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Abstract

In recent years, deep learning models typified by CNN and Transformer have

achieved remarkable success in computer vision. However, CNN struggles to

capture global information and lacks effective cross-region interaction. Trans-

former excels in global feature modeling but comes with high computational

complexity and a large number of parameters.In this paper, we propose GC-

STormer, a novel image denoising model that integrates shallow and deep fea-

ture extraction. For shallow feature extraction, we employ a three-layer atrous

convolution with dense skip connections. This design enhances CNN’s ability to

capture global information. In the main architecture of the model, we utilize the

U-Net structure to learn multi-scale image information and adopt the improved

Swin Transformer block as the basic layer. This block has been improved in two

aspects. First, we use gated convolution to optimize information flow. Second,
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we apply transposed attention to compute attention in the channel domain. To

evaluate the model performance, we conduct denoising experiments on grayscale

and color images with synthetic Gaussian noise. The experimental results show

our model has good results in both quantitative metrics and visual quality while

maintaining a certain number of parameters and complexity.

Keywords: atrous convolution, U-Net, Swin Transformer, gate mechanism,

channel weights, image denoising
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1. Introduction

With the popularization of digital camera technology and the continuous ad-

vancement of image acquisition devices, the problem of image noise has become

increasingly prominentZhang et al. (2023a); Tian et al. (2022a). The noise can

be caused by various factors. Sensor noise, signal transmission loss, and envi-

ronmental conditions during image capture are some of themTian et al. (2020a);

Fan et al. (2019); Tian et al. (2024c). These noise not only affects the visual

quality of images but also the subsequent high-level computer vision tasks. To

address these challenges, a variety of image denoising methods have been pro-

posed. These methods range from traditional methods such as filter-based and

model-based to deep learning-based methods.

Traditional image denoising methods are based on signal processing and

statistical modeling principles. They involve techniques such as filtering, wave-

form matching, and model optimizationFan et al. (2019). Common methods

include Gaussian smoothing and median filtering. There are also more com-

plex algorithms such as BM3DDabov et al. (2007) and WNNMGu et al. (2014).

These methods are widely recognized and used. They have a solid mathemat-

ical basis and low computational requirements. However, they struggle with

complex noise patterns and diverse image structures. Their reliance on manu-

ally designed features and parameters limits the adaptability. As a result, they
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generalize poorly to real-world scenarios with varying noise characteristics.

In contrast, deep learning-based methods show great potential in overcom-

ing these limitationsTian et al. (2020a), especially those based on CNN and

TransformerVaswani et al. (2017); Tian et al. (2024c). CNN can learn com-

plex image representations and denoising patterns directly from large datasets.

This enables it to adapt to various types of noise and image structures. CNN

models, such as DnCNNZhang et al. (2017a), IRCNNZhang et al. (2017b), and

FFDNetZhang et al. (2018), have set a high standard in the domain of image

denoising. The transformer, on the other hand, learns the features of the im-

age using a global self-attention mechanism. This global processing capability

makes it suitable for image denoising. Understanding the broader context of

the values of the pixels improves the precision of the reconstruction. The works

Zhang et al. (2023a); Zamir et al. (2022); Liang et al. (2021); Wang et al. (2022);

Fan et al. (2022); Tian et al. (2024d) are prominent examples of its application

in image denoising. However, CNN struggles to capture long-range pixel depen-

dencies due to its convolutional operations Zamir et al. (2022). This limitation

results in the loss of global contextual information. As for Transformer, the

global information modeling provides a huge number of parameters. As a re-

sult, it requires more computational resources than CNN during both training

and inference.

In this paper, we propose GCSTormer for image denoising. The model

mainly has two parts: a shallow feature extraction module(SFEM) and a deep

feature extraction module(DFEM). The SFEM uses atrous convolution and

dense skip connections. Each basic block includes three atrous convolution

layers with progressively increasing receptive fields to capture global informa-

tion. Skip connections are used to facilitate feature interaction. The DEEM

employs a U-Net structure for multi-scale feature extraction. Each U-Net layer

incorporates an improved block based on Swin Transformer. This improvement

addresses two key issues: First, Transformer relies on global information of-

ten incorporate noise. To mitigate this, we integrate a gating mechanism at

the end of each block to filter information flow. Second, Transformer’s pixel
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correlation computation in the spatial dimension is computationally intensive.

We introduce transposed attention to Swin Transformer. This operation shifts

computation to the channel dimension, which further reducing computational

cost while enhancing channel processing capability.

The proposed method can be summarized as the following contributions.

• We propose a stacked block utilizing atrous convolution and dense connec-

tions. This design enhances CNN’s ability to process global information.

• We implement a gate unit within the Swin Transformer block. This mod-

ification optimizes information flow and facilitate effective image feature

learning while suppressing noise.

• We introduce tranposed attention to Swin Transformer to further reduce

the computational complexity. It compute the attention weights from the

image channel dimension instead of the spatial dimension.

Remaining parts of this paper can be organized as follows. Section 2 shows

related work. Section 3 illustrates the proposed method. Section 4 gives exper-

imental results. Section 5 discussed the limitation of our work and looks ahead

to future. Section 6 points out conclusion.

2. Related Work

2.1. Deep CNNs for image denoising

Traditional image restoration methodsDabov et al. (2007); Gu et al. (2014);

Tian et al. (2022c) have primarily relied on signal processing and statistical

modeling principles. These methods utilize techniques such as filtering, wavelet

transforms, and model-based optimizations. They often depend on manually

designed features and parameters, which are tailored to specific noise models.

This approach limits their adaptability to complex and heterogeneous noise

distributions or intricate image structures. Furthermore, these methods are

typically computationally intensive, posing challenges for real-time or resource-

constrained applications. In contrast, deep learning-based models, such as CNN

4



and Transformer, have shown superior performance in image denoising tasks.

