strategic method to prepare our test data. Thus we 
isolated the subsequent week’s data as our target variable. This approach is essential 
in time series forecasting as it allows our models to be tested against the very next 
sequence of events that follows. Testing the models on data that simulate future 
conditions ensures that the predictions are not only robust but also reflective of the 
models’ ability to generalize to new, unseen data. This methodology underpins the 
reliability of our forecasting models in predicting future commodity price volatility, 
which is crucial for practical applications such as risk management and strategic 
planning in volatile markets. Our dataset contains weekly data from 2003–05-25 to 
2020-01-26 of which data till 2018-01-25 is used as in-sample data and data from 
2018-01-26 to 2020-01-26 is used as out-of-sample data.
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10.3.4 Model Selection 

1. Linear Regression: This is a simple yet powerful model that assumes a 
linear relationship between the input features and the target variable. Linear 
Regression models are interpretable and can provide insights into the relationship 
between features and the target variable [36]. However, they may struggle with 
capturing non-linear patterns in the data [37]. The linear regression model can be 
represented as: 

.y = β0 + β1x1 + β2x2 + . . . + βnxn + ∈  (10.3) 

This is Eq. (10.3). 
where: 

• y is the target va riable,
• x1,  x2, . . . , xn . are the input features, 
• β0 . is the intercept, 
• β1,  β2, . . . , βn . are the coefficients, and 
• ∈  . is the error term. 

[36]. The coefficients are typically estimated using the ordinary least squares 
(OLS) method, which minimizes the sum of squared residuals between the 
observed and predicted values. 

2. Random Forest: This is an ensemble learning method that combines multiple 
decision trees to improve predictive performance and reduce overfitting [38]. 
Random Forest models are known for their ability to handle non-linear relation-
ships and high-dimensional data, as well as their robustness to outliers and noise 
[39]. They are also relatively easy to tune and parallelize for efficient training 
[40]. The Random Forest algorithm can be represented as: 

The final prediction, f̂ (x)., is given by: 

.f̂ (x) = 1

B

B⎲

b=1

f̂b(x) (10.4) 

where B . is the number of trees, and f̂b(x). is the prediction of the b.th tree [40]. 
3. XGBoost (Extreme Gradient Boosting): XGBoost is a powerful and efficient 

implementation of gradient-boosted decision trees [41]. It has been widely 
adopted in various machine-learning competitions and real-world applications 
due to its excellent performance and ability to handle a variety of data types and 
distributions [42]. XGBoost models are particularly effective when dealing with 
complex, non-linear relationships and high-dimensional data [43]. The objective 
function of XGBoost can be represented as:
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The loss function L(Ф). is defined as: 

.L(Ф) =
⎲

i

l(yi, fi(xi)) +
⎲

k

Ω(fk) (10.5) 

where l(yi, ŷi ). is the loss function that measures the difference between the true 
label yi . and the predicted label ŷi ., and Ω(fk). is the regularization term that 
penalizes the complexity of the model [44]. 

4. LSTM (Long Short-Term Memory): LSTM is a type of recurrent neural network 
(RNN) that is particularly well-suited for sequential data, such as time series 
[44]. Unlike traditional feedforward neural networks, LSTMs can effectively 
capture long-term dependencies and patterns in the data, making them a popular 
choice for forecasting tasks [45].LSTM architecture with Bidirectional layers 
and Dropout regularization was used to improve the model’s performance and 
prevent overfitting [46] [47]. The LSTM cell can be represented as: 
The equations for the LSTM cell are as follows: 

.

ft = σ(Wf · [ht−1, xt ] + bf )

it = σ(Wi · [ht−1, xt ] + bi)

ot = σ(Wo · [ht−1, xt ] + bo)

c̃t = tanh(Wc · [ht−1, xt ] + bc)

ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct )

(10.6) 

where ft ., it ., ot ., and c̃t . are the forget gate, input gate, output gate, and candidate 
cell state, respectively. Wf ., Wi ., Wo ., and Wc . are the weight matrices, and bf ., bi ., 
bo ., and bc . are the bias vectors [47]. 

10.3.5 Evaluation Metrics 

In the we had analyzed the performance of metrics using R2
. value. Further, we 

had also used the Shapley value to understand how each feature is affecting the 
prediction. 

10.3.5.1 R2 

The R2
. value which is often referred to as the coefficient of determination is a 

statistical measure that represents the proportion of the variance for the dependent 
variable that’s explained by independent variables in a regression model. It provides
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an indication of the goodness of fit of a set of predictions to the actual values. R2
. 

value normally ranges between 0 and 1 and out of which 0 indicates the model 
does not explain any of the variability of the response data around its mean while 1 
indicates that the model explains all the variability of the response data around its 
mean or regression predictions perfectly fit the data. Values of R2

. outside the range 
0 to 1 can occur when the model fits the data worse than a horizontal hyperplane 
which indicates that the model is performing worse than random guessing, [48]. 

In mathematical terms let us introduce the following: 

.R2 = 1 − SSres

SStot

(10.7) 

. SSres =
n⎲

i=1

(yi − ŷi )
2 (Residual Sum of Squares)

SStot =
n⎲

i=1

(yi − ȳ)2 (Total Sum of Squares)

yi : Actual value

ŷi : Predicted value

ȳ : Mean of the actual values

10.3.5.2 Shapley Value 

Shapley values are a concept from cooperative game theory that has been adapted to 
explain the output of machine learning models as they provide a unified measure of 
feature importance by attributing the difference be- between the model’s prediction 
and the average prediction to each feature in a fair and consistent manner, [49]. Thus 
they provide values of the average marginal contribution of that feature across all 
possible feature combinations. Considering feature i, the value associated to this 
feature is given by: 

.φi(f ) =
⎲

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! [f (S ∪ {i}) − f (S)] (10.8) 

.f : The model under consideration

S : A subset of features

N : The set of all features

|S| : Number of features in set S

|N | : Total number of features
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φi(f ). shows for the regression function or classifier f , how much the Shapley value 
gives to feature i, representing the magnitude of i’s explainablity. We will use these 
values to rank our features. We use the SHAP library in Python for this purpose. 

10.4 Result 

10.4.1 Analysis of R2 Values 

In this part, we evaluate the performance of four machine learning models—Linear 
Regression, Random Forest, XGBoost, and LSTM—across six commodities namely 
corn, coffee, lean hogs, live cattle, oats, and rough rice by examining their R2

.values, 
which measure the proportion of variance in the dependent variable that can be 
explained by the independent variables. The results are presented in Fig. 10.5. 

Corn The predictive performance for Corn shows a clear preference for ensemble 
and boosting methods over simpler models. XGBoost leads with an R2

. of 0.497, 
suggesting it most effectively captures the variability in Corn prices, possibly due 
to its proficiency in handling non-linear relationships among features like Corn 
Volatility and related commodities (e.g., Soybean and Wheat). Linear Regression 
follows closely with 0.483, while Random Forest slightly lags at 0.486. LSTM 
underperforms significantly, managing only 0.292, which might indicate its lesser 
capability in capturing the patterns in Corn price data over time or the need for more 
complex feature engineering. 

Coffee For Coffee, Random Forest outperforms other models with an R2
. of 0.577, 

possibly benefiting from its ability to handle the interactions between different 
types of volatility and external market factors (e.g., Natural Gas prices and other 
commodities like Cocoa). XGBoost also shows a strong fit at 0.443, while Linear 
Regression has a moderate R2

. of 0.389. The LSTM’s lower score of 0.336 may 
reflect challenges in modeling the sequential dependencies within the volatile coffee 
market. 

Lean Hogs Lean Hogs appear to be challenging for all models, with relatively 
low R2

. values. Random Forest achieves the best among them at 0.163, potentially 
due to its capacity to model complex dependencies between features like Lean 
Hogs Volatility and external influences (e.g., Soybean Oil prices). Linear Regression 
provides limited predictability at 0.106. Surprisingly, XGBoost performs poorly, 
with an R2

. slightly negative at -0.014, indicating possible overfitting or inadequate 
model specification for this particular commodity. LSTM, with a mere 0.043, also 
struggles, likely due to the complex nature of agricultural market data.
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Fig. 10.4 Analysis of R2 . values 

Live Cattle All models generally struggle with Live Cattle predictions. LSTM 
shows a marginally better R2

. of 0.177, which suggests some benefits from its ability 
to process sequential data, possibly capturing cyclic patterns not as apparent to other 
models. Linear Regression and Random Forest record R2

. values of 0.170 and 0.134, 
respectively, while XGBoost falls behind at 0.081. This could reflect the impact of 
external economic factors or feed prices (like Corn and Soybean), which may not 
be sufficiently modeled in simpler or even advanced ensemble techniques without 
specialized treatments. 

Oats and Rough Rice The models exhibit limited effectiveness in predicting Oats 
and Rough Rice prices. For Oats, Random Forest performs the best at 0.179, 
with XGBoost again trailing at 0.027. The negative R2

. value for LSTM indicates 
substantial issues, either with the model fitting or underlying data inconsistencies. 
Rough Rice sees a slightly better performance from Random Forest at 0.229 and 
XGBoost at 0.171, while Linear Regression and LSTM display limited to poor 
predictive power, with R2

. values of -0.041 and 0.034, respectively. 
This analysis demonstrates that while Random Forest regression generally offers 

superior accuracy for most commodities, specific contexts like Corn and Coffee 
likely due to its robust handling of heterogeneous data and complex interactions 
between features. The poor performance across the board with LSTM highlights 
potential mismatches in model applications or challenges in capturing the dynamic 
dependencies within commodity price series. This differential performance empha-
sizes the necessity of tailoring the choice of modeling techniques to the specific 
characteristics of the commodity and the economic context, ensuring the optimal 
alignment of model capabilities with the predictive requirements of commodity 
price data (Fig. 10.4).
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Fig. 10.5 Analysis of Shapley values 

10.4.2 Analysis of Shapley Values 

In this section, we investigate a detailed analysis of Shapley values to assess 
the influence of various predictors across multiple machine learning models for 
different commodities. The predictors are methodically grouped into three primary 
categories—market volatility indicators, climate and environmental factors, and 
economic factors. This structured approach aids in dissecting their impact on 
predicting commodity price volatility, offering a deeper comprehension of the 
intricate dynamics that control commodity markets. The analysis is based on results 
shown in Fig. 10.5. 

Market Volatility Indicators remain pivotal in forecasting price movements, 
consistently displaying the highest Shapley values across all commodities. For 
example, Corn’s Monthly Volatility in the Random Forest model records a notable 
Shapley value of 0.007600, signifying its paramount role in capturing immediate 
market reactions to supply-demand changes. Coffee’s Monthly Volatility, with a 
Shapley value of 0.001162 in Random Forest, and Lean Hogs’ Monthly Volatility 
at 0.004880 in XGBoost, also emphasize the acute sensitivity of these commodities 
to rapid market shifts. These indicators are crucial for accurately predicting price 
fluctuations driven primarily by market dynamics.
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Climate and Environmental Factors also play a significant role, especially in 
agricultural commodities where output and quality are directly impacted by weather 
patterns. Corn’s exposure to global climate variations is evidenced by the Niño 4 vs 
Niño 3.4 index, which holds a Shapley value of 0.000491 in XGBoost, pointing to 
its influence on Corn prices due to climate anomalies. While Lean Hogs and Live 
Cattle are less directly affected by typical environmental factors, the importance of 
Soybean Oil in Lean Hogs, with a Shapley value of 0.000747 in Linear Regression, 
suggests indirect climate impacts through feed costs. Oats and Rough Rice respond 
distinctly to environmental factors; for instance, Rough Rice’s Quarterly Volatility 
shows a significant impact from seasonal weather changes, marked by the highest 
Shapley value of 0.003551 in XGBoost. 

Economic Factors generally exhibit lower Shapley values compared to market 
volatilities and climate effects but still significantly impact commodity prices 
by linking them to broader economic conditions. For instance, the influence 
of Cocoa on Coffee prices, where Cocoa has a Shapley value of 0.002444 in 
Linear Regression, demonstrates how interconnected markets can influence pricing 
strategies. Economic indicators such as the 10YR Treasury Note also mirror 
broader economic conditions affecting commodities like Live Cattle, which in turn 
influences consumer spending patterns on meat products. 

While in the majority the ranking of predictors is coherent, we also can see 
some inconsistency across different rankings by different methods. For example, 
for Live Cattle, it is clear that the two best prediction models i.e., linear regression 
and random forest show the impact of the lagged volatility, the other two models 
show the lagged prices are better predictors. This emphasized the importance of 
choosing the right model for the predictions. 

10.5 Conclusion 

This book chapter investigates the power of machine learning and deep learning 
techniques for forecasting volatility in commodity prices, with a keen focus on 
the impact of climatic events like El Niño-Southern Oscillation (ENSO). Through 
meticulous analysis, we have witnessed how diverse modeling approaches, from 
Random Forests and linear regression to XGBoost and LSTM networks, can 
effectively capture and predict the intricate patterns of market volatility driven by 
climatic shifts. 

From a technical standpoint, Random Forests consistently demonstrate superior 
performance across various commodities. However, an intriguing finding emerges— 
for all commodities except rough rice, the sophisticated LSTM models fail to 
surpass the performance of simple linear regression. 

By integrating machine learning with Explainable AI (XAI) techniques such 
as Shapley values, we can assess the predictive power of climatic data on price 
risk. Interestingly, our investigation reveals that lag and spill-over effects hold a 
significantly higher explanatory power compared to immediate weather conditions.
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This could be attributed to the efficient hedging practices employed in commodity 
markets, like the US agricultural market, which mitigate the direct impact of weather 
fluctuations on prices. 

It is crucial to recognize that the integration of production and price risk forms 
the foundation of revenue risk. Managing revenue risk effectively necessitates 
separate modeling approaches for price and production risks. While Shapley values 
demonstrate consistency across most models, for specific commodities like Live 
Cattle, we observe variations in feature ranking. This underlines the importance of 
selecting the optimal model for precise prediction in each scenario. 
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Chapter 11 
Textual Analysis in Agriculture 
Commodities Market 

Navid Parvini 

Abstract This chapter is concerned with textual and sentiment analysis in agri-
culture commodities market using the natural language processing (NLP) methods. 
There are extensive research on textual and sentiment analysis in financial markets 
however, most of them are focusing on equity market and a minority on other 
commodities like energy commodities. Therefore, this chapter first reviews research 
works on textual and sentiment analysis in agriculture market in general. Then, 
presents textual analysis methods that can be carried out to study the effect of 
textual data and sentiment in agriculture market. Finally, it presents an example 
of implementing a topic modelling task and textual regression for forecasting 
realized volatility of corn returns. To the best of the author’s knowledge, there is no 
study focusing on textual regression in agriculture market. Additionally, the studies 
conducting textual sentiment analysis are very limited. In this spirit, this study tries 
to fill this gap by introducing both well established and new textual and sentiment 
analysis methods to the agricultural researchers community. The limited experiment 
carried out with these methods in the present research testifies the superiority of 
the text-based models in explaining future movements of corn’s volatility. More 
specifically, the results of one-month-ahead realized volatility regression indicates 
statistically significant superior performance of both direct textual regression and 
sentiment regression compared to traditional methods like HAR and ARIMA. In 
addition, as the most accurate method, textual regression’s accuracy stands higher 
above that of the sentiment regression model. 
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11.1 Introduction 

Throughout history, understanding sentiment has played a significant role in eco-
nomic modeling. Traditionally, sentiment was measured using surveys or indirect 
methods. However, in recent times, there’s been a shift towards examining sentiment 
within text, audio, and visual data. With the digital transformation of communica-
tion, vast amounts of such data are available, offering valuable insights for financial 
and economic analysis. This shift has spurred a new area of finance and econometric 
research focused on translating qualitative sentiment data into measurable variables. 
These variables are then used to explore the connections between sentiment and 
other economic factors. 

There are commonly three approaches for measuring sentiment. First, it can be 
collected by means of surveys. This method is expensive, time-consuming, hardly 
replicative, and not timely—suffering from release lags. Another way is to buy 
sentiment measures or indices from a third-party provider, like Thomson Reuters 
MarketPsych Indices. However, these indices are not domain-specific, rather they 
measure the overall sentiment of the economy/market. The third way is to estimate 
the sentiment from a collection of quantitative and qualitative data like market 
variables (e.g. trading volume and volatility), news, social media, blogs, and search 
engines [1]. The latter way is relatively cheap, timely, and flexible, meaning that 
one can collect information about any market or even market sub-categories over 
various time spans. If the underlying data for measuring sentiment is text, it is 
usually referred to as textual sentiment analysis. 

One challenge of textual sentiment analysis is the huge amount of data available 
to process. The daily amount of information produced in the twenty-first century is 
beyond the processing power of human beings. Hopefully, the advent of artificial 
intelligence (AI) methods along with advancement in the computer’s processing 
power has enabled us to overcome this issue. Nowadays, the development of AI-
based machines has reached a zenith that experts raise alerts about the dangers of 
super-intelligent machines. One of the focus targets of AI is to provide tools that can 
help us extract information from big data. Textual analysis tools are very specific 
AI-based algorithms that can analyze a body of text, understand the context, and 
provide us with meaningful and easy-to-understand information from the text. 

