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Abstract
In space missions and extraterrestrial habitats, ensuring the reliability of power systems is critical, particularly for DC distribution 
networks supporting lunar bases and space stations. These systems rely on rotating machinery such as motors and pumps, making 
the integrity of rolling bearings essential. There is a significant gap in robust fault detection and classification for such machinery 
under harsh, variable conditions similar to those in space. Existing machine learning (ML) methods often struggle to capture 
complex multi-channel patterns in sensor data due to overfitting, hyperparameter sensitivity, and high computational demands. This 
study proposes an ML-driven framework for fault classification in rolling bearings under extreme conditions, taking into account 
varying dataset sizes. Using three datasets, the proposed approach employs multi-variate variational mode decomposition (MVMD) 
and Hilbert-Huang Transform (HHT) to capture fault signatures and extract relevant features. To address overfitting and account 
for monotonic fault progression, this framework fuses four feature selection methods —Laplacian Score (LS), Minimum 
Redundancy Maximum Relevance (mRMR), ReliefF, and Mutual Information (mutInf)—with Spearman’s rank correlation. The 
performance of ML classifiers (Neural Networks, Support Vector Machines, Naïve Bayes, K-Nearest Neighbors, Decision Trees, 
and Ensemble Methods) is optimized by adjusting hyperparameters using Bayesian Optimization (BO), Asynchronous Successive 
Halving (ASHA), and Random Search (RS), all in parallel settings to improve computational efficiency. These optimizers also help 
ML architectures to adapt according to available datasets of diverse types. Key quantitative results show that the ASHA-optimized 
ML model performs well with larger datasets, providing an overall accuracy of 99.94% with the reduced computational load. 
Meanwhile, BO and RS attained accuracies of 99.90% and 98.0%, which proved effective for scarce datasets. This innovative 
framework integrates signal decomposition, feature selection, and optimization techniques, creating an efficient predictive 
maintenance tool. It improves fault classification, boosting the reliability of machinery in extraterrestrial environments and 
enhancing the safety and sustainability of long-term space missions.

Keywords: Fault Recognition, Rolling Element Bearing (REB), Machine Learning, Lunar Bases, Hyperparameter Optimization.

1. Introduction
Motivation
A DC distribution system is vital for future lunar bases and space stations as it allows efficient, reliable power 
management, especially in the use of renewable energy sources such as solar power. NASA’s Artemis Base Camp, 
projected for the lunar South Pole by the early 2030s, is projected to cost around $93 billion for its first three phases, with 
additional investments to support habitats, laboratories, and transportation systems [1, 2]. This pioneering base will 
heavily rely on DC power systems, which will harness solar energy to power critical missions while minimizing energy 
loss and optimizing power management in the Moon's extreme conditions. In Europe, the European Space Agency multi-
national base concept is planned for the late 2020s, and it is estimated to cost €5 billion to €10 billion [3]. This multi-
national base concept will also leverage DC grids to stimulate scientific research and international cooperation.
Similar to Western initiatives, China’s space program is also undergoing rapid development, showcasing significant 
innovation with its International Lunar Research Station (ILRS) scheduled by 2035[4]. The Chinese ILRS is estimated to 
cost between $20 billion and $25 billion, relying heavily on solar power and DC systems to store and distribute energy 
efficiently for robotic and crewed missions. However, a critical challenge for these advanced infrastructures is the 
maintenance of rolling bearings in essential machinery such as motors, pumps, and cooling systems. These bearings are 
integral to the operation of rotating machinery by allowing rotors to rotate and produce mechanical energy. In this context, 
over 40% of mechanical failures are due to bearing issues [5],[6]. Moreover, a bearing failure could also compromise 
astronaut safety and mission success if vital systems are disrupted. Therefore, the integration of early and advanced fault 
monitoring and classification techniques for rolling bearings is imperative in the challenging environment of space. 
Literature review
Bearing fault monitoring and classification is commonly conducted using three techniques: 1) physical-based techniques 
[7, 8], 2) model-based techniques [9, 10], and 3) knowledge-based techniques [5]. The physical-based techniques help to 
analyze the spectrum of measured signals from the rolling bearings (RB) to identify abnormalities that may indicate faults. 
On the other hand, model-based techniques employ complex equations to simulate bearing dynamic behaviour or 
degradation phenomena. However, the bearing is a complex system, and their degradation mechanism is stochastic in 
nature, plus these models have high computational costs, and it is difficult to capture all the small details by mathematical 
models. Hence limiting their adaptability. As an example, it is used only in 10% of real-world applications to detect 
bearing faults inside induction motors [11]. In comparison, knowledge-based techniques use fuzzy systems or machine 
learning (ML) models to recognize patterns and classify fault types. This paper focuses on ML-driven techniques to 
monitor and classify bearing faults. This is because these techniques can handle the complex and challenging 
environments of space, often achieving high accuracy to analytically model bearing degradation through their ability to 
capture intricate patterns [12]. Moreover, ML-driven predictive maintenance has reduced machine shutdown time [13], 
prolonging the lifespan of equipment, further bolstering space mission productivity, and increasing safety.  
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Traditionally, ML-driven techniques for fault classification involve four basic steps: 1) The primal step is preprocessing 
(noise removal and data preparation from vibrational signals); 2) feature extraction (signal decomposition and extracting 
useful information from different domains to capture linear and non-linear aspects of the signal). For instance, phase 
entropy [14], quadrant entropy [15], and swarm intelligence optimization entropy [16] have been able to extract rich and 
hierarchical information from decomposed signals in recent times. These methodologies represent the forefront of 
innovation in bearing fault diagnosis, addressing issues such as signal non-stationarity, sensitivity in noise, and high-
dimensional data complexities. 3) Feature selection (FS) (selecting the most relevant features to avoid the "curse of 
dimensionality" and overfitting for better generalization); and 4) classification (estimating the difference between two or 
more classes). A summary of the most used ML-driven techniques based on Neural Networks (NN), Support Vector 
Machine (SVM), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Classification Trees are elaborated in Table 1.

Table 1. Related work summary of Rolling Bearing fault classification using Machine Learning (ML)
Related work summary of Rolling Bearing fault classification using Machine Learning (ML)

Serial 
Number ML Models Signal Decomposition Extracted Features Feature Selection (FS) 

Technique
Public Data Sets from 

Different Sources

No. Of 
Classes 

Explored
Single ML Models of NN, SVM, KNN, NB, Classification Trees

Ref [17] ANN Empirical Mode 
Decomposition (EMD)

Multi-domain (Root Mean Square (RMS), 
Kurtosis, Skewness, Peak-to-Peak value, Crest 
factor, Shape factor, Impulse factor, Margin 
factor, Mean energy, Entropy of decomposed 
modes)

 Multiple datasets 7 classes

Ref [18] ANN EMD and wavelet packet 
transform (WPT)

Multi-domain
(Skewness, Kurtosis, Crest indicator, 
Clearance indicator, Shape indicator, Impulse 
indicator, the signals of WPT, and the intrinsic 
mode functions (IMFs) of EMD)

Distance Evaluation 
Technique Multiple datasets 4 classes

Ref [19] ANN Wavelet Packet 
Decomposition (WPD)

Single-domain
(WPD coefficients energy) 

Case Western Reserve 
University dataset 
(CWRU dataset

4 classes

Ref [20] SVM Local mean 
decomposition (LMD)

Single-domain
(Sample entropy and Energy Ratio)  CWRU dataset 4 classes

Ref [21] SVM Hilbert-Huang Transform 
(HHT)

Single-domain
(Hilbert Marginal Spectrum)  FEMTO 

platform dataset 4 classes

Ref [22] SVM EMD

Multi-domain
(Mean value, Maximum point, Minimum 
value, Standard deviation, Peak-to-peak value, 
kurtosis, Pulse index, Waveform factor, 
Energy of IMFs of EMD, Shannon entropy)

Modified Genetic 
Algorithm (GA) Multiple datasets Binary 

classes

Ref [23] Single models of SVM 
and NB were analyzed.

Short Time Fourier 
Transform (STFT) 

Multi-domain (Mean, Absolute median, 
Standard deviation, Skewness, Kurtosis, Crest 
factor, Energy, RMS, Number of peaks, and 
Zero crossings, Shapiro test, KL divergence 
from time and statistical domains; Real value 
of FFT from frequency domain; STFT modes)

Principal Component 
Analysis (PCA)

FEMTO, Xi'an 
Jiaotong University 

(XJTU), CWRU 
datasets

Binary 
classes

Ref [24]

Single models of SVM, 
KNN, NB, and 

Classification Trees 
(Decision Tree).

Fast Fourier Transform 
(FFT)

Multi-domain (Mean, RMS, Standard 
deviation, Shape factor, kurtosis, Peak value, 
Skewness, Crest factor, Impulse factor, 
Clearance factor, Noise and distortion-related 
features from time and statistical domains; 
Peak amplitude, Peak frequency, and Band 
power from frequency domain)

PCA CWRU dataset 4 classes

Ref [25] KNN Vibration, speed, voltage 
& other signals Raw signal PCA Historical data 2 classes

Hybrid ML Models of NN, SVM, KNN, NB, DT, Ensemble methods
Ref [26] Genetic Algorithm 

based on ANN
Envelope Detection, 

Hilbert Transform, FFT
Multi-domain (Information obtained from 

signal decomposition of FFT and HT)  Experimental data Binary 
classes

Ref [27] Adaptive Neuro-Fuzzy 
based on ANN FFT Multi-domain (RMS, Standard deviation, 

Kurtosis, Skewness, and Specific frequencies)  Experimental data 9 classes

Ref [28]
Particle Swarm 

Optimization-SVM 
(PSO-SVM)

Statistical analysis, FFT, 
and Variational Mode 

Decomposition (VMD)

Multi-domain
(16 time and statistical domain features, 13 
frequency domain, and instantaneous 
permutation from entropy domain)

Laplacian Score (LS) CWRU dataset 12 classes

Ref [29] SVM optimized by Grid 
Search (GS) Ensemble EMD (EEMD) Single-domain

Permutation Entropy (PE)  CWRU dataset 4 classes

Ref [30] Bayesian Optimized 
(BO) SVM

Recurrence Quantification 
Analysis (RQA)

Multi-domain (RQA features capture various 
aspects of the system’s stability, periodicity, 
complexity, and predictability)

 CWRU dataset 4 classes

Ref [31] Whale Optimization 
Algorithm (WOA-

Multi-variate 
synchrosqueezing WT

Multi-domain (Mean, RMS, Square Root 
amplitude, Average Amplitude, Maximum  CWRU dataset 7 classes 
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SVM) peak, Standard deviation, Skewness, Kurtosis, 
Peak, Waveform and Pulse index, Barycenter 
frequency, Variance)

Ref [32] Cuckoo Search SVM 
(CS-SVM) VMD Single-domain

(Permutation Entropy)  CWRU dataset 4 classes

Ref [33] CNN-SVM  Autonomous CNN features Min-Redundancy/Max-
Relevance (mRMR) CWRU dataset 10 classes

Ref [34] Weighted KNN FFT, WPD, VMD Multi-domain (13 time-domain, 4 frequency-
domain, 17 entropy-based features) ReliefF algorithm CWRU and MFPT 

dataset
4 & 7 
classes

Ref [11] CNN-NB  Autonomous CNN features  Helical Gearbox and 
XJTU dataset

7 & 5 
classes

Ref [6] Ensemble of trees
(Random Forest) WPD Single-domain (Time-frequency features from 

Wavelet packet decomposition)
Internal voting 

mechanism Laboratory dataset 4 classes

Ref [35] Ensemble of tree
(Random Forest)

Basic preprocessing on 
vibration data

Multi-domain
(Statistical and Frequency domain features) Not specified CWRU dataset 4 classes

Ref [36] Ensemble (boosting, 
bagging, stacking)

Discrete Wavelet 
Transform (DWT)

Multi-domain (10 different kurtosis and 10 
entropy features)  Experimental data 13 classes

Research Gaps
The literature review in Table 1 highlights key characteristics of the present research, including signal decomposition 
(SD), feature extraction, FS methods for derived features, sources of databases, and classification classes for single and 
hybrid ML models. After thorough investigations and reviewing related work summaries, we outlined the following 
limitations.
1) Cross-Channel Dependencies and Signal Variance: The primal step in feature extraction is SD. Table 1 demonstrates 
recent works on different SD techniques based on FFT, STFT, HHT, WT, EMD, and VMD, both in discrete and 
continuous forms and envelope analysis. However, these SD approaches often struggle to capture essential fault signatures 
due to a lack of cross-channel interdependence analysis, which is critical as rolling bearing failures overall produce multi-
variate, interdependent signals across frequency bands. Furthermore, these methods do not adapt well to signal drift (a 
common occurrence in bearing vibrations where frequencies change over time due to changing load and speed 
conditions). Advanced techniques like multi-variate synchrosqueezing WT [31], EMD [37], and empirical WT (EWT) 
[38] have been proposed to address this. However, these approaches remain constrained by their poor performance on 
long-duration signals, sensitivity to noise, delicate to sampling rates, and reliance on empirical parameters. Another 
obstacle is the dependence on adaptive wavelet filters for accurate spectrum segmentation, which creates difficulties for 
real-time monitoring systems that must adjust to shifts in the bearing's operating environment, like the lunar base.
2) Limited Analysis of FS Methods: The literature review in Table 1 shows that FS methods, namely PCA and GA, etc., 
have been used to derive feature candidates from decomposed modes, but this led to unsatisfactory results as valuable 
information was lost and model performance was affected. To address this issue, several uni and multi-variate FS methods 
(such as LS, mRMR, ReliefF, etc.) were studied, but no comparative investigation has been conducted between these FS 
methods. Moreover, these studies use a single or limited database, which limits the scope and application of the findings. 
3) Neglect of Monotonic Characteristics: In these limited databases, monotonic characteristics (one-directional non-
linear trends) are often present in the oscillation amplitude of bearings and serve a crucial role in tracking degradation 
trends in fault conditions [39, 40]. Current FS methods often overlook these trends, which limits their scope to track subtle 
degradation from initial damages.
4) Limitations of Single and Hybrid ML Models: In Table 1, recent studies are categorized into single- and hybrid 
models for RB fault classification. Single ML models use an exclusive single technique for classification (such as NN, 
SVM, NB, KNN, and Classification Trees), while hybrid ML models combine two techniques (such as ANN with GA, 
SVM with PSO, and so on). However, the studies in Table 1 that focus on single ML models overlook the following 
limitations: 1) NNs are prone to overfitting and require large training sets. 2) SVM is sensitive to hyperparameters and 
needs fine-tuning along with relatively high training and prediction times. 3) NB has limited interpretability with 
correlated data. 4) KNNs are computationally intensive and suffer from the curse of dimensionality 5) Classification Trees 
similar to ANN suffer overfitting. If input data has any slight variations, it can lead to misclassification and often fail to 
capture complex, non-linear patterns. 
In comparison, hybrid models play a crucial role in improving classification accuracy and robustness over single models. 
While some previous studies have demonstrated the improved classification performance of hybrid models, these efforts 
often combine only two techniques.  Hence, their adaptability to complex data conditions is limited. Moreover, challenges 
such as increased model complexity, larger data requirements, higher computational time, and precise tuning for large 
numbers of hyperparameters are frequently overlooked with hybrid models. Therefore, to genuinely assess the 
effectiveness of hybrid models, it is essential to train widely used ML algorithms with different optimizers to determine 
the true efficacy of the ML algorithm. Meanwhile, Grid search [29] and Bayesian optimization [30] have been reported in 
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the literature for ML model optimization with limited hyperparameters, and their traditional implementations don’t run 
parallel settings to take full advantage of multi-core processors. 
Contributions
The following contributions have been made to overcome the aforementioned research gaps and facilitate advancement. 
• An in-depth analysis of the proposed techniques was done by collecting vibrational data through three experimental 

testbeds based on bearings and gearboxes. The collected data is denoised and normalized to implement SD. In doing 
so, the MVMD is proposed to capture the interdependence of signals across multiple channels, in particular for long-
duration signals with varying load and speed conditions.
1. The MVMD method addresses the limitations of the multi-variate EMD extension, such as the lack of a strong 

mathematical foundation, limited effectiveness with small sample sizes, and the problem of mode mixing across 
different channels.