These models learn intricate image representations and denoising patterns di-

rectly from the image. Early CNN-based models, including DnCNNZhang et al.

(2017a), IRCNNZhang et al. (2017b) and FFDNetZhang et al. (2018), achieved

significant improvements over traditional methods despite their relatively simple

architectures. These models effectively capture spatial dependencies in images,

leading to better generalization and adaptability to diverse noise types.

Overtime, The denoising models based on CNN have been enhanced to im-

prove image denoising performance. The integration of U-Net [19] has become

a common strategy to facilitate hierarchical multi-scale feature learning. The

U-Net architecture allows for the preservation of spatial resolution during the

learning process, enabling the network to better retain and reconstruct fine de-

tails in the imagecitePark et al. (2019); Gurrola-Ramos et al. (2021); Zamir

et al. (2021); Zhang et al. (2021). Skip connections, as proposed in ResNetHe

et al. (2016), mitigate the vanishing gradient problem and enhance informa-

tion flow between shallow and deep layers, improving the network’s ability to

handle complex noiseHuang et al. (2017); Park et al. (2019); Liu et al. (2019);

Ilesanmi & Ilesanmi (2021). Other works have also seen the incorporation of

traditional image processing techniques into deep learning models. For instance,

some researchers have integrated traditional filtering methods, such as wavelet

transform, into CNN frameworks to enhance the extraction of noise character-

istics and improve denoising resultsTian et al. (2023); Liu et al. (2018a); Huang

& Dragotti (2022). Additionally, gate mechanismZhu & Li (2023) and attention

mechanismTian et al. (2020b) have been employed to selectively focus on more

relevant regions of the image. The evolution of image denoising models has also

been marked by the development of more sophisticated architectures, including

multi-branch and multi-stage networks that progressively refine the denoised

image at different scales. These hierarchical methodsZamir et al. (2021); Tian

et al. (2023, 2021a); Mei et al. (2023); Tian et al. (2021b, 2022b,d); Zhang et al.

(2023b), often coupled with self-supervised learningTian et al. (2024a,b), have

significantly enhanced the ability of CNN to generalize across different types of
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noise and imaging conditions.

2.2. Transformer methods for image denoising

Transformer, initially designed for NLP, has seen significant adaptation and

success in computer vision tasks, such as image classificationDosovitskiy et al.

(2020); Touvron et al. (2021); Yuan et al. (2021), object detectionHuang et al.

(2023); Liu et al. (2021); Carion et al. (2020); Zhu et al. (2020) and image seg-

mentationXie et al. (2021); Zheng et al. (2021). The core idea of the model is to

utilize the self-attention mechanism to capture the global dependencies within

the input sequences thereby enabling sequence modeling and information extrac-

tion. Vision Transformer(ViT)Dosovitskiy et al. (2020) adapted this concept to

images by decomposing an image into a series of patches, similar to how words

are treated in a sequence. This approach allows images to be processed simi-

larly to language. However, fundamental differences between images and word

sequences still remain, as the computational complexity of Transformer’s self-

attention grows quadratically with the size of the image patches. This makes

the model computationally intensive and complex, especially for high-resolution

and pixel-dense image processing tasks, such as image restoration.

Several advancements have been made to optimize the application of Trans-

former in image denoising. For instance, the SwinIRLiang et al. (2021) leverages

the Swin Transformer, which uses a hierarchical approach and computes self-

attention within non-overlapping windows rather than across the entire image.

This reduces computational complexity while still capturing local and global

dependencies effectively. Moreover, SUNetFan et al. (2022) integrates the Swin

Transformer with a U-Net structure, further enhancing multi-scale image fea-

ture learning. This progressive and multi-level approach allows for a more ef-

ficient and powerful feature extraction process, crucial for high-quality image

restoration. Another noteworthy advancement is UformerWang et al. (2022),

which introduces the Locally-enhanced Window (LeWin) Transformer block.

This block combines window-based multi-head self-attention with convolutional

operations, allowing the model to capture both long-range dependencies and
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essential local context. This design significantly reduces the computational bur-

den compared to global self-attention mechanisms and enhances the model’s

ability to restore fine image details. Restormer further innovates by introduc-

ing Multi-Dconv Head Transposed Attention (MDTA), which computes self-

attention across channels rather than spatial dimensions. This approach, along

with a hierarchical encoder-decoder Unet structure, allows Restormer to han-

dle high-resolution images efficiently. The Gated-Dconv feed-forward network

(GDFN) used in Restormer also improves representation learning by focusing on

both local and global contexts. In addition, inspired by the success of the CNN

model in image restoration, other worksXue & Ma (2023); Chen et al. (2021);

Yao et al. (2022); Wang et al. (2024); Zhao et al. (2022); Li et al. (2024a); Luthra

et al. (2021); Xu et al. (2023); Li et al. (2024b); Tian et al. (2024d) have im-

proved the performan of Transformer for image denoising by introducing local

information enhancement, combining CNN and traditional filtering algorithms.

On one hand, these methods compensate for the shortcomings of Transformer

in handling local information. On the other hand, integrating CNN and tra-

ditional filtering algorithms alleviate some of the limitations inherent in pure

Transformer to some extent.
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3. Method

3.1. Network Architecture

Figure 1: Architecture of the image-denoising model GCSTormer. Our model for image

denoising consists of a hierarchical design incorporating key modules. The core modules are:

(i)SFEM uses DABs to extract initial and shallow features; (ii)DFEM uses multiple GCSTB

as basic layer, which further processes features for effective denoising. Subfigures (a), (b) and

(c) respectively show the structures of DAB, SFEM and GCSTB.

As illustrated in Figure 1, our GCSTormer is mainly composed of two key

modules: the SFEM and DFEM. Given an image Xn ∈ RH×W×3(here we ig-

nore the batch dimension), first we transform it into the structure of RH×W×C

through an input projection of a 1 ×1 convolution. This will serve as the input

of the SFEM. The SFEM consists of four stacked dense atrous blocks(DABs).

