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Abstract

This thesis examines three interconnected topics: Option-implied Probability Density Func-

tions (PDFs) during macroeconomic uncertainty, Extreme Value Theory (EVT) volatility-

managed portfolios, and rough GARCH-type LSTM models for volatility forecasting. Using

advanced econometric and machine learning methods, the study provides deeper insights into

financial market dynamics.

Chapter 2 investigates option-implied PDFs, which reveal investor expectations about future

asset prices. Unlike traditional methods, PDFs provide a richer perspective by capturing

a broader range of investor beliefs. The study employs non-parametric and parametric

techniques to analyse the impact of macroeconomic uncertainty on these densities. It uses

proxy Structural Vector Autoregressive (SVAR) models to study uncertainty shocks, while

EVT tail shape parameters assess distribution tail decay. Findings highlight the link between

anticipated uncertainty and its resolution, showing how uncertainty influences risk-taking

behaviours. A Probit model indicates that low volatility periods often precede financial crises.

Chapter 3 focuses on a volatility-managed portfolio strategy aimed at reducing tail risk and

enhancing the Sharpe ratio. Built on the Fama-French Five-Factor Model, the strategy is

compared with benchmarks like buy-and-hold and Moreira & Muir (2017) strategies. The

xii



chapter introduces EVT to better capture extreme loss risks by focusing on distribution tails,

addressing limitations of Value at Risk (VaR). The analysis shows that EVT-based strategies

effectively mitigate tail risk and improve returns, offering a novel volatility timing approach.

Chapter 4 presents rough hybrid Long Short-Term Memory (LSTM) models, including

rGARCH-LSTM, rEGARCH-LSTM, and rGE-LSTM, to improve volatility forecasting. These

models combine financial time series roughness, LSTM predictive power, and GARCH-type

model robustness. Tested on intraday SPX data, the hybrid models outperform conventional

methods, enhancing volatility forecasts and risk management strategies.

This thesis advances our understanding of volatility, tail risk, and uncertainty in financial

markets, providing valuable insights for investors, policymakers, and financial institutions in

risk management and investment decisions.

xiii



Publication

Portions of this thesis are slated for publication, reflecting significant contributions to the

field of finance.

• AN EX-ANTE AND EX-POST ANALYSIS OF OPTION-IMPLIED PROB-

ABILITY DENSITY FUNCTIONS IN TIMES OF MACROECONOMIC

UNCERTAINTY.

Authors: M. O. Dada, L. Vitellio, V. Nawosah, A. Triantafyllou.

Target Journal: To Be Announced (Pending Submission)

This study provides a detailed investigation into the behaviour of option-implied

probability density functions before and after major economic events, offering novel

insights into low volatility as an early predictor of macroeconomic instability. The

research explores the implications of these pricing mechanisms for financial stability

and risk management strategies. The findings from this research were presented at

prestigious academic venues, highlighting the robustness and relevance of the work:
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– International Symposium in Finance (ISF2022), Greece.

This presentation facilitated rigorous academic discourse and provided valuable

feedback from leading experts in the field, further refining the research and

positioning it for successful publication in a high-impact journal.

• EXTREME VALUE THEORY-MANAGED PORTFOLIOS.

Authors: M. O. Dada, L. Vitellio, V. Nawosah.

Target Journal: To Be Announced (Pending Submission)

This study introduces a trading strategy that harnesses volatility to mitigate portfolio

tail risk while enhancing the Sharpe ratio. It makes a significant contribution by

encouraging the adoption of Extreme Value Theory (EVT) within the Volatility-

Managed portfolio literature. The research underscores the advantages of EVT in

strengthening risk management and optimising volatility timing, resulting in improved

financial performance, particularly in the face of market volatility and extreme events.
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Chapter 1

INTRODUCTION

This research aims to deepen our understanding of how financial markets react to various

economic and geopolitical events by exploring the evolution of option-implied PDFs, imple-

menting volatility-managed strategies to optimise portfolios while managing tail risks, and

forecasting realised volatility.

Chapter 2 focusses on the evolution of option-implied PDFs during times of macroeconomic

uncertainty and offers valuable insights into market expectations and risk assessments. These

PDFs, which reflect the risk-neutral probabilities of future asset prices, are derived from

market-traded options and are crucial for understanding how investors perceive risk and

uncertainty. An option-implied Probability Density Function (PDF) depicts estimates of

future movements of an asset’s price as priced by investors. PDFs are significant as PDFs are

forward-looking and based on market prices; in this Chapter, I compute PDFs using option

prices. By analysing the ex-ante, current, and ex-post states of these PDFs, we can observe

how market sentiments evolve in response to anticipated and realised economic events.

The theoretical foundation for this analysis is built upon the risk-neutral valuation principle,

1



as established by Cox & Ross (1976) and Ross (1976) which posits that the price of an option

is equal to the expected present value of its payoff, discounted under the Risk-Neutral Density

(RND). The mathematical framework developed by Breeden & Litzenberger (1978) further

allows for the extraction of these RNDs by calculating the second derivative of the option

price with respect to the strike price. This method provides a direct link between option

prices and market expectations of future asset prices.

The study applies a range of parametric and non-parametric methods to estimate RNDs,

ultimately selecting the mixture of log-normals model for its superior accuracy in forecasting

European call option prices, as determined by the Diebold-Mariano test from Diebold

& Mariano (1995). Through this approach, the empirical relationship between ex-ante

uncertainty arising from scheduled and unscheduled macroeconomic news, and the ex-post

resolution of uncertainty in financial markets is explored. This relationship is further analysed

by implementing a proxy SVAR model, incorporating macro economic news events, estimating

the Extreme Value Theory Tail Loss Measure (TLM), and applying Probit regression models

to investigate the predictive power of low volatility in forecasting financial crises. The results

are further examined with an array of loss functions.

Chapter 3 focuses on portfolio optimisation, particularly in managing tail risk while improving

the Sharpe ratio, a key measure of risk-adjusted return. The study constructs a portfolio

using the Fama-French Five-Factor Model, which extends the original three-factor model by

incorporating profitability and investment factors. This model is compared against benchmark

portfolios, including buy-and-hold strategies and volatility-managed portfolios.

2



A central theme in this analysis is the application of Extreme Value Theory (EVT) to

manage tail risk, as EVT is particularly effective in assessing the risk of extreme losses, which

traditional Value-at-Risk (VaR) measures might underestimate. By focusing on the tails of

the distribution, EVT provides a more accurate risk assessment in scenarios where return

distributions deviate significantly from normality. The study demonstrates that incorporating

EVT into the portfolio optimisation process can lead to a more resilient portfolio, better

equipped to handle extreme market events.

Portfolios managed with EVT are critical due to investor behaviour, as outlined by Prospect

Theory from Kai-Ineman & Tversky (1979), which highlights that individuals are more

sensitive to losses than gains. In times of market volatility or turbulence, economic agents

often prioritise stability and shift towards less volatile assets to avoid potential losses.

Conversely, during periods of market calm, when economic agents are experiencing gains,

they become more willing to take on additional risks in pursuit of higher returns. By utilising

Extreme Value Theory-Managed (EVTM) portfolios to dynamically adjust allocations based

on market conditions, investors can optimise risk-adjusted returns while mitigating the

negative impacts of volatility. This adaptive approach enhances portfolio resilience, balancing

risk and reward across different market environments.

The study underscores the importance of integrating EVTM with portfolio optimisation

techniques, such as the Sharpe and Sortino ratios to improve performance by managing

downside risk and maximising risk-adjusted returns. These findings are especially valuable

for portfolio managers and risk professionals, as they provide insights into managing the

risks associated with extreme market movements. They also offer credit risk professionals a
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tool for assessing the impact of extreme events like defaults and downgrades. Overall, the

results support adopting the EVTM strategy in both single-factor and multi-factor portfolios,

presenting a robust method for achieving superior financial outcomes amid market volatility

and extreme events.

Chapter 4 is the final aspect of this research which analyses volatility forecasting as financial

market volatility is a key indicator of financial market stability and investor confidence.

Accurate forecasting of realised volatility is essential for effective risk management, portfolio

optimisation, and policy formulation. This research examines the use of various models,

including GARCH-type models and machine learning approaches such as Long Short-Term

Memory (LSTM) networks to forecast realised volatility based on historical data.

The study places particular emphasis on the Hurst exponent, GARCH-type models, and

LSTM networks for their respective strengths in capturing long-term dependencies, volatility

clustering, and complex non-linear relationships in time-series data. The Hurst exponent,

originally developed to analyse the presence of long-range dependence in hydrology, is

employed here to assess the long-term memory of financial time-series, providing insights

into market behaviour over extended periods. GARCH and EGARCH models are utilised

to capture the volatility clustering and leverage effects observed in financial markets, while

LSTM networks are leveraged for their ability to model and predict non-linear patterns in data

that traditional models might neglect. We analyse the rough GARCH-type LSTM models

with the DM and WS statistical tests, which test if one model is a better predictor of RVt in

comparison to another, and if there are significant differences in the models, respectively.
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Eventually, we decompose the RVt to low, mid, and high states for financial and political

events using a three-state first-order Markov switching regression model. We map the

identified volatility states to the event days and proceed with forecasting using the LSTM

models. We compute the one day-ahead forecasts corresponding to or immediately following

the event date. Subsequently, we evaluate the forecasting accuracy, by calculating the Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE).

By combining these models into a hybrid framework, the research aims to enhance the

accuracy of realised volatility forecasts, as supported by empirical findings from Hu & Ni

& Wen (2020) and Kim & Won (2018). The rough GARCH-type LSTM models developed

in this study integrates roughness, GARCH and EGARCH outputs with LSTM networks,

offering a novel approach to forecasting realised volatility in financial markets.

My main contribution in relation to Chapter 2 is analysing how low volatility is a strong

predictor of financial crisis. By implementing various modelling approaches, and estimating

the RND to examine the forecastability of crashes. Ultimately, we observe how the evolution

of the tail-shape parameter and how the PDF conforms to Keynes (1937) and Minsky (1977)

economic theories in how economic agents observing low financial risk tend to increase

risk-taking, leading to a crisis.

The primary contribution of Chapter 3 lies in its comprehensive analysis and validation of

portfolio optimisation strategies that incorporate Extreme Value Theory (EVT) alongside

traditional risk-adjusted performance measures such as the Sharpe ratio and Sortino ratio.

The Chapter demonstrates that portfolios managed using Extreme Value Theory optimised
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by Sharpe and Sortino methods (referred to as EVTM portfolios) consistently outperform

Volatility-Managed (VM) portfolios from Moreira & Muir (2017) and unmanaged portfolios

across several key performance metrics. The study provides compelling evidence that EVTM

portfolios, particularly those optimised using the Sortino ratio, achieve significantly higher

risk-adjusted returns compared to VM portfolios. The Sortino-optimised EVTM portfolios,

for instance, exhibit a Sortino ratio 3.46 times higher than that of VM portfolios, underscoring

the effectiveness of incorporating downside risk into portfolio management. By employing

Conditional Value at Risk (CVaR) as a measure of extreme downside risk, the analysis reveals

that EVTM portfolios manage extreme risks more effectively than VM portfolios at high

confidence levels (99% and 95%). This is particularly significant during extreme market

events, where the EVTM strategy shows a more favourable risk-return profile, as indicated

by positive skewness and more moderate kurtosis compared to VM portfolios. The study

also addresses the practical aspect of transaction costs, showing that despite higher break-

even transaction costs associated with EVTM portfolios, these portfolios maintain superior

performance metrics, stemming from higher Sharpe ratios and alphas. This highlights the

resilience of EVTM strategies to transaction costs, making them a viable option in real-world

portfolio management. Overall, this Chapter makes a significant contribution by advocating

for the integration of EVT into portfolio optimisation, demonstrating its value in enhancing

risk management and volatility-timing, and achieving superior financial outcomes, particularly

in the context of market volatility and extreme events.

Regarding Chapter 4, my contribution is the implementation of novel rough hybrid long short-

term memory models (rGARCH-LSTM, rEGARCH-LSTM, and rGE-LSTM) designed for

6



forecasting realised volatility, integrating roughness, the LSTM model, and various Generalised

Autoregressive Conditional Heteroscedasticity (GARCH)-type models. These hybrids are

compared against standard models like GARCH-LSTM and EGARCH (exponential GARCH)-

LSTM models. Our findings reveal that roughness, combined with the GARCH model and/or

EGARCH model, within an LSTM framework, exhibits significant predictions. The chapter’s

primary contribution is on the emphasis of rough GARCH-type LSTM models, which learn

sequential patterns and enhances prediction accuracy in stock market realised volatility by

integrating a neural network model with multiple econometric qualities.

We assess the rough GARCH-type LSTM models in the context of macroeconomic events.

We evaluate various loss functions computed on three volatility states (low, medium, and high

volatility states) generated from a three-state first-order Markov switching regression model.

The analysis confirms rough GARCH-type LSTM models prove to outperform non-rough

LSTM types, and this comparative analysis reveals an increase in forecasting errors associated

with macroeconomic events. Therefore, we show empirical support to the phenomenon of

volatility clustering, which implies that high volatility affects and increases forecasting errors.
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Chapter 2

AN EX-ANTE AND EX-POST ANALYSIS OF OPTION-IMPLIED

PROBABILITY DENSITY FUNCTIONS IN TIMES OF MACROECONOMIC

UNCERTAINTY
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Abstract

An option-implied Probability Density Function (PDF) provides estimates of future movements

in an asset’s price as priced by investors. PDFs are significant because they are forward-

looking and based on market prices. In this Chapter, I compute PDFs using option prices.

This approach is comprehensive, as it incorporates information from the entire distribution

of investor beliefs, rather than relying solely on the mean expectation. Therefore, PDFs can

explain a range of future possibilities. I explore uncertainty by examining proxy Structural

Vector Autoregressive (SVAR) models to analyse uncertainty shocks and the tail shape

parameter to observe the rate of decay in the distribution’s tails. Ultimately, I estimate the

empirical relationship between ex-ante uncertainty and the ex-post resolution of uncertainty in

financial markets. I implement both non-parametric and parametric methods to construct the

PDFs and subsequently observe the statistical results and the economic impact of uncertain

events on the shape of the PDF in its ex-ante and ex-post states.

In conclusion, my contribution lies in revealing how macroeconomic uncertainty affects the

evolution of option-implied PDFs in ex-ante and ex-post states - which could be driven by

a change in investors’ risk aversion, and how the analysis of a lagged TLM probit model

supports the proposition that low volatility encourages excessive risk-taking behaviour.
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Abbreviation

PDF Probability Density Function

SDE Stochastic Differential Equation

PDE Partial Differential Equation

EW Edgeworth Density

ATM At-the-money

ITM In-The-Money

OTM Out-The-Money

BSM Black-Scholes-Merton

GB2 Generalised Beta of the Second Kind (GB2)

RND Risk-Neutral Density

TLM Tail Loss Measure

SVAR Structural Vector Autoregressive Model

VAR Vector Autoregressive Model

MAE Mean Absolute Error

EVT Extreme Value Theory
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CDF Cumulative Distribution Function

GPD Generalised Pareto Distribution
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Nomenclature

t Current time

T Maturity time of option

T − t Time left till option expiry

r Risk-free interest rate

St Asset price at current time

Ct Call option price at current time

Pt Put option price at current time

ST Asset price at maturity of option

K Strike price

qt Conditional risk-neutral probability density of the underlying price S at time t

Qt Conditional risk-neutral probability distribution function of St

L (ai, bi, ST ) Is the ith log-normal density function with parameters ai, bi

B(p, q) Is the Beta function of the GB2, and p and q are shape parameters controlling

the behaviour of the tails

yt SVAR vector
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I Is the proxy SVAR impact matrix that relates reduced-form innovations to

structural shocks

ϵt Is the proxy SVAR vector of structural shocks

A(L) Is a lag matrix polynomial capturing the autoregressive component of the model

ξ Tail shape parameter
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2.1 Introduction

The evolution of option-implied probability density functions (PDFs) during periods of mac-

roeconomic uncertainty offers a unique window into market expectations and risk perception.

This chapter examines the dynamic evolution of these PDFs by analysing three distinct

states, the ex-ante, current, and ex-post states within a risk-neutral framework. Under the

risk-neutral measure, the current price of a security reflects the discounted expectation of its

future prices, making risk-neutral probabilities an essential tool for estimating fair option

prices. A fundamental assumption underpinning this framework is the absence of arbitrage,

as initially formalised by Cox & Ross (1976) and Ross (1976).

Building on the seminal work of Breeden & Litzenberger (1978) and Banz & Miller (1978),

who demonstrated that the second derivative of the European call price with respect to the

strike price yields the discounted risk-neutral density, this research advances the literature by

focusing on how macroeconomic uncertainty shapes option-implied PDFs. This theoretical

foundation not only underpins our analysis but also highlights the importance of extracting

and observing the entire distribution of future asset prices rather than relying solely on point

estimates.

Motivated by the need for robust risk management and to assess pricing models, our study

employs both non-parametric and parametric methods to construct option-implied PDFs.

We use the Diebold-Mariano test (Diebold & Mariano (1995)) to compare the density

forecasting accuracy of different methods, finding that a mixture of log-normals offers superior
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performance in estimating European call option prices.

Furthermore, by examining the empirical relationship between ex-ante uncertainty, current

states, and the subsequent ex-post resolution of uncertainty (driven by scheduled and

unscheduled macroeconomic news, which are economic and political announcements), this

research bridges a gap between macroeconomic risk and market dynamics. A notable

contribution of our work is estimating and decomposing the Tail Loss Measure (TLM), which

captures the severity of extreme market downturns. Using TLM within a probit regression

framework, we demonstrate that periods of low volatility can paradoxically encourage excessive

risk-taking, a finding that aligns with recent studies Hamidieh (2014), Vilkov & Xiao (2013)

and Danielsson & Valenzuela & Zer (2018).

In summary, our major contributions include; providing a detailed analysis of the evolution

of option-implied PDFs under macroeconomic uncertainty, empirically linking ex-ante uncer-

tainty, and current states, to ex-post market outcomes, and offering insights into how low

volatility environments may foster conditions conducive to financial crises.

This work not only builds on foundational theories in risk-neutral pricing and option valuation

but also contributes novel empirical evidence on the interplay between macroeconomic

uncertainty and market risk as reflected in option markets.

This Chapter is structured as follows: in the next section, Section 2.2, we present the literature

review and discuss several methods for recovering risk-neutral densities, and the TLM. Our

results show that the mixed log-normal distribution is the best method for estimating SP500

European call options. We discuss the density accuracy test which is based on a comparative
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analysis using the Diebold-Mariano (DM) test from Diebold & Mariano (1995).

In Section 2.3, the data are presented. The dataset consists of CBOE European options

prices, the interest rate is the 3-Month Treasury Constant Maturity Rate (DGS3MO), public

debt as a percentage of gross domestic product is sourced from the Federal Reserve Economic

Data (FRED), and volatility surface data is obtained from OptionMetrics and is used to

compute the evolution of the tail shape parameter.

The methodology section, Section 2.4, offers a detailed explanation of the procedures and

techniques employed to recover and compare risk-neutral densities, evaluate uncertainty

shocks using gold as a proxy, analyse the evolution of the tail shape parameter, decompose

volatility into high and low volatility states, and compute the Probit regression model.

In Section 2.5, we analyse the ex-ante and ex-post PDFs along with statistical analysis.

Following Piffer & Podstawski (2018), gold is used as the most favourable safe-haven asset

for constructing the proxy. We conduct statistical analysis within this section, and assess

the use of gold as a safe-haven proxy to determine whether it provides more significance in

understanding the economic and statistical properties of financial and political events. We

estimate the Tail Loss Measure and discuss its evolution, and decompose volatility into high

and low states using a probit regression model. Our aim here is to examine the relationship

between volatility, as measured by the tail shape parameter, and the probability of a future

crisis.

Finally, in Sections 2.6, we conclude with our findings which infer that economic impact is

the highest if the economy stays in the low volatility environment.
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2.2 Literature Review

2.2.1 Construction of PDF

The adoption of PDFs to predict events or the probability of extreme movements has

been explored in various ways. PDFs implied from option prices, used to assess market

expectations about future uncertainty, asymmetry, and the probability of extreme movements

in asset prices, are discussed in Lynch & Panigirtzoglou (2008). Bahra (1997) shows how the

information contained in implied RND functions can supplement forward-looking information

available to policy-makers, aiding in assessing monetary operations and identifying anomalous

market prices. Jackwerth (2000) advance this framework by addressing several practical

challenges in extracting RNDs from observed option prices. Their methods allow researchers

and practitioners to infer the market’s risk-neutral expectations about future asset prices

providing valuable insights into investor sentiment, risk premia, and the pricing of risk.

The shape of the RND, which illustrates its skewness, kurtosis, and tail behaviour offers

information on how the market perceives extreme events and uncertainty.

We explore the dynamics of an option-implied PDF by observing macroeconomic uncertainty,

examining the states prior to the event, on the day of the event, and after the event to explain

the significance of the uncertainty. The events are categorised as financial or political news to

differentiate which type of news, whether anticipated or unanticipated, has a greater impact

on or after the event. It is shown that financial news has more of an impact on the PDFs that

are recovered. We also explore several types of RNDs to determine which method is the most

preferred in producing the risk-neutral density used to estimate the option-implied density.
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2.2.2 Risk-Neutral Density Estimation Methods

RNDs are categorised into three groups: parametric, semi-parametric, and non-parametric.

We focus on parametric and non-parametric estimation methods. The estimation methods

we investigate include Shimko’s spline method, Edgeworth’s expansion, the log-normal Black-

Scholes-Merton model, a mixture of two log-normals, and the generalised beta of the second

kind.

Shimko’s spline method is computed by smoothing the volatility smile. Bu & Hadri (2007)

explain the impact of this method on estimating the RND, particularly within the tails.

Smoothing the volatility smile is preferred over interpolating the call pricing function because

it is more challenging to accurately fit the shape when interpolating the call pricing function.

Moreover, small errors from interpolating the call price function tend to have significant

effects on the RND.

Jarrow & Rudd (1982) proposed a method to value European options. Their method is

an option pricing formula derived from an Edgeworth series expansion of the distribution

F about an approximating distribution A. Given the ubiquity and prominence of the log-

normal distribution in option pricing theory and practice, Jarrow & Rudd (1982) suggest the

log-normal distribution as a suitable approximating distribution.

Jackwerth (1999) discusses how mixture methods achieve greater flexibility in producing

different probabilities from several simple distributions. A limitation of the mixture procedure

18



is how the number of parameters increases exponentially. This is explained by how mixing

three log-normal distributions results in eight parameters, as two parameters are used for each

log-normal and two mixing probabilities are added. Melick & Thomas (1997) use mixtures

of three log-normal distributions and apply their method to American options on crude oil

futures, accounting for the optionality of early exercise. Ritchey (1990) analyses option prices

where the risk-neutral distribution of the log returns is a mixture of normal distributions.

Vitiello & Poon (2014) present closed-form European option pricing formulas within a general

equilibrium framework for assets following an N -mixture of transformed normal distributions.

These component distributions, while not needing to be from the same class, must all be

transformed normal. They prove this mixture can explain the seemingly abnormal non-

monotonic pricing kernel for the S&P 500, while maintaining a logically consistent monotonic

decreasing marginal utility for the representative agent. The authors demonstrate that a

mixture of two log-normal distributions is sufficient to generate this outcome, including

various implied volatility smile patterns.

Bookstaber & McDonald (1987) introduce the adoption of an extremely flexible generalised

distribution, the GB2 distribution. This distribution encompasses a wide array of well-known

distributions. The advantage of this flexibility is that it allows for the representation of

different degrees of flat tails in the distribution.

We conclude that the mixed log-normal distribution is the preferred method for estimating

S&P 500 European call options. This conclusion is based on a comparative test using the

Diebold-Mariano (DM) test from Diebold & Mariano (1995) detailed in the Appendix A.1.

The uniqueness of the DM test lies in its capacity to evaluate the best predictive model when
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multiple density forecasts are available. This result is also supported by Liu et al. (2007), who

compare parametric densities with more flexible non-parametric spline densities. Liu et al.

(2007) parametric method consisted of the mixture of log-normals and the generalised beta of

the second kind, while they also computed a non-parametric spline method. Their results

imply that parametric densities provide more accurate predictive densities for real-world

observed index levels. Parametric densities also prove to be more accurate, as the observed

likelihoods are higher than those of the spline densities for both risk-neutral and real-world

density comparisons. Liu et al. (2007) made comparisons of log-likelihoods, ranked cumulative

probabilities, and the moments of sets of densities.

2.2.3 Impact of Macroeconomic Uncertainty

Piffer & Podstawski (2018) highlight the use of gold as the most favourable safe-haven asset

for constructing a proxy. We explore using gold as a safe-haven proxy to assess whether using

gold as a proxy would show more significance in understanding the economic and statistical

properties of uncertainty shocks. Finally, we observe the impact of uncertainty before, during,

and after the event.

According to Hamidieh (2014) and Vilkov & Xiao (2013), the estimation of the Tail Loss

Measure (TLM) allows one to observe a portion of the probability density function instead of

examining the full distribution of asset prices. Here, we concentrate on the left tail alone;

the TLM allows us to use the left tail to capture the severity of a crash instead of relying

on an estimated probability. The construction of the tail loss measure involves the use of
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Extreme Value Theory (EVT). EVT centres on the distributional properties of extreme, low

probability, or uncertain events.

We take the TLM as a volatility measure a step further by applying Probit regression models

to assess a fundamental notion in economics. The proposition is whether low volatility

explains financial crises. To examine if low volatility is a strong predictor of a crisis, we

decompose volatility into high and low components following the methodology of Danielsson

& Valenzuela & Zer (2018). Danielsson & Valenzuela & Zer (2018) construct historical

volatility for 60 countries, some dating back to 1800, using monthly stock prices as daily

prices are scarce. In this Chapter, volatility based on the TLM is derived from daily S&P

500 prices. Another difference in this Chapter is that we use a Probit regression model, as

opposed to Danielsson & Valenzuela & Zer (2018), who use a panel-Logit regression, which

better accounts for the panel data composed of a large number of countries. Ultimately, high

and low volatilities are defined as deviations of volatility from above and below its trend,

respectively. The cycle and trend is estimated through a one-sided Hodrick & Prescott (1997)

filter.
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2.2.4 Economic Theory and Interpretation

Jackwerth (2000) assert the changes in risk-neutral PDFs may be driven by shifts in future

earnings expectations and or alterations in investors’ risk aversion. Jackwerth (2000) identifies

a significant departure in post-crash S&P 500 Index option pricing from the Black-Scholes

formula, which presents as a left-skewed, highly leptokurtic risk-neutral distribution for

the future underlying asset price. This deviation prompts the question of its underlying

economic causes. Jackwerth (2000) offers four potential explanations. First, the leverage

effect suggests that when stock prices fall, a firm’s debt-to-equity ratio rises because the

denominator decreases faster than the numerator, thereby amplifying the impact of asset

returns on stock returns and increasing volatility; this effect influences both individual stock

options and index options, the latter being convex combinations of constituent stock returns.

Second, the correlation effect posits that significant declines in stock index prices lead to

higher correlations among individual stock returns, reducing the benefits of diversification

and elevating overall volatility, as observed during the 1987 market crash. Third, the wealth

effect contends that falling stock prices diminish investors’ wealth, increasing their risk

aversion and causing them to react more strongly to new information, which in turn boosts

volatility. Finally, the risk effect reverses the causality of the wealth effect by suggesting that

an exogenous increase in market risk leads risk-averse investors to demand a higher expected

return, thereby lowering current stock prices.

Danielsson & Valenzuela & Zer (2018) support the view that economic agents change their
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risk-taking behaviour in times of uncertainty. This notion has a long history in economic

literature. Low volatility can lead to excessive credit buildups and balance sheet leverage

in the financial system; this implies that agents take more risks during periods when they

perceive risk to be low, supporting the maxim that “stability is destabilising.”

This theory is supported by Minsky (1977) instability hypothesis, which asserts that economic

agents observing low financial risk are inclined to increase risk-taking, ultimately leading

to a crisis. Furthermore, discussions of the adverse effects of low volatility on financial

stability are consistent with Brunnermeier & Sannikov (2014) “volatility paradox.” This

theory argues that low volatility can paradoxically increase the probability of a systemic

event. Additionally, Bhattacharya et al. (2015) examine Minsky’s hypothesis in a model

with endogenous defaults, where economic agents update their optimistic expectations during

good times, thus increasing risk-taking.

It is conventional to assume that during low-volatility periods, excessive risk-taking connotes

overoptimism. Hence, as suggested by Danielsson & Valenzuela & Zer (2018), during quiet

market periods when perceived risk is low, economic agents may behave irrationally and take

excessive risks. Excessive lending and leverage can incentivise a tendency to take on even

more risk.

Danielsson & Valenzuela & Zer (2018) investigate whether low volatility predicts crises

by decomposing volatility into high and low components. Their primary contribution

demonstrates that low volatility is a strong predictor of financial crises. Moreover, they show

that low volatility over a prolonged period can lead to increased risk-taking, measured by
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high credit-to-GDP ratios and financial sector leverage. As a result, low volatility encourages

greater risk-taking, which progressively leads to riskier investments. Over time, loan losses

increase, eventually culminating in a crisis.

2.3 Data Description

The data consist of CBOE bid and ask prices for European call and put options on the S&P

500 Index, sourced from OptionMetrics. The data range spans from January 4th, 1996, to

December 31st, 2019. The criteria for selecting option expiration dates include expirations

approximately within one month. The midpoint, which is the average of the bid and ask

prices for each option, is taken to obtain a single price. All puts with a bid price of zero are

removed. The S&P 500 Index option prices and dividend yield data are downloaded from the

OptionMetrics database.

Table 2.1 depicts key descriptive statistics for the option best bid and ask prices, implied

volatility (IV), and Delta. In our dataset, the average call option bid price is $292.68 and the

average ask price is $296.78. The dispersion around these averages is high, with standard

deviations of $346.27 for the bid and $348.81 for the ask. For call options, the implied

volatility averages 27%. Notably, the distribution exhibits a high positive skew (skewness =

3.5885), indicating a pronounced long right tail where extreme high volatility values occur.

Additionally, a kurtosis of 19.44 suggests that the tails are extremely heavy compared to

a normal distribution. Regarding put options, the implied volatility averages 26%. The

distribution for puts shows a moderate positive skew (skewness = 1.5192) and a kurtosis
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Table 2.1: Summary Statistics for Options Data
Index Mean Median Standard Dev Min Max Skewness Kurtosis

SPX Option
Price - Call

Best Bid 292.6847 184.5000 346.2690 0.0500 2613.7000 1.9680 4.8341

Best Offer 296.7845 188.8000 348.8089 0.0500 2620.8000 1.9510 4.7550

Delta 0.6667 0.8721 0.3701 0.0014 0.9992 -0.7883 -1.0418

Implied Volatility 0.2712 0.1952 0.2479 0.0503 2.9929 3.5885 19.4399

SPX Option
Price - Put

Best Bid 55.7253 6.0000 113.7725 0.0500 1859.4000 3.9058 22.6844

Best Offer 57.5297 6.5000 115.9400 0.1000 1863.3000 3.8263 21.7046

Delta -0.2785 -0.0779 0.3486 -0.9990 -0.0003 -1.0226 -0.5702

Implied Volatility 0.2552 0.2250 0.1426 0.0277 1.6948 1.5192 3.9366

This table presents the summary statistics for our call and put option dataset. It comprises 89,292 call option
observations and 86,709 put option observations, all with a 30-day maturity from January 4th, 1996, to
December 31st, 2019.

of 3.94, reflecting moderately heavy tails relative to a normal distribution. Together, these

summary statistics provide a robust foundation for understanding the market conditions

captured in the dataset.

The interest rate used is the 3-Month Treasury Constant Maturity Rate (DGS3MO), which

is downloaded from the Federal Reserve Economic Data (FRED).

The volatility surface data are obtained from OptionMetrics and are used to compute the

evolution of the tail shape parameter. The descriptive statistics for the tail shape parameter is

shown in Table 2.5.Total public debt as a percentage of gross domestic product (∆PD/GDP)

is downloaded from the Federal Reserve Economic Data (FRED).

The collated events are a subset of a database of events initially identified by Bloom (2009)

and later expanded by Piffer & Podstawski (2018). These dates span a horizon of years from

1996 to 2015.
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2.4 Methodology

The methodology section provides a comprehensive description of the steps and techniques

used to recover and compare risk-neutral densities, assess uncertainty shocks using gold

as a proxy, analyse the evolution of the tail shape parameter, decompose volatility into

high-volatility and low-volatility states, and the compute of Probit regression model.

2.4.1 Risk-Neutral Densities

There are several methods and distributions for estimating implied PDFs. PDFs are primarily

obtained using parametric or nonparametric methods. In this section, we compare and

contrast the statistical properties of various probability density functions of the S&P 500

Index. The advantage of PDFs is that they can be applied to practically any financial market,

and they provide critical benefits over methods based solely on conventional time-series data.

Exploring the evolution of option-implied PDFs during periods of macroeconomic uncertainty

is an exciting domain. The evolution can be analysed by observing three states: the ex-ante

state, the current state, and the ex-post state of the PDF. We examine these states within a

risk-neutral framework. In relation to the risk-neutral function, this is a PDF for which the

security’s current price is equal to the discounted expectation of its future prices. In other

words, risk-neutral probabilities represent future outcomes adjusted for risk and are used to

estimate fair option prices. A key assumption when computing risk-neutral probabilities is

the absence of arbitrage.
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Cox & Ross (1976) and Ross (1976) assert that in a dynamically complete, arbitrage-free

market, and when applying the risk-neutral valuation principle, the price of a contingent

claim vt is given by the expected present value of the payoff, computed under the Risk-Neutral

Density (RND),

υt(St, K) = e−r(T−t)EQ
t [h(ST )], (2.1)

where Q is the unique probability measure where absence of arbitrage exists in a complete

market, h(s) is the general payoff, S is the underlying price, K the strike price, T the expiry

date, T − t the time to maturity, and r the instantaneous risk-free interest rate for that

maturity. Therefore, for a European call option, we have,

hc(ST ) = max[ST −K, 0], (2.2)

and for the European put,

hp(ST ) = max[K − ST , 0]. (2.3)

The price at time t of a European call option Ct(St, K) is expressed as follows:

Ct(St, K) =

=

e−r(T−t)EQ
t [max[ST −K, 0]],

e−r(T−t)
´∞
K
(ST −K)qt(ST )dST ,

(2.4)

where qt denotes the conditional risk-neutral probability density of the underlying price S at

time t. Therefore, the price of a European put option,
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Pt(St, K) =

=

e−r(T−t)EQ
t [max[K − ST , 0]],

e−r(T−t)
´ K
0
(K − ST )qt(ST )dST ,

(2.5)

Differentiating the European call price from Equation 2.4 with respect to the strike price K

yields:

∂Ct(St,K)

∂K
= e−r(T−t)

´∞
K

qt(ST )dST ,

= −e−r(T−t)[1−Qt(K)].

(2.6)

Here, Qt denotes the conditional risk-neutral probability distribution function of St. Calcu-

lating the second derivative of the European call price specified in Equation 2.4 with respect

to K, we finally obtain:

∂2Ct(St,K)

∂K2
= e−r(T−t)qt(ST ) |ST=K . (2.7)

Equation 2.7 is the prominent result originally presented in Breeden & Litzenberger (1978)

and Banz & Miller (1978). This equation states that the second derivative of the European

call price function with respect to the strike is equal to the discounted risk-neutral probability

density of ST . A similar mathematical expression is derived for European put options.

An option-implied PDF provides estimates of future movements in an asset’s price as perceived

by investors. One advantage of using PDFs is that they do not require an extensive historical

time series for accurate estimations.
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2.4.2 Non-Parametric Methods

Non-parametric methods provide greater flexibility in fitting the risk-neutral distribution to

option prices. The two methods we investigate are Shimko’s spline method and the Edgeworth

density.

2.4.2.1 Shimko’s Spline Method

Shimko (1993) suggests a relatively simple way to interpolate the calculated implied volatilities

for the same maturity and different exercise prices. To generate the estimated density, Shimko

calculates implied volatilities using observed market prices. Thereafter, the implied volatilities

are interpolated, generating a volatility curve. Furthermore, following Garman & Kohlhagen

(1983) and Jondeau & Poon & Rockinger (2007), option prices are calculated for each point on

the interpolated volatility curve, and finally, the estimated risk-neutral density is generated.