There are many attempts to categorize textual analysis according to the tasks 
carried out, the underlying methodology, etc. However, without going deep into 
the categorizing complexities, and focusing merely on the methods that are used in 
financial studies more frequently, we divide the textual analysis tasks into sentiment 
analysis, textual regression, topic analysis, and named entity recognition. Similarly, 
the methods can be roughly divided into word (token) frequency methods (a.k.a. 
count-based methods) and word embedding methods. Each of the above-mentioned 
tasks can be carried out using the two methods. 

This chapter is interested in a branch of textual analysis methods called sentiment 
analysis. Sentiment analysis methods use algorithms to measure, estimate, or extract 
domain-specific sentiment from a body of text or from sentiment proxies. The
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procedure usually starts by quantifying the sentiment in a text using tools and 
methods from the natural language processing (NLP) field. Then, use the sentiment 
score or index to study the relationship between textual sentiment and economic 
factors. However, thanks to advent of more sophisticated NLP models, a shortcut 
can be regressing financial and economics time series directly using text. Following 
[1] sentiment can be defined as: 

The disposition of an entity toward an entity, expressed via a certain medium. 

Potential sources for textual data whose sentiment might affect financial and 
economic factors are media news, social media, blogs and microblogging platforms, 
and official reports. Text data is a source of timely information for estimating the 
future of the market using which market participants try to gain an edge over their 
competitors [2]. This source of novel information enables: traders to place their 
orders faster and make more profitable trades [3], investors to actively manage 
their portfolios [4], and policymakers to have a deeper insight into the market 
determinants. Moreover, it helps the market to work more efficiently and increases 
the speed of the price discovery process [3, 5]. 

Depending on the targeted market, the data sources can have different weights. 
For example, corporate reports might have the highest effect on corporate share 
price fluctuation, followed by media news. Social media sentiment is another 
major player in affecting financial markets because it is a significant source 
of investors’ and traders’ opinions regarding companies. However, commodities 
usually follow macro-level information and what we are calling “hard facts”, 
rather than individuals’ opinions on social media. In special cases like crude oil, 
though, information about big suppliers’ and cartels’ opinions or decisions that 
is usually reflected on social media can transmit shocks to the market. But other 
commodities like agriculture, tend to follow hard facts like information about 
weather, production, planting area, fertilizers, shipping, trading policy information 
and various macroeconomic variables. 

The rest of the chapter is organized as follows: Section 11.2 provides a 
background on the research works on sentiment analysis in agriculture market; Sect. 
11.3 explains how the text data should be prepared for the NLP methods explained 
in Sect. 11.4; Sect. 11.5 is an example of implementation of NLP models for real-
world problems; and Sect. 11.6 concludes the chapter. 

11.2 Backgrounds 

The current sentiment analysis studies in agriculture can be generally divided into 
three main categories: 

• Sentiment proxy analysis: where a (usually) non-text-related variable is proxied 
for market sentiment
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• Event analysis: in which the effect of an event on the market is studied. The 
reaction of the market to the event is attributed to the sentiment carried by the 
event. 

• News volume: where the count of news (social media posts) with regard to a 
market is proxied for the sentiment of the market. 

In sentiment proxy analysis, researchers assume a time series like VIX, trading 
volume, etc. as a proxy for sentiment, and study the effect of this proxy on different 
aspects of the agriculture market. For example, Zheng [6] studied the predictive 
power of stock market investor sentiment on forecasting the returns of commodity 
future (agriculture commodity included). The author followed Baker and Wurgler 
[7] in constructing the sentiment index. Baker and Wurgler [7] proposed a measure 
that uses a combination of market turnover, closed-end fund discount, new equity 
issuances, number of IPOs, first-day return on IPOs, and difference in book-to-
market ratios between dividend payers and dividend nonpayers as a proxy for 
investor sentiment. Zheng [6] documented a persistent negative relationship between 
commodity future returns and investor sentiment. The result also indicated a more 
strong relationship in periods with high conditional volatility. Hamadi et al. [8] 
explores the effect of macroeconomic announcements and news on the measurement 
of integration among the commodities. They used the consumer price index, 
federal funds rate, unemployment rate, and non-farm payroll announcements as the 
macroeconomic announcements, and Bloomberg economic surprise index (BESI) 
as the proxy for news surprises. The authors found evidence in favor of the strong 
influence of news surprises on the agriculture commodity variances. Moreover, 
Akyildirim et al. [9] studied the connectedness of the agriculture commodity 
market to the news-driven investor sentiment. They used Thomson Reuters Market 
Psych Indices (TRMI) as their proxy for market sentiment. TRMI is a sentiment 
index reported by Thomson Reuters and is estimated using NLP applications 
based on news, social media, and press releases. They indicated that around the 
first cycle of the COVID-19 pandemic in 2020, the pandemic had a significant 
impact on agriculture commodity returns. Additionally, they found that financial 
market uncertainty and economic policy are the determinants of the relationship 
between agriculture commodity returns and sentiment. Borgards and Czudaj [10] 
took the equidirectional trading of long and short agricultural commodity futures 
of long-short speculators as a proxy for their market sentiment to study if the 
long-short speculators can generate short-term investment returns in agricultural 
commodities. They showed evidence that commodity returns in the sentiment period 
were highly positive and had a significant difference from those of the neutral 
sentiment period. They also documented that a sentiment-based momentum strategy 
yields high returns. Balcilar et al. [11] utilized the Federal Reserve Bank of San 
Francisco’s sentiment index, constructed following research by Shapiro et al. [12] 
as a news-based sentiment index to study the impact of the COVID-19 pandemic on 
major agriculture commodities. The results indicate that the news-based COVID-
19 sentiment is the cause (by means of the Granger causality measure) of drastic 
volatility and price changes in agriculture commodities.
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In event analysis, scholars study the effects of an event like USDA reports release 
on the agriculture market. Karali et al. [13] investigate the effects of USDA reports 
on the crop markets considering the private estimation of the report outcomes. 
They reveal that although the accuracy in private sector analysts’ estimation of 
the reports has increased due to competition between private firms, they have not 
affected the surprise of the USDA report to the market. By exploring the impact 
of the change in the USDA news announcement regime in 2018, Adjemian and 
Irwin [14] revealed that the new release regime leads to an increase in trading 
volatility at announcement time, but vanishes quickly. In contrast, Indriawan et al. 
[15] examined the effect of the same release regime change on the agriculture market 
liquidity, volatility, information asymmetry, and high-frequency trading activity and 
found no significant difference in the aforementioned market qualities before and 
after the announcement regime change. Confirming the findings of Adjemian and 
Irwin [14], Bian et al. [16] found an increase in the volatility and the market 
microstructure friction, as well as a more efficient price discovery process resulting 
from the change in the news release regime. Cao and Robe [17] proxied the degree 
of analysts’ optimism/pessimism about the upcoming announcement information 
for the commodity-specific sentiment to explore commodity price implied volatility 
(IVol) expectations around the USDA report release. They reveal that the way IVol 
responds to the reports depends on the sentiment before the report is released. 

The third group of studies, i.e. news volume, takes the count of the news flow over 
a period of time as a proxy for sentiment and studies its impact on the agriculture 
market. Caporale et al. [18] investigated the effects of the macroeconomic news 
on the commodities returns (including agriculture commodities). They used the 
number of macroeconomic news (i.e. GDP unemployment, retail sales, and durable 
goods) articles published on Bloomberg news feed and identified spillover from 
news volume to agriculture commodity returns and a bigger spillover effect from 
news volume to agriculture price volatility. Phan and Zurbruegg [19] examined 
the time-to-maturity on the sensitivity of commodity future prices to news flows. 
They used the number of daily news headlines reported on Thomson Reuters 
News Analytics (TRNA) database and included agriculture future prices in their 
commodity price datasets. They found a U-shape relationship between unexpected 
news volume and the realized volatility of the commodities. Klomp [20] tried to  
explore the level of surprise in Russian retaliation sanctions for the agriculture 
commodity market. The author used the number of sanction-related news posted 
in major European newspapers containing sanction-related keywords as the proxy 
for retaliation measures by Russia. The results indicate that the boycott was partly 
anticipated by the investors. While still, it was the reason behind a drastic drop in 
the commodities returns. Sun et al. [21] investigated the effects of the trade policy 
uncertainty index (TPU) on agriculture commodity prices. Developed by Davis et 
al. [22], TPU is the monthly count of news articles that include keywords related 
to economic, trade policy, and uncertainty categories. They uncovered both positive 
and negative impacts of TPU on the agriculture commodity prices, which is due 
to the effect of TPU on supply and demand in the agriculture commodity market.
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Moreover, they showed a bidirectional relationship between TPU and the prices 
where in some periods commodity prices affect the fluctuations in TPU. 

11.3 Data Preparation 

Data preparation is a task-specific, data-specific, and language-model-specific part 
of NLP and there are no strict rules to follow. However, there are general steps 
that can be applied to many types of data in various tasks, with different language 
models. For example, data cleansing and Text normalization are part of any text 
preparation in finance. 

11.3.1 Data Cleansing 

One challenge of working with textual data is that they tend to be very noisy and 
contaminated by huge amounts of redundant data and information. Data cleansing 
is the process of removing any redundant pieces of text before normalizing it. It 
helps the model to understand the text better, generalize easier and be trained faster. 
Therefore, the first and most time-consuming part of any textual analysis project 
is data cleansing. The problem lies within the text extraction task and has various 
methods to tackle with. One of the most widely used and efficient, yet complex, 
method is regular expressions (also called regex). This method searches the text to 
find pre-designed patterns. These patterns are designed by the user and usually target 
the most frequent part of the text, i.e. the noise. Email addresses, URLs, headers 
and footers are examples of noise that can be captured by the regex. Interestingly, 
despite the advancement of textual analysis tools, tables still fall into the category 
of noise information for the NLP algorithms. The way language models understand 
the tables and finding a solution for extracting information from tables using NLP 
models is currently one of the hot topics among NLP scholars. 

Removing email addresses, URLs, authors, usernames, dates, credentials, etc. are 
usually part of text cleansing for finance and economics applications. However, it 
ultimately depends on what data is used, for what purpose and using what language 
models. For example, using news articles for financial market analysis using LLMs 
requires, in addition to abovementioned steps, removing tables. Because today’s 
state-of-the-art NLP models have no way of interpreting tables yet. A counter 
intuitive example is the role of exclamation marks, question marks, and emojis 
that are more common in texts like social media posts. While researchers used to 
eliminate them from the text in the past, nowadays the experts suggest keeping this 
data as they might represent some information about the sentiment of the text.
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11.3.2 Text Normalization 

Text normalization is the task of preparing the text for a language model. According 
to Jurafsky and Martin [23] it comprises of at least three steps: Tokenization, 
Normalizing word formats, Segmenting sentences. 

11.3.2.1 Tokenization 

Tokenization is the task of dividing a body of text into separate words or subwords 
that are generally called tokens. The sentence “The low volatility may remain 
as one of the features of the following move” can be simply divided into 14 
words. Transforming the example above, only the word “volatility” is divided into 
subwords: “vol”, “ati”, “lity”.1 

11.3.2.2 Normalizing Words 

Normalizing words is the process that deals with the inconsistencies in different 
versions of the same word. It can start with translating (or removing) parts of text 
whose language is different form the rest of the corpus and be continued with typo 
correction. Then, case folding, stop word removing, lemmatization or stemming are 
the steps that might or might not be necessary. 

Case folding is the process of changing upper case letters into lower case ones. 
While it can be helpful to generalize the model in some tasks, it is not generally 
done in tasks like sentiment analysis or text regression because it eliminates useful 
information in similar words with different cases like US and us. 

While there is no strict definition on Stop words, they are usually the most 
frequent words in a text document carrying little value regarding the contextual 
meaning of the text. For some examples, “a”, “an”, “the”, “be”, “by”, “that”, “will”, 
etc. are usually stop words [25]. There are “stop lists” for different approaches. 
The length of these stop lists may vary between 7 to 300 terms. Most of the NLP 
algorithms (except transformer-based LLMs) either ignore stop words or have no 
idea how to process them. Therefore, if the LM is not and LLM, stop words are 
considered noise and should be cleaned from the text. 

Lemmatization is to find the root of a word. For example, among the words 
“go”, “goes”, “went”, and “going”, the root for all of them is “go”. Lemmatization 
will change the sentence “gains in soybean, corn and wheat futures were capped by 
the disappointing U.S. weekly export inspections” into “gain in soybean, corn and 
wheat future be cap by the disappointing U.S. weekly export inspection”. The direct 
result of lemmatization is a reduction in the length of the vocabulary |V |, and simpler

1 The tokenization is carried out using the tokenizer of pretrained BERT package that follows 
WordPiece algorithm [24]. 
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NLP algorithms will become more efficient. Stemming on the other hand, is similar 
to lemmatization, but more cruder, chopping off the final affixes of words. There 
are different stemmer schemes, among which Porter Stemmer [26] is one of the 
most widely used. Using the Porter Stemmer, the above phrase will become: “gain 
in soybean, corn and wheat futur were cap by the disappoint U.S. weekli export 
inspect”. 

11.3.2.3 Sentence Segmentation 

Sentence segmentation (a.k.a. sentence tokenization) is the process of splitting 
a text into individual sentences. It is usually done with regard to the position of 
punctuations like exclamation marks, question marks, and periods withing the text. 
However, it can sometimes be difficult to distinguish a period that is the sentence 
boundary from the one that is the mark of abbreviations like Mrs. or corp. In 
practice, sentence segmentation methods first decide if the period character is part 
of a word or sentence boundary. This can be achieved by rule-based systems or 
machine learning. A dictionary of abbreviations can help facilitating the task. 

Nowadays, with the advent of transformer-based LLMs and pre-trained LLMs, 
some of the normalization steps are skipped, while text cleansing is still widely 
practiced. Most of the pre-trained LLMs are designed with tokenizer modules that 
circumvent stop word removal and stemming and lemmatization by transforming 
the words into sub words with regards to a pre-defined dictionary of sub words. 

11.4 Methods 

11.4.1 Lexicon-Based Methods 

During the recent past years, language processing methods have witnessed a drastic 
improvement both in their performance and their applications. Generally speaking 
models that assign probabilities to sequences of words are called language models 
or LMs. The most simple LMs are called Bag-of-words (BoW) methods because 
they regard a document a bunch of independent words (tokens) without considering 
their order. This methods assign a probability to each word based on the frequency 
of the word in the corpus. Based on this simple concept, the more complex models 
like n-grams and Bayesian models are developed. 

Using BoW for text classification is simple. The user needs a dictionary of 
words categorized in different classes. These dictionaries are called lexicon. For  
example, a lexicon containing words that are tagged with positive, negative, or 
neutral sentiments. Then, in a sentiment classification task, the ratio of the positive, 
negative, and neutral words relative to the document length is considered positive, 
negative, and neutral sentiment score, respectively, for the document. Let SPos, SNeg,
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and SNeu be the positive, negative, and neutral sentiment scores, respectively, of the 
document d with length |d|. Then, the sentiment scores are: 

.SPos = Number of positive words

|d| , (11.1) 

.SNeg = Number of negative words

| d | , (11.2) 

.SNeu = Number of neutral words

| d | . (11.3) 

The most widely used general purpose lexicons are General Inquirer [27], LIWC 
[28], the opinion lexicon of Hu and Liu (2004a) and the MPQA Subjectivity 
Lexicon [29]. However, the efficacy of general purpose lexicon for domain-specific 
task like financial and economics textual analysis is questionable. In response 
to this shortcoming, several finance and economics domain-specific lexicons are 
developed, the most prominent among them are Henry lexicon [30] and the 
Loughran and McDonald lexicon [31]. 

11.4.2 Linear Classifiers 

Developed on the word independence assumption of BoW, linear classifier naïve 
Bayes assigns class ĉ . to document d from a set of pre-defined classes C following 

.ĉd = arg max
c∈C

P (c)

nΠ 

i=1

P (wi |c) , (11.4) 

where i and n are the position of word wi in the document and length of the 
document, respectively. The model is first trained using a manually labeled set 
of documents (training set), also called Gold labels or Gold standard. The  
probabilities P(c) and P(wi| c) that are determined during training phase, are applied 
to the test set to estimate the class of each document using Eq. (11.4). 