Each DAB uses cascaded atrous convolutions with dilation rates r1 = 1, r2 = 2

and r3 = 3. Meanwhile, we incorporate a dense skip-connection mechanism,

which enhances feature interaction between the lower and higher layers of the

block. After that, the feature information processed by the SFEM will be di-

vided into two branches. One branch will be used as the input to the DFEM

for deep feature extraction. The other branch is used for feature fusion with

subsequent processing results to reconstruct the denoised image. In the DFEM,

we use the U-Net for backbone network design. We improve upon the Swin
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Transformer block to create our basic block for feature extraction. Finally, we

perform feature fusion on the results from the SFEM and DFEM. And then, the

denoised image is restored through the output projection. The entire process

can be defined as:

Xd = GCSTormer(Xn) = SFEM(Xn) ⊕DFEM(Xn) (1)

where Xn represents the noisy image, Xd represents the denoised image, and ⊕

represents feature fusion.

3.2. Shallow Feature Extraction Module

We design SFEM to effectively capture and extract shallow information from

images, as illustrated in subfigure (b) in Figure 1. The SFEM is composed of

multiple DABs to enhance feature extraction capabilities. CNN excels at ex-

tracting fine details in shallow layers but struggles with global information due

to limited receptive fields. To address this, we integrate atrous convolution,

which expands the receptive field without increasing parameters, to improve

global context capture. Additionally, we implement a dense skip connection

mechanism within the DAB to promote interaction and fusion of image infor-

mation across different layers. This ensures that features extracted at lower

levels are retained and effectively integrated into subsequent layers. The entire

process is shown as:

Xout
SFEM = SFEM(Xin

SFEM ) = DAB(DAB(DAB(DAB(Xin
SFEM ))))) (2)

For each DAB, it is composed of a cascaded atrous convolutions with dilation

rates r1 = 1, r2 = 2 and r3 = 3 that increase successively. These convolutions

are interconnected through dense skip connections to enable efficient information

transfer across layers. Given an input Xin
DAB of DAB, the process of DAB is
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represented as:

Xout
DAB =

3∑
i=1

liDAB + Xin
DAB

liDAB = atrr=i(GELU(

i−1∑
j=1

ljDAB + Xin
DAB))

(3)

Here, Xout
DAB represents the output of the DAB, liDAB denotes the output of the

i-th layer in a single DAB block. The atrr=i denotes the atrous convolution

with dilation rate r= i. GELU(·)Hendrycks & Gimpel (2016) is the non-linear

activation process.

3.3. Deep Feature Extraction Module

Since CNN excels at capturing local structures and low-level details, whereas

Transformer leverages global attention mechanisms to model long-range depen-

dencies. It is promising to combine their strengths, and this is also one of the key

motivations behind our network design. In the SFEM, we employ a CNN-based

algorithm to design a dense cascaded atrous convolutional block for prelimi-

nary image feature extraction. In the DFEM, we design a multi-scale deep

feature extraction network based on the Transformer. This hierarchical integra-

tion enables an effective balance between local precision and global contextual

understanding.

As we can see from Figure 1, DFEM follows a U-Net structure, progressively

downsampling the feature maps while increasing the number of channels. In the

encoding stage of DFEM, we follow the basic principles of U-Net design. At each

corresponding layer, the spatial dimensions of the features are downsampled to

half, until they reach 1/32 of the original size. Meanwhile, the channel dimension

is doubled to facilitate the extraction of deeper image information. Considering

that we have already conducted preliminary shallow feature extraction in SFEM

and inspired by SUNet, we apply a 4× non-overlapping downsampling before the

first corresponding layer to reduce the computational load in the deep network.

The core functional block in DFEM is GCSTB, which is a improved Swin

Transformer block with a gate unit and channel weights. In the field of image
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denoising, the Swin Transformer has achieved great achievementsLiang et al.

(2021); Fan et al. (2022). As shown in Figure 1(c), there are mainly two im-

provements in GCSTB: First, gated convolution is added to the feedforward

neural network layer to enhance information flow. We call it GU-MLP, the

MLP with gate unit. Second, transposed attention is introduced to compute

the attention weights from the channel dimension(H×W → C×C). These new

blocks are named with W-MSCA and SW-MSCA. In addition, to facilitate layer

normalization, we reshape the feature tensor from RH×W×C to RH∗W×C . The

entire process of GCSTB is represented as:

f̂ l = W −MSCA(LN(f l−1)) + f l−1

f l = GU −MLP (LN(f̂ l)) + f̂ l

f̂ l+1 = SW −MSCA(LN(f l)) + f l

f l+1 = GU −MLP (LN(f̂ l+1)) + f̂ l+1

(4)

Here, f l−1 is the input of GCSTB and f l+1 is the output of GCSTB. f̂ , f l and

f̂ l+1 are the intermediate outputs.

3.3.1. GU-MLP

Figure 2: The principle and process of GU-MLP. GU-MLP incorporates gated convolution

into the MLP layer of Swin Transformer, replacing the original nonlinear activation process.

This gated activation unit adaptively learns image and noise feature information to enhance

information flow within the network. Subfigures: (a) The processing procedure of the gate

unit; (b) The original MLP structure in Swin Transformer; (c) The structure of GU-MLP.

For models like Transformer with global modeling capabilities, it is inevitable
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to learn noise features during the feature processing. It is necessary for the model

to learn to distinguish between image features and noise features. Faced with

this problem, we use gated convolutionYu et al. (2019) to improve the MLP layer

of Swin Transformer block to enhance the model’s adaptive learning ability and

improve the information flow. In conventional convolution, all pixels are treated

equally as valid pixels without any distinction. This indiscriminate processing

method may cause noise and less relevant features to propagate in the network.