The volatility structure is represented as a parabola of best least-squared fit and modelled by

the following equation:

σ(K) = a0 + a1K + a2K
2. (2.8)

The smoothed volatility structure gives a value of σ for every K, where K is the strike

price. Using the Black-Scholes equation, σ is then used to generate call option prices. The

constant term in the spline a0 represents the baseline level of implied volatility, a1 is the

linear term, capturing the slope or the first-order sensitivity of implied volatility with respect
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to changes in strike price or moneyness. The quadratic term a2 accounts for the curvature

or the second-order sensitivity, which is crucial for capturing the "smile" or "skew" in the

implied volatility structure.

2.4.2.2 Edgeworth Density

Jarrow & Rudd (1982) and Jondeau & Poon & Rockinger (2007) employ the generalised

Edgeworth series expansion to obtain an approximate option valuation formula. Jarrow &

Rudd (1982) proposed a method to value European style options when the underlying security

price S at option expiration follows a distribution, F , which is known through its moments.

They derive an option pricing formula from an Edgeworth series expansion of the distribution

F about an approximating distribution, A. Their analysis yielded several variations, but we

present their simplest expression for an approximate option price.

C(F ) =C(A)− e−rtκ3(F )− κ3(A)

3!

da(K)

dSt

+e−rtκ4(F )− κ4(A)

4!

d2a(K)

dS2
t

dSt + ϵ(K),

(2.9)

In Equation 2.9 the term on the left, C(F ), represents the call option price computed using

the stock price distribution F . On the right, the first term, C(A), is the call price determined

from a known or approximating distribution A. This is then adjusted by additional terms

that depend on the cumulants of the actual distribution F and the approximating distribution
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A. The cumulants of a distribution relate to its central moments as follows:

κ2(F ) = µ2(F ), κ3(F ) = µ3(F ), κ4(F ) = µ4(F ), κ2(F ) = µ2(F )− 3µ2
2(F ),

(2.10)

where µ2, µ3, and µ4 are the second, third, and fourth central moments, respectively. The

density function of the approximating distribution A is denoted by a(St), where St is the stock

price at option expiration. Its derivatives are evaluated at the strike price K. The remainder

term, ϵ(K), extends the Edgeworth expansion by incorporating higher-order cumulants and

their corresponding derivatives. Jarrow & Rudd (1982) argue that with an appropriate choice

for A is typically the lognormal distribution, which is central to option pricing where the

higher-order terms in ϵ(K) can be considered negligible. In this case, C(A) reduces to the

familiar Black-Scholes call price formula.

This formulation corresponds to the first option pricing approximation method proposed by

Jarrow & Rudd (1982). Their approach involves selecting the approximating distribution A

such that its second cumulant matches that of F (i.e., κ2(F ) = κ2(A)), where econometric

evidence, discussed in Jarrow & Rudd (1982) empirical results section, supports the preference

for this first-order approximation. By omitting the remainder term ϵ(K) in Equation 2.9, the

call option price can be succinctly written as:

C(F ) = C(A) + λ1Q3 + λ2Q4, (2.11)

31



where the terms, λj and Qj, above are defined as follows:

λ1 = γ1(F )− γ1(A), Q3 = −(S0e
−rt)3(eσ

2t − 1)3/2
e−rt

3!

da(K)

dSt

, (2.12)

λ2 = γ2(F )− γ2(A), Q4 = −(S0e
−rt)4(eσ

2t − 1)2
e−rt

4!

d2a(K)

dS2
t

. (2.13)

In Equation 2.12 and Equation 2.13, γ1(F ) and γ1(A) are skewness coefficients for the

distributions F and A, respectively. Similarly, γ2(F ) and γ2(A) are excess kurtosis coefficients.

Skewness and excess kurtosis coefficients are defined in terms of cumulants by:

γ1(F ) =
κ3(F )

κ
3/2
2 (F )

, γ2(F ) =
κ4(F )

κ2
2(F )

. (2.14)

In Equation 2.12 and Equation 2.13 , the terms, Q3 and Q4, represent skewness and kurtosis

deviations from log-normality.
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2.4.3 Parametric Methods

2.4.3.1 Log-normal Density Implied by the Black-Scholes-Merton Model

The Black–Scholes–Merton model is a differential equation used to price for options. We

assume that the spot price St follows a geometric Brownian motion,

St = S0exp(αt+ σWt), (2.15)

where S0 is an initial condition at time t = 0, α and σ are constants, and Wt is a standard

Brownian motion.

This process is log-normal because:

log(St) = log(S0) + αt+ σWt, (2.16)

is normally distributed. Ito’s lemma implies that,

dSt = µStdt+ σStdWt, (2.17)

with drift,

µ = (α + σ2/2), (2.18)

and a deterministic volatility σ.
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After some solving, we arrive at the prominent Partial Differential Equation (PDE) that was

originally proposed and solved by Black & Scholes (1973):

∂V

∂t
+

∂V

∂St

rSt +
1

2

∂2V

∂S2
t

σ2S2
t = rV. (2.19)

From the Black–Scholes equation, a partial differential equation, one can deduce the Black–

Scholes formula when solved using Call and Put boundary conditions. Thus, the Black

Scholes pricing formulas for the European call and put options are:

Ct(St, t) = StΦ(d1)−Ke−r(T−t)(d2), (2.20)

Pt(St, t) = Ke−r(T−t)Φ(−d2)− StΦ(−d1), (2.21)

with,

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
, (2.22)

d2 = d1 − σ
√
(T − t), (2.23)

and Φ(·) denotes the cumulative standard normal distribution. Feynman-Kac analysis

provides the link between the typically numerical PDE approach and stochastic processes.

We calculate the transition density as log-normal:

f(ST ) =
1

ST

√
2σ2(T − t)

exp

[
−
[ln(ST

St
)− (r − σ2/2)(T − t)]

2σ2(T − t)

]
. (2.24)
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2.4.3.2 The Mixture of Two Log-normals

A mixture of two log-normal densities is a very popular parametric RND specification that

was first proposed by Ritchey (1990). He assumes that the implied density function f(ST ), of

the underlying asset terminal price ST , comprises a weighted sum of z individual log-normal

density functions:

f(ST ) =
z∑

i=1

[θ,L (ai, bi, ST )] , (2.25)

where ai = ln(St) + (µi − σ2
i /2)(T − t) and bi = σi

√
(T − t). Therefore, where L (ai, bi, ST )

is the ith log-normal density function with parameters ai, bi:

L (ai, bi, ST ) =
1

ST bi
√
2π

exp
(
−(ln(ST )− ai)

2/2b2i
)
, (2.26)

from Equation 2.26, we can see how the weighted sum of z individual log-normal density

functions in Equation 2.25 relates to Equation 2.24.

Where we have a risk-free interest rate r that is constant and asset price is St, the price of

the call is the discounted expected payoff:

C(K) = e−r(T−t)

∞̂

K

f(ST )(ST −K)dST , (2.27)

where f(ST ) is the risk-neutral probability density function of the asset price at time T .
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Similarly, the payoff on a European put is max[K − ST , 0] and its current price is:

P (K) = e−r(T−t)

K̂

0

f(ST )(K − ST )dST . (2.28)

Under the assumption that the probability density function is a mixture of two log-normals

with weights θ and (1− θ), the equations for call and put prices can be expressed as:

C(K) = e−r(T−t)

∞̂

K

[θL (a1, b1, ST ) + (1− θ)L (a2, b2, ST )](ST −K)dST , (2.29)

P (K) = e−r(T−t)

K̂

0

[θL (a1, b1, ST ) + (1− θ)L (a2, b2, ST )](K − ST )dST . (2.30)

Gemmill & Saflekos (2000) represent θ as the probability of an event with θL (a1, b1, ST ) as

the density conditional on this event, and (1− θ) as the probability of an event not occurring

with (1− θ)L (a2, b2, ST ) as the density conditional on the event not occurring.

2.4.3.3 Generalised Beta of the Second Kind (GB2)

The third parametric method we consider is the Generalised Beta of the second kind (GB2).

In Figure 2.1, Bookstaber & McDonald (1987) illustrate that the GB2 is valuable because it

is a flexible distribution that encompasses many other distributions.

Jondeau & Poon & Rockinger (2007) define the GB2 distribution as follows. The GB2 involves

four positive variables, which are grouped into the vector θ = (a, b, p, q). In the equation

below B(p, q) is the Beta function which is a normalisation factor which controls the shape
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Figure 2.1: GB2 Distribution Family Tree

The parameters are explained as the following: LT =log t; B2 = Beta of the Second Kind; BR12 = Singh-
Maddala or Burr type 12; BR3 = Burr type 3, LC =log Cauchy; LN = log-normal; W = Weibull; GA =
gamma; L = Lomax; R = Rayleigh; EXP = exponential.

of the distribution, b is a scale parameter, and p and q are shape parameters controlling the

behaviour of the tails. The a parameter determines how quickly the tails of the distribution

approach the X-axis, where the higher the value for a, the quicker the distribution approaches

the axis. The density of the GB2 is given by:

f(s|θ) = asap−1

bapB(p, q)[1 + ( s
b
)a](p+q) for s > 0, (2.31)

McDonald & Bookstaber (1991) show that if the RND is GB2, then the price of the European
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call option is as follows:

C(K|θ) = e−r(T−t)

∞̂

K

(ST −K)+f(ST |θ)dST ,

(2.32)

from Equation 2.31, the price of the European call option becomes:

C(K|θ) = e−r(T−t)

∞̂

K

(ST −K)
aSap−1

T

bapB(p, q)[1 + (ST

b
)a](p+q)

dST . (2.33)

2.4.4 Comparing Forecasting Density Accuracy Using the Diebold-Mariano

Test

The problem in selecting a preferred model arises when one is required to examine and evaluate

predictive densities in the presence of multiple density forecasts. In empirical applications, it

is often the case that two or more time-series models are available for forecasting a particular

variable of interest.

To compare the forecasts using the DM test, the process is as follows:

• Actual values {yt; t = 1, ..., T}

• Two forecasts {ŷ1t; t = 1, ..., T} , {ŷ2t; t = 1, ..., T}
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The forecast errors are defined as:

eit = ŷit − yt; i = 1, 2. (2.34)

The loss associated with forecast i is assumed to be a function of the forecast error eit,

and is denoted by g(eit). The function g(.) is a loss function and we let the associated

forecast errors be eit. The loss function will be a direct function of the forecast error,

therefore, g(yt, ŷit) = g(eit). We define the loss differential between the two forecasts by

Dt = g(e1t)− g(e2t) and state that the two forecasts have equal accuracy if and only if the

loss differential has zero expectation for all t. However, the forecasting models must be

non-nested.

To test the null hypothesis:

H0 : E(Dt) = 0 ∀t, (2.35)

versus the alternative hypothesis:

H1 : E(Dt) ̸= 0. (2.36)

The null hypothesis is that the two forecasts have the same accuracy. The alternative

hypothesis is that the two forecasts have different levels of accuracy. In this case, we

investigate the event where the alternate hypothesis; ŷ1t is more accurate than ŷ2t. From
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Diebold & Mariano (1995), the DM test statistic for testing the null hypothesis is:

DM =
D̄√

2πf̂D(0)
T

, (2.37)

where D̄ = 1
T

∑T
t=1[g(e1t)− g(e2t)] and f̂D(0) is an estimate of fD(0).

2.4.5 Assessing Uncertainty Shocks

In this Subsection, we present a method to evaluate uncertainty shocks using gold within a

proxy SVAR, along with a comprehensive list of unanticipated events identified by Bloom

(2009).

Piffer & Podstawski (2018) identify a proxy SVAR model to evaluate the economic impact

of uncertainty shocks. They propose a unique strategy to identify uncertainty shocks by

expanding on the proxy SVAR methodology developed by Stock & Watson (2012) and

Mertens & Ravn (2013) to identify structural VARs using external instruments. The proxy

for the uncertainty shock is computed as a vector, taking a value equal to the percentage

variation in the price of gold around the event when an event occurred, and equal to zero

otherwise. By construction, the price of a safe-haven asset should capture the uncertainty-

related component of the events. Following Piffer & Podstawski (2018), gold is used as the

most reliable safe-haven asset for constructing the proxy. This proxy is chosen because of the

Granger causality properties of gold with several measures of uncertainty: the proxy based on

the price of gold causes several measures of uncertainty which suggests a high informational
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content of uncertainty dynamics, additionally, the proxy based on the price of gold is more

correlated with the VXO residuals (which are (the differences between the observed values of

the VXO S&P 100 implied volatility index and the values predicted by a statistical model)

from the VAR model estimated.

2.4.5.1 The Proxy SVAR Model

The framework for the identification of structural VARs via external instruments is developed

in Stock & Watson (2012) and Mertens & Ravn (2013). The reduced form model is given by:

yt = δ +A(L)yt−1 + ut, (2.38)

where yt is a k × 1 vector including the endogenous variables, δ includes constant terms, and

A(L) is a lag matrix polynomial capturing the autoregressive component of the model. The

reduced form shocks, captured by the k × 1 vector ut, are assumed to be linearly related to

the underlying structural shocks through the equation:

ut = Iϵt, (2.39)

where ϵt is a k × 1 vector of structural shocks with a variance–covariance matrix normalised

to the identity matrix, and I is the impact matrix that relates reduced-form innovations to

structural shocks.

Constructing the proxy for the uncertainty shock involves collecting an array of events that
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are potentially affected by economic uncertainty in a way unrelated to other macroeconomic

shocks. Subsequently, we use variations in the price of safe-haven assets around these events

to update the proxy. We select a collection of events that generated or reduced uncertainty.

These events are unanticipated and exogenous with respect to other relevant macroeconomic

shocks. Specifically, we choose the events shown in Table 2.20 identified by Bloom (2009)

through peaks in the VXO and exclude all events that are potentially related to other relevant

macroeconomic shocks.

Following Piffer & Podstawski (2018), we define the proxy for the uncertainty shock as a vector

that takes the value of the percentage change in the price of gold around the occurrence of an

event, and zero otherwise. Specifically, we compute this proxy as the percentage variation in

gold prices surrounding selected events. Given an event Ej , with j = 1, . . . , N (where N is the

total number of events considered), let γj represent the time when event Ej became known

to the market. For each event, we calculate ∆pj as the percentage change in the price of gold

between the last available auction price before γj and the first available auction price after

γj. Following the approach of C. D. Romer & D. H. Romer (2004), these N realisations of

∆pj are then aggregated into a monthly time series by summing the daily proxies within each

month. Appendix A.2 discusses the details of the Structural VAR methodology, specifying

the necessary assumptions to identify the proxy of the uncertainty shock and provides an

economic interpretation. From the Appendix A.2 we assert the identified shock can be

interpreted as an convolution between a change in uncertainty and a news shock, thus, a

potential change in risk appetite. While a news shock can lead to a change in risk appetite,

it is important to note a news shock is the event or information update, and the shift in risk
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appetite is one possible reaction by economic agents.

2.4.6 Estimating the Tail Loss Measure

This Subsection focuses solely on the tail of the distribution. The tail shape parameter for

risk-neutral density functions is the key parameter that quantifies the rate at which the tail

of a distribution decays; the larger the tail shape parameter, the higher the probabilities

of extreme values. Hamidieh (2014) explains that recovering the tail shape parameter is

based on an asymptotic theorem from extreme value theory, where the generalised Pareto

random variable approximates the distribution of the excess of a random variable over a

large threshold. When the option strike is large, the difference can be approximated by a

generalised Pareto random variable, producing a pricing formula based on the first moment

of the generalised Pareto random variable. A similar formula is obtained for put options.

The moment term contains the tail shape parameter, allowing us to estimate the tail shape

parameter.

The Generalised Pareto Distribution (GPD) standard Cumulative Distribution Function

(CDF) is defined as follows:

P(Y ≤ y) = Hβ,ξ(y) =


1−

(
1 + ξ y

β

)−1/ξ

if ξ ̸= 0,

1− exp(−y/β) if ξ = 0,

(2.40)

where, β > 0, y ≥ 0 when ξ ≥ 0, and 0 ≤ y ≤ −β/ξ when ξ < 0. Here, β and ξ represent the

scale and the tail shape parameter, respectively.
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The Out-of-the-Money (OTM) put option pricing formula is as follows:

P = e−rTE[max(K ′ − ST , 0)] = e−rTE[K ′ − ST | ST < K ′]P(ST < K ′). (2.41)

Here K ′ will be a low strike value in the left tail of a OTM option. The notation K ′ is used

to differentiate this strike from the strike K for the call options.

P ∗ = e−rT β(K
′)

1− ξ
P(ST < K ′). (2.42)

A similar reasoning leads to the pricing formula for the call options.1

The uniqueness of the Tail Loss Measure (TLM) is that it does not identify the probability

but the severity of a crash as a measure. Markose & Alentorn (2011) estimate the tail

shape parameter using the generalised distribution for the entire density of asset returns,

whereas Hamidieh (2014) method is applicable irrespective of the underlying distribution.

Furthermore, Hamidieh (2014) shows that when using 10%, 15%, or 20% of the lowest strike

puts, the pattern for the evolution of the tail shape parameter is the same regardless of the

proportions used.

Therefore, the estimation of the tail shape is not dependent on the proportion of data used

to generate the tail shape. For this analysis, we focus on using 15% of the lowest strike

puts. Observing the tail shape reveals how the risk-neutral density’s tail evolves, and tail

shape provides valuable information about the hedging price against significant moves during

1C∗ = e−rT β(K)
1−ξ

P(ST > K)
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tumultuous times.

2.4.7 Decomposing Volatility into High and Low States

This Subsection builds on the expansion of the tail shape parameter discussed in Subsection

2.4.6. To examine whether low volatility is a strong predictor of a crisis, we decompose

volatility into high and low components using the methodology of Danielsson & Valenzuela

& Zer (2018).

High and low volatilities are defined as the deviations of volatility from above and below its

trend, where the trend is estimated through a one-sided Hodrick & Prescott (1997) filter.

Following Danielsson & Valenzuela & Zer (2018), we apply a smoothing parameter of λ = 5000

to decompose volatility into the trend and deviations from the trend, or in other words, the

cycle. For consistency, we choose the tail shape parameter ξ with a delta of 15% to represent

the volatility ξσ. The volatility trend is obtained from the following optimisation problem:

min
{τt(λ)}Tt=1

T∑
t=1

[ξσt − τt(λ)]
2 + λ

T−1∑
t=2

{[τt+1(λ)− τt(λ)]− [τt(λ)− τt−1(λ)]}2 . (2.43)

To identify the high and low volatility time-series, we further separate the deviation of

volatility ξσt from its trend τt into two components, high and low volatilities, denoted as
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δhigh
t (λ) and δlow

t (λ), respectively.

δhigh
t (λ) =


ξσt − τt(λ) if ξσ ≥ τt(λ),

0 otherwise,

δlow
t (λ) =


ξσt − τt(λ) if ξσ < τt(λ),

0 otherwise.

(2.44)

2.4.8 Probit Regression Model

A Probit model is a popular specification for a binary response model. In this case, we regress

the binary crisis indicator Ct, which shows the occurrence of an event on day t, on various

specifications of volatility. The indicator takes the value 0 for the day of the event and 1 for a

day when no event occurred. We first analyse the impact of volatility on market uncertainty

by including the level of volatility as the main regressor. We then investigate whether the

impact of volatility on market uncertainty is asymmetric by considering the absolute value of

the deviation of volatility from its trend |ξσt − τt| as a regressor. Finally, we examine the

effect of high and low volatilities separately by including δhigh and δlow as regressors. For

daily t, we estimate the following Probit regression:

Probit(Jt) = αJ̄t−1 to t−L + βΓ̄t−1 to t−L(λ) + εt, (2.45)

where Γ is one of ξσ, |ξσ−τ | or
[
δhigh δlow

]′
variables. λ is the HP filter smoothing parameter,
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and εt the error term. Instead of regressing the crisis indicator on lags of the explanatory

variables, following Reinhart & Rogoff (2011), we implement backward-looking moving

averages of explanatory variables over L lags, from t− 1 to t− L.

The moving average variables are constructed as:

Zt−1 to t−L =
1

L

L∑
j=1

Zt−j, Z = C, ξσ, |ξσ − τ |, δ. (2.46)

The choice of using lagged moving averages instead of lags is to reduce collinearity between

the explanatory variables and to smooth out temporary volatility spikes.
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2.5 Empirical Analysis

The empirical analysis section presents a thorough investigation in models discussed in the

methodology. It includes ex-ante and ex-post RND estimations, the evolution of densities,

the decomposition of the TLM, and the application of a Probit regression model to assess

whether low or high volatility serves as a strong predictor of financial crises.

2.5.1 Comparing Parametric and Non-Parametric Methods in Recovering the

Risk Neutral Density

In Subsections 2.4.3 and 2.4.2, parametric and non-parametric methods are discussed math-

ematically. In this Subsection we compare densities using the Diebold-Mariano (DM) test.

2.5.1.1 Real Data Study

To compute the DM test, we randomly select a date to assess densities to predict actual S&P

500 call option prices. There are various loss functions that can be used. These methods

include squared errors, absolute errors, squared proportional errors (useful if errors are

heteroscedastic), and absolute scaled errors.

For illustrative purposes, the randomly selected date is the 8th of January, 2015, with an

expiration date of 57 days and this date provides 166 observations. As discussed, we use

this date to generate forecasts with a forecasting horizon of 1 day (h = 1) to compare with

actual call option prices of the 9th of January, 2015. Chen & Wan & Y. Wang (2014) note
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Table 2.2: Diebold-Mariano Test Applied to Shimko’s Spline Method, Edgeworth Density,
Black-Scholes-Merton Model, Mixture of Two Log-normals, and GB2 Forecasts of S&P500
European Call Prices.

Methods DM Test Statistic

Shimko’s Spline Method vs. Edgeworth Density -21.268**

Shimko’s Spline Method vs. Black-Scholes-Merton Model -16.188**

Shimko’s Spline Method vs. GB2 -22.20**

Shimko’s Spline Method vs. Mixture of Two Log-normals 7.09

Edgeworth Density vs. Black-Scholes-Merton Model -7.48**

Edgeworth Density vs. GB2 -13.08**

Edgeworth Density vs. Mixture of Two Log-normals 22.41

Black-Scholes-Merton Model vs. GB2 -11.63**

Black-Scholes-Merton Model vs. Mixture of Two Log-normals 16.47

Mixture of Two Log-normals vs. GB2 -22.48**
We compute the DM test to see whether ŷ1t is more accurate than ŷ2t in predicting yt, where yt is the S&P500
European call prices. We have 166 observations and a forecasting horizon of 1. Here, stars are only intended
to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a p-value is ≤ 0.01 it is
flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three stars (***).

that both squared-error loss and absolute-error loss are symmetric around the origin point.

Additionally, larger errors are penalised more severely by squared-error loss. Therefore, we

use an absolute-error loss function. The loss function is defined as g(eit) = | eit |, with a

forecast horizon of 1.

Table 2.2 provides an information of the DM test applied to various methods for forecasting

S&P 500 European option call prices. Based on the statistical significance, the results show

that the Mixture of Two Log-normals performs best when tested against all other methods

for forecasting S&P 500 European option call prices. When the Black-Scholes-Merton Model,

Shimko’s Spline Method, and Edgeworth Density are tested against the Mixture of Two

Log-normals we obtain a positive test statistic, however, the result is not significant. When
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mixture of two Log-normals is tested against the GB2, we obtain a negative test statistic

which is also statistically significant.

A more thorough investigation for the choice of RND selection is in the Appendix Table A.1,

where we consider 5,000 density forecasts and show that the Mixture of Two Log-normals

method yields a better density forecast in 68.58% of cases when compared with Shimko’s

Spline method, 55.23% of cases when compared with the GB2 method, and 93.58% of cases

when compared with the Edgeworth method. In Appendix Table A.2, we compute the average

computational time expense of the estimation methods. We show the average CPU time

required by each method over approximately 5000 density computations and the results

explain that the Edgeworth Density method requires the least amount of time to compute a

density estimation, whereas the GB2 method is the most time-consuming.

2.5.2 Interpreting Densities

This Section elaborates on the full distribution of the RNDs using the mixture of two

Log-normals.

2.5.2.1 Evolution of the Densities

To compare the evolution of densities for an uncertain event, we observe across a cross-section

of specific dates. We examine the day before the uncertain event ti−1, the day of the uncertain

event ti, and the day after the uncertain event ti+1, in other words, the ex-ante, current, and

ex-post dates, respectively. The range of dates helps to see how expectations of option prices

change due to the behavioural changes of risk-seeking and risk-averse economic agents. This
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technique is used to illustrate the impact of uncertain financial events or policy announcements.

If the day of observation (current day t0) falls on a weekend or public holiday, we use the

next weekday that is not a public holiday as the new current day t0. Below in Figure 2.2

and Figure 2.3, we present the superimposed RNDs of uncertain events, encompassing the

day before the uncertain event ti−1, the day of the uncertain event ti, and the day after the

uncertain event ti+1. We choose a maturity of approximately 30 days.

From the observed dates, which include the ’Dodd-Frank Act signed by Obama’, and ’Obama

re-elected’, in both cases, the location and shape of the PDFs have not significantly changed,

as uncertainty is already priced into the PDF. However, for the ’US Government shutdown’,

the shape of the PDF on the day of the event and the ex-ante resolution has significantly

changed. On the day before the event, we can see that the density has a wider distribution

which implies that there’s a larger spread or variance in the possible outcomes, which directly

corresponds to higher volatility. Additionally, as the density is more spread out, it indicates

that the market anticipates a broader range of future price levels. This broader range

translates to more uncertainty because there’s less consensus about where the price might

settle. From the ’AIG asks for emergency lending + Lehman Brothers’ and ’Northern Rock

receives liquidity support by BoE’ event, we can see that ex-post the event the market is

pricing in greater uncertainty and there is increased probability of large price movements in

the underlying asset. The current day density of the event, has a lower range of wider events

than the ex-post, the ex-ante density has a narrower distribution, implying that uncertainty

attached to this event has increased on and after the event.

Furthermore, we acknowledge as discussed in the literature review economic theory Subsection
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Figure 2.2: Evolution of Densities of Political Uncertainty

(a) Dodd-Frank-Act signed by Obama on
21stJune, 2010

(b) Obama re-elected on 7thof November, 2012

(c) US government shutdown on 1stOctober,
2013

These illustrations show the mixture of two Log-normals densities of the day before political uncertainty ti−1,
on the day of political uncertainty ti, and on the day after political uncertainty ti+1.
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Figure 2.3: Evolution of Densities of Financial Uncertainty

(a) AIG asks for emergency lending + Lehman Brothers
on 15thSeptember, 2008

(b) Swiss franc pegged on 6thSeptember, 2011

(c) Northern Rock receives liquidity support by BoE
on 14thSeptember, 2007

These illustrations show the mixture of two Log-normals densities of the day before financial uncertainty ti−1,
on the day of financial uncertainty ti, and on the day after financial uncertainty ti+1.
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2.2.4, the changes in risk-neutral PDFs may also be driven by shifts in future earnings

expectations and or alterations in investors’ risk aversion. This result aligns with early

theoretical work, which suggests that risk affects economic decisions. This idea is explained

in Keynes (1937) notion of animal spirits and Minsky (1977) instability hypothesis.
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2.5.2.2 Statistical Analysis

The Mean Absolute Residual (MAR) is a common measure of forecasting errors in time-series

analysis. Using the Mixture of Two Log-normals, we calculate the Mean Absolute Residual

of the residuals for two events to examine how uncertainty affects the deviation of predicted

prices from actual prices. The MAR gives an idea of the average error in the predictions. If

the Mean Absolute Residual is small, it indicates that the model predictions are close to the

actual market prices.

From Figure 2.4, it is shown that both ex-ante and ex-post the ’Dodd-Act Signing’, both calls

and puts had a smaller Mean Absolute Error with the exception of the ex-ante put (which is

0.03 higher than the put of day of the event), this implies that the event’s date has a larger

forecasting error due to uncertainty attached to this event. However, Figure 2.5 shows for

’Obama Re-election’, the Mean Absolute Error was largest for both puts and calls ex-ante the

announcement; this could mean that the anticipation of election results was more significant

than learning who won the election on the actual election day. The ex-ante Mean Absolute

Error is also high which also implies the uncertainly after the event.
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Figure 2.4: Dodd-Frank-Act signed by Obama

(a) Dodd-Frank-Act signed by Obama on day ti−1 (b) Dodd-Frank-Act signed by Obama on day ti

(c) Dodd-Frank-Act signed by Obama on day ti+1

This plot shows scatter plot comparing the predicted call and put option prices against the actual market call
and put option prices using the Mean Absolute Residuals. We choose a maturity of approximately 30 days.
The red line depicts the "perfect fit" line, where the predicted values equal the actual market values. Each
point on the plot represents one option, with its market price on the x-axis and the corresponding predicted
price on the y-axis.
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Figure 2.5: Obama re-elected

(a) Obama re-elected on day ti−1 (b) Obama re-election day ti

(c) Obama re-election day ti+1

This plot shows scatter plot comparing the predicted call and put option prices against the actual market call
and put option prices using the Mean Absolute Residuals. We choose a maturity of approximately 30 days.
The red line depicts the "perfect fit" line, where the predicted values equal the actual market values. Each
point on the plot represents one option, with its market price on the x-axis and the corresponding predicted
price on the y-axis.
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2.5.2.3 Whole Dataset Analysis

For the complete dataset, the computed densities encompass all moneyness states (ITM,

ATM and OTM), and this affects both Tables 2.3 and 2.4. The RNDs which are estimated

from option prices across a range of strike prices are spread equally across all events. As

shown in Table 2.4a, we can see that for political and financial events, both the mean and the

variance are higher for the ex-post densities compared to the ex-ante densities. This variation

also implies that there are more outliers in the data or larger data points on average after the

uncertainty is observed. This observation shows how low volatility can paradoxically increase

the probability of a systemic event. The ex-ante densities have higher skewness and kurtosis

compared to the ex-post densities, indicating that the ex-ante density has heavier tails.

Generally, this also applies to the density with the gold proxy. For the gold proxy ex-ante

financial density means, we compute the gold proxy SVAR discussed in Subsection 2.4.5.1,

and the results are presented in Table 2.5a. The results show the ex-ante financial density

variance and mean are lower than the ex-post density variance and means. This could imply

that the surprise element is not anticipated before the event. Furthermore, the ex-post

skewness and kurtosis of financial events are both negative, which implies that the tail on the

left side of the distribution is longer or fatter in relation to the tail on the right side, and the

shape of the curve is platykurtic. However, ex-ante mean and variance for political events are

higher than the ex-post means and variance. Similarly to results presented in Table 2.4a,

we also notice from Table 2.5a that the political ex-ante mean is higher than the financial

ex-ante mean, which could imply that it is harder to capture political uncertainty.
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For the complete dataset in both Tables 2.3 and 2.4, the mean of the ex-ante MAE, MAPE,

and RMSE for both puts and calls are higher than the ex-post MAE, MAPE, and RMSE

results. This implies that the forecasting errors decrease after the uncertain event.
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Table 2.3: Ex-ante and Ex-post Calls and Puts of Financial and Political Events

Type of Event Statistical Moments Ex-ante Mean of Densities Ex-post Mean of Densities

Financial

Mean 0.002 0.144

Variance 0.000 0.282

Skewness 4.857 3.635

Kurtosis 26.874 14.553

Political

Mean 0.017 0.074

Variance 0.014 0.142

Skewness 7.402 5.471

Kurtosis 57.839 32.179

(a) Statistical Moments of the Densities of Financial and Political Events

Type of Event Statistical Moments Ex-ante
MAE Calls

Ex-post
MAE Calls

Ex-ante
MAPE
Calls

Ex-post
MAPE
Calls

Ex-ante
RMSE
Calls

Ex-post
RMSE
Calls

Financial

Mean 36.3 34.1 13.8 12.0 44.0 41.6

Variance 1369.1 1411.1 651.2 535.9 1852.8 1898.1

Skewness 1.5 1.6 2.3 2.5 1.4 1.5

Kurtosis 1.6 2.0 6.2 7.5 1.2 1.6

Political

Mean 41.5 38.8 20.9 17.2 49.8 46.6

Variance 1452.8 1506.7 2250.7 924.4 1889.9 1976.4

Skewness 1.4 1.5 4.6 2.243 1.3 1.3

Kurtosis 1.4 1.4 28.0 5.6 0.8 0.8

(b) Statistical Moments of MAE, MAPE and RMSE of Calls of Financial and Political Events

Type of Event Statistical Moments Ex-ante
MAE Puts

Ex-post
MAE Puts

Ex-ante
MAPE
Puts

Ex-post
MAPE
Puts

Ex-ante
RMSE
Puts

Ex-post
RMSE
Puts

Financial

Mean 22.2 19.3 6.3 2.9 31.0 26.9

Variance 277.7 247.0 222.1 12.0 753.6 665.8

Skewness 1.0 1.1 4.2 1.6 1.3 1.4

Kurtosis 0.5 0.4 21.8 2.1 1.1 1.5

Political

Mean 26.4 24.2 8.9 8.3 36.2 33.1

Variance 455.1 474.0 269.6 273.0 1006.3 1049.2

Skewness 1.6 1.8 3.1 3.9 1.4 1.6

Kurtosis 2.3 3.7 10.4 18.6 1.5 2.7

(c) Statistical Moments of MAE, MAPE and RMSE of Puts of Financial and Political Events
These tables contain statistical moments of ex-ante and ex-post densities, ex-ante and ex-post density loss

functions for calls, and ex-ante and ex-post density loss functions for puts.
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Table 2.4: Ex-ante and Ex-post Calls and Puts of Financial and Political Events with Gold
Proxy

Type of Event Statistic Ex-ante Mean of Densities Ex-post Mean of Densities

Financial

Mean 9.584×10−4 9.849×10−4

Variance 5.0×10−7 5.3×10−7

Skewness 0.217 -0.090

Kurtosis -1.990 -1.213

Political

Mean 0.003 0.001

Variance 5.486×10−5 1.6×10−7

Skewness 2.460 -0.589

Kurtosis 8.919 0.263

(a) Statistical Moments of the Densities of Financial and Political Events with Gold
Proxy

Type of Event Statistical Moments Ex-ante
MAE calls

Ex-post
MAE calls

Ex-ante
MAPE
Calls

Ex-post
MAPE
Calls

Ex-ante
RMSE
Calls

Ex-post
RMSE
Calls

Financial

Mean 52.9 49.3 23.5 21.8 65.7 61.1

Variance 1272.5 1302.7 632.8 441.4 1893.5 1959.8

Skewness 0.4 0.5 0.5 0.4 0.5 0.5

Kurtosis -1.8 -1.9 -1.8 -1.8 -1.4 -1.5

Political

Mean 37.8 34.9 17.1 17.4 44.6 41.3

Variance 1488.1 1642.8 779.6 817.8 1932.7 2138.0

Skewness 1.7 1.7 1.5 1.4 1.6 1.6

Kurtosis 4.2 4.1 2.2 1.6 3.5 3.5

(b) Statistical Moments of MAE, MAPE and RMSE of Calls of Financial and Political Events with Gold Proxy

Type of Event Statistical Moments Ex-ante
MAE Puts

Ex-post
MAE Puts

Ex-ante
MAPE
Puts

Ex-post
MAPE
Puts

Ex-ante
RMSE
Puts

Ex-post
RMSE
Puts

Financial

Mean 31.3 24.7 15.6 3.2 46.0 36.4

Variance 168.6 226.5 825.8 3.9 628.7 657.4

Skewness 0.2 0.6 1.7 0.5 0.3 0.6

Kurtosis -2.6 -1.7 5.8 -0.7 -1.9 -1.8

Political

Mean 22.8 18.5 23.3 14.0 31.0 26.3

Variance 220.4 242.9 652.3 373.0 723.7 747.3

Skewness 1.4 1.2 1.1 1.2 1.6 1.6

Kurtosis 3.7 2.8 0.5 0.5 4.3 4.2

(c) Statistical Moments of MAE, MAPE and RMSE of Puts of Financial and Political Events with Gold Proxy
These tables contain gold proxy statistical moments of ex-ante and ex-post densities, ex-ante and ex-post

density loss functions for calls, and ex-ante and ex-post density loss functions for puts.
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2.5.3 Evolution of the Tail shape Parameter

To compute the option-implied measures, we follow the parallel interpolation process of Vilkov

& Xiao (2013) for computing the TLM, using standardised volatilities with a maturity of 30

days from the Volatility Surface Data, which contains a smoothed implied volatility surface

for a range of standard maturities and option delta points. We focus on using 15% of the

lowest puts for this portion of the analysis. We select Out-of-the-Money implied volatilities

for calls and puts: calls with deltas smaller than or equal to 0.5, and puts with deltas greater

than −0.5. We smooth the delta 15% tail shape parameter using the Savitzky–Golay filter

and compute the evolution of the tail shape parameter up until the end of 2019 to observe

how the dynamics of the tail shape evolve over this period.