11.4.3 Term and Document-Based Matrices 

Another way of modeling a language is to utilize frequency matrices also called 
term-document matrices. In these matrices, each column represents a document, 
and the rows are the words within the corpus (the dataset of all documents). The 
cells are filled with the frequency of the word t in each document d (tft, d). If
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the corpus is large enough, the length of the rows of the underlying frequency 
matrix is approximately equal to the vocabulary size |V| of the language. This very 
sparce matrix is a collection of column vectors for each document. In other words, 
each document is represented by a vector in |V|-dimensional space. Note that the 
dimensionality of vectors, i.e. the vocabulary size, is often between 10,000 and 
50,000.2 

The term-document matrix is not as informative because of presence of highly 
frequent words like the, a, it, they, etc. A better measure would be to adjust the term-
document matrix with the frequency of occurrence of each word in the documents. 
First, let us redefine term-frequency of a word t in document d as: 

.tft,d = log10 (count (t, d) + 1) . (11.5) 

Then, we can argue that the words that appear in less documents can be much 
more informative regarding distinguishing between documents. Therefore, we can 
define a scaling value for term-frequency that puts more weight on less occurring 
terms and less weight on more occurring terms, and call it inverse document 
frequency (idf): 

.idft = log10

⎛
N

dft

⎞
, (11.6) 

where N is the total number of documents in the corpus D, and dft is the number 
of documents containing word t. Now, the scaling measure, called term frequency 
inverse document frequency or tf-idf, for a word t in document d would be wt, d and 
is defined as: 

.wt,d = tft,d × idft . (11.7) 

Presenting an example form [23] Table 11.1 shows the tf-idf weights of four 
words battle, good, fool, and wit in four Shakespeare plays. As presented in the 
table, because the word good is a ubiquitous word in the four plays, the vector for 
word good is not discriminative. While the word battle is quite discriminative with 
high values in dimensions Julius Ceasar and Henry V, plays with battle components, 
and low values in dimensions As  You  Like  it  and Twelfth Night.

As an example of calculating tf-idf values, the term frequency of wit 
in As  You  Like  It  is 20 and its document frequency is 34, meaning it 
is appeared in 34 documents out of 37 sampled documents. Therefore, 

tfwit, As You Like It = log1020 + 1 = 1.322, and idfwit = log10

⎛
37
34

⎞
= 0.037..

2 Sorting the words according to their frequency, keeping the most frequent words after 50,000 
does not help the performance of the model. 
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Table 11.1 The tf-idf values for four sample words in a sample of four Shakespeare plays 

As You Like It Twelfth Night Julius Caesar Henry V 

Battle 0.074 0 0.22 0.28 
Good 0 0 0 0 
Fool 0.019 0.021 0.0036 0.0083 
Wit 0.049 0.044 0.018 0.022 

Because using Eq. (11.7), wwit, As You Like It = 1.322 × 0.037 = 0.049, the tf-idf 
score of wit and As  You  Like  It  in Table 11.1 is 0.049.

The tf-idf matrix can be used directly as the input for classification and regression 
methods (in finance and economics), or to model the language using a probabilistic 
language modelling. Please refer to [23] for more information on probabilistic 
language models. 

When it comes to quantifying the semantic and syntactic role of an individual 
word in document (corpus), another matrix appears to be more useful. Usually called 
term-term matrix,3 it is a |V| ×  |V| matrix containing the information regarding 
the co-occurrence of words in a document. The idea is based on the fact that the 
words that appear in the same document tend to have similar meanings. Therefore, 
a word can be defined by a simple function of counts of nearby words. In a term-
term matrix the cells record the co-occurrence of the words in rows (target word) 
and columns (context word) in some context in a t raining corpus.

Similar to term-document matrix, term-term matrix can be improved by adjusting 
the uninformative raw frequencies. The method for adjusting this matrix is called 
positive pointwise mutual information (PPMI). PPMI for target word wi and 
context word cjis calculated as: 

.PPMIij = max

⎛
log2

pij

pi∗p∗j

, 0

⎞
, (11.8) 

.pij = fij∑W
i=1

∑C
j=1 fij

, (11.9) 

.pi∗ =
∑C

j=1 fij
∑W

i=1
∑C

j=1 fij

, (11.10) 

.p∗j =
∑W

i=1 fij∑W
i=1

∑C
j=1 fij

, (11.11)

3 word-word matrix and term-context matrix are two other names for term-term matrix. 
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Table 11.2 co-occurrence count matrix for four words in five context in the Wikipedia corpus 

Computer Data Result Pie Sugar Count(w) 

Cherry 2 8 9 442 25 486 
Strawberry 0 0 1 60 25 80 
Digital 1670 1683 85 5 4 3447 
Information 3325 3982 378 5 13 7703 
Count(context) 4997 5673 473 512 61 11,716 

Table 11.3 The PPMI 
matrix of the word-context 
pairs reported in Table 11.2 

Computer Data Result Pie Sugar 

Cherry 0 0 0 4.83 3.30 
Strawberry 0 0 0 4.10 5.51 
Digital 0.18 0.01 0 0 0 
Information 0.02 0.09 0.28 0 0 

where fij gives the number of co-occurrence of target word wi and context word cj. 
The following example from the [23] clarifies the procedure. Suppose that we have 
co-occurrence count table like Table 11.2. 

Assuming that the information in Table 11.2 encompasses all the relevant word 
contexts, the PPMI(information, data) is calculated as follows: 

. P (w = information, c = data) = 3982

11716
= 0.3399,

. P (w = information) = 7703

11716
= 0.6575,

. P (c = data) = 5673

11716
= 0.4842,

. PPMI (information, data) = log2
0.3399

0.6575 × 0.4842
= 0.0944.

The PPMI matrix of the association between word-context pairs of the Table 
11.2 is presented in Table 11.3. From the results in Table 11.3 it can be seen that the 
vectors for the words cherry and strawberry, [0, 0, 0, 4.83, 3.30] and [0, 0, 0, 4.10, 
5.51], are very similar, and the vectors for digital and information are very similar 
too. While the vector for cherry and information are very dissimilar. The similarity 
between two vectors are measured by cosine distance between the two vectors that 
is discussed in Sect. 11.4.7. 

Here, we have used only the immediate neighbor of the target words as the 
context for the sake of simplicity. However, the equations can be easily generalized 
to consider L words around the target word as the context. Due to growing
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computation cost as L increases, it is common in practice to consider L in the range 
of 2–10. 

It is a ground breaking achievement to model qualitative information like text 
as multidimensional vectors. Because now, these word-representing vectors can 
be used as the inputs to any quantitative model and draw quantitative inferences 
from the text. In other words, these vectors are the raw data for classification 
and regression methods that can be used for extracting financial and economic 
conclusions. 

11.4.4 Word2vec 

The methods presented above have many shortcomings. One problem is that the 
vectors they produce are very sparce, containing many zero dimensions. In addition, 
the term-term matrix cannot decode the syntactic and semantic properties of words 
very accurately. It is limited to the surrounding words. For some other reasons 
that are not completely clear yet, shorter and more dense vectors tend to result 
in models with higher performance. These dense vectors usually have dimensions 
in the range of 50 to 1000, instead of the whole vocabulary size |V| in term-term 
matrix. Despite the term-term matrix the dimensions of dense vectors don’t have 
a clear interpretations. It means that, despite word vectors of term-term matrix, in 
dense word vectors dimension n of the vector of word w cannot be attributed to the 
relationship between the word w and context word c at dimension n .

Nowadays, there are various methods for estimating dense vector representations, 
skip-gram based methods, also known as word2vec, recurrent neural networks, and 
transformer-based algorithms are the most prominent ones. 

Word2vec methods introduced by Mikolov et al. [32] are fast and efficient 
methods to assign static dense vectors to words using skip-gram with negative 
sampling method (SGNS). It is a so-called self-supervised method that looking at 
a document, it treats target words and their neighboring context words as positive 
(true) examples. While it randomly samples other context words in the lexicon to 
construct a negative (false) examples for the same target word, hence negative sam-
pling in SGNS. Then, it uses a logistic regression to train a classifier to distinguish 
those two cases, and uses the trained weights as the vector representations called 
embeddings. In other words, the intuition behind the word2vec is to train a classifier 
to answer “is target word w likely to show up in the vicinity of context c?”. When 
the classifier managed to learn the answer optimally, with lowest possible error, 
then it ignore the classifier’s answers and takes the classifier’s weights as the word 
embeddings. These embeddings represent the relationship of the target word w with 
all the context words c that have appeared in the vicinity of w in the whole training 
corpus, hence the semantic embedding of w.
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The word2vec classifier tries to minimize the following loss function: 

.LCE = −
⎾  

log P
(
pos|w, cpos

) +
k⎲

i=1

log P
(
neg|w, cnegi

)
 ⏋

, (11.12) 

where P(pos|w, cpos) is the probability that cpos is a real context (neighboring) word 
for target word w, P

(
neg|w, cnegi

)
. are the probabilities that cnegi

. are not the real 
context words for w, i.e. they are the randomly sampled words, for all the noise 
words cneg1 , . . . , cnegk

.. 
During training, Word 2vec learns two sets of weights, wi when the i is a target 

word and ci when i is a context word. It is common to add these two sets of vectors 
to produce the final embeddings. Alternatively, ci can be ignored and i can be 
represented with wi only. 

Similar to the count based methods like term-term matrix, the window L around 
the target word can be expanded to incorporate more information about a target 
word. 

As an extension to word2vec, fasttext [33] introduced to address the unknown 
word problem of word2vec. Unknown words are the words that are not present 
in the training dataset vocabulary. Therefore, the word2vec algorithm ignores any 
new word in the test dataset if it is not in the training set. fasttext, on the other 
hand, utilizes subword model that breaks down the words into subwords, assigns an 
embedding to each subword, and adds the embeddings to construct the final static 
embedding for a word. This way, any new word in the test set can be split into 
subwords familiar to the trained algorithm. 

GloVe [34] is another widely used static embedding representation. It is short 
for Global Vectors and incorporates both the linear structure used by methods like 
word2vec and the probabilities of count-based co-occurrence methods like PPMI to 
capture the so-called global statistics of the corpus. 

All of the above methods have the context window size parameter L that needs to 
be tuned. The choice of the L depends on the application of the embeddings and it is 
usually between 1 and 10 words on each side of the target word, meaning a total of 
2–20 context words per target. The magnitude of L slightly changes the embeddings 
with shorter windows capturing more syntactic properties of the target, while larger 
windows result in embeddings closer to the topic of the document. 

In practice, instead of training a task-specific model for every application, it is 
more common to use the embeddings that are pretrained on a huge general corpus 
and are available online. The benefit of using these pretrained embeddings is to save 
the cost of the training an NLP model, as well as having a good generalization. 
However, it is important to note that the NLP models performance can deteriorate 
drastically if the training corpus and the test corpus contain very different texts.



11 Textual Analysis in Agriculture Commodities Market 287

11.4.5 Neural Networks and Deep Learning 

While frequency-based LMs and linear language models like naïve Bayes struggle 
to incorporate the dependence between the words in a document and the role of the 
previous words on its contextual decoding, more modern non-linear LMs can handle 
more distant histories (previous context words) and generalize better. Thus, they 
produce more accurate representations, however, at the cost of higher complexity, 
training time, and lower interpretability. 

The most widely used deep neural network models for modeling language, prior 
to introducing Transformers, was RNN-based4 model. Like the previous language 
models, RNNs try to approximate the probability of a word, given the prior context 
P(wt|w1 :  t − 1). In their most basic form, RNNs take an initial embeddings (usually 
random vectors) for input words and try to optimize the embeddings during the 
training. They have a recursive mechanism, hence the name recurrent, that feeds the 
previous step’s hidden state containing information about the previous word (token) 
ht − 1 as input to the current hidden state ht. Therefore, passing information about 
the previous words to the next words in a sequence, they can capture the relationship 
between the words in a sequence. For example, processing “it” in the sentence “The 
equity market experienced a significant downturn yesterday, while it has managed 
to recover some of those losses today.”, an NLP model needs to preserve all the 
information from the beginning of the sequence to relate “it” to the “the equity 
market ”.

More specifically, RNN language models [35] process one word at a time trying 
to predict the next word using the information from the current word and the 
previous words of an input sequence in a self-supervised manner. This way, RNNs 
overcome the problem of fixed context length of the previous models. 

In essence, an RNN language model tries to minimize the following loss 
function: 

.LCE

(
ŷt , yt

) = − log ŷt [wt+1] , (11.13) 

where ŷt [wt+1]. is the probability distribution over the possible next word. It is 
computed by applying softmax function to the information form the last hidden 
state. Let E be the matrix of weights from the last hidden state to the output layer, 
then ŷt . can be calculated as: 

.ŷt = softmax
⎛
ET ht

⎞
. (11.14) 

An advantage of the RNNs is that they can be trained directly as the classifiers 
and regressors for high-end tasks in finance and economics. While, they can also

4 The set of RNNs represent the all the NN variants that incorporate a recursive mechanism, 
including simple\vanilla RNN, LSTM, GRU, etc. 
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Fig. 11.1 A schematic of an 
unrolled RNN [36] 

be trained on a large corpus of text and the trained embeddings be extracted 
as the word embeddings for the following financial and economics applications. 
Figure 11.1 shows a schematic of an unrolled RNN. 

11.4.5.1 Transformers 

In simple words, Transformers are NN-based encoders-decoders. These are cur-
rently the state-of-the-art algorithms [37]. The most important features of Trans-
formers are self-attention mechanism and positional encoding. Before introducing 
self-attention mechanism, the attention mechanism should be explained. Attention 
mechanism introduced before the advent of Transformers as a way to mitigate the 
information loss in RNNs. It is a way for the network to get the information form 
all the previous hidden states and not only the final hidden state in an RNN. In this 
mechanism, instead of providing the previous hidden state to the final processing 
unit, a context vector c is provided, which is a function of all the previous hidden 
states, i.e. c = f (h1, h2, .  .  . ,hn). This function f is usually a weighted average and 
the weights are the attentions that the final context vector c pays to each hidden 
state hn. This is the way for the algorithm to have an idea about the importance 
of different hidden states (containing information about previous words) in the 
sequence. Note that in RNNs, the context vector c is calculated at the end of the 
encoding (when the algorithm processed the final word in the sequence) and is 
passed to the next module, i.e. decoder, for using the encoded information.

Exploiting the attention idea, the Transformers algorithm developed self-
attention mechanism in which it assigns weights to the previous words of the 
sequence when processing another word in the same sequence. Self-attention helps 
the algorithm relate each word in the sequence to the other words in the same 
sequence. 

We discussed that the RNNs processing words of sequence in series, meaning 
that they process a word at a time and pass the information about the word to the 
next processing step. This series processing preserves the order of the words in the 
sequence, but the disadvantage is that the algorithm needs the result of the previous 
step to process the current step. Transformers address this issue by introducing 
positional encoding. In this mechanism, each word is assigned a vector relative to its 
position in the sequence. This vector is added to the embedding of the word before 
feeding it to the Transformer block. Using positional encoding the algorithm knows 
the position of word in the sequence and can process each word independently in a 
faster parallel processing fashion.
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As with the overall Transformers, they are made up of stacks of transformer block 
to map a sequence of input vectors [x1, x2, .  .  . , xn] to a sequence of output vectors 
of the same length [y1, y2, .  .  . , yn]. Each block contains layers of self-attention, feed 
forward NNs, and simple linear layers. The process starts by assigning a position to 
each word in the sequence. Then, the initial embeddings of each word is added to 
the positional vectors. These positioned embeddings then are passed through the 
self-attention layer. The self-attention layer calculates the weights that represent 
the relationship between a words and its previous words in the sequence. In a 
vanilla Transformer, the self-attention does not have access to information about 
the words beyond the currently processing word. The output vectors of the self-
attention, i.e. positional embeddings and the self-attention vectors, are fed to several 
normalization and feed forward NN layers. Finally, the final layer produces an 
embedding vector for each input word. These embeddings are similar to the ones 
produced by word2vec and RNN, a high-dimensional vectors, but more rich in 
information about the word. These vectors can be extracted for the subsequent tasks 
or fed into t he decoder block of the Transformer.

Another revolutionary advantage of Transformers is that, despite the static 
embedding produced by word2vec and RNNs, they can output a context related 
dynamic embeddings called contextual embeddings. Consider the word “bank” in  
two sentences “I deposit my money in the bank” and “I walked along the river bank”. 
A static embedding representation for the word “bank” have to incorporate both 
meanings of the word at the same time because it is static and once produced cannot 
adapt to the context of the sentence. While a dynamic contextual embeddings will 
change depending on the context, i.e. the words around it. While this was an example 
of two different meaning for the same word, some other words might convey even 
more meanings from one context to the other. For example, the word “book” can 
have up to six different meanings in different contexts. 

Transformers achieve this feat by using multi-attention-head mechanism in 
which not one self-attention vector, but multiple vectors are trained for one word 
simultaneously, each representing one aspect of the word depending on its context. 
Therefore, a Transformer algorithm produces two different embeddings for the same 
word “bank” using the two sentences. 

Despite the static embeddings where a model is trained on a corpus then the 
learned weights are shared as the embedding vectors of the words, producing 
contextual embeddings requires the user to have the trained model in possession 
and run it for any target sentence. Therefore, in Transformer-based LMs it is the 
trained model, i.e. model structure and trained weight, that is shared. The end user 
can download a trained model and feed it with sentences to extract the embedding 
for the words. An example of an encoder-decoder Transformer block is presented in 
Fig. 11.2. 