To address this issue, gated convolution introduces a dynamic feature selection

mechanism that adjusts the information flow for each spatial location and each

channel respectively. By selectively controlling which features are allowed to

pass through, it effectively enhances the network’s ability to suppress noise and

focus on more meaningful image information during the processing. Therefore,

we apply this technique to the model design.

As Figure 2 (b) shows, the MLP in Swin Transformer block is composed of

two fully connected layers, FC1 and FC2. The first fully connected layer, FC1,

expands the number of feature channels(typically with an expansion factor of

γ = 4) to increase the network’s capacity for learning complex representations.

After being processed by FC1, the data will go through an non-linear activation

function to enhance the network’s non-linear representation ability. The second

layer, FC2, then reduces the channels back to their original dimensionality,

ensuring that the expanded features are compressed to fit the subsequent layers’

requirements. We add gated convolution during nonlinear activation to form a

gating unit. It replaces the original simple nonlinear activation processing. In

the gate unit, the input feature map splits into two branches. One branch is

for nonlinear activation. The other is for feature selection. In each branch, we

use a 3×3 convolution to learn local feature information. The entire process is

represented as:
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X ′ = R(LN(X))

Xg = ϕ(conv(X ′))

Xf = GELU(conv(X ′))

Xout = R(Xg ⊙Xf )

(5)

where X and Xout ∈ RH∗W×C are the input and output of the gate unit respec-

tively. Xg and Xf ∈ RH×W×C respectively represent the gating weight and the

non-linear activation feature. LN represents layer normalization. R(·) denotes

the reshaping operation. ϕ(·) is the softmax function. conv(·) is the convolution

operation. GELU(·) represents the GELU non-linear activation processing. ⊙

represents element-wise multiplication.

3.3.2. W-MSCA and SW-MSCA

Figure 3: The process of tranposed attention in W-MSCA and SW-MSCA. Transposed At-

tention computes attention from the channel dimension rather than the spatial dimension.

Channel weights are derived from Q and K to achieve both computational reduction and fea-

ture selection. A 3×3 convolutional block is employed for extracting local feature information.

In the Swin Transformer block, we introduce transposed attention into its

window multi-head self-attention(W-MSA) and shifted window multi-head self-

attention (SW-MSA), thereby forming W-MSCA and SW-MSCA. In the original

Transformer, the multiplication of the three matrices Q, K, and V is calculated

from the spatial perspective, i.e., H×W. Transposed attention converts the spa-

tial dimension computation into channel dimensions, i.e., H×W→C×C. This

approach effectively reduces the computational load of the Transformer. Ad-
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ditionally, this processing establishes connections between different channels,

enabling feature interaction. It selectively emphasizes or suppresses features of

certain channels, thereby better capturing important information. This helps

filter out more valuable features for the task within complex feature spaces.

Figure 3 shows the operation process of this attention. As shown in the

figure, for the input feature map X, after normalization, it is mapped to the

Q, K, and V projection matrices through three learnable weights W q, W k,

and W v. Subsequently, we apply a 3×3 convolution to each of these feature

maps to extract local features. The attention converts the Q and K matrices

into the forms of RH∗W×C and RC×H∗W respectively. This is used for matrix

multiplication and then utilize softmax function to scale the values to the range

of 0-1 . Finally, these obtained channel weights CW ∈ RH∗W×C are multiplied

with V to produce the output. The entire process is represented as:

Q,K, V = W qX,W kX,W vX

Q′,K ′, V ′ = conv(Q,K, V )

Xout = V ′ · softmax(
Q′ ·K ′

α
)

(6)

Here, α is a learnable scaling parameter used to control the magnitude of the

dot product of K and Q before applying the softmax function. Q′, K ′ and V ′

are intermediate output results.

4. Experiment

4.1. Experimental Datasets

The training datasets are conducted on the image super-resolution datasets

DIV2KAgustsson & Timofte (2017) and Flickr2KTimofte et al. (2017). The

DIV2K contains a total of 1000 images with an average resolution of 1920×1080.

Among these, 800 images are used for the training set, 100 for validation and

100 for testing. The Flickr2K dataset includes a total of 2650 images with an

average resolution of 2040×1350. To preserve the original image distribution

and avoid distortions caused by scaling, we employed random cropping during
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training. Each image for training was cropped into 16 smaller patches with size

128×128. We add synthetic gaussian noise with a standard deviation σ ranging

from 10 to 50 to these patches.

To test the performance of the model, we conduct denoising experiments on

grayscale and color datasets. For grayscale images, we use datasets Set12Zhang

et al. (2017a) and BSD68Martin et al. (2001). Set12 is a standard benchmark

composed of 12 widely used images. BSD68 consists of 68 grayscale images from

the Berkeley Segmentation Dataset. For color image denoising, we test on three

well-known datasets: CBSD68Martin et al. (2001), Kodak24Franzen (1999), and

McMasterZhang et al. (2011). The CBSD68 includes 68 color images, each with

a resolution of 768×512, serving as a color counterpart to the grayscale BSD68

dataset. The Kodak24 consists of 24 images with a resolution of 500×500,

widely recognized for its natural image content. The McMaster contains 18

high-quality color images with resolution of 500×500. Figure 4 presents visual

samples from both grayscale and color testing datasets.

Figure 4: The testing samples from Set12 and Kodak24. Set12 is a standard benchmark

composed of 12 widely used images. Kodak24 consists of 24 images with a resolution of

500×500, widely recognized for its natural image content.

4.2. Experimental Setup

4.2.1. Implementation Details

We conduct our experiments in a GPU-accelerated environment using Py-

Torch 1.10.0+cu118 and utilize a single NVIDIA GTX 3090 GPU for accelerated
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training. The total number of epochs was set to 200 with a batch size of 8. We

employ ADAMWKingma & Ba (2014); Loshchilov & Hutter (2017) optimizer

with the β1 = 0.9, β2 = 0.999 and ε = 10−8. The initial learning rate was 2e-4,

and the minimum learning rate was 1e-6.