Figure 2.6 shows the full distribution of news events. From this Figure, it is possible to see

that the spikes correspond to major news events. We specifically filter for events with a tail

shape value above 34.6 which is less than 5% of the highest values to reduce the number of

events for illustrative purposes. Here, financial news populates the figure more than political

events, and it is observed that there is low volatility before these spikes. This figure implies

that significant events result in a jump in the tail shape parameter. Around the year 2008, the

figure shows the most volatility and uncertainty, with a section of the tail shape parameter

reporting values close to zero.

Now, we no longer focus on the 5% highest tail shape values but all events. Figure 2.7a shows

the subset of the tail shape parameter from Figure 2.6. In this time series, it is shown that
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the LTCM crisis is the most significant event. This event occurs ex-post a spike in the tail

shape parameter. From Figure 2.7b, it is shown that 9/11 and the Worldcom bankruptcy

occurred ex-ante to jumps in the tail shape parameter. This could be because these events

were unanticipated. The Iraq war occurs ex-post a significant spike, likely because the war

was anticipated by pre-war events like 9/11 and the "Iraq Resolution," which authorised the

U.S. President to "use any means necessary" against Iraq. The figures show that, for major

events, low volatility is a strong predictor of financial crises.

2.5.3.1 News Events Selection

It is worth identifying some news events that are not included in Bloom (2009) selection

criteria. Figure 2.7a shows a jump before the stock market crash on November 11th - 13th,

1997. This jump could be explained by several events, such as the "U.N. Imposes New

Sanctions on Iraq", "Congress Rejects Funds for U.N. and I.M.F.", and "Eastman Kodak

Laying Off 10,000 Employees."

Another instance is the jump after the "LTCM default" on October 9th, 1998, when Germany

raised interest rates. Thereafter, the Central Bank alarmed world economic centres with its

first increase in five years, which led to European stock markets suffering.

Figure 2.7b shows a jump shortly after the 9/11 attack. In September, the stock markets

plummeted 14%. Prices plunged in the second-largest decline in history as investors sought

safe havens following the terrorist attacks on the U.S.

Figures 2.7, 2.8, and 2.9 show the TLM under the microscope, along with the corresponding
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market events from 1996 up until 2015, and these figures explain the evolution of the tail

shape parameter from years 1996-2007, 2007-2013, and 2013-2017, respectively. Here we can

see the list of events specified in Table 2.20, and whether the uncertainty shock associated

with the events were anticipated or not. This observation can be seen with a shock in the

tail shape occurring before, during or after the event.
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Figure 2.7: Tail Shape Parameter for Various Dates Spanning from 1996-2007

(a) Tail shape Parameter from 1996-2000

(b) Tail shape Parameter from 2000-2005

(c) Tail shape Parameter from 2005-2007

These charts explain the evolution of the tail shape parameter from years 1996-2007. The red arrows point to
the financial and political events.
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Figure 2.8: Tail Shape Parameter for Various Dates Spanning from 2007-2013

(a) Tail shape Parameter from 2007-2010

(b) Tail shape Parameter from 2010-2012

(c) Tail shape Parameter from 2012-2013

These charts explain the evolution of the tail shape parameter from years 2007-2013. The red arrows point to
the financial and political events.
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Figure 2.9: Tail Shape Parameter for Various Dates from 2013-2017

(a) Tail shape Parameter from 2013-2015

(b) Tail shape Parameter from 2015-2017

These charts explain the evolution of the tail shape parameter from years 2013-2017. The red arrows point to
the financial and political events.
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Figure 2.10: Monthly Time-Series of Tail Shape Parameter from 1996-2021

This chart illustrates the monthly time-series of the trend and cycle of the tail shape parameter from 1996 to
2021.

Figure 2.10 illustrates the tail shape parameter plotted with the trend, which is derived from

the Hodrick and Prescott filter from Hodrick & Prescott (1997). The red line τt represents

the trend component, and ξσt is the cyclical component (short-term deviations). Figure

2.11 depicts the decomposed cyclical behaviour of the tail shape parameter. From Equation

2.44, we can decompose ξσt − τt(λ) into δhigh and δlow time series. In Table 2.5, we compute

descriptive statistics for ξσ, |ξσ − τ |, δhigh, and δlow. This table shows that for ξσ, the

midpoint of the data is 34.183. The average value for δhigh is 0.043, and for δlow it is -0.035.

The descriptive statistics imply that the market is in a low-volatility state 55% of the time

within this time horizon because the total count of δlow divided by the sum count of δlow and

δhigh is 55%.
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Figure 2.11: ξσt − τt is Decomposed in to δhigh
t (λ) and δlow

t (λ) Volatility for the Dates
1996-2021

This chart illustrates the monthly time-series of the decomposed high and low volatility states of the tail
shape parameter from 1996-2021.

Table 2.5: Descriptive Analysis

Variable ξσ |ξσ − τ | δhigh δlow

Count 8577 8577 3853 4724

Mean 34.225 0.039 0.043 -0.035

Std 0.211 0.046 0.052 0.041

Min 33.943 0.000 0.000 -0.475

25% 34.063 0.012 0.012 -0.046

50% 34.183 0.026 0.027 -0.025

75% 34.329 0.049 0.055 -0.012

Max 34.954 0.501 0.501 -0.00
This table shows time-series statistics for each variable indicated by the column headers for the period from
1996 to 2020. We present the mean, median, standard deviation, and the 25th, 50th, and 75th percentiles. σ
is the volatility (tail shape parameter with a delta of 15%), δhigh and δlow represent high and low volatility,
respectively.
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2.5.4 Probit Model Results

Table 2.6 presents the results for the Probit regression model detailed in Equation 2.45, and

Table 2.7 presents the results for the lagged Probit regression model detailed in Equation

2.46, where the last 5 years information (L = 10) are considered. Here, each L represents

a half-year. The first relationship considered is how volatility (as a measure based on the

tail shape parameter) relates to the probability of a future crisis. From Table 2.6, the

first two columns 1 and 2 explains the results as βξσ > 0. When considered on its own

as an independent variable, volatility is not statistically significant; however, when control

variables are considered volatility is highly statistically significant. This result implies that the

likelihood of future crisis is completely captured by the control variable public debt-to-GDP

ratio. By contrast, the cycle which is mathematically defined as the absolute value of the

deviation of volatility from its trend |ξσ− τ |, is not significant and this can be seen in column

3. However, with the selected control variable |ξσ − τ |, and the control variable both gain

statistical significance. The coefficient of the cycle is β|ξσ − τ | < 0. The cycle decreases as

the probability of a crisis increases.

Following Danielsson & Valenzuela & Zer (2018), we include high and low volatilities defined

in Equation 2.44 as separate regressors, reported in columns 5 and 6. When control variables

are excluded, the coefficients δhigh and δlow are not significant, with expected signs βδhigh > 0

and βδlow < 0. However, with the inclusion of the control variable, only δlow gains significance,

with expected signs βδhigh > 0 and βδlow < 0. Danielsson & Valenzuela & Zer (2018)
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assert that this result economically implies that low volatility affects agents’ decision-making,

induces excessive risk-taking, which leads to future credit problems and eventually difficulties

for banks. Marginal effects reported in table show the change in the probability of political

or financial crises following an instantaneous change in high or low volatility. Marginal

effects in the Probit model shown in Equation 2.45, measures how a small change in an

explanatory variable in Γ affects the probability that P(Jt = 1). The estimated Marginal

Effects (ME) from the table show that the impact of low volatility on the probability of a

crisis is economically meaningful: a unit decrease in volatility, when it is below its trend,

translates into a 23.052% increase in the probability of market uncertainty.
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Table 2.6: Volatility and Crisis

Dep Variable: Jt 1 2 3 4 5 6

ξσt−1 to t−10 0.006 0.656***
(0.014) (0.198)

|ξσ − τ |t−1 to t−10 -17.857 -48.175**
(11.002) (16.552)

δhigh
t−1 to t−10 -10.248 4.756

(13.866) (30.603)
δlow
t−1 to t−10 -16.309 -103.467**

(11.188) (37.726)
Jt−1 to t−10 -3.138 53.922*** -2.254*** 10.727* -3.895* 24.310**

(1.846) (16.399) (0.585) (4.359) (1.897) (9.065)
∆PD/GDP t−1 to t−10 -0.478*** -0.042*** -0.194*

(0.143) (0.014) (0.080)

Number of Observations 8501 8501 8501 8501 8501 8501
Pseudo R2 0.029 0.320 0.057 0.158 0.066 0.332

Marginal Effects (%)

ξσt−1 to t−10 0.002 0.148
|ξσ − τ |t−1 to t−10 -5.572 -13.356
δhigh
t−1 to t−10 -3.167 1.060
δlow
t−1 to t−10 -5.039 -23.052
∆PD/GDP t−1 to t−10 -1.02 -0.107 -0.703 -0.012 -0.043

This table presents the results for the regression equation introduced in Equation 2.45. δhigh and δlow are high
and low volatility introduced in Equation 2.44, ξσ represents the volatility, and |ξσ − τ | is the absolute value
of the deviation of volatility from its trend. ∆PD/GDP denotes the public debt-to-GDP ratio. The past
five year averages of the explanatory variables are used in the regressions and the data spans from 1996-2019.
Here, stars are only intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*),
if a p-value is ≤ 0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with
three stars (***).
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Table 2.7: Volatility and Crisis Using Different Lag Lengths

Dep Variable: Jt;
t= Half-yearly

L = 1 L = 2 L = 3 . L = 8 L = 9 L = 10

δhigh
t−1 to t−L 7.257* 8.819 11.990* . 21.276 2.913 4.756

(2.962) (4.524) (5.636) . (20.378) (26.153) (30.603)
δlow
t−1 to t−L -20.953** -17.126 -19.704 . -81.223* -68.144** -103.467**

(7.047) (9.658) (10.342) . (34.217) (23.612) (37.726)
Jt−1 to t−L 9.390** 9.922** . 29.266* 20.867** 24.310**

(3.081) (3.516) . (12.278) (7.461) (9.065)
∆PD/GDP t−1 to t−L -0.025*** -0.064** -0.071** . -0.205** -0.144** -0.194*

(0.007) (0.021) (0.026) . (0.080) (0.049) (0.080)

Number of
Observations

8501 8501 8501 . 8501 8501 8501

Pseudo R2 0.122 0.314 0.278 . 0.282 0.275 0.332

Marginal Effects (%)

δhigh
t−1 to t−L 2.085 2.016 2.879 . 5.096 0.702 1.060
δlow
t−1 to t−L -6.019 -3.915 -4.731 . -19.455 -16.429 -23.052
∆PD/GDP t−1 to t−L -0.007 -0.015 -0.017 . -0.049 -0.035 -0.043

This table presents the results for the regression equation introduced in Equation 2.45 for L = 1, ..., 10. These
lags are half-yearly lags, therefore, when L = 10, L represents five years. δhigh and δlow are high and low
volatility introduced in Equation 2.44, ξσ represents the volatility, and |ξσ − τ | is the absolute value of the
deviation of volatility from its trend. ∆PD/GDP denotes the public debt-to-GDP ratio. Here, stars are only
intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a p-value is ≤
0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three stars (***).
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In Table 2.7, we examine the predictive power of low volatility using different lag lengths.

The results show a negative relationship between low volatility and future financial crises

when information up to 5 years is taken into account. Marginal effects reported at the

bottom of the table show the change in the probability of market uncertainty following an

instantaneous change in low volatility. We find that a decrease in volatility below its trend

translates into a 6.019%, 4.731%, 19.455%, and 23.052% increase in the probability of market

uncertainty when the last 1, 3, 8, and 10 half-years’ information is used, respectively. The

marginal effects for low volatility increase monotonically and reach a maximum when the last

5 years are considered, indicating that the economic impact is highest if the SPX remains in a

low-volatility environment for 5 years. This result corresponds with Danielsson & Valenzuela

& Zer (2018), who found that low volatility reaches a maximum at 5 years when analysing

yearly lags up to 10 years. As established in Danielsson & Valenzuela & Zer (2018), we also

obtain results that imply an increase in the debt-to-GDP ratio is negatively associated with

the probability of future market uncertainty as we have negative and significant test statistics

in both Probit model results in Table 2.6 and Table 2.7. We conduct additional tests to assess

multicollinearity between low volatility and debt-to-GDP. The correlation coefficient between

these variables is low, at 0.020937, indicating minimal linear relation. We further calculate

the Variance Inflation Factor (VIF) to asses multicollinearity for both variables and obtain a

value of 1.000439 which is very close to 1, suggesting no multicollinearity. Additionally, as

shown in Figure 2.12, the scatter plot visually confirms the lack of correlation between the

two variables.

Danielsson & Valenzuela & Zer (2018) included INFLATIONt−1 to t−L, however, we do not
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Figure 2.12: Low Volatility vs. Debt-To-GDP

This illustration shows the relationship between low volatility and debt-to-GDP.

include INFLATIONt−1 to t−L and 10 YEAR TREASURY YIELDt−1 to t−L control variables

due to multicollinearity observed in a correlation matrix.

2.6 Conclusion

My main contribution shows that low volatility is a strong predictor of financial crises. The

evolution of the tail shape parameter and the PDF conforms to Keynes (1937) and Minsky

(1977) theories, which suggest that economic agents observing low financial risk tend to

increase risk-taking, leading to a crisis. We focused on various modelling approaches to

estimate the risk-neutral option-implied PDF from market-traded options. The choice of

methodology for estimating the RND to examine the forecastability of crashes is appropriate.
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Using the DM test, the mixture of the log-normal method is the most accurate compared to

the other estimated methods proposed in this study when forecasting S&P 500 European

option call prices. The statistical analysis of the comprehensive dataset explains that both the

mean and the variance are higher for ex-post densities compared to ex-ante densities. This

observation shows how low volatility can paradoxically increase the probability of a systemic

event. However, for ex-ante political density means, the variance is higher than the ex-post

variance of density means. This dynamic could indicate that, in the case of political events,

uncertainty is usually anticipated. Therefore, uncertainty is priced ex-ante or during the

event. For the complete dataset, the mean of the ex-ante MAE, MAPE, and RMSE for both

puts and calls is higher than the ex-post results, implying that forecasting errors decrease

after the uncertain event, the results are shown in Table 2.8 to Table 2.19. Decomposing δhigh

and δlow volatilities allows for a focus on low volatility separately. My findings reveal that we

gain higher marginal effects over an extended period of low volatility; this result implies that

the economic impact is the highest if the economy remains in a low-volatility environment.

These findings are useful to risk managers, hedgers, and monetary policymakers because low

volatility could be used as an early warning indicator.
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Table 2.8: Ex-ante and Ex-post MAE of Calls of Financial and Political Events

Type of Event Event MAE call t-1 MAE call t MAE call t+1

Financial Greece defaulting on IMF loan 8.886 9.369 8.730

Financial Chinese stock market crash 9.996 9.903 8.334

Financial Swiss National Bank abolishes currency peg 10.185 8.309 8.468

Political Charlie Hebdo attack 9.329 9.405 9.696

Political Israel-Gaza conflict 25.165 23.104 21.594

Political IS seizes Mosul 17.271 16.813 16.406

Political First Russian soldiers in Crimea 8.278 8.113 8.137

Political 9/11 Attack 6.659 23.837 18.321

Political Maidan riots in Ukraine 28.683 10.868 9.176

Political German Constitutional Court consults EU Court on OMT 27.550 26.154 24.918

Political Ukraine rejects EU association agreement 11.998 11.837 12.876

Financial Yellen nominated chairwoman of the FED 18.692 15.433 16.919

Political US government shutdown 28.964 14.843 14.655

Political Ousting of Mursi in Egypt 13.524 13.364 13.812

Political Boston marathon bombing 14.364 13.035 1.175

Financial US technically falls off Fiscal Cliff 8.669 8.611 8.826

Political Obama re-elected 20.318 18.898 18.928

Financial German Court approves ESM 19.276 18.818 17.235

Financial EU Banking Union 10.679 11.077 11.757

Political Tuareg offensive in Mali after coup starts 6.525 6.350 6.163

Financial Debt restructuring in Greece 6.976 5.497 6.180

Financial 2nd Economic Adjustment Programme for Greece 12.878 10.474 10.196

Political Berlusconi resignation announced 34.472 32.216 22.920

Financial Swiss frank pegged 11.486 10.747 9.670

Political Fukushima evacuation order 14.760 14.680 12.298

Political UN Security Council establishes no-fly zone in Libya 23.554 19.927 19.883

Political Mubarak ousted in Egypt 17.549 20.309 15.449

Political Ben-Ali leaves Tunisia 13.973 13.941 12.421

Financial Dodd-Frank-Act signed by Obama 12.587 11.034 13.312

Financial EFSF adopted 13.071 15.361 13.926

(a) Panel A
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Table 2.9: Ex-ante and Ex-post MAE of Calls of Financial and Political Events

Type of Event Event MAE call t-1 MAE call t MAE call t+1

Financial 1st Economic Adjustment Programme for Greece 6.942 8.303 5.962

Financial Downgrading of Greece + Portugal 9.444 8.878 9.067

Political Obamacare’ passes congress 12.419 10.605 8.843

Political Iran Green Revolution 57.556 48.976 55.249

Financial US Recovery and Reinvestment Act passes Congress 17.852 20.529 18.147

Political Obama elected 21.592 16.073 14.269

Financial TARP passes at the congress 27.334 25.733 22.376

Financial Emergency Economic Stabilisation Act, US bails out banks 30.328 29.928 27.334

Financial Emergency lending to AIG 20.028 8.131 11.625

Financial AIG asks for emergency lending + Lehman Brothers 36.337 24.780 20.028

Financial Takeover of Bear Stearns by JP Morgan approved 33.740 28.291 22.009

Financial Northern Rock receives liquidity support by BoE 105.201 101.843 103.826

Political 2nd Lebanon War 84.493 80.892 80.318

Financial Bernanke nominated chairman of the FED 59.088 58.580 57.681

Political London bombing 68.680 67.085 69.174

Political Dutch referendum on EU constitution 57.079 57.175 57.048

Political George W. Bush re-elected 71.522 70.311 71.484

Political Madrid train bombings 34.496 33.827 32.954

Political Iraq War 25.776 30.273 30.658

Political Argentine, beginning of turmoil 40.639 37.918 40.408

Political G W Bush elected 73.204 72.315 69.953

Political George W. Bush declared winner in Florida 114.378 108.083 106.385

Political Second Intifada 162.072 167.741 157.635

Financial Gramm-Leach-Biley Act 137.415 139.228 136.898

Political Clinton announces US join NATO bombing in Kosovo 96.494 97.151 99.994

Financial LTCM default 96.211 92.951 90.598

Financial Russian default 127.506 129.350 133.510

Political US embassy bombings in Kenia and Tanzania 134.955 135.151 136.649

Financial Indonesian currency devalues strongly 69.531 65.148 62.994

Financial Thailand unpegs currency 47.197 49.131 50.516

Financial Start of Asian Crisis 47.753 46.980 47.197

Political Clinton re-elected 49.749 50.672 50.439

MEAN 39.945 38.205 37.300

STDEV 37.799 38.333 38.412

(a) Panel B
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Table 2.10: Ex-ante and Ex-post MAPE of Calls of Financial and Political Events

Type of Event Event MAPE put t-1 MAPE put t MAPE put t+1

Financial Greece defaulting on IMF loan 0.092 0.188 0.104

Financial Chinese stock market crash 0.157 0.296 0.153

Financial Swiss National Bank abolishes currency peg 0.608 0.159 0.125

Political Charlie Hebdo attack 0.647 0.077 0.076

Political Israel-Gaza conflict 0.181 0.190 3.298

Political IS seizes Mosul 0.173 0.169 0.170

Political First Russian soldiers in Crimea 0.110 0.100 0.092

Political 9/11 Attack 0.288 1.454 1.354

Political Maidan riots in Ukraine 0.176 0.158 0.107

Political German Constitutional Court consults EU Court on OMT 1.887 0.323 0.317

Political Ukraine rejects EU association agreement 0.177 0.564 0.117

Financial Yellen nominated chairwoman of the FED 0.406 0.269 0.242

Political US government shutdown 0.297 0.266 0.256

Political Ousting of Mursi in Egypt 0.211 0.163 0.176

Political Boston marathon bombing 0.231 0.235 0.136

Financial US technically falls off Fiscal Cliff 1.024 0.116 3.841

Political Obama re-elected 0.354 0.333 5.355

Financial German Court approves ESM 0.354 2.893 6.078

Financial EU Banking Union 0.193 0.200 0.350

Political Tuareg offensive in Mali after coup starts 0.131 0.128 0.134

Financial Debt restructuring in Greece 1.077 0.157 0.205

Financial 2nd Economic Adjustment Programme for Greece 1.148 0.162 0.157

Political Berlusconi resignation announced 1.564 0.779 0.229

Financial Swiss frank pegged 0.202 0.324 0.149

Political Fukushima evacuation order 0.252 0.240 0.200

Political UN Security Council establishes no-fly zone in Libya 0.279 0.283 0.275

Political Mubarak ousted in Egypt 3.092 0.221 1.001

Political Ben-Ali leaves Tunisia 0.332 0.332 0.548

Financial Dodd-Frank-Act signed by Obama 0.298 0.261 0.154

Financial EFSF adopted 0.259 0.790 0.260

(a) Panel A
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Table 2.11: Ex-ante and Ex-post MAPE of Calls of Financial and Political Events

Type of Event Event MAPE put t-1 MAPE put t MAPE put t+1

Financial 1st Economic Adjustment Programme for Greece 0.119 4.126 0.179

Financial Downgrading of Greece + Portugal 0.164 0.141 0.614

Political Obamacare’ passes congress 0.303 2.158 0.212

Political Iran Green Revolution 0.759 0.745 0.772

Financial US Recovery and Reinvestment Act passes Congress 0.486 0.678 0.995

Political Obama elected 6.044 0.352 2.492

Financial TARP passes at the congress 0.496 0.719 0.581

Financial Emergency Economic Stabilisation Act, US bails out banks 0.570 0.592 0.496

Financial Emergency lending to AIG 42.524 0.490 0.468

Financial AIG asks for emergency lending + Lehman Brothers 62.975 28.405 42.524

Financial Takeover of Bear Stearns by JP Morgan approved 14.177 6.190 19.410

Financial Northern Rock receives liquidity support by BoE 26.614 29.182 26.209

Political 2nd Lebanon War 62.166 46.824 43.814

Financial Bernanke nominated chairman of the FED 109.769 102.063 102.301

Political London bombing 81.948 77.881 81.622

Political Dutch referendum on EU constitution 25.950 14.385 13.429

Political George W. Bush re-elected 35.007 41.728 33.698

Political Madrid train bombings 17.529 9.954 18.628

Political Iraq War 34.631 49.718 66.834

Political Argentine, beginning of turmoil 42.806 43.345 45.683

Political G W Bush elected 29.445 23.930 37.542

Political George W. Bush declared winner in Florida 94.420 93.806 94.488

Political Second Intifada 322.250 155.987 146.325

Financial Gramm-Leach-Biley Act 21.432 24.947 20.480

Political Clinton announces US join NATO bombing in Kosovo 7.114 7.651 6.288

Financial LTCM default 49.353 32.110 54.398

Financial Russian default 43.719 55.240 47.430

Political US embassy bombings in Kenia and Tanzania 51.119 53.599 55.475

Financial Indonesian currency devalues strongly 5.643 8.785 6.858

Financial Thailand unpegs currency 1.483 1.250 1.163

Financial Start of Asian Crisis 1.572 1.867 1.483

Political Clinton re-elected 1.405 1.120 1.062

MEAN 19.835 15.252 16.365

STDEV 46.474 29.764 29.876

(a) Panel B

81



Table 2.12: Ex-ante and Ex-post RMSE of Calls of Financial and Political Events

Type of Event Event RMSE call t-1 RMSE call t RMSE call t+1

Financial Greece defaulting on IMF loan 10.537 10.571 9.941

Financial Chinese stock market crash 11.555 11.365 9.898

Financial Swiss National Bank abolishes currency peg 11.972 10.250 10.295

Political Charlie Hebdo attack 10.634 11.310 11.451

Political Israel-Gaza conflict 28.452 25.549 23.127

Political IS seizes Mosul 20.015 19.552 19.091

Political First Russian soldiers in Crimea 9.538 9.200 9.263

Political 9/11 Attack 11.235 29.431 25.254

Political Maidan riots in Ukraine 33.145 13.056 10.766

Political German Constitutional Court consults EU Court on OMT 32.059 30.166 28.582

Political Ukraine rejects EU association agreement 13.942 14.166 15.376

Financial Yellen nominated chairwoman of the FED 22.733 18.797 20.998

Political US government shutdown 33.966 16.563 16.352

Political Ousting of Mursi in Egypt 15.184 15.443 15.936

Political Boston marathon bombing 16.497 15.219 1.427

Financial US technically falls off Fiscal Cliff 10.568 11.002 11.151

Political Obama re-elected 25.243 24.156 23.899

Financial German Court approves ESM 24.780 24.354 22.161

Financial EU Banking Union 13.817 14.100 15.626

Political Tuareg offensive in Mali after coup starts 8.695 8.657 8.421

Financial Debt restructuring in Greece 8.734 6.677 8.192

Financial 2nd Economic Adjustment Programme for Greece 16.102 12.412 12.270

Political Berlusconi resignation announced 39.069 37.475 25.018

Financial Swiss frank pegged 14.254 13.763 12.036

Political Fukushima evacuation order 18.523 18.442 16.013

Political UN Security Council establishes no-fly zone in Libya 31.071 25.868 25.814

Political Mubarak ousted in Egypt 21.332 25.522 18.581

Political Ben-Ali leaves Tunisia 16.887 16.875 16.328

Financial Dodd-Frank-Act signed by Obama 17.764 14.569 18.649

Financial EFSF adopted 15.464 21.196 17.724

(a) Panel A
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Table 2.13: Ex-ante and Ex-post RMSE of Calls of Financial and Political Events

Type of Event Event RMSE call t-1 RMSE call t RMSE call t+1

Financial 1st Economic Adjustment Programme for Greece 9.235 10.003 7.691

Financial Downgrading of Greece + Portugal 11.563 10.816 12.066

Political Obamacare’ passes congress 17.875 14.308 11.306

Political Iran Green Revolution 86.500 74.697 86.787

Financial US Recovery and Reinvestment Act passes Congress 24.021 29.123 27.941

Political Obama elected 31.609 26.365 20.164

Financial TARP passes at the congress 36.279 32.638 31.302

Financial Emergency Economic Stabilisation Act, US bails out banks 39.078 37.959 36.279

Financial Emergency lending to AIG 26.616 10.125 15.182

Financial AIG asks for emergency lending + Lehman Brothers 50.206 32.623 26.616

Financial Takeover of Bear Stearns by JP Morgan approved 37.455 31.180 26.305

Financial Northern Rock receives liquidity support by BoE 134.259 130.707 132.941

Political 2nd Lebanon War 104.995 101.554 99.721

Financial Bernanke nominated chairman of the FED 76.550 75.564 74.477

Political London bombing 83.270 81.459 83.395

Political Dutch referendum on EU constitution 65.901 65.963 65.818

Political George W. Bush re-elected 86.985 85.873 87.147

Political Madrid train bombings 47.073 47.024 45.437

Political Iraq War 33.445 35.347 36.150

Political Argentine, beginning of turmoil 49.585 46.929 49.089

Political G W Bush elected 81.195 80.480 77.089

Political George W. Bush declared winner in Florida 129.045 121.573 119.816

Political Second Intifada 177.319 182.613 173.861

Financial Gramm-Leach-Biley Act 157.067 159.208 155.531

Political Clinton announces US join NATO bombing in Kosovo 110.548 111.353 114.550

Financial LTCM default 112.119 108.186 105.941

Financial Russian default 144.012 146.938 151.788

Political US embassy bombings in Kenia and Tanzania 152.742 153.389 154.887

Financial Indonesian currency devalues strongly 79.781 74.887 72.848

Financial Thailand unpegs currency 57.484 59.803 61.469

Financial Start of Asian Crisis 58.087 57.335 57.484

Political Clinton re-elected 58.330 60.077 59.839

MEAN 47.914 45.777 44.841

STDEV 43.199 43.738 44.066

(a) Panel B
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Table 2.14: Ex-ante and Ex-post MAE of Puts of Financial and Political Events

Type of Event Event MAE put t-1 MAE put t MAE put t+1

Financial Greece defaulting on IMF loan 8.687 5.842 8.599

Financial Chinese stock market crash 4.804 4.171 10.351

Financial Swiss National Bank abolishes currency peg 5.071 9.307 9.555

Political Charlie Hebdo attack 4.607 10.290 10.129

Political Israel-Gaza conflict 7.425 6.816 14.987

Political IS seizes Mosul 17.041 16.725 16.396

Political First Russian soldiers in Crimea 9.873 10.073 9.779

Political 9/11 Attack 4.754 26.233 24.271

Political Maidan riots in Ukraine 12.020 4.209 11.106

Political German Constitutional Court consults EU Court on OMT 18.336 32.614 31.411

Political Ukraine rejects EU association agreement 13.745 9.088 2.843

Financial Yellen nominated chairwoman of the FED 7.978 18.460 12.912

Political US government shutdown 13.131 19.468 19.165

Political Ousting of Mursi in Egypt 14.027 12.568 6.056

Political Boston marathon bombing 16.077 14.833 0.466

Financial US technically falls off Fiscal Cliff 4.190 8.457 5.081

Political Obama re-elected 24.746 24.110 18.505

Financial German Court approves ESM 19.570 18.596 9.877

Financial EU Banking Union 11.954 11.725 3.808

Political Tuareg offensive in Mali after coup starts 7.022 6.448 6.321

Financial Debt restructuring in Greece 2.998 6.355 1.812

Financial 2nd Economic Adjustment Programme for Greece 4.591 12.818 12.272

Political Berlusconi resignation announced 30.675 30.969 27.977

Financial Swiss frank pegged 16.619 10.136 9.666

Political Fukushima evacuation order 14.473 14.196 11.991

Political UN Security Council establishes no-fly zone in Libya 10.412 17.750 17.457

Political Mubarak ousted in Egypt 10.657 7.628 19.428

Political Ben-Ali leaves Tunisia 17.235 17.142 4.195

Financial Dodd-Frank-Act signed by Obama 10.273 13.871 6.147

Financial EFSF adopted 16.652 7.088 13.191

(a) Panel A
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Table 2.15: Ex-ante and Ex-post MAE of Puts of Financial and Political Events

Type of Event Event MAE put t-1 MAE put t MAE put t+1

Financial 1st Economic Adjustment Programme for Greece 6.719 3.159 6.696

Financial Downgrading of Greece + Portugal 9.799 9.598 2.173

Political Obamacare’ passes congress 6.296 7.540 9.416

Political Iran Green Revolution 85.708 79.435 66.575

Financial US Recovery and Reinvestment Act passes Congress 21.892 7.772 10.020

Political Obama elected 16.314 17.583 13.849

Financial TARP passes at the congress 32.013 38.556 35.720

Financial Emergency Economic Stabilisation Act, US bails out banks 30.410 30.750 32.013

Financial Emergency lending to AIG 21.391 14.707 13.076

Financial AIG asks for emergency lending + Lehman Brothers 37.059 30.258 21.391

Financial Takeover of Bear Stearns by JP Morgan approved 28.911 22.766 22.137

Financial Northern Rock receives liquidity support by BoE 45.689 51.051 42.435

Political 2nd Lebanon War 30.316 34.381 35.427

Financial Bernanke nominated chairman of the FED 27.957 25.477 24.736

Political London bombing 27.816 28.114 24.680

Political Dutch referendum on EU constitution 19.420 17.904 17.132

Political George W. Bush re-elected 31.741 29.906 28.628

Political Madrid train bombings 21.719 15.593 16.928

Political Iraq War 46.592 41.947 40.993

Political Argentine, beginning of turmoil 35.281 37.555 37.015

Political G W Bush elected 60.428 57.216 60.427

Political George W. Bush declared winner in Florida 94.618 103.345 104.385

Political Second Intifada 90.310 86.281 97.835

Financial Gramm-Leach-Biley Act 60.609 57.073 58.819

Political Clinton announces US join NATO bombing in Kosovo 46.312 44.567 40.732

Financial LTCM default 48.506 52.102 48.207

Financial Russian default 64.753 60.621 53.668

Political US embassy bombings in Kenia and Tanzania 59.333 57.087 55.489

Financial Indonesian currency devalues strongly 31.342 29.124 33.260

Financial Thailand unpegs currency 20.198 16.609 13.365

Financial Start of Asian Crisis 21.941 22.026 20.198

Political Clinton re-elected 13.185 10.030 10.089

MEAN 25.401 24.949 23.426

STDEV 21.258 21.154 21.466

(a) Panel B
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Table 2.16: Ex-ante and Ex-post MAPE of Put of Financial and Political Events

Type of Event Event MAPE call t-1 MAPE call t MAPE call t+1

Financial Greece defaulting on IMF loan 0.684 0.303 0.787

Financial Chinese stock market crash 0.566 0.498 7.239

Financial Swiss National Bank abolishes currency peg 0.443 1.054 1.375

Political Charlie Hebdo attack 0.428 1.489 2.306

Political Israel-Gaza conflict 0.650 0.544 9.454

Political IS seizes Mosul 54.642 52.673 47.553

Political First Russian soldiers in Crimea 5.742 6.765 6.382

Political 9/11 Attack 0.325 1.531 1.233

Political Maidan riots in Ukraine 0.715 0.482 4.904

Political German Constitutional Court consults EU Court on OMT 2.003 20.367 21.454

Political Ukraine rejects EU association agreement 11.372 5.018 0.534

Financial Yellen nominated chairwoman of the FED 0.506 27.027 4.257

Political US government shutdown 0.620 26.452 25.773

Political Ousting of Mursi in Egypt 5.844 4.425 0.496

Political Boston marathon bombing 36.320 26.773 0.664

Financial US technically falls off Fiscal Cliff 0.470 42.927 8.863

Political Obama re-elected 23.962 19.578 6.305

Financial German Court approves ESM 79.536 72.858 4.647

Financial EU Banking Union 19.101 15.708 0.423

Political Tuareg offensive in Mali after coup starts 12.181 15.655 14.877

Financial Debt restructuring in Greece 0.323 8.032 0.362

Financial 2nd Economic Adjustment Programme for Greece 0.398 12.761 12.588

Political Berlusconi resignation announced 3.255 1.529 9.070

Financial Swiss frank pegged 16.228 0.434 0.747

Political Fukushima evacuation order 77.357 68.640 51.462

Political UN Security Council establishes no-fly zone in Libya 4.637 104.152 102.508

Political Mubarak ousted in Egypt 0.783 0.484 10.272

Political Ben-Ali leaves Tunisia 14.339 19.179 0.561

Financial Dodd-Frank-Act signed by Obama 1.036 8.849 0.308

Financial EFSF adopted 1.173 0.292 1.463

(a) Panel A
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Table 2.17: Ex-ante and Ex-post MAPE of Put of Financial and Political Events

Type of Event Event MAPE call t-1 MAPE call t MAPE call t+1

Financial 1st Economic Adjustment Programme for Greece 4.020 1.363 4.083

Financial Downgrading of Greece + Portugal 9.764 6.791 0.407

Political Obamacare’ passes congress 0.358 1.905 14.338

Political Iran Green Revolution 3.202 2.631 0.659

Financial US Recovery and Reinvestment Act passes Congress 4.192 0.291 0.286

Political Obama elected 4.006 3.615 2.888

Financial TARP passes at the congress 0.738 0.815 0.547

Financial Emergency Economic Stabilisation Act, US bails out banks 1.901 1.686 0.738