2. Offering enhanced decomposed mode separation resolves a key challenge in the multi-variate extension of SST. 
3. Unlike the multi-variate extension of EWT, the MVMD method simplifies the process by eliminating the need for 

pre-defined wavelet filter bank boundaries. 
4. Following this, HHT is applied on enhanced nodes to obtain a detailed understanding of non-stationary patterns. 

This dual-stage MVMD-HHT processing enhances the ability to detect subtle, initial faults in rolling bearings, 
which are often characterized by weak, non-stationary signal components that could be overlooked via traditional 
methods. 

• Unlike Pearson’s correlation, Spearman’s rank (SR) correlation is a pre-screening step that helps capture non-linear 
relationships, such as monotonic characteristics, and discard features with low correlation [41]. We have proposed four 
feature selection methods for automated FS (i.e., LS, mRMR, ReliefF, and Mutual Information (mutInf) FS methods) 
and integrated them with SR correlation, resulting in multi-domain features that help to provide a holistic and refined 
understanding of vibration signals. 

• Before training, an extended Yeo-Johnson method was introduced that helped to make feature distributions more 
Gaussian-like, remove outliers, and improve model performance. 

• This study also facilitates a rigorous optimization and training process via three optimizers: Asynchronous Successive 
Halving Algorithm (ASHA), Bayesian Optimization (BO), and Random Search (RS). These optimizers facilitate 
adaptive hyperparameter tuning with parallel settings, improving model accuracy while accounting for computational 
constraints. 

• By optimizing hyperparameters, ASHA, BO, and RS help adapt ML models to specific data characteristics under 
different speeds and load working environments, addressing the unique demands of lunar base applications where fault 
conditions face unpredictable circumstances. 

• Instead of manual exploration, this automated process explores the ML model with the highest accuracy from six 
widely used ML algorithms (NN, SVM, NB, KNN, DT, and Ensemble) across diverse testing conditions, 

• Benchmark comparison of FS and optimizer techniques highlight the individual strengths of specific datasets and 
provide guidelines for future implementation in space-related fault detection tasks.

• Our core contribution lies in the novel integration and adaptation of existing techniques to lunar base environments, 
which present unique challenges such as long-duration signals from distributed sensors, noise, and dynamic load and 
speed variations of bearings in DC power systems. 

Paper Organization
The remainder of the paper is organized as follows. Section 2 provides the databases included in this analysis, whereas 
Section 3 provides a description of the planned approach. The findings, analytical discussion, and comparison studies are 
listed in Section 4, Section 5, 6 ,7 and 8. Finally, Section 9 onwards the concluding remarks of the study.
2. Materials
This study aims to develop a data-driven method for fault classification in rolling bearings. Therefore, the initial step is to 
prepare vibration datasets for verification purposes. To do so, three datasets were collected based on real and artificially 
generated bearing faults. Figure 1 presents the experimental environments for different datasets, and their description is as 
follows, whereas the supplementary file includes signal waveforms (Figure A) of the bearing in different states:
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(a) (b)

(c)

Figure 1: Experimental platforms (a) PU experimental platform (b) CWRU experimental platform (c) DDS experimental platform

Table 2. Experimental data set description

2.1 CWRU Bearing Dataset:
The experiment conducted for the Case Western Reserve University (CWRU) dataset used a two-horsepower (hp) reliance 
electric motor, and vibration signals from faulted bearings were collected via an accelerometer, which is placed at the 
drive end of the motor housing [42]. While collecting vibrational data, faulted bearings are situated inside the test motor 
with a motor load varying from 0 to 3 hp with motor speeds of 1720-1797 rpm. Meanwhile, there are three types of faults, 
namely bearing ball, inner raceway, and outer raceway faults, with a range of diameters from 0.007 to 0.040, respectively. 
Table 2 shows details of the operational condition. Taking fault diameter, operational condition, and motor speed into 
account, there are ten classes that need classification. The vibrational signals for given classes are divided into 1024 data 
points for input segments with a sampling frequency of 12 kHz at different time durations. Hence, this creates compact 
information in data sets that helps to examine the proposed Method under various operating conditions.
2.2 PU Bearing Dataset:
Although CWRU is widely used as a benchmark to investigate proposed studies, it lacks real damage since faults are 
artificially generated. Hence, the Paderborn University (PU) dataset is also utilized, which has real bearing damages with 

Rolling bearing data set description
Bearing State Class Health condition Fault Degree Motor speed (rpm)

1 Healthy Normal (NOR) 1730 1750 1772 1797
2 0.07// 1730 1750 1772 1797
3 0.14// 1730 1750 1772 1797
4

IR faults
0.021// 1730 1750 1772 1797

5 0.07// 1730 1750 1772 1797
6 0.14// 1730 1750 1772 1797
7

Ball faults
0.021// 1730 1750 1772 1797

8 0.07// 1730 1750 1772 1797
9 0.14// 1730 1750 1772 1797

CWRU 
dataset

10
OR faults

0.021// 1730 1750 1772 1797
Class Health condition Fault Degree Motor speed 

1 Healthy Normal
2 Combined OR & IR Multiple damages
3 IR faults Single, repetitive, and multiple damages

PU
 dataset

4 OR faults Single and repetitive damages

1500 rpm with a load torque 
of 0.7  

 kgm2sec-2

Class Health condition Motor frequency
1 Rolling race defect (RED)
2 Inner race defect (IRD)
3 Outer race defect (ORD)

DDS
dataset

4 Healthy (NOR)

The motor frequency is 20 
Hz with 0 load
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combined defects [43]. The experiment was conducted to collect datasets with a 425-W permanent magnet synchronous 
motor (PMSM) with a motor speed of 1500 rpm and load torque = 0.7 Nm, whereas the radial force on the bearing is 1000 
N. The Accelerometer is mounted at the top end of the rolling bearing module that collects vibrational signals at the 
sampling frequency of 64 kHz. In this study, only accelerated lifetime defects from the PU dataset were utilized, which 
mimics real damages. As shown in Table 2, there are four classes: three faulty operational classes and one undamaged. To 
construct the feature vector and classify these classes, the input segment is decomposed into 2048 data points. 

Figure 2: Proposed Framework
2.3 DDS bearing Dataset:
To further verify the robustness and generality of the proposed Method, this study also uses SpectraQuest’s Drivetrain 
Dynamics Simulator (DDS) for experiments. DDS aims to simulate industrial drivetrains for educational and experimental 
purposes. The experimental design of the test bench has six parts, including 1) a 2-stage planetary gearbox, 2) a 2-stage 
parallel shaft gearbox with a rolling bearing inside, 3) the speed regulator, 4) the driving motor, 5) the programmable 
magnetic brake, and 6) the brake regulator [44]. ER-16K rolling bearing model is used with bearing and rolling element 
bearing diameters of 15.16 mm and 3.125 mm, respectively. This model has nine rolling elements, and the contact angle is 
zero degrees. The motor frequency is 20 Hz with 0 load, and the sampling frequency is 12.8 kHz. A total of 200k data 
points were produced for approximately 15.625 sec. In doing so, four different classes were generated: 1) normal state, 2) 
inner race defect, 3) outer race defect, and 4) rolling race defect. For each class, 200 groups are taken, each 2048 in length. 
3. Methods
Figure 2 provides a clear visualization of the proposed framework. At first, the proposed approach denoised the real 

Bayesian 
optimization

ASHA 
optimizer

Random 
search

I. Start

Data collection

1. Apply MVMD & obtain IMF.
2. Apply HHT for instantaneous      
…Frequency and Amplitude. 

Unlabeled data Labeled data

II. Collect vibrational data for rolling 
bearings

Inputs for classification

Normalize and extract representative 
features from frequency and 

amplitude matrices

Frequency Domain 
Features

Time Domain 
Features

Frequency Domain 
Features Entropy Features

1) Arithmetic Mean 2) Maximum  3) Minimum  4) 
Median   5)Variance 6) Standard Deviation 7) 

Kurtosis  8) Skewness  9) Mean Energy 10)
Autoregressive 11) Log Root Sum of Sequential 

Variation 12) Hjorth Parameters (Activity, 
Complexity, Mobility)

1) Log Energy Entropy, 
2)Tsallis Entropy, 3) Renyi 

Entropy, 4) Shannon Entropy

III. Input data preprocessing

Preprocess the data

Stacking data
Inner fault
Outer fault
Rolling bearing
Normal?

Feature 
Extraction

Multi-domain 
Features Table 2

Feature selection ReliefF, mutInfFS, 
mRMR, and LS

Feature Ranking & 
Transformation 

Pearson correlation 
Extd.Yeo-Johnson 

IV. Train machine learning algorithm to classify rolling bearing fault

Ensemble
of Tree

Decision 
Tree

SVM Naive 
Bayes

Neural
Network KNN

Train with selected ML models obtained via BO and 
ASHA and choose best model from one optimizer

V. Select & Optimize ML algorithms 
hyperparameters to improve performance

VI. Test the model

Calculate relevant metrics 
(F1 score, Accuracy, etc.)

Evaluation and Comparison of 
selected ML model with actual 

faults

VII. End

1) Band Power (Alpha, 
Beta, Delta, Gamma, 

Theta) 
2) Ratio Band Power 

Alpha/Beta

1) First Difference 2) Second Difference 3) 
Normalized First Difference 4) Normalized 
Second Difference 5) Mean Curve Length 6) 

Mean Teager Energy

VII. End

Grid search

Not suitable
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bearing damages by employing the empirical Bayesian Method with a Cauchy prior [45]. The sym4 wavelet is applied 
with a posterior median threshold. Following denoising, MVMD and HHT are sequentially applied for robust and 
adaptive data decomposition, where HHT matrixes of instantaneous frequency and amplitude are used to extract multi-
domain features. Subsequent to feature extraction, pre-screening with Spearman’s rank correlation ensures high-quality 
data feeds into the machine-learning algorithms. We extensively studied four feature selection techniques: ReliefF, 
Mutual Information FS (mutInfFS), Minimum Redundancy Maximum Relevance (mRMR), and Laplacian Score (LS). 
These techniques aim to capture relevant and non-redundant features [46, 47]. Following feature selection, the extended 
Yeo-Johnson method was implemented to transform the feature distribution into a more symmetrical form, enhancing the 
robustness, interpretability, and accuracy of the machine-learning models [48]. Six machine-learning models were then 
trained with BO with parallel settings and ASHA optimizers. These optimizers are used to select and validate the best 
classification model and architecture while ensuring robust performance. In addition, random search (RS) and grid search 
(GS) were also studied to compare with the aforementioned optimizers. During the initial stages of the research, it was 
observed that GS is not feasible for large-scale hyperparameter optimization. This is due to the intensive computational 
nature of grid search, which explores all possible hyperparameter combinations within a pre-defined grid. Such an 
exhaustive search becomes impractical when dealing with extensive hyperparameter spaces, as it requires significant 
computational resources and time. The following sections describe each step in the proposed framework.
3.1 Signals decomposed via MVMD
This study empirically obtained 5 joint modes by applying the multi-variate variational mode decomposition (MVMD) to 
the CWRU, PU, and DDS datasets. These datasets contain recordings of vibrational signals acquired from multiple sensor 
channels (N) under different fault conditions. The multi-variate time series from the CWRU, PU, and DDS datasets are 
represented as ( ) [ ( ), ( ), , ( )]1 2 nx t x t x t x t= ¼ . The goal of MVMD is to extract m number of multi-variate modulated 
oscillations ( ) [ ( ), ( ), , ( )]1 2m Ny t y t y t y t= ¼  from these multi-variate time series signals. These modes help understand the 
mechanism of oscillatory behavior under different fault conditions. However, to accomplish these objectives, the collected 
decomposed mode’s bandwidth must be kept to a minimum, ensuring modes are as narrowband as possible. This enables 
effective isolation and analysis of specific oscillating components while preserving the original signal [49]. The whole 
process achieved as follows: 

1) For a given multi-variate time series, ( )my t  expressed in analytical form as:

      

,

,

,

( )

( )
( ) ( ) ( ) ( ( ))

( )

1

2

m

m

m P

m m m m

y t

y t
y t y t y t j y t

y t

+

+
+

+

é ù
ê ú
ê ú
ê ú

= = + = ê ú
ê ú
ê ú
ê ú
ê úë û

M
H (1)

H denotes the Hilbert transform that helps to transform multi-variate time series into analytical signals. To determine the 
bandwidth of ( )my t , calculate the L2-norm of the gradient function of the harmonically shifted ( )my t+ . 

2) The cost function used in the decomposition process is modified for MVMD. The aim is to minimize this cost 
function to achieve the best decomposition:

                    ( )( )
2

2
mj t

t m
m

y t e w-+¶å (2)

It is important to note that a single-frequency element mw was used in the harmonic mixing of the total vector ( )my t+ . 

3) Afterward, the modulated multi-variate oscillatory bandwidth is calculated by adjusting the spectrum range of all 
channels ( )my t+  via mw and applying the Frobenius norm ( F×‖‖ a measure of matrix size) to the resulting matrix. 