We conduct denoising experiments and test the model inference time on a

personal laptop. The configuration of the personal laptop is as follows: 12th

Gen Intel(R) Core(TM) i7 - 12650H with a clock speed of 2.30 GHz, 32.0 GB

of RAM, and it is equipped with a GPU of RTX4060.

4.2.2. Loss Function and Evaluation metrics

We use the conventional L1 loss to optimize the model. The formula is as

follows:

Ldenoise =
1

N

∑N
i=1|f(xi) − yi| (7)

where N represents the total number of training samples, f(xi) is the predicted

output for the i-th input image xi, and yi is the corresponding ground truth

image. The absolute difference between f(xi) and yi is computed, summed over

all samples, and then averaged.

Peak Signal-to-Noise Ratio (PSNR) is used as one of evaluation metrics for

denoising performanceT ts formula is shown as:

PSNR = 10log10(
MAX2

MSE
) (8)

where MAX is the maximum pixel value of the image. MSE (Mean Squared Er-

ror) represents the difference between the reference image and the reconstructed

image, and is calculated as:

MSE =
1

MN

M∑
i=1

N∑
j=1

[I(i, j) −K(i, j)]2 (9)

where I(i, j) is the original image pixel, K(i, j) is the denoised image pixel. M

and N are the spatial dimensions of the image.

SSIM(Structural Similarity Index) is an another image quality assessment

metric based on structural information. Compared with PSNR, it is more in

16



line with the visual perception of the human eye. SSIM is calculated from three

aspects: luminance, contrast, and structure. The higher the SSIM value, the

more similar the processed image is to the original image. The formula for SSIM

is shown as:

SSIM =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ2

b + C1)(σ2
a + σ2

b + C2)
(10)

where a and b represent the original image and the denoised image respectively.

µa and µb denote the mean intensity of a and b, while σa and σb represent

their intensity variances. σab represents the covariance between a and b. C1

= (K1L)2 and C2 = (K2L)2 are constants used to avoid instability when the

denominator approaches zero. K1=0.01, K2=0.03, and L is the range of pixel

values. In this paper, images are represented with 8 bits, so L=255.

4.3. Performance of Image Denoising

To fully test denoising effect of the proposed GCSTormer, we apply quan-

titative and qualitative metrics to evaluate it. Quantitative evaluation mainly

uses some state-of-the-arts, i.e., BM3DDabov et al. (2007), WNNMGu et al.

(2014), DnCNNZhang et al. (2017a), image restoration CNN (IRCNN)Zhang

et al. (2017b), attention-guided denoising convolutional neural network (AD-

Net)Tian et al. (2020b), FFDNetZhang et al. (2018), multi-level wavelet CNN

(MWCNN)Liu et al. (2018b), multi-scale adaptive network (MSANet)Gou et al.

(2022), densely connected hierarchical image denoising network(DHDN)Park

et al. (2019), residual dense U-Net neural network (RDUnet)Gurrola-Ramos

et al. (2021), efficient transformer for high-resolution image restoration (Restormer)

(Zamir et al. (2022)), swin transformer UNet (SUNet)Fan et al. (2022), image

restoration using swin transformer (SwinIR)Liang et al. (2021), efficient wavelet

transformer (EWT)Li et al. (2024a) and a cross Transformer for image denoising

(CTNet)Tian et al. (2024d) on noisy images for image denoising. Specifically,

synthetic noisy images contain gray and color synthetic noisy images.
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4.3.1. Gray image denoising

For gray synthetic noisy image denoising, we choose Set12Zhang et al. (2017a),

BSD68Martin et al. (2001) to evaluate denoising performance of our GCSTormer

as shown in table 1. According to the table, GCSTormer demonstrates no-

table performance. In the dataset of Set12 , when σ=15, GCSTormer achieves

the PSNR value of 33.22dB, which is relatively high compared to models like

DnCNN, FFDNet and MWCNN. This indicates its effectiveness in handling

low-level noise. At high noise level of σ =50, the value of 27.77dB also shows

a competitive result compared with EWT and CTNet. However, when com-

pared to SwinIR, GCSTormer shows a slight performance gap, particularly at

lower noise levels. For example, SwinIR achieves the highest PSNR of 33.42 at

σ =15. This suggests that while GCSTormer is highly effective, there is room

for further optimization to match the state-of-the-art performance of SwinIR.

As for BSD68, the performance of GCSTormer is also commendable. At noise

levels of σ =15, σ =25, and σ =50, GCSTormer achieves PSNR values of 31.92

dB, 29.41 dB, and 26.55 dB respectively. Compared to traditional methods like

BM3D and WNNM, it shows significant improvements with almost 1dB gap.

Even with the state-of-the-art models like EWT, CTNet and SwinIR, the the

gap remains around 0.05 dB. This demonstrates the great advantages of our

model in grayscale image denoising.

For qualitative evaluation, we use several popular denoising methods as com-

parative methods to conduct visual figures for testing denoising effects of the

proposed GCSTormer. That is, we choose an area of denoising images from

different methods as an observation area, the observation area is clearer, and

its corresponding method is more effective for image denoising. We take the

”starfish” image from the Set12 and the ”test039” image from the BSD68

dataset as examples for visual demonstration. As shown in Figs. 5 and 6,

these two groups of images respectively display the original images, noisy im-

ages, and the denoising results of methods such as BM3D, DnCNN, FFDNet,

and SwinIR under the two datasets. According to the PSNR evaluation results,
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Table 1: Average PSN(dB) of different methods on Set12 and BSD68 with σ =15, 25 and 50.

The highest PSNR is highlighted in red font and the second highest one is highlighted in blue

font.