Financial Emergency lending to AIG 6.565 0.194 0.908

Financial AIG asks for emergency lending + Lehman Brothers 9.523 7.357 6.565

Financial Takeover of Bear Stearns by JP Morgan approved 0.171 0.103 0.116

Financial Northern Rock receives liquidity support by BoE 0.985 0.943 1.832

Political 2nd Lebanon War 0.837 0.919 0.745

Financial Bernanke nominated chairman of the FED 8.961 3.402 12.026

Political London bombing 7.772 0.864 0.787

Political Dutch referendum on EU constitution 0.954 0.956 0.966

Political George W. Bush re-elected 2.591 3.276 3.263

Political Madrid train bombings 15.583 3.568 10.856

Political Iraq War 4.816 5.832 8.704

Political Argentine, beginning of turmoil 4.602 3.679 4.163

Political G W Bush elected 0.822 0.990 0.892

Political George W. Bush declared winner in Florida 2.425 2.378 2.083

Political Second Intifada 31.775 30.092 41.518

Financial Gramm-Leach-Biley Act 0.962 0.989 0.990

Political Clinton announces US join NATO bombing in Kosovo 0.864 0.869 0.939

Financial LTCM default 1.634 4.182 3.514

Financial Russian default 3.079 1.380 1.893

Political US embassy bombings in Kenia and Tanzania 2.583 3.225 2.888

Financial Indonesian currency devalues strongly 0.970 3.771 0.942

Financial Thailand unpegs currency 0.999 1.000 1.000

Financial Start of Asian Crisis 0.997 0.980 0.999

Political Clinton re-elected 1.000 1.000 1.000

MEAN 8.442 10.918 8.052

STDEV 16.111 19.668 16.164

(a) Panel B
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Table 2.18: Ex-ante and Ex-post RMSE of Puts of Financial and Political Events

Type of Event Event RMSE put t-1 RMSE put t RMSE put t+1

Financial Greece defaulting on IMF loan 9.830 7.369 9.817

Financial Chinese stock market crash 6.534 5.899 11.615

Financial Swiss National Bank abolishes currency peg 5.911 10.481 10.684

Political Charlie Hebdo attack 5.321 11.310 11.137

Political Israel-Gaza conflict 12.527 10.913 18.716

Political IS seizes Mosul 17.982 17.642 17.303

Political First Russian soldiers in Crimea 10.487 10.711 10.346

Political 9/11 Attack 12.639 31.235 27.444

Political Maidan riots in Ukraine 19.074 5.372 11.756

Political German Constitutional Court consults EU Court on OMT 23.011 33.669 32.524

Political Ukraine rejects EU association agreement 14.155 10.007 4.105

Financial Yellen nominated chairwoman of the FED 11.039 19.560 14.703

Political US government shutdown 20.655 20.532 20.236

Political Ousting of Mursi in Egypt 15.196 13.558 8.642

Political Boston marathon bombing 16.707 15.577 0.766

Financial US technically falls off Fiscal Cliff 5.527 8.974 5.998

Political Obama re-elected 25.642 24.954 20.242

Financial German Court approves ESM 20.657 19.731 11.585

Financial EU Banking Union 12.731 12.410 5.063

Political Tuareg offensive in Mali after coup starts 7.596 7.057 6.958

Financial Debt restructuring in Greece 3.896 6.922 2.331

Financial 2nd Economic Adjustment Programme for Greece 6.173 13.363 12.808

Political Berlusconi resignation announced 36.379 36.388 29.584

Financial Swiss frank pegged 17.939 12.148 11.197

Political Fukushima evacuation order 15.397 15.103 12.859

Political UN Security Council establishes no-fly zone in Libya 12.958 18.945 18.639

Political Mubarak ousted in Egypt 13.007 10.069 19.900

Political Ben-Ali leaves Tunisia 17.696 17.605 5.474

Financial Dodd-Frank-Act signed by Obama 11.264 14.606 7.195

Financial EFSF adopted 17.282 8.616 13.934

(a) Panel A
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Table 2.19: Ex-ante and Ex-post RMSE of Puts of Financial and Political Events

Type of Event Event RMSE put t-1 RMSE put t RMSE put t+1

Financial 1st Economic Adjustment Programme for Greece 7.567 3.656 7.669

Financial Downgrading of Greece + Portugal 10.369 10.270 2.877

Political Obamacare’ passes congress 7.758 8.381 10.044

Political Iran Green Revolution 92.550 85.275 78.253

Financial US Recovery and Reinvestment Act passes Congress 23.100 9.842 12.977

Political Obama elected 20.376 20.753 17.050

Financial TARP passes at the congress 33.867 39.412 36.406

Financial Emergency Economic Stabilisation Act, US bails out banks 37.058 36.687 33.867

Financial Emergency lending to AIG 27.398 15.862 14.138

Financial AIG asks for emergency lending + Lehman Brothers 51.616 38.315 27.398

Financial Takeover of Bear Stearns by JP Morgan approved 37.814 31.598 28.460

Financial Northern Rock receives liquidity support by BoE 71.826 73.039 69.251

Political 2nd Lebanon War 48.772 53.657 59.824

Financial Bernanke nominated chairman of the FED 47.380 44.341 43.400

Political London bombing 48.138 48.795 44.276

Political Dutch referendum on EU constitution 33.180 31.664 31.069

Political George W. Bush re-elected 56.863 53.216 51.631

Political Madrid train bombings 25.814 23.550 21.638

Political Iraq War 58.984 51.079 49.944

Political Argentine, beginning of turmoil 43.845 46.913 45.946

Political G W Bush elected 85.611 79.876 84.791

Political George W. Bush declared winner in Florida 135.326 143.342 143.180

Political Second Intifada 127.811 126.732 138.920

Financial Gramm-Leach-Biley Act 98.663 94.542 95.723

Political Clinton announces US join NATO bombing in Kosovo 69.719 66.767 62.435

Financial LTCM default 83.303 83.432 74.478

Financial Russian default 100.955 100.271 90.866

Political US embassy bombings in Kenia and Tanzania 98.848 95.741 95.106

Financial Indonesian currency devalues strongly 42.048 37.871 44.306

Financial Thailand unpegs currency 31.331 26.379 21.785

Financial Start of Asian Crisis 33.404 32.874 31.331

Political Clinton re-elected 18.437 14.223 14.213

MEAN 34.792 33.571 31.957

STDEV 31.555 31.425 31.953

(a) Panel B
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Table 2.20: List of Financial and Political Events
Type of Event Event Type of Event Event

Financial Greece defaulting on IMF loan Financial 1st Economic Adjustment Programme for Greece

Financial Chinese stock market crash Financial Downgrading of Greece + Portugal

Financial Swiss National Bank abolishes currency peg Political Obamacare’ passes congress

Political Charlie Hebdo attack* Political Iran Green Revolution

Political Israel-Gaza conflict Financial US Recovery and Reinvestment Act passes Congress

Political IS seizes Mosul* Political Obama elected

Political First Russian soldiers in Crimea Financial TARP passes at the congress

Political Maidan riots in Ukraine Financial Emergency Economic Stabilisation Act, US bails out banks

Political German Constitutional Court consults EU Court on OMT Financial Emergency lending to AIG

Political Ukraine rejects EU association agreement* Financial AIG asks for emergency lending + Lehman Brothers*

Financial Yellen nominated chairwoman of the FED Financial Takeover of Bear Stearns by JP Morgan approved

Political US government shutdown Financial Northern Rock receives liquidity support by BoE*

Political Ousting of Mursi in Egypt Political 2nd Lebanon War

Political Boston marathon bombing* Financial Bernanke nominated chairman of the FED

Financial US technically falls off Fiscal Cliff Political London bombing*

Political Obama re-elected Political Dutch referendum on EU constitution

Financial German Court approves ESM* Political George W. Bush re-elected

Financial EU Banking Union Political Madrid train bombings*

Political Tuareg offensive in Mali after coup starts Political Iraq War

Financial Debt restructuring in Greece Political Argentine, beginning of turmoil

Financial 2nd Economic Adjustment Programme for Greece Political G W Bush elected

Political Berlusconi resignation announced* Political George W. Bush declared winner in Florida

Financial Swiss frank pegged Political Second Intifada

Political Fukushima evacuation order* Financial Gramm-Leach-Biley Act

Political UN Security Council establishes no-fly zone in Libya Political Clinton announces US join NATO bombing in Kosovo

Political Mubarak ousted in Egypt Financial LTCM default*

Political Ben-Ali leaves Tunisia Financial Russian default

Financial Dodd-Frank-Act signed by Obama Political US embassy bombings in Kenia and Tanzania*

Financial EFSF adopted* Financial Indonesian currency devalues strongly

Financial Thailand unpegs currency* Financial Start of Asian Crisis

Political 9/11 Attack* Political Clinton re-elected

This table represents events sourced from (Bloom 2009), where comprises 38 these events for the identification of the VAR
model estimated on about 400 monthly observations. Our table consists of 62 events, and our baseline analysis from the dataset
horizon consists of 16 baseline events which are identified with an asterisk(*).
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Chapter 3

EXTREME VALUE THEORY-MANAGED PORTFOLIOS
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Abstract

This chapter proposes, analyses, and implements a trading strategy that leverages volatility to

reduce portfolio tail risk while improving the Sharpe ratio. The portfolio is constructed using

the Fama-French Five-Factor Model, which includes the original three factors, along with

profitability and investment, assuming a linear relationship between these factors and stock

returns. The analysis compares this strategy against benchmark portfolios: buy-and-hold

and the Volatility-Managed (VM) strategy from Moreira & Muir (2017). The motivation for

this chapter lies in the advantages of Extreme Value Theory (EVT), EVT is more effective at

assessing the risk of extreme losses by focusing on the distribution’s extreme tails, whereas

VaR often underestimates this risk due to its assumption of normally distributed returns.

EVT’s flexible assumptions about tail distributions make it more accurate in capturing the

asymmetry and fat tails of return distributions. This Chapter makes a valuable contribution

by promoting the integration of Extreme Value Theory (EVT) in Volatility-Managed portfolio

literature. It highlights the benefits of EVT in improving risk management and volatility-

timing, leading to superior financial performance, especially in the context of market volatility

and extreme events.
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Abbreviation

VaR Value-at-Risk

CVaR Conditional Value-at-Risk

EVA Extreme Value Analysis

EVT Extreme Value Theory

EVTM Extreme Value Theory-Managed

VM Volatility-Managed

TRM Tail Risk-Managed

ARCH Autoregressive Conditional Heteroscedasticity

GARCH Generalised Autoregressive Conditional Heteroscedasticity

POT Peaks-Over-Threshold

RSJV Relative Signed Jump Variation

ADF Augmented Dickey–Fuller Test

ME Mean Excess

MVE Mean-Variance Efficient
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Nomenclature

t Current time

Fu Distribution of the excess value over a threshold u

β Scale of the generalised Pareto

ξ Shape parameter of the generalised Pareto

α Specific probability quantile

L Log-likelihood function

α̃ Set of discrete values of α

RVt Realised variance

SJt Signed jump variation at time t

st Relative Signed Jump Variation (RSJV)

Rt Return of an arbitrary asset on day t

St Price of an arbitrary asset on day t

ft Return of a portfolio or Fama-French factor on day t

κt(α) A probability threshold which measures the extent of the mis-classification risk

associated with the forecast of the probability α of an EVT violation
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γt Denotes exposure of the strategy, calculated by scaling the variance of f ζ
t+1 to the

variance of the Fama-factor computed on an expanded window starting from t0

wi Window size where i specifies which window. i.e. w1 = 1000, and w2 = 250

Ωt Weights of a portfolio
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3.1 Introduction

In this chapter, we propose, analyse, and implement a trading strategy that exploits directional

predictability, aiming to reduce a portfolio’s exposure to tail risk while improving its Sharpe

ratio through mean-variance analysis.

Our analysis is motivated by the perspective of a mean-variance investor, who dynamically

adjusts their portfolio allocation based on the attractiveness of the mean-variance trade-off,

represented by the ratio of expected return to variance. Existing portfolio management

strategies often fail to adequately address tail-risk, which can lead to significant losses

during financial crises or market downturns. To address this gap, our Extreme Value Theory

Managed (EVTM) portfolios explicitly incorporate Extreme Value Theory (EVT) to model

and manage tail-risk, offering a more robust framework for mitigating extreme losses compared

to traditional risk management approaches like Value-at-Risk (VaR) or standard deviation-

based methods. While traditional models assume returns are normally distributed, financial

returns often exhibit fat tails and skewness, making extreme events more likely than predicted

by conventional models. EVTM portfolios leverage the predictability of extreme events

through EVT, which is better suited for modelling tail behaviour, enabling more accurate

estimation of tail-risk probabilities and improved portfolio adjustments during volatile periods.

Many existing strategies either focus on maximising returns or minimising risk, but few

achieve an optimal balance, especially during periods of market stress. EVTM portfolios aim

to deliver superior risk-adjusted returns by dynamically adjusting risk exposure based on
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extreme value tail-risk forecasts, ensuring that the portfolio is better positioned to handle

adverse market conditions without sacrificing long-term performance. Traditional portfolio

strategies often advocate increasing or maintaining risk exposure during downturns, assuming

mean reversion or market recovery. In contrast, EVTM portfolios challenge this conventional

wisdom by reducing risk-taking during adverse times, thereby protecting capital and avoiding

large drawdowns. This contrarian approach can lead to better long-term performance.

The EVTM framework is highly flexible, allowing for customisation based on different

modelling choices, such as threshold selection and distribution assumptions. This adaptability

makes it applicable across various markets and asset classes, enhancing its practical utility.

While EVT is widely used in risk management, its application in portfolio management

remains under-explored. By empirically validating the effectiveness of EVT in portfolio

management, our research bridges a gap in the literature and provides a new tool for investors

and portfolio managers. Additionally, EVTM portfolios address behavioural finance biases,

such as overconfidence or loss aversion, by providing a systematic, rules-based approach to

managing tail-risk, thereby improving decision-making during periods of market stress.

Existing strategies may not adequately prepare portfolios for extreme market events or

prolonged periods of market turbulence. EVTM portfolios enhance portfolio resilience by

explicitly accounting for extreme events, ensuring that the portfolio can withstand severe

market shocks without catastrophic losses. Finally, as the volatility-managed literature

continues to evolve, there is a need for innovative approaches that address the limitations of

existing models. By introducing EVTM portfolios, our research contributes to the broader

literature on portfolio management, and tail-risk modelling, offering a novel perspective and
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practical insights for both academics and practitioners.

Our portfolio construction is based on the Fama-French Five-Factor Model from Fama &

French (2015), which extends the original Three-Factor Model (Fama & French (1992)) by

including two additional factors: profitability and investment. We chose to use the Fama-

French five-factor model due to its strong theoretical foundations, empirical robustness, and

alignment with our research objectives. The model builds on the well-established three-factor

framework by incorporating profitability (RMW) and investment (CMA) factors. The model’s

proven explanatory power across various markets make it a reliable choice, as it captures

the most significant anomalies for example, size, value, profitability, and investment. While

other studies may include additional factors to address specific anomalies or explore niche

areas, our research focuses on the core drivers of returns, ensuring clarity, interpretability,

and comparability with a vast body of existing literature. Furthermore, limiting the analysis

to five factors avoids potential issues related to data availability, ensuring the robustness of

my findings.

We compare these portfolios against benchmarks, including buy-and-hold portfolios and

Volatility-Managed (VM) portfolios from Moreira & Muir (2017). EVT is specifically designed

to assess the risk of extreme losses by focusing on the tail of the distribution, unlike VaR, which

may underestimate extreme risks when the underlying data deviates from normal distribution

assumptions. EVT is particularly effective because it relies on flexible assumptions about tail

distributions, whereas VaR assumes a normal distribution of returns, a limitation given that

financial returns often exhibit fat tails and asymmetry.
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This study explores various portfolio optimisation strategies, with a specific focus on the

application of the Sortino ratio, Sharpe ratio, and EVT-VaR. We aim to provide compelling

evidence of the superior performance of portfolios managed using the Sharpe ratio and

Sortino ratio methods. Our results show that EVTM portfolios optimised by the Sharpe

ratio consistently exhibit higher Sharpe ratios across all factors compared to VM and unman-

aged portfolios. Sortino-optimised EVTM portfolios also deliver exceptional results, with

significantly higher Sortino-optimised EVTM Sharpe ratios than VM portfolios, highlighting

the importance of incorporating downside risk into portfolio management.

Additionally, the Conditional Value-at-Risk (CVaR) analysis demonstrates that EVTM

portfolios manage extreme downside risks more effectively than VM portfolios, particularly at

the 99% and 95% confidence levels. The presence of positive skewness in all EVTM portfolios,

contrasted with the negative skewness in VM portfolios, indicates a more favourable risk-

return profile for EVTM portfolios. The kurtosis analysis further suggests that EVTM

portfolios, optimised with Sharpe and Sortino ratios, exhibit a more moderate distribution of

returns compared to the heavier-tailed VM portfolios.

The time-series spanning regression analysis supports these findings, with real-time single-

factor and multi-factor EVTM portfolios delivering universally positive and significant alphas.

Sharpe-optimised EVTM portfolios, in particular, exhibit alphas more than three times higher

than those of VM portfolios. The higher R2 values observed in EVTM portfolios indicate that

their returns are sufficiently explained by the factors considered, reinforcing the effectiveness

of EVTM as a portfolio management strategy.
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The study also examines break-even transaction costs, revealing that despite the higher costs

associated with EVTM portfolios ranging from 60 to 140 basis points for single-factor portfolios,

and 130 to 160 basis points for multi-factor portfolios, these portfolios still demonstrate

superior performance in terms of Sharpe ratios and alphas. The positive break-even points

across all EVTM portfolios highlight their resilience to transaction costs.

According to Prospect Theory, developed by Kai-Ineman & Tversky (1979), investors are

more sensitive to losses than to gains (loss aversion). During volatile or turbulent market

conditions, they tend to prefer safer, less volatile assets, while in calmer periods, they are

more willing to pursue riskier assets in search of higher returns. By adopting EVTM portfolios

and dynamically adjusting portfolio allocations in response to market fluctuations, investors

can optimise risk-adjusted returns and mitigate the adverse effects of volatility. This adaptive

approach enables more resilient portfolio performance across varying market environments,

strategically balancing risk and reward.

The remainder of the Chapter is organised as follows: Section 3.2 provides an overview of

relevant research on EVT and EVT-VaR estimation methods, as well as volatility portfolio

management. Section 3.3 describes the daily data of the Fama-French factors Mkt-RF, SMB,

HML, RMW, and CMA, including descriptive statistics sourced from Wharton Research Data

Services (WRDS). Section 3.4 details the specific steps used to construct both single-EVTM

and multi-EVTM portfolios, along with a discussion on break-even transaction costs. Section

3.5 presents the empirical analysis, which investigates the selection of optimal thresholds,

the implementation of Logit regression analysis, the evaluation of risk using Conditional

Value-at-Risk (CVaR), and portfolio performance through Sharpe ratio metrics. We also
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explore spanning regressions and break-even transaction costs. Finally, Section 3.6 focuses on

the empirical conclusions of our results.
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3.2 Literature Review

Extreme Value Analysis (EVA) focuses on the tail behaviour of distributions, which is crucial

in financial markets for understanding the risk of extreme losses or gains. The seminal

contributions by Fréchet (1927), Fisher & Tippett (1928), and Gnedenko (1943) laid the

groundwork for modern EVA. Their work introduced the Fisher-Tippett-Gnedenko theorem,

which characterises the convergence of normalised maxima to a Generalised Extreme Value

(GEV) distribution. The GEV distribution encompasses the Gumbel, Fréchet, and Weibull

distributions, each representing different types of extreme value behaviour.

One common approach in EVA is the Peak Over Threshold (POT) method, which models

exceedances over a high threshold using the Generalised Pareto Distribution (GPD). This

method has been extensively used to model extreme returns in stock markets. For instance,

McNeil & Frey (2000) demonstrated the effectiveness of the POT method in estimating

Value-at-Risk (VaR) and Expected Shortfall (ES) for financial returns. Another approach,

the Block Maxima method, involves dividing the data into blocks (e.g., months or years)

and modelling the maximum value within each block using the GEV distribution. While less

frequently used compared to POT, this method has been applied in stock markets to model

annual maximum returns, as seen in the work of Longin (2000).

Despite its advantages, EVA has limitations. The selection of appropriate thresholds in the

POT method and block sizes in the Block Maxima method can be challenging and subjective.

Additionally, the assumption of stationarity in financial returns is often violated, requiring
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advanced techniques to account for non-stationary and dynamic behaviour.

Combining EVT with VaR (EVT-VaR) provides a robust framework for estimating risk

measures, particularly in the tails of the distribution where traditional methods might fail.

This combination is useful for capturing the risk of rare but severe market movements. McNeil

& Frey (2000) demonstrated that EVT provides better tail risk estimates than traditional

methods, particularly in financial markets characterised by fat tails and volatility clustering.

They proposed a method for estimating VaR that combines pseudo-maximum-likelihood

fitting of GARCH models to estimate current volatility with EVT to estimate the tail of the

innovation distribution in the GARCH model. This method estimates conditional quantiles

(VaR) and conditional expected shortfalls, and backtesting of historical daily return series

shows that it provides better 1-day estimates than methods that ignore the heavy tails of the

stochastic nature of volatility.

Longin (2000) applied EVT to stock index returns and showed that EVT-based VaR estimates

were more accurate in predicting extreme losses compared to standard techniques. Danielsson

& Vries (1997) examined the performance of EVT in estimating market risk for daily returns

of financial assets, concluding that EVT significantly enhances the precision of risk estimates.

They showed that conditional parametric methods, such as GARCH with normal innovations,

under-predict VaR for a sample of U.S. stock returns.

Despite its advantages, the application of EVT-VaR faces challenges, particularly with regard

to threshold selection. The choice of threshold in the POT method is crucial and subjective,

and it impacts the accuracy of the GPD fit.
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Baran & Witzany (2011) demonstrate that EVT-VaR is an improvement over previous VaR

methodologies, particularly because EVT focuses on the tails of the distribution. They apply

EVT to estimate low quantiles of the profit and loss (P/L) distribution and compare these

results with common Value-at-Risk (VaR) methodologies. Building on the fundamental

principles of EVT, they use the Peaks-Over-Threshold method to model the tail of the loss

distribution with the Generalised Pareto Distribution (GPD).

Gençay & Selçuk & Ulugülyaǧci (2003) adopted EVT to address the problem of underesti-

mation and overestimation in computing VaR. They assert that most financial return series

are asymmetric, and EVT is advantageous over models that assume symmetric distributions,

such as t-distributions and normal distributions, which are typically used in ARCH and

GARCH-like models, with the exception of the EGARCH model by Nelson (1992), which

accounts for asymmetric distributions.

The foundation of portfolio management theory was first developed by Markowitz (1952) with

the introduction of Modern Portfolio Theory (MPT) on portfolio selection, which emphasised

the importance of diversification and the relationship between risk and return. This theory

introduced the concept of the efficient frontier, illustrating a set of optimal portfolios that

offer the highest expected return for a given level of risk. Building on Markowitz (1952) work,

the Capital Asset Pricing Model (CAPM) developed by Sharpe (1964) introduced the notion

of systematic and idiosyncratic risk, asserting that only systematic risk is rewarded with

higher expected returns. The model introduced the concept of beta, a measure of an asset’s

sensitivity to market movements, and the security market line, which describes the expected

return of an asset as a function of its beta.
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As financial markets evolved, the development of multi-factor models, such as the Fama-

French three-factor model by Fama & French (1996), included the market risk premium

(Mkt-RF), the excess returns of small-cap stocks over large-cap stocks (SMB), and the

excess returns of value stocks over growth stocks (HML), providing a more comprehensive

explanation of asset returns. Subsequent research by Fama & French (2015) expanded these

models to include factors that account for returns on robust operating profitability over weak

operating profitability (RMW), and the returns of portfolios long on stocks with conservative

investments and short on stocks with aggressive investments (CMA).

A significant advancement is the concept of risk parity. E. Qian (2011) focuses on allocating

risk rather than capital equally across the portfolio components. This approach aims to

construct portfolios where each asset class contributes equally to the overall portfolio risk,

potentially offering more stable returns in diverse market conditions.

Empirical studies in portfolio management often focus on the performance of different asset

allocation strategies, the impact of diversification, and the effectiveness of various risk

management techniques. For example, studies have shown that while diversification can

reduce risk, the benefits diminish beyond a certain number of assets Statman (1987).

Moreira & Muir (2017) investigate the performance and benefits of Volatility-Managed (VM)

portfolios in the context of asset pricing and risk management. The authors explore how

dynamic allocation strategies based on volatility can improve risk-adjusted returns and

enhance portfolio diversification. The principal focus of the paper is on developing and

evaluating Volatility-Managed portfolios compared to traditional buy-and-hold strategies.
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Moreira & Muir (2017) provide an economic understanding of the effectiveness of Volatility-

Managed portfolios. They argue that the strategy is grounded in the theory that investors

prefer less volatile assets during turbulent market conditions and seek riskier assets when

conditions are calmer. By dynamically adjusting the portfolio’s allocation, investors can

achieve better risk-adjusted returns and mitigate the impact of market fluctuations.

In addition, Barroso & Detzel (2021) assess how VM strategies perform poorly in the

presence of trading costs. DeMiguel & Martin-Utrera & Uppal (2021) show that the superior

performance of a VM strategy is maintained in real-time when multi-factor portfolios are

considered. Cederburg et al. (2020) evaluate equity strategies to determine the effectiveness of

Volatility-Managed portfolios for real-time investors. Their portfolios tend to show significantly

positive alphas in spanning regressions, aligning with Moreira & Muir (2017). Barroso &

Detzel (2021) also examine whether limits to arbitrage explain the abnormal returns of

Volatility-Managed portfolios, finding that these abnormal returns are negligible in long-only

portfolios of hard-to-arbitrage stocks. The utility function from volatility managed portfolios

are significantly higher for out-of-sample mean-variance-efficient portfolios composed of easy-

to-arbitrage stocks than for hard-to-arbitrage stocks. This contradicts the typical finding

that anomalies are stronger where arbitrage is difficult. Additionally, the abnormal returns of

Volatility-Managed portfolios are significant only during times of high liquidity and sentiment,

aligning with models suggesting that unsophisticated traders under-react to informed order

flow during such periods.

F. Wang & X. S. Yan (2021) investigate the performance of Volatility-Managed portfolios and

find that portfolios scaled by downside volatility perform significantly better than those scaled
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by total volatility. This improved performance is demonstrated through spanning regressions,

direct Sharpe ratio comparisons, and real-time trading strategies. The enhanced performance

of downside Volatility-Managed portfolios is primarily attributed to return timing, where

downside volatility negatively predicts future returns. Additionally, the study shows that

using fixed-weight strategies can significantly enhance the performance of Volatility-Managed

portfolios for real-time investors. Qiao & S. Yan & B. Deng (2020) find that downside

volatility and overall volatility generally move together but are not highly correlated during

periods of high volatility.

Urom et al. (2022) develop a modified Sortino ratio, which presents a criterion for minimising

downside risk for any chosen expected return and loss benchmark. Their method allows

investors to delineate the optimal mix of risky and risk-free components in the portfolio.

They select a threshold T (γ), which mimics the portfolio composition in the sense that it

equals the risk-free rate plus γ times the portfolio’s equity risk premium. Portfolios scaled

by downside volatility enhance the mean-variance frontiers beyond those of original and

Volatility-Managed portfolios, improving the Sharpe ratios of tangency portfolios.1 This is

because downside Volatility-Managed portfolios are not encompassed by original or Volatility-

Managed portfolios, thereby expanding the investment opportunity set. In contrast, portfolios

managed by upside volatility do not provide this benefit.

De Nicolo (2023) contributes to the literature by focusing on tail risk and developing the Tail

Risk Managed (TRM) portfolio. A key difference between TRM portfolios and VM portfolios
1A tangency portfolio lies at the point where the efficient frontier is tangent to the highest possible Capital

Market Line (CML) in the risk-return space.
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is that the TRM strategy exploits a predictive model of targeted levels of tail risks. Therefore,

a TRM strategy is more flexible than a VM strategy, as it is based on an expanded set of tail

risk predictors, whereas the VM strategy relies on a function of the conditional volatility of

returns. Consequently, certain elements of the construction of the EVTM portfolio method

are motivated by De Nicolo (2023).

We take this further by deploying Extreme Value Analysis (EVA) to focus on a framework

that deals with the analysis of extreme events in probability distributions by assessing

statistical models for tail-related risk measures. Ultimately, we are able to model, capture,

and understand the behaviour of rare or extreme events. Moreira & Muir (2017) found that

Volatility-Managed (VM) portfolios, which reduce risk during high-volatility periods, generate

significant excess returns, improve Sharpe ratios, and yield substantial utility gains for

mean-variance investors. These findings are significant for portfolio management, suggesting

that adjusting portfolio risk in response to market volatility can lead to better risk-adjusted

returns.

Similarly, De Nicolo (2023) assesses single-factor and multi-factor portfolios and uses the

Manipulation-Proof Performance Metric (MPPM) proposed by Goetzmann et al. (2007).

This metric, derived from the expected utility function of an investor with a constant relative

risk aversion coefficient, captures the potential benefits of tail risk management. The analysis

shows that, relative to the MPPMs of multi-factor VM portfolios, multi-factor TRM portfolios

exhibit higher MPPMs for all the international TRM multi-factor portfolios.

Božović (2024) applies a volatility timing strategy using an implied volatility index and
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evaluates the proposed VIX-based strategy against a broad set of realistic transaction costs,

demonstrating its robustness. The strategy provides a mechanism for simultaneous timing of

volatility and tail risk. Božović (2024) proposes using four methods to evaluate single-factor

and multi-factor portfolios, which include a VIX-managed strategy, a downside VIX-managed

strategy, a realised variance-managed strategy, and a downside realised variance-managed

strategy. He finds that VIX-managed portfolios require the least rebalancing among the

tested strategies and are, therefore, the least burdened by frequent trading costs. Additionally,

implied volatility smiles add an extra layer in timing extreme returns on top of volatility.

Our motivation stems from the many advantages EVT possesses. The potential problems

that arise with the VaRα method are discussed by Odening & Hinrichs (2003), who explain

that VaRα can fail when the return distribution is fat-tailed. EVT overcomes these problems.

This Chapter contributes to the literature as the first study applying a risk and volatility

timing strategy using a Extreme Value Theory.

109



3.3 Data Description

Economic data needed for the simulation and analysis of EVTM portfolios is obtained from

Wharton Research Data Services (WRDS). The US sample includes daily data of the Fama-

French factors Mkt-RF, SMB, HML, RMW, and CMA from July 1st, 1963 to January 26th,

2023. Mkt-RF represents the excess returns for the US equity market, SMB is small-minus-

big, HML is high-minus-low, RMW is robust-minus-weak, and CMA is conservative-minus-

aggressive. These factors are understood as the excess market return (Mkt-RF), size factor

(SMB), value factor (HML), profitability factor (RMW), and investment factor (CMA). The

Fama-French factors are part of the Fama-French five-factor model, developed by Fama &

French (2015). The results cover the period from June 20th, 1968 to February 28th, 2023,

yielding 13,769 forecasts.

For descriptive statistics and higher moments, we consider the mean, standard deviation,

skewness, kurtosis, ADF, and Jarque-Bera statistics. From Table 3.1 and Figure 3.1, we

observe negative skewness for the factors Mkt-RF, SMB, and CMA. However, SMB exhibits

the highest kurtosis, indicating that a large proportion of the data resides in the tails.

Consequently, this brings the tails closer to the mean. The ADF test implies we reject the

null hypothesis that a unit root exists. Therefore, given that all Fama-French factors are

negative and statistically significant, we assume all are stationary.

The Jarque–Bera test is a goodness-of-fit test to determine whether the sample data has

skewness and kurtosis matching a normal distribution. The test statistic is always nonnegative,
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Table 3.1: Summary Statistics for Data
Fama-French Factor Mean Standard Deviation Skewness Kurtosis ADF Jarque-Bera Statistic

Mkt-RF 0.0003 0.0102 -0.5263 15.5464 -21.3814*** 153651.3996***
SMB 0.0001 0.0054 -0.6862 17.8989 -21.9672*** 203933.6077***
HML 0.0001 0.0058 0.27990 11.04473 -17.0097*** 77395.1034***
RMW 0.0001 0.0040 0.3362 9.0501 -17.4335*** 52117.7280***
CMA 0.0001 0.0038 -0.3294 9.2625 -18.5368*** 54568.0854***

In this Table, we report statistics, including the ADF and Jarque-Bera Statistic of the Fama-French factors
from July 1st, 1963 to February 28th, 2023, consisting of 15018 data points. Stars are only intended to flag
levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a p-value is ≤ 0.01 it is flagged
with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three stars (***).

and if it is far from zero, it indicates that the data does not follow a normal distribution. The

Jarque–Bera test for all Fama-French factors is significant, with SMB presenting the largest

test statistic. Given that all Jarque–Bera test statistics are far from zero, this confirms that

the data does not follow a normal distribution.
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Figure 3.1: Fama-French charts

These plots are an illustration of the Mkt-RF, SMB, HML, RMW and CMA Fama-French factor time series.
This plot consists of data within the range July 1st, 1963 to February 28th, 2023.
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3.4 Methodology

The methodology section outlines the detailed steps and approaches employed in constructing

both the single-factor and multi-factor EVTM portfolios, while also providing a discussion on

break-even transaction costs.

3.4.1 EVT-VaR Peaks-Over-Threshold

The Peaks-Over-Threshold (POT) method is used to model extreme values by focusing on

the data that exceeds a certain threshold. The core principle of this method is to identify a

threshold that separates extreme values from the rest of the data, and then fit the extreme

values to a model by examining the tail of the distribution for values exceeding this threshold.

According to the Pickands–Balkema–De Haan theorem, as discussed in Balkema & Haan

(1974) and Pickands (1975), it can be demonstrated that for a sufficiently large threshold u,

the distribution of the values exceeding this threshold approximates to a Generalised Pareto

Distribution.

We assume that market losses represent the realisation x of a random variable X that

exceeds a high threshold u, and that X follows a cumulative distribution function Fu(x),

which represents the distribution of exceedances over the threshold u. When observed values

surpass this threshold, they are referred to as exceedances, denoted as X(x1,, x2, . . . , xn). The
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conditional excess distribution is defined as:

Fu(x) = P

(
X − u ≤ x X > u

)
=

F (x+ u)− Fu

1− F (u)
, (3.1)

for 0 ≤ x ≤ xF − u, where xF is the finite or infinite right endpoint of the cumulative

distribution F . The function Fu characterises the distribution of values exceeding the

threshold u, given that this threshold has been surpassed. According to Balkema & Haan

(1974) and Pickands (1975), for a broad class of underlying distributions F and sufficiently

large u, Fu can be approximated by the Generalised Pareto Distribution (GPD), defined as:

Gξ,β(u)(x) =


1−

(
1 + ξx

β(u)

)− 1
ξ
, if ξ ̸= 0,

1− e−
x

β(u) , if ξ = 0,

(3.2)

where the parameter β represents the scale and ξ the shape. We estimate the parameters

using the Maximum Likelihood Estimation (MLE) method, by deriving the log-likelihood

function and maximising this function to find suitable estimators. Other approaches include

Markov Chain Monte Carlo (MCMC), Maximum Product of Spacing (MPS), and Method

of Moments (MoM). From Equation 3.2, for ξ ̸= 0, the log-likelihood function for an i.i.d.

sample is given by,

L (ξ, β) = −k ln (β)−
(
1 +

1

ξ

) k∑
i=1

ln

(
1 +

ξxi

β

)
, (3.3)

where xi ≥ 0 for ξ > 0 and 0 ≤ xi ≤ –β/ξ. When ξ = 0, the log-likelihood function simplifies
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to:

L (ξ, β) = −k ln (β)−
(
1

β

) k∑
i=1

xi. (3.4)

As explained by Fernandez (2003), an estimate for the Extreme Value Theory Value-at-Risk

(EVT-VaR) is defined as:

ÊV Tα = u+
ξ̂

β̂

((
1− α

k/n

)−ξ̂

− 1

)
, (3.5)

where k represents the number of exceedances over the threshold u, and n is the total number

of observations (positive and negative returns).

The choice of the method, whether MLE, MPS, MCMC, or MoM, depends on the complexity

of the problem, the size and nature of the dataset, and the available computational resources.

