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Abstract
In this study, we have chosen the computer network with the shape of a king’s graph. The
king’s graph G is defined as a set of edges, that is E = {((i, j), (p, q))|i, p ∈ [0, M], j, q ∈
[0, N ], M, N ∈ Z, ((i, j), (p, q)) is an edge ⇐⇒ i = p and j = q ± 1 or i =
p ±1 and j = q or i = p ±1 and j = q ±1}. We also set a delivery rule, in which
the shortest paths in the graph are used for the message deliveries, to restrict the source con-
sumption. Then, the paths are encoded in a way that we discover using binary arrays based
on other well-known encoding methods. We prove that the path-coding method we present
prevents errors denoted by false positives from the graph. Data transfer issues from computer
science served as the motivation for this study.

Keywords King’s graph · Shortest path · False positives · Computer network
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1 Introduction

In this paper,we consider a graphdenotedbyking’s graphG = (V , E) thatmodels a computer
network [5]. We also consider a message forwarding scenario in graph. We suppose that each
vertex v in the graph represents a computer and that communication between computers is
supported through the shortest paths between two distinct vertices (see Fig. 1). The similar
routing model has been introduced in [4]. The path is known before the message is sent,
and once a message is forwarded through the path, it is not directed backward. This routing
scenario in grid models was proposed by [6, 10, 15].

Some studies have been conducted to understand the structure of king’s graphs in literature
[8, 9]. A king’s graph has been preferred as a model of tracking vehicles by [19]. Encoding
models in king’s graphs has been considered in the literature. The codes for vertices on a king’s
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Fig. 1 A king’s graph represents a computer network. [5]

graph have been identified in [7]. In this study, we have chosen the king’s graph as a network
model and we introduce an encoding method that encodes the links in the network having the
shape of a king’s graph. The labeling method introduced in this research is inspired by the
study [2]. Themethod proposed by aBloomfilter is a technique to keep the data in compressed
form. In practical applications, it is widely used to reduce network traffic, data mining, data
transmission between parties in network models [3]. Recently Bloom filter techniques have
found applications as effective alternatives for countering network attacks [18]. In recent
research, the Bloom filter may still be preferable for building privacy-preserving techniques
for some applications [1, 21]. Another study proposes amethod to address path reconstruction
and the identification of attack sources. This method is basically the use of the Bloom filter
[16] As a labeling method, the Bloom filters save time and space. The Bloom filter is used
to generate a solution for saving space in huge graphs presently [20].

We have invented path-labeling methods for the shortest paths in some graphs such as
rectangular grids [10], hexagonal grids [12] and triangular grids [13]. We also consider
another edge-labeling model in a king’s graph [5]. Here, we have obtained more obtimised
results than the results proposed in the study [5]. A path-labelingmethod has been considered
in [11], unlike edge-labeling, vertex-labeling has been studied using Bloom filters in [11]. In
this research, the paths’ labels occupy less space than the labels obtained in [5]. This is an
advantage for some applications that cares about the spaces, since the space can be saved by
using Bloom filters [17].

The path encoding method presented in this study is based on a conventional approach,
denoted by the Bloom filter, which is an approach of the encoding methods previously
explored under a data transmission scenario between computers in a computer network
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represented by mathematical graphs. The mathematical theorems in the following sections
demonstrate that the encoding approach we generalized does not result in errors. At the same
time, it is demonstrated that this path-coding technique is space- and time-efficient.

The structure of this paper is that we introduce both standard Bloomfilters and our labeling
method, then we show how our labeling method does not produce any error, and finally we
show why the method introduced in this paper is better than some other methods.

2 Standard bloom filter and its applications

The Bloom filter introduced in [2] is a procedure that represents a subset S of a universal set
U , with a binary string of length |U |. The bits 1 in the string representing S correspond to
an element x from the set U . Hence, the bit 1 in a certain place in the representative binary
string of S means that x ∈ S. If we denote the label of element x by β(x), then the label of the
elements in S is shown as β(S) = ∪x∈Sβ(x). By this definition, it can be easily recognised
that if β(x) > (S) , then we can say that x /∈ S. However, if β(S) does not represent S
faithfully, then there may be a false positive in U adjacent to the subset S. In this case, it can
be complicated to answer if x ∈ S or x /∈ S.