Set12 BSD68
Method

σ =15 σ =25 σ =50 σ =15 σ =25 σ =50

BM3D 32.37 29.97 26.72 31.08 28.57 25.60

WNNM 32.70 30.28 27.05 31.37 28.83 25.87

DnCNN 32.86 30.44 27.18 31.73 29.23 26.23

IRCNN 32.76 30.37 27.12 31.63 29.15 26.19

FFDNet 32.75 30.43 27.32 31.63 29.19 26.29

FOCNet 33.07 30.73 27.68 31.83 29.38 26.50

MWCNN 33.15 30.79 27.74 31.86 29.41 26.53

ADNet 32.98 30.58 27.37 31.76 29.35 26.32

MSANet 33.07 30.71 27.59 31.79 29.35 26.25

EWT 33.25 30.89 27.83 31.90 29.43 26.55

CTNet 33.31 30.94 27.79 31.94 29.46 26.49

SwinIR 33.42 31.01 27.91 31.97 29.50 26.58

GCSTormer 33.22 30.81 27.77 31.92 29.41 26.55
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the proposed GCSFormer has high values in both groups of images. This in-

dicates its excellent performance in noise removal. From the locally magnified

areas, it can be seen that the model performs remarkably well in restoring image

details and is comparable to the best-performing model SwinIR. For example, as

shown in Fig. 5, the result processed by GCSFormer shows a clearer hexagonal

grid structure in the surface structure of the starfish; As for the fish from the

BSD68, GCSFormer is likely to be able to restore the contour of the fish’s eye

and the tiny details around it more clearly. In terms of visual effects, compared

with the methods like BM3D, DnCNN, and IRCNN, the images denoised by

our model are smooth and rich in details, without obvious artifacts or blurring

phenomena.

Figure 5: Visual comparisons for gray image denoising on image ‘04.png’ from Set12 dataset

corrupted by AWGN with σ = 50. The PSNR value below the subfigures are calculated by

patches.
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Figure 6: Visual comparisons for gray image denoising on image ‘test036.png’ from BSD68

dataset corrupted by AWGN with σ = 50. The PSNR value below the subfigures are calculated

by patches.

4.3.2. Color image denoising

For evaluating color image denoising, we tested our model using three promi-

nent datasets: CBSD68, Kodak24, and McMaster. Tables 2- 4 show the image

denoising results on these datasets with PSNR and SSIM. The denoising test

is conducted at noise levels σ =10, 30 and 50. According to the results, GC-

STormer demonstrates remarkable performance advantages. On the CBSD68,

GCSTormer achieved high PSNR and SSIM values in denoising at different

noise levels. These results are very close to those of the best-performing meth-

ods, such as RDUNet and EWT. In terms of SSIM, GCSTormer even has slight

advantages. Regarding Kodak24, GCSTormer had obvious advantages at a low

noise level(σ =10),its value of SSIM was significantly improved compared with

classic CNN models like DnCNN, FFDNet. At a high noise level of σ =50,it also

maintains comparable performance to the EWT and Restormer. As to McMas-
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ter, GCSTormer also performed well. Especially at σ =50, its PSNR reaches

30.05dB, exceeding other methods and second only to Restormer.

Table 2: Image denoising results on dataset CBSD68. The best result and the second best

are respectively highlighted in red and blue.

CBSD68

σ =10 σ =30 σ =50Methods

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Noise 28.28 0.8253 19.03 0.4698 15.00 0.3060

CBM3D 35.89 0.9510 29.71 0.8430 27.36 0.7633

DnCNN 36.12 0.9510 30.34 0.8620 27.9 0.7897

IRCNN 36.06 0.9530 30.23 0.8612 27.88 0.7898

FFDNet 36.14 0.9540 30.32 0.8608 27.97 0.7887

U-Net 35.39 0.9481 29.74 0.8490 27.35 0.7710

DHDN 36.05 0.9533 30.12 0.8580 27.71 0.7870

RDUNet 36.48 0.9512 30.72 0.8720 28.38 0.8070

Restormer - - - - 28.59 -

SUNet 35.94 0.9581 30.28 0.8700 27.85 0.7990

EWT 36.52 - 30.72 - 28.39 -

GCSTormer 36.49 0.9589 30.58 0.8726 28.50 0.8077
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Table 3: Image denoising results on dataset Kodak24. The best result and the second best

are respectively highlighted in red and blue. All of scores are the average values of the whole

dataset.

Kodak24

σ =10 σ =30 σ =50Methods

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Noise 28.22 0.7971 18.926 0.4146 14.8676 0.2596

CBM3D 33.32 0.9430 27.75 0.7730 25.6 0.6860

DnCNN 36.58 0.9450 31.17 0.8569 28.83 0.7909

IRCNN 36.70 0.9450 31.12 0.8570 28.8 0.7929

FFDNet 36.80 0.9460 31.27 0.8584 28.98 0.7942

U-Net 35.89 0.9390 30.55 0.8450 28.11 0.7740

DHDN 37.30 0.9510 31.98 0.8740 29.72 0.8170

RDUNet 37.29 0.9010 31.97 0.8740 29.72 0.8180

Restormer - - - - 30.00 -

SUNet 36.79 0.9530 31.82 0.8990 29.54 0.8100

EWT 37.31 - 31.96 - 29.67 -

GCSTormer 37.30 0.9543 31.91 0.8746 29.81 0.8175

Table 4: Image denoising results on dataset McMaster. The best result and the second best

are respectively highlighted in red and blue. All of scores are the average values of the whole

dataset.