Abdulali et al. (2022) reviewed and compared these estimation methods, particularly for

parameter estimation from extreme value distributions. The study found that while MPS

yielded better results in terms of Mean Squared Errors (MSE), its goodness-of-fit statistic

was comparable to that of MLE. Thus, we employ the MLE approach for the GPD equation

in Equation 3.2.

Evaluating threshold excesses, as described in Equation 3.1, often involves plotting the Mean

Excess (ME), which is a drawback for systematic computation. Ghosh & Resnick (2010)

suggest that the ME plot can be useful as a diagnostic tool for tail or quantile estimation in

risk management and other extreme value analysis problems.
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3.4.1.1 Summary Steps to Compute EVT-VaR

In simple terms, we implement the following steps for calculating each factor. For a rolling

window w1 = 1000, we calculate EV Tα
t , the EVT-VaR for all α. The calculation process is

as follows:

1. Defining the Threshold: We determine the threshold u for the left tail by selecting

the 5th percentile of the factor’s distribution over every w1 window. This threshold

u represents a threshold value below which the worst 5% of observations lie, thus

identifying extreme negative returns.

2. Extracting Exceedances: After defining the threshold, we extract the exceedances

by subtracting the values below the threshold from the threshold itself. This yields the

conditional excess distribution Fu, which describes the distribution of returns exceeding

the threshold.

3. Fitting the Generalised Pareto Distribution (GPD): We then fit a GPD to the

exceedances, as expressed in Equation 3.2. Maximum Likelihood Estimation (MLE) is

employed to estimate the GPD parameters for the specified quantiles α̃.

4. Computing Quantiles: Using the GPD with the estimated parameters from the

previous step, we compute the quantiles corresponding to the probability 1 − α for

α ∈ α̃, where α̃ = {0.01, 0.05, 0.10, 0.25}.

116



5. Estimating EVT-VaR: Finally, the estimated quantile is subtracted from the threshold

u to estimate the potential loss at each probability level α, referred to as the EVT-VaR.

This approach accounts for extreme tail risk, producing an extreme estimate of potential

losses as α increases.

3.4.2 EVTM Methodology

EVTM portfolios are constructed using probability forecasts obtained through Logit regres-

sions. To compute EV Tα
t , we determine the EVT-VaR by calculating the 5th percentile of the

returns for the Fama-factor within the data window w1. This approach eliminates the need

for more subjective procedures, such as the mean excess plot, which requires visual inspection

to determine the threshold. The 5th percentile is the choice for the threshold in EVT as it

identifies the threshold for the most extreme 5% of the data points, representing tail events.

Allen & Singh & Powell (2013) also utilise the lower 5% and 10% quantile thresholds (u) to

compute the Peaks Over Threshold (POT) EVT-VaR.

We compute the exceedances, which are the differences between the threshold and the

values of the returns that are below the threshold. Essentially, we measure how far below

the threshold each return is. We fit the Generalised Pareto Distribution (GPD) to the

exceedances using MLE which is specified in Equations 3.3 and 3.4. This fitting process

yields the GPD parameters, shape and scale, that best describe the tail behaviour of the

data. Finally, we compute the quantiles for extreme events using the fitted GPD. By

subtracting this quantile from the threshold, we obtain the EVT-based VaR for α ∈ α̃, where
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α̃ = {0.01, 0.05, 0.10, 0.25}.

3.4.2.1 Constructing EVTM Portfolios

We closely follow De Nicolo (2023) methodology to construct the EVTM portfolios. We

compute the predicted conditional probability EV Tα
t violation of the return Rt+1 of a factor,

denoted by,

P(Rt+1 < −ÊV Tα
t |Xt), (3.6)

where ÊV Tα
t is the estimate of EV Tα

t at date t and Xt is a set of predictors.

An EVTM portfolio scales up or down exposures to the original factor dynamically as a

function of the difference between the predicted conditional probability of EV Tα
t violations

P(Rt+1 < −EV Tα
t |Xt), and its unconditional probability α. The difference,

P(Rt+1 < −ÊV Tα
t |Xt)− α, (3.7)

serves as a signal for trading decisions. If,

P(Rt+1 < −ÊV Tα
t |Xt)− α ≷ 0, (3.8)

the exposure to the factor is increased or decreased, with the scaling factor being proportional

to P(Rt+1 < −ÊV Tα
t |Xt) − α. A positive difference implies increasing tail risk, while a

negative difference indicates decreasing tail risk as measured by EVT. The probability

P(Rt+1 < −ÊV Tα
t |Xt) at the forecasting date is assumed to equal the true probability plus a
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bias term:

Pt+1(α) = P(Rt+1 < −EV Tα
t ) + ηt, (3.9)

where ηt is the bias term or error term. In other words, Pt+1(α) represents the probability

that the factor’s return is less than the negative EVT estimate for a given probability α,

inclusive of the bias term ηt. The term ηt reflects the estimation error associated with the

probability estimate from the logit model.

We construct real-time single-factor EVTM portfolios and multi-factor EVTM portfolios

for a set of US Fama-French factors2 widely used in the literature. We evaluate EVTM

performance relative to the buy-hold portfolios and VM portfolios, which are also based on

US Fama-French factors. The Sharpe ratio of each f ζ
t (α) is computed over a rolling data

window prior to time t, and the scaling factor γt
α corresponding to the α∗ that yields the

highest Sharpe ratio is selected. f ζ
t (α) denotes the EVTM portfolio with a specified α.

We introduce a threshold κt(α) defined as:

κt(α) ≡ α + ηt, (3.10)

which acts as a probability threshold. The difference between the estimated probability

P̂t+1(α) and the threshold κt(α) is used to determine the direction of the tail risk prediction

at the forecasting date. Specifically, this difference serves as the signal triggering trading
2https://wrds-www.wharton.upenn.edu/pages/get-data/Fama-French-portfolios-and-

factors/Fama-French-portfolios/
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Table 3.2: P̂t+1(α)− κt(α) Confusion Matrix

Rt+1 < −̂EV Tα
t Rt+1 ≥ −̂EV Tα

t

P̂t+1(α)− κt(α) ≥ 0 a11(κt(α)) a10(κt(α))

P̂t+1(α)− κt(α) < 0 a01(κt(α)) a00(κt(α))

This table illustrates a confusion matrix of the trading action signal relative to the EVT-VaR violation, where
a11(κt(α)) and a00(κt(α)) are the frequencies of correct classification, and a01(κt(α)) and a10(κt(α)) are false
negatives and false positives, respectively.

actions. If:

P̂t+1(α)− κt(α) > 0, (3.11)

or:

P̂t+1(α)− κt(α) < 0, (3.12)

this signals either a high or low probability of an EVT violation, respectively, as indicated

by the Equations 3.11 and 3.12. The estimate of κt(α) ∈ (0, 1) determines the degree

of misclassification risk associated with the forecasted EVT violation probability. The

confusion matrix in Table 3.2 explains the trading signal relative to EVT-VaR violations,

where a11(κt(α)) and a00(κt(α)) are the frequencies of correct classification, while the other

frequencies are false positives and false negatives.

The size of the bias term ηt directly influences the magnitude of misclassification risk. This

risk can be minimised by selecting, at each date, the optimal threshold κ∗
t (α) that corresponds

to the minimum sum of Type 1 and Type 2 errors. These errors are represented by the terms

a10(κt(α)) and a01(κt(α)), and are derived from the confusion matrix estimated at each date.

The optimisation process follows this logic: we calculate the sum of Type 1 and Type 2 errors

from the confusion matrix (as shown in Table 3.2), and then iterate over a set of evenly
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spaced threshold values between 0 and 1. Our goal is to minimise the sum of these errors for

cases where our predictions exceed the threshold. Initially, the minimum error sum is set

to infinity. If, during the loop, the current error sum is less than the minimum error sum,

the current threshold becomes our optimal threshold. This process ensures that the selected

κ∗
t (α) is the threshold that best balances the trade-off between Type 1 and Type 2 errors,

thus minimising misclassification risk in the predictions.

3.4.2.2 Single-Factor EVTM Portfolios

Logit models for different values of α may entail different predictive power. This variation is

influenced by the underlying time-varying nature of returns and probability predictors, as

well as the size of the set of possible EVT-VaR violations. The predictors of the probability

of EV Tα
t violations in the returns of EVTM portfolios are the realised squared variances and

semi-variances of the Fama-French factor. Realised variance is valuable because it provides an

accurate measure of volatility, making it useful for volatility forecasting, while semi-variances

capture the potential downside risk of an investment portfolio. Consequently, these predictors

enhance the model’s ability to predict returns.

To understand the distribution and the size of potential EVT violations, we assess how different

values of α affect this predictability. We focus on the left tail of the return distribution

by constructing single-factor EVTM portfolios for a set of discrete values of α, where we

define α̃ = {0.01, 0.05, 0.10, 0.25}. As explained below, we choose α at each date based on an

optimised criterion that balances risk and return to construct the EVTM portfolio.

To estimate EV Tα
t , we set EV Tα

t equal to the empirical quantile of the original factor,
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estimated over a data window prior to the forecasting date. A Logit model is then employed

to predict P̂t+1(α). Here, RVt is the realised volatility, and st is the Relative Signed Jump

Variation (RSJV) measure introduced by Bollerslev & Li & Zhao (2020), where RV +
t and

RV −
t are the positive and negative realised semi-variances, respectively. Therefore,

st =
RV +

t −RV −
t

RVt

. (3.13)

RV +
t and RV −

t are interpreted as capturing ‘good’ and ‘bad’ volatility by focusing on positive

and negative semi-variances, as well as embedded jumps. The Relative Signed Jump Variation

(RSJV), is extensively theorised from Bollerslev & Li & Zhao (2020). They assume,

St =

ˆ t

0

µτdτ +

ˆ t

0

στdBτ + Jt. (3.14)

Where St denotes the natural logarithmic price of an arbitrary asset on day t, µ and σ denotes

the drift and volatility process, respectively, Bτ is the Brownian motion and Jt is the pure

jump process. Assuming prices over trading day [t, t+ 1], the return on day t+ 1 is given by

Rt+1 = St+1 − St. Thus, the daily Realised Variance (RV) is the sum of squared returns:

RVt →
ˆ t

t−1

σ2
τds+

∑
t−1≤τ≤t

J2
τ , , (3.15)

with the positive and negative realised semi-variance measures defined as:

RV +
t =

n∑
t=1

R2
t 1{Rt > 0}, (3.16)
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RV −
t =

n∑
t=1

R2
t 1{Rt < 0}, (3.17)

where 1 is the indicator function taking the value 1 if the argument is true. With RVt

simplified to:

RVt =
n∑

t=1

R2
t , (3.18)

the positive and negative realised semi-variances sum up to the total daily realised variance:

RVt = RV +
t +RV −

t . (3.19)

We will refer the Signed Jump (SJ) variation to the positive minus negative volatility measure,

RV +
t −RV −

t :

SJt = RV +
t −RV −

t →
∑

t−1≤τ≤t

J2
τ 1(Jτ>0) − J2

τ 1(Jτ<0), (3.20)

We normalise the Signed Jump (SJ) variation by the total realised variance, defining the

Relative Signed Jump Variation (RSJV) as:

RSJVt =
SJt
RVt

= st, (3.21)

This normalisation effectively removes the overall volatility level from the SJ measure,

constraining the RSJV to lie between -1 and 1, making it easier to interpret as a measure

of relative volatility asymmetry. We then define an indicator function for the probability of
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EVT-VaR violations as:

Iαt+1 =


1, if ft+1 < −̂EV Tα

t ,

0, otherwise,

(3.22)

where we compute the Logit regression using the binary endogenous response variable Iαt+1

at time t+ 1 for a specified α, and RVt and st are exogenous variables. The Logit model to

predict P̂t+1(α) takes the form:

P(Iαt+1|Xt) = Λ(g(Xt1β, p)) = Λ(β0α + β1αRVt + β2αst), (3.23)

where Λ (· ) represents the logistic function. Therefore, the probability forecast of the model

at each time t is:

P̂t+1(p) ≡ EtΛ(g(Xtβ̂, p)) (3.24)

The return of a single-factor EVTM portfolio for each α ∈ α̃ is given by:

f
ζ∗(α)
t+1 = γt(α)

κ∗(α)

P̂t+1(α)
ft+1 for α ∈ α̃, (3.25)

where γt(α) is set to ensure the variance of f ζ
t+1(α) is equal to the variance of the Fama-

French factor computed on an expanded window starting from t0. γt(α) is the exposure to

the strategy and is scaled down if P̂t+1(α) > κt(α) and scaled up if the reverse is true. The

scaling factor corresponding to the α ∈ α̃ that delivers the maximum Sharpe ratio is then

chosen for the single-factor EVTM portfolio, calculated over a moving data window [t–w2, t].
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At each date, the optimal α is selected by solving the following optimisation problem:

p∗ = argmax
α∈α̃

w−1
2

∑t
i=t−w2

f
ζ∗(α)
i )

σ(f ζ∗(α))
. (3.26)

The return of the optimised single-factor EVTM portfolio is then computed using the following

equation:

f ζ∗

t+1 = ζ∗t ft+1, where ζ∗t ≡ γt(α
∗)

κ∗
t (α

∗)

P̂t+1(α∗)
. (3.27)

This formulation dynamically adjusts the portfolio exposure based on the predicted risk,

optimising returns while managing tail risk.

3.4.2.3 Multi-Factor EVTM Portfolios

Where we have a set of M > 1 factors, the mean-variance efficient multi-factor portfolios

includes the original factors and their EVTM factors. By incorporating both the original and

EVTM-computed factors, we aim to capture diversification benefits across these two types of

portfolios. The return of a multi-factor EVTM portfolio is given by:

f ζ∗

M,t+1 =
M∑

m=1

Ω̂∗
j,tfm,t+1 +

∑
Ω̄∗

j,tf
ζ∗

m,t+1, (3.28)

where Ω̂∗
m,t are the optimal weights assigned to each original factor, and Ω̄∗

m,t are the weights

assigned to to each single-factor EVTM portfolio. In Equation 3.29 below, the vector Ωt

of optimal weights of the multi-factor portfolio is computed on an expanding data window,
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starting with 1, 000 trading days at t0, by solving the following optimisation problem:

max
Ωt

= µT
t Ωt −

δ

2
ΩT

t Σ̂tΩt. (3.29)

Where µt as the sample conditional mean vector of factor returns, Σ̂t is the covariance matrix

of the factors. The parameter δ is used to penalise portfolio variance, and is set to δ = 2,

ensuring that the portfolio is balanced between maximising expected returns and minimising

risk.

This formulation enables the construction of a multi-factor EVTM portfolio that optimally

combines both traditional and extreme value tail-risk-adjusted factors, improving risk-adjusted

returns by accounting for extreme market events.

3.4.2.4 Summary Steps to Compute EVTM portfolios

Let t0 and t denote the starting date and the forecasting date respectively. The construction

of baseline EVTM single-factor portfolios is implemented with daily data according to the

following steps:

1. Data Window and Empirical Quantiles: Using a moving data window [t− w1, t],

where w1 = 1, 000 trading days, we compute empirical quantiles EV Tα
t for all α ∈ α̃.

We choose w1 = 1, 000 trading days. The choice of w1 = 1000 trading days ensures

that the data window captures significant extreme events spanning approximately four

years. This allows us to compute the estimated EVT-VaR which we express as ÊV Tα
t .
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2. Volatility and RSJV Computation: We calculate the realised volatility RVt and

the RSJV measure st from Equation 3.21 using data of the 22 days preceding and

including the forecasting date.

3. Logit Regression: We estimate Logit regressions, as specified in Equation 3.23 with st

and RVt as input variables over the moving data window [t− w1, t], obtaining P̂t+1(α),

κ∗
t (α), and the single-factor EVTM portfolio:

f ζ
t+1(α) = γt(α)

κ∗
t (α)

P̂t+1(α)
ft+1, (3.30)

for each α ∈ α̃. Here γt(α) is chosen to ensure the variance of f ζ
t+1(α) equals to the

variance of the Fama-French factor (ft+1(α)) computed on an expanded window starting

from t0. The scaling factor γt(α) adjusts exposure to the strategy, increasing it when

P̂t+1(α) < κ∗
t (α) and dynamically scaled down if the opposite is true.

4. Predicted Probabilities: From Iαt+1, we obtain predicted probabilities P̂t+1, along
with beta coefficients β1α and β2α.

5. Threshold Estimation: We estimate ηt, and subsequently compute the threshold

κt(α) from Equation 3.10.

6. Confusion Matrix and Misclassification Analysis: Use the confusion matrix to

assess misclassification, as shown in Table 3.2. The threshold κ∗(α) is optimised by

minimising the error sum.

7. Scaling Factor Calculation: We compute the scaling factor κ∗(α)

P̂t+1(α)
and initialise
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γt(α) to 1 for γt(α)
κ∗
t (α)

P̂t+1(α)
.

8. Volatility Adjustment: We perform a volatility adjustment loop for each α ∈ α̃,

adjusting γt(α) to ensure the variance of f ζ
t+1(α) equal to the variance of the Fama-

French factor (ft+1(α)) computed on an expanded window starting from t0.

9. Optimal α∗ Selection: We select the scaling factor γt(α) that corresponds to the

value of α∗ ∈ α̃ yielding the maximum Sharpe ratio for the single-factor EVTM portfolio

f ζ∗(α)

t+1 (α) over the moving window [t–w2, t], where w2 = 250 trading days (approximately

one year). α is chosen based on the past out-of-sample performance of the single-

factor EVTM portfolios over the preceding w2 days.We select the scaling factor γt(α)

that corresponds to the value of α∗ ∈ α̃ yielding the maximum Sharpe ratio for the

single-factor EVTM portfolio over the moving window [t–w2, t].

10. Final Portfolio Construction: Once the optimal parameters are updated, we
calculate the optimal single-factor portfolio as:

f ζ∗

t+1 = ζ∗t ft+1, where ζ∗t ≡ γt(α
∗)

κ∗
t (α

∗)

R̂t+1(α∗)
. (3.31)

11. Performance Comparison: We also compare portfolio performance using the Sortino

ratio, which, unlike the Sharpe ratio, focuses on downside risk by dividing expected

returns by the standard deviation of downside returns. The Sortino ratio lies between

the Sharpe ratio and CVaR, providing a more targeted risk metric.
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3.4.3 Volatility Managed Portfolios

VM portfolios, as introduced by Moreira & Muir (2017), represent a class of dynamic

investment strategies designed to adjust a portfolio’s exposure to market risk based on market

volatility. The central concept is to increase exposure to risky assets during periods when

market volatility is low, under the assumption that the risk-adjusted return is more favourable,

and to scale back that exposure when volatility is high, thereby reducing downside risk. This

adaptive approach seeks to enhance returns by volatility-timing, effectively exploiting the

inverse relationship often observed between volatility and expected returns across various

asset classes and risk factors.

3.4.3.1 Single-Factor Volatility Managed Portfolios

For the benchmark portfolio, we construct the Volatility-Managed (VM) portfolios from

Moreira & Muir (2017) by scaling an excess return by the inverse of its conditional variance,

where using the RVt of previous 22 days the strategy increases or decreases risk exposure to

the portfolio according to variation of conditional variance. The VM portfolio is given by:

f ζ
t+1 =

c

σ̂2
t (f)

ft+1, (3.32)

where ft+1 is the buy-and-hold portfolio excess return, σ̂2
t (f) is a proxy for the portfolio’s

conditional variance, and the constant c which controls the average exposure of the strategy.
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3.4.3.2 Multi-Factor VM Portfolios

Moreira & Muir (2017) extends their analysis to a multi-factor framework. They construct a

portfolio by combining multiple factors, selecting weights that ensure the portfolio is Mean-

Variance Efficient (MVE) for the set of factors. They refer to this as the multi-factor MVE

portfolio. Consequently, the MVE alpha (a) becomes the appropriate measure of expansion

on the mean-variance frontier. A positive MVE alpha indicates that the Volatility-Managed

strategy enhances Sharpe ratios compared to the highest buy-and-hold Sharpe ratio obtainable

by someone using multiple factors.

The MVE portfolio is constructed with Ft+1 representing a vector of factor returns, and b

be the static weights that maximise the in-sample Sharpe ratio. The MVE portfolio is then

defined as fMVE,ζ
t+1 = b′Ft+1. We further define the Volatility-Managed portfolio as,

fMVE,ζ
t+1 =

c

σ̂2
t (f

MVE
t+1 )

fMVE
t+1 , (3.33)

where c is a constant that normalises the variance of the Volatility-Managed portfolio to

match that of the MVE portfolio. This strategy adjusts the conditional beta on the MVE

portfolio but maintains the relative weights across the individual factors, thereby focusing

solely on the time-series aspect of volatility timing.
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3.4.3.3 Summary Steps to Compute VM portfolios

1. For simplicity, we construct the portfolio by using a proxy for the conditional variance

which is the previous month’s realised variance:

σ̂2
t (f) = RVtprev(f), (3.34)

2. The previous month’s realised variance is expressed as,

RVtprev(f) =
1∑

d= 1
22

(ft+d −
1

22

1∑
d= 1

22

ft+d)
2, (3.35)

3. The formation of the VM portfolio as shown in Equation 3.32, is expressed as:

f ζ
t+1 =

c

σ̂2
t (f)

ft+1, (3.36)

4. We choose c so that the managed portfolio has the same unconditional standard

deviation as the buy-and-hold portfolio, ft+1.

5. We compute the optimal portfolio weight Ω∗
t to be proportional to the risk-return

trade-off:

Ω∗
t ∝ σ2

t (f)Et[ft+1]. (3.37)
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3.4.4 Transaction Costs

To extend the analysis, it is crucial to evaluate whether the EVTM or VM portfolios survive

trading costs. In essence, we follow approaches similar to De Nicolo (2023) and Moreira &

Muir (2017). Their method analyses the potential impact of trading costs, this is achieved by

computing the break-even level of these costs which is the level that equates the Sharpe ratio

of single-factor and multi-factor managed portfolios to the Sharpe ratio of the unmanaged

portfolios.

The methodology for determining the break-even level of trading costs is as follows. The

return of the portfolio net of trading costs at time t is given by:

f ζ∗net
t = f ζ∗

t − TCt|∆Ω|, (3.38)

where, f ζ∗net
t is the portfolio return after accounting for trading costs, |∆Ω| is the rebalancing

of the portfolio weights at each date, and TCt is the trading cost per unit of rebalance. The

Sharpe ratio of the original factor is E [ft] /σ
f , while the Sharpe ratio of the EVTM portfolio

net of trading costs is E
[
f ζ∗net
t

]
/σζ∗net . Rearranging Equation 3.38, the trading costs that

equate these two Sharpe ratios at each date are therefore:

TCt|∆Ω| = f ζ∗
t − σζ∗

σf
E [ft] (3.39)

The Equation 3.39 sets up the condition where the Sharpe ratio of the original portfolio
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(before trading costs) is equal to the EVTM Sharpe ratio after accounting for trading costs.

It shows how much trading cost is required to reduce the Sharpe ratio of the portfolio to

the level of the original Sharpe ratio. These computations are applied to both single-factor

and multi-factor EVTM portfolios in a similar manner, ensuring a consistent comparison of

performance after accounting for trading costs.
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3.5 Empirical Analysis

The empirical analysis section encompasses a comprehensive investigation into several key

aspects, including the selection of optimal thresholds, the application of Logit regression

analysis, the evaluation of risk using Conditional Value-at-Risk (CVaR), and the assessment of

portfolio performance through Sharpe ratio metrics. Additionally, it explores the estimation

of portfolio alphas and examines break-even transaction costs, providing detailed insights

into the financial efficiency and risk management strategies within the portfolio.

We compare the performance of ETM portfolios with buy-and-hold factors and VM portfolios.

The first metric we assess is the Conditional Value-at-Risk, measured at 1% and 5% VaRs,

denoted CVaR1 and CVaR5. The second set of metrics we assess are the Sharpe ratio and

the ‘modified’ Sharpe ratio, where the ‘modified’ Sharpe ratio is the ratio of excess returns

divided by its respective CVaR, as detailed in Xiong & Idzorek (2018). The relationship

between CVaR and the Sharpe ratio lies in their shared focus on risk assessment, though

they serve distinct purposes and offer complementary insights. CVaR focuses on downside

risk and provides insight into potential losses beyond a certain threshold, quantifying the

extreme tail risk of an investment. The Sharpe ratio evaluates risk-adjusted performance by

considering both risk and return. In some cases, investors may use both measures together to

gain a more comprehensive understanding of an investment’s risk and return profile. Investors

with different risk appetites will prioritise one measure over the other. A risk-averse investor

will pay more attention to CVaR to assess downside risk, while a risk-seeking investor will

prioritise higher returns for a given level of risk by focusing on the Sharpe ratio.
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The density of EVT-VaR estimations for α ∈ α̃ is displayed in Figure 3.2. We can observe

the density range of EVT estimations for every factor. This serves as an additional indicator

that explains the distribution shape of the set of α̃, and we notice similar patterns across

all factors. As expected, a lower α, such as 0.01, yields a fatter tail in comparison to higher

orders of α̃. We can observe that CMA has the highest densities for α = {0.25}, which

indicates that most of the data points are around -1.
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Figure 3.2: EV Tα Density Plots of Fama-French Factors

(a) Mkt-RF Density Plot (b) HML Density Plot

(c) SMB Density Plot (d) RMW Density Plot

(e) CMA Density Plot
This figure illustrates the densities of α̂ for each factor.
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Table 3.3: EVTM Optimal Threshold κ∗(α) Estimates

α Mean Std.dev Min Max Mean Std.dev Min Max

Mkt-RF HML

1% 0.0845 0.0624 3.6199×10−5 0.3755 0.0829 0.0591 6.424×10−5 0.3766
5% 0.0981 0.0692 0.0002 0.4538 0.1016 0.0702 2.6120×10−5 0.4082
10% 0.1302 0.0813 0.0002 0.4696 0.1292 0.0810 1.4167×10−5 0.3943
25% 0.2470 0.0978 0.0121 0.5639 0.2515 0.0974 0.0097 0.5870

SMB RMW

1% 0.0851 0.0623 7.9044×10−5 0.3410 0.0836 0.0627 0.0002 0.3539
5% 0.1001 0.0693 0.0002 0.3347 0.1033 0.0691 0.0009 0.4062
10% 0.1286 0.0807 0.0010 0.4289 0.1328 0.0787 1.7002×10−7 0.4497
25% 0.2576 0.0986 0.0186 0.6198 0.2529 0.1001 0.0001 0.5787

CMA

1% 0.0805 0.0590 0.0001 0.3325
5% 0.1014 0.0707 0.0002 0.4354
10% 0.1297 0.0780 5.429×10−5 0.4200
25% 0.2511 0.0971 0.0001 0.5582

In this Table, we produce statistics of the optimal thresholds κ∗(α) where we minimise the sum of Type 1
and Type 2 errors in the out-of-sample 13, 769 Logit regressions for the five factors Mkt-RF, SMB, HML,
RMW, and CMA.

3.5.1 Single-Factor EVTM Portfolios

We observe in Table 3.3 that the means of α = {0.01, 0.05} for all factors are closely matched.

However, for α = {0.25}, we see a larger average, with SMB having the highest mean of

the optimal thresholds. There is variation across the standard deviation, minimum, and

maximum statistics. Also, for each factor as α increases, there is an increase in the standard

deviation and maximum metrics.

We compute the out-of-sample estimates of the Logit models for each α ∈ α̃, obtained using

data from a moving window of w1 = 1000 trading days. Table 3.4 reports statistics of the
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estimated probabilities and statistics of the estimated coefficients of RVt and the RSJVt

from Equations 3.18 and 3.21, respectively. The mean probability forecasts in Table 3.4 are a

fraction of the nominal values of α, but show similar results across each factor. The standard

deviations of both estimated coefficients β1α and β2α decrease as α increases, indicating lower

sensitivity of the probability of EVT-VaR violations to changes in the predictors across all

samples. The absolute mean of β1α for all factors decreases as the quantile α increases, and

this also applies to β2α, except for factors CMA and SMB, which contain both negative and

positive mean values. In all Logit regressions, the coefficient β1α is negative, capturing a

negative predictive relationship between RVt and tail risk.
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Table 3.4: EVTM Logit Estimates

α pt+1

(mean)
pt+1

(perc5)
pt+1

(perc95)
β1α(mean

RVt)
β1α(std.dev

RVt)
β2α(mean
RSJV)

β2α(std.dev
RSJV)

Mkt-RF

1 0.0010 0.0009 0.0010 -2.0978 0.7419 -0.0823 0.2879
5 0.0028 0.0019 0.0040 -1.6825 0.6592 -0.0620 0.2256
10 0.0050 0.0039 0.0060 -1.5095 0.60111 -0.0554 0.2036
25 0.0117 0.0090 0.0149 -1.2649 0.4977 -0.0458 0.1695

HML

1 0.0010 0.0009 0.0010 -4.2394 1.6004 -0.0061 1.3650
5 0.0028 0.0019 0.0040 -3.3141 1.5522 -0.0492 1.0382
10 0.0050 0.0029 0.0070 -2.9914 1.3948 -0.0481 0.9288
25 0.0120 0.0090 0.0150 -2.4687 1.1022 -0.0376 0.7506

CMA

1 0.0010 0.0009 0.0010 -4.7916 2.0703 0.0647 1.5630
5 0.0027 0.0009 0.0040 -4.3292 1.6834 -0.0744 1.4058
10 0.0050 0.0020 0.0070 -3.8944 1.5250 -0.0814 1.2600
25 0.0121 0.0090 0.0150 -3.2223 1.2520 -0.0701 1.0445

RMW

1 0.0010 0.0009 0.0010 -5.4718 2.4322 -0.4297 1.9196
5 0.0028 0.0010 0.0040 -4.4430 1.9833 -0.2654 1.5414
10 0.0049 0.0029 0.0069 -4.0250 1.7971 -0.2346 1.3867
25 0.0115 0.0080 0.0149 -3.3589 1.4546 -0.1983 1.1521

SMB

1 0.0010 0.0009 0.0010 -3.3382 1.2768 0.0413 0.7242
5 0.0026 0.0009 0.0040 -2.8923 1.0536 -0.0031 0.6655
10 0.0049 0.0020 0.0079 -2.5835 0.9611 0.0013 0.6056
25 0.0122 0.0099 0.0150 -2.1197 0.7602 -0.0038 0.4893

In this Table, we produce statistics of predicted probabilities of the Logit estimates Pt+1(α) = EtΛ(g(Xtβ̂, α))
together with parameters β1α and β2α, carried out over the 13, 769 data points, with windows of length
1, 000, for the Fama-French factors Mkt-RF, HML, CMA, RMW, and SMB.
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3.5.1.1 Sharpe Ratio and Sortino Ratio Optimised Portfolios

Table 3.5 shows the first set of metrics for the original unmanaged factors, VM, and the

EVTM portfolios. We optimise both EVTM portfolios using the Sharpe ratio and Sortino

ratio. We compute all Sharpe ratio metrics (Sharpe1, Sharpe5, and Sharpe) for the VM and

EVTM portfolios, and these metrics are reported as ratios relative to the annualised Sharpe

ratio of their respective unmanaged factors. We also compute Sortino-optimised portfolios

for EVTM. The results suggest that for all single-factor EVTM portfolios, both CVaR levels

are higher than those obtained with the VM portfolios and unmanaged factors. Therefore,

we find that the CVaR at the 99% and 95% confidence levels for both VM and unmanaged

portfolios, on average, indicate that when the portfolio’s return is worse than the 99th and

95th percentiles, the incurred losses will be greater than those of the EVTM portfolios. For

example, in the VM portfolio Mkt-RF factor case, when the portfolio’s return is worse than

the 99th percentile CVaR, the Mkt-RF VM portfolio will incur losses that are worse than

the Mkt-RF EVTM portfolios by 3.85% (4.65%-0.8%) or more. We also see that all EVTM

Sharpe ratios are higher than those of the VM portfolios and unmanaged factors. Specifically,

for the Sortino-optimised EVTM portfolio, the Sharpe ratio is 3.460 times higher than that

of the VM portfolio. We obtain varied results when comparing EVTM portfolios optimised

by the Sharpe ratio to Sortino-optimised EVTM portfolios. CVaR levels are either lower or

the same for the Sortino-optimised EVTM portfolios compared to Sharpe-optimised EVTM

portfolios.

For all EVTM portfolios, there is positive skewness; however, this is not the case for unmanaged
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and VM portfolios. The kurtosis measures whether our values are heavy-tailed or light-tailed

relative to a normal distribution. High kurtosis implies that the data tends to have heavy tails.

The VM HML has the highest kurtosis, and regarding EVTM portfolios, the Sharpe-optimised

EVTM HML and Sortino-optimised EVTM RMW factors are shown to have the highest

kurtosis.
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Table 3.5: Unmanaged, VM, Sharpe Optimised EVTM, and Sortino Optimised EVTM
Portfolio Performance Measures for Factors Mkt-RF, SMB, CMA, HML, and RMW

Mkt-RF SMB

Metrics Factor VM EVTM
(Sharpe)

EVTM
(Sortino)

Factor VM EVTM
(Sharpe)

EVTM
(Sortino)

CVaR1 -4.1317 -4.6516 -0.8251 -0.8251 -2.0121 -2.4162 -1.4093 -0.3205
CVaR5 -2.4139 -2.5217 -1.6902 -1.5349 -1.2414 -1.3574 -0.9703 -0.8660
Sharpe1 0.1026 0.2261 2.4462 2.4417 0.0613 0.1541 0.8009 3.6736
Sharpe5 0.1756 0.4171 1.1941 1.3125 0.0994 0.2744 1.1632 1.3597
Sharpe 0.4137 1.0262 2.1360 2.1285 0.2282 0.6883 2.2885 2.3816
Mean 0.0267 0.0274 0.0526 0.0525 0.0077 0.0054 0.0162 0.0169
St.Dev 1.0248 1.0248 0.9449 0.9465 0.5410 0.5411 0.4932 0.4944

Skewness -0.5291 -0.7446 0.3531 0.3465 -0.7048 -0.6537 0.0550 0.1275
Kurtosis 15.6033 18.4121 19.4638 19.4206 18.2824 11.2903 18.3261 19.1964

CMA HML

Metrics Factor VM EVTM
(Sharpe)

EVTM
(Sortino)

Factor VM EVTM
(Sharpe)

EVTM
(Sortino)

CVaR1 -1.4782 -1.3941 -0.6751 -0.5268 -2.3745 -2.2471 -1.2164 -1.2164
CVaR5 -0.8429 -0.8552 -0.4373 -0.3907 -1.3370 -1.3023 -0.6486 -0.6380
Sharpe1 0.1466 0.2492 0.9514 1.1649 0.1886 0.2732 1.0490 0.9985
Sharpe5 0.2572 0.4062 1.4687 1.5707 0.2934 0.4714 1.9674 1.9038
Sharpe 0.5742 0.9201 1.9234 1.8699 0.4116 1.0577 2.2915 2.1973
Mean 0.0136 0.0126 0.0232 0.0222 0.0151 0.0159 0.0331 0.0315
St.Dev 0.3775 0.3776 0.3339 0.3282 0.5805 0.5805 0.5569 0.5528

Skewness -0.3426 0.7541 0.3861 0.3948 0.2977 1.6246 1.3192 1.0002
Kurtosis 9.4688 14.1758 10.5351 10.9190 11.2649 41.9132 21.0673 18.6020

RMW

Metrics Factor VM EVTM
(Sharpe)

EVTM
(Sortino)

CVaR1 -1.550 -1.4431 -0.3861 -0.3861
CVaR5 -0.9086 -0.8796 -0.4156 -0.4045
Sharpe1 0.1394 0.3562 1.7238 1.7032
Sharpe5 0.2379 0.5844 1.6012 1.6258
Sharpe 0.5430 1.2913 1.7958 1.7756
Mean 0.0136 0.0176 0.0228 0.0225
St.Dev 0.3980 0.3981 0.3706 0.3703

Skewness 0.3427 0.3770 1.1549 1.1494
Kurtosis 9.3067 14.6324 20.7605 20.8496

In this Table, we report statistics of Sharpe and Sortino optimised EVTM, VM, and unmanaged portfolios,
Conditional Value-at-Risk measures at 1% and 5% VaRs (CVaR1 and CVaR5), adapted Sharpe metrics
(Sharpe1 and Sharpe5) given by the ratio of average returns to CVaR1 and CVaR5, the standard Sharpe
ratio, and Moments (Mean, Standard Deviation, Skewness and Kurtosis).
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3.5.1.2 Spanning Regressions

In Table 3.6, we conduct a time-series spanning regression analysis of the single-factor EVTM

and VM portfolios against the unmanaged buy-and-hold factors, employing the following

regression model:

f ζ
t = a+ bft + εt. (3.40)

A positive and significant estimated alpha(a) indicates that the ex-post Sharpe ratio of an

investment in the original factor has improved through the inclusion of the EVTM or VM

factor in a portfolio. Specifically, a positive intercept suggests that volatility timing enhances

Sharpe ratios relative to the original factors, further implying that the EVTM or VM strategy

effectively expands the mean-variance frontier. Our approach is grounded in the extensive

empirical asset pricing literature, ensuring that these factors are accurately identified.