The probability of false positives is generally found with the calculation of (1 − e
−kn

m )k

[2] where m = |U |, n = |S|, and k is the number of bits 1 in Bloom filters. The choice
of the parameter k affects the number of false positives. The optimum k can be found with
�ln2 × m

n � which is received by computing the derivation of the formula for the probability
of false positives [3].

Here, we handle the structural properties of the Bloom filters as the labels of the paths
in the graphs. According to the routing scenario, the set U = E represents the header of
data transmitted from one computer to another in the graph. We assume that each edge e is
encoded by a subset P of E . If the label of e is denoted by β(e), then the labels that belong
to the edges of a subset P of E are shown as β(P) = ∪e∈Pβ(e). The inquiry about the
existence of the edges in the set P is extremely easy and fast by comparing the labels of the
set and the edges. However, we can observe that e /∈ P where e is identified by β(P). In this
case, e is defined as a false positive of β(P). According to the routing scenario, the edges
linked to the chosen shortest path for data transmission are probably false positives of β(P).
If these kinds of edge, denoted by an adjacent edge, of the set P are not in the set P , one can
say that the set is represented by β(P) accurately. Accordingly, any computer on the chosen
shortest path decides the next edge to which the message should be sent by comparing the
header of the message and the labels of the edges.

3 Labels for the shortest paths in king’s graphs

We assume that there are four types of imaginary lines crossing the edges in the direction
of north (↑), east (→), north-west (↖) and north-east (↗). (A similar approach has been
discussed in research [5]). Each line is assigned by a positive integer. Lines oriented in the
north-west direction are enumerated beginning from the bottom left corner (see Fig. 2) and
lines directed north-east are enumerated beginning from the top left corner (see Fig. 2).
Similarly, the lines directed to the way of north are enumerated beginning from the left-hand
side to the right-hand side of the graph, and the lines directed to the way of east are counted
from the bottom to the top of the graph.
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Fig. 2 The encoding lines of the edges in a king’s graph [5]

We construct each Bloom filter of the edges with four main sections. Each section is
divided into four- and two-bit subsections called after blocks. The first and second sections
of the Bloom filters of the edges consist of four bits blocks and, the third and fourth sections
consist of two bits blocks. In order to distinguish the orientations of the edges, we use
the indicies v, h, nw, ne for the vertical, horizontal, and diagonal edges which lead to the
north-west (or south-east) and north-east (or south-west), respectively. We aim to encode
edges faithfully. Therefore, we use four bit blocks depending on the positions of the edges
to represent them. The Bloom filters for the horizontal edge eh , the vertical edge ev , and the
diagonal edge enw, ene contain blocks 1000, 0100, 0010 and 0001, respectively, in the first
two sections. In addition, the Bloom filters of the diagonal edges enw, ene include blocks 10
and 01 respectively in the third and the fourth sections. Note that the encoding technique we
introduce in this section differs from the method introduced in [5] with blocks indicating the
edges and the length of these blocks in the third and fourth sections of the Bloom filters of
the edges.

As an example, the Bloom filters of a diagonal edge e and a horizontal edge f in the king’s
graph of size 1 × 1 are shown in Fig. 3.

The lines oriented to the ways of north-west, north-east, north and east identify the places
of the representative blocks of the edges in the first, second, third and fourth sections of
Bloom filters of the edges, respectively. The numbers of the lines specify the block positions
of 1000, 0100, 0010 and 0001; and 10 and 01 in the corresponding sections of the Bloom
filters of the edges.

The number of lines in the north-west and north-east directions is M + N if the graph is
M × N in size, with M and N representing the number of horizontal and vertical edges on
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Fig. 3 The Bloom filters of the edges e and f from the 1× 1 size king’s graph. βi (e) where i ∈ {1, 2, 3, 4} is
the sections of the Bloom filter of the edges

one of the boundaries of the king’s graph. In addition, the number of lines with north and east
directions is M and N , respectively. Consequently, the number of bits in the Bloom filter of
an edge is computed as 2× 4× (M + N ) + 2M + 2N = 10× (M + N ). This is denoted as
the length of the Bloom filter.