Although initially introduced as an encoder-decoder architecture, Transformers 
can be found in encoder only models, like BERT, and decoder only architecture, like 
generative pretrained transformer (GPT).
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Fig. 11.2 An 
encoder-decoder Transformer 
block. [37] 

11.4.5.2 BERT 

The model introduced in the previous section was vanilla Transformer or so-
called causal or left-to-right Transformer models. In these models, the Transformer 
has only access to the previous words when it process the current word. A new 
generation of Transformers, called bidirectional Transformer encoders, provide the 
access to the entire sequence, both left and right context, while learning about the 
current word. This helps the model to learn the role of the word in the sentence 
more deeply with regard to what comes before and after that. They also use a 
training technique called masked language modelling (MLM) in which, instead of 
predicting the next word, a word in the sequence is masked randomly, i.e. its value 
is unknown to the algorithm. The model tries to predict the masked word using the 
entire context of the sequence. In other words, instead of “guess-the-next-word” 
task, the algorithm tries to learn “fill-in-the-blank” task. 

BERT [24], short for Bidirectional Encoder Representations from Transformers, 
is one of the most widely used bidirectional Transformer that utilizes MLM. In 
BERT, 15% of the inputs are sampled for learning. Unsing the learning sample, 
MLM is performed in three ways: 

• 80% are masked, i.e. replaces with the unique token [MASK], 
• 10% are replaced with random tokens from the vocabulary, 
• 10% are left unchanged.
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The objective of MLM training is to guess these original token for the masked 
tokens. 

Masked-based learning focuses on predicting words using surrounding contexts 
to create effective word-level representations. However, an essential set of applica-
tions involves assessing relationships between sentence pairs. These tasks include 
determining paraphrase similarity, entailment, or discourse coherence. 

To address these application needs, BERT introduces a second learning objective 
known as Next Sentence Prediction (NSP). NSP involves presenting pairs of 
sentences to the model and tasking it with discerning whether each pair consists 
of consecutive sentences from the training data or unrelated sentences. BERT’s 
training involved 50% actual adjacent sentence pairs and 50% where the second 
sentence was randomly selected from elsewhere in the corpus. The NSP loss 
measures the model’s ability to distinguish true pairs from random ones. 

To facilitate NSP training, BERT incorporates two new tokens into the input 
representation (which also prove useful for fine-tuning). These tokens, [CLS] 
prepended to the sentence pair and [SEP] inserted between and after the sentences, 
aid in creating embeddings for the model to differentiate between the input 
sentences, enhancing its comprehension of the relationships between them. The 
[CLS] token is often called the sentence embedding because it represents the whole 
information in a sentence. It means that, besides an embedding vector for every 
word in the sequence, BERT also produces an embedding vector for representing 
the whole sentence. The [CLS] vector is usually the only vector that is fed into a 
classification and regression algorithm that comes after the NLP encoder. 

It is also worth noting that BERT is only an encoder that maps the input tokens 
to a vector representation. Its output can be used for subsequent tasks such as 
classification, regression, named entity recognition, translation, text generation, etc. 

As discussed in Sect. 11.4.5.1, Transformer-based language models can be pre-
trained and shared to be used by the end users. BERT, also, has versions that are 
trained for different tasks. The most widely used version is the general purpose 
BERT that is pretrained on a huge corpus of text. The pretrained model then can 
be downloaded by the end user and directly used for the subsequent tasks„can be 
further trained using a domain-specific corpus to get more familiar with the texts in 
that domain, or can be fine-tuned by a set of labelled task-specific text documents 
to become task-specific BERT. 

Fine-tuning involves taking a pretrained LLM, typically using added neural 
net classifiers or regressors that utilize the top layer’s embeddings, and further 
training the model for specific tasks such as sentiment classification, named entity 
recognition, or regression. The idea is that the initial pretraining phase teaches the 
model a language understanding that encompasses nuanced representations of word 
meanings, facilitating easier adaptation (‘fine-tuning’) to new language tasks. 

This pretrain-finetune approach aligns with transfer learning in machine learning, 
where knowledge gained from one task or domain gets applied (transferred) to solve 
a different task. In pretraining, the LLM’s weights optimize to capture intricate word 
representations, while during fine-tuning, these weights undergo minor adjustments 
to better suit the requirements of the final task. Essentially, pretraining builds a
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foundation of understanding, and fine-tuning tailors this knowledge for specific 
applications. 

The original BERT model comprised the following components: 

• A subword vocabulary containing 30,000 tokens, created using the WordPiece 
algorithm [24]. 

• Hidden layers with a size of 768 (this is the embedding vector length). 
• 12 layers of transformer blocks, each containing 12 multihead attention layers. 

This configuration resulted in a model with more than 100 million parameters. 
BERT and its related models rely on subword tokens generated through algorithms 
like WordPiece, instead of processing individual words. This means that every input 
sentence undergoes tokenization, and subsequent processing occurs using these 
subword tokens rather than full words. 

11.4.6 Text Generation 

Using a language model to create text is among the most significant applications 
of neural language models in NLP. Text generation, alongside image and code 
generation, forms a fresh domain in AI often referred to as generative AI. 

A decoder (a.k.a. generator) is similar to a classifier that, once provided with the 
information about the current state (word), it calculates the probability of all the 
candidates for the next state (word). A trained decoder knows the joint probability 
distribution over the whole vocabulary. Therefore, if it is provided with the current 
and the previous word(s), it can guess the next word. 

A trained decoder usually follows autoregressive text generation approach to 
generate a novel text. The process starts by feeding the starting token to the decoder, 
which is a token defined as the start of every sentence during the training, e.g. <s>. 
The decoder generates the next word by calculating the probability over the entire 
vocabulary conditioned on the previous entry and returns the word with the highest 
probability. Then, it receives the previous generated word(s) and generates the next 
word. The process continues until a predefined length is reached or the ending token 
is generated. It is a token at the end of every sentence as a signal that the sentence 
has ended, e.g. </s>. The result is a sequence of words or a sentence. 

In a more complex model like GPTs, the starting token can be a sentence form 
the user. For example, user can ask a question and the generator generates the 
answer. The procedure is similar to abovementioned process, i.e. the algorithm 
finds a sequence of tokens with the highest probability conditioned on the previous 
tokens.
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11.4.7 Evaluation Metrics 

The best evaluation metric for NLP models is to try them on tasks, i.e. to see if an 
NLP model improves performance, competing with rival models. In self-supervised 
methods like RNN and Transformers, the loss of predicting the next token can be 
used as the measure of performance of model during its training phase. However, 
the out-of-sample or test set evaluation is still a challenge. 

Nevertheless, it is still important to have an idea about the models intrinsic 
performance. The most widely used intrinsic metric is similarity measure. It is 
comparing the similarity scores of the embeddings produced by an algorithm with 
that of assigned by humans, a.k.a. gold standards. For example, WordSim-353 [38] 
is one of the most widely used gold standards of 353 word pairs with human labeled 
similarity scores on the scale of 0 to 10. In WordSim-353, (plane, car) pair, for 
example, have a similarity score of 0.577. SimLex-999 [39], TOEFL dataset [40], 
Stanford Contextual Word Similarity (SCWS) dataset [41], the Word-in-Context 
(WiC) dataset [42], and The semantic textual similarity task [43] are other useful 
gold standard datasets. 

The most common metric to measure the similarity between two multidimen-
sional vector representations is the cosine of the angle between the two vectors. It is 
called Cosine similarity measure and is computed by normalizing the dot product 
between the two vectors. Thus, the cosine similarity between two vectors w and v 
with lengths |w| = | v| and dimensions N is: 

.cosine (v,w) = v.w

|v| | w | =
∑N

i=1 viwi/∑N
i=1 v2

i

/∑N
i=1 w2

i

, (11.15) 

The cosine similarity metric ranges from +1 for the perfectly similar vectors 
pointing to the same direction, to −1 for the vectors the point to the opposite 
directions, with cosine = 0 showing the orthogonal v ectors.

In finance and econometrics, researchers usually use classification and regression 
performance as the measure of NLP model performance. In classification tasks, 
sentences labeled with sentiment are used as the gold label to train a classifier. 

11.4.8 Visualization 

The tools and techniques for visualizing the information in text data is very limited, 
partly because of high dimensionality of the embedding vectors. Before extracting 
the embedding vectors, however, there are ways of representing some information 
in the text. Word clouds are among the most widely used methods of illustrating 
the frequency of words in a body of text. Shown in Fig. 11.3, a word cloud depicts 
the words separately on a canvas in which the size of the words are associated with
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Fig. 11.3 Word cloud of the 2022 media news dataset before applying cleansing procedure 

Fig. 11.4 The first 100 dimension (out of 768) of 10 embeddings. The embeddings are extracted 
using the pretrained model of base version of BERT algorithm, accessible using “bert-base-
uncased” from Huggingface.com 

their frequency in the corpus. In Fig. 11.3, for example, the most frequent words 
are “Refinitive”, “consent”, “service”, and “https” as they are appeared with the 
biggest font sizes, while words like “rate”, “import”, and “cost” are examples of 
less frequent words. It is noteworthy that the list of words sorted from highest to 
lowest frequent words might be truncated at some threshold below which cannot be 
fitted in a word cloud illustration. 

Visualizing a text using the word embedding vectors or sentence embedding is 
more challenging. One technique to represent an embeddings is to use color coding 
vectors. An example of color coded vectors is depicted in Fig. 11.4. In the figure, the 
words “corn”, “wheat”, “soybean”, “commodity”, and “crop” show similar patterns, 
while words like “question” and “players”, from Shakespear quotes, are completely 
different. Note that this is only the first 100 dimensions out of 768 dimensions of 
the embeddings. The cosine similarity of the same words is presented in Fig. 11.5. 
The similarity of the words is inline with the patterns in Fig. 11.4.
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Fig. 11.5 Cosine similarity of a sample set of words in an agriculture-related media news text. 
The embeddings are extracted using the pretrained model of base version of BERT algorithm, 
accessible using “bert-base-uncased” from Huggingface.com 

Color coding the embeddings is a useful method, yet comes with limitations. For 
example, the number of dimensions that can be fit into an illustration and the number 
of embeddings that can be shown are very limited. Therefore, it can be useful to 
compare only a sample of embeddings belonging to most interested words\sentences 
on a color coded diagram. Another technique that helps having an idea about related 
and opposite words is clustering. As a very simple method of clustering, dendrogram 
helps categorizing words based on their distance to the other words. Thus, more 
related words appear on the same branch, while words with different meanings or 
belonging to different domains tend to be on a separate branch. Figure 11.6 shows a 
dendrogram in which each major branch is color coded. In the dendrogram, words 
like “wheat”, “bread”, “flour”, and “dough” are in a same branch. While “news”, 
“quote”, and “correspondent” appear to be more closely related. 

11.4.9 Text as a Time Series 

One of the main reasons we can study the effect of textual data on time series is 
the fact that the textual data are usually time series. This is particularly true about 
the textual data that are often used in financial and economic studies, i.e. news text, 
social media text, corporate reports, etc. These texts are issued regularly through 
time and as it is discussed, the texts can be represented as a multidimensional 
vector. Therefore, text can be treated as a multidimension time series because at
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Fig. 11.6 An example of dendrogram. The embeddings are extracted using the pretrained model 
of base version of BERT algorithm, accessible using “bert-base-uncased” from Huggingface.com. 
The clustering is performed with regard to cosine distance between words of a sample of 
agriculture-related media news text
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each point in time we might have one or more vectors. These time dependent 
vectors can be represented as sentiment using sentiment classification methods, and 
the effect of these time dependent sentiment on financial markets and economic 
factors can be investigated. Otherwise, the relationship between variability in the 
embedding vectors and the financial time series can be assessed directly using 
regression methods. 

11.5 Experiment 

In this section, examples of how an NLP model can be implemented for financial 
purposes is presented. The examples are comprised of several textual regression and 
sentiment regression approaches as well as a topic modelling task. In this spirit, first, 
the agricultural news data is collected from Refinitive’s (formerly Thomson Reuters) 
Eikon platform for the time span between the 1st January, 2016 and 31st December, 
2022. The raw text data is comprised of 411,883 news, of which approximately 
75%, from beginning of 2016 to end of 2021, is used as the train data, and close to 
25%, the whole 2022, as the out-of-sample test data. 

Although the agricultural tags and keywords are used for filtering the news when 
collecting the texts, the news data is contaminated with unrelated news and texts. 
Therefore, the cleaning process is performed with obsession. This step consists of a 
combination of regex pattern matching, and dataset’s specific metadata to eliminate 
the noise as much as possible, while retaining the information. The word cloud 
of the most frequent words before cleansing process is presented in Fig. 11.3. As  
shown on the figure, the most frequent words “Refinitive”, “consent”, “service”, 
and “https” are not related to the market. The most important words for this study, 
i.e. “wheat”, “corn”, and “soybean” are approximately as frequent in the figure as 
words like “said” and “copyright”, and less frequent than words like “will”, “party”, 
“trademark”, and “third”. This indicates the level of noise present in the raw text 
samples. 

Comparing Fig. 11.3 with the word cloud after cleansing in Fig. 11.7 reveals the 
effectiveness of the cleansing process in retaining the text containing relevant words 
like “wheat”, “corn”, “soybean”, “price”, and “cent”, while filtering unrelated and 
noise words. Interestingly, the word “Ukraine” can be seen as a comparatively 
frequent word which highlights the importance of the Russian invasion of Ukraine 
for the agriculture commodity. 

The next step is to normalize the text for the NLP algorithms. It is worth 
mentioning that this study applies word normalization techniques, e.g. case folding, 
stop word removing, lemmatization, to the text only for the topic modelling task. 
Because the word normalization is not a necessary step for LLMs, i.e. BERT 
and FinBERT. Therefore, the normalization task starts by case folding, stop word 
removing, and lemmatization for topic modeling, and continues with segmenting the 
text into sentences. While it starts by segmenting the text into sentences for LLMs. 
These tasks are carried out using the tokenize module of NLTK library of Python.
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Fig. 11.7 Word cloud of the 2022 media news dataset after applying cleansing procedure 

For the text and sentiment regression tasks, text normalization is continued by 
tokenizing the words. For this purpose, the tokenizer module of BERT is utilized. 
According to the documentation of BERT, it uses the WordPiece algorithm [24] to  
tokenize the words into subwords. The result of tokenization is approximately 7.5 
billion tokens for the whole text dataset. 

Continuing the analysis of the text, before implementing regression analysis, it 
would be beneficial to explore the general topics the news articles can be assigned to. 
In this regard, the text normalization steps are applied to the headlines of the news to 
prepare it for the algorithm. This task falls under the topic modelling task and has 
many methods, among which we opt for Latent Dirichlet allocation (LDA). As  
one of the most popular and most widely used topic modelling algorithms, LDA 
is an unsupervised text clustering method that relies on the frequency matrices 
mentioned in Sect. 11.4.3 to convert the documents into vectors and assign each 
document a topic with regard to words in the document. Therefore, LDA is a bag-
of-words method that disregards the relationship between the words in a document 
and assumes documents in each topic have a lot of words in common. Similar to 
common general clustering algorithms, the number of topics parameter is defined 
by the user (for more information see [44]). 

To implement LDA, sklearn package of python is used to both constructing 
frequency matrices and applying LDA algorithm. The results are presented in 
Table 11.4 where each topic is represented with a number of terms. It depends on the 
user to assign a label to each topic, a task that may not be as easy because sometimes 
the words representing each topic can belong to various domains. However, there are 
topics whose labels can be easily assigned. For example, Topic 1 in Table 11.4 is 
more close to Russian invasion of Ukraine than others, the war which has affected 
the global agriculture production and trade. Topic 2 can be associated with the
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Table 11.4 LDA topic modelling results for the full dataset 

Representing keywords # of topics 

Topic 1 ‘report, ‘ukraine’, ‘food’, ‘russia’, ‘swap’, ‘crude’, ‘oil’, ‘price’, ‘inc’, 
‘war’ 

873 

Topic 2 ‘farmer’, ‘news’, ‘late’, ‘release’, ‘recent’, ‘press’, ‘trade’, 
‘international’, ‘grain’, ‘stock’ 

919 

Topic 3 ‘grain’, ‘wheat’, ‘soybean’, ‘future’, ‘rise’, ‘chicago’, ‘corn’, ‘fall’, 
‘price’, ‘ukraine’ 

2428 

Topic 4 ‘corn’, ‘grain’, ‘soy’, ‘bid’, ‘firm’, ‘soybean’, ‘cash’, ‘gulf’, ‘fob’, ‘cif’ 1353 
Topic 5 ‘report’, ‘oil’, ‘new’, ‘agricultural’, ‘ethanol’, ‘fas’, ‘daily’, ‘food’, 

‘increase’, ‘service’ 
591 

Topic 6 ‘corn’, ‘cbot’, ‘wheat’, ‘soybean’, ‘usda’, ‘fund’, ‘export’, ‘crop’, 
‘net’, ‘table’ 

1569 

Topic 7 ‘grain’, ‘farmer’, ‘inc’, ‘dtn’, ‘terminal’, ‘price’, ‘wheat’, ‘comment’, 
‘cash’, ‘table’ 

1108 

press news about agriculture, while Topic 6 might represent news related to USDA 
reports. 