McMaster

σ =10 σ =30 σ =50Methods

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Noise 25.13 0.6683 19.418 0.4183 15.3826 0.2601

DnCNN 33.45 0.9035 30.79 0.8539 28.62 0.7984

IRCNN 34.58 0.9195 31.31 0.8643 28.93 0.8070

FFDNet 34.66 0.9216 31.53 0.8701 29.19 0.8150

Restormer 35.55 - - - 30.29 -

CTNet - - - - 30.02 -

GCSTormer 35.43 0.9436 32.26 0.8980 30.05 0.8462
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For qualitative evaluation, we select ”seagull” image from CBSD68, ”hat”

image from Kodak24, and ”cartoon” image from the McMaster. Fig. 7 - 9

show the original images, noisy images, and the denoised results with PSNR

and SSIM values annotated. In the seagull image, the noisy image has signif-

icant noise points. Although CBM3D improves the image, it remains blurry.

DnCNN and IRCNN yield similar PSNR and SSIM results, while RDUNet and

GCSTormer show notable improvements. From the enlarged view of the seag-

ull’s neck, it is evident that the proposed model retains more feather details

during denoising. The denoised image is smooth and free of artifacts, achiev-

ing comparable denoising effects to RDUNet. When denoising the hat from

Kodak24, GCSFormer has get the highest PSNR of 33.38 dB and the SSIM of

0.8870. From the visualization results, GCSTormer performs well in retaining

the stroke details of the text on the hat. The denoised image is bright and

clear, with obvious advantages in restoring the text structure and texture. Fig.

9 presents a vivid cartoon image. From both the overall denoised image and the

enlarged view of the kitten, GCSTormer produces a brighter and clearer image

with more distinct contours. In contrast, although DnCNN and IRCNN remove

noise to a certain extent, the overall image quality is low, with a large amount of

blurring, and the object details are also damaged. In terms of the quantitative

results of PSNR and SSIM, GCSTormer also shows significant advantages.

24



Figure 7: Visual comparisons for image denoising on image ’103070’ from CBSD68 dataset

corrupted by AWGN with σ = 50. The PSNR and SSIM values below the subfigures are

calculated by patches.

Figure 8: Visual comparisons for image denoising on image ‘kodim01’ from Kodak24 dataset

corrupted by AWGN with σ = 50.
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Figure 9: Visual comparisons for image denoising on image ‘05.png’ from McMaster dataset

corrupted by AWGN with σ = 50.

4.4. Data Analysis

4.4.1. Performance of the Model

In the above text, we use PSNR and SSIM for quantitative evaluation and do

qualitative analysis by visualizing denoised images. However, for deep-learning

model, the number of parameters and computational complexity are also impor-

tant. We conduct comparative experiments on parameters and floating point

operations(Flops.) to analyze performance of our proposed model, as the table

5 shows. Regarding the number of parameters, DnCNN, IRCNN, and FFDNet

have relatively few. This clearly shows the advantages of CNN methods. In con-

trast, denoising methods using the U-Net structure, like DHDN and RDUNet,

have a much larger number of parameters. GCSTormer has a smaller param-

eters of 52 million bit, that means it has more advantages in terms of model

storage and computational resource requirements. In terms of Flops. , GC-

STormer is also at a low level comparable to models like DnCNN and SUNet.
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This suggests that GCSTormer can complete computational tasks more quickly,

reduce inference time, and improve operational efficiency.

Table 5: The comparision of parameters and complexity . The experiment is conducted on

256×256 clolor images.

Metrics

Models
DnCNN IRCNN FFDNet U-Net DHDN RDUNet SUNet GCSTormer

Param.(M) 0.6 0.4 0.8 17 168 166 99 52

Flops.(G) 36 27 18 40 1019 807 30 32

PSNR(dB) 31.17 31.12 31.27 30.55 31.98 31.97 31.82 31.91

In addition to analyzing the number of model parameters and computa-

tional complexity, we also evaluate the denoising time (i.e., inference time).

Table 6 presents the results. We compare our model with state-of-the-art meth-

ods, including DnCNN, IRCNN, FFDNet, SwinIR, and Restormer. Compared

to CNN-based denoisers such as DnCNN, GCSTormer has significantly more

parameters. However, it also achieves notable improvements in denoising per-

formance. When compared to SwinIR and Restormer, our model has slightly

lower performance and a larger number of parameters. Nevertheless, it requires

less inference time, consumes less GPU memory, and has lower computational

complexity. As a whole, GCSTormer demonstrates its advantages over both

CNN-based and Transformer-based denoising models.
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Table 6: The comparision of the inference time of the models in the dataset Kodak24 with

σ =30. We conduct on five metrics: the parameters(Param.(M)), the complexity(Flops.(G)),

the usage of GPU memory when denoising image(GPU(G)), the time of denoising im-

age(Time(s)), and the PSNR(dB). The experiment is conducted on a personal laptop equipped

with a GPU of RTX4060.

Models

Metrics
Param.(M) Flops.(G) GPU(G) Time(s) PSNR(dB)

DnCNN 0.60 36.00 1.4 4.68 31.17

IRCNN 0.40 27.00 1.1 3.32 31.12

FFDNet 0.80 18.00 1.1 3.15 31.27

SwinIR 0.88 59.03 4.1 105.17 31.99

Restormer 26.10 140.99 4.3 30.07 32.01

GCSTormer 51.97 31.67 2.0 19.30 31.91

4.4.2. Ablation Studies on Hyperparameters and Construction

To investigate the impact of our model’s internal structure and hyperparam-

eters on performance, we has conducted extensive experiments. The results are

shown in Tab. 7 and 8. As Tab.7 shows, the mainly ablation studies on the

construction focus on the contributions of SEFM, transposed attention (TA),

and gate unit (GU). In Case 4, where SFEM, TA, and GU are all included,

the model achieves a PSNR of 31.91 dB. When comparing with Case 1, which

only has TA and GU enabled, we can observe that the presence of SFEM con-

tributes to an improvement in the PSNR. Similarly, comparing case 2 and case

3 to the baseline cases without certain components, it’s clear that both SFEM

and GU play important roles in enhancing the model’s denoising performance,

especially the SFEM. AS to the inference time, in Case 1, where TA is present,

the inference time is 16.73 seconds. In contrast, in Case 2, where TA is absent,

the inference time increases to 22.52 seconds. This significant difference in infer-

ence time shows that the introduction of TA has a notable effect on reducing the

model’s denoising inference time. Even when comparing with other cases, the

presence of TA is associated with relatively shorter inference times, suggesting
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that it helps in making the model’s denoising process more efficient.