The single-factor alphas hold significant economic meaning, particularly when the individual

factors precisely describe the opportunity set available to investors, or when these factors

exhibit low correlations with one another—indicating that each factor captures a distinct

dimension of risk. Moreover, the single-factor results are crucial in demonstrating that the

empirical patterns we document are pervasive across different factors, reinforcing the notion

that our findings are primarily driven by the time-series relationship between risk and return.

Table 3.6 presents the detailed results of the time-series spanning regressions. Our analysis is

conducted on a factor-by-factor basis, with the alphas from the regressions being annualised.

The findings reveal that the alphas associated with the real-time single-factor EVTM portfolios
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are universally positive and significant across all factors, with the Sharpe-optimised EVTM

portfolios exhibiting the highest alphas, except in the case of the SMB factor, where the

Sortino-optimised EVTM portfolio achieves the highest alpha. In contrast, the alphas

from the spanning regressions using real-time VM portfolios are generally positive but not

significant, with the notable exception of the RMW factor. Our VM alpha results are similar

to De Nicolo (2023) Table 6 results where most VM factor alphas are not significant except

for the MOM factor. Angelidis & Tessaromatis (2023) also show insignificant alphas from

spanning regressions for the MKT, SMB, and CMA factors. They state the differences in the

reported alphas for the VM market portfolio could be due to; a shorter period we use in the

estimation of alpha (from 1967 to 2020), and/or the risk model used to adjust for risk. In our

case, we our results are from 1968 to 2023, which differs from Moreira & Muir (2017) which

is from 1926 to 2015. Despite the generally strong positive alphas, the largest is observed in

the Sharpe-optimised EVTM Mkt-RF factor.

Single-factor EVTM portfolios have significantly higher R2 values compared to single-factor

VM portfolios, implying that the returns of the single-factor EVTM portfolios are better

explained by the factors considered in the regression model. Consequently, the EVTM

portfolios consistently achieve significantly higher Sharpe ratios compared to the VM portfolios

for all the factors analysed, underscoring the superior performance of the EVTM strategy

under this metric.
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Table 3.6: Single-Factor Portfolio Alphas

VM

Mkt-RF SMB CMA HML RMW

b 0.66*** 0.7167*** 0.667*** 0.566*** 0.593***
(0.006) (0.006) (0.006) (0.007) (0.007)

a 2.469 -0.076 0.8568 1.865 2.394***
(1.512) (0.756) (0.504) (1.008) (0.756)

R2 0.44 0.52 0.45 0.32 0.35

EVTM (Sharpe)

Mkt-RF SMB CMA HML RMW

b 0.782*** 0.777*** 0.753*** 0.810*** 0.791***
(0.004) (0.004) (0.004) (0.004) (0.004)

a 8.110*** 3.352*** 2.923*** 5.216*** 2.848***
(1.008) (0.504) (0.252) (1.008) (0.504)

R2 0.77 0.77 0.75 0.76 0.76

EVTM (Sortino)

Mkt-RF SMB CMA HML RMW

b 0.782*** 0.778*** 0.738*** 0.802*** 0.790 ***
(0.004) (0.004) (0.004) (0.004) (0.004)

a 8.064*** 3.528*** 2.722*** 4.838*** 2.772***
(1.008) (0.504) (0.252) (0.504) (0.504)

R2 0.76 0.77 0.74 0.76 0.76

We run time-series regressions of each managed portfolio factor on the unmanaged factor, using
f ζ
t = a+ bft + εt. f ζ

t represents managed factor portfolios for VM and EVTM portfolios. Stars are
only intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a
p-value is ≤ 0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged
with three stars (***).
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3.5.2 Multi-Factor EVTM Portfolios

Regarding the multi-factor case, Table 3.7 presents a comprehensive set of performance metrics

for the MVE, VM, and EVTM portfolios. In this analysis, we optimise the multi-factor

EVTM portfolios using both the Sharpe ratio and the Sortino ratio as performance measures.

Specifically, we compute a range of Sharpe ratio metrics (including Sharpe1, Sharpe5, and

the overall Sharpe) for the MVE, multi-factor VM, and EVTM portfolios. These metrics

are expressed as ratios relative to the annualised Sharpe ratio of their respective unmanaged

MVE portfolio, providing a clear comparison of performance enhancements. The multi-factor

EVTM portfolios are further optimised using weights derived from Equation 3.29, with the

optimisation process conducted on an expanding data window that begins with 1,000 trading

days at t0.

The empirical results indicate that for all multi-factor EVTM portfolios, both the 99th and

95th percentile CVaR levels are lower than those observed in the VM portfolios. However,

the MVE portfolio achieves the lowest CVaR metrics overall, highlighting its effectiveness in

minimising extreme losses. Specifically, the CVaR for the MVE portfolio suggests that, at

the 99th and 95th percentiles, the portfolio could incur losses worse than 0.81% and 0.47%,

respectively.

Interestingly, the analysis reveals that most of the Sharpe ratio metrics for the multi-factor

VM portfolios are the highest, except for the overall Sharpe ratio, where the multi-factor

EVTM portfolios outperform both the VM portfolios and the MVE factor portfolio.

146



Table 3.7: EVTM Sharpe Ratio and Sortino Ratio Optimised Performance Measures

Metrics MVE VM EVTM
(Sharpe)

EVTM
(Sortino)

CVaR1 -0.8116 -0.2852 -0.5918 -0.6003
CVaR5 -0.4731 -0.2375 -0.3836 -0.3838
Sharpe1 0.2943 0.7467 0.5577 0.5335
Sharpe5 0.5049 0.8964 0.8603 0.8344
Sharpe 1.1777 1.0528 1.7924 1.7437
Mean 0.0150 0.0155 0.0245 0.0238
St.Dev 0.2028 0.2023 0.1841 0.1837

Skewness 0.04751 -0.4304 0.3693 0.2749
Kurtosis 8.0345 11.8894 4.3906 4.5342

In this Table, we report statistics of Sharpe and Sortino optimised EVTM multi-factor portfolios, and VM
and MVE portfolios, in relation to Sortino ratio, Conditional Value-at-Risk measures at 1% and 5% VaRs
(CVaR1 and CVaR5), an adapted Sharpe metric given by the ratio of average returns to CVaR1 and CVaR5,
as Sharpe1 and Sharpe5 respectively, the standard Sharpe ratio, and Moments (Mean, Standard Deviation,
Skewness and Kurtosis).

Furthermore, the analysis of skewness and kurtosis shows a distinct pattern. The multi-factor

EVTM and MVE portfolios display positive skewness, indicating a propensity for more

frequent small gains and fewer large losses. In contrast, the multi-factor VM portfolios exhibit

negative skewness, suggesting a higher likelihood of extreme negative returns. Additionally,

the multi-factor VM portfolios followed by the MVE portfolios have the highest kurtosis,

indicative of heavier tails and a greater likelihood of extreme outcomes.

Figures 3.3 depict the time series of weights used for the original factor, as well as the

Sortino-optimised and Sharpe-optimised multi-factor EVTM portfolios, which are optimised

using weights generated from Equation 3.29. These plots provide a visual representation

of how the allocation of weights changes over time for each optimisation strategy, offering

insights into the dynamic adjustments made to enhance portfolio performance.
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Figure 3.3: Plots of Weights of MVE, Sortino and Sharpe Optimised EVTM Portfolios

(a) Optimal Weights for Sharpe Optimised Multi-Factor
EVTM

(b) Optimal Weights for Sortino Optimised Multi-Factor
EVTM

(c) Optimal Weights for MVE portfolio

This plot illustrates the weights of the unmanaged MVE portfolio, Sortino optimised multi-factor EVTM
portfolio and Sharpe optimised multi-factor EVTM portfolio, optimised with the Equation 3.29.
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3.5.2.1 Spanning Regressions

In Table 3.8, we perform a time-series spanning regression analysis of the multi-factor EVTM

and VM portfolios relative to the Mean-Variance Efficient (MVE) portfolio, utilising the

regression model outlined in Equation 3.40. The empirical results are striking. The alphas

associated with the real-time multi-factor EVTM portfolios are both positive and statistically

significant, indicating that these portfolios deliver superior returns after adjusting for the risks

associated with the MVE benchmark. Notably, the Sharpe-optimised multi-factor EVTM

portfolio stands out, with its alpha values being more than three times higher than those of

the multi-factor VM portfolio. This substantial outperformance highlights the efficacy of the

EVTM strategy in enhancing portfolio returns.

Moreover, the alpha derived from the spanning regressions of the real-time multi-factor VM

portfolio is also positive and significant, demonstrating that the VM approach adds value,

albeit to a lesser extent than the EVTM strategy. Additionally, the VM portfolio reports the

highest R2, suggesting that the returns of the VM portfolio are well-explained by the factors

considered in the regression model.

Overall, these findings emphasise that the multi-factor EVTM portfolios consistently achieve

significantly higher Sharpe ratios compared to the multi-factor VM portfolio. This underscores

the superior performance of the EVTM strategy in optimising risk-adjusted returns, reinforcing

its value as a robust portfolio management approach.
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Table 3.8: Multi-Factor Portfolio Alphas

VM EVTM
(Sharpe)

EVTM
(Sortino)

b 0.603*** 0.292*** 0.315***

(0.007) (0.007) (0.007)

a 1.663*** 5.065*** 4.788***

(0.252) (0.252) (0.252)

R2 0.37 0.10 0.12
We run time-series regressions of each multi-factor managed portfolio factor on the MVE portfolio, using
fζ
t = a+ bft + εt. fζ

t represents multi-factor managed factors for VM and EVTM portfolios. Stars are only
intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a p-value is ≤
0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three stars (***).

3.5.3 Break-Even Transaction Costs

The results presented in Table 3.9 provide a detailed analysis of the mean level of break-even

trading costs across both single-factor and multi-factor portfolios. The analysis reveals that

the break-even costs for the EVTM portfolios are consistently higher than those for the

VM portfolios across all single-factor and multi-factor portfolio cases. Importantly, these

break-even costs for the EVTM portfolios are all positive, indicating that the portfolios can

absorb relatively higher trading costs before their performance is adversely affected.

In contrast, the VM portfolios show some instances of negative break-even basis points,

particularly in the SMB and CMA factors, suggesting that these portfolios may struggle to

maintain performance once trading costs are factored in. The estimates for break-even costs

in single-factor EVTM portfolios range from 60 to 140 basis points, while for multi-factor

EVTM portfolios, the range is slightly higher, between 130 and 160 basis points. These

higher break-even points indicate that the EVTM portfolios, despite incurring larger trading

150



Table 3.9: Break-Even Transaction Costs for Single-Factor and Multi-Factor Portfolios

Single-Factor Portfolio Break-Even Basis Points

VM EVTM
(Sharpe)

EVTM
(Sortino)

Mkt-RF 107 72 74

HML 7 104 102

SMB -55 66 72

RMW 71 117 118

CMA -11 133 121

Multi-Factor Portfolio Break-Even Basis Points

VM EVTM
(Sharpe)

EVTM
(Sortino)

32 138 157
In this table, we report means of break-even trading costs for rebalancing for single-factor and multi-factor
VM and EVTM portfolios.

costs, have a greater capacity to generate returns that justify these costs.

Moreover, although the break-even points for the EVTM portfolios are substantial, the

superior performance of these portfolios is evident when considering other metrics such as the

Sharpe ratios and alphas. These metrics consistently demonstrate significant improvements

in risk-adjusted returns for EVTM portfolios compared to their VM counterparts.
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3.6 Conclusion

In conclusion, the comprehensive analysis of various portfolio optimisation strategies, specific-

ally focusing on the application of the Sortino ratio, and Sharpe ratio, combined with Extreme

Value Theory (EVT)-VaR, provides compelling evidence for the superior performance of

portfolios. The findings consistently demonstrate that EVTM portfolios optimised by the

Sharpe ratio exhibit higher Sharpe ratios across all factors compared to their VM and un-

managed counterparts. Notably, the Sortino-optimised EVTM portfolios deliver exceptional

results, with the Sortino-optimised Sharpe ratio being 3.460 times higher than that of the VM

portfolio, further underscoring the effectiveness of incorporating downside risk into portfolio

management.

Moreover, the analysis of Conditional Value-at-Risk (CVaR) reveals that EVTM portfolios

manage extreme downside risks more effectively than VM portfolios, particularly at the

99% and 95% confidence levels. For instance, in the case of the Mkt-RF factor, the VM

portfolio is expected to incur losses 3.85% worse than those of EVTM portfolios in extreme

tail risk events. The presence of positive skewness in all EVTM portfolios, contrasted with

the negative skewness in VM portfolios, indicates a more favourable risk-return profile for the

EVTM strategy. Additionally, the kurtosis analysis suggests that EVTM portfolios, optimised

using the Sharpe and Sortino ratios, exhibit a more moderate distribution of returns compared

to the heavier-tailed VM portfolios.

The time-series spanning regression analysis further corroborates these findings. The alphas
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associated with real-time single-factor and multi-factor EVTM portfolios are universally

positive and significant, with the Sharpe-optimised EVTM portfolios showing alphas often

more than three times higher than those of the VM portfolios. This robust performance is

also reflected in the higher R2 values of the single-factor EVTM portfolios, indicating that

their returns are appropriately-explained by the factors considered, further solidifying EVTM

as a superior portfolio management strategy.

The analysis of break-even transaction costs adds another layer of insight. Despite the higher

break-even costs associated with EVTM portfolios ranging from 60 to 140 basis points for

single-factor portfolios, and 130 to 160 basis points for multi-factor portfolios, the performance

metrics, including Sharpe ratios and alphas strongly support the superior risk-adjusted returns

of EVTM portfolios compared to VM portfolios. The positive break-even points across all

EVTM portfolios highlight their resilience to transaction costs.

EVTM and VM managed portfolios are crucial because, as Prospect Theory asserts, with

loss aversion, economic agents are more sensitive to losses than to gains. Economic agents

tend to be risk-seeking when they are in a position of gains (e.g., in calmer periods), where

they are more willing to take on additional risk in pursuit of higher returns. Conversely,

during periods of potential losses (e.g., market turbulence), they become more risk-averse and

shift towards safer assets to mitigate risk. By adopting EVTM portfolios and dynamically

adjusting portfolio allocations in response to changing market conditions, investors can

optimise risk-adjusted returns and better mitigate the adverse effects of market volatility.

This adaptive approach allows for more resilient portfolio performance across varying market

environments, strategically balancing risk and reward.
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Overall, this study emphasises that the integration of EVT, alongside the optimisation

of portfolios using both the Sharpe and Sortino ratios, significantly enhances portfolio

performance by effectively managing downside risks and optimising risk-adjusted returns.

This Chapter contributes to the expanding literature on Volatility-Managed portfolios by

presenting the first study to fully integrate a volatility timing strategy based on Extreme

Value Theory (EVT). By incorporating EVT, the study enhances the accuracy of extreme risk

estimation, offering a more robust framework for managing portfolio volatility, particularly

in periods of market stress. These findings are particularly relevant for portfolio managers

and market risk managers when estimating the risk of extreme market movements. The

results provide a strong argument for adopting the EVTM strategy in both single-factor and

multi-factor portfolio contexts, offering a robust approach to achieving superior financial

outcomes in the face of market volatility and extreme events.
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Chapter 4

A ROUGH GARCH-TYPE LSTM REALISED VOLATILITY MODEL
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Abstract

This study introduces novel rough hybrid Long Short-Term Memory Models (rGARCH-

LSTM, rEGARCH-LSTM, and rGE-LSTM) designed for forecasting realised volatility by

integrating roughness, the LSTM model, and different Generalised Autoregressive Conditional

Heteroscedasticity (GARCH)-type models. Using intraday SPX index data, we explore hybrid

models that combine LSTM with GARCH-type models and time-series analysis methods.

These hybrid models are compared against standard models such as GARCH-LSTM and

EGARCH-LSTM (exponential GARCH). Our findings reveal that roughness, when combined

with GARCH and/or EGARCH models within an LSTM framework, significantly improves

predictive accuracy in forecasting realised volatility. The primary contribution of this study

lies in the emphasis on rough hybrid LSTM models, which effectively learn sequential patterns

and enhance prediction accuracy in stock market realised volatility. This study evaluates

the performance of our predictive models under different market volatility conditions using

Markov switching regression models on a macroeconomic events dataset. Realised volatility

is decomposed into three states, high, medium, and low volatility states to assess the efficacy

of our models. Thus, we provide empirical evidence supporting the phenomenon of volatility

clustering, demonstrating that heightened volatility contributes to increased forecasting errors.

While some variability is observed in which model yields the lowest MAE and RMSE results
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across the different volatility states, rough-based LSTM models consistently emerge as the

preferred option for next-day forecasts. They demonstrate a decrease in loss function values

when the input variables include the Hurst exponent. This suggests that rough LSTM models

maintain their predictive efficacy across different volatility states, in contrast to non-rough

LSTM models.
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Abbreviation

LSTM Long Short-Term Memory

GARCH Generalised Autoregressive Conditional Heteroscedasticity

EGARCH Exponential Generalised Autoregressive Conditional Heteroscedasticity

MAE Mean Absolute Error

MSE Mean Squared Error

HAMAE Heteroscedasticity Adjusted Mean Absolute Error

HAMSE Heteroscedasticity Adjusted Mean Squared Error

MAPE Mean Absolute Percentage Error

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

ADF Augmented Dickey–Fuller

EWMA Exponentially Weighted Moving Average

DM Diebold-Mariano Test

WS Wilcoxon Signed-Rank Test

AR Autoregressive model
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Nomenclature

t Current time

τ Current 5-minute time

H Hurst exponent

(R/S)n Rescaled range for all sub-series of length n

rt Return at time t

Pτ Close price of the 5-minute time series at time τ

Rt Daily logarithmic return at time t

Rτ The 5-minute logarithmic return at time τ

p Lag order of asymmetric shocks (innovations) in GARCH-type models

q Lag order of lagged volatility in GARCH-type models

RVt Realised volatility

ct Cell state of the LSTM model at time t

ft Forget gate of the LSTM model at time t

ht Hidden state of the LSTM model at time t

xt Current input of the LSTM model at time t
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it Input gate of the LSTM model at time t

c̃t Candidate cell state of the LSTM model at time t

ot Output gate of the LSTM model at time t

s Sigmoid function
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4.1 Introduction

Volatility in financial markets is a crucial indicator of both economic stability and investor

confidence. Understanding and forecasting market volatility has become increasingly im-

portant, especially in light of major macroeconomic events such as financial crises, policy

changes, and geopolitical tensions. Popular models used to forecast realised volatility based

on historical data include GARCH-type models, Stochastic Volatility (SV) models, ARFIMA

models, HAR-RV models, regime-switching models, and machine learning approaches. The

ability to accurately forecast volatility aids in risk management, portfolio optimisation, and

policy formulation.

In this study, the Hurst exponent, GARCH-type models, and the LSTM model are explained,

computed, and empirically analysed. These statistical, econometric, and machine learning

models are chosen for their ability to capture long-term dependencies (Hurst exponent),

short-term volatility dynamics, volatility clustering, leverage effects (GARCH-type models),

and complex non-linear relationships with long-term memory (LSTM models). LSTM models

are particularly effective for modelling time series with long-term dependencies and patterns

that traditional models might not capture. By combining these models, a more powerful and

nuanced approach to forecasting realised volatility can be achieved.

Kim & Won (2018) demonstrate how combining a neural network model with multiple

econometric models, rather than relying on a single econometric model, significantly enhances

prediction performance compared to the existing literature. Additionally, the empirical results
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of Hu & Ni & Wen (2020) show that GARCH forecasts can serve as informative features to

substantially increase predictive power, and that integrating LSTM models is an effective

approach to constructing deep neural network structures that further improve prediction

performance. Ke et al. (2023) develop a hybrid model for predicting commodity prices using

the Hurst parameter and GARCH model.

The Hurst exponent, introduced by Hurst (1951), characterises the long-term memory or the

phenomenon of long-range dependence in time-series data, particularly the autocorrelation

of data over time. Originally developed to analyse the flood and drought patterns of the

Nile River, the Hurst exponent, denoted by H, has several key applications in various

fields, especially in finance, geophysics, and hydrology. The nature of a time series can be

determined based on its value of H, as explained in the Methodology section of this chapter.

The Hurst exponent can indicate whether the fractional Brownian motion process of a financial

instrument or market index exhibits negative autocorrelation, positive autocorrelation, or a

random walk, as shown by B. B. Mandelbrot & Van Ness (1968). This information is valuable

for developing trading strategies and risk management policies.

The GARCH (Generalised Autoregressive Conditional Heteroscedasticity) and EGARCH

(Exponential GARCH) models are widely used in financial econometrics for modelling

time-varying volatility. The GARCH model effectively captures the volatility clustering

phenomenon in financial markets, where high-volatility events tend to follow other high-

volatility events, and the same is true for low-volatility events. GARCH models are also

useful for forecasting future volatility. The EGARCH model, on the other hand, allows for

asymmetric volatility modelling by explicitly capturing the leverage effect, where negative
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shocks to asset returns might impact volatility differently compared to positive shocks of

the same magnitude. This feature is particularly useful in financial markets that exhibit

asymmetric responses to news.

Unlike the GARCH model, which requires certain parameters to be positive to ensure a

positive conditional variance, the EGARCH model does not impose such constraints due to

its logarithmic specification. This allows for greater flexibility in modelling and simplifies

parameter estimation. EGARCH can capture complex dynamics in the volatility process,

including long memory and persistent effects of shocks, making it suitable for a wide range

of financial series. By accurately modelling the skewness and kurtosis of financial returns,

EGARCH models improve the valuation of financial derivatives and enhance risk assessment

practices by accounting for the asymmetric and leptokurtic nature of asset returns. Both

GARCH and EGARCH models are integral tools in quantitative finance due to their ability

to model and forecast volatility accurately. For this reason, we combine specifications of both

GARCH-type models to leverage the advantages of each model in our hybrid model.

We now move on to the Long Short-Term Memory (LSTM) model, which is a type of

Recurrent Neural Network (RNN) that avoids the vanishing gradient problem. At the heart

of LSTM networks are memory cells that retain information for extended periods. Each cell

has mechanisms called gates that regulate the flow of information into and out of the cell,

helping it remember or forget information. LSTMs have three types of gates: input gates,

output gates, and forget gates. These gates determine whether to allow new information

in (input gate), delete stored information (forget gate), or let it influence the output at the

current time-step (output gate).
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Next, we develop the rough GARCH-type LSTM models, which combine GARCH-type

attributes with the Hurst exponent. Specifically, we incorporate GARCH conditional volatility,

EGARCH conditional volatility, GARCH residuals, EGARCH residuals, and the Hurst

exponent factors of the stock index at each time t, and feed these factors into the LSTM

model. The input consists of the aforementioned factors of the stock index. Ultimately,

the implicit connections among the stock index factors are modelled to provide valuable

information for forecasting realised volatility.

Furthermore, a comparative analysis of all forecasted outcomes from the GARCH-type LSTM

models is conducted using the Wilcoxon Signed-Rank (WS) test and the Diebold-Mariano

(DM) test. The results show high statistical significance, particularly with rough-based

GARCH-type LSTM models. Our empirical findings suggest that incorporating a rolling

Hurst exponent along with GARCH-type models, which effectively capture volatility clustering,

asymmetry, and the leverage effect, optimally enhances the predictive capabilities of forecasting

RVt. Additionally, in the context of the macroeconomic events dataset, various loss functions

are evaluated across three volatility states generated by Markov switching models, covering

low, medium, and high volatility states. The analysis confirms that rough GARCH-type

models outperform their non-rough counterparts. This comparative analysis also highlights

an increase in forecasting errors associated with macroeconomic events, providing empirical

evidence for the phenomenon of volatility clustering. The increase in errors suggests that

high volatility significantly impacts and amplifies forecasting errors.

The chapter is structured as follows: the literature review in Section 4.2 provides an overview

of relevant research on the Hurst exponent, GARCH-type models, and the LSTM model.
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In Section 4.3, the data is presented, and details of the SPX dataset and the interest rate

(the 3-Month Treasury Constant Maturity Rate, DGS3MO) are discussed. The methodology

in Section 4.4 introduces the Hurst exponent and explains how roughness can be captured

in its estimation. Afterward, GARCH and EGARCH components explained, extracted and

analysed. The LSTM model is then constructed and illustrated. Finally, in Section 4.5,

the empirical analysis focusses on the model configuration, and covers a substantial number

of macroeconomic events where RVt is further decomposed into three volatility states. We

present statistical tests and loss function results that quantify the error margin between a

model’s predictions and the actual target realised volatility to determine the best model. The

conclusion, discussed in Section 4.6, offers insights and potential stakeholders.

4.2 Literature Review

Forecasting financial asset prices presents a formidable challenge in time-series analysis,

primarily due to the inherent noise and pronounced volatility characteristic of the financial

markets. From a practical standpoint, the ability to accurately predict the volatility of

financial time series holds substantial significance. It equips policymakers, risk managers,

and speculators—whether they rely on fundamental or technical analysis—with a potent tool

to realise financial gains and manage or mitigate risks.

Numerous scholarly articles have extensively investigated the phenomenon of persistence

across diverse financial assets, encompassing stocks as explained by Lo (1991) and Los &

Yalamova (2004), exchange rates as assessed by Da Silva et al. (2007), commodity prices

explored by Serletis & Rosenberg (2007), and cryptocurrencies as analysed by Bariviera
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(2017). Various methodologies have been employed to assess long-range persistence in assets.

Caporale & L. Gil-Alana & Plastun (2018) deploy the R/S analysis, Caporale & L. A.

Gil-Alana (2013) utilise fractional integration, Barunik & Kristoufek (2010) explore the

generalised Hurst exponent approach, Grech & Mazur (2005) use the detrended moving

average, and Kantelhardt et al. (2002) implement the multifractal generalisation. Recent

studies have found that the log-volatility of asset returns exhibits roughness. Gatheral &

Jaisson & Rosenbaum (2018) examine the smoothness of the volatility process, concluding

that log-volatility behaves as a fractional Brownian motion (fBm) with a Hurst exponent H of

approximately 0.1 at any reasonable timescale, indicating that volatility exhibits roughness.

B. Qian & Rasheed (2004) show that the Hurst exponent provides a measure of predictability.

They use the Hurst exponent to classify sets of financial data representing different time

periods. Their findings suggest that periods with larger Hurst exponents can be predicted

more accurately than those with H values closer to those of random series, indicating that

stock markets are not entirely random in all periods. Most studies have predominantly

utilised daily data, as shown by Zunino et al. (2009), with a smaller number focusing on

weekly data, as depicted by MacDonald & Taylor (1992), or monthly frequencies which

are studied by Caporale & L. Gil-Alana & Plastun (2019). Additionally, there is a limited

body of literature examining long-memory properties in high-frequency data. For instance,

Andersen & Bollerslev (1997) explored persistence in 5-minute returns in the FX and US

stock markets, uncovering long-memory properties in volatility. Cotter (2005) observed

long-memory properties in the UK futures market using 5-minute interval data. Thus, the

Hurst exponent is a versatile tool for analysing time-series data, providing insights into the
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data’s autocorrelation structure and aiding in modelling and forecasting future behaviour

based on historical patterns.

Engle (1982) introduced a novel framework for forecasting volatility in financial markets,

effectively establishing an approach to financial time-series analysis and leading to several

developments in the field. The GARCH model was first introduced in Bollerslev (1987) seminal

paper, which proposed a process to capture the impact of past shocks (squared residuals)

on current volatility while accounting for the influence of past volatility. Bollerslev (1987)

implemented parameter estimation using maximum likelihood methods, highlighting the need

for formal tests to detect GARCH effects. Through empirical examples, he demonstrated the

superior performance of GARCH over ARCH in modelling inflation, particularly with the

GARCH (1,1) specification.

While ARCH/GARCH models effectively capture volatility clustering in-sample, Nelson (1992)

identified weaknesses in the symmetric GARCH model, highlighting its inability to account

for the negative correlation between asset returns and changes in return volatility. To address

these limitations, Nelson developed the Exponential GARCH (EGARCH) model, which

incorporates the sign and magnitude of shocks without requiring non-negativity constraints.

This development paved the way for variations like Threshold GARCH (TGARCH) from

Zakoian (1994), which allow for skewness and leptokurtosis in the distribution of residuals,

which have more capability in capturing extreme events. In summary, the EGARCH model

introduced by Nelson (1992) captures the asymmetric phenomenon known as the leverage

effect, meaning it accounts for both positive and negative shocks (good and bad news) in

relation to asset returns.
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Engle & Patton (2007) emphasised key features of predictive models, including volatility

clustering, mean reversion, asymmetry, and the impact of exogenous variables. They favoured

asymmetric GARCH models for their ability to capture these characteristics, though they

acknowledged challenges in incorporating exogenous variables. Vilasuso (2002) and Zhou &

Kang (2011) explored alternative models to address GARCH’s limitations, such as insufficient

memory and inability to capture long-lasting shocks. Vilasuso (2002) recommended the

Fractionally Integrated GARCH (FIGARCH) model, while Zhou & Kang (2011) compared

long-memory and short-memory models, finding that long-memory models outperformed in

forecasting real estate volatility.

Kışınbay (2010) assessed nonlinear GARCH models and highlighted the superiority of asym-

metrical models, particularly EGARCH, in predicting equity volatility. Kışınbay (2010)

also emphasised the importance of out-of-sample forecasting and provided a comprehensive

evaluation of model performance. Instances where authors used GARCH models to forecast

realised volatility include Kim & Won (2018), who chose a constant GARCH (1,1) model

for their financial time-series, assuming its superiority over models with higher orders. C.

Deng et al. (2020) also used GARCH (1,1) with high-frequency data to model daily realised

volatility. Kambouroudis & McMillan & Tsakou (2016) adapted a model that integrates an

asymmetric GARCH model with both implied and realised volatility, using (asymmetric)

ARMA models. Koopman & Jungbacker & Hol (2005) compared the forecasting effectiveness

of long-memory models for realised volatility with Stochastic Volatility (SV) models and

GARCH models, both based on daily return series.

Corsi (2009) proposed a new realised volatility model designed to directly model and forecast
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the time series behaviour of volatility. Their aim was to develop a conditional volatility model

based on realised volatility that could accurately reproduce the long memory persistence

observed in empirical data. Through simulations, Corsi (2009) demonstrated that the HAR-

RV (Heterogeneous Autoregressive Model of Realised Volatility) successfully captures key

empirical features such as long memory and fat tails.

When applied to USD/CHF data, the HAR-RV model showed remarkable out-of-sample

forecasting performance, consistently and significantly outperforming competing models such

as RiskMetrics, AR (Autoregressive), and ARFIMA (Autoregressive Fractionally Integrated

Moving Average). Specifically, for next-day-ahead forecasts, the results were as follows:

RiskMetrics (3.5945), AR(1) (2.9404), AR(3) (2.9088), ARFIMA(5, 0.401, 0) (2.8916), and

HAR-RV (2.8472). These results highlight the superior predictive accuracy of the HAR-RV

model compared to traditional approaches.

Poon & Granger (2003) found interesting results in 66 studies that investigated the comparat-

ive performance of forecasting techniques; HISVOL (historical volatility), ISD (option-implied

standard deviation, based on the Black–Scholes model and its generalisations), GARCH,

and SV (stochastic volatility). Table 4.1 presents pairwise comparisons drawn from these 66

studies, where some compared only one pair of forecasting techniques, while others compared

several. Among those involving both HISVOL and GARCH models, 22 studies (56%) found

HISVOL superior to GARCH, and 17 studies (44%) found GARCH superior to HISVOL. 17

studies (94%) found ISD to be superior to GARCH and 26 studies (76%) found ISD to be

superior to HISVOL.
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Table 4.1: Pairwise Comparisons of Forecasting Models

Number of Studies Studies Percentage

HISVOL > GARCH 22 56%
GARCH > HISVOL 17 44%

HISVOL > ISD 8 24%
ISD > HISVOL 26 76%

GARCH > ISD 1 6%
ISD > GARCH 17 94%

SV > HISVOL 3 100%

SV > GARCH 3 100%

GARCH > SV 1 100%

ISD > SV 1 100%
This Table from Poon & Granger (2003) shows comparative performance of HISVOL (historical volatility),
ISD (option implied standard deviation, based on the Black-Scholes mode and various generalisations),
GARCH, and SV (stochastic volatility model forecasts that historical volatility models).

The evolution of machine learning techniques from traditional models to more advanced

variants has marked a significant advancement in this field. Contemporary machine learning

models adeptly simulate complex real-world data by extracting robust features that capture

relevant information, demonstrating superior predictive performance compared to traditional

linear models, as evidenced in the studies by Salakhutdinov & Hinton (2009) and Bengio &

Courville & Vincent (2013). Given the complexities inherent in financial asset prices, the

integration of deep learning techniques with financial market forecasting represents one of the

most promising areas of research, as indicated by Cavalcante et al. (2016). This convergence

offers a sophisticated analytical framework capable of decoding the nuanced dynamics of

financial markets, holding great potential for advancing our understanding and predictive

capabilities in this domain.

Hybrid models that combine traditional GARCH models with machine learning features
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have also been explored to improve predictive performance. There is substantial literature

examining the integration of neural network models with traditional econometric models,

particularly in the domain of financial market volatility forecasting. For instance, Roh (2007)

explores the combination of a neural network with a financial time-series model using the

KOSPI 200 index. Roh (2007) demonstrates that a model that amalgamates a feedforward

neural network with traditional models such as EWMA, GARCH, and EGARCH outperforms

a standalone GARCH model. Further studies by Tseng et al. (2008) integrate an EGARCH

model with a feedforward neural network to estimate the volatility of Taiwan’s stock index

option prices, achieving superior performance over the EGARCH model alone by reducing

stochasticity and nonlinearity in the error term.

Expanding upon this, Kristjanpoller & Fadic & Minutolo (2014) investigate a hybrid neural

network GARCH model for forecasting volatility in three Latin American markets. Their

findings reveal that the hybrid model significantly lowered the Mean Absolute Percentage

Error (MAPE) compared to the conventional GARCH model. In a related study, Kristjan-

poller & Minutolo (2016) employ a hybrid ANN-GARCH model to predict oil price volatility,

incorporating additional variables such as indices and exchange rates related to oil prices.

They identify an optimal architecture for different time windows of volatility, which demon-

strates a 30.6% improvement in prediction accuracy over the GARCH model. Furthermore,

Kristjanpoller & Hernández (2017) compared the predictive capabilities of GARCH-type

models with hybrid neural network models, finding that the latter were more effective in

forecasting the volatility of major metals, underscoring the advantages of integrating neural

networks with traditional econometric approaches in financial volatility forecasting.
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Vidal & Kristjanpoller (2020) show that deep learning can be applied in financial forecasting,

improving the results of classic models. Predicting volatility for different types of financial

assets is one of the most complex tasks in time-series prediction, mainly due to its noisy,

non-stationary, and heteroscedastic structure. Vidal & Kristjanpoller (2020) show their

model significantly improves the forecast of gold volatility by combining two deep learning

methodologies: Long Short-Term Memory (LSTM) and Convolutional Neural Networks

(CNN). The CNN-LSTM hybrid model, which uses convolutional and LSTM layers to learn

from the training data, shows substantial improvement over standalone GARCH and LSTM

models, with a 37% reduction in Mean Squared Error (MSE) compared to the classic GARCH

model and an 18% reduction compared to the LSTM model. Additionally, Hajizadeh et al.