This is formulated as:

                 ( ),
,

( )
2

mj t
t m n Fm n

y t e w-+
ì üï ïï ï¶í ýï ïï ïî þ
å (3)

In this equation, , ( )m ny t+  is the analytic modulated signal corresponds to the channel 𝑚 and the 𝑛 mode. By adjusting mw , 
we ensure the optimal harmonic mixing, which minimizes the cost function and thus the signal’s bandwidth. The complete 
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constrained variational problem can be formulated as an optimization problem:

                  ( ), ,
,

min ( )
2

2
m

m m

j t
y t m n

m n

y t e w
w

-+¶å (4)

subject to:
                , ( ) ( ) , , ,...,1 2m n n

m

y t x t n N= =å (5)

A variational problem in MVMD aims to find the optimal set of modes that minimize the bandwidth while reconstructing 
the original multi-channel signal. To turn the constrained variational problem into an unconstrained one, quadratic penalty
b and Lagrangian multipliers (L.M.) were introduced for all channels. ADMM (alternating direction method of 
multipliers) is used to solve the variational problem by iteratively updating the intrinsic mode functions (IMFs) and their 
center frequencies. In the spectral domain, computed center frequency and decomposed modes are represented as:
Iteratively update rule for ( )

,ˆ ( )1k
m n my w+ :

     

( )
,

( )
, ( )

ˆ ( )ˆ ˆ( ) ( )
ˆ ( )

( )
1 2

1 2
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n m i n m

k i m
m n m k

m m

x y
y

l ww w
w

b w w
+ ¹

- +
=
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The update rule for center frequency ( )1k
mw + :
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,

ˆ| ( ) |

ˆ| ( ) |
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1 0
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m n m m
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w w w
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w w

¥

+
¥=

ò
ò

(7)

Repeat the process until convergence. As a result of following these steps, signals can be decomposed into different 
modes, where each mode is characterized by specific frequencies, which helps analyze the data.
3.2 HHT on decomposed modes.
The HHT method is suitable for analyzing the aforementioned non-stationary and non-linear decomposed modes of 
vibration signals from rolling bearings. Unlike wavelet transforms (i.e., DWT, EWT, and CWT), which use pre-defined 
basis functions, it is an adaptive and data-driven method [50]. Its ability to handle intra-wave frequency modulations, as 
well as the ability to detect weak faults and low computational requirements, makes it an ideal candidate for analyzing 
vibration signals from rolling bearings [50, 51]. To achieve these advantages, the Hilbert transform is applied to the 
collected modes ( )my t , constructing an analytical signal in the following manner:

                    ( ) ( ) [ ( )]m m mz t y t j y t= + H (8)
From the analytic signal, compute the instantaneous amplitude ( )mA t and instantaneous phase ( )m tf :

              ( ) | ( ) | ( ) ( ( ))2 2
m m m mA t z t y t y t= = + H (9)

              
( ( ))( ) arg( ( )) arctan

( )
m

m m
m

y tt z t
y t

f
æ ö÷ç ÷= = ç ÷ç ÷çè ø
H

(10)

Now differentiate the instantaneous phase to obtain instantaneous frequency:

                      ( )( ) 1
2

m
m

d tt
dt

fw
p

= (11)

This results in capturing feature matrixes that contain the instantaneous amplitude and frequency of each IMF.
3.3 Feature Extraction
Rolling bearing fault diagnosis is challenging due to operational conditions in space and variations in bearing 
characteristics. To gain deeper insights into complex vibration signals from bearings, we first decomposed the signals into 
5 IMFs and then extracted the instantaneous amplitude and frequency for each IMF, resulting in 10 feature matrixes 
(5×2=10). Next, we extracted 33 multi-domain features per matrix from different domains, such as frequency, entropy, 
and statistical domains, as shown in Table 3. 
Leveraging features from multiple domains offers several benefits, as outlined below:
3.3.1 Time-Domain and Statistical Features
A key advantage of time-domain and statistical features is simplicity since these features only consider amplitude 
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variations in raw vibration signals without any transformations. Another advantage of time-domain features is the ability 
to detect transient events and impulsive behaviour associated with bearing faults like cracks and spalls, whereas statistical 
features provide detailed information by analyzing signal properties. In this study, F1-F23 represents the time domain and 
statistical features extracted from each input segment of CWRU, PU, and DDS datasets.

Table 3. List of representative features arrangement

3.3.2 Frequency-Domain Features
Bearing fails such as IR, OR, and ball faults produce distinct frequency signatures based on the bearing geometry and 
rotational speeds. These signatures can be identified in the frequency spectrum for robust fault classification [52]. With 

List of multi-domain features

No. Feature Remarks
Time-Domain Features:

F1 First Difference Difference between consecutive data points in the signal, for identifying abrupt changes in vibration signals.

F2 Second Difference F2 measures the rate of change of the F1. This measures how quickly the first differences change. It shows 
where the changes are speeding up or slowing down.

F3 Normalized First Difference F3 is calculated by taking the F1 of the signal and then normalizing it. This normalization process ensures the 
measurements are consistent under different operational conditions by accounting for varying amplitudes.

F4 Normalized Second 
Difference

F4 measures how quickly the normalized first differences change providing insights into the acceleration and 
deceleration of the signal.

F5 Mean Curve Length Measures the total variation in the signal’s amplitude. This can indicate factors such as wear, cracks, or 
impacts within a bearing, providing insights into the condition and performance of the system.

F6 Mean Teager Energy Teager energy provides a measure of the instantaneous energy of the signal, which helps detect faults that 
introduce high-frequency vibrations. These components are difficult to detect via traditional energy measures.

Statistical Features:

F7 Arithmetic Mean
The increase in the mean value of the vibration signal suggests that there is a change in the overall energy or 
force within the bearing system. This change can be attributed to various factors such as wear, misalignment, 
imbalance, or other forms of damage.

F8-11 Autoregressive
 Model

When fault occurs, vibration signal shows periodic peaks every few milliseconds. The periodicity corresponds 
to the rotation speed of the bearing and the position of the fault. It captures these intricate periods over time. 

F12 Maximum Identifies the peak values of the signal. Faults often introduce large spikes.
F13 Minimum Faults often introduce dips in the signal, which is useful for identifying anomalies.
F14 Median Represents the middle value of the signal. When the median shifts, faults can be detected.
F15 Variance The spread between numbers in a data set. Faults typically introduce higher variance.
F16 Standard Deviation Data dispersion relative to mean. Increased value reflects higher variability due to faults.
F17 Kurtosis It is a measure of the presence of outliers or extreme deviation due to bearing faults like cracks, spalls, pitting.
F18 Skewness For early detection, it measures the asymmetry of the signal distribution. Fault signal indicate +,- skewness.  
F19 Mean Energy It represents the average power of the signal. The overall energy level of the signal increases    during fault.

F20 Log Root Sum of Sequential 
Variation

Detects increased variability in vibration signals. By capturing the total amount of change over time, this 
measure helps maintenance teams identify faults early and take proactive steps to address them.

F21 Hjorth (Activity) Reflects signal variance.   activity indicates vibration energy, which indicates faults.

F22 Hjorth (Complexity) Describes the intricate frequency composition and rate of change of the signal. Increased complexity indicates 
the presence of multiple vibration sources or irregular behavior within the bearing.  

F23 Hjorth (Mobility) Measures the square root of the variance of the signal’s first derivative, indicating speed of changes in signal. 
Higher mobility indicates irregular behaviors due to transient such as impacts, shocks or sudden changes.

Frequency-Domain Features: The vibration signal is often analyzed within distinct frequency bands to isolate and identify specific types of faults.

F24 Band Power (Alpha) Band power measures the signal power within specific frequency ranges. Alpha (8-12 Hz): Capture low-
frequency vibrations due to slow-moving components in bearings.

F25 Band Power (Beta) Beta (12-30 Hz): Often associated with moderate-speed rotations and can indicate issues such as faults
F26 Band Power (Delta) Delta (0.5-4 Hz): Help indicate low-frequency phenomena, such as bearing structural vibrations.
F27 Band Power (Gamma) Gamma (30-100 Hz): Reflects high-frequency components related to early-stage faults.
F28 Band Power (Theta) Theta (4-8 Hz): May capture intermediate frequency vibrations, indicates structural defects or imbalances.

F29 Ratio Band Power 
Alpha/Beta

Compares power in different frequency bands, useful for identifying shifts in spectral content. Such shifts can 
indicate early changes in the vibrational characteristics due to faults.

Entropy Features:

F30 Shannon Entropy
Quantify randomness in the signal. In the context of rolling bearing faults, an increase in entropy signifies 
more complex and erratic vibrations caused by defects.

F31 Log Energy Entropy A bearing fault may cause an increase in energy at specific frequencies, leading to change in overall energy 
distribution. F31 measures the spread of energy across the different components of the vibration signal.

F32 Tsallis Entropy Tsallis entropy is a generalization of the Shannon entropy It provides a robust measure of complexity that can 
capture the non-linear and non-extensive characteristics of vibration signals from faulty bearings.

F33 Renyi Entropy Higher orders of Renyi entropy are sensitive to the impulsive nature and irregularities introduced by bearing 
faults, enabling better quantification of the signal complexity.
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this in mind, in order to extract frequency-domain features, we estimate the power spectral density using the Welch 
method with a Hamming window of size 50 while fixing a 50% overlap among consecutive segments of the waveform. 
According to Table 3, features from F24-F29 provide comprehensive information about the fault signatures.
3.3.3 Entropy Features
Vibration signals from rolling bearings have complex, uncertain, and non-linear characteristics in faulty conditions. 
Entropy measures can adapt to various operational conditions that help capture non-linear dynamics induced by IR, OR, 
and ball faults. Moreover, these features complement time-domain, frequency-domain, and statistical features, improving 
overall analytical capabilities. Therefore, several entropy features (F30-F33) were calculated to detect transient events and 
capture these complexities and uncertainties. Figure 3 shows the 2D projection of features from multi-domains; it is 
demonstrated that non-faulty features are clustered separately from faulty features.
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Figure 3: 2D projection of features from multiple domains via t-SNE (t-distributed stochastic neighbour embedding)

3.4 Feature Selection
Multi-domain features shown in Table 3 were collected for each input segment of CWRU, PU, and DDS multi-channel 
signals, forming a large feature matrix. In the case of the CWRU input segment with a length of 1024, the feature vector 
of each sample acquired 330 multi-domain features (33 features × 10 matrixes = 330). Similarly, for a PU input segment 
with a length of 2048, 330 multi-domain features were obtained. According to Table 2, the CWRU, PU and DDS datasets 
contain 4000, 1800 and 400 samples, creating data matrixes of size 330×4000, 330×1800 and 330×400, respectively. This 
entire process is part of feature extraction. The next process is feature selection, in which different feature selection (FS) 
techniques were implemented to rank features and select the best features based on empirical method.  
FS methods can be categorized into wrapper [53] and filter [54]. When choosing the suitable subset of features while 
evaluating features, wrapper runs a greedy backward, forward, or bi-directional feature search to find the local optimum in 
the search domain. As a result, most wrapper-based methods are exhaustive (involving 2d combinations, where d 
represents the number of features) and computationally demanding. Contrary to this, filter FS methods are simple and 
lightweight. This is because filter FS techniques are scheme-independent, which helps to remove redundant information 
without relying on a specific classifier. These filter FS techniques offer attractive results in real-time applications with 
simplicity, which is another motivation for using them and testing different filter FS techniques. Moreover, we explore the 
effectiveness of combining Spearman’s Rank Correlation [55] with 4 filter FS techniques to select suitable features, 
namely ReliefF, mutInfFS, mRMR, and LS with multi-domain features for the first time in this study. 
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Figure 4: Statistical significance and association of input and output variables via Spearman’s rank correlation (multi-domain 
features extracted from an instantaneous frequency of IMF1)
3.4.1 Spearman’s Rank Correlation (SR)
The SR correlation coefficient is used to determine the statistical significance of data, as shown in Figure 4. For FS 
techniques like mutInfFS and mRMR, the rank-based monotonic correlation is helpful in determining how one feature 
affects or is associated with another feature or the target variable [56]. This is important because accurate fault 
classification relies on detecting trends of degradation in rolling bearing data. On the contrary, methods like ReliefF or LS 
often overlook these monotonic relationships, which leads to the choice of inadequate features [56, 57]. These 
shortcomings can be addressed by computing the SR correlation coefficient as:

                    ( )
( )

2

2

6
1

1
ib

SR Coefficient
e e

= -
-
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Whereb is the difference between the ranks of corresponding values of features and targets, e is pairs numbers. Following 
the pre-screening with SR, we apply the following 4 FS techniques:
a)  Laplacian Score (LS):
LS is an unsupervised univariate algorithm that uses the nearest graph to model the local structure for the whole feature 
set and scores each feature according to its locality. LetA represent an affinity matrix, its degree matrix beD , and 
Laplacian matrix asL D A= - . Then, the Laplacian score of an individual featureh is calculated as [58]:

     ( ) ,
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The goal is to select k  features from the feature matrix that minimize the following objective function:

  , ,min ( ) , { , , },
1

1

1j j
j j j p q

j j

h Lh
LS h p q j

h
j j

Dh
j j

k j

j j

k

j
j

T

¼ T
=

= Î ¼ I ¹ ® ¹å
% %

% % (14)

1

-0.028 1

0.69 -0.14 1

1 -0.028 0.69 1

0.64 0.028 0.033 0.64 1

0.63 -0.0093 0.03 0.63 1 1

-0.65 0.065 -0.77 -0.65 -0.15 -0.14 1

0.88 -0.1 0.58 0.88 0.7 0.7 -0.56 1

-0.78 0.12 -0.86 -0.78 -0.33 -0.33 0.64 -0.84 1

0.78 -0.14 0.52 0.78 0.71 0.71 -0.46 0.94 -0.8 1

-0.41 0.12 -0.38 -0.41 -0.27 -0.27 0.39 -0.66 0.62 -0.57 1

-0.62 0.1 -0.98 -0.62 0.064 0.068 0.75 -0.47 0.8 -0.41 0.32 1

0.54 -0.046 0.82 0.54 -0.021 -0.024 -0.57 0.3 -0.6 0.28 0.067 -0.86 1

-0.53 0.065 -0.89 -0.53 0.16 0.17 0.63 -0.34 0.69 -0.25 0.33 0.92 -0.72 1

-0.65 0.065 -0.32 -0.65 -0.55 -0.54 0.54 -0.69 0.48 -0.6 0.63 0.26 0.028 0.24 1

0.54 -0.12 0.96 0.54 -0.18 -0.18 -0.72 0.38 -0.74 0.32 -0.27 -0.98 0.86 -0.92 -0.16 1

-0.65 0.065 -0.77 -0.65 -0.15 -0.14 1 -0.56 0.64 -0.46 0.39 0.75 -0.57 0.63 0.54 -0.72 1

-0.3 -0.028 0.36 -0.3 -0.86 -0.86 -0.085 -0.45 -0.018 -0.48 0.15 -0.44 0.33 -0.57 0.36 0.53 -0.085 1

0.35 -0.14 0.82 0.35 -0.31 -0.31 -0.52 0.24 -0.63 0.15 -0.38 -0.86 0.61 -0.95 -0.15 0.87 -0.52 0.68 1

1 -0.028 0.69 1 0.64 0.63 -0.65 0.88 -0.78 0.78 -0.41 -0.62 0.54 -0.53 -0.65 0.54 -0.65 -0.3 0.35 1

-0.028 -0.031 -0.14 -0.028 0.028 -0.0093 0.065 -0.1 0.12 -0.14 0.12 0.1 -0.046 0.065 0.065 -0.12 0.065 -0.028 -0.14 -0.028 1

0.39 0.028 -0.28 0.39 0.91 0.91 0.037 0.52 -0.062 0.53 -0.19 0.36 -0.26 0.48 -0.43 -0.46 0.037 -0.99 -0.6 0.39 0.028 1

0.83 -0.14 0.96 0.83 0.25 0.24 -0.77 0.72 -0.89 0.65 -0.43 -0.9 0.74 -0.83 -0.47 0.86 -0.77 0.16 0.73 0.83 -0.14 -0.066 1

-0.041 0.0093 0.47 -0.041 -0.47 -0.48 -0.26 0.0059 -0.37 -0.051 -0.49 -0.5 0.14 -0.64 -0.19 0.52 -0.26 0.67 0.74 -0.041 0.0093 -0.63 0.34 1

-0.15 0.0093 0.42 -0.15 -0.59 -0.59 -0.19 -0.11 -0.29 -0.16 -0.4 -0.48 0.17 -0.61 -0.052 0.52 -0.19 0.75 0.74 -0.15 0.0093 -0.72 0.26 0.95 1