Table 7: The ablation studies on the construction of the model in the dataset Kodak24 with

σ =30. We focus on SEFM, tranposed attention(TA), gate unit(GU) to make the inner

construction more clearly. The experiment is conducted on personal laptop with a GPU of

RTX4060.

Case SFEM TA GU Param.(M) Flop.(G) GPU(G) Time(s) PSNR(dB)

1
√ √

51.74 16.83 1.8 16.73 31.71

2
√ √

51.71 31.51 2.2 22.52 31.88

3
√ √

51.27 30.02 1.9 17.25 31.79

4
√ √ √

51.97 31.67 2.0 19.30 31.91

The hyperparameters studied include the dilation rate(DR), the number of

stacked GCSTBs(×NGs), the training epochs, and the activation function(AF),

as Tab. 8 shows. In terms of DR, when the values are [1,2,3], the PSNR is

31.87 dB. As the values change to [1,2,5] and [1,3,5], the PSNR drops slightly

to 31.84 dB and 31.80 dB respectively. This suggests that a larger dilation

rate may cause discontinuous sampling of information, resulting in the model

missing some key local information related to noise. Also, it can lead to sparser

feature maps, which might make the model lose important details and increase

the difficulty of learning appropriate feature combinations for denoising. Re-

garding the ×NGs, when it is set to 1, the PSNR gets the value of 31.66dB,

that shows our designed block has a strong abliliy of extracting feature. As the

number increase, the model’s performance improves steadily. When it comes

to the training epochs, the PSNR has already got a value of 31.68dB. This

shows that the model’s performance improves with the increase of epochs ini-

tially. And that’s also the reason why we only conduct 100 epochs in other

ablation experiments. As for the AF, when using ReLU, GELU, and PReLU,

the differences in PSNR among these different activation functions are relatively

small. Overall, the changes in PSNR values are relatively minor across differ-

ent settings of these hyperparameters. This indicates that the model is not

overly sensitive to changes in hyperparameters, which in turn reflects the strong
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robustness of the model. It can maintain relatively stable performance under

various hyperparameter configurations, making it more reliable and easier to

optimize.

Table 8: The ablation studies on the hyperparameters in the dataset Kodak24 with σ =30.

We focus on the dilation rate(DR), the number of stacked GCSTBs(×NGs), the training

epochs, and the activation function(AF) to study the sensitivity of the hyperparameters. The

experiment is conducted on personal laptop with a GPU RTX4060

Hyperparameter Value DR ×NGs Epochs AF Param.(M) Flop.(G) GPU(G) Time(s) PSNR(dB)

Dilation Rate(DR)

[1,2,3]

- ×4 100 GELU 51.97 31.67 - -

31.87

[1,2,5] 31.84

[1,3,5] 31.80

×N GCSTBs

(×NGs)

×1

[1,2,3] - 100 GELU

16.24 24.15 1.69 11.78 31.66

×2 28.23 27.49 1.88 14.42 31.80

×4 51.97 31.67 2.02 19.30 31.87

×8 99.90 45.03 2.34 28.28 31.90

Epochs

50

[1,2,3] ×4 - GELU 51.97 31.67 - -

31.68

100 31.87

150 31.91

200 31.91

Activiation

Function(AF)

ReLU

[1,2,3] ×4 100 - 51.97 31.67 - -

31.83

GELU 31.87

PReLU 31.85

5. Limitation and Future Work

This work is centered around the research on synthetic Gaussian noise. Its

inception lies in the attempt to conduct image denoising research by integrating

the advantages of CNN and Transformer. In the aspect of model design, we

have devised a shallow network, where CNN plays a supplementary role, and a

deep network mainly based on Transformer for feature extraction. This is aimed

at achieving the integration of shallow and deep layers. To validate the effec-

tiveness of this design, we have carried out numerous experiments. However,

this design may not be the optimal solution. In the future, we plan to explore

more combination strategies. For instance, we will study Heterogeneous dual-

end denoising network based on distillation and parallel dual-encoder denoising

networks. Additionally, while this work currently focuses on the theoretical

study of Gaussian denoising, in the days to come, we will apply the model to
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practical scenarios of image denoising, such as medical imaging, satellite image

enhancement, or low-light photography. Moreover, we will also extend its ap-

plication to other image restoration tasks, such as image deraining, deblurring,

and super-resolution.

6. Conclusion

In this paper, we present GCSTormer for image denoising. Specifically, this

model mainly consists of two core feature extraction modules: a shallow feature

extraction moudule and a deep backbone feature extraction module. To address

the CNN’s limitations in extracting global information, we use atrous convolu-

tion to increase the receptive field and employ dense skip connection mechanism.

In the deep feature extraction module, we combined the Swin Transformer with

a U-Net structure for multi-scale global modeling of image features. Addition-

ally, we introduced gate mechanism to further enhance the extraction of effective

information and suppress the propagation of noise features. To further minimize

the computating cost of the Transformer, we compute it from the channel dimen-

sion instead of the spatial dimension, adding the channel weights to the feature

map. Experiments on the color image datasets CBSD68, Kodak24 , McMaster

and gray image datasets set12 and BSD68 demonstrate the effectiveness of our

model. Currently, the application of Transformers to low-level vision tasks is

still in its early stages and there is significant room for improvement in terms of

reducing computational complexity, parameter count and data dependency. In-

tegrating the local information extraction capabilities of CNN into Transformer

is a promising direction for improvement. In the future, we will study other

combination methods and apply the model to other image restoration tasks and

practical applications.
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