(2012) develop two hybrid models that combine EGARCH with a feedforward network. The

results indicate significant enhancements in model accuracy, evidenced by reduced prediction

errors compared to using either a single econometric model or a single Artificial Neural

Network (ANN) model.

Kim & Won (2018) propose a new hybrid Long Short-Term Memory (LSTM) model to forecast

stock price volatility, combining the LSTM model with various Generalised Autoregressive

Conditional Heteroscedasticity (GARCH)-type models. Using KOSPI 200 index data, they

demonstrate that hybrid models that combine LSTM with one to three GARCH-type models

significantly reduce prediction errors. The LSTM model with three GARCH-type models

showed the lowest prediction errors in terms of Mean Absolute Error (MAE), Mean Squared

Error (MSE), Heteroscedasticity-Adjusted MAE (HAMAE), and Heteroscedasticity-Adjusted

MSE (HAMSE). The GEW-LSTM model from Kim & Won (2018) showed 57.3%, 24.7%,
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and 48% smaller MSE, HAMAE, and HAMSE, respectively, compared to the standalone

GARCH model.

A hybrid model for predicting commodity prices using the Hurst parameter and GARCH

model is introduced by Ke et al. (2023). They propose the EEMD-Hurst-LSTM prediction

method, which is designed to forecast trends in China’s commodity futures market. This

method combines Ensemble Empirical Mode Decomposition (EEMD) with an adaptive fractal

Hurst index derived from intraday data, integrating these into an LSTM model.

This body of research collectively illustrates the potential of hybrid models to enhance pre-

dictive accuracy in financial markets, paving the way for more robust and reliable econometric

forecasting tools.
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4.3 Data Description

This section discusses and describes the data used within this chapter.

The dataset consists of intraday 5-minute open, high, low, and close (OHLC) prices for the

S&P 500 Index, sourced from firstratedata. The data range spans from January 1st, 2008, to

December 31st, 2022. We select the close price Pt for each timestamp t as our primary price.

This data is used to compute the log-returns and, subsequently, the realised volatility.

Table 4.2 presents descriptive statistics such as mean, standard deviation, skewness, and

kurtosis for the log-return time-series data of the SPX index. Additionally, we conduct

tests for stationarity and normality using the Augmented Dickey–Fuller (ADF) test and

the Jarque-Bera test, respectively. To convert the indexes to a stationary time series, we

transform the data by differencing the return value. This is done by subtracting the natural

logarithm of the current price from the previous price in the time-series, resulting in Rτ ,

where,

Rτ = ln

(
Pτ

Pτ−1

)
, (4.1)

and Pτ is the price of the time-series at time τ .

Figures 4.1, 4.2, and 4.3 show the daily close price, as well as the daily and intraday logarithmic

returns for the S&P 500 index over the entire dataset, spanning from January 1st, 2008, to
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Figure 4.1: S&P 500 index daily close price Pt time-series

This chart describes the S&P 500 daily close-to-close time-series.

Figure 4.2: S&P 500 index daily logarithmic return Rt time-series

This chart describes the S&P 500 daily logarithmic returns of time-series.

Figure 4.3: S&P 500 index intraday logarithmic return Rτ time-series

This chart describes the S&P 500 intraday logarithmic returns of time-series.
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Table 4.2: Summary Statistics for Data
Index Mean Std Skewness Kurtosis ADF Jarque-Bera

SPX Rtdaily) 0.000263 0.013185 -0.5015 11.6486 -10.90774*** 21284***

SPX RVt 0.000094 0.000248 9.8421 140.7872 -6.470815*** 3146633***
Stars are only intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a
p-value is ≤ 0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three
stars (***).

December 31st, 2022.

Table 4.2 shows that the distribution of daily SPX index logarithmic returns exhibits negative

skewness. Additionally, the Jarque–Bera test rejects the normality of the return distribution.

The ADF test also rejects stationarity with a value of -10.91, under the condition that the

thresholds are -2.57, -2.86, and -3.43 at the 10%, 5%, and 1% significance levels, respectively.

Thus, heterogeneity likely exists in the time series, as the distribution deviates from normality.

To compute the intraday returns, we divide each trading day into 78 successive 5-minute

intervals, from the market’s opening at 9:30 a.m. to its close at 4:00 p.m. Since stock

returns are computed using intraday data only, we exclude overnight returns from the series.

Following Stoll & Whaley (1990) and Darrat & Rahman & Zhong (2003), we exclude the

first two 5-minute returns, as they conclude that the average time to open for S&P 500 Index

is around 5–7 minutes. Return prices during this period reflect the stale closing price of the

previous day. Therefore, excluding the first two 5-minute return observations as well as those

after 4:00 p.m. helps mitigate the effects of stale price information. We also exclude dates

with late openings or early closings on holidays. In line with the methodology of Dobrev &

Szerszen (2010) and Visser (2011), we exclude dates with early closing times (e.g., 12:15 p.m.

on days before holidays) or late openings, resulting in the exclusion of 45 dates.
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The GARCH and EGARCH residuals and conditional variances are computed using close-to-

close values from the high-frequency data, transformed into daily returns. Specifically, we use

today’s last intraday close price divided by yesterday’s last intraday close price. We focus

on the period from January 1st, 2008 to January 1st, 2023. The rolling GARCH(p, q)-type

models are computed with a rolling window of 22 days to capture information over the course

of a month, testing a range of values for p and q, where p is the lag order of asymmetric

shocks (innovations) and q is the lag order of lagged volatility. The residuals and conditional

variances extracted from this analysis are key inputs for the LSTM model as shown in Table

4.3.

Regarding macroeconomic data, we include the interest rate, specifically the 3-Month Treasury

Constant Maturity Rate (DGS3MO), sourced from the Federal Reserve Economic Data

(FRED).1 The financial and political events used for analysis are a subset of the database of

events identified by Bloom (2009), as well as those identified by Piffer & Podstawski (2018).

The dataset includes observations from February 15th, 2008 to July 8th, 2015.

1https://fred.stlouisfed.org
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4.4 Methodology

The methodology describes the methods and integration of the Hurst exponent, GARCH-type

models, and Long Short-Term Memory (LSTM) networks.

4.4.1 Fractional Brownian and Hurst Exponent

The most common methodology applied towards establishing randomness in stock and option

pricing deals with the incorporation of Brownian motion as a source of randomness. The

seminal article by Brown (1828) discovered this phenomenon in 1827 while looking through a

microscope at pollen, and Black & Scholes (1973) popularised this method within finance.

However, there was early criticism regarding the inadequacy of Brownian motion with regard

to real market data; B. Mandelbrot (1963) challenges the assumption that price changes

in financial markets follow a normal distribution which is a key characteristic of Brownian

motion and observes that price changes exhibit fat tails and long memory, Fama (1965)

argues the efficacy of the stochastic process of Brownian motion discusses the nature of real

market distributions and how the distributions were shown to be non-Gaussian and possess

leptokurtic properties, and Lo & MacKinlay (1988) observes that the processes of real market

data exhibits serial correlation. In the Brownian motion framework serial correlation does

not apply; however, the fractional Brownian motion (fBM) stochastic process can be used to

analyse this market data behaviour.

The ways in which fBM has influenced stochastic models is in how its able to model long-range
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dependence which is measured by the slow decay of auto-correlation functions of increments.

Initially introduced by B. B. Mandelbrot & Van Ness (1968), the fBM is a gaussian stochastic

process that is a generalisation of the Brownian motion with one additional parameter, the

Hurst parameter which has a range between zero and one. Over the range of parameter values

of the Hurst component, the process shows different shapes of inter-temporal correlation.

The fBM shows three different states:

1. if H = 1/2 then the process presents a Brownian motion.

2. if H > 1/2 then the process presents positive autocorrelation.

3. if H < 1/2 then the process presents negative autocorrelation.

Rough volatility models employ a fractional Brownian motion (fBm). The uniqueness of the

fBm is that the increments are not independent. As previously mentioned, H is a continuous

Gaussian process
{
BH

t , t ∈ R
}
, BH

t = 0 with a mean of E
[
BH

t

]
= 0, therefore, the covariance

is:

cov
(
BH

t , BH
s

)
= E

[
BH

t BH
s

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (4.2)

Here the parameter H is called Hurst parameter, Hurst exponent or Hurst index and this

governs the roughness of the process. The relationship between H and the fBm process is

the higher the value of H, the smoother the process. Theorised by Hurst (1951), the Hurst

exponent serves as a tool for assessing the long-term memory in time-series. It is connected
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to the autocorrelations within the series, specifically focusing on how these autocorrelations

diminish as the lag, or the time interval, between pairs of data points increases. The increment

process, Xt = BH
t+1 −BH

t , is known as fractional Gaussian noise.

According to Hurst (1951), and as shown in Weron (2002) and Caporale & Plastun (2024),

the Hurst exponent is determined using rescaled range analysis (R/S analysis). This process

starts by segmenting a time-series of returns with total length L into smaller sub-series, each

of length n, resulting in d such sub-series. For each sub-series, labeled m = 1 to d, we first

calculate its mean (Em) and standard deviation (Sm). Next, we normalise the data in each

sub-series (Zi,m) by deducting its sample mean to obtain Ki,m = Zi,m − Em, where i ranges

from 1 to n. Subsequently, a cumulative time-series Yi,m is created for each i in the sub-series,

defined as Yi,m =
∑i

j=1Kj,m. We determine the range Rm, which is the difference between

the maximum and minimum of the cumulative time-series Yi,m. After finding Rm, we rescale

it by dividing by the standard deviation Sm to get Rm/Sm. The final step involves computing

the average of these rescaled ranges across all sub-series of length n. The R/S is defined as,

(R/S)n =
1

d

d∑
m=1

Rm/Sm. (4.3)

From Weron (2002) the R/S asymptotically follows the relation: (R/S)n ∼ cnH . Therefore,

the value of H can be obtained by running a simple linear regression over a sample of

increasing time horizons log(R/S)n = log c+H log n. Here, c is a constant and the slope of

the regression (H) is an estimate of the Hurst exponent.

We follow Caporale & Plastun (2024) R/S methodology to compute the Hurst exponent, and
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we use Equation 4.1 detailed in the methodology section to calculate the returns.

4.4.2 GARCH-Type Models

Engle (1982) contributed a novel framework for forecasting the volatility in financial markets,

producing an approach to financial time-series analysis and leading to several developments

in the field. The GARCH model was first introduced in Bollerslev (1987) seminal paper, he

generalised Engle (1982) ARCH model, introducing a processes to capture the impact of past

shocks (squared residuals) on current volatility whilst capturing influence of past volatility.

Regarding the limitations of the GARCH models, these models may not always capture

extreme events effectively. This is due to the assumption of a normal distribution for residuals

detailed in Bollerslev (1987). This assumption is a limitation because the normal distribution

has thin tails and a kurtosis of 3, while financial data often exhibits excess kurtosis with

higher peaks and is often skewed, meaning financial returns are not perfectly symmetrical

around the mean. The development of variations like EGARCH allow for skewness and

leptokurtosis in the distribution of residuals, which have more capability in capturing extreme

events. The EGARCH model, primarily introduced by Nelson (1992) captures an asymmetric

phenomenon known as the leverage effect puzzle, thus, the models captures both negative and

positive shocks (good and bad news) relative to a positive or negative relationship to returns.

Given EGARCH is a more flexible framework for modelling financial time-series volatility, we

include this model in our analysis. The GARCH Model specification is expressed as:

yt = µt + σtϵt, ϵt ∼ i.i.d(0, 1), (4.4)
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rt = σtϵt, rt|χt−1 ∼ N(0, σ2
t ), (4.5)

σ2
t = α0 + α1r

2
t−1 + . . .+ αqr

2
t−q + β1σ

2
t−1 + . . .+ βpσ

2
t−p. (4.6)

The GARCH(p, q) Model is expressed as:

σ2
t = α0 +

q∑
i=1

αir
2
t−i +

p∑
i=1

βiσ
2
t−i. (4.7)

From this equation, the GARCH(1, 1) is expressed as:

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1, (4.8)

where rt is the return time-series value at time, µ is the mean of the GARCH model, ϵt is

the model’s residual at time t, σt is the conditional volatility at time t, p is the order of the

ARCH component model, αi are the parameters of the ARCH component model, q is the

order of the GARCH component model, βi are the parameters of the GARCH component

model.

The EGARCH(p, q) model is defined as follows:

lnσ2
t = w +

p∑
i=1

αi lnσ
2
t−i +

q∑
i=1

βig (Zt−i) , (4.9)

where g(Zt) = θZt + λ(|Zt| − E(|Zt|)), σ2
t is the volatility, ω, β, α, θ and λ are coefficients.

Zt represents the density of the generalised error distribution.
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4.4.2.1 Estimating GARCH-Type Model Parameters

We consider the entire time-series of daily returns using close-to-close values from the

high-frequency data. To compute daily returns, we compute the logarithm of today’s last

intraday close price divided by yesterday’s last intraday close price (Visser (2011)). We chose

to consider the dates from 1st, January, 2008 to 1st, January, 2023. We compute rolling

GARCH(p, q)-type models with a rolling window of 22 to constitute for information over

the course of a month. We test a range of values for p and q, where p is the lag order of

asymmetric shocks (innovations) and q is the order of lagged volatility. We fit our model

to the data using the maximum likelihood method and set p and q to various integers and

chose our model depending on the lowest AIC and BIC. We set the distribution for the

GARCH-type models, where the Normal distribution is selected for the GARCH model

and Generalised Error Distribution (GED) for EGARCH models. To guarantee successful

optimisation convergence, if needed we scale the Rt. We extract the residuals and conditional

volatility values from our GARCH-type computations and rescale these values if they were

needed to be scaled for optimisation convergence. Therefore, Rt is rescaled if the scale of Rt

is likely to produce convergence issues when estimating model parameters. The volatility

conditional variance and residuals at time t are extracted, and computed using time (t− 1)

information. Our methodology differs from Kim & Won (2018), as we fit our models using

daily returns based on the lowest AIC and BIC in a rolling window.
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4.4.3 Long Short-Term Memory

4.4.3.1 Neural Network Models

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, were

designed to recognise and learn sequential patterns and is capable of learning long-term

dependencies. LSTMs process data sequences through internal loops which undergo training

using back-propagation, where weight adjustments are made based on the gradient computed

through the chain rule. In standard recurrent networks, using activation functions like

sigmoid and tanh can lead to extremely small or large gradients, resulting in the vanishing

or exploding gradient problem. This issue makes it challenging for the network to learn

from long-range data dependencies. To overcome these limitations, LSTMs, introduced by

Hochreiter & Schmidhuber (1997) employ memory cells and gates. Memory cells and gates

enable the network to retain information over extended periods or discard irrelevant data. In

the context of this study, we compute hybrid models similarly to Kim & Won (2018) that

integrates parameters from multiple GARCH-type models with interest rates into a neural

network framework. In their case they apply the 3-year Korea Treasury Bond (KTB) interest

rate and 3-year AA-grade corporate bond (CB) interest rates.

This approach contrasts with conventional econometric methods, which typically involve more

assumptions and modelling constraints. Neural network models, including LSTMs, are ad-

vantageous as they autonomously learn high-level features with less reliance on predetermined

assumptions.

184



The architecture of the LSTM cell relies on a mechanism which holds the past inputs with

the network or decides to reset the inputs to dismiss past information held in the network.

Regarding the LSTM model, the cell state which is updated at each time t is represented as

ct by Equation 4.10:

ct = ft ⊙ ct−1 + it ⊙ c̃t, (4.10)

where ct is the cell state, ft is the forget gate, computed from ht−1 which is the last hidden

state, and it is the input gate which is computed in a similar method. c̃t represents candidate

for cell state at time t and ⊙ denotes the Hadamard product (element-wise product), and

xt is the current input. The mathematical equations for the aforementioned variables are

defined below:

ft = s (Wfxt + Ufht−1 + bf ) , (4.11)

it = s (Wixt + Uiht−1 + bi) , (4.12)

ot = s (Woxt + Uoht−1 + bo) , (4.13)

ht = ot ⊙ tanh (ct) , (4.14)

c̃t = tanh (Wcxt + Ucht−1 + bc) , (4.15)

where the initial values are c0 = 0 and h0 = 0. The subscript t indexes the time step, and

the superscripts d and h refer to the number of input features and number of hidden units,

respectively:
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• xt ∈ Rd : denotes the input vector to the LSTM unit.

• ft ∈ (0, 1)h: is the forget gate’s activation vector.

• it ∈ (0, 1)h: is the input or update gate’s activation vector.

• ot ∈ (0, 1)h: describes the output gate’s activation vector.

• ht ∈ (−1, 1)h: is the hidden state vector also known as output vector of the LSTM unit.

• c̃t ∈ (−1, 1)h: is the cell input activation vector.

• ct ∈ Rh: is the cell state vector.

• W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: are the weight matrices and bias vector parameters

which are learned during training.

• s: signifies the sigmoid function.

The diagram of an LSTM cell is shown in Figure 4.4. LSTM layers have three gates that

regulate the flow of information which are, the forget gate, input gate, and the output

gate. The forget gate ft in Equation 4.11 computes a weighted sum of xt and ht− 1, and

incorporates a bias. It then transforms this sum into a value ranging from 0 to 1 via the

sigmoid function (s). A value of 0 for ft implies that no input information is being carried

forward, while a value of 1 signifies that all input information is retained. Thus, the forget

gate effectively modulates the extent of past cell state information (ct− 1) to be included in

the current cell state update at time t. The input gate, denoted as it, governs the assimilation
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Figure 4.4: LSTM Cell Illustration

This illustration depicts a Long Short-Term Memory (LSTM) cell process through time.

of new information into the cell state (ct). Meanwhile, ot determines the new information

to be considered at time t, with its output after passing through the tanh function ranging

between -1 and 1. The cell state at time t, denoted as ct, is derived from the integration of

past cell state and new information as regulated by the forget and input gates. The output

value ht is then produced by filtering this updated cell state ct through the output gate

ot, where ct is also passed through the tanh function to ensure its values lie between −1

and 1. The selected values are then multiplied by ot to form the final output. This entire

process updates the cell state from ct− 1 to ct, differentiating between relevant and irrelevant

information, and resulting in the output ht. The LSTM model, composed of these memory

blocks, learns through back-propagation.

Empirically, we propose the data (Rt the daily log returns composed of close-to-close high

frequency values), and specific statistical methods and econometric factors (GARCH con-
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ditional volatility, EGARCH conditional volatility, GARCH residuals, EGARCH residuals,

and Hurst exponent) of the stock index with macroeconomic data (interest rate) at each

daily time t and feed to the LSTM model. Namely, xt now consists of the specific factors of

the stock index. Ultimately, the implicit connections among the stock index factors will be

modelled to provide beneficial information in forecasting volatility.

4.4.4 Realised Volatility

From Barndorff-Nielsen & Shephard (2002), the Realised Volatility (RV) theoretical properties

are constructed from high-frequency data. To calculate the RV of day t, we use the following

Equation 4.16:

RVt =
n∑

τ=1

R2
τ , (4.16)

where Rτ is the 5-minute log-return at time τ = 1 and n = 78, this is to represent 1 day

given 78 five-minute time periods is equivalent to 1 day. Rτ = ln
(

Pτ

Pτ−1

)
, where Pτ is the

price of the index at the 5-minute time τ .

4.4.5 Development of the Models

In the development of our hybrid model, we delineate several pivotal variables. The model’s

input gate incorporates explanatory variables denoted by xt, encompassing ’log returns’,

’GARCH conditional volatility’, ’GARCH residuals’, ’EGARCH conditional volatility’, ’EG-

ARCH residuals’, ’rolling Hurst’ exponent, and the ’interest rate’. The dimensionality of the

LSTM input is configured to reflect the count of these explanatory variables. Additionally,
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we establish the training parameters by setting the number of epochs and learning rate at

100 and 0.001 respectively, and specifying the architecture to contain various LSTM layers.

The combination of 100 epochs and a learning rate of 0.001 provides a balance in terms of

learning efficiency and model performance. Each LSTM layer contains 50 neurones, where

each neurone in the LSTM layer has its own memory cell to maintain information, and the

dense (fully connected) layer contains 1 neurone for making a single output prediction. The

batch size is set to 32 to reflect the number of training samples processed before the model’s

internal parameters (weights) are updated. The criterion for the LSTM’s loss function is

designated as the mean-squared error, aligning with a regression framework. We deploy the

Adam optimiser from Kingma & Ba (2014) to train the LSTM.

Fundamentally, the next step-ahead forecasts are influenced by the trained values. The

LSTM model uses the learned patterns from the training data to make predictions on the test

data. During training, the model learns the underlying temporal patterns and dependencies,

which it then uses to predict future values. An illustration of the sliding window design

in shown in Figure 4.5. It worth mentioning with our methodology, this approach helps

the model concentrate on the latest trends and patterns. Since financial market time-series

data are highly dynamic, recent data is generally more relevant for short-term forecasting.

Sliding windows enable the model to swiftly adapt to new patterns and changes in the

market. Expanding windows include all historical data up to the current point, which can

reduce the influence of recent information with older, potentially less relevant data. This can

make the model less responsive to recent changes, thereby reducing its predictive accuracy

for short-term forecasts. In terms of computational load, sliding windows have a constant
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complexity over time due to their fixed size. In contrast, expanding windows increase in size

with each step, leading to greater computational demands as more data is incorporated. By

restricting the window size, sliding windows also serve as a form of regularisation, helping to

prevent the model from overfitting to the entire dataset. Expanding windows, however, are

at risk of overfitting, as the model may learn noise and irrelevant patterns from older data

points, diminishing its ability to generalise and accurately predict new, unseen data. The

time complexity of the sliding window is expressed as, O((n− k)· k). The outer loop runs

O(n− k) times, where n is length of the data, k is window size, and O is the big O notation.

For each iteration, the slicing operation takes O(k) time as it involves copying w rows, and

appending to arrays X and y is O(1).2 Therefore, the time Complexity is: O((n− k)· k). For

the expanding window method, the time complexity is expressed as O(n2). The functions

starts with a minimum window size and iterates to the total length of the data. For i = m, it

slices m rows. For i = m+1, it slices m+1 rows, and so on, up to i = n− 1. Thus, the total

number of operations can be represented as,
∑n−1

i=m i = (m)+ (m+1)+ (m+2)+ · · ·+(n− 1).

This is an arithmetic series where the sum of an arithmetic series can be calculated as,

(n −m)/2 × (m + (n − 1)) = (n −m)(n +m − 1)/2. For a large n and m, the dominant

term will be n2/2. Therefore, the time complexity simplifies to O(n2). For computational

complexity and predictive accuracy reasons, we focus on implementing the sliding window

method.

Furthermore, regarding the LSTM model, values used for prediction at t+ 1 are indirectly

used to predict values at t+ 2. The model relies on the input sequences to make predictions.
2X and y are the input features and RVt, respectively.
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Figure 4.5: Sliding Window Design for Training and Test Set and Predictions over the Entire
Period

This illustration depicts the sliding window design, where in different scenarios varying lengths of days for
the training set and test set is used for the next day ahead prediction.

We set our training set time-series to consist of various percentages (67%, 75%, and 80%) of

time-series of the explanatory variables, and the test set time-series to be the remaining time-

series. The training set is split into training and testing sets for the explanatory variables,

using a MinMaxScaler function to transform features by scaling each feature to a given

range. The training process involves calculating the loss with 100 epochs, and updating

the parameters using back-propagation to minimise the loss, with the realised volatility is

set as the target value. Utilising the trained network alongside subsequently acquired data,

leveraging the LSTM model’s ability to recall and utilise long-term dependencies in the data,

we facilitate a one-step-ahead forecast.

Regarding the GARCH-LSTM model, the inputs are defined to include ’log returns’, ’GARCH

conditional volatility’, ’GARCH residuals’, and ’interest rate’. Similarly, the EGARCH-LSTM
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Table 4.3: Input Variables for Models
Models Input Variablesxt)

RVt Log Returns Interest Rate

GARCH

Conditional

Volatility

GARCH

Residuals

EGARCH

Conditional

Volatility

EGARCH

Residuals

Rolling Hurst

Exponent

GARCH-
LSTM x x x x x

EGARCH-
LSTM x x x x x

rGARCH-
LSTM x x x x x x

rEGARCH-
LSTM x x x x x x

rGE-LSTM x x x x x x x x

This table describes the inputs for the LSTM models.

model incorporates ’log returns’, ’EGARCH conditional volatility’, ’EGARCH residuals’, and

’interest rate’ as its inputs. The rGARCH-LSTM, rEGARCH-LSTM and rGE-LSTM (which

encompasses both EGARCH and GARCH features) models further extends this input set by

integrating the ’rolling Hurst exponent’. We use these input variables to compute the target

variable the forecasted realised volatility with the emphasis to minimise loss functions MAE

and RSME to validate the forecasting power of the different realised volatility models of

the SPX log-returns. These methodological choices to model volatility leverage econometric,

statistical, and machine learning techniques to capture market volatility. Table 4.3 lists all

input variables for the models.

4.4.6 Loss Functions and Tests

In this sub-section, we employ a comprehensive array of loss functions to evaluate model

performance. Specifically, we utilise the Mean Absolute Error (MAE), the Mean Squared

Error (MSE), and the Root Mean Squared Error (RMSE). Collectively, these three loss

functions constitute the evaluative framework for our analysis. Additionally, we compute the
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Diebold-Mariano (DM) Test from Diebold & Mariano (1995) to compare forecasting accuracy,

and the Wilcoxon signed-rank test from Wilcoxon (1947).

1. Mean Absolute Error (MAE)

MAE =
1

n

n∑
t=1

|RVt − R̂Vt|, (4.17)

2. Mean Squared Error (MSE)

MSE =
1

n

n∑
t=1

(
RVt − R̂Vt

)2
, (4.18)

3. Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
t=1

(
RVt − R̂Vt

)2
, (4.19)

where RVt denotes the realised volatility at time t, and R̂Vt denotes the predicted realised

volatility at time t.

To rigorously compare the forecasting accuracy of the LSTM models, we employ the Diebold-

Mariano (DM) Test, as proposed by Diebold & Mariano (1995). This statistical test evaluates

the null hypothesis that two competing forecasting models exhibit equivalent predictive

accuracy. A positive DM statistic suggests that the primary model yields smaller forecast
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errors than the comparative model, while a negative DM statistic indicates the opposite. A

DM statistic close to zero denotes minimal difference in predictive accuracy between the

two models. Several journal papers focused on LSTM predictive accuracy, including Kim

& Won (2018), Petrozziello et al. (2022), and Garcia-Medina & Aguayo-Moreno (2024),

employ the DM test. The Wilcoxon Signed-Rank test, introduced by Wilcoxon (1947), is

a non-parametric statistical test used to compare two related samples or matched pairs to

determine whether their population mean ranks differ. The null hypothesis for both the DM

(Diebold-Mariano) and WS (Wilcoxon Signed-Rank) tests is that the two predictive models

have the same level of accuracy. If the p-value is less than 0.05, we reject the null hypothesis,

indicating that the predictive accuracy of the two competing models is significantly different.

Conversely, if the p-value is greater than 0.05, we fail to reject the null hypothesis at a

significance level of 5% or lower, suggesting no significant difference in predictive accuracy

between the models. For macroeconomic events, we compare forecasting accuracy of the

LSTM models by measuring the error metrics.

4.4.7 Three-State First-Order Markov Switching Regression Model

Lastly, we evaluate the performance of the LSTM models across high, medium, and low

volatility states to assess the efficacy of our approach. Initial tests are conducted to calculate

the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) associated with

political and financial events. The analysis employs a configuration for one-day step forecasts

and volatility decomposition is achieved through a three-state first-order Markov switching
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regression model. The specification of the Markov switching model is defined in Subsection

4.4.8. These volatility states are tested to determine how our models behave in the presence

of volatility clustering, which is prominent during these periods of elevated market volatility

triggered by significant events, thereby facilitating the emergence of volatility clustering

phenomena. We then map the identified volatility states to the event days and proceed

with forecasting using the LSTM models. Specifically, we generate one-day-ahead forecasts

corresponding to or immediately following the event dates. We evaluate the accuracy of these

forecasts by calculating the Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) using the last five days of data, including the event day.

4.4.8 Markov Switching Regression Model Specification

Consider the evolution of a series yt, where t = 1, 2, ..., T , is characterised by three states, as

shown in the models below:

• State 1:

yt = µ1 + φ1yt−1 + εt, (4.20)

• State 2:

yt = µ2 + φ2yt−1 + εt, (4.21)

• State 3:

yt = µ3 + φ3yt−1 + εt, (4.22)
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where µ1, µ2 and µ3 are the intercept terms in state 1, state 2, and state 3, respectively; φ is

the AR parameter; and εt∼ N(0,σ2
t st). In the simplest case, we can express this model as a

state-dependent intercept term for k states:

yt = µst + φstyt−1 + εt, (4.23)

where µst = µ1 when st = 1, µst = µ2 when st = 2, . . ., and µst = µk when st = k. The

probability that st is equal to j ∈ (1, ..., k) depends only on the most recent realisation, st−1,

and is given by

P(st = j|st−1 = i) = pij. (4.24)

All transitions from one state to the other can be sourced in a k × k transition matrix which

governs the evolution of the Markov chain. All elements of P are nonnegative and each

column sums to 1:

P =



p11 · · · pk1

p12 · · · pk2

... . . . ...

p1k · · · pkk


(4.25)
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4.5 Empirical Analysis

4.5.1 Model Configuration

This section focuses on the empirical analysis. We tune our model by comparing performance

across various configurations. Thereafter, we compare performance across the training set

percentage, the number of LSTM layers to process our forecasts, various n-step ahead

forecasts, the entire dataset, and finally a comparison against political and financial events.

For robustness, we employ various loss functions and statistical tests.

4.5.1.1 Training Set Percentages

The results presented in Table 4.4 indicate that optimal performance is achieved when 75%

of the data is used for training to forecast the one-step ahead forecast of RVt. Specifically,

the 75% training set proportion yields the lowest Mean Absolute Error (MAE) in 12 out

of 20 cases, also, 75% training set proportion yields the lowest Root Mean Squared Error

(RMSE) in 10 out of 20 cases. Thus, in subsequent analysis we choose to utilise 75% of the

data for training the LSTM model to ensure optimal forecasting accuracy.
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Table 4.4: Comparison of RVt Forecasting Errors of Various Models over Different Time
Horizons for Various Training Set Percentages

Model Training Set

MAE RMSE

Window Length Window Length

22 66 132 252 22 66 132 252

GARCH-LSTM Model

67% 0.3519 0.3791 0.5045 0.3080 0.9950 0.9995 1.1490 1.1250

75% 0.4063 0.4518 0.3519 0.2934 0.9766 0.9576 0.9258 1.0920

80% 0.3405 0.3458 0.3567 0.2983 1.0420 0.9146 0.9731 0.6660

EGARCH-LSTM Model

67% 0.4490 0.3224 0.3910 0.2951 0.9971 1.0030 1.0480 1.0510

75% 0.3287 0.3883 0.3167 0.2956 0.8572 1.0470 0.8731 1.0630

80% 0.3909 0.3500 0.3929 0.3399 1.2190 1.0670 0.9818 0.6686

rGARCH-LSTM Model

67% 0.3535 0.3343 0.6268 0.3008 0.8793 0.8771 1.0710 1.0210

75% 0.3664 0.3933 0.4043 0.2915 0.7813 0.9979 0.8980 1.0600

80% 0.3748 0.3169 0.3181 0.2942 0.8686 0.8133 0.8511 0.5931

rEGARCH-LSTM Model

67% 0.4059 0.3425 0.3790 0.2784 0.9747 0.8393 1.0340 0.9808

75% 0.3485 0.3110 0.2955 0.2773 0.7857 0.8073 0.8371 1.0750

80% 0.3457 0.3437 0.3251 0.4343 0.8910 0.8457 0.9750 0.7012

rGE-LSTM Model

67% 0.3993 0.4240 0.3442 0.2734 1.0100 0.9788 0.8545 1.0320

75% 0.3412 0.3224 0.3286 0.2877 0.8352 0.8159 0.9818 1.0420

80% 0.6858 0.5031 0.4033 0.2805 1.0260 1.1490 0.8370 0.6079

This table shows the MAE and RMSE of the entire dataset of one-day step forecasts using 2/3, 3/4, and 4/5
of the data. The values are computed over four separate sliding windows. Where window lengths are 22, 66,
132, and 252, respectively. We set configurations for the LSTM model which include; 1 layer, 100 epochs,
and 0.001 learning rate. Errors are calculated by MAE and RMSE and have been adjusted with a 1× 104

multiple for readability.
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Figure 4.6 shows a comparison of LSTM results using the entire dataset for one-day step

ahead forecasts with the sliding window method and 3/4 of the data, where the window

length is 22. This figure illustrates how rGE-LSTM forecasts captures RVt most accurately.

The EGARCH-LSTM model impressively captures large shocks like the rGE-LSTM, however,

there are instances where it is unable to forecast smaller shocks in comparison to the rGE-

LSTM. From Tables 4.4, 4.5 we can see the optimal configuration for 1-step forecasts are

detailed in Table 4.6.
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Figure 4.6: RV True Values vs. RV Predicted Values of Forecasting Models

(a) GARCH-LSTM realised volatility vs. trained and
predicted realised volatility

(b) EGARCH-LSTM realised volatility vs. trained and
predicted realised volatility

(c) rGARCH-LSTM realised volatility vs. trained and
predicted realised volatility

(d) rEGARCH-LSTM realised volatility vs. trained and
predicted realised volatility

(e) rGE-LSTM realised volatility vs. trained and pre-
dicted realised volatility

This figure depicts a collection of realised volatility vs. trained and predicted realised volatility for the LSTM
models.
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4.5.1.2 Number of LSTM Layers

Next, we analyse the impact of the number of LSTM layers in relation to varying window

lengths. In Table 4.5, for each window length, we observe that 12 out of 20 instances with

the lowest Mean Absolute Error (MAE) occur with a two LSTM layers. Forecasts with one

and three LSTM layers both account for 8 out of 20 of the lowest MAEs. However, for each

window length, we observe that 12 out of 20 instances with the lowest Root Mean Squared

Error (RMSE) occur with a single LSTM layer.

From Tables 4.4 and 4.5 it is evident that, in most cases, larger window lengths correspond

to lower MAEs. This finding aligns with the results presented in Table 6 by Kim & Won

(2018), implying that larger sliding windows capture more information, thereby reducing

MAE errors.
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Table 4.5: Comparison of RVt Forecasting Errors of Various Models over Different Time
Horizons for Various Layers

Model

Number of

LSTM

Layers

MAE RMSE

Window Length Window Length

22 66 132 252 22 66 132 252

GARCH-LSTM Model

1 0.3777 0.3459 0.3990 0.2854 0.9556 1.0140 0.9399 1.0470

2 0.3468 0.5474 0.3892 0.2862 1.0170 1.0710 1.0540 1.0150

3 0.3465 0.4697 0.6739 0.3090 0.9052 1.1190 1.2470 1.0960

EGARCH-LSTM Model

1 0.3156 0.3264 0.4692 0.2713 0.9253 0.9512 0.9504 1.0530

2 0.7608 0.3813 0.3487 0.3103 1.1850 1.2610 1.0640 1.1170

3 0.3451 0.3317 0.3703 0.2808 1.0050 1.0070 1.1750 1.0920

rGARCH-LSTM Model

1 0.4628 0.4362 0.4033 0.2942 0.8719 0.8953 0.9345 1.0390

2 0.3181 0.3832 0.3324 0.2881 0.9475 0.9362 0.9681 1.0310

3 0.3151 0.6935 0.3519 0.3249 0.9412 1.1890 0.9157 1.0960

rEGARCH-LSTM Model

1 0.4094 0.3424 0.3355 0.2658 0.9317 0.9139 1.0190 1.0100

2 0.3299 0.4790 0.3144 0.2530 0.8569 1.0570 0.9031 1.0490

3 0.4530 0.3293 0.4373 0.2836 0.9332 1.0060 1.1270 1.0660

rGE-LSTM Model

1 0.4705 0.3559 0.3243 0.2855 0.9257 0.9272 0.8225 1.0110

2 0.2834 0.3007 0.2907 0.2777 0.8744 0.8476 0.8376 1.0590

3 0.3565 0.3080 0.3608 0.3009 0.9941 0.9912 1.0790 1.1060

This table shows the MAE of the entire dataset of one-day step forecasts using 1, 2 and 3 layers in the LSTM
model. The values are computed over four separate sliding windows. Where window lengths are 22, 66, 132,
and 252, respectively. We train the LSTM models with 75% of the data. We set configurations for the LSTM
model which include; 1 layer with 50 neurones and a dense layer with one neurone, 2 layers with 50 neurones
each and a dense layer, and 3 layers with 50 neurones each and a dense layer with one neurone. Additionally,
we have 100 epochs, and 0.001 learning rate. Errors are calculated by MAE and RMSE have been adjusted
with a 1× 104 multiple for readability.