0.031 0.0093 0.52 0.031 -0.44 -0.45 -0.36 0.06 -0.41 -0.0032 -0.53 -0.55 0.18 -0.68 -0.26 0.57 -0.36 0.66 0.75 0.031 0.0093 -0.61 0.4 0.99 0.94 1

-0.36 0.0093 0.25 -0.36 -0.74 -0.74 -0.0082 -0.36 -0.047 -0.41 -0.16 -0.34 0.11 -0.47 0.23 0.4 -0.0082 0.84 0.65 -0.36 0.0093 -0.82 0.071 0.8 0.92 0.76 1

0.031 0.0093 0.52 0.031 -0.44 -0.45 -0.36 0.06 -0.41 -0.0032 -0.53 -0.55 0.18 -0.68 -0.26 0.57 -0.36 0.66 0.75 0.031 0.0093 -0.61 0.4 0.99 0.94 1 0.76 1

0.62 -0.1 0.98 0.62 -0.064 -0.068 -0.75 0.47 -0.8 0.41 -0.32 -1 0.86 -0.92 -0.26 0.98 -0.75 0.44 0.86 0.62 -0.1 -0.36 0.9 0.5 0.48 0.55 0.34 0.55 1

0.99 -0.028 0.74 0.99 0.62 0.61 -0.69 0.88 -0.82 0.8 -0.44 -0.67 0.58 -0.56 -0.65 0.59 -0.69 -0.27 0.38 0.99 -0.028 0.36 0.86 0.0022 -0.096 0.076 -0.31 0.076 0.67 1

-0.25 -0.028 0.21 -0.25 -0.5 -0.49 -0.092 -0.25 -0.038 -0.17 -0.036 -0.26 0.07 -0.24 -0.059 0.25 -0.092 0.5 0.31 -0.25 -0.028 -0.52 0.06 0.66 0.64 0.62 0.57 0.62 0.26 -0.2 1

0.99 -0.028 0.74 0.99 0.62 0.61 -0.69 0.88 -0.82 0.8 -0.44 -0.67 0.58 -0.56 -0.65 0.59 -0.69 -0.27 0.38 0.99 -0.028 0.36 0.86 0.0022 -0.096 0.076 -0.31 0.076 0.67 1 -0.2 1

0.62 -0.1 0.98 0.62 -0.064 -0.068 -0.75 0.47 -0.8 0.41 -0.32 -1 0.86 -0.92 -0.26 0.98 -0.75 0.44 0.86 0.62 -0.1 -0.36 0.9 0.5 0.48 0.55 0.34 0.55 1 0.67 0.26 0.67 1

F1 F2 F3 F4 F5 F6 F7 F8 F9
F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33

F1
F2
F3
F4
F5
F6
F7
F8
F9

F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32
F33 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A score of 1 represents a perfect positive linear relationship between 
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b) ReliefF:
As an extension of the Relief family of algorithms, ReliefF is a supervised algorithm that handles multi-class problems. 
ReliefF determines the rankings of features based on its ability to distinguish between classes that are close to each other. 
Using the Relief method, the feature ranking forq  randomly sampled instances is shown using the following mathematical 
formulation [59]:
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where ( )D ×  denotes the distance function, ,v jh  is the value of the thj feature for the t hv instance, , ( )vv NM xh is the value of the
thj feature for the nearest miss (the nearest instance from a different class), and , ( )vv NH xh is the value of the thj feature for 

the nearest hit (the nearest instance from the same class). The following mathematical formulation describes the multi-
class extension of the ReliefF algorithm [59]:
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Considering this equation, vx is the class category denoted by
vxy) . ( )P u  is the probability of an instance belonging to the 

categoryu . ( )NH x and ( , )NM x u  denotes the sets of nearest hits (nearest instances with the same class x ) and nearest 
misses (nearest instances from different classes y ), respectively. The sizes of these sets are specified by

vxs and ,vx us .
c) Mutual Information (mutInfFS):
A univariate feature ranking algorithm based on Shannon entropy determines the relationship between two features. The 
mutual information can be calculated as follows [60]:
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While delving into the above equation, for random variables ,jC R , ( , )jP C R  present joint probability distributions. 
( ), ( )jP C P R are marginal probability functions.

d) Minimum Redundancy Maximum Relevance (mRMR):
A multi-variate feature ranking algorithm based on maximizing the feature’s relevance to the target variable while 
minimizing redundancy. The mRMR criterion can be defined as:
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D represents a set of all candidate features for the target variablec. ( ; )jI h c and ( ; )jI h hl  represents mutual information 
between feature/target and feature/feature, respectively. 
Table 4 shows the results of applying the aforementioned FS methods to three datasets (e.g., CWRU PU and DDS). We 
have gained valuable insights into the most important features for fault classification of rolling bearings. Each FS 
technique ranked these features in a different order, demonstrating unique strengths in capturing different aspects of data. 
For the CWRU dataset, the LS method highlights Log Energy Entropy ‘F31’ and Kurtosis’ F17’, suggesting it is able to 
capture the distribution of energy and extreme deviations present in features due to the presence of faults. On the other 
hand, the ReliefF method ranked autoregressive model features (e.g., ‘F9-F11’) in higher order, indicating the importance 
of intricate cyclic patterns and their fluctuation in fault detection. Meanwhile, the mutInfFS method focused on statistical 
features like ‘F14’ (Median) and ‘F12’ (Maximum), emphasizing the importance of how the data is spread and its peak 
values, whereas mRMR prioritized features like ‘F31’ and ‘F8-F11’. Overall, when we analyzed the CWRU dataset, it 
was determined that entropy and autoregressive-based features are the most vital features that possess greater 
discriminatory power. 
Similar trends were observed in both PU and DDS datasets as well. LS method again highlights entropy and statistical 
features in the PU dataset, that is, Renyi Entropy ‘F33’ and kurtosis ‘F17’ and Skewness’ F18’. However, the ReliefF 
method took an alternative route as it highlights rapid changes in the vibration signal’s amplitude via Second Difference 
‘F2’ and Normalized Second Difference ‘F4’ as important features in PU and DDS datasets. Reinforcing the rate of 
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change significance of these features for fault detection in the PU and DDS context. Overall analysis suggested that 
features like F31, F30, F33, F32, F1, F2, F3, F4, F5, F8 to F11, F17, F18, F14, F12, F13 were identified important at 
regular intervals. However, features like ‘F16’ and ‘F15’ consistently rank lower. Therefore, we discarded those features 
for further study. This analysis also underlines the need for diverse sets of features due to the complicated conditions 
under which the rolling bearings operated in CWRU PU and DDS setup, including varying loads, speeds and other 
environmental factors like noise. 

Table 4. Ranked features with four univariate and multi-variate FS techniques

Ranked features after implementing MVMD & HHT on CWRU, PU, and DDS datasets

Feature ranking of CWRU datasets 

Laplacian Score
'F31', 'F17', 'F13', 'F12', 'F33', 'F18', 'F30', 'F29', 'F22', 'F9', 'F8', 'F10', 'F19', 'F6', 'F23', 'F2', 
'F4', 'F21', 'F16', 'F15', 'F1', 'F3', 'F5', 'F20', 'F11', 'F14', 'F27', 'F25', 'F24', 'F26', 'F28', 'F32', 
'F7'

ReliefF
'F9', 'F11', 'F8', 'F14', 'F10', 'F22', 'F31', 'F27', 'F20', 'F23', 'F30', 'F25', 'F1', 'F3', 'F5', 'F33', 
'F6', 'F26', 'F28', 'F2', 'F4', 'F24', 'F32', 'F17', 'F13', 'F18', 'F12', 'F29', 'F7', 'F19', 'F21', 'F16', 
'F15'

mutInfFS
'F14', 'F12', 'F18', 'F8', 'F23', 'F20', 'F24', 'F25', 'F22', 'F11', 'F9', 'F26', 'F28', 'F13', 'F1', 'F5', 
'F3', 'F6', 'F2', 'F4', 'F10', 'F30', 'F17', 'F32', 'F33', 'F27', 'F31', 'F29', 'F19', 'F7', 'F21', 'F16', 
'F15'

mRMR
'F31', 'F8', 'F9', 'F10', 'F18', 'F33', 'F23', 'F12', 'F11', 'F30', 'F6', 'F17', 'F5', 'F22', 'F13', 'F1', 
'F3', 'F2', 'F4', 'F20', 'F29', 'F27', 'F25', 'F24', 'F14', 'F26', 'F28', 'F32', 'F19', 'F7', 'F21', 'F16', 
'F15'

Feature ranking of PU datasets

Laplacian Score
'F33', 'F17', 'F13', 'F18', 'F22', 'F12', 'F33', 'F30', 'F29', 'F9', 'F10', 'F8', 'F20', 'F11', 'F14', 
'F2', 'F4', 'F24', 'F25', 'F27', 'F6', 'F1', 'F3', 'F5', 'F28', 'F26', 'F23', 'F32', 'F7', 'F19', 'F21', 
'F16', 'F15'

ReliefF
'F2', 'F4', 'F1', 'F3', 'F5', 'F7', 'F29', 'F31', 'F14', 'F6', 'F10', 'F33', 'F12', 'F9', 'F26', 'F30', 
'F27', 'F18', 'F8', 'F25', 'F23', 'F13', 'F11', 'F17', 'F32', 'F28', 'F24', 'F22', 'F20', 'F21', 'F19', 
'F16', 'F15'

mutInfFS
'F30', 'F18', 'F17', 'F32', 'F33', 'F1', 'F5', 'F3', 'F14', 'F31', 'F2', 'F4', 'F8', 'F9', 'F12', 'F13', 
'F10', 'F22', 'F6', 'F25', 'F27', 'F24', 'F20', 'F11', 'F23', 'F28', 'F29', 'F26', 'F7', 'F21', 'F19', 
'F16', 'F15'

mRMR
'F31', 'F32', 'F8', 'F2', 'F30', 'F10', 'F33', 'F20', 'F12', 'F18', 'F9', 'F13', 'F11', 'F4', 'F22', 'F14', 
'F17', 'F28', 'F6', 'F1', 'F15', 'F3', 'F25', 'F27', 'F24', 'F23', 'F26', 'F7', 'F29', 'F21', 'F19', 'F16', 
'F15'

Feature ranking of DDS datasets

Laplacian Score
'F31', 'F17', 'F29', 'F13', 'F12', 'F18', 'F33', 'F22', 'F30', 'F9', 'F10', 'F8', 'F11', 'F23', 'F20', 
'F14', 'F6', 'F2', 'F4', 'F27', 'F25', 'F32', 'F28', 'F24', 'F1', 'F3', 'F5', 'F26', 'F7', 'F21', 'F19', 
'F16', 'F15'

ReliefF
'F2', 'F4', 'F5', 'F1', 'F3', 'F11', 'F6', 'F26', 'F10', 'F29', 'F20', 'F23', 'F25', 'F28', 'F24', 'F22', 
'F13', 'F27', 'F14', 'F7', 'F12', 'F9', 'F32', 'F17', 'F30', 'F33', 'F8', 'F31', 'F18', 'F21', 'F19', 
'F16', 'F15'

mutInfFS
'F1', 'F5', 'F3', 'F2', 'F4', 'F13', 'F23', 'F20', 'F8', 'F6', 'F30', 'F9', 'F18', 'F31', 'F17', 'F32', 
'F33', 'F22', 'F27', 'F12', 'F28', 'F24', 'F26', 'F10', 'F14', 'F25', 'F7', 'F11', 'F29', 'F21', 'F19', 
'F16', 'F15'

mRMR
'F31', 'F1', 'F5', 'F11', 'F20', 'F3', 'F2', 'F30', 'F10', 'F4', 'F13', 'F23', 'F24', 'F6', 'F32', 'F33', 
'F27', 'F8', 'F28', 'F22', 'F26', 'F14', 'F9', 'F17', 'F7', 'F25', 'F12', 'F21', 'F19', 'F16', 'F15', 
'F18', 'F29'

3.5 Feature Transformation
Power transformer with the Yeo-Johnson method is a feature transformation technique designed to address skewness in 
real-world datasets, such as the CWRU, PU, and DDS datasets, where the distribution of values is often asymmetric. After 
implementing 4 previously mentioned FS techniques, we proceeded with the extended Yeo-Johnson method for 
stabilizing variance and reducing skewness by transforming features into a symmetrical distribution, which is beneficial 
for the performance of ML algorithms [61]. This transformation helps to stabilizes variance and reduce impact of extreme 
values such a outliers, this helps to ML models which are sensitive to feature distribution. Apart from that, it is more 
versatile than its counterpart, the Box-Cox transform, due to its ability to handle both positive and negative values [61]. 
The Yeo-Johnson transformation is defined for each positive and negative element g in a data matrix and a transformation 
parameter t . The transformation can be expressed as follows:
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Redundancy and repetition are common in real-time data, so an extended Yeo-Johnson transformation eliminates 
duplicate features to decrease overfitting and increase computation complexity without adding new information to the 
model. Table 5 summarizes the feature transformation approach, which leads to robust learning with swift training by 
providing related and non-redundant multi-domain features with symmetrical distribution, as shown in Figure 5. In 
supplementary file, Figure B showcase the performance results of machine learning models with and without the Yeo-
Johnson method for ReliefF features of PU datasets.
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Figure 5: Symmetrical distribution (Histogram) of data after the Extended Yeo-Johnson Transformation
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Table 5. Extended Yeo-Johnson Transformation
Algorithm 1: Extended Yeo-Johnson Transformation for multi-domain features
Input: Data matrix G, size n p´ .
Output: Transformed data matrix ( ; )T g t .

1: Eliminate Duplicate Features:
- Remove duplicate features. 

2: Standardize Data Matrix:

-Standardize data matrix G to have zero mean and unit variance as GG m
s
-¢= .

- mis the mean and s is the standard deviation of the feature.
3: Estimate Optimal l :

- Estimate the optimal t using maximum likelihood estimation (MLE):
- 

ˆ

ˆ log ( ( ; ))
1

argmax
n

i
i

L T g
t

t t
=

= å , where L is the likelihood function.

4: Apply transformation for 0g ³  : 
- For positive values, apply Equation 19.

5: Apply transformation for 0g <  :
        - For negative values, apply Equation 20.
6: Output Transformed Data:
        - Output the transformed dataset ˆ( ; )T G t .
        - Each feature transformed with the estimated optimal t .
7: End.

Table 6: ML algorithm search range for hyperparameters (for details, see reference [64]).