According to the routing scenario, the shortest paths in the king’s graph are used for the
message distribution [5]. Hence, after all edges have their representative Bloom filters, the
Bloom filter of a path is received after applying a bitwise OR operation to the Bloom filters
of edges where the edges belong to the path.

4 Attributes of the encoded shortest paths in king’s graphs

We take into consideration certain helpful aspects of the shortest pathways in a king’s graph
since the structural feature of a king’s graph provides distinct Bloom filters for edges.

Lemma 4.1 In a king’s graph, the shortest path established between the vertices u = (r , s)
and v = (k, l) where r ≤ k − 1 and s ≤ l − 1 does not include both vertical and horizontal
edges [5].

Proof Suppose a fragment PF of a shortest path P in a king’s graph G contains a diago-
nal edge ed ending with vertices (r , s) and (r + 1, s + 1) where r , s ∈ Z. This edge can
be denoted by ed = {(r , s), (r + 1, s + 1)}. The diagonal edges can also have the form of
{(r , s), (r − 1, s − 1)} or {(r , s), (r + 1, s − 1)} or {(r , s), (r − 1, s + 1)}. However, there
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is a path P
′
F that contains one horizontal edge eh = {(r , s), (r + 1, s)} and one vertical edge

ev = {(r + 1, s), (r + 1, s + 1)} between (r , s) and (r + 1, s + 1). It is evident that the path
P

′
F has two edges that are longer than the single diagonal edge that connects these ends.
Suppose a path P with n edges between the vertices u = (i, j) and v = (k, l), where

r ≤ k − 1 and s ≤ l − 1, contains vertical and horizontal edges.
We assume that the path P contains a horizontal edge eh that is between the vertices

u = (r , s) and (r + 1, s) and a vertical edge ev that lies between the vertices (k, l − 1) and
v = (k, l). Hence, the sequence of the vertices of the edges in the path P is {u = (r , s), (r +
1, s), (r +2, s+1), (r +3, s+2), ..., (r +n−1, s+n−2), (r +n−1, s+n−1) = v = (k, l)}.
The components of the vertices of an edge differ one unit from one vertex to another. If the
edge is horizontal, its vertices on its first component of the pair of forms (x, y) diverge by
one unit. Similar differences exist between the ordered pairs of vertices of a diagonal edge
and a vertical edge: one unit separates them on the second component in the representative
coordinates of a diagonal edge, while one unit separates them on the first.

Consider a shortest path P ′ between u = (r , s) and v = (r + n − 1, s + n − 1). The order
of vertices of the edges in P ′ could be {u = (r , s), (r + 1, s + 1), (r + 2, s + 2), (r + 3, s +
3), ..., (r + n − 2, s + n − 2), (r + n − 1, s + n − 1) = v = (k, l)} where all edges can be
diagonal. There are n − 1 edges in P ′. This contradicts the number of edges in P located
between u and v, since |P ′| < |P| where both paths lie between the same vertices.

Four compass orientations are present in the edges of a king’s graph: north (or south),
east (or west), north-east (or south-west), and north-west (or south-east). For example, the
alignment of the vertical and horizontal edges is equally south or north and east or west,
respectively. The diagonal edges are oriented to the north-east (south-west) and the north-
west (south-east) in a king’s graph.

Consider the shortest path between u = (r , s) and v = (k, l). If |k − l| ≥ 0, then the path
includes horizontal and diagonal edges or all horizontal edges, since the first component of
representative points of a vertex changes from one vertex to the other vertex of a horizontal
edge. Similarly, if |l −k| ≥ 0, then the second component of representative points of a vertex
shifts from one vertex of a vertical edge to the other vertex of a vertical edge, and the path is
made up of vertical and diagonal edges or only vertical edges.

Consequently, the orientations of edges in a shortest path, where the path has both horizon-
tal and diagonal edges, are east, south-east and north-east, or equivalently, west, north-west
and south-west. Similarly, the orientations of edges in a shortest path that has both vertical
and diagonal edges are north, north-east and north-west, or equally south, south-west and
south-east.