Table 4.6: Optimal configurations for forecasts

Model GARCH-LSTM EGARCH-LSTM rGARCH-LSTM rEGARCH-LSTM rGE-LSTM

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Training Set
%

75%,
80%

75%,
80%

67%,
75%

75% 80% 80% 75% 75% 75% 75%,
80%

Number of
LSTM
Layers

1 1 1 1 2 1 2 1 & 2 2 1 & 2

This table shows the best configurations for the LSTM models.
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4.5.1.3 n Days-Ahead Forecasts

We then proceed to analyse n-step ahead forecasts, where we have n representing the following

values 5, 10, 132, 252. Tables 4.7 and 4.8 demonstrate that n-step ahead forecasts produce

similar outcomes across different models, with the average MAE errors decreasing as the

window length increases. However, we notice higher n from our n-step ahead prediction

set (5, 10, 132, 252), are associated with higher MAE and RMSE errors, indicating that

forecasting accuracy declines as the forecast horizon increases. Notably, models incorporating

the roughness parameter, as measured by the Hurst exponent, consistently outperform non-

rough models. Specifically, in Table 4.7, rough models achieve the lowest MAE errors in

10 out of 16 cases across all four sliding windows and four forecasting steps. Similarly, in

Table 4.8, rough models record the lowest RMSE errors in 13 out of 16 instances under the

same conditions. These results underscore the superior predictive performance of models that

account for roughness.
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Table 4.7: Comparison of RVt MAE Forecasting Errors of Various Models over Different
Time Horizons for Various n Days-Ahead

Model

n-Step Ahead Prediction (Days)

5-Step 10-Step

Window Length (Days) Window Length (Days)

22 66 132 252 22 66 132 252

GARCH(1,1) 2.55×103 9.91×105 5.31×102 5.91×101 2.55×103 9.92×105 5.32×102 5.92×101

GARCH-LSTM 0.4714 0.4484 0.4570 0.3646 0.4668 0.4920 0.4796 0.3734

EGARCH-LSTM 0.4591 0.4488 0.4769 0.3454 0.4574 0.4458 0.4943 0.3518

rGARCH-LSTM 0.4693 0.4865 0.4464 0.3429 0.4621 0.4863 0.4615 0.3415

rEGARCH-LSTM 0.4330 0.4329 0.4481 0.3425 0.4640 0.4817 0.4633 0.3489

rGE-LSTM 0.4155 0.4309 0.4400 0.3689 0.4489 0.4457 0.4548 0.3478

132-Step 252-Step

Window Length (Days) Window Length (Days)

22 66 132 252 22 66 132 252

GARCH(1,1) 2.64×103 1.03×106 5.50×102 6.13×101 2.73×103 1.06×105 5.70×102 6.36×101

GARCH-LSTM 0.6490 0.8126 0.5804 0.4780 0.6851 0.6331 0.5998 0.5072

EGARCH-LSTM 0.6515 0.6528 0.5711 0.4976 0.6962 0.6557 0.6373 0.4974

rGARCH-LSTM 0.6547 0.6937 0.6358 0.4681 0.7238 0.6817 0.5789 0.5070

rEGARCH-LSTM 0.6653 0.6863 0.6168 0.4823 0.7039 0.7060 0.6767 0.5226

rGE-LSTM 0.6802 0.6900 0.5860 0.4685 0.7069 0.7360 0.6715 0.5531

This table shows the MAE of the entire dataset of five-days, ten-days, one-hundred and thirty-two, and
two-hundred and fifty-two step forecasts. The values are computed over four separate sliding windows. Where
window lengths are 22, 66, 132, and 252, respectively. We train the LSTM models with 75% of the data. We
set configurations for the LSTM model which include; 1 layer, 100 epochs, and 0.001 learning rate. Errors are
calculated by MAE have been adjusted with a 1× 104 multiple for readability.
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Table 4.8: Comparison of RVt RMSE Forecasting Errors of Various Models over Different
Time Horizons for Various n Days-ahead

Model

n-Step Ahead Prediction (Days)

5-Step 10-Step

Window Length (Days) Window Length (Days)

22 66 132 252 22 66 132 252

GARCH(1,1) 1.43×105 5.94×107 2.20×104 2.71×103 1.43×105 5.94×107 2.20×104 2.71×103

GARCH-LSTM 1.2940 1.2950 1.2620 1.2420 1.3610 1.5350 1.4580 1.2090

EGARCH-LSTM 1.3180 1.2870 1.2400 1.2490 1.3860 1.3560 1.3840 1.2070

rGARCH-LSTM 1.3740 1.5250 1.3140 1.2180 1.4020 1.5270 1.4360 1.1890

rEGARCH-LSTM 1.2030 1.2670 1.3240 1.2360 1.3940 1.3810 1.4630 1.2130

rGE-LSTM 1.2260 1.2640 1.2010 1.1860 1.3130 1.3370 1.3340 1.1870

132-Step 252-Step

Window Length (Days) Window Length (Days)

22 66 132 252 22 66 132 252

GARCH(1,1) 1.46×105 6.04×107 2.204×104 2.76×103 1.48×105 6.15×107 2.28×104 2.81×103

GARCH-LSTM 1.9900 2.2690 1.8230 1.5670 2.0320 1.9430 1.8250 1.6170

EGARCH-LSTM 2.0020 2.0550 1.8330 1.5760 2.0620 2.0400 1.9250 1.6480

rGARCH-LSTM 1.9890 2.0860 1.8790 1.5770 2.0960 2.0080 1.7820 1.6290

rEGARCH-LSTM 2.0030 2.0630 1.8680 1.5740 2.0590 2.0340 2.0070 1.6370

rGE-LSTM 2.0010 2.0530 1.7890 1.5550 2.0380 2.0810 1.9530 1.6610

This table shows the RMSE of the entire dataset of five-days, ten-days, one-hundred and thirty-two, and
two-hundred and fifty-two step forecasts. The values are computed over four separate sliding windows. Where
window lengths are 22, 66, 132, and 252, respectively. We train the LSTM models with 75% of the data. We
set configurations for the LSTM model which include; 1 layer, 100 epochs, and 0.001 learning rate. Errors are
calculated by RMSE have been adjusted with a 1× 104 multiple for readability.
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4.5.1.4 Model Comparison

In Table 4.9, we present the Mean Absolute Error (MAE) and Root Mean Squared Error

(RMSE) metrics for a variety of models, including the GARCH(1,1) model. The inclusion

of the GARCH(1,1) model allows for a comparative analysis of its forecasting performance

across multiple years within the dataset. The evaluation focuses on the year 2008, a period

marked by substantial financial and political events, and extends to sub-periods covering the

years 2009 and 2010. A sliding window of 22 days is utilised in this analysis, reflecting the

data’s 252 trading days, and the models are assessed based on one-step-ahead forecasts. This

approach is particularly well-suited for predicting the next day’s outcomes in highly volatile

market conditions.

Table 4.9, reveals that the rGE-LSTM model consistently delivers the lowest Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE) values. Specifically, the rGE-LSTM

model achieves the lowest MAEs and RMSEs for the years 2008, and the lowest RMSE in

2010. The errors captured by the LSTM-based models during the 2008 sample period are

significantly higher—by an order of magnitude—compared to the errors in 2009 and 2010, a

disparity attributed to the heightened volatility of events during 2008. The rEGARCH-LSTM

model follows closely in performance. Furthermore, all LSTM models demonstrate superior

performance relative to the GARCH(1,1) model, except for the year 2009 where GARCH(1,1)

presents the lowest MAE and RMSE.
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Table 4.9: Single Models vs. Hybrid GARCH-Type LSTM Comparison

Model Loss Function 2008 2009 2010

Single Model GARCH(1,1)
MAE 0.1952×104 0.5426×10−2 0.9729×102

RMSE 0.2311×105 0.8326×10−2 0.1014×102

LSTM-Based Hybrid

Model

GARCH-LSTM Model
MAE 2.2430 0.3394 0.3777

RMSE 5.8910 0.5002 0.9556

EGARCH-LSTM Model
MAE 2.5700 0.363 0.4662

RMSE 6.7530 0.4854 1.0340

LSTM-Based Hybrid

Model with Hurst

rGARCH-LSTM Model
MAE 2.2320 0.3175 0.3819

RMSE 6.2490 0.4573 1.0070

rEGARCH-LSTM Model
MAE 2.3670 0.2915 0.3380

RMSE 6.2290 0.4174 0.9289

rGE-LSTM Model
MAE 2.0650 0.2589 0.3412

RMSE 5.6390 0.3614 0.8352

This table shows the MAE and RMSE results of a sample data representing the years 2008, 2009 and 2010,
with one-day step forecasts. Where window length is 22, and the training set percentage is 75%. We set
configurations for the LSTM model which include; 1 layer, 100 epochs, and 0.001 learning rate. The single
model (GARCH(1,1) is computed with a window length of 22. Errors are calculated by MAE and RMSE
have been adjusted with a 1× 104 multiple for readability.

4.5.1.5 Model Tests

To evaluate the statistical significance of these models, we apply the Diebold-Mariano (DM)

test, as detailed in Table 4.10, which encompasses the full sample data from 2008 to 2022.

The table reports 26 statistically significant results. If the test result is not significant, it

suggests that the null hypothesis cannot be rejected, indicating insufficient evidence to assert

that one model outperforms another in terms of forecasting accuracy. It is important to

note that the magnitude of the DM statistic does not directly measure the superiority of

one model over another; however, the sign of the statistic is indicative. A markedly negative

value suggests a substantial deviation from the null hypothesis of equal predictive accuracy.

The rGE-LSTM model exhibits the highest negative DM statistics among all models. These

results, however, were statistically not significant when the rGE-LSTM and rEGARCH-LSTM
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Table 4.10: DM Test Pair-Wise Comparison of GARCH-Type LSTM Models

Loss Function Primary Model
Secondary Model

GARCH-LSTM EGARCH-LSTM rGARCH-LSTM rEGARCH-LSTM rGE-LSTM

MAE
GARCH-LSTM

- -10.7749*** -0.4810 5.9964*** 4.7972***

MSE - -1.8310 -0.7537 0.6525 2.6462*

MAE
EGARCH-LSTM

10.7749*** - 9.1780*** 16.0898*** 15.1738***

MSE 1.8310 - 0.5115 2.754* 4.3539***

MAE
rGARCH-LSTM

0.4810 -9.1780*** - 5.4353*** 4.7417***

MSE 0.7537 -0.5115 - 1.4632 2.7084*

MAE
rEGARCH-LSTM

-5.9964*** -16.0898*** -5.4353*** - -0.4568

MSE -0.6525 -2.754* -1.4632 - 2.588*

MAE
rGE-LSTM

-4.7972*** -15.1738*** -4.7417*** 0.4568 -

MSE -2.6462* -4.3539*** -2.7084* -2.588* -

This table shows the DM test of the entire dataset of one-day step forecasts using 1 layer in the LSTM model.
Where window length is 22, and train the LSTM models with 75% of the data. Additionally, we have 100
epochs, and 0.001 learning rate. Stars are only intended to flag levels of significance. If a p-value is ≤ 0.05 it
is flagged with one star (*), if a p-value is ≤ 0.01 it is flagged with two stars (**), subsequently, if a p-value
is ≤ 0.001 it is flagged with three stars (***).

models are tested against each other.

Figure 4.7 presents a heat map depicting the outcomes of applying the Diebold-Mariano

(DM) test for comparative forecast evaluation across a range of models detailed in Table

4.10. The multivariate DM test, as utilised by Lago et al. (2021), employs the Mean Absolute

Error (MAE) as its loss function to assess the statistical significance of forecast accuracy

differences among models. The heat map, presented in a checkerboard format, encodes the

p-values derived from testing the null hypothesis that the forecast accuracy of the model on

the vertical y-axis is not significantly better than that of the model on the horizontal x-axis.

In this heat map, shades closer to dark green indicate p-values approaching zero, signifying a

more pronounced difference in forecast accuracy, with the model on the x-axis outperforming

the model on the y-axis. In other words, p-values close to zero represent cases where the
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Figure 4.7: Multivariate Diebold-Mariano(DM) Test

This illustration depicts a heat map of the Diebold-Mariano (DM) test of LSTM models using the MAE loss
function.

forecast on the x-axis is significantly more accurate than the forecast on the y-axis. Conversely,

black squares represent p-values that exceed the defined threshold in the colour scale, typically

p-values equal to or higher than 0.10, suggesting no significant difference in forecast accuracy

between the models compared.

Figure 4.7 illustrates that the rGE-LSTM and rEGARCH-LSTM models are the most accurate.

The rGARCH model is presented as the next best model. However, it is not conclusive

whether the rGE-LSTM is better than the rEGARCH-LSTM, given a test statistic of 0.4568

and a not significant p-value. For all rGE-LSTM and rEGARCH-LSTM DM tests, we reject

the null hypothesis where p-values are below 0.05. This indicates a significant difference in

predictive accuracy of the rGE-LSTM and rEGARCH-LSTM models compared to the other

models.
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Table 4.11: Wilcoxon Signed-Rank Test(WS) Pair-Wise Comparison of GARCH-type LSTM
Models

Primary Model
Secondary Model

GARCH-LSTM EGARCH-LSTM rGARCH-LSTM rEGARCH-LSTM rGE-LSTM

GARCH-LSTM -
EGARCH-LSTM 1177741.0*** -
rGARCH-LSTM 2596888.0 *** 1717108.0*** -
rEGARCH-LSTM 2929206.5*** 1075948.0*** 2073970.0*** -
rGE-LSTM 1055885.0*** 743538.0*** 734019.0*** 1109592.0*** -

The values are p-values for the WS test and boldface values indicate when the p-value is less than 0.05. Here,
stars are only intended to flag levels of significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a
p-value is ≤ 0.01 it is flagged with two stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three
stars (***).

We observe results from the Wilcoxon Signed-Rank Test (WS); it is worth mentioning that

a larger test statistic suggests more pronounced observed differences, leading to a greater

sum of signed ranks. From Table 4.11, it is evident that all pairs have statistically significant

p-values. Hence, we reject the null hypothesis, indicating that one model in each pair has

better predictive ability compared to the other model.

4.5.2 Political and Financial Events and Volatility States

The objective of this analysis is to evaluate the performance of our predictive model under

conditions of market volatility by comparing the loss metrics MAE and RMSE for the

macro-economic events dataset.

We decompose the realised volatility into three states, high, medium, and low volatility

states to assess the efficacy of our model. We conduct initial tests to calculate MAE and

RMSE of the political and financial events. The analysis uses a configuration for one-day step

forecasts using 1 layer in the LSTM model where the window length is 22, and the training
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Table 4.12: Markov Switching Model Regression Results

Dependent Variable RVt

No. Observations 3737

Tail shape 0 parameters

µ 1.884×10−5***
σ2 1.172×10−10

Tail shape 1 parameters

µ 8.23×10−5***
σ2 2.144×10−9

Tail shape 2 parameters

µ 6.0×10−4***
σ2 4.143×10−7***

This table presents results for the 3-state Markov switching model. Stars are only intended to flag levels of
significance. If a p-value is ≤ 0.05 it is flagged with one star (*), if a p-value is ≤ 0.01 it is flagged with two
stars (**), subsequently, if a p-value is ≤ 0.001 it is flagged with three stars (***).

set percentage is 75%. The method for decomposing volatility is a three-state first-order

Markov switching regression model. Figure 4.8 shows how the RVt is decomposed into three

states, where the x-axis for each chart is the time period from January 1st, 2008 to December

31st, 2022 and the y-axis are the smoothed probabilities where classifications 0, 1, and 2

represent the low, medium and high volatility states, respectively. We test these states to

also ascertain what happens to our models in the presence of volatility clustering given the

prevalent volatility clustering during these periods. Such periods are characterised by elevated

market volatility, triggered by significant market events, thereby facilitating the emergence of

volatility clustering phenomena.

The results presented in Table 4.12 indicate that the average RVt in the low volatility state

is 1.884×10−5, in the medium volatility state the RVt is 8.23×10−5, and in the high volatility

state is 6.0×10−4.
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Figure 4.8: Markov Switching Model Volatility States

This illustration shows three charts of the volatility decomposition over the period from January 1st, 2008 to
December 31st, 2022.
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We map the identified volatility states to the event days and proceed with forecasting using

the LSTM models. Specifically, we generate the one-day-ahead forecast corresponding to or

immediately following the event date. To evaluate the forecasting accuracy, we calculate the

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) using the last five days

of data, including the event day.

We observe some variability in which model yields the lowest MAE and RMSE results across

low, medium, and high volatility states. However, it is evident that rough-based LSTM

models consistently emerge as the preferred option for next-day forecasts across all volatility

states. Tables 4.13, 4.14, and 4.15 demonstrate a decrease in loss function values when the

input variables include the Hurst exponent. This suggests that rough LSTM models maintain

their predictive efficacy across different volatility states in contrast to non-rough LSTM

models. Notably, Table 4.15 reveals that errors in this high volatility state are often ten times

greater than those observed in Tables 4.13 and 4.14. In Table 4.13, 13 out of 16, and 12 out of

16 instances of the lowest MAE and RMSE values are achieved by rough-GARCH type LSTM

models, with rGELSTM and rEGARCH-LSTM models recording the highest frequency of

the lowest MAEs and RMSEs. Similarly, in Table 4.14, 11 out of 13 of the lowest MAEs and

12 out of 13 of the lowest RMSEs are associated with rough-GARCH type LSTM models,

with rEGARCH-LSTM models leading in the number of instances with the lowest errors.

In the case of Table 4.15 all 6 instances of the lowest MAEs and RMSEs are observed with

rough-GARCH type LSTM models, with rEGARCH-LSTM models consistently achieving

the lowest error metrics.
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4.6 Conclusion

This Chapter presents the development and evaluative analysis of rough GARCH-type-LSTM

models (rGE, rGARCH, and rEGARCH), substantiating the efficacy of rGE-LSTM and

rEGARCH as comprehensive predictive tools for forecasting realised volatility under mac-

roeconomic uncertainty. The investigation encompasses a spectrum of modelling techniques,

starting with the quantification of interest rates (DGS3MO) and the roughness in high-

frequency financial data via the Hurst exponent, a metric indicative of long-term memory

attributes. Subsequently, an exploration into GARCH-type models is conducted, where

optimal parameters are deduced using the Maximum Likelihood Estimation method. Com-

parative model assessment is facilitated through the application of the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC), ensuring the selection of

models with optimal fit.

The analysis progresses with the implementation of the Long Short-Term Memory (LSTM)

model, a variant of recurrent neural networks designed to adeptly capture and learn from

the long-term dependencies inherent in the volatility patterns delineated by GARCH-type

models and the Hurst exponent features. Our comparative analysis includes GARCH-type

LSTM models. The results indicate that in most cases the rGE-LSTM model predicts more

accurately and exhibits the lowest forecasting errors in relation to loss functions.

Furthermore, through the deployment of the Wilcoxon Signed-Rank Test (WS) and the

Diebold-Mariano (DM) Test, a comparative analysis between all forecasted outcomes of the
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GARCH-type LSTM models is undertaken. which indicate high statistical significance with

rough-based GARCH-type LSTM models. Our empirical evidence suggests that incorporating

a rolling Hurst exponent built on 5-minute data, and combining GARCH-type models that

capture volatility clustering, asymmetry, and the leverage effect optimally harnesses the

predictive capabilities of forecasting RVt using the rGE-LSTM model.

In the context of the macroeconomic events dataset, an evaluation of various loss functions are

conducted on three volatility states generated from Markov switching Models. We evaluate

low, medium, and high volatility states. The analysis confirms rough GARCH-type LSTM

models prove to outperform non-rough LSTM types. This comparative analysis reveals an

increase in forecasting errors associated with macroeconomic events, thereby lending empirical

support to the phenomenon of volatility clustering. This increase implies that high volatility

affects and increases forecasting errors.

The implications of these findings are manifold, particularly accentuating the model’s utility

for risk managers, hedgers, and monetary policymakers. The incorporation of the Hurst

exponent in rough GARCH-type-LSTM models not only enhances the predictive accuracy

of volatility but also provides deeper insights into the long-term memory and persistence of

financial time series. This inclusion is especially valuable for traders and portfolio managers,

as it helps in better understanding the market’s underlying dynamics, enabling more informed

decision-making in terms of asset allocation, risk assessment, and hedging strategies. Hedgers

can benefit from more precise estimates of future volatility, which are crucial for pricing

derivatives and other hedging instruments. Monetary policymakers can leverage these models

to anticipate and mitigate systemic risks, as the enhanced understanding of volatility dynamics
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could inform interest rate decisions and macro-prudential policies. In terms of computational

complexity, the inclusion of the Hurst exponent does introduce additional computational load

and complexity. Calculating the Hurst exponent involves more sophisticated mathematical

procedures, which can increase the overall computational time and resource requirements.

However, the benefits often outweigh these drawbacks. The use of the Hurst exponent

allows for capturing more intricate features of the data, such as fractional Brownian motion,

which traditional models may overlook. This leads to more nuanced and potentially more

accurate forecasts, which can significantly enhance decision-making processes. The most

computationally intensive part of the function is the calculation of R/S values over all

sub-periods, which has a complexity of O(M2), where M is the length of the input time-

series.3 Despite these advantages, there are also some limitations. While the Hurst exponent

provides valuable insights into the persistence of volatility, it may not fully account for all

market anomalies or structural breaks. Overall, the inclusion of the Hurst exponent in rough

GARCH-type-LSTM models offers a sophisticated approach to volatility forecasting that can

significantly benefit traders, portfolio managers, risk managers, and policymakers.

3To calculate the length of the original series, we retrieve the length which is O(1). Next, we transform
the series into log returns. Calculating log returns involves subtraction, this occurs over the entire series
of length M . Therefore, the complexity is O(M). Thereafter, we initialise of lists for storing R/S values
and sub-period lengths. These are simple array initialisations with O(1) complexity. Then we iterate over
sub-period lengths and calculate R/S values: The outer while loop runs while n ≤ (M − 1)//2. The number
of iterations is approximately M/2 so the outer loop runs O(M) times. Within the loop, the data is divided
into sub-periods. For each n, there are approximately (M − 1)/n sub-periods which calculate deviations,
range, and standard deviation which involves linear operations over each sub-period of length n. Therefore,
the complexity of this step can be described as: O(

∑M/2
n=1 (M − 1)) = O(M ·M/2) = O(M2)
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Chapter 5

CONCLUSION

This research focuses on the analysis of tail risk and volatility by examining how financial

markets respond to various economic and geopolitical events. We evaluate option-implied

Probability Density Functions (PDFs), a volatility-managed portfolio approach with a partic-

ular emphasis on Extreme Value Theory (EVT), and forecasting realised volatility.

Chapter 2 investigates the evolution of option-implied PDFs during periods of macroeconomic

uncertainty, offering insights into market expectations and risk assessments. Option-implied

PDFs, which reflect risk-neutral probabilities of future asset prices, are derived from market-

traded options and provide an essential lens through which investor perceptions of risk can be

analysed. These PDFs, forward-looking by nature, offer a crucial perspective on how market

sentiment changes in anticipation of, and in response to, economic events.

Parametric and non-parametric methods are used to estimate these PDFs, with the mixture

of log-normals model emerging as the most accurate approach for forecasting European call

option prices, as confirmed by the Diebold-Mariano test Diebold & Mariano (1995). The
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relationship between ex-ante uncertainty and the resolution of uncertainty post-event is

explored using a Structural Vector Autoregressive (SVAR) model on macroeconomic news

events. Additionally, the Extreme Value Theory (EVT) Tail Loss Measure (TLM) and Probit

regression models are employed to examine the predictive power of low volatility in forecasting

financial crises. We find that a low volatility period of four and five years translates to

a 19.455%, and 23.052% increase in the probability of market uncertainty. The analysis

concludes that periods of low volatility are significant precursors to financial crises, aligning

with theories posited by Keynes (1937) and Minsky (1977), which suggest that reduced

perception of risk or volatility encourages excessive risk-taking which leads to financial crisis.

Chapter 3 shifts focus to EVT in volatility-managed portfolio optimisation, with a specific

emphasis on managing tail risk, downside risk, and enhancing the Sharpe ratio. This Chapter

constructs a portfolio based on the Fama-French Five-Factor Model, extending the traditional

three-factor framework by incorporating profitability and investment factors. Extreme value

theory (EVT) plays a central role in modelling the volatility-managed portfolio and managing

tail risk, as traditional Value-at-Risk (VaR) measures often underestimate extreme losses.

Our research demonstrates that EVT-managed (EVTM) portfolios deliver superior perform-

ance across a range of volatility-managed strategies, including the Sharpe and Sortino ratios.

Sortino-optimised EVTM portfolios perform particularly well, achieving a Sortino-optimised

Sharpe ratio 3.460 times higher than that of volatility-managed (VM) portfolios from Moreira

& Muir (2017), underscoring the efficacy of incorporating downside risk into portfolio man-

agement. The analysis of Conditional Value-at-Risk (CVaR) metrics confirms that EVTM

portfolios manage extreme downside risks more effectively than VM portfolios, especially
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at the 99% and 95% confidence levels. These results are particularly pertinent to portfolio

managers and risk professionals as they provide enhanced methods for handling the risks

associated with extreme market movements. Positive skewness and lower kurtosis in EVTM

portfolios indicate a more favourable risk-return profile compared to VM portfolios.

Break-even transaction cost analysis reveals that while EVTM portfolios incur higher trans-

action costs than their VM counterparts, they consistently exhibit superior risk-adjusted

returns. The findings align with the principles of Prospect Theory (Kai-Ineman & Tversky

(1979)), which highlights investors’ tendency to become more risk-averse during periods of

loss and more risk-seeking during periods of gain. By dynamically adjusting allocations in

response to market conditions, EVTM portfolios offer a robust approach to balancing risk

and reward, enhancing portfolio resilience across varying market environments.

Chapter 4 focuses on volatility forecasting with roughness, which is crucial for anticipating

financial market stability and investor confidence. The study emphasises the Hurst exponent,

GARCH-type models, and LSTM networks for their respective abilities to capture long-term

dependencies, volatility clustering, and complex non-linear relationships in time-series data.

The rough GARCH-type LSTM model, which integrates the roughness of financial data with

GARCH and EGARCH models, is shown to be particularly effective in forecasting realised

volatility. Diebold-Mariano (DM) and Wilcoxon Signed-Rank (WS) tests confirm that rough

GARCH-type LSTM models outperform traditional models in terms of predictive accuracy.

Volatility states generated by a three-state Markov switching regression model are mapped to

financial and political events, allowing for the computation of one day-ahead and n day-ahead
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forecasts. These forecasts are evaluated using Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE), with the rough GARCH-type LSTM model demonstrating superior

performance in predicting volatility around major events.

Accurate volatility forecasts enable effective risk management, portfolio optimisation, and

policy formulation. This research evaluates various models, including GARCH-type models

and machine learning techniques such as Long Short-Term Memory (LSTM) networks,

for forecasting realised volatility. While the inclusion of the Hurst exponent increases

computational complexity, the benefits in terms of improved forecasting accuracy and deeper

insights into volatility dynamics outweigh the costs. This modelling approach provides risk

managers with more precise estimates of future volatility, allowing for better pricing of

derivatives and hedging strategies, and offering policymakers a tool to forecast volatility.

In conclusion, this research contributes to the fields of volatility forecasting, portfolio op-

timisation, and tail-risk management. By combining option-implied PDFs, EVT-managed

portfolios, and rough GARCH-type LSTM models, this thesis offers novel insights into the

dynamics of financial markets under conditions of uncertainty. The findings underscore the

importance of incorporating advanced econometric and machine learning techniques into

financial risk management strategies to enhance predictive accuracy and portfolio resilience

in the face of extreme market events. These insights will be particularly valuable to risk

managers, portfolio managers, and policymakers seeking to navigate the challenges of modern

financial markets.
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Appendix A

Chapter 2 Appendix

A.1 Statistical Procedures to Select the Methodology to Extract the Risk-
Neutral PDFs

A.1.1 DM Test

In Subsections 2.4.3 and 2.4.2, the parametric and non-parametric methods are discussed

mathematically. In this Appendix, we compare densities using the Diebold-Mariano (DM)

test, and computational time.

We randomly selected 1,000 dates to assess the computation of density forecasts. The selected

dates cover a wide range of expiration dates, capturing the variability across different option

time horizons. We consider expiration dates of approximately 14, 30, 90, 180, and 365 days,

resulting in roughly 5,000 density forecasts. We use these dates to compare density forecasts

with actual call option prices from the selected business day, for a one-day-ahead forecasting

horizon (h = 1).

Table A.1 presents the percentages of instances where forecast errors from ŷ1t are compared

with forecast errors from ŷ2t using the DM test for estimating S&P 500 call prices. The

results indicate that the Mixture of Two Log-normals method performs best when compared

with all other methods for forecasting S&P 500 European option call prices. Specifically,
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Table A.1: Diebold-Mariano Test Applied to Shimko’s Spline Method, Edgeworth Density,
Black-Scholes-Merton Model, Mixture of Two Log-normals, and GB2 Forecasts of S&P500
European Call Prices.

ŷ1t
ŷ2t

Shimko’s
Spline

Method

GB2 Edgeworth
Density

Mixture of
Two Log-
normals

Shimko’s Spline Method 88.54% 44.27% 31.42%

GB2 14.24% 94.79% 44.77%

Edgeworth Density 55.73% 5.201% 06.42%

Mixture of Two Log-normals 68.58% 55.23% 93.58%
We compute the DM test to see whether ŷ1t is more accurate than ŷ2t in predicting yt, where yt is the S&P500
European call prices. We have over 100 observations on averger and a forecasting horizon of 1.

the Mixture of Two Log-normals method yields a better density forecast in 68.58% of cases

when compared with Shimko’s Spline method, 55.23% of cases when compared with the GB2

method, and 93.58% of cases when compared with the Edgeworth method. This implies

that when the Mixture of Two Log-normals method is compared to the other methods, the

DM test produces a negative test statistic for 68.58%, 55.23%, and 93.58% of the cases,

respectively.

A.1.2 Time Expense

To report the computational time expense of the estimation methods, it is important to

provide both a detailed description of the computational setup and quantitative performance

metrics. The computational setup for the estimations comprised an Apple M1 ARM-based

system-on-a-chip with 8 GB of RAM, running macOS version 15.3.1 (24D70) and RStudio

version 2023.12.1+402, along with the Risk Neutral Density (’RND’) package. The metrics
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Table A.2: Time Expense of Density Extraction Methods

Methods Average Time In Seconds

Shimko’s Spline 0.0056

Edgeworth Density 0.0015

Black-Scholes-Merton Model 0.0028

Mixture of Two Log-normals 0.4540

GB2 0.4911
The computational setup comprises of an Apple M1 ARM-based system-on-a-chip, memory 8 GB RAM,
mac0s Version 15.3.1 (24D70) operating system, Rstudio Version 2023.12.1+402 language, and ’RND’ or Risk
Neutral Density Package

presented in Table A.2 represent the average CPU time required by each method over

approximately 5000 density computations. Notably, the Edgeworth Density method requires

the least amount of time to compute a density estimation, whereas the GB2 method is the

most time-consuming.

A.2 Structural VAR Methodology

According to Piffer & Podstawski (2018), the uncertainty shock proxy is built in two steps.

First, a list of events that likely affected economic uncertainty independently of other

macroeconomic shocks is compiled. Next, fluctuations in safe haven asset prices around these

events are analysed to further refine the proxy.

A.2.1 Events

To isolate periods when uncertainty likely shifted exogenously relative to the broader economy,
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we compile a list of events that were both unexpected and independent of other macroeconomic

shocks, and that either increased or decreased uncertainty. We begin with the events identified

by Bloom (2009) via peaks in the VXO, and then expand our list using data from natural

disaster records, armed conflicts, terrorist attacks, political elections and judicial decisions as

reflected in Piffer & Podstawski (2018).

Events that could have been anticipated by economic agents or that may be linked to other

macroeconomic shocks are excluded. Bloom (2009) comprises 38 events used to identify the

VAR model, which is estimated on approximately 400 monthly observations. As detailed in

Table 2.20, our dataset includes 62 events, and our baseline analysis focuses on 16 baseline

events, these events are marked with an asterisk (*).

To determine when news of these events reached the market, we rely on Bloomberg News

releases, as Bloomberg is a primary source of information for market participants due to its

global data aggregation.

A.2.2 Proxy Computation

We select gold as the most favourable safe haven asset for constructing the proxy. As specified

by Bloom (2009), this is firstly because the proxy based on the price of gold Granger-causes

several measures of uncertainty, suggesting a higher informational content in the dynamics of

uncertainty. Secondly, the gold-price proxy is more closely correlated with the VXO residuals

from the estimated VAR model, which indicates the presence of a stronger relationship with
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the drivers of the data analysed in the VAR model, as also shown in Piffer & Podstawski

(2018). These conclusions were reached after comparing the gold proxy with those based on

other precious metals, on the price of Treasury bills, and on the VXO, as well as with proxies

constructed as dummy variables taking the value 1 when events occurred, the value 1 when

the VXO peaked, or values of 1 or –1 when an event was judged to imply an increase or a

decrease in uncertainty, respectively.

We utilise intra-day data from the London spot market for physical gold, using prices from

the two daily auctions organised at 10:30 and 15:00 by the London Bullion Market. We

compute the proxy for the uncertainty shock as the percentage variation in the price of gold

around the selected events. Specifically, given an event Ej , with j = 1, . . . , N (where N is the

total number of events considered), let γj represent the time when event Ej became known

to the market. For each event, we calculate ∆pj as the percentage change in the price of gold

between the last available auction price before γj and the first available auction price after

γj. Following the approach of C. D. Romer & D. H. Romer (2004), these N realisations of

∆pj are then aggregated into a monthly time series by summing the daily proxies within each

month.

A.2.3 Exogeneity of the Proxy SVAR

Since structural shocks are not directly observable, it is impossible to test whether the proxy

for the uncertainty shock satisfies exogeneity conditions through direct observation as outlined

in equations A.1 and A.2.
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We state mt as the proxy for the uncertainty shock, and define the k × 1 vector φ as

φ = (φu, φ
∗′)′ , where φu = E(ϵutmt) and φ∗ = E(ϵutmt) .

If,

E(ϵutmt) ≡ φu ̸= 0, (A.1)

E(ϵutmt) ≡ φ∗ = 0, (A.2)

then mt can be used as an instrument to identify ϵut , to allow for isolating variations in ut

that are driven by ut specified in Equation 2.39 rather than by ϵ∗t . However, if mt correlates

also with some of the structural shocks in ϵ∗t , then ϵut requires further restrictions that prevent

the estimated shock ϵut from being influenced by the other structural shocks that mt correlates

with.

Therefore, we assess the exogeneity condition by documenting the relationship between our

proxy and several measures of structural shocks.

Each shock is used at the original frequency provided in the datasets by the respective authors,

and we aggregate our proxy mg
t to that frequency when necessary. Reassuringly, we find a

significant correlation with one of the two uncertainty shock instruments, namely the residual

from an AR(2) regression on the VIX.
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Uncertainty and news shocks may be interrelated, as certain variations in uncertainty could

be linked to first-moment shocks akin to news shocks (Baker & Bloom (2013)). Bloom (2009)

applied the tests from the proxy mg
t model to news shocks on future productivity estimated.

Bloom (2009) observes a statistically significant relationship with the news shocks estimations,

indicating some correlation between the proxy for the uncertainty shock and the news shocks

(which potentially affects risk appetite of economic agents) reported in the literature. This

correlation can be interpreted in several ways:

• One possibility is that our proxy for the uncertainty shock also captures news shocks.

• Alternatively, the identification strategy employed may not fully disentangle news shocks

from uncertainty shocks, thereby reflecting uncertainty shocks.

To minimise the risk of conflating uncertainty shocks with news shocks, we identify both

types of shocks within a unified framework.

——————–
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