In the regression part, the base model of BERT, i.e. BERT-base, as well as its fine-
tuned version for financial news sentiment classification FinBERT [45] are used as 
the LLMs. These LLMs, first, take a piece of text, transform it into tokens, add two 
special tokens [CLS] and [SEP] to the beginning and end of the text, respectively, 
and create a vector representation of length 768 for each token, including the special 
tokens. As the input sequence length is limited to 512 tokens for BERT, the input 
sequences are the sentences obtained from sentence segmentation step. 

The embedding vectors are then used as the inputs for the regression and 
classification algorithms to either forecast corn’s future price volatilities directly or 
classify the sentiment of the text. Figure 11.4 presents an example of embedding 
vectors for a sample of similar and non-relevant words extracted using above 
mentioned procedure. The figure presents only the first 100 dimensions for the sake 
of simplicity. 

Using the embedding vector and Ridge regression method to estimate one-
month-ahead (22 daily steps) of the realized volatility (RV) of corn constructs 
the textual regression models. Competing with textual regression models are the 
sentiment regression models where a classifier estimates the sentiment of each news 
using its embedding vectors and produces a sentiment index in the range [0, 1] 
for each sentiment class. The sentiment classes are negative, neutral, and positive 
represented by Sneg, Sneu, and Spos, respectively. 

The in-sample analysis for both textual regression and sentiment regression mod-
els are presented in Table 11.5. Following Manela and Moreira [46], the in-sample 
analysis of the textual regression models are performed using the estimated volatility 
(R̂V .) after fitting the regression model on the textual embedding vectors produced 
by BERT and FinBERT because the embeddings, the independent variables of the 
regression, have 768 dimensions and analyzing such a high-dimensional regression 
model would not be feasible. While the independent variables of the sentiment
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Table 11.5 Regression 
analysis of in-sample 
estimation for corn 

BERT FinBERT 

Panel A: Textual regression 

β1 1.044*** 1.040*** 

R2 4.7 4.5 
Panel B: Sentiment regression 

βneg −20 × 10−4*** −1.67 × 10− 5***

βneu −20 × 10−4*** −5.19 × 10− 5***

βpos −5.27 × 10−5*** −2.09 × 10− 5***

R2 0.00 0.2 

Note: Sneg, Sneu, and  Spos ∈ [0.1] are sentiment 
scores extracted by BERT and FinBERT algo-
rithms. R̂V . is the estimated realized volatility 
extracted by fitting the regression model on the 
textual embedding vectors. The 1%, 5%, and 
10% significance levels are represented by *, 
**, and *** respectively 
Panel A represents textual regression models 
where the estimated R̂V ., produced by fitting the 
regression model on the embedding vectors, are 
used as predictor, and panel B is the realized 
volatility regression using sentiment scores 

regression models are the negative, neutral and positive sentiment scores extracted 
using the abovementioned models. 

In general, the textual regression models provide significantly better fitting 
reflected by their higher R2 values. The coefficients in panel A of Table 11.5 
shows a slightly better fitting of BERT textual regression model compared to that 
of FinBERT’s. However, the sentiments regression in panel B testifies the better 
performance of FinBERT’s sentiment scores in explaining the realized volatility 
compared to BERT’s sentiment scores. The better performance of FinBERT in 
sentiment regression is: expectable because this is the task-specific model optimized 
for financial news headlines sentiment classification. The regression details reveal 
a negative association between all the sentiments and the realized volatility, with a 
higher impact from neutral sentiment in the case of FinBERT and equal impact of 
negative and neutral, higher than positive, in BERT’s case. However, it is important 
to note that R2 values around 0 indicates the poor ability of sentiment regression 
models in explaining the volatility. Therefore, although their regression coefficients 
are statistically significant, the predictability power of sentiment-based models are 
so poor that might undermine the above conclusions about the impact of different 
sentiments. 

The RV forecasting performance for out-of-sample 2022 dataset is presented 
in Table 11.6 where text regressors outperformed not only sentiment regression 
models, as was expected from in-sample analysis, but also powerful rivals like 
Heterogeneous Autoregressive model of realized volatility (HAR) [48]. In the table, 
RW and RM are the 60 days simple rolling window, and risk metrics approach that 
are widely used as an RV forecasting method in practice (see [49] for the formulae).
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Table 11.6 Forecasting performance for out-of-sample RV of corn in 2022 

MSE (×10−8) % improvement of BERT-Ridge 

BERT-Ridge 9.7550 – 
FinBERT-Ridge 9.7542 −0.0082 
BERTsent-Ridge 10.348 5.7306** 

FinBERTsent-Ridge 10.289 5.1900* 

HAR 11.090 12.038*** 

RW 12.547 22.252*** 

RM 11.313 13.772*** 

ARIMA(1, 1, 1) 15.626 37.572*** 

Note: The 1%, 5%, and 10% significance levels are represented by *, **, and *** respectively 
Diebold and Mariano test [47] significance level is reported by * annotation in the second column 
to investigate if the improvement of BERT-Ridge compared to its rivals is statistically significant 

Fig. 11.8 Out-of-sample RV vs. forecasted values for out-of-sample corn dataset in 2022 

Moreover, Diebold and Mariano test [47] shows that the forecasting improvement of 
textual regression models, proxied by BERT-Ridge, depicted in “% improvement 
of BERT-Ridge” column of the table is statistically significant. It is also noteworthy 
that there is approximately no difference between BERT and FinBERT in textual 
regression models, which is not surprising because the fine-tuning procedure only 
amends the classification layer of the BERT model to make it FinBERT. While 
textual regression models use the hidden state of the last transformer layer of 
FinBERT, a step before the classification layer, that is identical to that of BERT’s. 
The forecasted vs observed values for all models is illustrated in Fig. 11.8.
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11.6 Conclusion 

This chapter aimed at introducing textual and sentiment analysis in agriculture 
market. It first reviewed research works carried out on sentiment analysis in 
agriculture market in general. Current textual and sentiment analysis works in 
agriculture market can be roughly divided into three main categories: sentiment 
proxy analysis; event analysis; news volume as sentiment proxy. This chapter 
introduced textual and sentiment analysis as a forth method. This method is 
implemented in other financial markets with a very promising outcomes. Therefore, 
as an introduction to textual and sentiment analysis for agriculture market, this 
chapter provided methods that are widely used in the finance. Finally, it presents 
examples of implementing textual and sentiment regression for forecasting one-
month-ahead realized volatility of corn future volatility. Among text-based models, 
textual regression models that use text as input and forecasts corn’s RV were the best 
model with a statistically significant superiority over their rivals including sentiment 
regression models and HAR. Additionally, sentiment regression models that use the 
LLM extracted sentiment to regress the RV were better than powerful traditional 
volatility forecasting models like HAR. 
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Chapter 12 
Applications of Singular Spectrum 
Analysis in Agricultural Financial Time 
Series 

Rahim Mahmoudvand 

Abstract In this chapter, we delve into the application of Singular Spectrum 
Analysis (SSA) for the examination and prediction of agricultural financial time 
series data. The erratic nature of agricultural markets is shaped by various factors, 
including seasonal trends, climatic conditions, and economic directives, posing a 
significant challenge for analysis. SSA stands out with its capacity to break down a 
time series into discernible components like trend, oscillatory elements, and noise, 
providing a sophisticated lens to interpret market dynamics. 

The study utilizes SSA on a diverse array of agricultural financial time series 
data, including Fruit Planted Area, Fruit Home Production, Boxed Beef Prices 
for Choice and Select cuts, and CO2 Emission Intensity for rice commodities in 
European countries. We aim to achieve two primary goals: first, to unearth the 
intrinsic patterns and tendencies that dictate the movements of agricultural financial 
time series; and second, to project future trends, concentrating on enhancing 
strategies for investment and policymaking. Our findings highlight the prowess 
of SSA in sifting through the noise to uncover periodic behaviors and anomalies 
that conventional analysis might miss. The predictive model, founded on the 
reassembled components, exhibits notable precision in forecasting imminent price 
fluctuations, offering crucial insights to participants in the agricultural finance arena. 

This research not only reaffirms the value of SSA in the realm of financial time 
series analysis but also sets the stage for its broader adoption in sectors where 
decoding intricate, non-linear patterns is of essence. 
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12.1 Introduction 

The world we live in is bound by time, which I believe is a unique feature that 
influences everything we understand. Moreover, each element in the world can 
be described from different perspectives. Let’s consider an example: how can 
we describe a fruit tree? We might examine the tree’s height, circumference at 
different heights, the number of stems and leaves, the volume and quality of 
fruits, and the tree’s overall health. These properties are called data and can be 
recorded over a period of time. Studying these data over time helps us extract 
useful information. For instance, the health of a tree can be assessed using its 
growth, height, circumferences, volume of fruits, and other related properties. Many 
questions might be addressed for such applications. For example, what level of 
growth per year reveals that a fruit tree is healthy? What is the normal pattern 
of the increment of height of a healthy fruit tree? How much does a healthy tree 
produce good quality fruit? Discussion about such questions can be considered 
from scientific perspectives and administrative points of view. Some countries have 
departments for Horticultural Affairs that help gardeners produce enough and high-
quality fruits. Such departments might use data analysis to be aware of the future of 
fruit production and make appropriate decisions using scientific models. 

Another related example in this area includes soft commodities, like corn, 
wheat, coffee, sugar, soybeans, and pork. These commodities are crucial for human 
survival as they directly relate to food and, to a lesser extent, clothing. Agricultural 
commodities have unique characteristics such as seasonality, perishability, and 
dependency on weather conditions, which can greatly affect their supply and prices. 
Modeling agricultural commodities is essential for maintaining the balance between 
supply and demand, ensuring economic stability, and securing food supplies on a 
global scale. 

Simply, quantified data that is recorded and ordered at subsequent time points 
constitutes time series data. This ordering is usually through time, but other 
dimensions, such as spatial ordering, are sometimes encountered [25, 35]. These 
data can be found in many areas, including economics, environmental sciences, 
medical sciences, social sciences, engineering and this list is by no means complete. 
Let’s continue with a theoretical definition for time series. Assume T and E are two 
arbitrary sets and define a time series as a set {yt ; t ∈ T , yt ∈ E}. where yt .’s are 
random variables. We call sets T and E as the index set and state space, respectively. 
Table 12.1 shows a classification of several cases. 

Table 12.1 A classification 
of time series in terms of state 
space and index set 

Index set 

Countable Uncountable 

State space Countable Case 1 Case 3 

Uncountable Case 2 Case 4
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This classification is not exhaustive, but it covers some of the main cases and 
concepts related to time series data. Let’s provide examples for each case. 

1. Let yt . show the number of fruit trees that have not any fruit in year t . Then, 
{yt ; t = 2010, . . . , 2022}. is an example of the cases 1. 

2. If we consider yt . as the total amount of fruits that have been produced by all trees 
at a city on years t = 2010, . . . , 2022., then we provided an example for case 2. 
Additional examples of agricultural time series include the daily or weekly prices 
of commodities such as grains, fruits, and vegetables at wholesale markets. 

3. Assume yt . shows the total number of broken fruit trees on time t . Then, yt . can 
be considered as a realization for case 3. 

4. Denote by yt . the temperature of a location at time t , then it can be considered 
as an example of case 4. The volume of soft commodities at any time point is 
an example of a time series with an uncountable index set and a countable state 
space. 

In practice, case 2 is more common than other cases. It is also possible to 
approximate other cases by case 2. A simple form of the time series is a set of 
observations like as y1, . . . , yn . where in a more general form it can be considered 
as yt1 , . . . , ytn .. We can also generalize the time series in terms of the dimension 
of the state space. Table 12.2 shows a classification of several cases along with an 
example in parenthesis for each cases. Each cases in Table 12.1 can be belong to all 
cases in Table 12.2 depending the dimension of state space. 

Let provide several real examples that could be considered as real time series for 
each cases in Table 12.2. 

1. Farm labor statistics: These time series represent the number of workers 
employed in agriculture during different seasons or years. 

2. Weather data: Temperature readings, precipitation data, and wind speeds are 
examples of weather data. Assuming yt = (Tt , Pt ,Wt ). shows the vector of 
temperature, precipitation and wind speed for hours t = 1, . . . , 24.,  we  are  
dealing with vector time series. 

Table 12.2 A classification of time series in terms of the form and dimension of state space 

Form 

Real-valued data Functional form 

Dimension Zero dimension Scalar Single function 

(e.g: number of accidents) (e.g: financial transaction) 

Vector Multiple dimension Vector of functions 

(e.g: weather data) (e.g: stock prices) 

Matrix Multiple dimension Matrix of functions 

(e.g: water table depth) (e.g: satellite photos)
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3. Coffee Prices: The data might be organized into a matrix time series dataset, 
where each row represents a specific time point or observation, such as a month, 
and each column represents a different region or market. The cells in the matrix 
contain the recorded prices of coffee at each time point and location. 

4. Financial transaction: These data are treated as a sequence of functions observed 
over time. For instance, the daily curves of financial transaction data can be 
considered. 

5. Stock prices: This data considers stock prices as a collection of curves observed 
sequentially over time. 

6. Satellite photos: Each image can be considered a function, and a collection of 
these images observed over time can be organized into a matrix of functions. 

Assigning the above examples into the categories in Table 12.2 is not strict; means 
that for instance the weather data could be recorded functionally and instead the 
financial transactions could be also recorded as scalar. 

This short introduction is presented in my language, but there are plenty of 
books and useful sources that can be used for further details regarding the types of 
time series with various examples. For instance, Box, Jenkins, Reinsel, and Ljung’s 
seminal work on time series analysis provides comprehensive coverage of various 
methods and applications [3]. Additionally, Brockwell and Davis offer an excellent 
introduction to time series and forecasting, with practical examples and applications 
[4]. For those interested in specific applications such as financial time series, Tsay’s 
book on the analysis of financial time series is a valuable resource [32]. Moreover, 
Hyndman and Athanasopoulos’ book on forecasting principles and practice offers 
practical insights and techniques for time series analysis [21]. These references, 
among others, provide a solid foundation for delving deeper into the complexities 
of time series analysis. 

The obvious correlation introduced by the sampling of adjacent points in time can 
severely restrict the applicability of the many conventional statistical methods that 
traditionally depend on the assumption of independent and identically distributed 
observations [30]. This problem is not new, having a theoretical background of more 
than a century. Therefore, there are strong reasons for developing new methods, 
which necessitates an overview of the attempts made so far 

The rest of the current chapter is structured as follows: in Sect. 12.2,  a  brief  
review of the methods that can be applied for time series analysis is presented. 
Section 12.3 introduces the method that we are investigating as a powerful technique 
for time series analysis. Section 12.4 then generalizes the methods presented in 
Sect. 12.3, and finally, several examples are explained in detail. 

12.2 Time Series Analysis 

Analyzing time series data can be done for various purposes, such as smoothing, 
pattern recognition, change point and structural breaks detection, missing analysis, 
and forecasting. There are a variety of methods for time series analysis. Each method
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Fig. 12.1 Fruit Planted Area (left) and Fruit home production (right) in the UK 1985/1986– 
2013/2014 (prov) 

has some advantages, disadvantages, or restrictions for the practice. There are two 
main approaches to analyzing time series data. The first approach involves using 
descriptive tools such as graphs, while the second approach requires the use of 
models and theoretical tools. When using descriptive tools, it is necessary to specify 
the scope of analysis. In the classical view of time series data, four components 
are typically explored: trend, cycle, seasonal, and irregular. However, exploring 
these components can be challenging and requires the expertise of the analyst. 
For example, Fig. 12.1 shows the time series of fruit planted area and fruit home 
production in the UK over a 29-year period, which exhibits a declining trend with 
no apparent seasonal component. 

The results with descriptive tools are useful for a preliminary analysis and it 
is impossible to extract exact conclusions by them. Inferential tools comes into the 
field to produce quantitative results about the changes in time series and then provide 
useful conclusions. This approach work by model. There are a plenty of models that 
could be compared with together from different perspectives. Let mention some of 
the comparisions 

• Linear versus Non-linear models: The difference between linear and non-linear 
time series models lies in the nature of the relationship between the variables. 
Linear time series models assume that the relationship between the variables can 
be described by a linear equation, such as a straight line. This means that the 
change in the dependent variable is proportional to the change in the independent 
variable. Examples of linear time series models include autoregressive (AR) and 
moving average (MA) models. Non-linear time series models, on the other hand, 
do not assume a linear relationship between the variables. Instead, they allow 
for more complex and non-linear relationships, such as exponential or quadratic 
relationships. Examples of non-linear time series models include the GARCH 
model and neural network models. In general, non-linear time series models are
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more flexible and can capture more complex relationships between variables, 
but they can also be more difficult to estimate and interpret (see details in De 
Gooijer [5] and Tsay and Chen [33]). Linear time series models, on the other 
hand, are simpler and more interpretable, but may not capture the full complexity 
of the data. However, Linear models serve as a stepping stone for building a solid 
understanding of time series analysis, making them a common starting point in 
time series textbooks (see, for example, Wei [35] and Box et al. [3]). 