Machine learning algorithm search range for hyperparameters

Classifier   Optimizable Hyperparameters
Hyperparameters search space for the Ensemble algorithm

Ensemble 
method Maximum No. of splits Number of 

Learners Split Criterion Number of predictors to 
sample

Learning 
rateEnsemble

AdaBoost, 
RUSBoost, Bag

[1, max (2, n-1)], Number of 
observations n [10,500] Deviance, Gdi, 

Twoing 'all' [0.001,1]

Hyperparameters search space for the SVM algorithm

Box constraint Multi-class coding Kernel scale Kernel function Standardize 
data

SVM
[0.001,1000] One-vs-One, One-vs-All [0.001,1000] Gaussian, Linear, Quadratic, Cubic Yes, No

Hyperparameters search space for the KNN algorithm
Number of 
Neighbors Distance weight Exponent Distance kernel Standardize 

dataKNN

[1, max(2, n-1)] Equal, inverse, square-inverse [0.5, 3]
seuclidean, City block, Chebyshev, 
Minkowski, Mahalanobis, Cosine,

Correlation, Spearman, Hamming, Jaccard.
Yes, No

Hyperparameters search space for the NN algorithm
1st, 2nd & 3rd 
Layers Sizes:

Layer Biases 
Initializer           Activation Layer Weights 

Initializer
Regularization strength 

(lambda)
Standardize 

data
ANN

[1-300] zeros, ones ReLU, Tanh, 
Sigmoid, None glorot, he [0.00001/n,100000/n] Yes, No

Hyperparameters search space for the Decision Tree algorithm

Min. leaf size Maximum No. of splits  No. Variables to Sample Split criterionDecision 
Trees [1, max (2, n/2)] [1, max (2, n-1)] [1,max(2,No. of Predictors)] Gini’s diversity index, Twoing rule,

 and max. Deviance reduction.
Hyperparameters search space for the Naïve Bayes algorithm

Width Distribution names Kernel type Standardize 
dataNaïve 

Bayes NaN Gaussian, Kernel Gaussian, Box, Epanechnikov, and Triangle Yes, No
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3.6 Classifier 
In this section, 6 sophisticated ML algorithms are examined: Naïve Bayes (NB), Decision Trees, Neural Networks (NN), 
K-Nearest Neighbors (KNN), ensemble methods (AdaBoost, RUSBoost, Bagging), and Support Vector Machine (SVM) 
for classifying faults by analyzing complex patterns in multi-domain features. As an example, SVM is considered a 
mature theory for fault classification in rolling bearings due to its intelligent hyperplane that handles high-dimensional 
vibration data from multiple sensors. Meanwhile, ensemble methods combine numerous classifiers to mitigate the 
weaknesses of each classifier, where KNN is an intuitive and non-parametric classifier with easier implementation [62]. 
These ML algorithms rely on hyperparameter optimization to fine-tune model parameters to achieve optimal performance, 
which helps to enhance accuracy, generalization, and reduce overfitting, collectively vital for reliable fault classification. 
The methods for optimizing these hyperparameters can be classified into synchronous and asynchronous models [63]. In 
this study, we have explored two synchronous models (i.e., grid and random search) and two asynchronous models (i.e., 
Bayesian optimization (BO) with parallel computing and the Asynchronous Successive Halving Algorithm (ASHA). 
Table 6 presents the hyperparameters that need to be optimized for the aforementioned 6 ML algorithms with their 
respective search range [64].

Figure 6: (a) Tree algorithm hyperparameter optimization via grid search (GS) (b) Tree algorithm hyperparameter optimization via 
random search (RS)
3.7.1 Optimizers
a) Random Search and Grid Search Optimizer
The aim of RS is to explore the hyperparameter search space by selecting values in a random manner from a specified 
distribution. On the other hand, GS evaluates all possible combinations in a rigorous manner from a pre-defined grid [63]. 
A 2-D search space is illustrated in Figure 6 (a) and (b) for CWRU datasets with 4000 samples, where GS and RS attempt 
to optimize two Ensemble hyperparameters: 1) the number of predictors to sample and 2) minimum leaf size. While RS 
allows efficient search space exploration by randomly determining the best hyperparameter configuration using:

                                      * argmin ( )
i ix Xx f xÎ= &&&&

&& (21)

In RS, X&&represents possible hyperparameter values, where ( )if x&&  is the objective function evaluates the performance of 
each random combination ix&&. In contrast, GS evaluates all possible combinations of 10 predictors against 3999 leaf sizes. 
As a result, due to the computational burden, GS cannot be implemented on large samples with a high-dimensional search 
space. Moreover, despite using the same number of trials, RS with parallel settings can outperform GS in a large search 
space by distributing the evaluation of different hyperparameter combinations across multiple processors [65]. 
b) Bayesian Optimization (BO)
Optimizers like RS and GS scan the entire space without taking into account previous findings, which often leads to 
inefficiency because the optimal answer is usually found in a small area. On the other hand, BO uses previous findings to 
build a surrogate model of the objective function, allowing for a more narrowed and efficient search. For this purpose, BO 
uses a Gaussian Process (GP ) to model the objective function. AGP is characterized through a mean ( )m x%  and a 

covariance ( , )k x X%  function, where x denotes the input vector. The GP  prior is defined as [66]:

                                       ( ) ~ ( ( ), ( , ))f x x k xm X%%GP (22)

When the observed data points {( ,y )} 1
n

i i i== xD  are provided, the mean and variance are updated in the posterior 
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distribution of the GP  to include the new observations. The posterior mean ( )mx%  and variance ( )2s x  are updated in GP  
based on observed points as:

                               ( ) ( , )( ( , ) )2 1
nk k Im s -= +x x X X X y% % %% (23)

               ( ) ( , ) ( , )( ( , ) ) ( , )2 2 1
nk k k I ks s -= - +x x x x X X X X x% % % % % (24)

In these equations, the matrix X contains the observed input vectors, the vector y  contains the observed values, and the 

variability 2
ns is the noise variance. As GP  updates based on observed points, the next data point 1n+x is selected by 

maximizing the acquisition function ( )a x% :

                                      argmax ( ; )1n a+ = xx x% D (25)
This study uses the expected-improvement-per-second-plus (EIps+) function as an acquisition function that aims to find 
the next point by optimizing the balance between exploring new areas and exploiting known best-performing areas with 
faster convergence [66]. 

Figure 7: Bayesian optimization flowchart.

The BO flowchart is illustrated in Figure 7. By iterative building and updating the surrogate model and maximizing an 
acquisition function for 120 iterations, BO efficiently focuses on areas of the search space that are likely to contain the 
global optimum. This way BO identifies better model settings with fewer evaluations compared to RS or GS, making it 
suitable for optimizing functions on large samples with a high-dimensional search space.

Table 7. Asynchronous Successive Halving (ASHA)
Algorithm 2: Asynchronous Successive Halving (ASHA)

Start

Initialize 
hyperparameters

Define
Hyperparameters 

search space

Specify the Objective 
function

( ) ~ ( ( ), ( , ))f x x k xm X%%GP

Set the number of 
iterations

Select the next sample by 
optimizing 

Acquisition-function EIps+

arg max ( ; )1n a+ = xx x% D

Evaluate the sample with 
objective function

Update the data for
surrogate model

Meeting the 
stop criteria?

120 iterations in our case 
are the stopping criteria

Building/Update 
Surrogate model

Fit the model to the 
training data via BO

Validate models performance 
using cross validation 

technique

End

YesNo

Equation 22
Equation 25

See Table 5
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Input: rr , max-resource R
r

, h
r

, min-early-stopping ratesr . 
Output: The best configuration from large-scale hyperparameters.

1: Initialize:
- Input Parameters:

• rr : Minimum resource allocated to any configuration. R
r

: Maximum resource allocated to any configuration. hr  : 

Reduction factor; typically, 2h³
r

.sr : Minimum early-stopping rate.
             - Setup:

• Compute the total number of rungs: logmax
Rs
rh

ê úæ ö÷çê ú÷ç= ÷ê úç ÷ç ÷è øê úë û
r

r
r

r .

    2: ASHA Function:
  - For each available worker:

• Retrieve a job (hyperparameter configuration q
r

and rungk
r

) using the get job().

• Evaluate the configuration q
r

for s kr h +
rrr r
resources and return the validation loss.

3: Update Completed Jobs:
- For each Completed Job ( q

r
,k
r

) with Loss l
r

:
• Update the loss for configuration q

r
in the rung k

r
. Repeat the Loop.

4: End and Loop: Nonstop cycle through ASHA function until the chosen configuration is found.
    Job Retrieval (get job ()):
        - Check for Promotable Configurations:

• For ,..., ,max 1 10k s s= - -
r r r

:

• Select top configurations in rung 
| |( , ): rung 

candidates top rung 
k

kk k
h

= r

r
r

r
r

.

• Identify promotable configuration { : }promotable candidates  not promotedt t= Î
r r

• If | |promotable 0> : Then Return: First promotable configuration and the next rung: ( [ ], )promotable0 1k+
r

.
        - If no promotable configurations are found:

• Draw a new random configuration q
r

.

• Return: New configuration and base rung ( , )0q
r

.
   End function. 

c) Asynchronous Successive Halving Algorithm (ASHA) optimizer
BO with parallel settings evaluates multiple acquisition functions at once, which reduces overall optimization time, but it 
does not scale well on large-scale hyperparameter configurations due to the continuous demand of maintaining and 
updating the surrogate model [63]. ASHA tackles this issue by exploiting parallelism and earlier stopping, outperforming 
BO, RS, and GS with swift and effective results. ASHA optimizes the allocation of computing resources by promoting the 
best-performing configurations to the next iteration (upper rungs) with additional resources, whereas poor configurations 
are discontinued. This procedure ensures that computational resources are directed toward the most promising 
configurations, resulting in a more efficient and optimized process. The ASHA optimizer is presented in Table 7. 
There are several notable parameters that regulate this optimizer, which include the minimum resource rr , maximum 

resourceR
r

, reduction factor hr , and rate of early stoppingsr . The asynchronous nature of the ASHA optimizer allows top 
configurations to progress to the upper rungs for assessment when they complete their existing rung instead of waiting for 
all configurations to finish. In this way, each worker has little idle time with optimized computational resources.    
Mathematically, the configurations number inr and resources ir

r
 for each rung 𝑖 are calculated as:

                                             i i

nn
h

ê ú
ê ú= ê úë û

r
r

r (26)

                                              i
ir r h=
r r r

(27)
These equations ensure that few configurations are evaluated with more resources in each upper rung. Also, it is possible 
to estimate the time required by each configuration from training to completion by aggregating the time spent on all rungs, 



20 | P a g e

which is represented as follows:

                             ( )
( )log

log ( ) ( )t ime 2 t ime
R

i R

i s
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(28)

In the above equation, ( )t ime R
r

is the time needed to train a single configuration with maximum resources. In that case, 

the ASHA optimizer will take no more than ( )2 t ime R´
r

 to complete the training for all hyperparameters. Thus, by 
combining effective utilization of idle time with the asynchronous promotion of configurations, ASHA can manage 
stragglers and dropped jobs throughout the entire process, allowing it to scale well in large-scale distributed settings.

Table 8. Optimized hyperparameters for Proposed Feature Selection methods for CWRU Bearing Dataset

4. Research Data and Analytical Discussion
4.1 Overview
This section presents the fault classification results obtained after implementing four proposed FS methods on the 
available datasets. The datasets were split randomly into two parts: 80% for training and 20% for testing purposes. During 
optimization, BO, ASHA, and RS utilized the training data to train and cross-validate classification errors (validation loss) 
for each classifier, ensuring that the selected hyperparameters were optimized for performance. The validation phase 
refined these hyperparameters, while the test data was reserved for final evaluation to assess the models' generalization 
ability. This separation of training/validation and testing phases is critical for obtaining unbiased performance metrics. 
Apart from the accuracy metric, this study also focused on four key performance metrics: accuracy, precision, recall, F1-
score, and kappa. These metrics provide a comprehensive evaluation of the classifier’s performance, ensuring a robust 
assessment of their effectiveness. The next sub-section provides a detailed analysis of the best classifier performance for 
each FS method across the CWRU, PU, and DDS datasets. 
4.2 Case #1: CWRU Bearing Dataset.

Summary of optimized hyperparameters for Proposed Feature Selection Methods using BO, ASHA, and RS optimizers
Feature Selection 

Method
Optimization 

Method
Machine Learning 

Classifier (Algorithm) Hyperparameters

Optimized Hyperparameters

Optimizers Best Classifier Number of 
Neighbors

Distance 
weight Exponent Distance metric Standardize data

Bayesian KNN 3 Equal - Cosine No

Box constraint Multi-class 
coding Kernel scale Kernel function Standardize data

ASHA SVM 575.71 onevsone 18.314 Gaussian No
LS Method

Random Search SVM 482.69 onevsone 47.063 Gaussian Yes
Optimized Hyperparameters

Optimizers Best Classifier Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN Two, [30, 12] Zeros Tanh Glorot 1.7982e-05
ASHA ANN One, [23] Ones Sigmoid Glorot 1.1876e-05

ReliefF Method

Random Search ANN One, [20] Ones ReLU Glorot 5.8357e-07
Optimized Hyperparameters

Optimizers Best Classifier Box constraint Multi-class 
coding Kernel scale Kernel function Standardize data

Bayesian SVM 986.92 onevsall 13.804 Gaussian No
ASHA SVM 6.66 onevsall 12.324 Gaussian No

Number of 
Neighbors

Distance 
weight Exponent Distance metric Standardize data

mutInfFS Method

Random Search
KNN 3 Inverse - seuclidean No

Optimized Hyperparameters

Optimizers Best Classifier Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization-
strength(lambda)

Bayesian ANN One, [98] ones tanh he 2.3495e-06
Number of 
Neighbors

Distance 
weight Exponent Distance metric Standardize data

ASHA KNN 4 squaredinverse - Cosine No

Box constraint Multi-class 
coding Kernel scale Kernel function Standardize data

mRMR Method

Random Search SVM 0.053603 onevsall - Polynomial No
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The fault diagnosis for rolling bearings consists of two parts: detection and classification. In the detection stage, 
segregating healthy faults from faulty ones requires less information for this purpose. However, for a robust classification 
stage, the advanced ML algorithm requires sophisticated signal processing, feature extraction, and selection methods to 
obtain more sensitive and non-redundant information. This is because the complex vibration signals of rolling bearings 
operate under variable conditions and contain intricate patterns that need to be identified and classified into various types 
of faults, such as inner race faults, outer race faults, and ball faults. Based on the analysis in Section 3.4, we have selected 
250 features for each sample to capture these intricate patterns. The data used for the FS methods in this section are from 
the CWRU testbed, ensuring a robust and reliable dataset. Moreover, the best classifiers selected by BO, AHSA, and RS 
optimizers with their tuned hyperparameters are showcased in Table 8. This comprehensive approach highlights the blend 
of meticulous data handling and cutting-edge optimization techniques essential for effective fault diagnosis in rolling 
bearings.
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Figure 8: Confusion matrices (Test data) for LS Method comparing RS, BO, and ASHA Optimization for classification accuracy

Table 9. LS Method Training and Test Results with BO, ASHA, and RS Optimizers

4.2.1 Analysis of LS Results 
This section presents the results of the LS method to provide an insightful evaluation of the classifiers selected through 
BO, ASHA, and RS optimizers. Table 9 illustrates the performance metrics such as accuracy, precision, recall, F1 score, 

LS Method with Best Classifier Training and Test Results with BO, ASHA, and RS optimizers for CWRU datasets
                                                                            ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1 Score

Test  
Kappa

Training and Validation 
time (seconds) Validation Loss

Bayesian KNN 99.66% 99.25% 0.99 0.99 0.99 0.99 3.2147 0.0084256
ASHA SVM 100% 99. 88% 1 1 1 1 6.9034 0.0028125LS Method