Lemma 4.2 In a king’s graph, the number of edges in a shortest path between two distinct
vertices u = (i, j) and v = (i + n, i + m) where i, j, m, n ∈ Z is max(m, n).

Proof Consider a shortest path P with vertices u = (i, j) and v = (i + n, i + m) where
i, j, m, n ∈ Z. If n = 1 and m = 1, then P includes one diagonal edge by Lemma 4.1.
Hence, the number of edges on the path P is max(m, n) = 1.

Suppose that the number of edges on a shortest path in the king’s graph is max(m, n) = m
where m, n > 1 between u = (i, j) and v = (i + n, i + m). In this case, we can take the
inequality m > n.

Suppose m > n. If m > n, then m − 1 ≥ n. Hence, max(m − 1, n) = m − 1. We assume
that the number of edges on the shortest path between u = (i, j) and v = (i + n, i + m) is
m. The edges link the vertex v = (i + n, i + m) in the shortest path lying between u and v

can be eh = {(i +m −1, j +n), (i +m, j +n)} or ev = {(i +m, j +n −1), (i +m, j +n)}

123



Encoding paths with binary arrays in a king’s graph...

or ed = {(i + m − 1, j + n − 1), (i + m, j + n)}. Therefore, the path from the vertex u to
any of these vertices {(i + m − 1, j + n)} or {(i + m, j + n − 1)} or {(i + m − 1, j + n − 1)}
has m − 1 edges. Therefore, the proof holds for max(m − 1, n) = m − 1 and the proof of
the induction step is completed.

Lemma 4.3 A diagonal line crosses at most one edge belonging to the shortest path in a
king’s graph [5].

Proof Let I = {0, 1, 2, . . . , n} be the set of indices and ehk be the horizontal edge where
k ∈ I . The horizontal edges crossed with the same line have an order of eh0 = {(i, j), (i −
1, j)}, eh1 = {(i − 1, j − 1), (i, j − 1)}, eh2 = {(i − 2, j − 2), (i − 1, j − 2)}, . . . , ehn =
{(i − n, j − n), (i − n − 1, j − n)} where i, j ∈ Z. Suppose a diagonal line crosses two
of these horizontal edges ehk = {(i − k, j − k), (i − k + 1, j − k)} and ehl = {(i − l, j −
l), (i − l + 1, j − l)} where both lie on a shortest path P . The path, which is the sub-path
of P , between (i − k, j − k) and (i − l, j − l) includes the edges ehk and ehl and diagonal
edges by Lemma 4.1. However, there can be another path between vertices (i − k, j − k) and
(i − l, j − l) that is 2 edges shorter than the sub-path of P including two horizontal edges
ehk and ehl . This contradicts the fact that the chosen path P including the edges ehk and ehl

,which are crossed by a diagonal line, is the shortest path.
Likewise, we may assume that a line intersects two vertical edges lying on a shortest

path P ′ together. These edges are denoted by evm and evn , where the set of indices is I =
{0, 1, 2, . . . , t} and m, n ∈ I . The vertical edges on one line must have the form ev0 =
{(p, q), (p, q−1)}, ev1 = {(p−1, q−1), (p−1, q−2)}, ev2 = {(p−2, p−2), (p−2, q−3)},
. . . , evn = {(p −n, q −n), (p −n, q −n −1)}where p, q ∈ Z. Let the edge evm lie between
the vertices (p − m, q − m) and (p − m, q − m − 1) and the edge evn link the vertices
(p − n, q − n) and (p − n, q − n − 1). The path, which is the sub-path of P ′, between the
vertices (p − m, q − m) and (p − n, q − n) includes the edges evm and evn and diagonal
edges by Lemma 4.1. Yet, there is another path between the vertices (p − m, q − m) and
(p − n, q − n) that consists of only diagonal edges and this path is two edges shorter than
the sub-path of P ′ including two vertical edges evm and evn . This contradicts the fact that the
chosen path P ′ including the edges evm and evn ,which are crossed by a diagonal line, is the
shortest path.