• Parametric versus Non-Parametric models: The difference between parametric 
and non-parametric time series models lies in the assumptions they make about 
the underlying data. Parametric models assume a specific functional form for the 
data, such as a linear trend or a polynomial function, and estimate the parameters 
of this form from the data. Non-parametric models, on the other hand, do not 
make any assumptions about the functional form of the data and instead use the 
data itself to estimate the underlying relationship. This can make non-parametric 
models more flexible and robust, but they may require more data to estimate 
accurately. 

• Time domain versus frequency domain methods: Time-domain techniques stem 
from classical correlation theory, focusing primarily on autocovariance and 
cross-covariance functions to develop autoregressive moving-average models for 
individual series and transfer-function models for causally related series. The 
parameter estimation methods used in these models often resemble advanced 
forms of linear regression. On the contrary, frequency-domain methods in 
spectral analysis extend Fourier analysis concepts, suggesting that any analytic 
function over a finite interval can be accurately approximated by a weighted sum 
of sine and cosine functions with increasing harmonic frequencies. 

Pollock [28] has provided a good review of the time series analysis methods to 
that date. According to his review, the key pre-1900 time series analysis techniques 
included trend analysis, decomposition, harmonic/Fourier analysis, autocorrelation, 
and moving averages. These early approaches laid the groundwork for the more 
sophisticated time series models that emerged in the twentieth century. The autore-
gressive (AR) model is considered one of the oldest and most fundamental time 
series models, with origins dating back to the 1920s and 1930s. The combination of 
AR and MA models into the ARMA model in the 1970s was a significant milestone 
in the history of time series analysis. Extensive works for introducing new methods 
for analysing time series needs some strong reason such as uncertainty with respect 
to the future, model misspecification and data availability. 

Time series analysis, like any analytical technique, faces its own set of challenges 
and limitations. Outliers and anomalies, which are observations that deviate signif-
icantly from the expected pattern, can distort the statistical properties of the data 
and affect the accuracy of forecasting models. Identifying and handling outliers 
appropriately is crucial to ensure reliable forecasts (for a review see Blázquez-
García et al. [2]). One of the primary challenges of time series analysis is dealing 
with missing data, which can significantly impact the accuracy and reliability of 
time series models. An et al. [1] has conducted a review about this topic and
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particularly evaluated the effects of imputation methods for replacing missing values 
with estimated values. Ribeiro [29] has also reviewed the missing values imputation 
methods and provided a case study in finanicial data. The choice of an appropriate 
model is another limitation in time series analysis, as each model has its own 
assumptions and limitations, and selecting the right model for a given dataset can be 
a complex task. Furthermore, time series analysis assumes that the underlying data 
is linear and follows a specific pattern. However, in many real-world scenarios, the 
data may exhibit non-linear patterns or dependencies, which can pose challenges in 
model selection and interpretation. 

The non-linearity of time series data is particularly difficult to handle, as there 
are an infinite number of non-linear models to choose from. Finding the best model 
in such a vast space, be honestly, can be impossible. These challenges have led 
researchers and data analysts to look for simpler approaches for analyzing time 
series data. In my opinion, the theoretical restrictions on current parametric models, 
both linear and non-linear models, limit their applications. Therefore, approaches 
that don’t start with a fixed and predefined model come into play. Singular Spectrum 
Analysis (SSA) is one such time series analysis method that relaxes most of the 
restrictive assumptions and tries to deny the time series at first, adjusting for the 
effects of shocks and outliers to some extent. SSA is employed for analyzing various 
time series in different fields, demonstrating its ability to provide appropriate results. 
It has been compared with numerous other time series analysis methods, showing 
its superiority in certain cases. For instance, Hassani [16], Hassani et al. [17], 
and Hassani et al. [19] compared SSA with Box-Jenkins SARIMA models, the 
ARAR algorithm, the Holt-Winter algorithm, exponential smoothing (ETS), and 
NN using well-known time series data sets, such as monthly accidental deaths in 
the USA, industrial production sectors in Germany, France, and the UK, and tourist 
arrivals into the US. They concluded that the SSA technique provides a much more 
accurate forecast than the other methods mentioned above. SSA is also used as a 
complementary method, mixed with other methods to eliminate the side effects of 
outliers and improve results (see, for example, Arteche and García-Enríquez [22]; 
Wang and Li [34]; Plazzi et al. [27]). 

12.3 Singular Spectrum Analysis (SSA) 

SSA operates within the realm of classical time series analysis and draws upon tools 
from multivariate statistics, multivariate geometry, dynamical systems, and signal 
processing to analyze time series data. With SSA, it is possible to decompose a time 
series into a small number of independent and interpretable components, such as a 
slowly varying trend, oscillatory components, and structureless noise. The literature 
on SSA includes over a hundred papers showcasing its superiority over other time 
series analysis techniques in various applications. Recent advancements in the the-
ory and methodology of SSA can be found in Golyandina and Zhigljavsky [13]. The 
fundamental SSA method consists of two complementary stages: decomposition
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and reconstruction. The first stage involves decomposing the time series, while the 
second stage focuses on reconstructing the noise-free time series. The reconstructed 
time series can then be used for forecasting new data points. A brief description of 
the SSA technique is provided below. More information can be found in Golyandina 
et al. [9], Golyandina and Zhigljavsky [11, 13] and Hassani and Mahmoudvand [20]. 

12.3.1 Basic SSA for Univariate Time Series (Smoothing) 

Let start with a common cases of univariate time series data as yN = {y1, . . . , yN }. 
where yt . is a real valued scalar. In summary, SSA change the vector of yN . to a 
Hankel matrix and then decompose the matrix into the sum of several marines where 
they are corresponding to the different components of the time series. Further details 
can be found in the following algorithm. 

1. Embedding: Denote a parameter called window length by L, where is an integer 
between 2 and N − 1. and K = N − L + 1., we define the trajectory matrix Y. as 
below: 

.Y =

⎡
⎢⎢⎢⎣

y1 y2 . . . yk

y2 y3 . . . yk

...
...

. . .
...

yL yL+1 . . . yN

⎤
⎥⎥⎥⎦ (12.1) 

2. Singular Value Decomposition (SVD): In this step, matrix Y.will be decomposed 
using SVD as Y = Y1 +· · ·+Yd ., where Yi = √

λiUiVi
T

. and Vi = YTUi/
√

λi . 

with λ1 ≥ . . . ≥ λL,. the eigenvalues of S = YYT
. and U1, . . . , UL,. the 

corresponding eigenvectors. 
3. Grouping: The grouping step corresponds to splitting the elementary matrices 

into m disjunct subsets I1, . . . , Im ., and summing the matrices within each group. 
In the simplest case, we have m = 2., i.e. only two groups. I1 = {1, . . . , r}. and 
I2 = {r + 1, . . . , L}. are related to the signal and noise components, respectively. 

4. Diagonal averaging: The purpose of diagonal averaging is to transform each 
matrix YIj

. into a new series of length N . Using diagonal averaging we have that 
Y = ~ YI1 + · · · + ~ YIm ., where ~ YIj

. is the hankelized form of YIj
., j = 1, . . . , m.. 

Considering ỹ
(Ij )
m,n . the (m, n)th . entry of the estimated matrix ~ YIj

. and denoting by {
ỹj1 , . . . , ỹjT

}
. the reconstructed components in the matrix ~ YIj

., j = 1, . . . , m,. 

applying diagonal averaging follows that 

.ỹjl
=

⎧⎪⎨
⎪⎩

1
s−1

∑s−1
n=1 ỹ

(Ij )

n,s−n 2 ≤ s ≤ L − 1,
1
L

∑L
n=1 ỹ

(Ij )

n,s−n L ≤ s ≤ K + 1,
1

K+L−s+1

∑L
n=n−K ỹ

(Ij )

n,s−n K + 2 ≤ s ≤ K + L.
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The vectors~ yIj
= {

ỹj1 , . . . , ỹjT

}
. denotes denoised form of the components of the 

time series and could be used for further analysis. Producing forecasts for future 
observations is one of the main purposes for time series analysis. Next section 
address this task by SSA. 

12.3.2 Forecasting by SSA 

The basic requirement to make SSA forecasting is that the time series satisfies a 
linear recurrent formula (LRF). A time series yN = {y1, . . . , yN }. satisfies LRF of 
order d if: 

.yt = a1yt−1 + a2yt−2 + . . . + adyt−d, t = d + 1, . . . , N. (12.2) 

Although there are several versions of univariate SSA forecasting algorithms we 
consider here two of the mostly widely used: Recurrent SSA (RSSA) [6, 7] and 
Vector SSA (VSSA) [26]. In what follows, we give a brief description of these 
algorithms. Further details can be found in Golyandina et al. [9]. 

We should mention at first that the following approach assumes that a single 
component selected for forecasting. In the common and simplest case, we assume 
that the time series is simply as the sum of signal and noise components and the 
signal component extracted by using the first r einentriples. We explain forecasting 
algorithm for this case; however it can be easily considered for each components. 
Let us assume that U▽

j . is the vector of the first L−1. components of the eigenvector 

Uj . and πj . is the last component of Uj . (j = 1, . . . , r).. Denoting υ2 = ∑r
j=1 π2

j . 

we define the coefficient vector R. as: 

. R = 1

1 − υ2

r⎲
j=1

πjU
▽
j .

12.3.2.1 Recurrent SSA 

Considering the above notation, the RSSA forecasts
(
ŷN+1, . . . , ŷN+M

)
. can be 

obtained by 

.ŷi =
⎛

ỹi , i = 1, . . . , N

RTZi, i = N + 1, . . . , N + M
, (12.3) 

where, Zi = ⎾   
ŷi−L+1, . . . , ŷi−1

  ⏋T
. and ỹ1, . . . , ỹN ,. are the values for the recon-

structed time series and can be obtained from 4th Step in above mentioned 
algorithm.
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12.3.2.2 Vector SSA 

Define linear operator: 

.P(v)Y =
⎛

�YΔ 
RT YΔ 

⎞
, Y ∈ span{U1, . . . , Ur}, (12.4) 

where � = U▽U▽T + (1 − v2)RRT
. and YΔ . denotes the last L − 1. elements of Y . 

Suppose the vector Zj . is defined as follows 

.Zj =
⎛~ Yj for j = 1, . . . , K
P(v)Zj−1 for j = K + 1, . . . , K + M + L − 1

, (12.5) 

where ~ Yj . are the j th . reconstructed columns of the trajectory matrix of the time series 
after grouping and discarding noise components. Now, by constructing the matrix 
Z = [Z1, . . . , ZK+M+L−1]. and performing diagonal averaging, we obtain a new 
time series ŷ1, . . . , ŷN+M+L−1 ., where ŷN+1, . . . , ŷN+M . form the M terms of the 
VSSA forecast. 

12.3.3 SSA Parameter Selection 

The SSA calibration depends upon two basic, but very important, parameters: the 
window length L, and the number of eigentriples used for reconstruction r .  The  
choice of improper values for the parameters L or r yield incomplete reconstruction 
and the forecasting results might be misleading. Despite the importance in choosing 
proper values for these parameters, no theoretical solution has been proposed to 
solve this problem. Some of the techniques to choose the appropriate value of L can 
be found in Golyanidina [8], Hassani et al. [18], Mahmoudvand and Zokaei [24] and 
Mahmoudvand et al. [23]. An overall agreeable suggestion to choose the window 
length is to have it close to the middle of the series and proportional to the number 
of observations per period (e.g. to 12 for monthly time series, to four for quarterly 
time series, etc.). However, this choice does not guarantee the best predictions (e.g. 
Mahmoudvand, et al. [23]). For better results, the parameter choice should be made 
accordingly to available data and intended analysis. 

In practice it is relatively rare that the number of singular values r , needed to 
be selected to reconstruct noise free series from a noisy time series, is known a 
priori. Among several ways to determine r described in the literature, the easiest 
way is done by checking breaks in the eigenvalues spectra. As a rule of thumb, 
a pure noise series produces a slowly decreasing sequences of singular values. 
Another useful insight is provided by considering separability between signal and 
noise components, which is a fundamental concept in studying SSA properties, 
by using w-correlations [9] between two vectors y(1) = [y(1)

1 , . . . , y
(1)
N ]T . and
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y(2) = [y(2)
1 , . . . , y

(2)
N ]T .: 

.ρw = 〈y(1), y(2)〉w✓〈y(1), y(1)〉w〈y(2), y(2)〉w
, (12.6) 

where, w
L,N
j = min{j, L,N − j + 1}. and 〈y(m), y(n)〉w =

N∑
j=1

w
L,N
j y

(m)
j y

(n)
j . for 

m, n = 1, 2.. According to this measure, two series are separable if the absolute 
value of their w-correlation is small. Therefore, we determine the groups in such a 
way that the reconstructed components in the same group have a high w-correlation 
and a small w-correlation with the components in other groups. Plotting pair 
of eigenvectors help us also to see which components may belong to the same 
group. Another way to determine r is by examining the forecast accuracy, i.e. r 
is determined in such a way that the minimum error in forecasting will be obtained. 

12.3.4 Examples 

Let see how SSA is working in practice. Consider a simulated time series with a 
deterministic signal as below: 

.yt = 3 sin

⎛
2πt

12

⎞
+ ∈ t , t = 1, . . . , 50 (12.7) 

Assuming ∈ t .come from a normal distribution with mean zero and standard deviation 
0.5, Fig. 12.2 shows a realisation of such series. 

Figures 12.3 and 12.4 shows singular values, w-correlation and paired eigenvec-
tors that helped us to specify the right number of components for reconstruction. It 
should be mentioned that, here we have considered L = 25. and using the results 
of the aforementioned figures confirm that the first two einentriples are in the same 
group and this group is enough to extract the signal from noise. 

Let see the results for the fruit time series. The measures and recommendations 
confirm that the first five components are enough for signal extraction by SSA 
(Figs. 12.5 and 12.6). 

To assess the quality of forecasting using SSA for this time series, we utilized 5 
components to reconstruct the time series and generate forecasts for various forecast 
horizons. To validate the results, an expanding window approach was employed for 
each forecast horizon. This method involves using an expanding dataset for training 
and testing the forecasting model. For example, the process involved using y1 . to y29 . 
to forecast observation y30 ., then expanding the training set to include y1 . to y30 . to 
forecast y31 ., and continuing this process up to the final forecast, which in this case 
is y38 .. By following this approach, we obtained 9 one-step-ahead forecast errors, 
providing insight into the accuracy of the forecasting method.
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Fig. 12.2 A realisation of a 
synthetic data 
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Fig. 12.3 Singular values and w-correlation for the synthetic data 

The results are presented in Table 12.3. The table compares the forecasting 
quality of different SSA algorithms with ARIMA and ETS models across various 
forecast horizons. The evaluation is based on two key metrics: Root Mean Square 
Error (RMSE) and Mean Absolute Percentage Error (MAPE). For a one-year 
forecast horizon, the ARIMA algorithm outperforms others with the lowest RMSE 
(77.59) and MAPE (0.10), followed by ETS, RSSA, VSSA, and Bootstrap. In 
the case of a two-year forecast horizon, ARIMA continues to exhibit superior 
performance with the lowest RMSE (116.22) and MAPE (0.16). However, the SSA 
algorithms demonstrate better performance for longer-term forecasts (3–6 years).
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Fig. 12.4 Paired eigenvectors of a synthetic data 
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Fig. 12.5 Scree plot of the Singular values of the fruit time series data
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Fig. 12.6 Reconstruction of 
the time series using the first 
five components 
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Table 12.3 Comparing the quality of forecasts using different algorithms of SSA 

Horizon Measure ARIMA ETS RSSA VSSA Bootstrap 

1 RMSE 77.59 81.86 80.95 85.72 82.78 

MAPE 0.10 0.11 0.13 0.14 0.14 

2 RMSE 116.22 116.80 125.58 124.96 118.94 

MAPE 0.16 0.16 0.21 0.22 0.20 

3 RMSE 140.51 139.52 152.38 128.42 138.60 

MAPE 0.21 0.22 0.27 0.22 0.24 

4 RMSE 155.99 153.90 152.98 116.63 131.83 

MAPE 0.26 0.25 0.25 0.20 0.21 

5 RMSE 165.92 164.04 142.45 197.26 137.03 
MAPE 0.30 0.28 0.21 0.29 0.22 

6 RMSE 167.36 167.76 156.19 363.61 272.98 

MAPE 0.30 0.29 0.23 0.46 0.36 

We have highlighted the best results with the minimum values in each row using 
bold font. 