Random Search SVM 100% 99.875% 0.99877 0.99875   0.99875 0.99861 8.5723 0.003125
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kappa, training and validation time, and validation loss for each optimizer.
When dealing with complex models and large hyperparameter spaces, RS sequentially ran through different random 
combinations to find the best settings, which is very time-consuming. However, when combined with parallel settings, it 
can evaluate multiple combinations at once by leveraging the power of parallel processing. This significantly reduces the 
time needed for hyperparameter tuning and makes the whole process more efficient and scalable. Meanwhile, the 
objective is to minimize the validation loss across different learner types: Ensemble, KNN, NB, ANN, SVM, and Tree. 
The experiment ran for a total of 180 iterations, leveraging 24 active workers to evaluate multiple configurations in 
parallel. The total evaluation time was 1027.3289 seconds. As shown in Table 8, the RS method identified SVM as the 
best classifier. This setup achieved a perfect training accuracy of 100% and a test accuracy of 99.875%.
During the training and validation process, SVM creates optimal decision boundaries for the data generated by the LS 
method, which helps to classify various bearing faults in the CWRU testbed. By mapping the data points to a higher-
dimensional space, the SVM identifies the optimal hyperplane that maximizes the margin between different fault 
categories, aiming to minimize classification errors. In doing so, the choice of hyperparameters, including box constraint, 
multi-class coding, kernel scale, function, and data standardization, considerably influences the SVM model’s 
classification accuracy for bearing faults. In particular, the box constraint controls the penalty for misclassified data points 
in the decision boundary. A high box constraint value of 482.69 suggests that a strong penalty is added on 
misclassification errors that help to create precise decision boundaries between different classes. Meanwhile, one-vs-one 
multi-class coding creates [ń(ń-1)/2] classifiers for ń fault types, where each classifier creates a decision boundary in 
pairwise form among 10 fault types. This pairwise distinction is easier to implement while minimizing the risk of 
including outliers. However, adding multiple classes makes it computationally expensive, which is clearly outlined in the 
training and validation time for the RS-based SVM model in Table 9. 
Unlike linear kernels, the Gaussian kernel can handle non-linear relationships in the data. It maps the data into a higher-
dimensional space where a linear and smooth decision boundary can be applied, making it suitable for complex datasets. 
The kernel scale with 47.063 controls the spread of decision boundary, allowing the model to accurately capture intricate 
data patterns while performing well on test sets. This effectiveness is evident in Figure 8 confusion matrix, which shows 
only one misclassified fault from the test data after training. Apart from that, high values of precision, recall, F1 Score, 
and Kappa on test data also suggest that RS suggested model performed well.
Unlike RS, which evaluates random combinations sequentially or in parallel, BO builds a cheap surrogate model to 
approximate the objective function and uses this model to select the most promising hyperparameters for evaluation. This 
informed search reduces the number of evaluations needed while making the hyperparameter tuning process more 
efficient. In the BO experiment, the total evaluation time for all six ML algorithms is 8762.7027 seconds, which is higher 
than the RS evaluation setup. However, BO found a much simpler architecture for a selected classifier than RS. After 180 
iterations, KNN was selected as the best classifier with the following hyperparameters: number of neighbors set to 3, 
equal distance weight, and cosine distance metric without data standardization. A small value of 3 neighbors, where each 
neighbor is weighted equally, ensures that the decision boundary is not overly complex and has a lower computational 
burden [67]. This is reflected in the lowest training and validation time of 3.2147 seconds in Table 9. The transition from 
distances to weights should follow some kernel functions, such as rectangular, triangular, cosine, Gauss, and inversion 
kernels. The use of a cosine kernel was particularly effective in handling the high-dimensional fault-bearing data, focusing 
on the direction of the vibration patterns, which is critical in fault detection. The effectiveness of these hyperparameters is 
evident in the high-performance metrics achieved by the KNN classifier in Table 9. 
Designed to handle large datasets and high-dimensional search spaces, ASHA employs an iterative pruning process that 
dynamically reallocates computational resources to the most promising hyperparameter configurations. This approach 
prevents wasted computation on poor-performing models, which is crucial when dealing with extensive datasets. For the 
dataset with 3200 training samples, the number of iterations is set to 21×(𝐿+1), where 𝐿 is the number of learner types. 
Given 𝐿=6, this results in 147 iterations. This non-user-defined iterative process ensures that the most promising 
configurations receive more computational resources in subsequent iterations, leading to optimal hyperparameter 
selection. Consequently, the optimized hyperparameters included a box constraint of 575.71, one-vs-one multi-class 
coding, a kernel scale of 18.314, and a Gaussian kernel function without standardizing the data. 
In comparison to the RS SVM model, the ASHA SVM model achieves lower training and validation time with the lowest 
validation loss, showcasing its efficiency. Furthermore, compared to the BO experiment, ASHA’s iterative pruning and 
dynamic resource reallocation resulted in a total evaluation time of 714.3297 seconds for all six ML algorithms. 
Therefore, considering the balance between computational cost and accuracy, the ASHA SVM model is superior in 
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performance for LS features, with a training accuracy of 100% and a test accuracy of 99.88%.
4.2.2 Analysis of ReliefF Results 
ReliefF inputs were used in this section to select an optimized model via BO, AHSA, and RS based on its relevance to the 
target variable. Surprisingly, for the ReliefF method, all optimizers selected ANN as the best classifier from six ML 
algorithms. In this work, we consider various hyperparameters of an ANN, including the number of hidden layers 
(denoted as layers), the number of neurons in each layer (denoted as size), the initial biases and weights of the layers, the 
activation functions (ReLU, Tanh, sigmoid), and the regularization strength (lambda). While delving into RS 
performance, we have found that it performed much better than the BO and ASHA models. An optimal choice of ReLU 
ensures that the RS ANN model learns complex relations between features; it also possesses the ability to avoid vanishing 
gradients and ensure efficient computation. This is crucial when coupled with lower lambda, as it controls model 
complexity by penalizing large weights, thereby preventing overfitting and promoting better generalization to unseen data. 
This is clearly evident in Figure 9, as the RS ANN model performs well on unseen data.  
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Figure 9: Confusion matrices (Test data) for ReliefF Method comparing RS, BO, and ASHA Optimization for classification accuracy
Table 10. ReliefF Method Training and Test Results with BO, ASHA, and RS Optimizers

Proper initialization for biases can help in faster convergence and better model performance. Zero initialization can make 
the training process more stable, while one initialization can help the model learn faster. The 'Ones' initializer for biases 

ReliefF Method with Best Classifier Training and Test Results with BO, ASHA, and RS Optimizers for CWRU datasets
                                                                            ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1 Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian ANN 100% 99.25% 0.99 0.99 0.99 0.99 22.1234 0.0046428
ASHA ANN 100% 99.50% 1 0.99 1 0.99 12.3222 0.0040625ReliefF Method

Random Search ANN 100% 99.75% 0.99756 0.9975 0.9975 0.99722 4.9243 0.0021875
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ensures neurons start with non-zero gradients, assisting in early learning, while the 'Glorot' initializer for weights keeps 
the training stable by preventing the gradient from becoming too small or too large. Together, they ensure faster training 
with stable learning. This is also evident in Table 10, where this configuration achieved the highest test accuracy (99.75%) 
with robust precision, recall, and F1 scores. Moreover, the training time was the shortest among the ANN models (4.9243 
seconds), and the validation loss was the lowest (0.0021875), reflecting an efficient and effective optimization process. 
Compared to the RS ANN model, the BO and ASHA models are more constrained due to the large values of lambda. 
Plus, selecting the Tanh and Sigmoid activation functions may lead to the vanishing gradient problem, which can slow 
down training and potentially hinder performance. This issue is also reflected in the training and validation times of the 
BO ANN (22.1234 seconds) and ASHA ANN (12.3222 seconds) models. In addition, the RS ANN model has the 
advantage of a simple structure with 20 neurons in a single hidden layer. The evaluation time for the six ML algorithms is 
shortest for RS (1213.1090 seconds) compared to BO (11284.8635 seconds) but longer than ASHA (854.5576 seconds). 
Therefore, considering both accuracy and computational efficiency, the ReliefF method with the RS ANN model 
performed the best overall.
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Figure 10: Confusion matrices(Test data) for mutInfF Method comparing RS, BO, and ASHA Optimization for classification 
accuracy

Table 11. mutInfFS Method Training and Test Results with BO, ASHA, and RS Optimizers

4.2.3 Analysis of mutInfFS Results 
The mutInfFS method, focusing on the mutual information between features and the target, yielded impressive results 

mutInfFS Method with Best Classifier Training and Test Results with BO, ASHA, and RS optimizers for CWRU datasets
                                                                            ValuesFeature 

Selection 
Method

Best 
Optimizers

Best
 Classifier Train 

Accuracy 
Test   

Accuracy 
Test   

Precision
Test   

Recall
Test   

F1 Score
Test  

Kappa
Training and Validation time 

(seconds) Validation Loss

Bayesian SVM 100% 99.88% 1 1 1 1 9.7707 0.0027602
ASHA SVM 100% 99.88% 1 1 1 1 10.0123 0.0025mutInfFS 

Method Random Search KNN 100% 99.625% 0.99628 0.99625 0.99624 0.99583 2.3418 0.005625
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with the SVM classifier under Bayesian and ASHA optimization, as shown in Table 11. BO resulted in the test accuracy 
of 99.88% with SVM, using a box constraint of 986.92, one-vs-all multi-class coding, a kernel scale of 13.804, and a 
Gaussian kernel function without standardization. The training and validation time was 9.7707 seconds, and the validation 
loss was 0.0027602. ASHA optimization matched this accuracy with somewhat different hyperparameters: a box 
constraint of 6.66, one-vs-all coding, and a kernel scale of 12.324, with a training time of 10.0123 seconds and a 
validation loss of 0.0025. In the one-vs-all approach for the CWRU dataset, SVM generates 10 models, each designed to 
identify one specific class against all others. The final prediction is made by selecting the class with the highest 
confidence score from these models. However, the ASHA model is less complex than the BO model. This is because the 
box constraint influences the balance between the tolerance for misclassification errors and the complexity of the SVM 
model. Since the ASHA SVM model with a box constraint of 6.66 is less complex and has the lowest validation loss, it is 
selected as the best model.
The total evaluation time for the six ML algorithms is the shortest for RS, taking only 1111.3154 seconds, compared to 
ASHA's 1275.48 seconds and BO's 8972.71 seconds. RS selects the simplest KNN model, using three neighbors, inverse 
distance weighting, and the seuclidean distance metric without standardization, with the lowest training and validation 
time of 2.3418 seconds. The standardized Euclidean (seuclidean) distance measures how far apart points are by taking into 
account the differences in feature variances. It standardizes each feature before calculating the distance, ensuring features 
with larger scales don't dominate the calculation. However, it has the highest validation loss of 0.005625 among all 
models. As shown in Figure 10, the RS KNN model misclassifies 3 unseen classes, performing not well as the other 
optimizers.
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Figure 11: Confusion matrices (Test data) for mRMR Method comparing RS, BO, and ASHA Optimization for classification 
accuracy

4.2.4 Analysis of mRMR Results 
The mRMR method, designed to balance feature relevance and redundancy, demonstrated high performance with BO 
ANN and RS SVM classifiers, as shown in Table 12. Similar to LS and mutInfFS results, KNN continuously shows the 
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lowest training and validation time (2.7524 seconds) with the highest validation loss of 0.0046875. Moreover, the ASHA 
KNN model misclassifies 8 unseen class points in confusion matrices, see Figure 11.

Table 12. mRMR Method Training and Test Results with BO, ASHA, and RS Optimizers

BO with ANN achieved 99.38% test accuracy, with a configuration of one layer of 98 hidden neurons, tanh activation, 
ones biases, He initializer, and a lambda of 2.3495e-06. Proper initialization with the He Initializer helps prevent gradients 
from becoming too small (vanishing) or too large (exploding), leading to more stable and efficient training. The He 
initializer works by setting the initial weights of a neural network based on the number of input neurons, and it pairs well 
with activation functions like tanh. He initializer and regularization parameter lambda (2.3495e-06) with 98 hidden 
neurons may improve the training stability and final accuracy but require more iterations to converge optimally, adding to 
the training time of 17.0816 seconds. Moreover, compared to ASHA 557.7281 seconds, BO took 7921.0021 seconds to 
evaluate 6 ML algorithms. In comparison, RS took 994.042 seconds and selected a less complex (more regularized) SVM 
model using a small box constraint of 0.053603. RS SVM model achieved balanced training in 7.7397 seconds and 
observed the lowest validation loss of 0.0028125. In summary, RS with SVM outperformed both BO and ASHA models.

Table 13. Comparison across Feature Selection Techniques

Figure 12: Bar chart (Test data) comparing the performance of best-performed FS methods and Optimizers for CWRU datasets
4.2.5 Optimal Combinations and Recommendations
Based on the findings presented in Table 13, this section explores the optimal combinations of optimizers and classifiers 
for each FS method using the CWRU datasets. The ASHA optimizer demonstrates superior performance when paired with 
SVM classifiers in both the LS and mutInfFS methods. 10-fold cross-validation on the selected candidate model, 
optimized hyperparameter selection (like box constraint), and robust feature selection help reduce overfitting and 
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mRMR Method with Best Classifier Training and Test Results with BO, ASHA, and RS optimizers for CWRU datasets
ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian ANN 100% 99.38% 0.99 0.99 0.99 0.99 17.0816 0.0041872
ASHA KNN 100% 99.00% 0.99 0.99 0.99 0.99 2.7524 0.0046875mRMR Method

Random Search SVM 100% 99.75% 0.99753 0.9975 0.9975 0.99722 7.7397 0.0028125

Comparison for best optimizers with selected ML algorithms in each Feature Selection Method for CWRU datasets
Values

Feature Selection Method Best Optimizers Best Classifier    Test 
Precision

  Test 
Recall

  Test 
F1Score

  Test 
Kappa

  Training and Validation 
time

   Validation 
Loss

LS Method ASHA SVM 1 1 1 1 6.9034 0.0028125
ReliefF Method Random Search ANN 0.99756 0.9975 0.9975 0.99722 4.9243 0.0021875

mutInfFS Method ASHA SVM 1 1 1 1 10.0123 0.0025000
mRMR Method Random Search SVM 0.99753 0.9975 0.9975 0.99722 7.7397 0.0028125
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generalization in the clean and balanced CWRU dataset. As illustrated in Figure 12, this combination achieved an overall 
accuracy of 99.94%, while maintaining reasonable training and validation time of 6.9034 and 10.0123 seconds, 
respectively. Moreover, ASHA with parallel settings took the shortest time to evaluate all 6 ML algorithms. In contrast, 
the RS optimizer gives an overall accuracy of 99.88% when paired with ANN and SVM classifiers in both the ReliefF and 
mRMR methods. However, in terms of computational resources, the classifiers selected by RS exhibited the shortest 
training and validation times. 
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Figure 13: Confusion Matrix for LS Method with ASHA optimizer and SVM classifier (CWRU datasets)
LS method excels in preserving the small-scale patterns within the data, leading to high accuracy in complex datasets, as 
shown in Figure 13. Given the results, ASHA with LS method is recommended for fault classification of rolling bearings 
in CWRU datasets due to its overall accuracy and moderate computational burden. However, the ReliefF method with RS 
optimizer serves as a suitable alternative for situations where computational efficiency is paramount in real-time 
applications.