We assume that a line crosses two diagonal edges that are part of the same shortest path
P ′′. The diagonal edges on the same line have the form ed0 = {(r , s + 1), (r + 1, s)},
ed1 = {(r −1, s), (r , s −1)}, ed2 = {(r −2, s −1), (r −1, s −2)}, . . . where r , s ∈ Z. If two
of these diagonal edges with vertices {(r , s +1), (r +1, s)} and {(r −2, s −1), (r −1, s −2)}
are on the sub-path of chosen path P ′′, then it is easy to see that there is another path between
the vertices (r , s + 1) and (r − 2, s − 1) which is shorter than the sub-path of chosen path
P ′′ including the diagonal edges can be found.

The vertical and diagonal edges crossed by the same line have a form of ev0 =
{(r , s), (r , s − 1)}, ed0 = {(r − 1, s), (r , s − 1)}, ev1 = {(r − 1, s), (r − 1, s − 1)}, ed1 =
{(r − 2, s − 1), (r − 1, s − 2)} . . . and the horizontal and diagonal edges crossed by the
same line have a form of eh0 = {(r , s), (r + 1, s)}, ed0 = {(r − 1, s), (r , s − 1)}, eh1 =
{(r − 2, s − 1), (r − 1, s − 1)}, ed1 = {(r − 2, s − 1), (r − 1, s − 2)} . . . where r , s ∈ Z.
When there are horizontal and diagonal edges or vertical and diagonal edges that are crossed
by the same diagonal line in chosen path which is supposed to be the shortest path, a simi-
lar approach can be used. Consequently, the number of edges on the path between the goal
vertices contradicts that the path is the shortest.
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In contrast to this lemma, more than one diagonal edge of the shortest path may be
intersected by horizontal or vertical lines.

Lemma 4.4 A horizontal line does not intersect more than one edge in a shortest path that
consists of vertical and diagonal edges. Additionally, a vertical line in a shortest path made
up of diagonal and horizontal edges does not cross more than one edge.

Proof Ahorizontal line rh lies between two lines from the y-coordinate, whichwe say yk = k
and yk+1 = k + 1.

Let P be the shortest path between vertices (i, k) and (i + m, k + 1). Note that there
might be another path between the lines yk = k and yk+1 = k + 1 that the vertices are
(i, k) and (i + m, k). If i < i + m, then the edges on the shortest path are diagonal or
horizontal, or horizontal and diagonal. Since the first components of representative points of
vertices, where the vertices belong to horizontal edges, change 1, and both components of
representative points of vertices,where the vertices belong to diagonal edges, differ 1.

The vertices of the last edge on the shortest path P are {(i + m − 1, k), (i + m, k + 1)} if
the edge is diagonal or {(i + m − 1, k + 1), (i + m, k + 1)} if the edge is horizontal. Note
that horizontal edges cannot be intersected by horizontal lines since they are parallel. On
the other hand, the edges between the lines bounded by the points of the y-coordinate are
diagonal and vertical. If there is another vertical edge on the path P intersected by the line
rh with the vertices {(i + m, k), (i + m, k + 1)}, this contradicts the Lemma 4.1.

Similarly, a vertical line rv lies between two points from x-coordinate that we say xl = l
and xl+1 = l + 1. Suppose that a shortest path lies between these lines. The vertices of this
path are (l, j) and (l, j + n) or (l, j) and (l + 1, j + n). When j < j + n, the shortest path
contains diagonal or vertical edges, or both. A vertical line intersects horizontal and diagonal
edges. However, a shortest path cannot have a horizontal edge if it only has diagonal and
vertical edges according to the Lemma 4.1.

5 The bloom filters for the shortest paths in king’s graphs

The edge labeling introduced in this research generates a shorter length of Bloom filters than
the method proposed in [5]. In addition, the encoding method proposed in this paper differs
in some properties from the method introduced in [5] (see Section 3 in this paper). Therefore,
the Bloom filters of the shortest paths have differences and the topological properties of
king’s graph affect the structure of our Bloom filters of the edges. The following lemmas
show this special appearance.

Lemma 5.1 The first and second sections of the Bloom filter of the shortest path in a king’s
graph exhibit the form of a successive sequence for the blocks containing one bit 1.