12.4 Extension to the Basic SSA 

We have mentioned in the introduction that many cases could be considered as time 
series. One cases assumes a multivariate quantity for each time points. It is easily 
possible to extend SSA to consider the multivariate time series. There are several 
version for doing such; however we follow the approach of Golyandina. Multivariate
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SSA, or MSSA, is a natural extension of SSA for analysing multivariate time 

series. Let Yt =
⎾
y

(1)
t , . . . , y

(M)
t

 
., t = 1, . . . , N,. denote a sample of a M-variate 

time series with length N . Note that it is possible to consider different number of 
observations for the individual time series in the multivariate framework, but we 
first assume equal number of observations. Let us assume that Yt . can be written in 
terms of a signal plus noise model as: 

. YN =
⎡
⎢⎣

Y1
Y2
.
.
.

YN

⎤
⎥⎦ =

⎡
⎢⎢⎣

y
(1)
1 . . . y

(M)
1

y
(1)
2 . . . y

(M)
2

.

.

. . . .

.

.

.

y
(1)
N

. . . y
(M)
N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

s
(1)
1 . . . s

(M)
1

s
(1)
2 . . . s

(M)
2

.

.

. . . .

.

.

.

s
(1)
N

. . . s
(M)
N

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

n
(1)
1 . . . n

(M)
1

n
(1)
2 . . . n

(M)
2

.

.

. . . .

.

.

.

n
(1)
N

. . . n
(M)
N

⎤
⎥⎥⎦ .

The MSSA algorithm denoises (smooths) the multivariate time series YN =
[Y1, . . . , YN ]T . using the same steps as the univariate SSA, i.e. embedding, SVD, 
grouping and reconstruction. The only difference is related to the definition of 
trajectory matrix. Although there are several forms to define the trajectory matrix 
in MSSA, here we use the stacked form of the univariate trajectory matrices. The 
simplest case include the horizontal form defined as: 

. Y =
⎾
Y(1) . . .Y(M)

 
=

. 
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1 y
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L y
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(1)
T . . . y

(M)
L y

(M)
L+1 . . . y

(M)
N

⎤
⎥⎥⎥⎥⎦

.

where L and K are chosen similarly as before and Y(j)
. is an Hankel matrix for the 

column j of the YN .. This means that the trajectory matrix for the MSSA algorithm 
is a block Hankel matrix and this property is considered for the reconstruction step. 

Denote by ~ Y (j)
N = (~ y(j)

1 , . . . ,~ y(j)
N )T . the reconstructed values of the time series 

j .  The  h−.steps ahead forecasts obtained by the MSSA algorithm can be obtained 
with the following recursive formula: 

.̂y
(j)
h|N =

⎧⎪⎨
⎪⎩

~ y(j)
h h = 1, . . . , N

L−1∑
t=1

at ŷ
(j)

(h−t)|N h = N + 1, . . .
(12.8) 

where R = (aL−1, . . . , a1)
T

. will be obtained from trajectory matrix Y. similarly 
as in the univariate SSA-R. The methodology of the multivariate SSA shows that it 
also needs two choices for its application in practice: the window length L, and 
the cutting point r . We can determine these values using the same approaches 
mentioned for the univariate SSA. It is worth mentioning that the complexity of
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the multivariate SSA model is smaller than the univariate SSA, when we apply both 
models for analysing multivariate time series. This happens because multivariate 
SSA needs two choices (L, r). whereas the univariate SSA needs 2M choices 
{(L1, r1), . . . , (LM, rM)}.. In addition, the window length in univariate time series 
is recommended to be less than half of the series length. However, here for the 
HMSSA, it is possible to consider larger values for the window length. Because the 
number of columns for the trajectory matrix increases by the dimension of the time 
series and if we consider L larger than half of series length it is possible to obtain 
more information than the cases with L chose to the half of series length. Another 
point that might be mentioned is related to the time series lengths. Although we have 
considered the same series lengths for all dimensions of the time series, in practice it 
is possible to have time series with different lengths. However, it is obvious from the 
definition of the trajectory matrix that there is no restriction as we can consider the 
same window length for all components and stack the univariate Hankel matrices 
horizontally. 

12.4.1 Further Extension to MSSA 

There are several methods for extending MSSA. The first idea is to define trajectory 
matrix by stacking univariate trajectory matrices vertically. In this case, we have 
to define window length in such a way that Li − N + 1. are the same for all time 
series. The second idea is related to the forecasting engine. As we mentioned in 
the univariate case, we have two different approaches for producing forecasts for 
future observations: recurrent and vector approaches. Combining these approaches 
with two methods for defining trajectory matrix produce four cases. These cases is 
presented in Table 12.4. 

In what follow, we explain each algorithm briefly. For simplicity in writing the 
equations, denote by Z[, j ]. and Z[i, ].,  the  j−.th column, and the i−.th row of the 
matrix Z., respectively. 

Table 12.4 Possible 
forecasting algorithms for 
multivariate SSA 

Trajectory form Forecasting method Abbreviation 

Horizontal Recurrent HMSSA-R 

Vector HMSSA-V 

Vertical Recurrent VMSSA-R 

Vector VMSSA-V
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12.4.2 HMSSA-R(V) 

Denote by Ur . the matrix of the first r eigenvectors of YYT
. corresponding to the r 

largest singular values of Y. and assume that U▽
r . and U▽r . are the first L − 1. rows of 

Ur . and last row of Ur ., respectively. In addition, define: 

.W =
⎾
0 I
0 Â

⏋
, Â =

⎛
1 − U▽rUT

▽r

⎞−1
U▽rU▽

r
T
, (12.9) 

where I. is the (L−1)× (L−1). identity matrix and 0. is a column vector with L−1. 
zeros. Then the h-steps ahead forecasts by HMSSA-R can be obtained by: 

.ŷ
(m)
N+h = Wh[L, ]S̃(m)[,mK], m = 1, . . . ,M, h = 1, 2, . . . , (12.10) 

where Wh
. represents the h power of the matrix W.. If we made a change in matrix 

W. as below: 

.W =
⎾
0 �

0 Â

⏋
, � = U▽

r U
▽
r

T + ÂT(1 − U▽rU
T
▽r )Â, (12.11) 

Then the h-steps ahead forecasts by HMSSA-V can be obtained by: 

. ŷ
(m)
N+h = 1

L

h+L−1⎲
𝓁 =h

W𝓁 [L − 𝓁 + h, ]S̃(m)[,mK], m = 1, . . . ,M, h = 1, 2, . . . ,

(12.12) 
where Wh[𝓁 , ]. denotes the l−.th row of Wh

.. 

12.4.3 VMSSA-R(V) 

Denote by Ur . the matrix of the first r eigenvectors of YYT
. corresponding to the 

r largest singular values of Y. and assume that U▽
r . is constructed by removing the 

rows L,  2L,  . . . ,  ML from Ur ., and U▽r . is the matrix that is constructed by stacking 
the rows L,  2L,  . . . ,  ML of Ur .. In addition, define:
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.W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I
0 Â0[1, ]
0 I
0 Â0[2, ]
...

...

0 I
0 Â0[M, ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Â =
⎛
IM×M − U▽rUT

▽r

⎞−1
U▽rU▽

r
T
, (12.13) 

where I. is the (L−1)×(L−1). identity matrix, 0. is a column vector with L−1. zeros 
and [0, Â0[i, ]]. is a vector of size LM where before each L − 1. elements of Â[i, ]. a 
zero is added (i = 1, . . . , M .). Then the h-steps ahead forecasts by VMSSA-R can 
be obtained by: 

.ŷ
(m)
N+h = Wh[mL, ]S̃(m)[,K], m = 1, . . . , M, h = 1, 2, . . . , (12.14) 

where Wh
. represents the h power of the matrix W.. If we made a change in W. as 

below: 

.W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �1

0 Â0[1, ]
0 �2

0 Â0[2, ]
...

...

0 �M

0 Â0[M, ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � = U▽
r U

▽
r

T + ÂT(IM×M − U▽rU
T
▽r )Â, (12.15) 

where Â. is defined and divided as VMSSA-R in Appendix A.3, 0. is a column vector 
with L − 1. zeros and �j . represents the rows number (j − 1)(L − 1) + 1.,  . . . ,  
j (L − 1). of �., j = 2, . . . ,M .. Then the h-steps ahead forecasts by VMSSA-V can 
be obtained by: 

. ŷ
(m)
N+h = 1

L

h+L−1⎲
𝓁 =h

W𝓁 [L − 𝓁 + h, ]S̃(m)[,K], m = 1, . . . , M, h = 1, 2, . . . ,

(12.16) 
where Wh[𝓁 , ]. denote the l−.th row of Wh

.. 
Let provide examples that can be used to see how MSSA works in practice. 

Using simulation could be better as we are aware from the true relationships. One 
challenges here is related to the interpretation of the components.
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12.4.4 Comparing MSSA Methods 

One of the common questions often asked pertains to the methodology for selecting 
the best method. First and foremost, it is important to acknowledge that there is 
no definitive answer to this question. This implies that both approaches, HMSSA 
and VMSSA, could exhibit similar performance in certain problems, while one 
may outperform the other in different scenarios. However, we can compare them 
theoretically. Considering the methodology of each approach, we can conclude the 
following: 

• HMSSA-R(V) employs the same Linear Recurrent Formula (LRF) for all time 
series, whereas VMSSA-R(V) utilizes specialized LRFs for each time series. 

• HMSSA provides L singular values, whereas VMSSA provides M × L. singular 
values, indicating that the methods have different complexities. However, it 
may be possible to consider different window lengths to observe the same 
dimensionality. 

12.4.4.1 Empirical Comparison 

Empirical comparison is crucial in evaluating the performance of SSA methods 
as it provides objective evidence of their effectiveness in real-world scenarios. By 
comparing the outcomes of different SSA and MSSA techniques through empirical 
data, researchers can validate the reliability and accuracy of these methods, ensuring 
their applicability in practical forecasting and analysis. We have examined two data 
sets. 

12.4.4.2 Data Set 1: Boxed Beef Price 

Monthly Boxed beef prices for Choice and Select cuts in USA over the period 2000 
to 2022 are presented in Fig. 12.7, that is publicly available on the USDA webpage. 
This figure illustrates a positive correlation between both series. The Pearson 
correlation coefficient between the series is 0.951, confirming a strong positive 
relationship. Notably, one of the time series contains two missing observations in 
the middle, which may not be clearly visible in the graph. It is imperative to address 
this gap before proceeding with analysis. Various approaches can be employed for 
handling missing data, such as the missing analysis approach or simple imputation 
methods like replacing missing points with the average of nearest observations. 

Let us provide the results using different methods. Firstly, note that observations 
125 and 126 are missing. Hence: 

1. Method 1: Observation 125 is replaced with observation 124, which is 167.09, 
and observation 126 is replaced by observation 127, which is 165.46.
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2. Method 2: Observations 125 and 126 are replaced with the average of observa-
tions 124 and 127, resulting in a value of 166.275. 

3. Method 3: For observations 1 to 124, SSA is employed to forecast observations 
125 and 126, resulting in values of 146.87 and 147.58, respectively (using the 
first three eigen triplets). Similarly, using observations 288 to 127, forecasts of 
164.12 and 158.26 are obtained for observations 125 and 126 (using the first 
5 eigen triplets). Averaging these values yields estimates of 155.5 and 152.92, 
respectively. 

Choosing the estimation method for missing values poses a challenge due to the 
differing values obtained through various approaches. However, I assume that SSA 
provides a better estimation. 

We employed MSSA to analyze these datasets as a bivariate time series. Note 
also that the univariate SSA can be applied to each time series separately, albeit 
we anticipate more accurate results from MSSA compared to SSA. Therefore, we 
employ both approaches and compare the results. 

Let’s divide the dataset into two parts: (1) observations from 2000 to 2022 as 
the training set and (2) all 12 observations of 2023 for testing. In what follows, I 
compared the effect of window length on the singular value pattern. Figure 12.8 
display the scree plot of the singular values for the MSSA using window lengths of 
36, 48, 60 and 72; however, I checked it also for 84, 96, 108, and 120 but I have not 
reported the results here as the results and conclusion were the same. As observed 
in these plots, the first four eigentriples suffice to capture the most useful part of the 
time series. It is noteworthy that all plots draw the same conclusion. 

We employed a window length of L = 84. and trained the model using data up 
to the last month of 2022. Subsequently, we generated forecasts for the 12months 

Fig. 12.7 Meat prices Monthly beef price in US 
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Fig. 12.8 Singular values of the trajectory matrix for meat prices time series for L=36 to 72 

in 2023 using various MSSA forecasting algorithms. We also analyzed these time 
series using univariate SSA. Examining different values of the window lengths 
by the scree plot of the singular values showed us that r = 7. for both time 
series is appropriate. We used L = 88, r = 7. for the first time series and 
L = 72, r = 7. for the second time series. Using these values, we obtained forecasts 
for 12months of the year 2023 and computed the RMSE. Table 12.5 presents the 
results. Notably, the VMSSA-R algorithm and SSA-V outperform other forecasting 
methods, as indicated by the bold styling, for forecasting the first and second time 
series, respectively. Comparing the RMSE values with the time series data, we 
note that errors are consistently below 5%, reflecting the good performance of the 
forecasting approach. This example confirms that univariate SSA may be superior 
to multivariate SSA in some cases. However, I must also discuss the complexity of 
models obtained here. The simplest model is provided by HMSSA-R, and the most 
complicated model is associated with VMSSA-V.
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Table 12.5 RMSE for 
forecasting 2023 using 
different MSSA algorithms 

Method Boxed beef cutout Boneless beef 

HMSSA-R 15.69 21.18 

HMSSA-V 10.71 18.74 

VMSSA-R 10.20 14.85 
VMSSA-V 18.14 34.46 

SSA-R 10.06 25.88 

SSA-V 8.78 21.08 

Fig. 12.9 CO2 emission intensity from rice by different segmentation in Europe over the period 
1961 to 2021 

12.4.4.3 Data Set 2: CO2 Emission Intensity for Rice Commodity in 
European Countries 

The significance of the emissions intensity associated with rice in European nations 
is a key factor for gauging the ecological footprint of its cultivation, as per 
reports from the Food and Agriculture Organization (FAO). According to the FAO’s 
findings, there’s a noticeable variation in the emissions intensity from rice farming 
across different European countries, which is shaped by elements like farming 
methods, land utilization, and energy usage. There has been a deliberate push in 
recent times to curtail the emissions intensity linked to rice farming across Europe. 
The FAO’s data underscores the strides made by some European nations in cutting 
down the emissions intensity from rice farming, thereby aiding the environmental 
health of the agrifood sector. Often, this dip in emissions intensity stems from 
embracing farming practices that are more eco-friendly, enhancing the efficiency 
of resource utilization, and deploying technologies designed to curb greenhouse gas 
emissions. 

The left graph in Fig. 12.9 illustrates the emission intensity for rice cultivation 
in Europe spanning roughly six decades, expressed in kg CO2eq per kg. This graph 
indicates that the emission intensity typically ranged from 1.5 to 3 kg CO2eq per 
kg, featuring two periods of diminishing emissions, each approximately 30 years 
in duration. Notably, there was a discernible shift in 1992, marked by an uptick 
in emissions, followed by a subsequent reduction. Moving on to a comparative 
analysis, the right graph in Fig. 12.9 incorporates emission intensity data for rice 
during the identical timeframe but segmented into three regions: Eastern Europe,
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Fig. 12.10 CO2 emission production from rice by different segmentation in Europe over the 
period 1961 to 2021 

Southern Europe, and Western Europe. This comparison reveals inconsistencies at 
specific intervals. Our computations determine that the aggregate index is derived 
from a weighted mean of these regional segmentations, with weights assigned in 
proportion to their respective CO2 emission volumes. Figure 12.10 charts the CO2 
emissions from rice production according to these regional divisions and for the 
entire Eurozone. The graph demonstrates a significant decline in the CO2 emission 
contribution from Eastern Europe post-1990, which, after a steady rise, appears to 
have stabilized in recent years. For the Southern European region, the trend indicates 
a consistent escalation throughout the period. The emission pattern for the Western 
European zone was ambiguous in the left graph, prompting its exclusive depiction 
in the right panel for clarity. This isolated representation confirms the presence of 
fluctuating patterns over time. 

Two analytical approaches, SSA and MSSA, were employed to analyze the time 
series of CO2 emission intensity. Their effectiveness was assessed by comparing 
the root mean squared errors (RMSE). To ensure the robustness of the findings, 
expanded window techniques were used, and the assessments were repeated across 
different forecasting periods. The outcomes are shown in Table 12.6.  For  a  
straightforward comparison, the RRMSE (Relative Root Mean Squared Error) was 
computed by dividing the RMSE value for MSSA by that of SSA, with the results 
detailed in the final column. The data in the table reveal that MSSA significantly 
outperforms SSA in terms of accuracy across all predicted time frames. 

12.5 Concluding Remark 

This chapter provided a concise introduction to Singular Spectrum Analysis (SSA), 
commencing with a broad overview of various time series types and the diverse 
methods of time series analysis. This background information emphasized the 
significance of the topic and the extensive research conducted in this field. 