Table 14. Optimized hyperparameters for Proposed Feature Selection methods for PU Bearing Dataset
Summary of optimized hyperparameters for Proposed Feature Selection Methods using BO, ASHA, and RS optimizers

Feature Selection 
Method

Optimization 
Method

Machine Learning 
Classifier (Algorithm) Hyperparameters

Optimized Hyperparameters

Optimizers Best Classifier Layers with Sizes: Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN Three, [13,25,227] Ones ReLU Glorot 0.00035175
Random Search ANN Two, [22,15] Zeros Sigmoid          Glorot 4.8066e-07            

Box constraint Multiclass 
coding Kernel scale Kernel function Standardize data

LS Method

ASHA SVM 5.2787 onevsall 10.047 Gaussian No
Optimized Hyperparameters

Optimizers Best Classifier Layers with Sizes: Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN Three,[45,64,36] Zeros ReLU Glorot 1.7369e-05
ASHA ANN Two, [10, 6] Ones ReLU Glorot 0.014349

ReliefF Method

Random Search ANN Two, [29, 20] Ones ReLU Glorot 1.7534e-08            
Optimized Hyperparameters

Optimizers Best Classifier Layers with Sizes: Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN Three, [21,13,10] Zeros ReLU Glorot 0.0001307
Random Search ANN Two, [126, 54] Zeros Sigmoid          he 1.0439e-06

Box constraint Multiclass 
coding Kernel scale Kernel function Standardize data

mutInfFS Method

ASHA SVM 30.752 onevsall 13.012 Gaussian No
Optimized Hyperparameters

Optimizers Best Classifier Layers with Sizes: Layer Biases Activation Layer Weights Regularization 
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4.3 Case #2: PU Bearing Dataset:
This section evaluates the performance of feature selection methods when paired with optimizers and selected classifiers 
for the PU-bearing dataset. Real-bearing damage data in the PU bearing dataset offers a more accurate representation of 
industrial faults than artificially induced faults in the CWRU dataset. This case study investigates the impact of different 
hyperparameter optimization methods on feature selection techniques for the PU Bearing Dataset. The best classifiers 
with their optimized hyperparameters are presented in Table 14. 
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Figure 14: Confusion matrices(Test data) for LS Method comparing RS, BO, and ASHA Optimization for classification accuracy
Table 15. LS Method Training and Test Results with BO, ASHA, and RS Optimizers

4.3.1 Analysis of LS Results 
This section discusses the results of the LS method when paired with BO, ASHA, and RS optimizer. Similar to the 
previous case, 180 iterations were set for BO and RS optimizers. For the ASHA optimizer, the selection of iterations is not 
user-defined and set based on the settings of 5×(𝐿+1). Given L=6, the total iterations are 35. ASHA optimizer took 

Initializer function Initializer (lambda)
Bayesian ANN Three, [15,11,22] Zeros ReLU he 0.00026371
ASHA ANN Three, [8,10,48] Zeros ReLU he 6.9152e-06mRMR Method

Random Search ANN Two, [39, 113] Ones Sigmoid          he 3.6141e-06              

LS Method with Best Classifier Training and Test Results with BO, ASHA, and RS optimizers for PU bearing datasets
                                                                            ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian ANN 100% 95.83% 0.96 0.96 0.96 0.94 40.9546 0.052594
ASHA SVM 100% 94.72% 0.95 0.95 0.95 0.93 4.3874 0.056944LS Method

Random Search ANN 100% 94.72% 0.94783 0.94722 0.94747 0.92963 11.1585 0.042361
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55.3544 seconds to evaluate 6 ML algorithms. In comparison, BO took 4307.4306 seconds, and RS took 595.1034 
seconds. Both ASHA SVM and RS ANN models achieved the same test accuracy of 94.72%. However, the RS ANN 
model had a longer training time (11.16 seconds), indicating the complexity of the ANN’s hyperparameters. In the BO 
case, ANN complexity arises further with three layers of sizes, tabulated in Table 15. Moreover, the lambda value is 
higher (0.00035175) as well, indicating stronger regularization to mitigate overfitting. As a result, this setup achieved a 
training accuracy of 100% and a test accuracy of 95.83%. According to the confusion matrix in Figure 14, the BO ANN 
model misclassifies 15 instances, as compared to 19 of the RS ANN and ASHA SVM models. The BO ANN model not 
only achieved higher test accuracy but also reduced misclassifications, demonstrating its effectiveness in classifying the 
test data.

Table 16. ReliefF Method Training and Test Results with BO, ASHA, and RS Optimizers

4.3.2 Analysis of ReliefF Results 
This section discusses the results of the ReliefF method when paired with BO, ASHA, and RS optimizers in Table 16. 
Similar to the previous ReliefF case, all optimizers selected ANN as the best classifier. ASHA took 60.978 seconds, RS 
took 603.4802 seconds, and BO took 8753.8706 seconds to select the best classifier. BO is probabilistic in nature; as the 
number of training datasets decreases, it tends to pick complex models with longer training times. In this case, BO 
selected a deeper ANN model with three layers of sizes. As the model is deeper with effective hyperparameters 
optimization, it has the highest training and validation time of 18.6383 seconds, with the lowest validation loss of 
0.042693. Moreover, it misclassifies only 8 instances, as compared to 14 instances of RS ANN and 19 instances of ASHA 
SVM models. as shown in Figure 15. 

ReliefF Method with Best Classifier Training and Test Results with BO, ASHA, and RS Optimizers for PU bearing datasets
                                                                            ValuesFeature Selection 

Method
Best 

Optimizers
Best

 Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1 Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian ANN 100% 97.78% 0.98 0.98 0.98 0.97 18.6383 0.042693
ASHA ANN 98.96% 94.72% 0.95 0.95 0.95 0.93 6.4733 0.085417ReliefF Method

Random Search ANN 100% 96.11% 0.96154 0.96111 0.9612 0.94815 2.7392 0.045139
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Figure 15: Confusion matrices(Test data) for ReliefF Method comparing RS, BO, and ASHA Optimization for classification accuracy

Table 17. mutInfFS Method Training and Test Results with BO, ASHA, and RS Optimizers

4.3.3 Analysis of mutInfFS Results 
This section discusses the results of the mutInfFS method when paired with BO, ASHA, and RS optimizers in Table 17. 
The time taken to select the best classifier varied among the methods: BO took 4775.3461 seconds, ASHA took 53.3479 
seconds, and RS took 734.1748 seconds. The RS ANN model employs a simpler architecture with two layers, compared 
to the BO model’s more complex structure with three layers. RS ANN’s simpler architecture may contribute to better 
generalization and less overfitting. In this case, the choice of sigmoid activation function leads to better convergence and 
smoother gradient with 100% training. Although ReLU activation is more prominent, it could be dealing with dying 
ReLU, where neurons stop learning. Moreover, the RS model utilizes a much smaller regularization parameter (1.0439e-
06) compared to the BO model (0.0001307). This smaller parameter helps prevent the over-penalization of the weights, 
thus avoiding underfitting. Despite both RS and BO ANN models achieving 100% training accuracy, the RS model 
performs better on unseen data, as demonstrated by the metrics in Table 17 and Figure 16.   

mutInfFS Method with Best Classifier Training and Test Results with BO, ASHA, and RS Optimizers for PU bearing datasets
                                                                            ValuesFeature 

Selection 
Method

Best 
Optimizers

Best 
Classifier Train 

Accuracy 
Test   

Accuracy 
Test   

Precision
Test   

Recall
Test   

F1 Score
Test  

Kappa
Training and Validation time 

(seconds) Validation Loss

Bayesian ANN 100% 96.11% 0.96 0.96 0.96 0.95 28.9526 0.047896
ASHA SVM 100% 94.44% 0.94 0.94 0.94 0.93 0.9657 0.10625mutInfFS 

Method Random Search ANN 100% 97.78% 0.9783 0.97778 0.97785 0.97037 22.5534 0.05
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Figure 16: Confusion matrices(Test data) for mutInf Method comparing RS, BO, and ASHA Optimization for classification accuracy
4.3.4 Analysis of mRMR Results 
This section presents the mRMR Results when paired with BO, ASHA, and RS. In comparison to CWRU datasets, it is 
clear that for more complex datasets like PU-bearing datasets, longer training and validation time was required, as evident 
in Table 18. More complex and deeper ANN layers were selected by BO ANN models in all FS cases. In comparison to 
BO three-layer ANN with the size of neurons, RS two-layer ANN architecture required less training and validation time. 
It is clear that the number of layers also requires more computation resources.

Table 18. mRMR Method Training and Test Results with BO, ASHA, and RS Optimizers
mRMR Method with Best Classifier Training and Test Results with BO, ASHA, and RS Optimizers for PU bearing datasets

                                                                            ValuesFeature Selection 
Method

Best 
Classifier

Best 
Classifier Train 

Accuracy 
Test   

Accuracy 
Test   

Precision
Test   

Recall
Test   

F1 Score
Test  

Kappa
Training and Validation time 

(seconds) Validation Loss

Bayesian ANN 100% 96.67% 0.97 0.97 0.97 0.96 25.2751 0.043551
ASHA ANN 100% 95.83% 0.96 0.96 0.96 0.94 4.231 0.090972mRMR Method

Random Search ANN 100% 96.94% 0.97 0.96944 0.96943 0.95926 17.5293 0.045833
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Figure 17: Confusion matrices(Test data) for mRMR Method comparing RS, BO, and ASHA Optimization for classification accuracy
Moreover, the BO tuning process is more time-consuming than RS. As shown in Figure 17, RS marginally outperformed 
the BO ANN model in terms of performance metrics. Considering both test accuracy and computational efficiency, RS 
ANN performed well.

Table 19. Comparison across Feature Selection Techniques

4.3.5 Optimal Combinations and Recommendations
Based on the findings presented in Table 19, this section explores the optimal combinations of optimizers and classifiers 
for each FS method using the PU datasets. As mentioned earlier, BO and RS were recommended as suitable for PU 
datasets, whereas each optimizer selected ANN as the best classifier with 100% training accuracy. However, test 
accuracies varied, with the ReliefF and mutInfFS methods achieving the highest test accuracy at 97.78%. In terms of 
computational efficiency, the ReliefF and mRMR methods required the least training and validation time, significantly 
outperforming the LS Method, which took the longest. In addition, the validation loss was lowest for the ReliefF method, 
indicating a more effective learning process. Considering both Figure 18 and Figure 19,  the ReliefF method, when paired 
with BO and employing an ANN classifier, emerged as the most effective and efficient approach. 

Comparison for best optimizers with selected ML algorithms in each Feature Selection Method for PU-bearing datasets
ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
 Accuracy 

Test
 Accuracy 

Test 
Precision

Test
 Recall

Test
 F1 Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

LS Method Bayesian ANN 100% 95.83% 0.96 0.96 0.96 0.94 40.9546 0.052594
ReliefF Method Bayesian ANN 100% 97.78% 0.98 0.98 0.98 0.97 18.6383 0.042693

mutInfFS Method Random Search ANN 100% 97.78% 0.9783 0.97778 0.97785 0.97037 22.5534 0.05
mRMR Method Random Search ANN 100% 96.94% 0.97 0.96944 0.96943 0.95926 17.5293 0.045833
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Figure 18: Bar chart (Test data) comparing the performance of best-performed FS methods and Optimizers for PU datasets
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Figure 19: Confusion Matrix for ReliefF Method with BO and ANN classifier (PU datasets)
In comparison to BO, the ASHA optimizer underperforms for PU datasets. Limited data is available for PU bearings in 
this case study. This scarcity of data can lead to premature convergence on suboptimal solutions in ASHA due to reliance 
on rapid evaluations and early stopping criteria. As a result, ASHA might stop the optimization process before the model 
has enough time to completely explore all possible solutions.
4.4 Case #3: DDS Bearing Dataset:
Since DDS-bearing datasets are more scarce than PU-bearing datasets, therefore based on the experiment in the previous 
section, the ASHA optimizer was excluded from this section. Table 20 presents the best-selected classifiers for each 
feature selection method when paired with BO and RS optimizer. It is observed that more complex ANN and SVM 
models were selected by BO and RS optimizers. 

Table 20. Optimized hyperparameters for Proposed Feature Selection methods for DDS Bearing Dataset

Train Accuracy % 100 100 100 100
Test Accuracy % 95.83 97.78 97.78 96.94
Overall Accuracy % 97.92 98.89 98.89 98.47

LS Method + BO + ANN ReliefF Method + BO +  ANN mutInfFS Method + RS + ANN mRMR Method + RS + ANN
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Table 21. LS Method Training and Test Results with BO and RS Optimizers
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Figure 20: Confusion matrices (Test data) for LS Method comparing BO and RS Optimization for classification accuracy
4.4.1 Analysis of LS Results 
Features with higher Laplacian Scores are considered more important as they better capture the intrinsic geometry of the 
data distribution. From Table 21, the analysis of the LS method’s performance reveals that both optimization techniques 
yielded high training and test accuracies, with RS slightly outperforming BO in terms of test accuracy and validation loss. 
Here, validation loss tells us about how the train model generalized well on unseen new data. RS, to some extent, 
generalized well with the ANN model as compared to BO, as evident in Figure 20. RS took 486.6676 seconds to evaluate 
6 ML algorithms compared with 694.1281 seconds seconds for BO.
4.4.2 Analysis of ReliefF Results
Based on the analysis in Table 22, the ANN model optimized using BO provides higher accuracy and better performance 
metrics (Precision, Recall, F1 Score, Kappa) compared to the SVM model optimized using RS. However, the RS SVM 
model has a lower computational burden, requiring less training and validation time. In comparison, RS took 664 seconds 

Optimizers Best Classifier Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN One, [30] Ones Tanh Glorot 0.00039166LS Method
Random Search ANN Two, [16, 17] Ones Sigmoid Glorot 0.001336

Optimized Hyperparameters

Optimizers Best Classifier Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN One, [29] Zeros Tanh Glorot 1.4623e-05ReliefF Method

Box constraint Multiclass 
coding Kernel scale Kernel function Standardize 

data
Random Search SVM 144.49 onevsall 168.84 Gaussian No

Optimized Hyperparameters

Optimizers Best Classifier Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)

Bayesian ANN Three,[52,14,147] Ones  Tanh Glorot 6.1534e-05mutInfFS Method
Random Search ANN Two, [36, 26] Ones  Tanh he 3.1184e-05

Optimized Hyperparameters

Optimizers Best Classifier Box constraint Multiclass 
coding Kernel scale Kernel function Standardize 

data
Bayesian SVM 19.003 Onevsone 56.178 Gaussian No

Layers with 
Sizes:

Layer Biases 
Initializer

Activation 
function

Layer Weights 
Initializer

Regularization 
(lambda)mRMR Method

Random Search ANN One, [35] Zeros ReLU he 4.5724e-08

LS Method with Best Classifier Training and Test Results with BO and RS optimizers for DDS datasets
                                                                            Values

Feature Selection 
Method

Best 
Optimizers

Best 
Classifier Train 

Accuracy 
Test   

Accuracy 
Test   

Precision
Test   

Recall
Test   

F1 Score
Test  

Kappa
Training and Validation time 

(seconds) Validation Loss

Bayesian ANN 100% 93.75% 0.95 0.94 0.94 0.92 2.3728 0.080461LS Method Random Search ANN 100% 95.00% 0.96 0.95 0.95 0.93 2.0602 0.059375
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to evaluate 6 ML algorithms, while BO took 698.2895.
Table 22. ReliefF Method Training and Test Results with BO and RS Optimizers
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Figure 21: Confusion matrices (Test data) for ReliefF Method comparing BO and RS Optimization for classification accuracy

For applications where accuracy is critical and computational resources are not a primary concern, the ANN model is 
recommended see Figure 21. On the other hand, for applications where computational efficiency is more important, the 
high-constraint RS SVM model could be a better choice. 