Proof By definition, a path consists of connected edges. The lines that we use for encoding
edges are assigned by consecutive numbers and intersect edges belonging to the shortest
paths. The blocks presenting the edges in the Bloom filters are placed in some block positions
specified by the number of lines. By Lemma 4.3, a diagonal line does not cross more than
one edge in a shortest path; hence, the blocks representing the edges in the shortest path are
not placed in the same block positions in the Bloom filter of the shortest path. Hence, blocks
that include one bit 1 have the form of a consecutive sequence in the relevant sections of the
Bloom filters of shortest paths in a king’s graph.
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Lemma 5.2 The Bloom filter of any shortest path may include the block 11 in its either the
third or fourth sections.

Proof According to the labeling technique we introduced, the vertical and horizontal lines
designate the places for the blocks where the blocks represent the diagonal edges in the third
and fourth sections of Bloom filters of the edges, respectively.

Suppose a vertical line rv between the coordinates x = i and x = i +i intersectsmore than
one diagonal edge on a shortest path. The sequence of vertices of diagonal edges intersected
by the line rv is (i, j), (i + 1, j + 1), (i, j + 2), (i + 1, j + 3), ...., (i, j + n). The number
of diagonal edges between the vertices (i, j) and (i, j + n) is n according to the Lemma 4.2.
That is, the number of vertical edges between the vertices (i, j) and (i, j + n). Therefore,
all these diagonal edges may belong to a shortest path, and the vertical line rv intersects all
these diagonal edges whose number is more than one. Note that this path contains both types
of diagonal edges oriented north-east and north-west. Consequently, representative blocks
01 and 10 of these diagonal edges are set in the same block position, which is numbered
by the line rv in the third section of the Bloom filter of the shortest path. By Lemma 4.4,
a horizontal line does not intersect more than one edge from a shortest path containing
vertical and diagonal edges. Hence, the fourth section of the Bloom filter of the shortest path,
including vertical and diagonal edges, does not contain the block 11.

6 Removing false positives from the shortest paths in king’s graphs

The header,which is sent to the recipient alongwith themessage, specifies themessage’s route
based on the routing scenario we are considering.When the message reaches a computer v on
the way, it takes into account each edge connected to v and contrasts the edges incidental to v

in all bits with the Bloom filters of the shortest path. As a result, the edges that are connected
to the shortest pathways could be false positives in this network architecture. The encoding
technique presented in [5] does not generate a false positive. Also, in this section, we show
that the Bloom filter that we improve in this research for the shortest paths in a king’s graph
does not generate false positives.

Theorem 6.1 In a king’s graph, the Bloom filter applied to the shortest path does not generate
a false positive.

Proof A shortest path P and an edge e in P are given in a king’s graph G. Suppose the edges
f , g, h, i, j, k, l are directly connected to the edge e (see the Fig. 4). The edge e can be any
of vertical, horizontal or diagonal edge, we follow the same approach to any type of edge
chosen from the shortest path. We examine that e is horizontal in P (see the Fig. 4). Note
that, routing scenarios state that the message is not forwarded back, when a computer lying
on the shortest path gets the message, therefore if the horizontal edge e receives the message
from the computer placed on its left hand-side, then the edge e carries the message to the
computer placed on its right hand-side.

Since e is horizontal, then the following vertical edges k, g cannot be in the same shortest
path by the Lemma 4.1. Then one might think these edges can be false positives in the Bloom
filter of P denoted by β(P). The diagonal encoding lines of the edge e cross the edges k and
g. Hence, if the edges e and k or the edges e and g on the shortest path, then the representative
blocks of the vertical and horizontal edges appear on the same block position β(P). However,
this contradicts the Lemma 5.1. It is found that β(k), β(g) � β(P).
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Fig. 4 The adjacent edges k, g, f , l, j, h, i to the edge e from a shortest path [5]

The edges l and f are crossed by the same vertical line. By Lemma 4.4, these edges can
be false positives for β(P). Also, these edges are crossed by diagonal lines with e. When the
edge e and the edge f or the edge e and the edge l lie on P , then the descriptive blocks of these
edges appear on the same block’s place in the first or second sections of β(P), respectively.
Yet, this contradicts the Lemma 5.1. Therefore, any of the edges l, f do not exist in P and
they are definitely not false positives.