Subsequently, the chapter narrowed its focus to SSA, highlighting its applications 
and extensions to the multivariate case. The chapter demonstrated the effectiveness 
of SSA by applying it to different data sets and comparing the results with other
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Table 12.6 Comparison of 
SSA and MSSA in CO2 
emission intensity forecast 

Horizon Method RMSE RRMSE 

1 SSA-R 0.20 0.32 

HMSSA-R 0.06 

2 SSA-R 0.28 0.27 

HMSSA-R 0.07 

3 SSA-R 0.38 0.22 

HMSSA-R 0.08 

5 SSA-R 0.56 0.17 

HMSSA-R 0.09 

10 SSA-R 1.26 0.04 

HMSSA-R 0.05 

methods. It was concluded that, while SSA may not be the optimal model, it offers 
several advantages that warrant its inclusion in the list of methods used for time 
series analysis. 

In addition to the extensions discussed in this chapter, it is worth noting 
that researchers have introduced several other extensions of SSA. For instance, 
Golyandina and Usevich [10] proposed an extension for analyzing images, while 
Haghbin et al. [14] and Trinka et al. [31] developed extensions for functional time 
series. Furthermore, Golyandina et al. [12] introduced extensions for complex data 
and tensors. 

For computational needs, the R packages Rssa [13] is a valuable resource, 
providing the necessary tools for various SSA cases, excluding functional time 
series. The R package Rfssa [15] has been specifically developed for functional time 
series analysis. These packages facilitate the application of SSA and its extensions 
in practical data analysis scenarios. 

References 

1. Ahn, H., Sun, K., & Kim, K. P. (2022). Comparison of missing data imputation methods in 
time series forecasting. Computers, Materials & Continua, 70(1), 767–779. 

2. Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A review on out-
lier/anomaly detection in time series data. ACM Computing Surveys (CSUR), 54(3), 1–33. 

3. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: 
Forecasting and control. John Wiley & Sons. 

4. Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer. 
5. De Gooijer, J. G. (2017). Elements of nonlinear time series analysis and forecasting (Vol. 37). 

Springer. 
6. Danilov, D. (1997). Principal components in time series forecast. Journal of Computational 

and Graphical Statistics, 6, 112–121. 
7. Danilov, D. (1997) The ‘Caterpillar’ method for time series forecasting. In D. Danilov, & A. 

Zhigljavsky (Eds.), Principal components of time series: The ‘caterpillar’ method (pp. 73– 
104). University of St. Petersburg (In Russian). 

8. Golyandina, N. (2010). On the choice of parameters in singular spectrum analysis and related 
subspace-based methods. arXiv preprint arXiv:1005.4374.



12 Applications of Singular Spectrum Analysis in Agricultural Financial Time Series 331

9. Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of time series structure: SSA 
and related techniques. Chapman & Hall/CRC. 

10. Golyandina, N., & K. Usevich (2010). 2D-extension of singular spectrum analysis: Algorithm 
and elements of theory. In V. Olshevsky, & E.Tyrtyshnikov (Eds.), Matrix methods: Theory, 
algorithms and applications (pp. 449–473). World Scientific Publishing. 

11. Golyandina, N., & Zhigljavsky, A. (2013). Singular spectrum analysis for time series. 
Springer. 

12. Golyandina, N., Korobeynikov, A., Shlemov, A., & Usevich, K. (2015): Multivariate and 2D 
extensions of singular spectrum analysis with the Rssa package. Journal of Statistical Software, 
67(2). 

13. Golyandina, N., & Zhigljavsky, A. (2018). Singular spectrum analysis for time series. Springer. 
14. Haghbin, H., Najibi, S. M., Mahmoudvand, R., Trinka, J., & Maadooliat, M. (2021). Functional 

singular spectrum analysis. Stat, 10(1), e330. 
15. Haghbin, H., Trinka, J., Najibi, S. M., & Maadooliat, M. (2024). Package ‘Rfssa’. 
16. Hassani, H. (2007). Singular spectrum analysis: Methodology and comparison. Journal of Data 

Science, 5, 239–257. 
17. Hassani, H., Heravi, S., & Zhigljavsky, A. (2009). Forecasting European industrial production 

with singular spectrum analysis. International Journal of Forecasting, 25(1), 103–118. 
18. Hassani , H., Mahmoudvand, R., & Zokaei, M. (2011). Separability and window length in 

singular spectrum analysis. Comptes Rendus Mathematique, 349, 987–990. 
19. Hassani, H., Webster, A., Silva, E. S., & Heravi, S. (2015). Forecasting U.S. tourist arrivals 

using optimal singular spectrum analysis. Tourism Management, 46, 322–335. 
20. Hassani, H., & Mahmoudvand, R. (2018). Singular spectrum analysis: Using R. Springer. 
21. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice.  OTexts  .  
22. Josu, A., & Javier, G.-E. (2017). Singular Spectrum Analysis for signal extraction in Stochastic 

Volatility models. Econometrics and Statistics, 1, 85–98. 
23. Mahmoudvand, R., Najari, N., & Zokaei, M. (2013). On the parameters for reconstruction and 

forecasting in the singular spectrum analysis. Communication in Statistics: Simulations and 
Computations, 42, 860–870. 

24. Mahmoudvand, R., & Zokaei, M. (2012). On the singular values of the Hankel matrix with 
application in singular spectrum analysis. Chilean Journal of Statistics, 3, 43–56. 

25. Mastrangelo, C. M., Simpson, J. R., & Montgomery, D. C. (2013). Time series analysis. In 
S. I. Gass, & M.C. Fu (Eds.), Encyclopedia of operations research and management science. 
Springer. 

26. Nekrutkin, V. V. (1999). Approximation spaces and continuation of time series. In S. M. 
Ermakovand, & Y. N. Kashtanov (Eds.), Statistical models with applications in econometrics 
and neibouring fields (pp. 3–32). University of St. Petersburg (In Russian). 

27. Palazzi, R. B., Maçaira, P., Meira, E., & Klotzle, M. C. (2023). Forecasting commodity prices 
in Brazil through hybrid SSA-complex seasonality models. Production, 33, e20220025. 

28. Pollock, D. S. G. (1987). The methods of time-series analysis. Interdisciplinary Science 
Reviews, 12(2), 128–135. 

29. Ribeiro, S. M., & de Castro, C. L. (2021). Missing data in time series: A review of imputation 
methods and case study. Learning and Nonlinear Models-Revista Da Sociedade Brasileira 
De Redes Neurais-Special Issue: Time Series Analysis and Forecasting Using Computational 
Intelligence, 19(2). 

30. Shumway, R., & Stoffer, D. (2019). Time series: A data analysis approach using R. Chapman 
and Hall/CRC. 

31. Trinka, J., Haghbin, H., Shang, H., & Maadooliat, M. (2023). Functional time series forecast-
ing: Functional singular spectrum analysis approaches. Stat, e621. 

32. Tsay, R. S. (2014). Analysis of financial time series. John Wiley & Sons. 
33. Tsay, R. S., & Chen, R. (2018). Nonlinear time series analysis (Vol. 891). John Wiley & Sons. 
34. Wang, J., & Li, X. (2018). A combined neural network model for commodity price forecasting 

with SSA. Soft Computing, 22(16), 5323–5333. 
35. Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods. Pearson 

Addison Wesley.



332 R. Mahmoudvand

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Contents
	1 Introduction to Quantitative Risk Management and Risk in Agricultural Business: Cutting Edge Quantitative Concepts and Methodologies
	2 Index-based Insurance Design
	2.1 Introduction
	2.2 The Actuarial Foundation of Index-based Insurance
	2.2.1 The Theoretical Framework
	2.2.2 Data-based Approaches
	2.2.3 Other Optimization Objectives
	2.2.4 Pricing Framework with Premium Principles
	2.2.5 Data Scarcity

	2.3 The Demand and Supply of Index Insurance Market
	2.3.1 Basis Risk
	2.3.2 Prospect Theory
	2.3.3 Ambiguity Aversion
	2.3.4 Complexity Aversion
	2.3.5 Other Factors

	2.4 Index Insurance Programs
	2.4.1 Weather Index Insurance
	2.4.2 Satellite-based Index Insurance
	2.4.3 Area-yield Index Insurance
	2.4.4 Blended Index Insurance

	2.5 Advancements in Index-based Financial Facilities
	2.6 Conclusion
	References

	3 Weather and Yield Index-Based Insurance Schemes in the EU Agriculture: A Focus on the Agri-CAT Fund
	3.1 Introduction
	3.2 Agricultural Risk Management Tools Provided by CAP 2023–2027: An Overview
	3.3 The Insurances Based on Weather-Index Among European Countries
	3.4 The Agri-CAT Fund: A Basic Coverage to Cope with Catastrophic Weather Risks
	3.5 Assessment of Yield Risks: The EU Case
	3.6 Prospects of the Index-Based Insurance Schemes in the EU
	3.7 Conclusion
	Bibliography

	4 Avocado Production Index Insurance: An Application of Credibility Theory on Heterogeneous Data
	4.1 Introduction
	4.2 Overview of the Methodology and Data
	4.2.1 Methodology
	4.2.2 The Countries

	4.3 Insurance Designing and Pricing
	4.3.1 Insurance Coverage and Retention Level
	4.3.2 Stop and Two Layer Policy
	4.3.3 Actuarial Analysis on Production Data 
	4.3.4 Modeling the Expected Intensity and Frequency
	4.3.5 Modified Expected Intensity and Frequency and Their Modified Models
	4.3.6 Model Uncertainty Premium 
	4.3.7 Case

	4.4 Conclusion
	Appendix
	Mathematical Theorems
	Premiums, and Adjusted Premiums

	References

	5 How Do Economic Variables Affect the Pricing of Commodity Derivatives and Insurance?
	5.1 Introduction
	5.2 Representative Agent Model
	5.3 Economic Model, Loss Distribution, and Premium
	5.3.1 The Demand and Price Process
	5.3.2 Loss Distribution
	5.3.3 Premium

	5.4 Designing Optimal Insurance and Pricing Derivatives
	5.4.1 Ill-Posed Hedging Issue
	5.4.2 Optimal Solution
	5.4.3 Solving for the Contracts
	5.4.4 Value at Risk (VaR)
	5.4.5 Calibration and Simulation for VaR
	5.4.6 Case for CVaR

	5.5 Empirical Estimation of the Model Using Commodity Futures Price Data
	5.5.1 Discretization of the Process and Estimation Procedure
	5.5.2 Description of the Data and Empirical Results

	5.6 Conclusion
	References

	6 Empirical Results for Cross-Hedging in the Incomplete Market
	6.1 Introduction
	6.2 Literature Review
	6.3 Problem Definition and Method
	6.3.1 Basis Risk
	6.3.2 Black-Scholes Model
	6.3.3 Implied and Realised Volatility
	6.3.4 Static and Dynamic Hedging
	6.3.5 Variance-based Hedging Strategies
	6.3.6 Value-at-Risk-based Hedging Strategies
	6.3.7 Defining Hedging Performance
	6.3.7.1 Hedging Efficiency
	6.3.7.2 Empirical Cumulative Density Function and Kernel Density Estimation
	6.3.7.3 Distribution Characteristics


	6.4 Data and Portfolio
	6.4.1 Indices and Futures
	6.4.1.1 Description
	6.4.1.2 Data Processing

	6.4.2 Portfolio Selection
	6.4.2.1 Portfolio Structure
	6.4.2.2 Portfolio Assumptions


	6.5 Real Data: Results
	6.5.1 Static Hedging
	6.5.1.1 Hedging Effectiveness
	6.5.1.2 ECDF and KDE Plots
	6.5.1.3 Option Parameters
	6.5.1.4 Distribution Statistics
	6.5.1.5 Static Hedging Summary

	6.5.2 Dynamic Hedging
	6.5.2.1 Hedging Effectiveness
	6.5.2.2 ECDF and KDE Plots
	6.5.2.3 Option Parameters
	6.5.2.4 Distribution Statistics
	6.5.2.5 Dynamic Hedging Summary


	6.6 Conclusion and Next Steps
	Appendix
	Distribution Characteristics Tables
	Static Hedging
	Dynamic Hedging


	References

	7 Crop Yield Insurance Analysis for Turkey: Spatiotemporal Dependence
	7.1 Introduction
	7.2 Bayesian Hierarchical Modeling
	7.3 Integrated Nested Laplace Approximation (INLA)
	7.3.1 Adequacy of Models Based on Predictive Distribution
	7.3.2 Model Preference

	7.4 An Application of Spatiotemporal Models to the calculation of Crop Yield Insurance Premium
	7.4.1 Models Used in the Application
	7.4.1.1 Basic Error Model (Model 1)
	7.4.1.2 Spatial Model (Model 2)
	7.4.1.3 Spatiotemporal Models (Model 3–6)

	7.4.2 Model Selection
	7.4.3 Crop Yield Insurance Premium Calculation

	7.5 Conclusion
	References

	8 Model and Forecast Combination for Predictive Yield Distributions in Crop Insurance
	8.1 Introduction
	8.2 Actuarial Models for Crop Insurance Policies
	8.3 Model and Forecast Combination for Predictive Yield Distributions
	8.3.1 Bayesian Averaging of Frequentist Estimates
	8.3.2 Linear Pooling

	8.4 Combining Densities for Multiple-Peril Yield Insurance
	8.5 Conclusion
	References

	9 A Recursive Method on Estimating ARFIMA in Agricultural Time Series
	9.1 Introduction
	9.2 A Recursive Approach on Estimating Hurst Exponent
	9.2.1 Existing Methods Estimate the Hurst Exponent
	9.2.2 Stability for Current Methods
	9.2.3 A Recursive Approach
	9.2.4 Convergence and Stability 

	9.3 Examples on Fitting Commodity Data
	9.3.1 Commodity Data Sets and Their Stationary
	9.3.2 Practical Considerations
	9.3.3 Hurst Exponents and ARFIMA Model Results

	9.4 Conclusion
	9.5 Tables
	References

	10 Examining the Impact of Weather Factors on Agricultural Market Price Risk: An XAI Approach
	10.1 Introduction
	10.2 Literature Review
	10.2.1 Volatility of Agricultural Commodity Prices Due to ENSO
	10.2.2 Overview of Modeling Techniques Used to Predict Agricultural Commodity Prices and Volatility
	10.2.2.1 ARIMA, VAR and GARCH Models
	10.2.2.2 Event Study Approaches
	10.2.2.3 STL Decomposition and GARCH-MIDAS Frameworks
	10.2.2.4 Machine Learning and Deep Learning Methods


	10.3 Methodology
	10.3.1 Data Collection
	10.3.2 Exploratory Data Analysis
	10.3.3 Feature Engineering
	10.3.3.1 Removing Highly Correlated Features
	10.3.3.2 Recursive Feature Elimination (RFE)
	10.3.3.3 Data Scaling
	10.3.3.4 Train-Test Split

	10.3.4 Model Selection
	10.3.5 Evaluation Metrics
	10.3.5.1 R2
	10.3.5.2 Shapley Value


	10.4 Result
	10.4.1 Analysis of R2 Values
	10.4.2 Analysis of Shapley Values

	10.5 Conclusion
	References

	11 Textual Analysis in Agriculture Commodities Market
	11.1 Introduction
	11.2 Backgrounds
	11.3 Data Preparation
	11.3.1 Data Cleansing
	11.3.2 Text Normalization
	11.3.2.1 Tokenization
	11.3.2.2 Normalizing Words
	11.3.2.3 Sentence Segmentation


	11.4 Methods
	11.4.1 Lexicon-Based Methods
	11.4.2 Linear Classifiers
	11.4.3 Term and Document-Based Matrices
	11.4.4 Word2vec
	11.4.5 Neural Networks and Deep Learning
	11.4.5.1 Transformers
	11.4.5.2 BERT

	11.4.6 Text Generation
	11.4.7 Evaluation Metrics
	11.4.8 Visualization
	11.4.9 Text as a Time Series

	11.5 Experiment
	11.6 Conclusion
	References

	12 Applications of Singular Spectrum Analysis in Agricultural Financial Time Series
	12.1 Introduction
	12.2 Time Series Analysis
	12.3 Singular Spectrum Analysis (SSA)
	12.3.1 Basic SSA for Univariate Time Series (Smoothing)
	12.3.2 Forecasting by SSA
	12.3.2.1 Recurrent SSA
	12.3.2.2 Vector SSA

	12.3.3 SSA Parameter Selection
	12.3.4 Examples

	12.4 Extension to the Basic SSA
	12.4.1 Further Extension to MSSA
	12.4.2 HMSSA-R(V)
	12.4.3 VMSSA-R(V)
	12.4.4 Comparing MSSA Methods
	12.4.4.1 Empirical Comparison
	12.4.4.2 Data Set 1: Boxed Beef Price
	12.4.4.3 Data Set 2: CO2 Emission Intensity for Rice Commodity in European Countries


	12.5 Concluding Remark
	References