Table 23. mutInfFS Method Training and Test Results with BO and RS Optimizers

4.4.3 Analysis of mutInfFS and mRMR Results 
In Table 23, BO and RS both selected ANN models, whereas the complex BO ANN model underperformed the less 
complex model of the RS ANN model. Moreover, the RS ANN model is less regularized, which allows the model to have 
more complex decision boundaries that can separate the fault classes, potentially capturing more intricate patterns in the 
unseen data, as evident in Figure 22. 

Table 24. mRMR Method Training and Test Results with BO and RS Optimizers

ReliefF Method with Best Classifier Training and Test Results with BO and RS Optimizers for DDS datasets
                                                                            Values

Feature Selection 
Method

Best 
Optimizers

Best 
Classifier Train 

Accuracy 
Test   

Accuracy 
Test   

Precision
Test   

Recall
Test   

F1Score
Test  

Kappa
Training and Validation time 

(seconds) Validation Loss

Bayesian ANN 100% 95.00% 0.96 0.95 0.95 0.93 1.6483 0.072787ReliefF Method Random Search SVM 99.38% 92.50% 0.93 0.93 0.93 0.90 0.57517 0.071875

mutInfFS Method with Best Classifier Training and Test Results with BO and RS Optimizers for DDS datasets
                                                                            ValuesFeature Selection 

Method
Best

 Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1 Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian ANN 100% 92.50% 0.93 0.93 0.93 0.90 5.6553 0.079307mutInfFS Method Random Search ANN 100% 95.00% 0.96 0.95 0.95 0.93 1.8929 0.071875

mRMR Method with Best Classifier Training and Test Results with BO and RS Optimizers for DDS datasets
                                                                            ValuesFeature Selection 

Method
Best 

Optimizers
Best 

Classifier Train 
Accuracy 

Test   
Accuracy 

Test   
Precision

Test   
Recall

Test   
F1 Score

Test  
Kappa

Training and Validation time 
(seconds) Validation Loss

Bayesian SVM 100% 90.00% 0.91 0.90 0.90 0.87 1.2081 0.075962mRMR Method Random Search ANN 100% 87.50% 0.88 0.88 0.88 0.83 0.63978 0.0625
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Figure 22: Confusion matrices(Test data) for mutInf Method comparing BO and RS Optimization for classification accuracy

In comparison to the mutInfF method, training and test accuracy reveal that the mRMR features give overfitted ML 
algorithms when paired with BO and RS. Despite mRMR’s intent to minimize redundancy, it may have selected features 
that are redundant when combined with the model’s hyperparameters. For the mRMR method, the BO SVM model has a 
higher value of the hyperparameter, i.e., kernel scale (56.178), which makes the Gaussian kernel decision boundary 
smoother but risks overfitting in some cases. This overfitting is evident in Table 24. It achieves 100% training accuracy 
but only 90% test accuracy. The RS ANN model further degrades with 87.5% test accuracy, indicating a 3% overfit. 
Figure 23 again shows poor performance by the mRMR method, which made the mutInfF method the preferred choice.
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Figure 23: Confusion matrices (Test data) for mRMR Method comparing BO and RS Optimization for classification accuracy
Table 25. Comparison across Feature Selection Techniques

4.4.5 Optimal Combinations and Recommendations
Table 25 evaluates the performance of the best optimizers coupled with selected ML algorithms for each FS method 
applied to DDS datasets. Most of the optimizers selected ANN as the best classifier to capture complex relationships in 
the DDS data. For the LS method, the RS ANN model is the best classifier, where ANN uses backpropagation with 
appropriate activation functions and optimized hyperparameters to achieve good results. However, it had the longest 
training and validation time at 2.0602 seconds and a validation loss of 0.059375. This longer training time is likely due to 
the complexity introduced by the two-layer ANN structure, which, while effective, requires more computational resources 

Comparison for best optimizers with selected ML algorithms in each Feature Selection Method for DDS datasets
Values

Feature Selection Method Best Optimizers Best Classifier    Test 
Precision

  Test 
Recall

  Test 
F1Score

  Test 
Kappa

  Training and Validation time 
(seconds)

Validation 
Loss

LS Method Random Search ANN 0.96 0.95 0.95 0.93 2.0602 0.059375
ReliefF Method Bayesian ANN 0.96 0.95 0.95 0.93 1.6483 0.072787

mutInfFS Method Random Search ANN 0.96 0.95 0.95 0.93 1.8929 0.071875
mRMR Method Bayesian SVM 0.91 0.90 0.90 0.87 1.2081 0.075962
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and time to optimize. Similar trends were observed in the mutInfF method when paired with the RS ANN model. 
Figure 24 reveals that the LS, ReliefF, and mutInfFS methods exhibited better and comparable performance metrics. 
However, the ReliefF method stood out with a shorter training time due to its effective feature selection process with an 
effective and simple BO ANN model. 

Figure 24: Bar chart (Test data) comparing the performance of best-performed FS methods and Optimizers for DDS data
In both PU and DDS-bearing datasets, the scarcity of data with real faulty characteristics makes it difficult to classify 
faults. However, in both cases, BO’s probabilistic framework and well-informed search space combined with the ReliefF 
method enhance fault classification, as evident in Figure 25. Table A highlights all optimizer results in supplementary file. 
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Figure 25: Confusion matrix of best optimizer with ReliefF Method for DDS datasets
5. Computational Burden
Another advantage of the ReliefF method over other FS methods is the lower computational burden with a robust feature 
selection process. ReliefF compares local instances with their neighbours to identify essential features and updates feature 
weights, which speeds up the process. The estimated time to process a 0.09-second signal (comprising 1024 data points) 
for the CWRU experimental platform using MVMD followed by HHT applied to 5 modes, extracting 33 features per 
frequency and amplitude modes, then calculating SR correlation, applying ReliefF, performing Y-J transformation and 

Train Accuracy % 100 100 100 100
Test Accuracy % 95 95 95 90
Overall Accuracy % 97.5 97.5 97.5 95
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then subsequently applying 6 ML algorithms. This processing is conducted on a personal computer equipped with an Intel 
Core i9-13900HX processor, which operates at a maximum turbo frequency of 5.4 GHz with 8 operators per cycle. The 
estimated computational burden for applying the HHT on the modes extracted by MVMD is approximately 1.70×10-6 
seconds. As an experiment, the decomposed results obtained via MVMD and HHT were applied directly to ML 
algorithms. However, due to the curse of dimensionality, these algorithms underperformed with an almost 30 times 
increase in computational burden. Therefore, feature processing with the help of ReliefF and other methods solves these 
issues. As a result, the time taken for each algorithm is as follows: the ensemble took 9.134×10-6 seconds, SVM took 
10.9×10-5 seconds, KNN took 10.9×10-5 seconds, ANN took 3.639×10-5 seconds, DT took 7.180×10-6 seconds, and NB 
took 6.273×10-6 seconds.
On a 100 MHz radiation-hardened edge processor (approximately 54× slower), MVMD + HHT and SVM steps translate 
to around 92 µs and 5.9 ms. Worst case scenario, total latency per segment of 6 ms for SVM model is well within the 
90 ms acquisition window. As a result, leaving 80 ms for sensor tasks and confirming real‑time requirements for 
lunar‑base diagnostics with suitable margin.

Table 26. Performance Comparison with existing ML or DL methods on the CWRU and PU datasets

6. Comparison with existing ML and DL Methods
To further validate the assertion of the proposed framework, we have added a comparison with traditional ML and DL 
methods on the CWRU and PU datasets. As shown in Table 26, the proposed method shows better performance in terms 
of overall accuracy [68-71]. For instance,  the proposed method achieves 100% accuracy with 1024 data points from the 
vibration signal input, whereas  Liao et al. [68] required 2048 data points to achieve an accuracy of 99.73%. The key 
difference between the proposed method and DL methods lies in the approach to feature extraction and signal 
decomposition. The proposed method depends upon conventional signal processing to decompose and extract features, 
while other methods use deep neural networks. This makes the proposed method less complex in terms of training and 
tuning, leading to improved efficiency in terms of both computational resources and time. Future work will 
comprehensively explore the approaches detailed in [72-75] to extend and refine our proposed framework.

Table 27. The result of the fault classification on the IMS dataset.

7. Classification results using NASA Bearing Dataset
This section further conducts experiments based on a NASA-bearing dataset repository that helps ensure the proposed 
method’s robustness [76]. The test rig setup is shown in Figure 26, and the data set is recorded by the Intelligent 
Maintenance System (IMS) of the National Science Foundation Industry (NSFI) at a 20 kHz sampling frequency. Three 
datasets were extracted, in which inner race (IR) defect occurred in bearing three and roller element defect in bearing 4 for 
IMS dataset 1. In contrast, outer race failure occurred in bearing 1 and bearing 3 for IMS dataset 2 and dataset 3. Table 27 
displays high binary classification performance for each IMS dataset, whereas the BO optimizer outperforms ASHA and 
RS and selected ensemble as the best classifier. In addition, 2 dB to 6 dB noise is also added to input signals to mimic 
extreme conditions. However, due to the proposed denoising, robust features and adaptive ML algorithms display robust 
results with an average overall accuracy of 96%. Thus, the proposed framework can be integrated for autonomous fault 
recognition in extreme environments.

Performance comparison between the proposed method and other ML and DL fault classification methods
Values (%)Serial 

Number ML/DL Models Signal Decomposition  Extracted Features Datasets (Window Size) Overall  Accuracy
Ref [68] CNN, Transfer Learning Wavelet Convolution Autonomous CWRU datasets (2048) 99.73%
Ref [69] ANN VMD Normalized Energy CWRU datasets (1024) 99.30%
Ref [70] Net2Net transformation  Autonomous PU datasets (400) 96.24%
Ref [71]  Deep Residual Network Input feature mappings (IFMs)  Signal-to-IFMs PU datasets (4096) 99.70%
Proposed ASHA-SVM MVMD+HHT LS CWRU datasets (1024) 99.94%
Proposed BO-SVM MVMD+HHT ReliefF PU datasets (2048) 98.89%

The result of the binary fault classification on the IMS dataset
Values

Test Dataset Class Types Feature Selection 
Method

Best 
Optimizers Best Classifier Test 

Precision Test Recall Test F1Score Test Accuracy

IMS dataset 1 (IR, OR) ReliefF Method BO Ensemble 0.98 0.98 0.98 98%
IMS dataset 2 (Healthy, OR) ReliefF Method BO Ensemble 0.96 0.95 0.95 96%
IMS dataset 3 (Healthy, OR) ReliefF Method BO Ensemble 0.98 0.98 0.98 98%

Average     0.97 0.97 0.97 97.33%
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Figure 26: A complete experimental setup, including an IMS sensor placement and a bearing test rig.
Table 28.  Evaluation of MVMD, MEMD, and MEWT for Multichannel Signal Decomposition.

Performance Benchmarking of MVMD, MEMD, and MEWT Techniques

Method Signal 1(dB) Signal 2(dB) Avg SNR

MVMD 6.72 dB 9.06 dB 7.89 dB
MEMD 10.03 dB 5.40 dB 7.71 dB
MEWT 0.91 dB 1.83 dB 1.37 dB

Table 29. Decomposition Quality Metrics (Based on IMF1)
Decomposition Quality Metrics (Based on IMF1)

Metric MVMD MEMD MEWT

Mode Consistency (CC) -0.01 -0.01 -0.02
Energy Ratio (IMF1) 18% 37% 31%
Sparsity (Kurtosis) 5.83 4.01 5.64

Entropy 5.04 4.34 5.02

8. Comparison of MVMD, MEMD, and MEWT
We compared the average SNRs of two high-noise signals from the PU dataset to support the rationale for MVMD 
selection over MEMD and MEMT. Table 28 demonstrate that MVMD reached the highest average SNR of 7.89 dB, 
indicating robust ability to suppress noise and preserve information. In Table 29, MEMD recorded higher energy ratio in 
IMF1 at 37%, this reflects stronger concentration of signal energy in the first mode, potentially leading to mode mixing 
[37]. In contrast, MVMD achieved higher sparsity with a kurtosis of 5.83, showcasing better isolation of fault-related 
features. Entropy values further support this, with MVMD maintaining a balance between signal complexity and structure 
(5.04) compared to MEMD (4.34) and MEWT (5.02). Mode consistency scores were similar for MVMD and MEMD (-
0.01), while MEWT had a small drop (-0.02). Overall, these results support MVMD as a more stable and effective method 
for signal decomposition in complex, multichannel conditions, as expected in space systems.
9. Conclusion
In this article, a novel versatile automated framework was proposed by exploring four FS methods with three advanced 
optimization techniques (BO, RS, and ASHA) for the improvement of fault classification in rolling bearings used in 
space-bound DC power systems. To address the challenge of collecting non-linear and non-stationary datasets from 
multichannel bearings signals, MVMD and HHT were combined for adaptive decomposition, followed by FS from multi-
domain features such as time, frequency, and entropy. Multi-domain features provide a holistic view of the signal, 
capturing different aspects of faults which single-domain features may miss. This also helps in reducing the risk of 
overfitting and improves the model’s ability to generalize to new, unseen data. Various performance metrics were 
measured to assess classifier performance, including classification accuracy, precision, recall, kappa, training and 
validation time, and validation loss. The critical comparisons of different FS methods and optimizers revealed the 
following findings using CWRU, PU, and DDS datasets:

1. For the CWRU dataset, the ASHA optimizer has been suggested due to its ability to handle a large number of 
samples with faster tuning and evaluation of ML algorithms. Out of 6 ML algorithms, BO, RS, and ASHA 
optimizers selected ANN, SVM, and KNN as best classifiers. On average, KNN showed faster training and 
validation, but complex ANN and SVM architectures gave better accuracy. The best combination with moderate 
computational burden was LS with the ASHA optimizer and SVM classifier, achieving an overall accuracy of 
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99.94%, with precision, recall, F1 score, and kappa nearing 1.
2. As the data scarcity starts to increase in the PU dataset, the BO optimizer with informed space search for 

hyperparameters optimization is suggested. However, the RS optimizer with parallel settings took less time to 
evaluate ML algorithms. Due to real bearing damages in PU datasets, both optimizers selected complex models 
with SVM and ANN as their preferred choice. The best combination was ReliefF with the BO optimizer and ANN 
architecture, which demonstrated an overall accuracy of 98.89%, precision of 0.98, recall of 0.98, F1 score of 98, 
and a kappa of 0.97, with a moderate training time of 18.6383 seconds. 

3. Similar trends were observed for more scarce DDS datasets as well, where the BO optimizer performed well due 
to its probabilistic nature. BO again paired with the ReliefF method and ANN architecture to produce good results 
with lower training and validation time of only 1.6483 seconds. This suggests that the multivariate ReliefF 
method not only eliminates redundant features but also helps to increase classification accuracy. 

The collective utilization of these existing techniques for extraterrestrial environments transforms them into a 
comprehensive, autonomous, and end-to-end solution that delivers a robust fault detection framework. Future research 
will test this framework under simulated space conditions, including vacuum, thermal cycling, and radiation, to optimize 
diagnostic models for bearing reliability in lunar missions. Data from these experiments will refine our proposed 
framework. Meanwhile, collaboration with space agencies will further cross-validate our results.
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