Now, we examine if one of the next three edges h, i and j is on P with e. These three
edges are crossed by the same vertical line and by Lemma 4.4 a vertical line does not cross
more than one edge in the shortest path made up of the horizontal and diagonal edges. Hence
the edges h, i and j cannot be on the shortest path all together.

Suppose the edge j following the edge e is on P . A diagonal line crosses the both edges
j and i and a vertical line intersects both edges j and h (see Fig. 4), by Lemma 4.3 and
Lemma 4.4 these edges cannot be on one shortest path. In this case the edges h and i can be
false positives of β(P). Since, the edge i exists on the same diagonal encoding line with the
edge j , the representative 4-bit blocks of these edges lie on one block’s place β(P). Yet, this
contradicts the Lemma 5.1. If j ∈ P after the edge e, then it is obtained that β(i) � β(P).
Also, the edges j and h are crossed by the same vertical line. If these edges exist in the same
shortest path, then the representative 2-bit blocks of these edges would be seen on the same
block’s place in the third section of β(P). Yet, the block 11 is found in the fourth section of
the Bloom filter of the shortest path if it is composed of both horizontal and diagonal edges.
By Lemma 5.2, both the third and fourth sections of the Bloom filter of the shortest path do
not include the block 11 at the same time. Hence this is a contradiction and β(h) � β(P).
Therefore, j is on P with e, then i and h are not false positives. We may assume i or j are
on P with e, the similar process which proves that j is on the path can be applicable.

The approach which is considered for a horizontal edge from a shortest path as above is
applicable to the other types of edges that are either vertical or diagonal. The same argument
as above can be followed for the edge on the shortest path which is supposed to be diagonal
or horizontal. We can make an assumption of the orientation of the edge on the shortest path,
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then we examine the following edges that are either on the shortest path or not. The adjacent
edges are unquestionably not on the path when an edge is on the path. The Bloom filters of
any of its neighboring edges are ≤ the Bloom filter of the shortest path in every bit position
simultaneously.

7 Arguments of the encodingmethods

7.1 One-bit per edge labeling

We assume that G is a king’s graph with a set of edges E . In this way of path labeling, each
edge e ∈ E belonging to a path P , where P ⊂ E , is represented by one bit in β(E). This
approach also does not generate false positives, since in this encoding method the length of
the Bloom filter is the number of edges in the graph and each edge is represented in a precise
bit position in the Bloom filter.

In this path labeling method, the number of bits in the Bloom filter is |E |. Obviously, k
denotes the number of edges in the path P , then |E | = 4M N + M + N where the graph is in
size of M × N . On the other hand, according to our encoding method |β(P)| = 10(M × N ).
It is obtained that 10 × (M + N ) < 4M N + M + N for M ≤ 5 and N ≤ 5. Consequently,
the parameters used for labeling edges limit the use of space in our path labeling approach
for king’s graphs where the graph size is larger than 5 × 5.

7.2 Standard bloom filter for edges in a king’s graph

Here, we examine how parameters, which we use to build Bloom filters, work for standard
Bloom filters. In the research that preceded ours, the k number of bits 1 of β(e) of the edge
e are placed in the string randomly. Hence, if we had labeled the edges with standard Bloom

filters, we would probably obtain false positives. The formula (1 − e
−kn

m )k , where m is the
length of the Bloom filter, n = |S|, and k is the number of bits 1 in the Bloom filters of the
edges, is typically used to approximate the probability of false positives [2].

In our model m = |β(e)|, n is the number of edges in a shortest path and k is the number
of bits 1 in the Bloom filters of the edges. The number of edges in a shortest path that connect
a king’s graph’s two opposed corners, with maximum number of edges, is max(M, N ) by
Lemma 4.2 where the king’s graph is in the size of M × N . In order to find the optimal k,
we examine the edges with their maximum number on a shortest path and the length of the
Bloom filters of the edges, since the aim is to get the probability of false positives as minimal
as possible.

The optimum k is calculated with the formula �ln2× m
n � to find the minimum probability

of false positives, [17]. We find k = �ln2 × 10(M+M)
M � = 14 with the parameters of our

model. However, in the labeling method we present k is 2 in the Bloom filter of the vertical
and horizontal edges and 4 in the Bloom filter of the diagonal edges in our method.

If the edges of a king’s graph are labeledwith the standardBloomfilter using the parameters
introduced in our encodingmethod, then the probability of false positives would be computed

as (1 − e
−kn

m )k = (1 − e
−14M

10(M+M) )14 ≈ 0, 00006. This is another advantage of the encoding
method presented in this research.

There are 6 × max(M, N ) adjacent edges that are the possible false positives to the
shortest path with the highest number of edges. Therefore, when the edges would have been
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encoded with the standard Bloom filter, the probability of nonexistent false positives would
be (0.99994)6M when M = N .

7.3 Other encodingmethod for a king’s graph

The encoding methods introduced in [5] and in this research for the shortest paths in king’s
graph do not generate false positives.

Furthermore, the labeling method we discovered in this study generates shorter Bloom
filters than the method proposed in [5].The length of the Bloom filter introduced in [5] is
12 × (M × N ), where M and N are the number of horizontal and vertical edges on the
horizontal and vertical sides of a king’s graph, respectively. The length of the Bloom filters
in this paper, that is, 10 × (M × N ), is approximately 16, 6% shorter than the other method
in [5]. The method proposed in this study uses less space.

If the bits 1 in the Bloom filters of the edges are arranged in random places, then the
labeling method may produce false positives. As an example, when the size of the graph
is 11 × 10, the length of the Bloom filter is 210 where m = 10(M × N ) and 252 where
m = 12(M × N ). Edges that have connections to the shortest pathways could be false
positives. Figure 5 shows the false positive probability for the Bloom filter with m = 252
and m = 210 and k = 4, when the number of edges n on the shortest path changes between

Fig. 5 The false positive probability for the Bloom filter with m = 252 and m = 210 and k = 4, when the
number of edges in the paths takes different varieties
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Fig. 6 The false positive probability for the Bloom filter of both m = 210 and m = 252 with k = 4, k = 13
and k = 16, when the number of edges in the paths takes different varieties

1 and 11 and the edges on the graph are labeled by using the standard Bloom filter. Note that
the shortest path in a king’s graph of size 11 × 10 contains at most 11 edges.

In order to minimize the number of false positives, the Bloom filter should have an optimal
number of bits 1, that is, �ln2× m

n �, [17]. The optimal numbers of bits 1 with the parameters

m = 210 and m = 252 are k = �ln2 × 10(M+N )
max(M,N )

� = 13 and k = �ln2 × 12(M+M)
max(M,N )

� = 16
in a 11× 10 sized king’s graph, respectively. As seen in Fig. 6, the false positive probability
rate has a low level with optimum k for standard Bloom filters.

8 Conclusion

The motivation for this study came from data transfer problems between computers in com-
puter networks. This study employs a rigorous theoretical approach and covers a novelmethod
to encode the shortest paths in king’s graphs using Bloom filters.

In theory, we proved that a path-coding method that we introduced based on the Bloom
filter in a computer network that has the shape of a king’s graph does not generate false
positives regardless of the size of the graph. In this respect, it offers experts the convenience
of choosing the size of the network. In applications, note that all parameters should maintain
their optimal values to reduce network costs. If one is interested in networks having another
structure, instead of king’s graphs, it may be useful to refer to our earlier studies [10, 12–14].

In comparison with [5] this research of the Bloom filters for shortest paths in king’s graph
uses Bloom filters of a shorter length. This has advantages for users, as it uses less space than
in previous research. Both methods are optimal in the sense that they do not produce false
positives.

Some studies show that using standard Bloom filters is a reasonably good approach if they
may produce false positives with a small amount. This is possible if |U | is reasonably small
[10]. We demonstrate that a model with fewer space requirements and no false positives can
be obtained by building a Bloom filter under certain assumptions.
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